forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataloader.py
55 lines (43 loc) · 2.04 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from collections import Counter, defaultdict
import numpy as np
import torch
class GloveDataset:
def __init__(self, text, n_words=200000, window_size=5):
self._window_size = window_size
self._tokens = text.split(" "[:n_words])
word_counter = Counter()
word_counter.update(self._tokens)
self._word2id = {w:i for i,(w,_) in enumerate(word_counter.most_common())}
self._id2word = {i:w for w,i in self._word2id.items()}
self._vocab_len = len(self._word2id)
self._id_tokens = [self._word2id[w] for w in self._tokens]
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
self.create_cooccurence_matrix(device)
print('No. of words: {}'.format(len(self._tokens)))
print('Vocabulary length : {}'.format(self._vocab_len))
def create_cooccurence_matrix(self, device):
cooc_mat = defaultdict(Counter)
for i,w in enumerate(self._id_tokens):
start = max(i-self._window_size, 0)
end = min(i+self._window_size + 1, len(self._id_tokens))
for j in range(start, end):
if i!=j :
c = self._id_tokens[j]
cooc_mat[w][c] += 1/abs(j-i)
self._i_idx = list()
self._j_idx = list()
self._xij = list()
#Create indexes and x values tensors
for w, cnt in cooc_mat.items():
for c, v in cnt.items():
self._i_idx.append(w)
self._j_idx.append(c)
self._xij.append(v)
self._i_idx = torch.LongTensor(self._i_idx).to(device)
self._j_idx = torch.LongTensor(self._j_idx).to(device)
self._xij = torch.FloatTensor(self._xij).to(device)
def get_batches(self, batch_size):
rand_ids = torch.LongTensor(np.random.choice(len(self._xij), len(self._xij), replace=False))
for p in range(0, len(rand_ids), batch_size):
batch_ids = rand_ids[p:p+batch_size]
yield self._xij[batch_ids], self._i_idx[batch_ids], self._j_idx[batch_ids]