-
Notifications
You must be signed in to change notification settings - Fork 0
/
quadrotor.py
433 lines (359 loc) · 14.9 KB
/
quadrotor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import numpy as np
from time import sleep
from scipy import linalg as la
class quadrotor:
def __init__(self, tag, dt, m, l, J, CDl, CDr, kt, km, kw, att,
pqr, xyz, v_ned, w, B, De, Dn):
# physical constants
self.tag = tag
self.dt = dt
self.m = m # [Kg]
self.l = l # [m]
self.J = J # Inertia matrix [Kg/m^2]
self.Jinv = la.inv(J)
self.CDl = CDl # Linear Drag coefficient
self.CDr = CDr # Angular Drag coefficient
self.kt = kt # Propeller thrust [N s^2]
self.km = km # Propeller moment [N m s^2]
self.kw = kw # Motor transient [1/s]
# Configuration of the propellers
self.w_to_Tlmn = np.array([[ -kt, -kt, -kt, -kt],\
[ 0,-l*kt, 0, l*kt],\
[ l*kt, 0,-l*kt, 0],\
[ -km, km, -km, km]])
self.Tlmn_to_w = la.inv(self.w_to_Tlmn)
# Physical variables
self.att = att # Attitude [rad]
self.pqr = pqr # Body angular velocity [rad/sec]
self.xyz = xyz # Body position NED [m]
self.v_ned = v_ned # Body linear velocity NED [m/sec]
self.w = w # Actual angular velocity of the propellers [rad/sec]
self.Ft = np.array([0.0, 0.0, 0.0]) # Motor (Thrust) Force [N]
self.Fa = np.array([0.0, 0.0, 0.0]) # Aerodynamic Forces [N]
self.Mt = np.array([0.0, 0.0, 0.0]) # Motor Moment [N m]
self.Ma = np.array([0.0, 0.0, 0.0]) # Aerodynamic Moments [N m]
self.crashed = 0 # Ground hit?
## GNC variables
# Geometric (1) or std (0) attitude controller
self.att_con = 1
# Gains for the attitude controller
self.kp = 2
self.kq = 2
self.kr = 2
# Gains for classical controllers
self.k_pos = 2e-1
self.k_vel = 2e-1
# Gains for Lyapunov controllers
self.k_alt = 1e-2
self.k_vz = 1
self.k_xy = 1e-2
self.k_vxy = 1e-1
self.k_xi_g_v = 1e-1
self.k_xi_g_e_alt = 5e-3
self.k_xi_CD_e_v = 1e-3
self.e_alt = 0 # We need it for the estimator xi_g
self.e_v = np.array([0, 0]) # We need it for the estimator xi_Cd
# Gains for geometric att controller
self.k_eR = 5e-3
self.k_om = 1e-2
self.T_d = 0 # Desired thrust [N]
self.lmn_d = np.array([0.0, 0.0, 0.0]) # Desired angular momentum [N m]
self.w_d = w # Desired angular velocity for the propellers [rad/sec]
# Desired attitude roll, pitch [rads]
self.att_d = np.array([0.0, 0.0, 0.0])
# Hoovering desired 3D position NED [m]
self.xyz_d = np.array([0.0, 0.0, 0.0])
self.v_ned_d = np.array([0.0, 0.0, 0.0]) # Desired vel 3D NED
self.yaw_d = 0 # Desired yaw [rad]
# Estimators
self.xi_g = 9.8 # Initial guess of gravity
self.xi_CD = 0
# Kalman filter variables
# States q = [[p_n],[p_e],[b]]
self.c_q = np.array([[xyz[0]], [xyz[1]], [0]])
self.c_P = np.array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1]])
self.c_F = np.array([[1, 0, dt],
[0, 1, dt],
[0, 0, 1]])
# input u = [[u_vn], [u_ve]] (desired velocities)
self.c_u = np.array([[0],[0]])
self.c_G = np.array([[dt, 0],
[0, dt],
[0, 0]])
# measuring only p_n and p_e
self.c_H = np.array([[1, 0, 0],
[0, 1, 0]])
# standard deviations of the input and the measurement
# Should be zero?!
self.c_Q = np.array([[0.0001, 0],
[0, 0.0001]])
self.c_Pym = np.array([[0.0001, 0],
[0, 0.0001]])
# number of iterations
self.c_it = 0
# last est. bias
self.c_LEB = 0.0
self.settled = False
self.dB = 0.0
# bias
self.c_bias = 0.1
# Formation variables
self.B = B
self.D_n = Dn
self.D_e = De
self.c_K = 0.015
### GNC Functions ###
def control_att(self):
# Attitude controller Lyapunov approach
ephi = self.att[0] - self.att_d[0]
ethe = self.att[1] - self.att_d[1]
epsi = self.att[2] - self.att_d[2]
# Desired moments
self.lmn_d[0] = -self.J[0, 0]*(ephi + self.kp*self.pqr[0]) \
-(self.J[1, 1]-self.J[2, 2])*self.pqr[1]*self.pqr[2]
self.lmn_d[1] = -self.J[1, 1]*(ethe + self.kq*self.pqr[1]) \
-(self.J[2, 2]-self.J[0, 0])*self.pqr[2]*self.pqr[0] \
self.lmn_d[2] = -self.J[2, 2]*(epsi + self.kr*self.pqr[2])
def control_att_geometric(self):
R = self.Rot_bn().transpose()
Rd = self.Rotd_bn(self.att_d[0], self.att_d[1], self.att_d[2]).transpose()
e_RM = 0.5*(Rd.transpose().dot(R) - R.transpose().dot(Rd))
e_R = self.build_vector_from_tensor(e_RM)
om = np.array([self.pqr[0], self.pqr[1], self.pqr[2]])
e_om = om
M = -self.k_eR*e_R -self.k_om*e_om + np.cross(om, self.J.dot(om))
self.lmn_d = M
## Lyapunov based controllers
# Input: Desired 3D position
def set_xyz_ned_lya(self, xyz_d):
e_alt = self.xyz[2] - xyz_d[2]
self.e_alt = e_alt
e_xy = self.xyz[0:2] - xyz_d[0:2]
self.T_d = (-self.xi_g -self.k_alt*e_alt \
-self.k_vz*self.v_ned[2])*self.m
axy = -self.k_xy*e_xy -self.k_vxy*self.v_ned[0:2]
ax = axy[0]
ay = axy[1]
# Guidance attitude
phi_d = -self.m/self.T_d*(ay*np.cos(self.att[2])-ax*np.sin(self.att[2]))
the_d = self.m/self.T_d*(ax*np.cos(self.att[2])+ay*np.sin(self.att[2]))
# Control motors
self.att_d = np.array([phi_d, the_d, self.yaw_d])
if self.att_con == 0:
self.control_att()
elif self.att_con == 1:
self.control_att_geometric()
self.w_d = np.sqrt(self.Tlmn_to_w.dot(np.append(self.T_d, self.lmn_d)))
# Input: Desired 2D acceleration, Desired altitude
def set_a_2D_alt_lya(self, a_2d_d, altitude_d):
e_alt = self.xyz[2] - altitude_d
self.e_alt = e_alt
self.T_d = (-self.xi_g -self.k_alt*e_alt \
-self.k_vz*self.v_ned[2])*self.m
ax = a_2d_d[0]
ay = a_2d_d[1]
# Guidance attitude
phi_d = -self.m/self.T_d*(ay*np.cos(self.att[2])-ax*np.sin(self.att[2]))
the_d = self.m/self.T_d*(ax*np.cos(self.att[2])+ay*np.sin(self.att[2]))
# Control motors
self.att_d = np.array([phi_d, the_d, self.yaw_d])
if self.att_con == 0:
self.control_att()
elif self.att_con == 1:
self.control_att_geometric()
self.w_d = np.sqrt(self.Tlmn_to_w.dot(np.append(self.T_d, self.lmn_d)))
def step_estimator_xi_g(self, dt):
self.xi_g = self.xi_g + self.k_xi_g_v*self.v_ned[2]*dt \
+ self.k_xi_g_e_alt*self.e_alt*dt
# Input: Desired 2D velocity, Desired altitude
def set_v_2D_alt_lya(self, vxy_d, alt_d):
self.c_u = np.array([[vxy_d[0]],[vxy_d[1]]])
vxy_d = np.array([vxy_d[0]+self.c_bias, vxy_d[1]+self.c_bias])
e_alt = self.xyz[2] - alt_d
self.e_alt = e_alt
vxy = self.v_ned[0:2]
e_v = vxy - vxy_d
self.e_v = e_v
self.T_d = (-self.xi_g -self.k_alt*e_alt \
-self.k_vz*self.v_ned[2])*self.m
axy = self.xi_CD*la.norm(vxy)*vxy -self.k_vxy*e_v
ax = axy[0]
ay = axy[1]
# Guidance attitude
phi_d = -self.m/self.T_d*(ay*np.cos(self.att[2])-ax*np.sin(self.att[2]))
the_d = self.m/self.T_d*(ax*np.cos(self.att[2])+ay*np.sin(self.att[2]))
# Control motors
self.att_d = np.array([phi_d, the_d, self.yaw_d])
if self.att_con == 0:
self.control_att()
elif self.att_con == 1:
self.control_att_geometric()
self.w_d = np.sqrt(self.Tlmn_to_w.dot(np.append(self.T_d, self.lmn_d)))
def set_auto_formation(self, p_n, p_e, alt_d):
i = self.tag-1
u_n = self.c_K * -self.B.dot(self.B.transpose().dot(p_n)-self.D_n)
u_e = self.c_K * -self.B.dot(self.B.transpose().dot(p_e)-self.D_e)
v_2D_d = np.array([u_n[i][0], u_e[i][0]])
self.dB = la.norm(self.c_LEB-self.c_q[2][0])/self.dt
if self.c_it*self.dt < 10:
v_2D_d = np.array([0, 0])
else:
if not self.settled:
v_2D_d = np.array([0, 0])
if la.norm(self.c_LEB-self.c_q[2][0])/self.dt < 0.0001:
self.settled = True
bias = np.array([self.c_q[2][0], self.c_q[2][0]])
self.set_v_2D_alt_lya(v_2D_d - bias, alt_d)
def step_estimator_xi_CD(self, dt):
self.xi_CD = self.xi_CD \
- self.k_xi_CD_e_v*la.norm(self.v_ned[0:2])*(self.e_v.T).dot(self.v_ned[0:2])*dt
### Physics Simulation ###
def step(self, dt):
self.step_rotors(dt)
self.step_6DoF(dt)
self.step_estimator_xi_g(dt)
self.step_estimator_xi_CD(dt)
# Kalman filtering #####################################################################
self.c_it += 1
# Estimation
self.c_q = self.c_F.dot(self.c_q) + self.c_G.dot(self.c_u)
self.c_P = self.c_F.dot(self.c_P).dot(self.c_F.transpose()) + self.c_G.dot(self.c_Q).dot(self.c_G.transpose())
if self.c_it%10 == 0:
# Correction
self.c_LEB = self.c_q[2][0]
q_saved = self.c_q
P_saved = self.c_P
Py = self.c_H.dot(P_saved).dot(self.c_H.transpose())
K = P_saved.dot(self.c_H.transpose()).dot(la.inv(Py+self.c_Pym))
ym = np.array([[self.xyz[0]],[self.xyz[1]]]) # measurement
self.c_q = self.c_q + K.dot(ym - self.c_H.dot(self.c_q))
self.c_P = self.c_P - K.dot(self.c_H).dot(self.c_P)
if not np.all(la.eigvals(self.c_P) > 0):
print("Non-positive P")
self.c_q = q_saved
self.c_P = P_saved
# print(self.c_q[2])
# print(ym)
# sleep(0.01)
def step_rotors(self, dt): # Motors modelled as 1st order linear system
# Check Saturation
for i in range (0, 4):
if self.w_d[i] < 0:
self.w_d[i] = 0
elif self.w_d[i] > 500:
self.w_d[i] = 500
e_w = self.w - self.w_d
w_dot = -self.kw*np.identity(4).dot(e_w)
self.w = self.w + w_dot*dt
def step_6DoF(self, dt):
Rbn = self.Rot_bn() # Rotational matrix from Nav to Body
g = np.array([0, 0, 9.81]) # Gravity vector
p_dot = Rbn.dot(self.v_ned) # Velocity in body coordinates
self.rotors_forces_moments() # Forces and moments by motors
self.aero_forces_moments() # Forces and moments by environment
# Time derivatives (acc and vel) given by physics equations
att_dot = (self.R_pqr()).dot(self.pqr)
p_ddot = (self.Ft + self.Fa)/self.m + Rbn.dot(g) \
- np.cross(self.pqr, p_dot)
pqr_dot = self.Jinv.dot(self.Mt + self.Ma \
- np.cross(self.pqr, self.J.dot(self.pqr)))
# Propagation of positions/angles and velocities
self.att = self.att + att_dot*dt
#for i in range(0,3):
# self.att[i] = self.norm_ang(self.att[i])
self.pqr = self.pqr + pqr_dot*dt
# Touching the ground?
if self.xyz[2] > 0:
self.xyz[2] = 0
if la.norm(self.v_ned) > 0.5:
print self.tag, "crashed into the ground"
self.crashed = 1
self.v_ned[0:3] = 0
else:
self.v_ned = self.v_ned + Rbn.T.dot(p_ddot)*dt
self.xyz = self.xyz + self.v_ned*dt
# Forces and moments given by motors and environment
def rotors_forces_moments(self):
Tlmn = self.w_to_Tlmn.dot(np.array([self.w[0]**2, \
self.w[1]**2, self.w[2]**2, self.w[3]**2]))
self.Ft = np.array([0, 0, Tlmn[0]]) # Thrust
self.Mt = Tlmn[1:4] # Moment
def aero_forces_moments(self):
Rbn = self.Rot_bn()
p_dot = Rbn.dot(self.v_ned)
Dl = -p_dot*la.norm(p_dot)*self.CDl # Linear drag
Dr = -self.pqr*la.norm(self.pqr)*self.CDr # Angular drag
self.Fa = Dl # Forces by the environment
self.Ma = Dr # Moments by the environment
### Misc ###
# Angles always between -pi and pi
def norm_ang(self, x):
if x > np.pi:
x = x - 2*np.pi
elif x <= -np.pi:
x = x + 2*np.pi
return x
# Rotational matrix from Nav to Body
def Rot_bn(self):
phi = self.att[0]
theta = self.att[1]
psi = self.att[2]
cphi = np.cos(phi)
sphi = np.sin(phi)
cthe = np.cos(theta)
sthe = np.sin(theta)
cpsi = np.cos(psi)
spsi = np.sin(psi)
Rx = np.array([[1, 0, 0], \
[0, cphi, sphi], \
[0, -sphi, cphi]])
Ry = np.array([[cthe, 0, -sthe], \
[ 0, 1, 0], \
[sthe, 0, cthe]])
Rz = np.array([[ cpsi, spsi, 0], \
[-spsi, cpsi, 0], \
[ 0, 0, 1]])
R = Rx.dot(Ry).dot(Rz)
return R
# Rotation matrix from Nav to given Body attitude
def Rotd_bn(self, phi, theta, psi):
cphi = np.cos(phi)
sphi = np.sin(phi)
cthe = np.cos(theta)
sthe = np.sin(theta)
cpsi = np.cos(psi)
spsi = np.sin(psi)
Rx = np.array([[1, 0, 0], \
[0, cphi, sphi], \
[0, -sphi, cphi]])
Ry = np.array([[cthe, 0, -sthe], \
[ 0, 1, 0], \
[sthe, 0, cthe]])
Rz = np.array([[ cpsi, spsi, 0], \
[-spsi, cpsi, 0], \
[ 0, 0, 1]])
R = Rx.dot(Ry).dot(Rz)
return R
# Propagation matrix for computing the angular velocity of the attitude
def R_pqr(self):
phi = self.att[0]
theta = self.att[1]
tthe = np.tan(theta)
cthe = np.cos(theta)
cphi = np.cos(phi)
sphi = np.sin(phi)
R = np.array([[1, tthe*sphi, tthe*cphi], \
[0, cphi, -sphi], \
[0, sphi/cthe, cphi/cthe]])
return R
# Building a tensor from vector and viceversa
def build_tensor_from_vector(self, a, b, c):
T = np.array([[ 0, -c, b],
[ c, 0, -a],
[-b, a, 0]])
return T
def build_vector_from_tensor(self, T):
v = np.array([T[2, 1], T[0, 2], T[1, 0]])
return v