forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
54 lines (39 loc) · 1.89 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import tensorflow as tf
from tensorflow import keras
from keras.models import Sequential, Model
from keras.layers import Dense, Activation, Dropout, LSTM, Flatten, Embedding, Concatenate, Input
import h5py
#############################################
def Word2Vec(embedding_matrix, num_words, embedding_dim, seq_length, dropout_rate):
# Text model
w2v_input = Input((seq_length,))
w2v_embed = Embedding(input_dim=num_words, output_dim=embedding_dim, input_length=seq_length,
weights=[embedding_matrix],trainable=False)(w2v_input)
w2v_lstm1 = LSTM(512, input_shape=(seq_length, embedding_dim),return_sequences=True)(w2v_embed)
w2v_drop1 = Dropout(dropout_rate)(w2v_lstm1)
w2v_lstm2 = LSTM(512, return_sequences=False)(w2v_drop1)
w2v_drop2 = Dropout(dropout_rate)(w2v_lstm2)
w2v_dense = Dense(1024, activation='tanh')(w2v_drop2)
model = Model(w2v_input, w2v_dense)
return model
#############################################
def FromVGG(dropout_rate):
#Image model
vgg_input = Input((4096,))
vgg_dense = Dense(1024, activation='tanh')(vgg_input)
model = Model(vgg_input, vgg_dense)
return model
##############################################
def VQA(embedding_matrix, num_words, embedding_dim, seq_length, dropout_rate, num_classes):
# VQA model
vgg_model = FromVGG(dropout_rate)
lstm_model = Word2Vec(embedding_matrix, num_words, embedding_dim, seq_length, dropout_rate)
concat = Concatenate()([vgg_model.output, lstm_model.output])
drop1 = Dropout(dropout_rate)(concat)
dense1 = Dense(1000, activation='tanh')(drop1)
drop2 = Dropout(dropout_rate)(dense1)
dense2 = Dense(num_classes, activation='softmax')(drop2)
model = Model([vgg_model.input, lstm_model.input], dense2)
model.compile(optimizer='adam', loss='categorical_crossentropy',
metrics=['accuracy'])
return model