forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
123 lines (92 loc) · 4.63 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import tensorflow as tf
import numpy as np
import os
import PIL
from tensorflow.keras.models import Sequential, Model, load_model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.losses import BinaryCrossentropy
from MNIST_model import make_generator,make_discriminator
from utils.py import plot_loss,generate_and_save_images
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--EPOCHS', type = int, default = 50, help = "No of EPOCHS: default 50 ")
parser.add_argument('--noise_dim', type = int, default = 100, help = "Noise dimension, default 100 ")
parser.add_argument('--BATCH_SIZE', type = int, default = 128, help = "Batch size, default 128")
parser.add_argument('--num_examples_to_generate', type = int, default = 16, help = "no of images shown after each epoch in output, default 16")
parser.add_argument('--lr_gen', type = int, default = 0.0002, help = "Learning rate for generator optimizer,default 0.0002 ")
parser.add_argument('--lr_disc', type = int, default = 0.0002, help = "Learning rate for discriminator optimizer,default 0.0002 ")
parser.add_argument('--outdir', type = str, default = '.', help = "Directory in which to store data")
args = parser.parse_args()
# Loading MNIST_Dataset
(train_images, train_labels),(_,_) = tf.keras.datasets.mnist.load_data()
BUFFER_SIZE=60000
BATCH_SIZE = args.BATCH_SIZE
EPOCHS = args.EPOCHS
noise_dim = args.noise_dim
num_examples_to_generate = args.num_examples_to_generate
lr_gen = args.lr_gen
lr_disc = args.lr_disc
seed = tf.random.normal([num_examples_to_generate, noise_dim])
# Preparing and Normalising Dataset
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5
train_dataset = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
# Making generator and Discriminator
generator=make_generator(noise_dim)
discriminator=make_discriminator()
# Defining generator and discriminator losses
cross_entropy = BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
# Defining optimizers
generator_optimizer = Adam(learning_rate=lr_gen)
discriminator_optimizer = Adam(learning_rate=lr_disc)
# Saving Checkpoints
checkpoint_dir = os.path.join(args.outdir, "training_checkpoints")
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
# Defining Training Loop
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
return gen_loss,disc_loss
def train(dataset, epochs):
for epoch in range(epochs):
gen_loss_list = []
disc_loss_list = []
for image_batch in dataset:
t=train_step(image_batch)
gen_loss_list.append(t[0])
disc_loss_list.append(t[1])
gen_loss = sum(gen_loss_list) / len(gen_loss_list)
disc_loss = sum(disc_loss_list) / len(disc_loss_list)
print (f'Epoch {epoch+1}, gen loss={gen_loss},disc loss={disc_loss}')
generate_and_save_images(generator,
epoch + 1,
seed)
# Save the model every 15 epochs
if (epoch + 1) % 15 == 0:
checkpoint.save(file_prefix = checkpoint_prefix)
return gen_loss_list,disc_loss_list
# Training our model
plo=train(train_dataset, EPOCHS)
#Ploting generator and discriminator losses
plot_loss(plo[0],plo[1])