forked from BerensRWU/Complex_YOLO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
72 lines (61 loc) · 3.53 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import numpy as np
import os
import argparse
import cv2
import torch
import torch.utils.data as torch_data
from models import Darknet
from detector import detector, setup_detector
from visualize import visualize_func
from evaluation import get_batch_statistics_rotated_bbox, evaluate
from utils.astyx_yolo_dataset import AstyxYOLODataset
import utils.config as cnf
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_def", type=str, default="network/yolov3-custom.cfg", help="path to model definition file")
parser.add_argument("--weights_path", type=str, default="checkpoints/", help="path to weights file")
parser.add_argument("--conf_thres", type=float, default=0.5, help="object confidence threshold")
parser.add_argument("--nms_thres", type=float, default=0.2, help="iou thresshold for non-maximum suppression")
parser.add_argument("--iou_thres", type=float, default=0.5, help="iou thresshold for evaluation")
parser.add_argument("--split", type=str, default="valid", help="text file having image lists in dataset")
parser.add_argument("--radar", default=False, action="store_true" , help="Use Radar Data")
parser.add_argument("--estimate_bb", default=False, action="store_true", help="Whether to estimate Bounding Boxes")
parser.add_argument("--visualize", default=False, action="store_true", help="Whether to visualize the data")
parser.add_argument("--evaluate", default=False, action="store_true", help="Whether to evaluate the detection")
opt = parser.parse_args()
print(opt)
if not os.path.exists("output"):
os.makedirs("output")
if opt.estimate_bb:
# if we want to detect objects we have to setup the model for our purpose
model = setup_detector(opt)
if opt.evaluate:
ngt = 0 # number of all targets
sample_metrics = [] # List of tuples (TP, confs, pred)
# Load the Astyx dataset
dataset = AstyxYOLODataset(cnf.root_dir, split=opt.split, mode="EVAL", radar=opt.radar)
data_loader = torch_data.DataLoader(dataset, batch_size=1, shuffle=False, collate_fn=dataset.collate_fn)
# loop over all frames from the split file
for index, (sample_id, bev_maps, targets) in enumerate(data_loader):
print(index, " of ", len(data_loader))
# Stores detections for each image index
img_detections = []
# Targets position and dimension values are between 0 - 1, so that they
# have to be transformed to pixel coordinates
targets[:, 2:] *= cnf.BEV_WIDTH
if opt.estimate_bb:
# detects objects
predictions = detector(model, bev_maps, opt)
img_detections.extend(predictions)
# Calculate if the prediction is a true detection
if opt.evaluate:
ngt += len(targets)
sample_metrics += get_batch_statistics_rotated_bbox(predictions, targets, opt.iou_thres)
# Visualization of the ground truth and if estimated the predicted boxes
if opt.visualize:
visualize_func(bev_maps[0], targets, img_detections, sample_id, opt.estimate_bb)
if opt.estimate_bb and opt.evaluate:
# Concatenate sample statistics
true_positives, pred_scores = [np.concatenate(x, 0) for x in list(zip(*sample_metrics))]
ap_all, ap_11 = evaluate(true_positives, pred_scores, ngt)
print("Approximation of the average precision (AP).\nAll point approximation: %.3f.\n11 point approximation: %.3f." %(ap_all, ap_11))