Skip to content

Single-cell spatial elucidation through image-augmented graph transformer

License

Notifications You must be signed in to change notification settings

QSong-github/SiGra

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

95 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SiGra: Single-cell spatial elucidation through image-augmented graph transformer

DOI

The recent advances in high-throughput molecular imaging push the spatial transcriptomics technologies to the subcellular resolution, which breaks the limitations of both single-cell RNA-seq and array-based spatial profiling. The latest released single-cell spatial transcriptomics data from NanoString CosMx and MERSCOPE platforms contains multi-channel immunohistochemistry images with rich information of cell types, functions, and morphologies of cellular compartments. In this work, we developed a novel method, Single-cell spatial elucidation through image-augmented Graph transformer (SiGra), to reveal spatial domains and enhance the substantially sparse and noisy transcriptomics data. SiGra applies hybrid graph transformers over a spatial graph that comprises high-content images and gene expressions of individual cells. SiGra outperformed state-of-the-art methods on both single-cell spatial profiles and spot-level spatial transcriptomics data from complex tissues. The inclusion of immunohistochemistry images improved the model performance by 37% (95%CI: 27% – 50%). SiGra improves the characterization of intratumor heterogeneity and intercellular communications in human lung cancer samples, meanwhile recovers the known microscopic anatomy in both human brain and mouse liver tissues. Overall, SiGra effectively integrates different spatial modality data to gain deep insights into the spatial cellular ecosystems.

Image text

SiGra is built based on pytorch Test on: Ubuntu 18.04, 2080TI GPU, Intel i9-9820, 3.30GHZ, 20 core, 64 GB, CUDA environment(cuda 11.2)

Requirements

Required modules can be installed via requirements.txt under the project root

pip install -r requirements.txt
torchvision==0.11.1
matplotlib==2.1.1
torch==1.6.0
seaborn==0.10.0
tqdm==4.47.0
numpy==1.13.3
anndata==0.8.0
pandas==1.4.3
rpy2==3.5.2
scanpy==1.9.1
scipy==1.8.1
scikit_learn==1.1.1
torch_geometric==2.0.4

Installation

Download SiGra:

git clone https://github.com/QSong-github/SiGra

Dataset Setting

NanoString CosMx SMI

The dataset can be download here

Vizgen MERSCOPE

The dataset can be download here

10x Visium

The dataset can be download here

you can download our processed dataset here

Data folder structure

├── requirement.txt
├── dataset
│   └── DLPFC
│        └── 151507
│              ├── filtered_feature_bc_matrix.h5
│              ├── metadata.tsv 
│              ├── sampledata.h5ad
│              └── spatial
│                     ├── tissue_positions_list.csv  
│                     ├── full_image.tif  
│                     ├── tissue_hires_image.png  
│                     ├── tissue_lowres_image.png
│   └── nanostring
│        └── Lung9_Rep1_exprMat_file.csv
│        └── matched_annotation_all.csv
│        └── fov1
│              ├── CellComposite_F001.jpg
│              ├── sampledata.h5ad
│        └── fov2
│              ├── CellComposite_F002.jpg
│              ├── sampledata.h5ad
│   └── merscope
│        └── Cell_boundaries
│        └── Cut Images
│        └── sample_data
│        └── processed_data



├── checkpoint
│   └── nanostring_final
│        ├── final.pth
│   └── merscope_all
│        ├── final.pth
│   └── 10x_final
│        └── 151507
│              ├── final.pth

Tutorial for SiGra

  1. Data processing: here
  2. Run SiGra: here
  3. Output data visualization: here

processing scripts

# go to /path/to/Sigra
# for NanoString CosMx dataset
python3 processing.py --dataset nanostring

# for Vizgen MERSCOPE dataset
python3 processing.py --dataset merscope

# for 10x Visium dataset
python3 processing.py --dataset 10x

Reproduction instructions

go to /path/to/SiGra/SiGra_model

Download the datasets and checkpoints and put in folders as above.

1. for NanoString CosMx dataset

The results will be stored in "/path/siGra/results/nanostring/"

python3 train.py --test_only 1 --save_path ../checkpoint/nanostring_final/ --pretrain final.pth --dataset nanostring

2. for Vizgen MERSCOPE dataset

The reuslts will be stored in /path/siGra/reuslts/merscope/

python3 train.py --test_only 1 --save_path ../checkpoint/merscope_final/ --pretrain final.pth --dataset merscope --root ../dataset/mouseLiver

3. for 10x Visium dataset

The results will be stored in "/path/siGra/results/10x_final/"

python3 train.py --test_only 1 --save_path ../checkpoint/10x_final/ --id 151507 --ncluster 7 --dataset 10x --root ../dataset/DLPFC

And you can use the bash scripts to test all slices:

sh test_visium.sh

Train from scratch

Training tutorials

1. for NanoString CosMx dataset

The hyperparameters were manually selected in individual datasets

python3 train.py --dataset nanostring --test_only 0 --save_path ../checkpoint/nanostring_train/ --seed 1234 --epochs 900 --lr 1e-3 

2. for Vizgen MERSCOPE dataset

python3 train.py --dataset merscope --test_only 0 --save_path ../checkpoint/merscope_train/ --seed 1234 --epochs 1000 --lr 1e-3 --root ../dataset/mouseLiver

3. for 10x Visium dataset

python3 train.py --dataset 10x --test_only 0 --save_path ../checkpoint/10x_train/ --seed 1234 --epochs 600 --lr 1e-3 --id 151507 --ncluster 7 --repeat 1 --root ../dataset/DLPFC

And you can use the bash scripts to train all slices:

sh train_visium.sh

Cite

Please cite our paper if you use this code in your own work:

Tang Z, Zhang T, Yang B, Su J, Song Q. SiGra: Single-cell spatial elucidation through image-augmented graph transformer. bioRxiv. 2022 Aug 19:2022-08.

About

Single-cell spatial elucidation through image-augmented graph transformer

Resources

License

Stars

Watchers

Forks

Packages

No packages published