forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_MNIST.py
54 lines (41 loc) · 1.98 KB
/
model_MNIST.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import tensorflow as tf
from tensorflow.keras import layers
def make_generator_model(noise_dim = 62, categorical_dim = 10, continuous_dim = 2):
model = tf.keras.Sequential()
# Layer 1: Dense 1024
model.add(layers.Dense(1024, use_bias=False, input_shape=(noise_dim + categorical_dim + continuous_dim,)))
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
# Layer 2: Dense 7*7*128
model.add(layers.Dense(7*7*128))
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
# Reshape output to 7x7x128 image
model.add(layers.Reshape((7, 7, 128)))
assert model.output_shape == (None, 7, 7, 128) # Note: None is the batch size
model.add(layers.Conv2DTranspose(64, (4, 4), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.ReLU())
model.add(layers.Conv2DTranspose(1, (4, 4), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model
def make_discriminator_model(categorical_dim = 10, continous_dim = 2):
model = tf.keras.Sequential()
#Layer 1: Conv2D 4x4, output : 14x14x64
model.add(layers.Conv2D(64, (4, 4), strides=(2, 2), padding='same',
input_shape=[28, 28, 1]))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU(alpha = 0.1))
#Layer 2: Conv2D 4x4, output : 7x7x128
model.add(layers.Conv2D(128, (4, 4), strides=(2, 2), padding='same'))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU(alpha = 0.1))
#Layer 3: Dense 128
model.add(layers.Flatten())
model.add(layers.Dense(128))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU(alpha = 0.1))
#Layer 4: prediction layer: Dense (1 + categorical_dim + continous_dim)
model.add(layers.Dense(1 + categorical_dim + continous_dim))
return model