-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathyolo-fastestv2.cpp
214 lines (171 loc) · 6.08 KB
/
yolo-fastestv2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#include <math.h>
#include <algorithm>
#include "yolo-fastestv2.h"
//模型的参数配置
yoloFastestv2::yoloFastestv2()
{
numOutput = 2;
numThreads = 4;
numAnchor = 3;
numCategory = 80;
nmsThresh = 0.25;
inputWidth = 352;
inputHeight = 352;
//anchor box w h
std::vector<float> bias {12.64, 19.39, 37.88,51.48, 55.71, 138.31,
126.91, 78.23, 131.57, 214.55, 279.92, 258.87};
anchor.assign(bias.begin(), bias.end());
}
yoloFastestv2::~yoloFastestv2()
{
;
}
int yoloFastestv2::init(const bool use_vulkan_compute)
{
net.opt.use_winograd_convolution = true;
net.opt.use_sgemm_convolution = true;
net.opt.use_int8_inference = true;
net.opt.use_vulkan_compute = use_vulkan_compute;
net.opt.use_fp16_packed = true;
net.opt.use_fp16_storage = true;
net.opt.use_fp16_arithmetic = true;
net.opt.use_int8_storage = true;
net.opt.use_int8_arithmetic = true;
net.opt.use_packing_layout = true;
net.opt.use_shader_pack8 = false;
net.opt.use_image_storage = false;
return 0;
}
//ncnn 模型加载
int yoloFastestv2::loadModel(const char* paramPath, const char* binPath)
{
net.load_param(paramPath);
net.load_model(binPath);
printf("Ncnn model init sucess...\n");
return 0;
}
float intersection_area(const TargetBox &a, const TargetBox &b)
{
if (a.x1 > b.x2 || a.x2 < b.x1 || a.y1 > b.y2 || a.y2 < b.y1) return 0.f; // no intersection
float inter_width = std::min(a.x2, b.x2) - std::max(a.x1, b.x1);
float inter_height = std::min(a.y2, b.y2) - std::max(a.y1, b.y1);
return inter_width * inter_height;
}
bool scoreSort(TargetBox a, TargetBox b)
{
return (a.score > b.score);
}
//NMS处理
int yoloFastestv2::nmsHandle(std::vector<TargetBox> &tmpBoxes,
std::vector<TargetBox> &dstBoxes)
{
std::vector<int> picked;
sort(tmpBoxes.begin(), tmpBoxes.end(), scoreSort);
for(size_t i = 0; i < tmpBoxes.size(); i++) {
int keep = 1;
for(size_t j = 0; j < picked.size(); j++) {
//交集
float inter_area = intersection_area(tmpBoxes[i], tmpBoxes[picked[j]]);
//并集
float union_area = tmpBoxes[i].area() + tmpBoxes[picked[j]].area() - inter_area;
float IoU = inter_area / union_area;
if(IoU > nmsThresh && tmpBoxes[i].cate == tmpBoxes[picked[j]].cate) {
keep = 0;
break;
}
}
if (keep) {
picked.push_back(i);
}
}
for(size_t i = 0; i < picked.size(); i++) {
dstBoxes.push_back(tmpBoxes[picked[i]]);
}
return 0;
}
//检测类别分数处理
int yoloFastestv2::getCategory(const float *values, int index, int &category, float &score)
{
float tmp = 0;
float objScore = values[4 * numAnchor + index];
for (int i = 0; i < numCategory; i++) {
float clsScore = values[4 * numAnchor + numAnchor + i];
clsScore *= objScore;
if(clsScore > tmp) {
score = clsScore;
category = i;
tmp = clsScore;
}
}
return 0;
}
//特征图后处理
int yoloFastestv2::predHandle(const ncnn::Mat *out, std::vector<TargetBox> &dstBoxes,
const float scaleW, const float scaleH, const float thresh)
{ //do result
for (int i = 0; i < numOutput; i++) {
int stride;
int outW, outH, outC;
outH = out[i].c;
outW = out[i].h;
outC = out[i].w;
assert(inputHeight / outH == inputWidth / outW);
stride = inputHeight / outH;
for (int h = 0; h < outH; h++) {
const float* values = out[i].channel(h);
for (int w = 0; w < outW; w++) {
for (int b = 0; b < numAnchor; b++) {
//float objScore = values[4 * numAnchor + b];
TargetBox tmpBox;
int category = -1;
float score = -1;
getCategory(values, b, category, score);
if (score > thresh) {
float bcx, bcy, bw, bh;
bcx = ((values[b * 4 + 0] * 2. - 0.5) + w) * stride;
bcy = ((values[b * 4 + 1] * 2. - 0.5) + h) * stride;
bw = pow((values[b * 4 + 2] * 2.), 2) * anchor[(i * numAnchor * 2) + b * 2 + 0];
bh = pow((values[b * 4 + 3] * 2.), 2) * anchor[(i * numAnchor * 2) + b * 2 + 1];
tmpBox.x1 = (bcx - 0.5 * bw) * scaleW;
tmpBox.y1 = (bcy - 0.5 * bh) * scaleH;
tmpBox.x2 = (bcx + 0.5 * bw) * scaleW;
tmpBox.y2 = (bcy + 0.5 * bh) * scaleH;
tmpBox.score = score;
tmpBox.cate = category;
dstBoxes.push_back(tmpBox);
}
}
values += outC;
}
}
}
return 0;
}
int yoloFastestv2::detection(const cv::Mat srcImg, std::vector<TargetBox> &dstBoxes, const float thresh)
{
dstBoxes.clear();
float scaleW = (float)srcImg.cols / (float)inputWidth;
float scaleH = (float)srcImg.rows / (float)inputHeight;
//resize of input image data
ncnn::Mat inputImg = ncnn::Mat::from_pixels_resize(srcImg.data, ncnn::Mat::PIXEL_BGR,\
srcImg.cols, srcImg.rows, inputWidth, inputHeight);
//Normalization of input image data
const float mean_vals[3] = {0.f, 0.f, 0.f};
const float norm_vals[3] = {1/255.f, 1/255.f, 1/255.f};
inputImg.substract_mean_normalize(mean_vals, norm_vals);
//creat extractor
ncnn::Extractor ex = net.create_extractor();
ex.set_num_threads(numThreads);
//set input tensor
ex.input("input.1", inputImg);
//forward
ncnn::Mat out[2];
ex.extract("794", out[0]); //22x22
ex.extract("796", out[1]); //11x11
std::vector<TargetBox> tmpBoxes;
//特征图后处理
predHandle(out, tmpBoxes, scaleW, scaleH, thresh);
//NMS
nmsHandle(tmpBoxes, dstBoxes);
return 0;
}