-
Notifications
You must be signed in to change notification settings - Fork 5
/
day-130.cpp
54 lines (42 loc) · 1.29 KB
/
day-130.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
/*
Path Sum III
You are given a binary tree in which each node contains an integer value.
Find the number of paths that sum to a given value.
The path does not need to start or end at the root or a leaf, but it must go
downwards (traveling only from parent nodes to child nodes).
The tree has no more than 1,000 nodes and the values are in the range -1,000,000
to 1,000,000.
Example:
root = [10,5,-3,3,2,null,11,3,-2,null,1], sum = 8
10
/ \
5 -3
/ \ \
3 2 11
/ \ \
3 -2 1
Return 3. The paths that sum to 8 are:
1. 5 -> 3
2. 5 -> 2 -> 1
3. -3 -> 11
*/
// Simple recursion approach to solve the problem.
// Calling pathSumUtils for each node in the tree
// So we can continue the search for targetSum from each node to bottom of the
// tree
class Solution {
public:
int pathSumUtils(TreeNode* root, int sum) {
if (root == NULL) return 0;
int result = 0;
if (sum == root->val) result += 1;
result += pathSumUtils(root->left, sum - root->val);
result += pathSumUtils(root->right, sum - root->val);
return result;
}
int pathSum(TreeNode* root, int sum) {
if (root == NULL) return 0;
return pathSum(root->left, sum) + pathSumUtils(root, sum) +
pathSum(root->right, sum);
}
};