-
Notifications
You must be signed in to change notification settings - Fork 507
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MRG] Translation Invariant Sinkhorn for Unbalanced OT (#676)
* uot sinkhorn translation invariant * correct log sinkhorn_ti * fix log sinkhorn_ti * test infinite reg sinkhorn unbalanced * fix doc translation invariant sinkhorn * fix pep8 * avoid nan in loop ti sinkhorn * Add test multiple hists, log False * up test multiple input with reg_type='entropy' * up test multiple inputs * correct number ref * correct number ref * jax vmap searchsorted * jax vmap searchsorted
- Loading branch information
Showing
7 changed files
with
476 additions
and
18 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
# -*- coding: utf-8 -*- | ||
""" | ||
=============================================================== | ||
Translation Invariant Sinkhorn for Unbalanced Optimal Transport | ||
=============================================================== | ||
This examples illustrates the better convergence of the translation | ||
invariance Sinkhorn algorithm proposed in [73] compared to the classical | ||
Sinkhorn algorithm. | ||
[73] Séjourné, T., Vialard, F. X., & Peyré, G. (2022). | ||
Faster unbalanced optimal transport: Translation invariant sinkhorn and 1-d frank-wolfe. | ||
In International Conference on Artificial Intelligence and Statistics (pp. 4995-5021). PMLR. | ||
""" | ||
|
||
# Author: Clément Bonet <clement.bonet@ensae.fr> | ||
# License: MIT License | ||
|
||
import numpy as np | ||
import matplotlib.pylab as pl | ||
import ot | ||
|
||
############################################################################## | ||
# Setting parameters | ||
# ------------- | ||
|
||
# %% parameters | ||
|
||
n_iter = 50 # nb iters | ||
n = 40 # nb samples | ||
|
||
num_iter_max = 100 | ||
n_noise = 10 | ||
|
||
reg = 0.005 | ||
reg_m_kl = 0.05 | ||
|
||
mu_s = np.array([-1, -1]) | ||
cov_s = np.array([[1, 0], [0, 1]]) | ||
|
||
mu_t = np.array([4, 4]) | ||
cov_t = np.array([[1, -.8], [-.8, 1]]) | ||
|
||
|
||
############################################################################## | ||
# Compute entropic kl-regularized UOT with Sinkhorn and Translation Invariant Sinkhorn | ||
# ----------- | ||
|
||
err_sinkhorn_uot = np.empty((n_iter, num_iter_max)) | ||
err_sinkhorn_uot_ti = np.empty((n_iter, num_iter_max)) | ||
|
||
|
||
for seed in range(n_iter): | ||
np.random.seed(seed) | ||
xs = ot.datasets.make_2D_samples_gauss(n, mu_s, cov_s) | ||
xt = ot.datasets.make_2D_samples_gauss(n, mu_t, cov_t) | ||
|
||
xs = np.concatenate((xs, ((np.random.rand(n_noise, 2) - 4))), axis=0) | ||
xt = np.concatenate((xt, ((np.random.rand(n_noise, 2) + 6))), axis=0) | ||
|
||
n = n + n_noise | ||
|
||
a, b = np.ones((n,)) / n, np.ones((n,)) / n # uniform distribution on samples | ||
|
||
# loss matrix | ||
M = ot.dist(xs, xt) | ||
M /= M.max() | ||
|
||
entropic_kl_uot, log_uot = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg, reg_m_kl, reg_type="kl", log=True, numItermax=num_iter_max, stopThr=0) | ||
entropic_kl_uot_ti, log_uot_ti = ot.unbalanced.sinkhorn_unbalanced(a, b, M, reg, reg_m_kl, reg_type="kl", | ||
method="sinkhorn_translation_invariant", log=True, | ||
numItermax=num_iter_max, stopThr=0) | ||
|
||
err_sinkhorn_uot[seed] = log_uot["err"] | ||
err_sinkhorn_uot_ti[seed] = log_uot_ti["err"] | ||
|
||
############################################################################## | ||
# Plot the results | ||
# ---------------- | ||
|
||
mean_sinkh = np.mean(err_sinkhorn_uot, axis=0) | ||
std_sinkh = np.std(err_sinkhorn_uot, axis=0) | ||
|
||
mean_sinkh_ti = np.mean(err_sinkhorn_uot_ti, axis=0) | ||
std_sinkh_ti = np.std(err_sinkhorn_uot_ti, axis=0) | ||
|
||
absc = list(range(num_iter_max)) | ||
|
||
pl.plot(absc, mean_sinkh, label="Sinkhorn") | ||
pl.fill_between(absc, mean_sinkh - 2 * std_sinkh, mean_sinkh + 2 * std_sinkh, alpha=0.5) | ||
|
||
pl.plot(absc, mean_sinkh_ti, label="Translation Invariant Sinkhorn") | ||
pl.fill_between(absc, mean_sinkh_ti - 2 * std_sinkh_ti, mean_sinkh_ti + 2 * std_sinkh_ti, alpha=0.5) | ||
|
||
pl.yscale("log") | ||
pl.legend() | ||
pl.xlabel("Number of Iterations") | ||
pl.ylabel(r"$\|u-v\|_\infty$") | ||
pl.grid(True) | ||
pl.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.