forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
83 lines (71 loc) · 3.32 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import cv2
import os
from matplotlib import pyplot as plt
from model import *
from utils import *
import os
import time
import logging
import argparse
import numpy as np
import random
from numpy import expand_dims
from keras.preprocessing.image import load_img, img_to_array
import tensorflow as tf
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--class_threshold', type=int, default=0.5)
parser.add_argument('--nms_iou_threshold', type=int, default=0.5)
parser.add_argument('--iou', type=float, default=0.01)
args = parser.parse_args()
model = make_yolov3_model()
# load the model weights
weight_reader = WeightReader('yolov3.weights')
# set the model weights into the model
weight_reader.load_weights(model)
# save the model to file
model.save('model.h5')
from keras.models import load_model
model = load_model('model.h5')
model.summary()
anchors = [[116,90, 156,198, 373,326], [30,61, 62,45, 59,119], [10,13, 16,30, 33,23]]
# define the expected input shape for the model
WIDTH, HEIGHT = 416, 416
# define the probability threshold for detected objects
class_threshold = args.class_threshold
images=os.listdir('assets/image_test')
for file in images:
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')):
photo_filename ='images/' + file
# load picture with old dimensions
image, image_w, image_h = load_image_pixels(photo_filename, (WIDTH, HEIGHT))
# Predict image
yhat = model.predict(image)
#print(len(yhat))
# Create boxes
boxes = list()
for i in range(len(yhat)):
# decode the output of the network
boxes += decode_netout(yhat[i][0], anchors[i], class_threshold, HEIGHT, WIDTH)
# correct the sizes of the bounding boxes for the shape of the image
correct_yolo_boxes(boxes, image_h, image_w, HEIGHT, WIDTH)
# suppress non-maximal boxes
do_nms(boxes, args.nms_iou_threshold)
# define the labels (Filtered only the ones relevant for this task, which were used in pretraining the YOLOv3 model)
labels = ["person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", "truck","boat","traffic light", \
"fire hydrant","stop sign","parking meter","bench","bird","cat","dog","horse","sheep", \
"cow","elephant","bear","zebra","giraffe","backpack","umbrella","handbag","tie","suitcase", \
"frisbee","skis","snowboard","sports ball","kite",'baseball bat','baseball glove','skateboard','surfboard','tennis racket','bottle', \
'wine glass','cup','fork','knife','spoon','bowl','banana','apple','sandwich','orange','broccoli', \
'carrot','hot dog','pizza','donut','cake','chair','sofa','pottedplant','bed','diningtable', \
'toilet','tvmonitor','laptop','mouse','remote','keyboard','cell phone','microwave','oven','toaster','sink','refrigerator', \
'book',"clock","vase","scissors","teddy bear",'hair drier',"toothbrush"]
# get the details of the detected objects
v_boxes, v_labels, v_scores = get_boxes(boxes, labels, class_threshold)
# summarize what we found
for i in range(len(v_boxes)):
print(v_labels[i], v_scores[i])
# draw what we found
draw_boxes(photo_filename, v_boxes, v_labels, v_scores)
if __name__ == '__main__':
main()