-
Notifications
You must be signed in to change notification settings - Fork 258
/
propka.py
887 lines (836 loc) · 48.4 KB
/
propka.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
'''
Described at PyMOL wiki:
http://www.pymolwiki.org/index.php/propka
#-------------------------------------------------------------------------------
# Name: propka for pymol
# Purpose: To fetch and display the pka values for protein of intetest
#
# Author: Troels E. Linnet
#
# Created: 14/08/2011
# Copyright: (c) Troels E. Linnet 2011
# Contact: tlinnet snabela gmail dot com
# Licence: Free for all
#
#
#-------------------------------------------------------------------------------
The PROPKA method is developed by the
Jensen Research Group
Department of Chemistry
University of Copenhagen
Please cite these references in publications:
Hui Li, Andrew D. Robertson, and Jan H. Jensen
"Very Fast Empirical Prediction and Interpretation of Protein pKa Values"
Proteins, 2005, 61, 704-721.
Delphine C. Bas, David M. Rogers, and Jan H. Jensen
"Very Fast Prediction and Rationalization of pKa Values for Protein-Ligand Complexes"
Proteins, 2008, 73, 765-783.
Mats H.M. Olsson, Chresten R. Soendergard, Michal Rostkowski, and Jan H. Jensen
"PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa predictions"
Journal of Chemical Theory and Computation, 2011 7 (2), 525-537
Chresten R. Soendergaard, Mats H.M. Olsson, Michaz Rostkowski, and Jan H. Jensen
"Improved Treatment of Ligands and Coupling Effects in Empirical Calculation and Rationalization of pKa Values"
Journal of Chemical Theory and Computation, 2011 in press
"""
#-------------------------------------------------------------------------------
# The script needs mechanize to run.
# On windows, it is not easy to make additional modules available for pymol. So put in into your working folder.
#1)The easy manual way:
#a)Go to: http://wwwsearch.sourceforge.net/mechanize/download.html
#b)Download mechanize-0.2.5.zip. http://pypi.python.org/packages/source/m/mechanize/mechanize-0.2.5.zip
#c)Extract to .\mechanize-0.2.5 then move the in-side folder "mechanize" to your folder with propka.py. The rest of .\mechanize-0.2.5 you don't need.
#You can also see other places where you could put the "mechanize" folder. Write this in pymol to see the paths where pymol is searching for "mechanize"
# import sys; print(sys.path)
#-------------------------------------------------------------------------------
"""
Example for pymol script to start the functions. For example: trypropka.pml
Execute with pymol or start pymol and: File->Run->trypropka.pml
##############################################################################################################################################################################################################################
### Point to your directory with your pdb file and where to save the results
#cd /homes/linnet/Documents/Speciale/5NT-project/Mutant-construct/predict_reactivity/propka
cd C:/Users/tlinnet/Documents/My Dropbox/Speciale/5NT-project/Mutant-construct/predict_reactivity/propka
### The fastest method is just to write propka. Then the last pymol molecule is assumed and send to server. verbose=yes makes the script gossip mode.
import propka
fetch 4ins, async=0
propka
#fetch 1hp1, async=0
#propka logtime=_, resi=5-10.20-30, resn=CYS.ATP.TRP, verbose=yes
### Fetch 4ins from web. async make sure, we dont execute script before molecule is loaded. The resi and resn prints the interesting results right to command line.
#fetch 4ins, async=0
#propka chain=*, resi=5-10.20-30, resn=ASP.CYS, logtime=_
### If there is no web connection, one can process a local .pka file. Either from a previous run or from a downloaded propka webpage result.
### Then run and point to .pka file with: pkafile=./Results_propka/pkafile.pka Remember the dot "." in the start, to make it start in the current directory.
#load 4ins.pdb
#propka pkafile=./Results_propka/4ins_.pka, resi=18.25-30, resn=cys,
### Some more examples. This molecule has 550 residues, so takes a longer time. We select to run the last molecule, by writing: molecule=1hp1
#fetch 4ins, async=0
#fetch 1hp1, async=0
#propka molecule=1hp1, chain=A, resi=300-308.513, resn=CYS.ATP.TRP, logtime=_, verbose=no, showresult=no
#propka molecule=1hp1, pkafile=./Results_propka/1hp1_.pka, verbose=yes
### One can also just make a lookup for a protein. Use function: getpropka
### Note. This does only print the result to the pymol command line
#getpropka source=ID, PDBID=4ake, logtime=_, showresult=yes
#getpropka source=ID, PDBID=4ins, logtime=_, server_wait=10.0, verbose=yes, showresult=no
############################################Input parameters: propka############################################
############# The order of input and changable things:
############# propka(molecule="NIL",chain="*",resi="0",resn="NIL",method="upload",logtime=time.strftime("%m%d",time.localtime()),server_wait=3.0,version="v3.1",verbose="no",showresult="no",pkafile="NIL")
# method : method=upload is default. This sends .pdb file and request result from propka server.
## method=file will only process a manual .pka file, and write a pymol command file. No use of mechanize.
## If one points to an local .pka file, then method is auto-changed to method=file. This is handsome in off-line environment, ex. teaching or seminar.
# pkafile: Write the path to .pka file. Ex: pkafile=./Results_propka/4ins_.pka
# molecule : name of the molecule. Ending of file is assumed to be .pdb
# chain : which chains are saved to file, before molecule file is send to server. Separate with "." Ex: chain=A.b
# resi : Select by residue number, which residues should be printed to screen and saved to the log file: /Results_propka/_Results.log.
## Separate with "." or make ranges with "-". Ex: resi=35.40-50
# resn : Select by residue name, which residues should be printed to screen and saved to the log file: /Results_propka/_Results.log.
## Separate with "." Ex: resn=cys.tyr
# logtime : Each execution give a set of files with the job id=logtime. If logtime is not provided, the current time is used.
## Normal it usefull to set it empty. Ex: logtime=_
# verbose : Verbose is switch, to turn on messages for the mechanize section. This is handsome to see how mechanize works, and for error searching.
# showresult : Switch, to turn on all results in pymol command window. Ex: showresult=yes
# server_wait=10.0 is default. This defines how long time between asking the server for a result. Set no lower than 3 seconds.
# version=v3.1 is default. This is what version of propka which would be used.
## Possible: 'v3.1','v3.0','v2.0'. If a newer version is available than the current v3.1, a error message is raised to make user update the script.
############################################Input parameters: getpropka############################################
############# The order of input and changable things:
############# getpropka(PDB="NIL",chain="*",resi="0",resn="NIL",source="upload",PDBID="",logtime=time.strftime("%Y%m%d%H%M%S",time.localtime()),server_wait=3.0,version="v3.1",verbose="no",showresult="no")
# PDB: points the path to a .pdb file. This is auto-set from propka function.
# source : source=upload is default and is set at the propka webpage.
# source=ID, PDBID=4ake , one can print to the command line, the pka value for any official pdb ID. No files are displayed in pymol.
# PDBID: is used as the 4 number/letter pdb code, when invoking source=ID.
##############################################################################################################################################################################################################################
'''
from __future__ import print_function
try:
from pymol import cmd
runningpymol = 'yes'
except:
runningpymol = 'no'
pass
import time
import platform
import os
import sys
def propka(molecule="NIL", chain="*", resi="0", resn="NIL", method="upload", logtime=time.strftime("%m%d", time.localtime()), server_wait=3.0, version="v3.1", verbose="no", showresult="no", pkafile="NIL", makebonds="yes"):
Script_Version = "20110823"
# First we have to be sure, we give reasonable arguments
if pkafile != "NIL":
method = 'file'
assert method in ['upload', 'file'], "'method' has to be either: method=upload or method=file"
# If molecule="all", then try to get the last molecule
##assert molecule not in ['NIL'], "You always have to provide molecule name. Example: molecule=4ins"
if molecule == "NIL":
assert len(cmd.get_names()) != 0, "Did you forget to load a molecule? There are no objects in pymol."
molecule = cmd.get_names()[-1]
# To print out to screen for selected residues. Can be separated with "." or make ranges with "-". Example: resi="4-8.10"
if resi != "0":
resi_range = ResiRange(resi)
else:
resi_range = []
# Also works for residue names. They are all converted to bigger letters. Example: resn="cys.Tyr"
if resn != "NIL":
resn_range = ResnRange(resn)
else:
resn_range = resn
# Make chain range, and upper case.
chain = ChainRange(chain)
# Make result directory. We also the absolut path to the new directory.
Newdir = createdirs()
if method == "upload":
# We try to load mechanize. If this fail, one can always get the .pka file manual and the run: method=file
try:
from modules import mechanize
importedmechanize = 'yes'
except ImportError:
print("Import error. Is a module missing?")
print(sys.exc_info())
print("Look if missing module is in your python path\n%s" % sys.path)
importedmechanize = 'no'
import modules.mechanize as mechanize
# The name for the new molecule
newmolecule = "%s%s" % (molecule, logtime)
# Create the new molecule from original loaded and for the specified chains. Save it, and disable the old molecule.
cmd.create("%s" % newmolecule, "%s and chain %s" % (molecule, chain))
cmd.save("%s%s.pdb" % (Newdir, newmolecule), "%s" % newmolecule)
cmd.disable("%s" % molecule)
if molecule == "all":
cmd.enable("%s" % molecule)
cmd.show("cartoon", "%s" % molecule)
# Let the new molecule be shown in cartoon.
cmd.hide("everything", "%s" % newmolecule)
cmd.show("cartoon", "%s" % newmolecule)
# Make the absolut path to the newly created .pdb file.
PDB = "%s%s.pdb" % (Newdir, newmolecule)
source = "upload"
PDBID = ""
# Request server, and get the absolut path to the result file.
pkafile = getpropka(PDB, chain, resi, resn, source, PDBID, logtime, server_wait, version, verbose, showresult)
# Open the result file and put in into a handy list.
list_results, ligands_results = importpropkaresult(pkafile)
if method == "file":
assert pkafile not in ['NIL'], "You have to provide path to file. Example: pkafile=./Results_propka/4ins_2011.pka"
assert ".pka" in pkafile, 'The propka result file should end with ".pka" \nExample: pkafile=./Results_propka/4ins_2011.pka \npkafile=%s' % (pkafile)
# The name for the molecule we pass to the writing script of pymol commands
newmolecule = "%s" % molecule
cmd.hide("everything", "%s" % newmolecule)
cmd.show("cartoon", "%s" % newmolecule)
# We open the result file we have got in the manual way and put in into a handy list.
list_results, ligands_results = importpropkaresult(pkafile)
# Then we print the interesting residues to the screen.
printpropkaresult(list_results, resi, resi_range, resn, resn_range, showresult, ligands_results)
# Now create the pymol command file. This should label the protein. We get back the absolut path to the file, so we can execute it.
result_pka_pymol_name = writepymolcmd(newmolecule, pkafile, verbose, makebonds)
# Now run our command file. But only if we are running pymol.
if runningpymol == 'yes':
cmd.do("run %s" % result_pka_pymol_name)
##if runningpymol=='yes': cmd.do("@%s"%result_pka_pymol_name)
return(list_results)
if runningpymol != 'no':
cmd.extend("propka", propka)
def getpropka(PDB="NIL", chain="*", resi="0", resn="NIL", source="upload", PDBID="", logtime=time.strftime("%Y%m%d%H%M%S", time.localtime()), server_wait=3.0, version="v3.1", verbose="no", showresult="no"):
try:
import modules.mechanize as mechanize
importedmechanize = 'yes'
except ImportError:
print("Import error. Is a module missing?")
print(sys.exc_info())
print("Look if missing module is in your python path \n %s" % sys.path)
importedmechanize = 'no'
propka_v_201108 = 3.1
url = "http://propka.ki.ku.dk/"
assert version in ['v2.0', 'v3.0', 'v3.1'], "'version' has to be either: 'v2.0', 'v3.0', 'v3.1'"
assert source in ['ID', 'upload', 'addr', 'input_file'], "'source' has to be either: 'ID', 'upload', 'addr', 'input_file'"
if source == "upload":
assert PDB not in ['NIL'], "You always have to provide PDB path. Example: PDB=.\Results_propka\4ins2011.pdb"
if source == "ID":
assert len(PDBID) == 4, "PDBID has to be 4 characters"
# To print out to screen for selected residues. Can be separated with "." or make ranges with "-". Example: resi="4-8.10"
if resi != "0":
resi_range = ResiRange(resi)
else:
resi_range = []
# Also works for residue names. They are all converted to bigger letters. Example: resn="cys.Tyr"
if resn != "NIL":
resn_range = ResnRange(resn)
else:
resn_range = resn
# Start the browser
br = mechanize.Browser()
# We pass to the server, that we are not a browser, but this python script. Can be used for statistics at the propka server.
br.addheaders = [('User-agent', 'pythonMechanizeClient')]
# To turn on debugging messages
# br.set_debug_http(True)
# To open the start page.
page_start = br.open(url)
read_start = page_start.read()
if verbose == 'yes':
print(br.title())
print(br.geturl())
# To get available forms
page_forms = [f.name for f in br.forms()]
if verbose == 'yes':
print(page_forms)
# Select first form
br.select_form(name=page_forms[0])
# Print the current selected form, so we see that we values we start with.
if verbose == 'yes':
print(br.form)
# Print the parameters of the 'version' RadioControl button and current value
if verbose == 'yes':
print(br.find_control(name='version'), br.find_control(name='version').value)
# This is to check, that the current script is "up-to-date".
propka_v_present = float(br.find_control(name='version').value[0].replace('v', ''))
if propka_v_present > propka_v_201108:
raise UserWarning('\nNew version of propka exist.\nCheck/Update your script.\nPresent:v%s > Script:v%s' % (propka_v_present, propka_v_201108))
# Change the parameters of the 'version' radio button and then reprint the new value. Input has to be in a list [input].
br.form['version'] = [version]
if verbose == 'yes':
print(br.find_control(name='version').value)
# Print the parameters of the 'source' RadioControl button and current value
if verbose == 'yes':
print(br.find_control(name='source'), br.find_control(name='source').value)
# Change the parameters of the 'source' radio button and then reprint the new value. Input has to be in a list [input].
br.form['source'] = [source]
if verbose == 'yes':
print(br.find_control(name='source').value)
# This step was the must strange and took a long time. For finding the information and the double negative way.
# One have to enable the pdb button. Read more here: http://wwwsearch.sourceforge.net/old/ClientForm/ ("# All Controls may be disabled.....)
PDBID_control = br.find_control("PDBID")
PDB_control = br.find_control("PDB")
if verbose == 'yes':
print(PDBID_control.disabled, PDB_control.disabled)
if source == "ID":
PDBID_control.disabled = False
PDB_control.disabled = True
if source == "upload":
PDBID_control.disabled = True
PDB_control.disabled = False
if verbose == 'yes':
print(PDBID_control.disabled, PDB_control.disabled)
# We create the result dir, and take with us the 'path' to the result dir.
Newdir = createdirs()
# Open all the files, and assign them.
if source == "upload":
filename = PDB
if source == "ID":
filename = PDBID
files = openfiles(Newdir, filename, logtime, source)
result_pka_file = files[0]
result_input_pka_file = files[1]
result_log = files[2]
filepath = files[3]
result_pka_pkafile = files[4]
result_pka_file_stripped = files[5]
result_pka_file_bonds = files[6]
# Print the parameters of the 'PDBID' TextControl button and current value
if source == "ID" and verbose == 'yes':
print(br.find_control(name='PDBID'))
print(br.find_control(name='PDBID').value)
# Change the parameters of the 'PDBID' TextControl and then reprint the new value. Input has just to be a string.
if source == "ID":
br.form["PDBID"] = PDBID
if source == "ID" and verbose == 'yes':
print(br.find_control(name='PDBID').value)
# Print the parameters of the 'PDB' TextControl button and current value
if source == "upload" and verbose == 'yes':
print(br.find_control(name='PDB'))
print(br.find_control(name='PDB').value)
# Change the parameters of the 'PDB' FileControl and then reprint the new value. Input has just to be a string.
if source == "upload":
PDBfilename = PDB
PDBfilenamepath = PDB
if source == "upload":
br.form.add_file(open(PDBfilename), 'text/plain', PDBfilenamepath, name='PDB')
if source == "upload" and verbose == 'yes':
print(br.find_control(name='PDB'))
print(br.find_control(name='PDB').value)
# Now reprint the current selected form, so we see that we have the right values.
if verbose == 'yes':
print(br.form)
# Make "how" we would like the next request. We would like to "Click the submit button", but we have not opened the request yet.
req = br.click(type="submit", nr=0)
# Have to pass by a mechanize exception. Thats the reason for the why True
# The error was due to: br.open(req)
# mechanize._response.httperror_seek_wrapper: HTTP Error refresh: The HTTP server returned a redirect error that would lead to an infinite loop.
# The last 30x error message was:
# OK
# I haven't been able to find the refresh problem or extend the time. So we make a pass on the raised exception.
try:
print("Now sending request to server")
br.open(req)
# If there is raised an exception, we jump through to the result page after some sleep.
except mechanize.HTTPError:
# We can extract the jobid from the current browser url.
jobid = br.geturl()[32:-5]
# We notice how the script at the server presents the final result page.
url_result = url + "pka/" + jobid + ".html"
# Now we continue to try to find the result page, until we have succes. If page doesn't exist, we wait a little.
while True:
print("Result still not there. Waiting %s seconds more" % server_wait)
time.sleep(float(server_wait))
# To pass the "break" after the exception, we make a hack, wait and then go to the result page, which is the jobid.
try:
page_result = br.open(url_result)
read_result = page_result.read()
# If we don't receive a error in getting the result page, we break out of the while loop.
break
# If the page doesn't exist yet. We go back in the while loop.
except mechanize.HTTPError:
# Wait another round
pass
# If we get a timeout, we also wait.
except mechanize.URLError:
# Wait another round
pass
htmlresult = "The detailed result is now available at: %s" % br.geturl()
print(htmlresult)
read_result = br.response().read()
# Now save the available links from the current page. But only links that satisfy the expression.
links_result = []
for l in br.links(url_regex='http://propka.ki.ku.dk/pka'):
links_result.append(l)
# We also extract the information for neighbour bons. This is given in the url links.
bonds = []
for l in br.links(url_regex='http://propka.ki.ku.dk/view/new_view.cgi'):
l_split = str(l).split()
lresn = l_split[2]
lresi = l_split[3]
lchain = l_split[4]
lurl = l_split[1]
lurl_split = lurl.split("&")
lresn2 = lurl_split[1]
lchain2 = lurl_split[2]
lpka = lurl_split[3]
ldesolvation = lurl_split[4]
lneighbours = lurl_split[5:]
for i in range(len(lneighbours)):
bonds.append([lresn, lresi, lchain, lresn2, lchain2, lpka, ldesolvation, lneighbours[i]])
# Now follow the link to the .propka_input resultpage
if len(links_result) > 1:
br.follow_link(links_result[1])
# Now get the page text for the current link
if len(links_result) > 1:
read_result1 = br.response().read()
# Save the result
if len(links_result) > 1:
result_input_pka_file.write(read_result1)
# Now follow the link to the .pka resultpage
if len(links_result) > 1:
br.back()
result_input_pka_file.close()
# Now follow first link. "Should be" available for all versions of propka.
br.follow_link(links_result[0])
# Now get the page for the current link
read_result0 = br.response().read()
# Save the result and close file.
result_pka_file.write(read_result0)
result_pka_file.close()
# Now get the result in a list, which is sorted
list_results, ligands_results = importpropkaresult(result_pka_pkafile)
# Print to log file
result_log.write("# executed: %s \n# logtime: %s \n# source=%s \n# PDB=%s \n# chain=%s \n# PDBID=%s \n# server_wait=%s version=%s verbose=%s showresult=%s \n# resi=%s resn=%s\n# %s \n" % (time.strftime("%Y%m%d%H%M%S", time.localtime()), logtime, source, PDB, chain, PDBID, server_wait, version, verbose, showresult, resi, resn, htmlresult))
# Print to screen
printpropkaresult(list_results, resi, resi_range, resn, resn_range, showresult, ligands_results)
# Now write to log and the stripped file
for l in list_results:
if resi != "0" and int(l[1]) in resi_range:
result_log.write("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]) + '\n')
if resn != "NIL" and l[0] in resn_range and int(l[1]) not in resi_range:
result_log.write("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]) + '\n')
result_pka_file_stripped.write("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]) + '\n')
for l in ligands_results:
if resn != "NIL" and l[0] in resn_range:
result_log.write("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]) + '\n')
result_pka_file_stripped.write("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]) + '\n')
result_pka_file_stripped.close()
result_log.close()
# Now handle the bonds. We have to delete dublicates first.
bonds.sort()
last = bonds[-1]
for i in range(len(bonds) - 2, -1, -1):
if last == bonds[i]:
del bonds[i]
else:
last = bonds[i]
# Now make a selection for known residue
bonds_selected = []
bonds_ligands = []
for l in bonds:
if l[0][6:] in ['ASP', 'GLU', 'ARG', 'LYS', 'HIS', 'CYS', 'TYR', 'C-', 'N+']:
bonds_selected.append(l)
else:
bonds_ligands.append(l)
# And now sort it.
bonds_selected.sort(key=lambda residue: int(residue[1]))
# Now write it to file
bonddic = {'=': ' ', ':': ' ', ',': ' ', "'": " "}
for l in bonds_selected:
nb = replace_all(l[7], bonddic)
result_pka_file_bonds.write("%3s %3s %s %7s %7s %9s %17s %s" % (l[0][6:], l[1], l[2][:1], l[3][8:], l[4], l[5], l[6], nb) + '\n')
for l in bonds_ligands:
nb = replace_all(l[7], bonddic)
result_pka_file_bonds.write("%3s %3s %s %7s %7s %9s %17s %s" % (l[0][6:], l[1], l[2][:1], l[3][8:], l[4], l[5], l[6], nb) + '\n')
result_pka_file_bonds.close()
return(result_pka_pkafile)
if runningpymol != 'no':
cmd.extend("getpropka", getpropka)
def openpymolfiles(pkafile):
result_pka_pymol_name = pkafile.replace(".pka", ".pml")
result_pka_pymol = open(result_pka_pymol_name, "w")
return(result_pka_pymol, result_pka_pymol_name)
def printpropkaresult(list_results, resi, resi_range, resn, resn_range, showresult, ligands_results):
for l in list_results:
if resi != "0" and int(l[1]) in resi_range:
if showresult != 'yes':
print("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]))
if resn != "NIL" and l[0] in resn_range and int(l[1]) not in resi_range:
if showresult != 'yes':
print("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]))
if showresult == 'yes':
print("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]))
for l in ligands_results:
if resn != "NIL" and l[0] in resn_range:
if showresult != 'yes':
print("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]))
if showresult == 'yes':
print("%3s %3s %s %6s %3s %5s %3s %4s %s" % (l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7], l[8]))
def importpropkaresult(result_pka_pkafile):
result_pka_file = open(result_pka_pkafile, "r")
list_results = []
ligands_results = []
##bonding_partners = []
for l in result_pka_file:
if not l.strip():
continue
else:
# To search for the right lines
if l.strip().split()[0] in ['ASP', 'GLU', 'ARG', 'LYS', 'HIS', 'CYS', 'TYR', 'C-', 'N+'] and len(l.strip().split()) > 20:
list_results.append([l.strip().split()[0], l.strip().split()[1], l.strip().split()[2], l.strip().split()[3], l.strip().split()[4], l.strip().split()[6], l.strip().split()[7], l.strip().split()[8], l.strip().split()[9]])
# bonding_partners.append(l.strip().split()[11]);bonding_partners.append(l.strip().split()[15]);bonding_partners.append(l.strip().split()[19])
if l.strip().split()[0] not in ['ASP', 'GLU', 'ARG', 'LYS', 'HIS', 'CYS', 'TYR', 'C-', 'N+'] and len(l.strip().split()) > 20:
ligands_results.append([l.strip().split()[0], l.strip().split()[1], l.strip().split()[2], l.strip().split()[3], l.strip().split()[4], l.strip().split()[6], l.strip().split()[7], l.strip().split()[8], l.strip().split()[9]])
# bonding_partners.append(l.strip().split()[11]);bonding_partners.append(l.strip().split()[15]);bonding_partners.append(l.strip().split()[19])
# Sort the result after the residue number and then chain.
list_results.sort(key=lambda residue: int(residue[1]))
list_results.sort(key=lambda chain: chain[2])
# bonding_partners=uniqifi(bonding_partners)
##bonding_partners[:] = [x for x in bonding_partners if x != "XXX"]
result_pka_file.close()
return(list_results, ligands_results)
def importpropkabonds(result_pka_pkafile):
bonds = []
result_pka_file_bonds = open(result_pka_pkafile[:-4] + ".bonds", "r")
for l in result_pka_file_bonds:
bonds.append(l.split())
result_pka_file_bonds.close()
return(bonds)
def createdirs():
if platform.system() == 'Windows':
Newdir = os.getcwd() + "\Results_propka\\"
if platform.system() == 'Linux':
Newdir = os.getcwd() + "/Results_propka/"
if not os.path.exists(Newdir):
os.makedirs(Newdir)
return(Newdir)
def openfiles(Newdir, filename, logtime, source):
if source == "upload":
result_pka_pkafile = filename.replace(".pdb", ".pka")
result_pka_input_pkafile = filename.replace(".pdb", ".propka_input")
result_log_name = "%s_Results.log" % (Newdir)
result_pka_file_stripped_name = filename.replace(".pdb", ".stripped")
result_pka_file_bonds_name = filename.replace(".pdb", ".bonds")
if source == "ID":
result_pka_pkafile = "%s%s%s.pka" % (Newdir, filename, logtime)
result_pka_input_pkafile = "%s%s%s.propka_input" % (Newdir, filename, logtime)
result_log_name = "%s_Results.log" % (Newdir)
result_pka_file_stripped_name = "%s%s%s.stripped" % (Newdir, filename, logtime)
result_pka_file_bonds_name = "%s%s%s.bonds" % (Newdir, filename, logtime)
if platform.system() == 'Windows':
filepath = "\\"
if platform.system() == 'Linux':
filepath = "/"
# Open the files
result_pka_file = open(result_pka_pkafile, "w")
result_input_pka_file = open(result_pka_input_pkafile, "w")
result_log = open(result_log_name, "a")
result_pka_file_stripped = open(result_pka_file_stripped_name, "w")
result_pka_file_bonds = open(result_pka_file_bonds_name, "w")
return(result_pka_file, result_input_pka_file, result_log, filepath, result_pka_pkafile, result_pka_file_stripped, result_pka_file_bonds)
def ResiRange(resi):
resi = resi.split('.')
resiList = []
for i in resi:
if '-' in i:
tmp = i.split('-')
resiList.extend(list(range(int(tmp[0]), int(tmp[-1]) + 1)))
if '-' not in i:
resiList.append(int(i))
return(resiList)
def ResnRange(resn):
resn_split = resn.split('.')
resn_range = [resnr.upper() for resnr in resn_split]
return(resn_range)
def ChainRange(chain):
chainstring = chain.replace(".", "+").upper()
return(chainstring)
def writepymolcmd(newmolecule, pkafile, verbose, makebonds):
list_results, ligands_results = importpropkaresult(pkafile)
# Now find the available bonding partners that pymol knows of
bonding_partners = []
bonding_partners_str = cmd.get_pdbstr("%s and resn * and not resn ASP+GLU+ARG+LYS+HIS+CYS+TYR+GLN+ASN+SER+THR+GLY+PHE+LEU+ALA+ILE+TRP+MET+PRO+VAL+HOH" % (newmolecule))
for i in range(len(bonding_partners_str.splitlines()) - 1):
bonding_partners_split = bonding_partners_str.splitlines()[i].split()
if bonding_partners_split[0] == "HETATM" or bonding_partners_split[0] == "ATOM":
bonding_partners_single = bonding_partners_split[3]
bonding_partners.append(bonding_partners_single)
bonding_partners = uniqifi(bonding_partners)
if verbose == 'yes':
print("And other possible bonding partners is: %s" % bonding_partners)
# Read in the bond file, if it exists
writebonds = "no"
if os.path.isfile(pkafile[:-4] + ".bonds") and makebonds == "yes":
bonds = importpropkabonds(pkafile)
writebonds = "yes"
# Open the pymol command file for writing
files_pka_pymol = openpymolfiles(pkafile)
result_pka_pymol = files_pka_pymol[0]
result_pka_pymol_name = files_pka_pymol[1]
# Make some dictionary for propka->pymol name conversion
dictio = {'ASP': 'CG', 'GLU': 'CD', 'ARG': 'CZ', 'LYS': 'NZ', 'HIS': 'CG', 'CYS': 'SG', 'TYR': 'OH', 'C-': 'C', 'N+': 'N', 'NTR': 'N', 'CTR': 'C', 'GLN': 'CD', 'ASN': 'CG', 'SER': 'OG', 'THR': 'OG1', 'GLY': 'CA', 'PHE': 'CZ', 'LEU': 'CG', 'ALA': 'CB', 'ILE': 'CD1', 'TRP': 'NE1', 'MET': 'SD', 'PRO': 'CG', 'VAL': 'CB'}
dictio2 = {'ASP': 'D', 'GLU': 'E', 'ARG': 'R', 'LYS': 'K', 'HIS': 'H', 'CYS': 'C', 'TYR': 'Y', 'C-': 'C-', 'N+': 'N+'}
# This list is from: http://en.wikipedia.org/wiki/Protein_pKa_calculations
pkaaminoacid = ['ASP', 'GLU', 'ARG', 'LYS', 'HIS', 'CYS', 'TYR']
pkadictio = {'ASP': 3.9, 'GLU': 4.3, 'ARG': 12.0, 'LYS': 10.5, 'HIS': 6.0, 'CYS': 8.3, 'TYR': 10.1}
# Now start write to the file.
# Try to make silent
# result_pka_pymol.write("cmd.feedback('disable','all','actions')\n")
# result_pka_pymol.write("cmd.feedback('disable','all','results')\n")
# Change the GUI width, to make the long names possible.
result_pka_pymol.write("cmd.set('internal_gui_width','360')\n")
# Set fonts
result_pka_pymol.write("cmd.set('label_font_id','12')\n")
result_pka_pymol.write("cmd.set('label_size','-0.5')\n")
result_pka_pymol.write("cmd.set('label_color','grey')\n")
# No auto zoom the new objects
result_pka_pymol.write("cmd.set('auto_zoom','off')\n")
# The name for the molecules are defined here
pkamolecule = "%spKa" % (newmolecule)
pkalabelmolecule = "%sLab" % (newmolecule)
# Create the groups now, so they come in order. They will be empty
result_pka_pymol.write("cmd.group('%sResi','Res*')\n" % (newmolecule))
result_pka_pymol.write("cmd.group('%sLigands','Lig*')\n" % (newmolecule))
if writebonds == "yes":
result_pka_pymol.write("cmd.group('%sBonds','%sBond*')\n" % (newmolecule, newmolecule))
# Create new empty pymol pka molecules. For pka atoms and its label. This is a "bucket" we where we will put in the atoms together.
result_pka_pymol.write("cmd.create('%s','None')\n" % (pkamolecule))
result_pka_pymol.write("cmd.create('%s','None')\n" % (pkalabelmolecule))
# Now make the pka atoms and alter, color and such
for l in list_results:
name = dictio[l[0]]
resn = dictio2[l[0]]
resi = l[1]
chain = l[2]
pka = l[3]
buried = l[4]
if "*" in pka:
pka = pka.replace("*", "")
comment = "*Coupled residue"
else:
comment = ""
if l[0] in pkaaminoacid:
pkadiff = (float(pka) - pkadictio[l[0]])
pkadiff = "(%s)" % pkadiff
if pka == "99.99":
pkadiff = ""
else:
pkadiff = ""
# Make the selection for which atom to copy
newselection = ("/%s//%s/%s/%s" % (newmolecule, chain, resi, name))
protselect = ("%sRes_%s%s%s" % (newmolecule, chain, resn, resi))
result_pka_pymol.write("cmd.select('%s','byres %s')\n" % (protselect, newselection))
result_pka_pymol.write("cmd.show('sticks','byres %s')\n" % (protselect))
# The temporary name
tempname = ("%s%s%s%s" % (pkamolecule, chain, resi, name))
tempnamelabel = ("%s%s%s%s" % (pkalabelmolecule, chain, resi, name))
tempselect = ("/%s//%s/%s" % (tempname, chain, resi))
tempselectlabel = ("/%s//%s/%s" % (tempnamelabel, chain, resi))
# Copy the atom, call it by the residue name
result_pka_pymol.write("cmd.create('%s','%s',quiet=1)\n" % (tempname, newselection))
# Alter the name and the b value of the newly created atom
result_pka_pymol.write("cmd.alter('%s','b=%s')\n" % (tempselect, pka))
result_pka_pymol.write("cmd.alter('%s','vdw=0.5')\n" % (tempselect))
result_pka_pymol.write("cmd.alter('%s','name=%s%s%s')\n" % (tempselect, '"', pka, '"'))
# Now create a fake label atom, and translate it
result_pka_pymol.write("cmd.create('%s','%s',quiet=1)\n" % (tempnamelabel, tempname))
movelabelxyz = (1.5, 0, 0)
result_pka_pymol.write("cmd.translate('[%s,%s,%s]','%s',camera=0)\n" % (movelabelxyz[0], movelabelxyz[1], movelabelxyz[2], tempnamelabel))
# Labelling alternate positions are not allowed, so we delete that attribute for the label atoms.
result_pka_pymol.write("cmd.alter('%s','alt=%s%s')\n" % (tempselectlabel, '"', '"'))
result_pka_pymol.write("cmd.label('%s','text_type=%spka=%s%s Bu:%s%s%s%s')\n" % (tempselectlabel, '"', pka, pkadiff, buried, '%', comment, '"'))
# Now put the atoms into a bucket of atoms
result_pka_pymol.write("cmd.create('%s','%s or (%s)',quiet=1)\n" % (pkamolecule, pkamolecule, tempselect))
result_pka_pymol.write("cmd.create('%s','%s or (%s)',quiet=1)\n" % (pkalabelmolecule, pkalabelmolecule, tempselectlabel))
# Remove the temporary atoms
result_pka_pymol.write("cmd.remove('%s')\n" % (tempname))
result_pka_pymol.write("cmd.remove('%s')\n" % (tempnamelabel))
# Delete the temporary molecule/selection
result_pka_pymol.write("cmd.delete('%s')\n" % (tempname))
result_pka_pymol.write("cmd.delete('%s')\n" % (tempnamelabel))
# Group the resi together
result_pka_pymol.write("cmd.group('%sResi','%sRes*')\n" % (newmolecule, newmolecule))
for l in ligands_results:
resn = l[0]
atom = l[1]
chain = l[2]
pka = l[3]
buried = l[4]
if verbose == 'yes':
print("Ligand. resn:%s atom:%s chain:%s pka:%s buried:%s" % (resn, atom, chain, pka, buried))
if Check_bonding_partners(bonding_partners, resn)[0]:
if "*" in pka:
pka = pka.replace("*", "")
comment = "*Coupled residue"
else:
comment = ""
# Make the selection for which atom to copy
ligselection = ("/%s and chain %s and resn %s and name %s" % (newmolecule, chain, resn, atom))
ligselect = ("%sLig_%s%s%s" % (newmolecule, chain, resn, atom))
result_pka_pymol.write("cmd.select('%s','%s')\n" % (ligselect, ligselection))
result_pka_pymol.write("cmd.show('sticks','byres %s')\n" % (ligselect))
result_pka_pymol.write("cmd.util.cbap('byres %s')\n" % (ligselect))
# The temporary name
tempname = ("%s%s%s%s" % (pkamolecule, chain, resn, atom))
tempnamelabel = ("%s%s%s%s" % (pkalabelmolecule, chain, resn, atom))
tempselect = ("/%s and chain %s and resn %s" % (tempname, chain, resn))
tempselectlabel = ("/%s and chain %s and resn %s" % (tempnamelabel, chain, resn))
# Copy the atom, call it by the residue name
result_pka_pymol.write("cmd.create('%s','%s',quiet=1)\n" % (tempname, ligselection))
# Alter the name and the b value of the newly created atom
result_pka_pymol.write("cmd.alter('%s','b=%s')\n" % (tempselect, pka))
result_pka_pymol.write("cmd.alter('%s','vdw=0.5')\n" % (tempselect))
result_pka_pymol.write("cmd.alter('%s','name=%s%s%s')\n" % (tempselect, '"', pka, '"'))
# Now create a fake label atom, and translate it
result_pka_pymol.write("cmd.create('%s','%s',quiet=1)\n" % (tempnamelabel, tempname))
movelabelxyz = (1.5, 0, 0)
result_pka_pymol.write("cmd.translate('[%s,%s,%s]','%s',camera=0)\n" % (movelabelxyz[0], movelabelxyz[1], movelabelxyz[2], tempnamelabel))
# Labelling alternate positions are not allowed, so we delete that attribute for the label atoms.
result_pka_pymol.write("cmd.alter('%s','alt=%s%s')\n" % (tempselectlabel, '"', '"'))
result_pka_pymol.write("cmd.label('%s','text_type=%spka=%s Bu:%s%s%s%s')\n" % (tempselectlabel, '"', pka, buried, '%', comment, '"'))
# Now put the atoms into a bucket of atoms
result_pka_pymol.write("cmd.create('%s','%s or (%s)',quiet=1)\n" % (pkamolecule, pkamolecule, tempselect))
result_pka_pymol.write("cmd.create('%s','%s or (%s)',quiet=1)\n" % (pkalabelmolecule, pkalabelmolecule, tempselectlabel))
# Remove the temporary atoms
result_pka_pymol.write("cmd.remove('%s')\n" % (tempname))
result_pka_pymol.write("cmd.remove('%s')\n" % (tempnamelabel))
# Delete the temporary molecule/selection
result_pka_pymol.write("cmd.delete('%s')\n" % (tempname))
result_pka_pymol.write("cmd.delete('%s')\n" % (tempnamelabel))
# Group the resi together
result_pka_pymol.write("cmd.group('%sLigands','%sLig*')\n" % (newmolecule, newmolecule))
# Finish the pka atoms, and show spheres
result_pka_pymol.write("cmd.show('spheres','%s')\n" % (pkamolecule))
result_pka_pymol.write("cmd.spectrum('b','red_white_blue',selection='%s',minimum='0',maximum='14')\n" % (pkamolecule))
result_pka_pymol.write("cmd.alter('%s and name 99.9','vdw=0.8')\n" % (pkamolecule))
result_pka_pymol.write("cmd.show('spheres','%s and name 99.9')\n" % (pkamolecule))
result_pka_pymol.write("cmd.color('sulfur','%s and name 99.9')\n" % (pkamolecule))
# Now we make the bonds
if writebonds == "yes":
Bondgroups = []
naturalaminoacids = ['ASP', 'GLU', 'ARG', 'LYS', 'HIS', 'CYS', 'TYR', 'NTR', 'N+', 'CTR', 'C-', 'GLN', 'ASN', 'SER', 'THR', 'GLY', 'PHE', 'LEU', 'ALA', 'ILE', 'TRP', 'MET', 'PRO', 'VAL']
for l in bonds:
if l[0] in naturalaminoacids:
name = dictio[l[0]]
resi = l[1]
chain = l[2]
desolvation = l[6][12:]
pkachange = l[11]
NBresi = l[8][3:]
NBchain = l[9]
NBbond = l[-1][:2]
if l[8][:3] in naturalaminoacids:
NBname, cutoff = BondTypeName(dictio[l[8][:3]], NBbond)
fromselection = ("/%s//%s/%s/%s" % (newmolecule, chain, resi, name))
toselection = ("/%s//%s/%s/%s" % (newmolecule, NBchain, NBresi, NBname))
if l[8][:3] == 'NTR':
extind = cmd.identify("chain %s and name N" % (NBchain))[0]
toselection = ("/%s and id %s and name N" % (newmolecule, extind))
NBresi = "N+"
if l[8][:3] == 'CTR':
extind = cmd.identify("chain %s and name C" % (NBchain))[-1]
toselection = ("/%s and id %s and name C" % (newmolecule, extind))
NBresi = "C-"
distname = ("%s_%s%s%s%s_%s_%s" % (newmolecule, chain, resi, NBchain, NBresi, NBbond, pkachange))
result_pka_pymol.write("cmd.distance('%s','%s','%s'%s)\n" % (distname, fromselection, toselection, cutoff))
result_pka_pymol.write("cmd.color('%s','%s')\n" % (SetDashColor(NBbond), distname))
# result_pka_pymol.write("cmd.disable('%s')\n"%(distname))
Bondgroups.append("%s%s" % (chain, resi))
if l[8][:3] not in naturalaminoacids and Check_bonding_partners(bonding_partners, l[8])[0]:
cutoff = ""
NBresn = Check_bonding_partners(bonding_partners, l[8])[1]
NBname = l[8][len(NBresn):] + "*"
fromselection = ("/%s//%s/%s/%s" % (newmolecule, chain, resi, name))
toselection = ("/%s and chain %s and resn %s and name %s" % (newmolecule, NBchain, NBresn, NBname))
if verbose == 'yes':
print("Res->Ligand: (%s) -> (%s)" % (fromselection, toselection))
result_pka_pymol.write("cmd.show('sticks','%s')\n" % (toselection))
distname = ("%s_%s%s%s_%s_%s" % (newmolecule, chain, resi, NBresn, NBbond, pkachange))
result_pka_pymol.write("cmd.distance('%s','%s','%s'%s)\n" % (distname, fromselection, toselection, cutoff))
result_pka_pymol.write("cmd.color('%s','%s')\n" % (SetDashColor(NBbond), distname))
# result_pka_pymol.write("cmd.disable('%s')\n"%(distname))
Bondgroups.append("%s%s" % (chain, resi))
if l[0] in bonding_partners:
resn = l[0]
atom = l[1]
chain = l[2]
desolvation = l[6][12:]
pkachange = l[11]
NBresi = l[8][3:]
NBchain = l[9]
NBbond = l[-1][:2]
if not Check_bonding_partners(bonding_partners, l[8])[0]:
NBname, cutoff = BondTypeName(dictio[l[8][:3]], NBbond)
fromselection = ("/%s and chain %s and resn %s and name %s" % (newmolecule, chain, resn, atom))
toselection = ("/%s//%s/%s/%s" % (newmolecule, NBchain, NBresi, NBname))
if l[8][:3] == 'NTR':
extind = cmd.identify("chain %s and name N" % (NBchain))[0]
toselection = ("/%s and id %s and name N" % (newmolecule, extind))
NBresi = "N+"
if l[8][:3] == 'CTR':
extind = cmd.identify("chain %s and name C" % (NBchain))[-1]
toselection = ("/%s and id %s and name C" % (newmolecule, extind))
NBresi = "C-"
distname = ("%s_%s%s%s%s%s_%s_%s" % (newmolecule, chain, resn, atom, NBchain, NBresi, NBbond, pkachange))
result_pka_pymol.write("cmd.distance('%s','%s','%s'%s)\n" % (distname, fromselection, toselection, cutoff))
result_pka_pymol.write("cmd.color('%s','%s')\n" % (SetDashColor(NBbond), distname))
Bondgroups.append("%s%s%s" % (chain, resn, atom))
# result_pka_pymol.write("cmd.disable('%s')\n"%(distname))
if Check_bonding_partners(bonding_partners, l[8])[0]:
cutoff = ""
NBresn = Check_bonding_partners(bonding_partners, l[8])[1]
NBname = l[8][len(NBresn):] + "*"
fromselection = ("/%s and chain %s and resn %s and name %s" % (newmolecule, chain, resn, atom))
toselection = ("/%s and chain %s and resn %s and name %s" % (newmolecule, NBchain, NBresn, NBname))
if verbose == 'yes':
print("Ligand->Ligand: (%s) -> (%s)" % (fromselection, toselection))
result_pka_pymol.write("cmd.show('sticks','%s')\n" % (toselection))
distname = ("%s_%s%s%s%s_%s_%s" % (newmolecule, chain, resn, atom, NBresn, NBbond, pkachange))
result_pka_pymol.write("cmd.distance('%s','%s','%s'%s)\n" % (distname, fromselection, toselection, cutoff))
result_pka_pymol.write("cmd.color('%s','%s')\n" % (SetDashColor(NBbond), distname))
# result_pka_pymol.write("cmd.disable('%s')\n"%(distname))
Bondgroups.append("%s%s%s" % (chain, resn, atom))
Bondgroups = uniqifi(Bondgroups)
for l in Bondgroups:
result_pka_pymol.write("cmd.group('%sBonds_%s','%s_%s*')\n" % (newmolecule, l, newmolecule, l))
result_pka_pymol.write("cmd.disable('%sBonds_%s')\n" % (newmolecule, l))
result_pka_pymol.write("cmd.group('%sBonds','%sBonds_*')\n" % (newmolecule, newmolecule))
result_pka_pymol.write("cmd.set('auto_zoom','on')\n")
# result_pka_pymol.write("cmd.feedback('enable','all','actions')\n")
# result_pka_pymol.write("cmd.feedback('enable','all','results')\n")
result_pka_pymol.close()
return(result_pka_pymol_name)
def replace_all(text, dic):
for i, j in dic.items():
text = text.replace(i, j)
return(text)
def uniqifi(seq, idfun=None):
# Order preserving
if idfun is None:
def idfun(x):
return x
seen = {}
result = []
for item in seq:
marker = idfun(item)
if marker in seen:
continue
seen[marker] = 1
result.append(item)
return(result)
def BondTypeName(NBname, NBbond):
if NBbond == "SH":
cutoff = ""
return(NBname, cutoff)
if NBbond == "BH":
cutoff = ""
return("N", cutoff)
else:
cutoff = ""
return(NBname, cutoff)
def Check_bonding_partners(bonding_partners, NBname):
answer = False
for l in bonding_partners:
if l in NBname:
answer = True
NBname = l
break
else:
answer = False
return(answer, NBname)
def SetDashColor(NBbond):
if NBbond == "SH":
color = "brightorange"
if NBbond == "BH":
color = "lightorange"
if NBbond == "CC":
color = "red"
return(color)