-
Notifications
You must be signed in to change notification settings - Fork 143
/
hrdr_example.py
67 lines (58 loc) · 1.87 KB
/
hrdr_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import cornac
from cornac.data import Reader
from cornac.datasets import amazon_digital_music
from cornac.eval_methods import RatioSplit
from cornac.data import ReviewModality
from cornac.data.text import BaseTokenizer
feedback = amazon_digital_music.load_feedback()
reviews = amazon_digital_music.load_review()
review_modality = ReviewModality(
data=reviews,
tokenizer=BaseTokenizer(stop_words="english"),
max_vocab=4000,
max_doc_freq=0.5,
)
ratio_split = RatioSplit(
data=feedback,
test_size=0.1,
val_size=0.1,
exclude_unknowns=True,
review_text=review_modality,
verbose=True,
seed=123,
)
pretrained_word_embeddings = {} # You can load pretrained word embedding here
model = cornac.models.HRDR(
embedding_size=100,
id_embedding_size=32,
n_factors=32,
attention_size=16,
kernel_sizes=[3],
n_filters=64,
n_user_mlp_factors=128,
n_item_mlp_factors=128,
dropout_rate=0.5,
max_text_length=50,
batch_size=64,
max_iter=10,
init_params={'pretrained_word_embeddings': pretrained_word_embeddings},
verbose=True,
seed=123,
)
cornac.Experiment(
eval_method=ratio_split, models=[model], metrics=[cornac.metrics.RMSE()]
).run()