forked from rasbt/deeplearning-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper_utilities.py
195 lines (155 loc) · 5.63 KB
/
helper_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import lightning as L
import matplotlib.pyplot as plt
import pandas as pd
import torch
import torch.nn.functional as F
import torchmetrics
from torch.utils.data import DataLoader
from torch.utils.data.dataset import random_split
from torchvision import datasets, transforms
class LightningModel(L.LightningModule):
def __init__(self, model, learning_rate):
super().__init__()
self.learning_rate = learning_rate
self.model = model
self.save_hyperparameters(ignore=["model"])
self.train_acc = torchmetrics.Accuracy(task="multiclass", num_classes=10)
self.val_acc = torchmetrics.Accuracy(task="multiclass", num_classes=10)
self.test_acc = torchmetrics.Accuracy(task="multiclass", num_classes=10)
def forward(self, x):
return self.model(x)
def _shared_step(self, batch):
features, true_labels = batch
logits = self(features)
loss = F.cross_entropy(logits, true_labels)
predicted_labels = torch.argmax(logits, dim=1)
return loss, true_labels, predicted_labels
def training_step(self, batch, batch_idx):
loss, true_labels, predicted_labels = self._shared_step(batch)
self.log("train_loss", loss)
self.train_acc(predicted_labels, true_labels)
self.log(
"train_acc", self.train_acc, prog_bar=True, on_epoch=True, on_step=False
)
return loss
def validation_step(self, batch, batch_idx):
loss, true_labels, predicted_labels = self._shared_step(batch)
self.log("val_loss", loss, prog_bar=True)
self.val_acc(predicted_labels, true_labels)
self.log("val_acc", self.val_acc, prog_bar=True)
def test_step(self, batch, batch_idx):
loss, true_labels, predicted_labels = self._shared_step(batch)
self.test_acc(predicted_labels, true_labels)
self.log("test_acc", self.test_acc)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.parameters(), lr=self.learning_rate)
return optimizer
class Cifar10DataModule(L.LightningDataModule):
def __init__(
self, data_path="./", batch_size=64, num_workers=0, height_width=(32, 32),
train_transform=None, test_transform=None
):
super().__init__()
self.batch_size = batch_size
self.data_path = data_path
self.num_workers = num_workers
self.height_width = height_width
self.train_transform = train_transform
self.test_transform = test_transform
def prepare_data(self):
datasets.CIFAR10(root=self.data_path, download=True)
if self.train_transform is None:
self.train_transform = transforms.Compose(
[
transforms.Resize(self.height_width),
transforms.ToTensor(),
]
)
if self.test_transform is None:
self.test_transform = transforms.Compose(
[
transforms.Resize(self.height_width),
transforms.ToTensor(),
]
)
return
def setup(self, stage=None):
train = datasets.CIFAR10(
root=self.data_path,
train=True,
transform=self.train_transform,
download=False,
)
self.test = datasets.CIFAR10(
root=self.data_path,
train=False,
transform=self.test_transform,
download=False,
)
self.train, self.valid = random_split(train, lengths=[45000, 5000])
def train_dataloader(self):
train_loader = DataLoader(
dataset=self.train,
batch_size=self.batch_size,
drop_last=True,
shuffle=True,
num_workers=self.num_workers,
)
return train_loader
def val_dataloader(self):
valid_loader = DataLoader(
dataset=self.valid,
batch_size=self.batch_size,
drop_last=False,
shuffle=False,
num_workers=self.num_workers,
)
return valid_loader
def test_dataloader(self):
test_loader = DataLoader(
dataset=self.test,
batch_size=self.batch_size,
drop_last=False,
shuffle=False,
num_workers=self.num_workers,
)
return test_loader
def plot_val_acc(
log_dir, acc_ylim=(0.5, 1.0), save_loss=None, save_acc=None):
metrics = pd.read_csv(f"{log_dir}/metrics.csv")
aggreg_metrics = []
agg_col = "epoch"
for i, dfg in metrics.groupby(agg_col):
agg = dict(dfg.mean())
agg[agg_col] = i
aggreg_metrics.append(agg)
df_metrics = pd.DataFrame(aggreg_metrics)
df_metrics[["val_acc"]].plot(
grid=True, legend=True, xlabel="Epoch", ylabel="ACC"
)
plt.ylim(acc_ylim)
if save_acc is not None:
plt.savefig(save_acc)
def plot_loss_and_acc(
log_dir, loss_ylim=(0.0, 0.9), acc_ylim=(0.3, 1.0), save_loss=None, save_acc=None
):
metrics = pd.read_csv(f"{log_dir}/metrics.csv")
aggreg_metrics = []
agg_col = "epoch"
for i, dfg in metrics.groupby(agg_col):
agg = dict(dfg.mean())
agg[agg_col] = i
aggreg_metrics.append(agg)
df_metrics = pd.DataFrame(aggreg_metrics)
df_metrics[["train_loss"]].plot(
grid=True, legend=True, xlabel="Epoch", ylabel="Loss"
)
plt.ylim(loss_ylim)
if save_loss is not None:
plt.savefig(save_loss)
df_metrics[["train_acc", "val_acc"]].plot(
grid=True, legend=True, xlabel="Epoch", ylabel="ACC"
)
plt.ylim(acc_ylim)
if save_acc is not None:
plt.savefig(save_acc)