-
Notifications
You must be signed in to change notification settings - Fork 149
/
Copy pathpropensity_stratified_evaluation_example.py
56 lines (47 loc) · 1.96 KB
/
propensity_stratified_evaluation_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Copyright 2018 The Cornac Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Propensity-based Stratified Evaluation Method
Reference:
---------
Amir H. Jadidinejad, Craig Macdonald and Iadh Ounis,
The Simpson's Paradox in the Offline Evaluation of Recommendation Systems,
ACM Transactions on Information Systems (to appear)
https://arxiv.org/abs/2104.08912
"""
import cornac
from cornac.models import WMF, BPR
from cornac.metrics import MAE, RMSE, Precision, Recall, NDCG, AUC, MAP
from cornac.eval_methods import PropensityStratifiedEvaluation
from cornac.experiment import Experiment
# Load the MovieLens 1M dataset
ml_dataset = cornac.datasets.movielens.load_feedback(variant="1M")
# Instantiate an instance of PropensityStratifiedEvaluation method
stra_eval_method = PropensityStratifiedEvaluation(data=ml_dataset,
n_strata=2, # number of strata
rating_threshold=4.0,
verbose=True)
# define the examined models
models = [
WMF(k=10, seed=123),
BPR(k=10, seed=123),
]
# define the metrics
metrics = [MAE(), RMSE(), Precision(k=10),
Recall(k=10), NDCG(), AUC(), MAP()]
# run an experiment
exp_stra = Experiment(eval_method=stra_eval_method,
models=models, metrics=metrics)
exp_stra.run()