forked from pclubiitk/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
47 lines (36 loc) · 1.56 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
def mask_randomly(args,imgs):
y1 = np.random.randint(0, imgs.shape[1] - args.mask_height, imgs.shape[0])
y2 = y1 + args.mask_height
x1 = np.random.randint(0, imgs.shape[2] - args.mask_width, imgs.shape[0])
x2 = x1 + args.mask_width
masked_imgs = np.empty_like(imgs)
missing_parts = np.empty((imgs.shape[0], args.mask_height, args.mask_width, imgs.shape[-1]))
for i, img in enumerate(imgs):
masked_img = np.asarray(img).copy()
_y1, _y2, _x1, _x2 = y1[i], y2[i], x1[i], x2[i]
missing_parts[i] = masked_img[_y1:_y2, _x1:_x2, :].copy()
masked_img[_y1:_y2, _x1:_x2, :] = 1
masked_imgs[i] = masked_img
return masked_imgs, missing_parts, (y1, y2, x1, x2)
def sample_images(args,count, imgs):
r, c = 3, args.num_img
masked_imgs, missing_parts, (y1, y2, x1, x2) = mask_randomly(args,imgs)
gen_missing = args.gen.predict(masked_imgs)
imgs = 0.5 * imgs + 0.5
masked_imgs = 0.5 * masked_imgs + 0.5
gen_missing = 0.5 * gen_missing + 0.5
fig, axs = plt.subplots(r, c)
for i in range(c):
axs[0,i].imshow(imgs[i, :,:])
axs[0,i].axis('off')
axs[1,i].imshow(masked_imgs[i, :,:])
axs[1,i].axis('off')
filled_in = imgs[i].copy()
filled_in[y1[i]:y2[i], x1[i]:x2[i], :] = gen_missing[i]
axs[2,i].imshow(filled_in)
axs[2,i].axis('off')
fig.savefig(f"{count}.png")
plt.close()