From 905d5d6f4e9c86a4cc3f2a895be388cfa5265919 Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Fri, 20 Dec 2024 16:15:53 -0600 Subject: [PATCH 01/17] Start outline of circuit cutting overview page --- docs/guides/qiskit-addons-cutting.mdx | 96 +++++++++++++++++++++++++++ 1 file changed, 96 insertions(+) create mode 100644 docs/guides/qiskit-addons-cutting.mdx diff --git a/docs/guides/qiskit-addons-cutting.mdx b/docs/guides/qiskit-addons-cutting.mdx new file mode 100644 index 00000000000..157e234ad68 --- /dev/null +++ b/docs/guides/qiskit-addons-cutting.mdx @@ -0,0 +1,96 @@ +--- +title: Circuit Cutting +description: Overview of the addon for circuit cutting to build utility-scale workloads +--- + +# Circuit cutting + +Circuit cutting is a technique to increase the size of circuits we can run on quantum hardware at the cost of an additional sampling overhead This package implements this technique; where a handful of gates and/or wires are cut, resulting in smaller circuits that are better suited for execution on hardware. These smaller circuits are then executed and the results of the original circuit are reconstructed through using classical post-processing. However, the trade-off is that the overall number of shots must increase by a factor exponential in the number of cuts made. Circuit cutting can also be used to engineer gates between distant qubits which would otherwise require a large swap overhead. + +### Key terms + +- **subcircuits**: The set of circuits resulting from cutting gates in a `QuantumCircuit` and then separating the disconnected qubit subsets into smaller circuits. These circuits contain [`SingleQubitQPDGate`s](../api/qiskit-addon-cutting/qpd-single-qubit-qpd-gate) and are used to instantiate each subexperiment. + +- **subexperiment**: A term used to describe the unique circuit samples associated with a subcircuit which are sent to a QPU for execution. + +## Install the circuit cutting package + +There are three ways to install the circuit cutting package: PyPI, building from source, and running within a containerized environment. It is recommended to install these packages in a [virtual environment](https://docs.python.org/3.10/tutorial/venv.html) to ensure separation between package dependencies. + +### Install from PyPI + +The most straightforward way to install the `qiskit-addon-cutting` package is via PyPI +```bash +pip install qiskit-addon-cutting +``` + +### Install from source + +
+ +Click here to read how to install this package manually. + + +If you wish to contribute to this package or want to install it manually, first clone the repository: + +```bash +git clone git@github.com:Qiskit/qiskit-addon-cutting.git +``` +and install the package via `pip`. If you plan on running the tutorials found in the package repository, install the notebook dependencies as well. If you plan on developing in the repository, you may also want to install the `dev` dependencies. +```bash +pip install tox notebook -e '.[notebook-dependencies,dev]' +``` + +
+ +### Use within Docker + +A dockerfile is included in the addon repository which can be used to build a docker image. There is also a `compose.yaml` file which allows you to use the Docker image with the following commands + +
+ +Click here to read how to use this package within Docker + + +```bash +git clone git@github.com:Qiskit/qiskit-addon-cutting.git +cd qiskit-addon-cutting +docker compose build +docker compose up +``` + + If you are using `podman` and `podman-compose` instead of `docker`, the commands are: + ```bash + podman machine start + podman-compose --podman-pull-args short-name-mode="permissive" build + podman-compose up + ``` + + +Once the container is running, you should see a message similar to: +``` +notebook_1 | To access the server, open this file in a browser: +notebook_1 | file:///home/jovyan/.local/share/jupyter/runtime/jpserver-7-open.html +notebook_1 | Or copy and paste one of these URLs: +notebook_1 | http://e4a04564eb39:8888/lab?token=00ed70b5342f79f0a970ee9821c271eeffaf760a7dcd36ec +notebook_1 | or http://127.0.0.1:8888/lab?token=00ed70b5342f79f0a970ee9821c271eeffaf760a7dcd36ec +``` + +The *last* URL in this message will give you access to the Jupyter notebook interface. + +Additionally, the home directory includes a subdirectory named persistent-volume. All work you would like to save should be placed in this directory, as it is the only one that will be saved across different container runs. + + +
+ +## Theoretical Background + + +## Next steps + + + - Read through the page on [getting started with circuit cutting](/guides/qiskit-addons-cuttng-get-started) + + + +## References From ae72b49c9aa9e54e0ff197a5a2a33c3af3a2530a Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Wed, 8 Jan 2025 16:41:34 -0500 Subject: [PATCH 02/17] Finish draft of intro, start draft of get started --- docs/guides/_toc.json | 13 ++ .../guides/qiskit-addons-cc-get-started.ipynb | 214 ++++++++++++++++++ docs/guides/qiskit-addons-cutting.mdx | 57 ++++- 3 files changed, 283 insertions(+), 1 deletion(-) create mode 100644 docs/guides/qiskit-addons-cc-get-started.ipynb diff --git a/docs/guides/_toc.json b/docs/guides/_toc.json index 1c8500746ad..f7759e0108d 100644 --- a/docs/guides/_toc.json +++ b/docs/guides/_toc.json @@ -577,6 +577,19 @@ "url": "/guides/qiskit-addons-mpf-get-started" } ] + }, + { + "title": "Circuit cutting (CC)", + "children": [ + { + "title": "Circuit cutting overview", + "url": "/guides/qiskit-addons-cutting" + }, + { + "title": "Get started with circuit cutting", + "url": "/guides/qiskit-addons-cc-get-started" + } + ] } ] }, diff --git a/docs/guides/qiskit-addons-cc-get-started.ipynb b/docs/guides/qiskit-addons-cc-get-started.ipynb new file mode 100644 index 00000000000..069cac245c8 --- /dev/null +++ b/docs/guides/qiskit-addons-cc-get-started.ipynb @@ -0,0 +1,214 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Get started with circuit cutting\n", + "\n", + "This guide demonstrates a few simple working examples to get started with the `qiskit-addon-cutting` package. These examples will cover reconstructing expectation values of a seven-qubit circuit using wire cutting and reducing circuit depth and width using gate cutting.\n", + "\n", + "## Wire cutting\n", + "\n", + "To demonstrate expectation value reconstruction after wire cutting, first create a circuit with several non-local gates and define observables to estimate." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAvQAAAHwCAYAAADJpfudAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABt80lEQVR4nO3deVxU5f4H8M8Zhn0RWRQUUFBQREATXLLcLc1E00yLSr3t6dVbJr+WW2arpuV6Na9ZVppRLmmSa1jiDuKCiGgsKssIAyjIPsvvD5IbCcoMM3PmDJ/369UrOec853xnxDOfec5zniNotVotiIiIiIhIkmRiF0BERERERPpjoCciIiIikjAGeiIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwBnoiIiIiIgljoCciIiIikjAGeiIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwBnoiIiIiIgljoCciIiIikjAGeiIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwBnoiIiIiIgljoCciIiIikjAGeiIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwBnoiIiIiIgljoCciIiIikjAGeiIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwBnoiIiIiIgljoCciIiIikjAGeiIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwBnoiIiIiIgmTi10ANU6r1UJVWS12Gc0mt7eFIAhil0FERETU6jDQmylVZTU2dnlS7DKaLTpjA6wd7MQug4iIiKjV4ZAbIiIiIiIJY6AnIiIiIpIwBnoiIiIiIgljoCciIiIikjAGeiIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJ4zz0FsRrQAhGbZ3fYFlteSVKM/ORsfkg0tb9Aq1aI1p9RERERGR4DPQWKHNrAnLikwFBgL2nK7pOGoy+86ehTWBHHJ27RuzyiIiIiMiAGOgtUFFKFjK3JNT/nL5+Dx5JWIagJ4YjecEmVBeVilofERERERkOx9C3AqrKahQmX4Igk8GlU3uxyyEiIiIiA2KgbyWcO9cF+errN8UuhYiIiIgMiENuLJDc3ga2bs71Y+i7Pf0A3EMDUJh8CaWZ+WKXR0REREQG1Cp66JVKJWJiYtC1a1fY2dnB19cXs2fPRnl5OZ555hkIgoCVK1eKXabB9I6ZgsdTv8Lj577E+AOfIXj6KGTHHUP8tIVilyaqK/k3cSKlEMnnlVCWVIldDhERmVjxjWqcSlPiREohsnPLxC6HyGAsvof+9OnTGD16NBQKBRwdHdGjRw/k5eVh+fLlyMjIQHFxMQCgV69eYpdqMOnf7kX2z0chs5ajbXc/9JwxHo7e7lBX19RvI7ORY+zeRcjaloCzy7bWL79v6QzYebpif/SHIlVvWDW1amzem43VP6Th0Klr9cvlVgIeGd4ZL08OxuAILwiCIGqdRERkPIdPXcOq2DT8uDcLtar/Td/cL9QTL08OxmMP+sPO1uIjEVkwi+6hVyqVGDt2LBQKBebMmYP8/HwkJydDoVBg4cKFiIuLQ2JiIgRBQFhYmNjlGkxppgL5CSnIjT+Fc6u249epC+DRqwsGLHyhfhtNjQqHZq1A6KwJaNujEwDAb1QkfEZG4PCrq0Ss3nCKb1Rj+LO7EP3Gbw3CPACo1Fr8uDcLQ5/5BTM/Ogo15+cnIrI4Go0WMZ+dwH1Td+K7XzIahHkAOJ5SiKn/PohB0+NQUFQpWp1ELWXRgX7WrFnIycnBzJkzsXjxYjg7O9evi4mJQXh4OFQqFTp37gwXFxdRazWmwqR0ZGw+CP/xA+EZ0a1+edHZTKSu3oH7l/8TDt5uGLDoRRx/8wtUXisRtV5DqKhU4aGX99wW5BuzKjYN//rkOLRarUlqIyIi03hzeRIWrU+563aJ55R48KXdKCuvueu2RObIYgN9WloaYmNj4eHhgY8//rjRbfr06QMACA8Pb7A8KysLUVFRcHZ2Rtu2bfH000+jqKjIJHUby5klm6FRqdF77uSGy5dugUatRtS+RVAcPoes7YdFq9GQlm1MxfGUwmZvv3LTeRw5XWDUmoiIyHROXyjCwi/P6rB9MT756u7hn8gcWWyg37RpEzQaDaKjo+Hk5NToNvb29sDfAn1ZWRmGDh2KnJwcbNq0Cf/973+RkJCAhx9+GBqNdIdllGUrkLX9MDoMCkO7fsH1y7UqNQoT02Hn3gZ/xB4QtUZDUas1WLP5gs7tVv+QZpR6iIjI9FbF6n5OX7slHTW1aqPUQ2RMFhvo4+PjAQBDhw5tcpucnBzgb4H+v//9L3Jzc/HTTz/h4YcfxqRJk/Ddd9/h2LFj2LFjhwkqN56zy+p64//aS9+uXzC6Th6KtHW/oO9702FlZyNqjYYQfyIfl/N0n2//x71ZuFHGy61ERFJXWaXCxrgMndtdK6pE3MGrRqmJyJgErYUOHPb19UVOTg5OnTrV6Aw2KpUK3t7eUCqVyMjIQEBAAPCXLwAHDjTsre7SpQuGDBmCdevW6VxLREQEFAqFTm2stTLM0/TV+Vi6kDvYIerXxTi/ZicufL0Ho7e9B+WZDCTOW6/zvubLTqBWMI8rGOW2EbjuOFavtu2ur4C1RmnwmoiIyHRUsja45vqqXm1dKnbDueqowWsiuhsvLy8kJSXp1dZi52gqLy8HAFRWNn7XemxsLJRKJZydneHv71+//Pz585g0adJt24eEhOD8+fN61aJQKJCbm6tTGxvBCmiv1+GaLfLdp3HzSgEurN8NADg0eyWi9i/GlV3Hce2Ybpcq8/LzUKM1k8uUbkGAo35NCwqUQLVuf1dERGRmrKsBV/2alt4oQ6mSnwMkLRYb6L28vFBSUoLk5GQMGDCgwbr8/HzMnTsXABAWFtZgDvKSkhK4ut5+FnBzc0N6erretejKWisDjNjh3XFYb/hHDcT24XPql5VdvoaTH27EwCUzsGPYHKgqq5u9vw7eHcymh77SWoZiPdt6eTrAStvRwBUREZEpaWCDfK0GEHQfWdzWWQYHW34OkOnpkxdvsdhAP2LECKSlpWHhwoUYOXIkgoKCAACJiYl46qmnoFTWDaswxQOl9Ll8UltRhY1dnjRKPQCQG38K33WfetvyC+t31/fY6+LipYuwdrAzUHUtU1mlgs/I71F8o/lfSABg1EAf7Fp90Wh1ERGR6Ux85Vds/TVbpzZODnJkH/kJLk7Sv5+MWheLvSk2JiYG7u7uuHr1KkJCQhAaGorAwED07dsXAQEBGDZsGNDIlJVt27bF9evXb9tfcXEx3NzcTFY/6c/eTo5/jA/Sud3Lk4ObsRUREUmBPuf0px7uyjBPkmSxgd7HxwcJCQkYM2YM7OzskJ2dDTc3N6xZswZxcXG4eLGuJ/bvgT44OLjRsfLnz59HcDADn1S8Ni0UnTo0Pl1pY0YN9MFD9/sYtSYiIjKdYf28MWF452Zv36GdA9581vhX7YmMwWIDPf4M5zt37kRZWRnKyspw/PhxPP/88ygvL0d2djZkMhl69uzZoM3DDz+MQ4cO1U9pCQDHjx9HRkYGxo7Vb+YUMr327vbY+/kodG5GqB/erwN+WDwUVlYW/c+BiKhVEQQBGz4ejIcH+d51247tHLBn9YPw8dJzRgUikVnstJV3cvz4cfTv3x/dunXDhQsNH0BUWlqK0NBQeHh4YP78+aiqqkJMTAw8PT1x9OhRyGSmCX3GHkNvaNEZG8xmDP1fFRRVYumGVHyxNR2FJVUN1gUHuOKlx7rjhUndYWNtJVqNRERkPCqVBl9sTceq2DSkXCppsM6tjS2eeSQI/3oyBB3aMcyTdFnsTbF3kpJS92jnvw+3AQAXFxfEx8dj9uzZmDJlCuRyOR5++GEsWbLEZGGeDKeduz0+mh2BeS/1xv5juXjyjd9xvawGHq62SN02ocEMR0REZHnkchlefCwYL0zqjuNnC/HQy3tQUlYDtzY2yNk3BfZ2rTIKkYVplb/Fdwr0+PMhUjt37jRxVWRMtjZWGDPID472clwvq4GtjRXDPBFRKyIIAvqHt4ODvRwlZTWwt5UzzJPFaJVdzncL9Jas05j+6L/guQbLuk4eimn5m+E3KlK0uoiIiIhIP63yq2l8fLzYJYjG76F+yPjxt/qfnXw8ERQ9AgVJ+j00i4iIiIjE1SoDvSWzcXHAuANLYGVng4o8JWS21nD2a4+Mzb/j6Otr0T6yGw7NXlm3sSDg3k9fwvF/r0PkvNsfMkVERERE5o+B3sLUlFYgc1sCasurcHbJZnQYEo6wWRNw5LXP0WFwOAoS06FVqQEAIS+MRUHiBRSdzRS7bCIiIiLSU6scQ2/p3Hr6ozglCwDgHtYFxefq/uw3KhKXd50AALh280WnMf1wZukWUWslIiIiopZhD70FcgvpXB/i3cMCcHVPIgCgw5BeSHp/AwCgfb9gOPm2w8QjKwAA9p6uGLDoRdi3a4v0b/aKWD0RERER6YKB3sI4eLkBWi0qFMUAALfgTji7bAs8egfixqVcqCrqHq6U/s3eBsF91Jb5OL92J67sThStdiIiIiLSHQO9hXHr6V/fOw8ANaXl6D71QVQXl+HK7hOi1kZEREREhsdAb2Fy9p9Ezv6T9T/vHP06AGDcb0uwZ+K8JtvtvsM6IiIiIjJfDPStxPYhr4hdAhEREREZAWe5ISIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwjqE3U3J7W0RnbBC7jGaT29uKXQIRERFRq8RAb6YEQYC1g53YZRARERGRmeOQGyIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwBnoiIiIiIgljoCciIiIikjAGeiIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwBnoiIiIiIgljoCciIiIikjAGeiIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwBnoiIiIiIgljoCciIiIikjC52AVQ47RaLVSV1WKX0Wxye1sIgiB2GUREREStDgO9mVJVVmNjlyfFLqPZojM2wNrBTuwyiIiIiFodDrkhIiIiIpIwBnoiIiIiIgljoCciIiIikjAGeiIiIiIiCWOgJyIiIiKSMAZ6IiIiIiIJY6AnIiIiIpIwzkNvQbwGhGDU1vkNltWWV6I0Mx8Zmw8ibd0v0Ko1otVHRERERIbHQG+BMrcmICc+GRAE2Hu6ouukweg7fxraBHbE0blrxC6PiIiIiAyIgd4CFaVkIXNLQv3P6ev34JGEZQh6YjiSF2xCdVGpqPURERERkeFwDH0roKqsRmHyJQgyGVw6tRe7HCIiIiIyIAb6VsK5c12Qr75+U+xSiIiIiMiAWkWgVyqViImJQdeuXWFnZwdfX1/Mnj0b5eXleOaZZyAIAlauXCl2mQYjt7eBrZszbN1d4NrdD/0+ehbuoQEoTL6E0sx8scsjIiIiIgOy+DH0p0+fxujRo6FQKODo6IgePXogLy8Py5cvR0ZGBoqLiwEAvXr1ErtUg+kdMwW9Y6Y0WJYddwzH3/hCtJpIPFqtFsfOFmB17AWc+6MEVTVquLexxYQRnTFtXCDautiKXSIRERnZ5bwy/HdzOvYfy0NZRS0c7eW4r3d7vPRYMII6txG7PGohiw70SqUSY8eOhUKhwJw5czBv3jw4OzsDAD755BP83//9H+RyOQRBQFhYmNjlGkz6t3uR/fNRyKzlaNvdDz1njIejtzvU1TX128hs5Bi7dxGytiXg7LKt9cvvWzoDdp6u2B/9oUjVkyFdzL6Bx//vAJLTim5bd+jUNby1Iglzp4Zh3ku9IZMJotRIRETGU15RixfeP4xNuzKh0WgbrEtKVWLphlSMHeyHrz8cxA4eCbPoITezZs1CTk4OZs6cicWLF9eHeQCIiYlBeHg4VCoVOnfuDBcXF1FrNaTSTAXyE1KQG38K51Ztx69TF8CjVxcMWPhC/TaaGhUOzVqB0FkT0LZHJwCA36hI+IyMwOFXV4lYPRnK+YwSDHjq50bD/C2VVWq8t+YUnp9/CFqttsntiIhIeioqVXjgxd3YGJdxW5j/q59/v4L7p+5ESWm1Sesjw7HYQJ+WlobY2Fh4eHjg448/bnSbPn36AADCw8Prl936AtC3b1/Y2tpCEKTfa1mYlI6MzQfhP34gPCO61S8vOpuJ1NU7cP/yf8LB2w0DFr2I429+gcprJaLWSy1XU6vGmBl7UXyjeSfnddsuYnVsmtHrIiIi05m14CiOnC5o1rapGdfx9Ju/G70mMg6LDfSbNm2CRqNBdHQ0nJycGt3G3t4e+Fug/+OPP7BlyxZ4eXkhMjLSZPUa25klm6FRqdF77uSGy5dugUatRtS+RVAcPoes7YdFq5EMZ+v+bGTn6Taj0WffnrtjDw4REUnHtaJKfPPzHzq12XnwKi5kXTdaTWQ8Fhvo4+PjAQBDhw5tcpucnBzgb4F+0KBByM/Px44dOzBixAgTVGoaZdkKZG0/jA6DwtCuX3D9cq1KjcLEdNi5t8EfsQdErZEM5z/f697bnnG1DHuP5BqlHiIiMq11W9NRq9Lo3I5Xa6XJYm+KvXz5MgCgU6dOja5XqVQ4fLiuN/qvgV4mM/x3nIiICCgUCp3aWGtlmIe+Bq3j7LIt8B8/EL3nTsaeR98FALTrF4yuk4cibd0v6PvedOwYORfqqpq77uvvggKDUCvofuIwtXzXVwFZG+Qr8uHj4yN2OUahhYC8tu8Agu6/y5Omv4U2lb8apS4iInPQGj4HAEDp9CRgE6hzu9Xf7MeWlZOMUhPdmZeXF5KSkvRqa7GBvry8HABQWVnZ6PrY2FgolUo4OzvD39/fqLUoFArk5urW82kjWAE6PtRVcTQV670fbXL9jUu5+Mbnf0Nu5A52uG/pDJz8cCMufL0Ho7e9h3veeAKJ89brdmAAefl5qNGqdW5ncs5qQAZo1Gqd/04kQ2YLuOn3xfRmeQ1u5lvo+0JEhFbyOQAAAVrARvdmtWqZZb8vFspiA72XlxdKSkqQnJyMAQMGNFiXn5+PuXPnAgDCwsKMfuOrl5eXzm2stTLAyB3eke8+jZtXCnBh/W4AwKHZKxG1fzGu7DqOa8d0u+TWwbuDNHroraygASCzsoJ3x45il2MUWgjI02r06qF3drSGi4W+L0REaCWfAwCgtAb0mbPG2kqNdhb8vpgzffLiLRYb6EeMGIG0tDQsXLgQI0eORFBQEAAgMTERTz31FJRKJWCiB0rpc/mktqIKG7s8aZR6AKDjsN7wjxqI7cPn1C8ru3wNJz/ciIFLZmDHsDlQVTb/VHDx0kVYO9gZqVrD8RmxCbkFFfD28kbOuRyxyzGaEc/twq/H83Rut33jAgzt28EoNRERmYPW8jnw6dcpeO3TEzq3e+W5UVj4yjtGqYmMx2Jvio2JiYG7uzuuXr2KkJAQhIaGIjAwEH379kVAQACGDRsG/G38fGuSG38K33WfivJcZYPlF9bvxtYBM3UK82R+Xp4c3IytGuru3wZDIr2NUg8REZnWtHGBsLO10qmNIAAvTOputJrIeCw20Pv4+CAhIQFjxoyBnZ0dsrOz4ebmhjVr1iAuLg4XL14EWnGgJ8sWNcQP3f11e5T3//3D+MPPiIjINNxd7fDcxG7N2PJ/Jj3gjwAfy3nQZmtisUNuACA4OBg7d+68bfnNmzeRnZ0NmUyGnj17ilIbkTHJ5TLE/ecB3D8tDnkFFXfdfs7TPTFtXJBJaiMiItNYPKcv0rNvNGtK4r49PbFu/v0mqYsMz2J76O8kNTUVWq0WgYGBcHBwuG395s2bsXnzZpw/f77Bz/pOJUQkhgAfFxzbMBbD+zU9Jt6tjS0+m9sPi+YYdopUIiISn421FX5eMRIzH+8BW5vGh9/IrQQ8PbYr4r8YDScHa5PXSIZh0T30TUlJSQHuMNxm0qRJjf48depUrF+v+5SORGLx9XLC/rWjcT6jBGt+vIA1P15Ada0GdjZWWP32vZj8YADs7VrlaYCIqFWwsbbCijcG4N2XeuOrny5h/7FcHDiRjxqVBs6O1riwfSI6tHMUu0xqoVbZQ3+3QK/Vahv9j2GepKpHl7ZY9voAeLStm4nI3dUW08YFMcwTEbUS7q52eG1aKHZ/PgqebnWfBS6O1gzzFoKBvpXpNKY/+i94rsGyrpOHYlr+ZviNihStLiIiIiLST6vsnouPjxe7BNH4PdQPGT/+Vv+zk48ngqJHoCApXdS6iIiIiEg/rTLQWzIbFweMO7AEVnY2qMhTQmZrDWe/9sjY/DuOvr4W7SO74dDslXUbCwLu/fQlHP/3OkTOmyp26URERESkBwZ6C1NTWoHMbQmoLa/C2SWb0WFIOMJmTcCR1z5Hh8HhKEhMh1alBgCEvDAWBYkXUHQ2U+yyiYiIiEhPrXIMvaVz6+mP4pQsAIB7WBcUn6v7s9+oSFzeVfcYaNduvug0ph/OLN0iaq1ERERE1DLsobdAbiGd60O8e1gAru5JBAB0GNILSe9vAAC07xcMJ992mHhkBQDA3tMVAxa9CPt2bZH+zV4RqyciIiIiXTDQWxgHLzdAq0WFohgA4BbcCWeXbYFH70DcuJQLVUUVACD9m70NgvuoLfNxfu1OXNmdKFrtRERERKQ7BnoL49bTv753HgBqSsvRfeqDqC4uw5XdJ0StjYiIiIgMj4HewuTsP4mc/Sfrf945+nUAwLjflmDPxHlNttt9h3VEREREZL4Y6FuJ7UNeEbsEIiIiIjICznJDRERERCRhDPRERERERBLGQE9EREREJGEcQ2+m5Pa2iM7YIHYZzSa3txW7BCIiIqJWiYHeTAmCAGsHO7HLICIiIiIzxyE3REREREQSxkBPRERERCRhDPRERERERBLGQE9EREREJGEM9EREREREEsZAT0REREQkYQz0REREREQSxkBPRERERCRhDPRERERERBLGQE9EREREJGEM9EREREREEsZAT0REREQkYQz0REREREQSxkBPRERERCRhDPRERERERBLGQE9EREREJGEM9EREREREEsZAT0REREQkYXKxC6DGabVaqCqrxS6j2eT2thAEQewyiIiIiFodBnozpaqsxsYuT4pdRrNFZ2yAtYOd2GUQERERtTocckNEREREJGEM9EREREREEsZAT0REREQkYQz0REREREQSxkBPRERERCRhDPRERERERBLGQE9EREREJGGch96CeA0Iwait8xssqy2vRGlmPjI2H0Taul+gVWtEq4+IiIiIDI+B3gJlbk1ATnwyIAiw93RF10mD0Xf+NLQJ7Iijc9eIXR4RERERGRADvQUqSslC5paE+p/T1+/BIwnLEPTEcCQv2ITqolJR6yMiIiIiw+EY+lZAVVmNwuRLEGQyuHRqL3Y5RERERGRADPSthHPnuiBfff2m2KUQERERkQFxyI0FktvbwNbNuX4MfbenH4B7aAAKky+hNDNf7PKIiIiIyIBaRaBXKpX45JNPsHXrVuTk5MDT0xMTJkzARx99hFmzZuHLL7/EihUrMHPmTLFLNYjeMVPQO2ZKg2XZccdw/I0vRKuJSGxX8m9iz+EcXC+rgYO9HBE9PNA31BOCIIhdGhERmUB5RS1+/v0K8gorIBMEBPg4Y/R9vrC2lv6AFYsP9KdPn8bo0aOhUCjg6OiIHj16IC8vD8uXL0dGRgaKi4sBAL169RK7VINJ/3Yvsn8+Cpm1HG27+6HnjPFw9HaHurqmfhuZjRxj9y5C1rYEnF22tX75fUtnwM7TFfujPxSpeiLDOnamAAu+PIOff78KjUbbYF3v7u6YHR2Cp6O6MtgTEVmovIJyLPjyLL7ecQmlN2sbrPPysMdzE7th7rRQODvaiFZjS0n/K8kdKJVKjB07FgqFAnPmzEF+fj6Sk5OhUCiwcOFCxMXFITExEYIgICwsTOxyDaY0U4H8hBTkxp/CuVXb8evUBfDo1QUDFr5Qv42mRoVDs1YgdNYEtO3RCQDgNyoSPiMjcPjVVSJWT2Q438Vl4P5pO7H9wJXbwjwAnLpQhGlvH8Tz8w81up6IiKQtLfM6+kX/jBXfnb8tzAOAQlmJ99ecxqDpcSgoqhSlRkOw6EA/a9Ys5OTkYObMmVi8eDGcnZ3r18XExCA8PBwqlQqdO3eGi4uLqLUaU2FSOjI2H4T/+IHwjOhWv7zobCZSV+/A/cv/CQdvNwxY9CKOv/kFKq+ViFovkSHsO5qLp//9O1Tquwf1L7ZexBvLEk1SFxERmca1okqMemk3cq6V33Xb0xeK8fA/96KqWmWS2gzNYgN9WloaYmNj4eHhgY8//rjRbfr06QMACA8Pr1+2efNmTJw4EZ06dYKDgwO6d++Ot956CzdvSnt2mDNLNkOjUqP33MkNly/dAo1ajah9i6A4fA5Z2w+LViORoWi1WsQsOQF1M8L8LZ9+cw45iruf9ImISBqWbUjFlfzmn9cTzykRuzvLqDUZi8UG+k2bNkGj0SA6OhpOTk6NbmNvbw/8LdAvXrwYVlZW+Oijj7Br1y689NJLWL16NUaNGgWNRmOy+g2tLFuBrO2H0WFQGNr1C65frlWpUZiYDjv3Nvgj9oCoNRIZyrGzBTh9oVinNmq1Fmu3pButJiIiMp3qGjW+2Kr7OX1VbJpR6jE2iw308fHxAIChQ4c2uU1OTg7wt0D/888/44cffkB0dDQGDx6M2bNnY+XKlTh8+DAOHTpkgsqN5+yyut74v/bSt+sXjK6ThyJt3S/o+950WNlJ94YQols27crUr93uDIPXQkREphd/PA+FJVU6tztxrhCZOaVGqcmYLHaWm8uXLwMAOnXq1Oh6lUqFw4frhpf8NdB7enretm1ERAQAIDc3V69aIiIioFAodGpjrZVhHvrq1EZxNBXrvR9tcv2NS7n4xud/YV7uYIf7ls7AyQ834sLXezB623u4540nkDhvvU7HBYCgwCDUCuZ/BSPf9VVA1gb5inz4+PiIXY7JtZbXX+z4KGAbqnO7P7IKLPp9IaLWcx68k9bwHpTbhANOE/Rq2+++B2CryjF4TXfj5eWFpKQkvdpabKAvL68bM1VZ2fgdy7GxsVAqlXB2doa/v/8d93XgQN1QlODg4Dtu1xSFQqHzlwEbwQpor9fhmi3y3adx80oBLqzfDQA4NHslovYvxpVdx3HtmG6XnPLy81CjVRupUgNyVgMyQKNW6/0FTdJay+v3KQdsdW+m1dRa9vtCRK3nPHgnreE9cPUBGh9xfVfKAgVQKa33xWIDvZeXF0pKSpCcnIwBAwY0WJefn4+5c+cCAMLCwu44/3Rubi7efvttjBo1Su+56r28vHRuY62VAUbs8O44rDf8owZi+/A59cvKLl/DyQ83YuCSGdgxbA5UldXN3l8H7w7S6KG3soIGgMzKCt4dO4pdjsm1ltdfaluJMj3a2WhL4GnB7wsRtZ7z4J20hvegxkqLQgDQagFdnjOiVcPL3QZWWtO/L/rkxVsErVZrkZMvz5o1CytWrICvry/279+PoKAgAEBiYiKeeuopZGZmora2FjNmzMDKlSsb3cfNmzcxZMgQKBQKJCYmwtvb22T111ZUYWOXJ012vJaKztgAawc7scu4K58Rm5BbUIGO7RyQs/9xscsxudby+q8qbqLzqB90nlv+y/fux/TxQUari4jE11rOg3fSGt4DrVaL3o/9hDPpuk2Q8NiD/ohdNMxodRmLxd4UGxMTA3d3d1y9ehUhISEIDQ1FYGAg+vbti4CAAAwbVveX9dfx839VWVmJsWPHIisrC3v37jVpmCeilvH1ckLUED+d2rR1scHkBwOMVhMREZmOIAh4ebLuQ6X1aWMOLDbQ+/j4ICEhAWPGjIGdnR2ys7Ph5uaGNWvWIC4uDhcvXgSaCPS1tbV49NFHkZSUhF27dqFHjx4ivAIiaokVrw9Ax3YOzdpWJhPwzYeD4WBvsaMQiYhanX+MD8KYQb7N3n52dAgGR0izA9eiP72Cg4Oxc+fO25bfvHkT2dnZkMlk6NmzZ4N1t+au//XXX/HLL7+gb1/dZpohIvPg4+WI374cg9Ev78EfV5qegszO1grfLRiChwfr1qNPRETmTS6X4cfFwxD9xm/Y9uvlO2776tM9sehV6WY+iw70TUlNTYVWq0VQUBAcHBr24M2YMQM//vgjXn/9dTg4OODYsWP167p06dLotJZEZJ66+rngzI+P4PvdmfjP9+eRnFZUv04mE/D2873w3MRu6NjeUdQ6iYjIOOzt5Nj86XDEn8jDqtg0bD9wpcH9VdPHB+Klx4IR2VPa+a5VBvqUlBSgieE2u3btAgAsWLAACxYsaLDuq6++wrRp00xUJREZgoO9HP94JAjTxweioLgKYRO3oqC4Cl7udnj35XvELo+IiIxMJhMwon9HjOjfETfKatBt7I+4VlwFb097fPneILHLMwiLHUN/J3cK9NnZ2dBqtY3+ZwlhvtOY/ui/4LkGy7pOHopp+ZvhNypStLqIjE0QBLR3t4e1XFb/MxERtS5tnG0g//NzQGZBnwMM9K2M30P9cGX3ifqfnXw8ERQ9AgVJ6aLWRURERET6aZVDbuLj48UuwWhsXBww7sASWNnZoCJPCZmtNZz92iNj8+84+vpatI/shkOz/5x3XxBw76cv4fi/1yFy3lSxSyciIiIiPbTKQG/JakorkLktAbXlVTi7ZDM6DAlH2KwJOPLa5+gwOBwFienQqtQAgJAXxqIg8QKKzmaKXTYRERER6alVDrmxdG49/VGckgUAcA/rguJzdX/2GxWJy7vqhtu4dvNFpzH9cGbpFlFrJSIiIqKWYQ+9BXIL6Vwf4t3DAnB1TyIAoMOQXkh6fwMAoH2/YDj5tsPEIysAAPaerhiw6EXYt2uL9G/2ilg9EREREemCgd7COHi5AVotKhTFAAC34E44u2wLPHoH4salXKgqqgAA6d/sbRDcR22Zj/Nrd+LK7kTRaiciIiIi3THQWxi3nv71vfMAUFNaju5TH0R1cVmD2W2IiIiIyDIw0FuYnP0nkbP/ZP3PO0e/DgAY99sS7Jk4r8l2u++wjoiIiIjMFwN9K7F9yCtil0BERERERsBZboiIiIiIJIyBnoiIiIhIwhjoiYiIiIgkjIGeiIiIiEjCeFOsmZLb2yI6Y4PYZTSb3N5W7BKIiIiIWiUGejMlCAKsHezELoOIiIiIzByH3BARERERSRgDPRERERGRhDHQExERERFJGAM9EREREZGEMdATEREREUkYAz0RERERkYQx0BMRERERSRgDPRERERGRhDHQExERERFJGAM9EREREZGEMdATEREREUkYAz0RERERkYQx0BMRERERSRgDPRERERGRhDHQExERERFJGAM9EREREZGEMdATEREREUmYXOwCqHFarRaqymqxy2g2ub0tBEEQuwwiIiKiVoeB3kypKquxscuTYpfRbNEZG2DtYCd2GUREREStDofcEBERERFJGAM9EREREZGEMdATEREREUkYAz0RERERkYQx0BMRERERSRhnuSGLpdVqkZxWhKRUJU6eV+JC1nUUFFcBAJQlVXh10TH06eGB/mHt0MXXRexyjSKvoBxHThfgZJoSpy8U17/+wpIqPP3m74gI8UCfHh7oF+oJudzyvt9XVatw7GwhTp5XIilViSuKmygorgQAKK9X4Z3/nESfHh64N7wdPN3sxS6XiIwgO7cMR88U4OR5Jc5cbHgefGZeAiJ6eNSfC2Uyy5t++WZFbf3rT0pVIq+wov48WHS9Gu+vOVV/HnR1sRW7XIPTarU4k16MxHOFOJlWhLTM6w1+B2YvOIqIkLosENipjdjl6k3QarVasYug29VWVHHaSj1dL63G1zsuYVXsBVy8fKNZbQZHeOHlycF4ZFhnWFtLO9hqNFrsO5qLVbFp2HnwKjSau/8T79jOAc8/2h3PTewGb08Hk9RpTFk5Zfj8xzSs23YRRdfv/jwHa7kME0d0xowpwRjYuz2fqUAkcSqVBj//fgWrYtOw/1hes9p08XXGi5OCMX18INxdzePzrCXOZ5Rg9Q8X8PWOSygrr73r9vZ2VnhidBe8PDkY9/TwMEmNxlR6swbf7vwDq2LTcD7jerPaDOzdHi8/FoyJIzvD1sbK6DUaEgO9mdIn0HsNCMGorfMb7qe8EqWZ+cjYfBBp636BVq0xcKV1zCHQa7Va/HdzOuZ+dqJZJ6/GBPg448v37sfgCG+D12cKKReLMf2dBJw8r9SrvbVchreeC8ebz/aS5BebikoV3lqRhGUbU6HvmW1opDfWzb8f/j7Ohi6PiEzg6JlrmP52AtKzm9eh83cOdnJ8PDsCMx/vIcke+5LSarzyyXF8veOS3vt4ZHgnrHrrXnh5SK+DR6vV4psdf+BfnxzD9bIavfbh5+2ItfPuwwP3+hi8PmNhoDdTLQn0mVsTkBOfDAgC7D1d0XXSYLQN7oT0DftwdO4ao9QrdqC/qriJf7yT0OyemLuZ+XgPfPJKJOztpDEqTaPRYsG6M3h39SnUqlr+pa1Xdzd8++Fg9Ax0M0h9pnDk9DVM/fdB/HGltMX7crSXY9GrffHiY93ZW08kEdU1avx7xUl89u25Zl2ZvJv772mPrz8YLKkv97sSruLZ+YeQV1DR4n25tbHFqrfuxeRRAQapzRQUygo8++4hxB28apD9PTexGz6b2w9ODtYG2Z8xMdCbqZYE+sT53yD18x31y+X2tngkYRkcvN3wfdizqC5qeeD5OzED/YWs6xj5/G7kXCs36H4HR3hhx/KRcHGyMeh+Da22VoNpbx/Ed79kGHS/zo7W2LliJAZJ4GrFT/HZmDz3AGpqDXsF6l9PhuCzuf0Y6onMXHlFLSa8+iv2Hsk16H7bu9tjz+cPIrybu0H3awxfbEnH8+8d0vvqZFM+nh2B158JN+xOjSAzpxQjntuNrNwyg+63X6gnfln1INzamPf9BdK7pk46U1VWozD5EgSZDC6d2otdjkFlXC3FsGd3GTzMA8DvSQo8PHMvKipVBt+3oajVGkz99+8GD/MAUFZei4dm7MXRM9cMvm9Dijt4BZNeizd4mAeApRtSMWfxcbDfg8h8Vdeo8cgr+w0e5gHgWlElRjy/G2mZzRuDLZb12y/iufmGD/MA8MayJCz66qzhd2xAVxU3MfSZXwwe5gHgeEohRr20G2Xl+g3fMRUG+lbCuXNdkK++flPsUgymukaN8bP3I7+w5ZcWm5KQfA3/XHDUaPtvqU++SsGmXZlG2395pQrjZu1H4Z8zIpibjKuleOy1A1CpjBe4l3ybim92/GG0/RNRy8z97AT2HTXMcMvGKEuqEDVrn9l27iSlFuLZdw8Z9RgxSxKx53COUY+hL5VKgwmv/Ior+Ybv2Lsl8ZwSz8037nvcUgz0FkhubwNbN2fYurvAtbsf+n30LNxDA1CYfAmlmflil2cw731+Cuf+KNGpTeKmKFzdNwWJm6Ka3ebLbRex+5D5nchS/yjBu6uTdWqjz+svLKkyyy81Go0W/3gnARVVun3I6vMezP7kGHKNcBWIiFrm96R8rPjuvE5t9DkH/HGlFG+tSNKjQuOqrlFj2r8PQq3WrVNDn/fg2XcP4YaeN5ka06L1KUhK1W0iCH1ef+zuLGzZl6VHhabRKgK9UqlETEwMunbtCjs7O/j6+mL27NkoLy/HM888A0EQsHLlSrHLNJjeMVPweOpXePzclxh/4DMETx+F7LhjiJ+2UOzSDOb0hSIs1OMSoJeHA3zaO+p85/5z8w/hZoV+M+cYg1ZbF2Z1HWai7+uP3Z2Fn+KzdazSuNb8eAEHTyp0bqfPe3CjrAYvfXBE52OZG41GixtlNbheWm2QmwalqLJKhaLrVag1whAtKVCrNSi+UY2bFbWSH0pWXaPGP95J0LmdvufBZRtTzW4I4odrTyO1mVMy/pU+70HOtXLELDmh87GMKT3rus4dW2jB78BLHxxBSendp0IWgzSm8GiB06dPY/To0VAoFHB0dESPHj2Ql5eH5cuXIyMjA8XFxQCAXr16iV2qwaR/uxfZPx+FzFqOtt390HPGeDh6u0Nd/b9v1jIbOcbuXYSsbQk4u2xr/fL7ls6Anacr9kd/KFL1zbP46xSdeyRaIudaOb77JQPPP9rdZMe8kwMn8nHiXKFJj7nwy7MYP6yzSY/ZFLVag09MPKbz59+v4HxGCXp0aWvS4xpCetZ1rP7hAtbvuFTfw+bsaI2nHu6KlycHI6Sr9F6TLm5W1GLDn/NRp1z631W9YX298fLkYEQN6STJaVqbS6vV4uBJBVbFpmHrr9n1Q9R8vRzxwqPd8ezEbmjvLr0Hq23el4XMHMOPmW6KVlvXG7x1iXnci1ZeUYvlOl6daKmvfrqE92b0MZvflyUbUo1y/1RTCkuqsH77JbzyVE+THbO5LPcM9mfP/NixY6FQKDBnzhzk5+cjOTkZCoUCCxcuRFxcHBITEyEIAsLCwsQu12BKMxXIT0hBbvwpnFu1Hb9OXQCPXl0wYOEL9dtoalQ4NGsFQmdNQNsenQAAfqMi4TMyAodfXSVi9XdXWFyJH/ea/rLXqtg0s+nRWhWbZvJjHjtbiGQ957c3tN2Hc5CdZ/r7QVb/cMHkx2wJrVaLt5Ynofu4LVi2MbXB5fKy8lqsik1Dzwlb8eqiYxbbY3/0zDX4j/4BL31wpEGYB4D4E/l4dE48ej+2DVfyLef+or8qK6/BmBl7MeQfv+CHPVkN7je5qijHv1eehN8D3+O7OMPfWG9sYpwHtx+4ghyFeQy/27Qr0+RDYGpVGqzbmm7SYzblRlkNNuw0/f1Nq39IM8vzpUUH+lmzZiEnJwczZ87E4sWL4ez8v7lkY2JiEB4eDpVKhc6dO8PFxUXUWo2pMCkdGZsPwn/8QHhGdKtfXnQ2E6mrd+D+5f+Eg7cbBix6Ecff/AKV13Qbl25q3+78w6TfyG85k16s8zg9YygoqsRPBy6Lcuy1W8zjRC5WHd/8fAnVNWpRjq2PuZ+ewEdfnLnrdku+TcWMD4+YzRdWQzmRUojhz+6CsqTqjtulZlzHoOlxRr3BXgxV1SqMmbEXu+5yD1BNrQbRb/wmSjjS1/mMEhw5XWDy42o0Wnz500WTH7cxX4gUrM3lc+D73ZkoF+FG5UuXS/F7kvndj2ixgT4tLQ2xsbHw8PDAxx9/3Og2ffr0AQCEh/9vftWEhASMGDEC3t7esLW1hY+PDyZPnoy0NNP3BBjSmSWboVGp0Xvu5IbLl26BRq1G1L5FUBw+h6zth0WrsbkOnRJvDONhEY99y/GUQpMON/qrw6fFf/1arVa034HSm7U634gtlv3HcvHpN+eavf3nP17Ajt+uGLUmU1KrNXhsbjwqq5v3Bexy3k28+L75n/908fEXZ5GQ3Px/K8/MS5DMlxpRPwfM4DxYWaVCkkhXTLPzbiKvQPyrFIdO6X4PlaGYw+/A31lsoN+0aRM0Gg2io6Ph5OTU6Db29nVjwP4a6EtKShAaGorly5dj7969WLhwIVJTUzFgwADk5JjfTCfNVZatQNb2w+gwKAzt+gXXL9eq1ChMTIedexv8EXtA1Bqb66SIwz5OponfQy/m6z+feV30qduu5N9E0XXxbkoS8/3XxX++170T4j/fm3Y8rjHFHbyKyzoOy9p58Cou55luTLYx1dSq8d8tug0Rq6nViNbrqytRPwfOK0W/mnX2YrFoHTsAcPJ8kWjHNocazOH1/53FBvr4+HgAwNChQ5vc5lZA/2ugj4qKwpIlSzBp0iQMHjwY0dHR2Lp1K27cuIEtW7aYoHLjObusrjf+r7307foFo+vkoUhb9wv6vjcdVnbm/VTU4hvVRp1r9m5OpYn/j/jUBfFqUKu1ovdQn04vFvX45vA7cDd5BeV69bbvO5qHjKuGf5K0GNZs1v1+B41Giy+2msdwipb6+bcrUCh1f37Emh8vmOX44L87fUG880DR9WqjPMxQF2J+DpjD8SurVLiQJd7Dvk6L/PobI2jF/pppJL6+vsjJycGpU6cancFGpVLB29sbSqUSGRkZCAgIaHJfRUVF8PDwwMqVKzFjxgyda4mIiIBCodulIWutDPM0fXU+li7kDnaI+nUxzq/ZiQtf78Hobe9BeSYDifPW67yv+bITqBWMP65dJWuLa67/anJ94qaoO05D5eVhD7mVDCq15o4fdgplBSIf33HbcpmmFN7XP9WjcsMpdJ6OGuvGZ5sx1OvHHd4D99JvYKcS7wa6cptwXHea0Oi6u71+GOB3wL46BW7lm/Wo3HSq5Z2hdJmuV1u3so2wr5V+qFW0+RfUVrrP3mNXcx7uN2ONUpMpldoNRpnDML3aepd8BJnWPKfmu+Vam39CZeXR6DpTnAfb3fgPrNWmH8N/S5ndfSh1GNnoOlOcBx2rjsK1YrcelRuGWnCEom1Mk+uNnQUETSU6XF+gR+V35uXlhaQk/Z53YLHTVpaX1317rqxs/C8qNjYWSqUSzs7O8Pf3v229Wq2GRqPB5cuX8cYbb8DLywuPPfaYXrUoFArk5ur2SGobwQow8sxYke8+jZtXCnBhfd0/ykOzVyJq/2Jc2XUc147pdrk+Lz8PNVoT3CxoowJcm159a27Zu5FbyZq13d9p1ND579LgAmoB68ZXGfv1A0BRcQlQJuJ70NYfaHwUXbNfP1rwHlRWVYv/O3A3Tq6Anvf5FxffAErN/PU1h7MAWOnerKqq1vz/fpujfSWg2xTb9fLzCwG1mQ89ctQ0+fdrivNgQYESqBLx98TzZpN/v6Y4D5bfrEB5voivX94GuMP3dWP/Dmi1gtmdJyw20Ht5eaGkpATJyckYMGBAg3X5+fmYO3cuACAsLAyCINzWfvDgwTh8uO4Gqa5duyI+Ph6enp5616Ira60MMGKHd8dhveEfNRDbh8+pX1Z2+RpOfrgRA5fMwI5hc6CqbH4PTQfvDibqoXfBnW5FUSjvfEOXLt/KG2MlU8OrY8dm12sMShsZmvqbMdTrv9O+PNxcYOsi3ntQYeOEpgb93O31wwC/A/Z21nAT+XfgbmqsHKDvUwo82trB1tm8X19zXBOqoc/dHg62GrQ187/f5rhpa4Ub+jTUatDBqy0Efb8Rmsg1K22Tf7+mOA+283SDtUa8h5OV2TmgqcFxpjgPOjnaoo2I/040gj3uNM+MsbOATFDD2wivX5+8eIvFDrmZNWsWVqxYAV9fX+zfvx9BQUEAgMTERDz11FPIzMxEbW0tZsyY0ehTYtPT03H9+nVkZWVh0aJFKCgowOHDh+Hn52eS+msrqrCxy5MmOZYhRGdsgLWDndGPo1Jp4HLvN6is0u9qwNV9U+DT3hE518rhO/J7nduP6N8B+/47Wq9jG8qL7x/Gmh/1mw+9pa8fAK7snQxfrya6yE3g+NkC9H/yZ73bt/Q9mP/yPXjnxd56H98U1GoNAh/ejKxc3XpZvTzscWXPFIt4yNL81cl4d/Upndv9vGIkHh5smvO8MWXnliHgoR+g6yf8I8M7YeuSEcYqy2DGzdqn96xMLT0HWFkJKDv6NOztxOsT3X7gMsbP3q93+5a+B/99ZyCeE/FBi1qtFu73b0BJqX7z8Lf09fcP88TRDVF6HdtYpH/WbkJMTAzc3d1x9epVhISEIDQ0FIGBgejbty8CAgIwbFjd2MK/3hD7V926dUO/fv0wZcoU/PrrrygrK8Mnn3xi4ldBfyeXy9Crm7tox+/To/ExmyatIVi81+/Z1k7vS9SGEhbkBiur26+qmUqfHuK9/81lZSXDi5N0/7B9fmJ3iwjzAPDcxG6Q6/h70qmDE0bf52O0mkypc0dnjLnfV+d2L08ObsZW4hPzXBzSpa2oYR4A+gSL+1kk9mehIAii1iD262+MZZy5G+Hj44OEhASMGTMGdnZ2yM7OhpubG9asWYO4uDhcvFh301dTgf6vXF1d0bVrV/zxh3QeumHJIkJa9z9isV9/Y0PUTMneTo6eXXW/2dFQzOF3oDmee7QbAnycm7FlHZ/2jpgxRRphrjk6tHPE7OgQndp8+M8+sLKynI/FeS/1hp1t828kGNG/A4b362DUmgxF3POg+F/qO7Z3QHt3e1GObWMtQ89A8c7Bt4j9WWhuLOfM1Yjg4GDs3LkTZWVlKCsrw/Hjx/H888+jvLwc2dnZkMlk6Nmz5133U1BQgPT0dHTp0sUkddOdPTqi8RlejM3JwRoP3iv+2Nrwbu7o4tv8oGZIkx64/QZyMTw6Upzfgft6t7/r7BHmoq2LLXatehC+Xne/ouLlYY9dqx5AO5ECgrEsfCUSTz7cvPP2olf7InpMV6PXZEoRIZ74YdGwZoX6/mGe2PzpcNG/sDfX0EhvtHURZ5rlSSPFPw8KgiDaeXDc0E6wsdbjjnMDe1SkvwdbGyuMNcNheRYd6JuSmpoKrVaLwMBAODg0/HB+8skn8e677+Knn37Cb7/9hrVr12LIkCGQy+V45ZVXRKuZ/uf+Pl4I6XKHqW6M5KmHu8DFSfx5+mUyAS89ZvqeVFdnG0wZ1fT0rqb07IRukMtNHzykMhzhlqDObXBsw1g8OyEI9na3fwDb2lhh2rhAHN8YhZ6BbqLUaExWVjJ8/cFgrHhjQJNfgvuFeuKnZSPw2rRQk9dnCmOH+OHgV2MwZpAvGsvqnm3t8Oaz4Yj/4iG0cRb//NZc9nZy/GN8kMmP69/RGQ8ONI9hWWJ8DsCMzoN9enigb0/9Jitpicce8IdHW+PfM6irVhnoU1JSgCaG2/Tv3x+//PILpk+fjtGjR2PRokW4//77cfr0aXTtalm9N1IlCAJmTOlh8uOKdfJszPTxjQc0Y/rHI0FwsDePibG8PBzw6AjT9s60d7fHBJGuDrVEh3aOWPvu/cjb/zjWvDMQzg51f4dtnKyRu38Kvnp/EPy8xbvJ2dhkMgEzH++Biz9Pwu7VD8LZsW7OVxdHayR9Pw7HNkZh3NBOYpdpVJE9PbFz5QPIiHsMi+f0hdOfvwNtXWxwdd8UfDgrQvQx4fp48bFgyGSm/WL/8mTTH7MpIV3bYkikt0mP2aOLKwZH6D8Ti6GJMUzQXIcmMtD/zcyZM3HixAmUlJSgsrISFy9exJo1a9Cpk2Wf8KXm2Qnd0Lu76cYxvjw5GKFB5tOD6dbGFh/+M8Jkx/P2dMC/n7/9AW1iWvhKZH04M4WlMf1gayP+ZWZ9ubrY4vlHu9dfZXJysIa7q/n1MhmLTCbgwYE+cPnzd8bZ0dosx8Eak7+PM+ZMDUWbP38HHOzkkv6d7urngjlP333YrKEEB7hi5uPmFeaWxvQz6dXK/7x5r1kNy4oe0wX39mpnsuNNjQpEvzDTHU8XDPStTKcx/dF/wXMNlnWdPBTT8jfDb1SkaHXpytpahvUfDIK13Pi/wp07OGHhK+b33sx6ogcG9jby08f+9N93BqKti61JjtVcft5OWDzHuE9TvmXC8M6YbCbDjYjof+a/fA+6dW5j9OPIZALWvz8IdrbmdSUjvJs73n7eNNPozpgSbPIrAndjZSXDV+8N0unmb311aOeAJTH9jH4cfbXKQB8fHw+tVosxY8aIXYrJ+T3UD1d2n6j/2cnHE0HRI1CQlC5qXfoIC3LDJzoGbYWyAjnXypv14A38Ocb4248Gw8nBdD3BzWVlJcP69wfB3bX5QVvX148/r06Y67zcz03shgnDdRsGo+t70KmDE1b/27x6pYiojr2dHBs+HgwHHYYM6XMenP9yb/QNNf147eZ445lw3H+Pbp07ur4HoYFtseBf5texhT/vFVr2f/11aqPr65fLBXz9wSCz69j6K/P6qkktZuPigHEHlsDKzgYVeUrIbK3h7NceGZt/x9HX16J9ZDccmv3ng7QEAfd++hKO/3sdIudNFbt0vfzrqZ4oulGND/57ulnbRz6+o9n7trGW4cfFw3DfPeYzXvDvuvq5YPfqBzHy+d24Xnb3B2zo8voB4ImHumD567qdKE1JEARsXDAY42bXYu+R5j2GW5f3oEM7B+z/72iLm/2FyJJEhNTd2Bw1ax+qqu/+0EFdz4P/ejIEbz1nXkMO/8raWoafVzyAEc/vQlKqslltdHkPunVug71rRpllx9Ytzz/aHUXXq/Hm8qRmba/L67eyErDx4yEY0V/8We7upFX20FuymtIKZG5LwPkv4rBj5FyceOcrFCZfxJHXPof3wJ4oSEyHVlV3wgt5YSwKEi+g6Gym2GW3yPsz++CTVyINeqOSq7MNfl4xEmOHmGfP9F9FhHji96/GNGt6Ql3MmBKMbz4cZPbzctvZyrFj+UhMHmXYm2S7+7fBofUPo6ufi0H3S0SGN3JAR+xZ/aBBZx8RBODdl3rjs7n9zP4KXRtnG/y6djRGDjDscwT69vTEwa/GSGK63jeeDceKNwYY9J4CZ0drbP1sOB570PyHXJr3JzXpxa2nP4pTsgAA7mFdUHyu7s9+oyJxeVfdcBvXbr7oNKYfzizdImqthjJ3ehiObRiLHgaYzvLhQb5I3TYBD9xrHlOTNUdYkBtStkzAsxNaPo1bh3YOiPvPA1j55r1mH+ZvsbWxwqaFQ7Hx4yFwa9OyS6IymYC500KRHDse/jo8mImIxDUowhupWydgogFmowrs5IKDX43BvJfuMfswf4uLkw12rx6FlW8OgGMLZySzsZbho1kROPzNw5K6Qjnz8R5I/G4cwru1fBKLkQM64NzWCYiSyCxY0vi0Jp24hXSuD/HuYQEo+jPcdxjSC7nxpwAA7fsFw8m3HSYeWYFHT6yC5z2BGLDoRXR7+gFRa2+JyJ6eOPn9OHw8O0Kv3uo+PTywaeEQ7FgxEh3aGba32xTaONtg7bv3Y99/R+n1tEd3V1vETA9F6tYJeEiPR8aLTRAEPDGmC1K3TcCMKcE6z4AjCMDYwX448s3D+OTVvpKcxo+otWvnbo/Nnw3H1iXDMSBc99lIOrRzwHsz7sHpHx4x6+GWTZHJ6qZ1PrvlEUwfH6jzzaJyuYApowKQHDsebzwbDrkJJp4wtF7d3XHiuyh8+lpf+HfUvVMmvJsbvvlwEPZ8PkpSU/oKWq1WK3YRdLvaiips7PKkzu0cvNwwdu8niA17FgAw4fAK/PbiZ5DJ5Qh/5VH8+vTHjbYbtWU+zq/diSu7E/WqNzpjA6wdzGcKPJVKg7iEq9i0KwNJqUpkXC27bRu5XEBIl7boH9YOzzwShEgRHlBhTBeyruOLLek4dOoaTqcXo7rm9rGlPu0d0aeHOyaO6IxJD/ib3QwOLVFWXoMNOzOw8+AVnDxfhGtFlbdt42gvR6/u7hgS4YVnJ3RDZz1O/lLjM2ITcgsq0LGdA3L2Py52OSbX2l8/Wtl7cCpNiXXbLuLomQKkXCpBrUpz2zb+HZ3Rp4c7powKQNSQTrC2ll6IbUrxjWqs334Ruw/n4OT5IhTfqL5tGxcna9wT7IER/TrgmQlBkhhe01xqtQZ7juRiY1wGElMLcely6W3bWFkJ6BHgin6hnpg+PggDwttJ5qrMX1nOpzcBt4bb/Nk7DwA1peXoPvVBVBeXNZjdxtLJ5TKMG9qp/oEx10urkZ59AxVVKljJBDg7WiM4wNWiAuzfdfd3xeLX6qbYqq3VID37OkpKa1Cr0sDezgpdfFwkdSlVV86ONnhpcjBemhwMrVaLvIIKXM6/iapqNWysZfBoa4dAPxfJDCsiIt31DvbAyuC65w1U16hxIes6bpTVQK3RwsFOjsBObVo8TM+cubWxxatPh+LVp0Oh1WpxOe8mcgsqUF1Tdx708nBAgI+z2Twsy9CsrGR46H7f+qvON8pq6rOAIADODnVZwBKuyEr/FVADOftPImf/yfqfd45+HQAw7rcl2DNxXpPtdt9hnSVwdbE124dBmIK1tQw9A83nwVimJggCOrZ3RMf20htKRUSGYWtjhfBupnsgobkRBAGdOzq3iiuRTWnjbGO204+2FAN9K7F9yCtil0BERERERsBrzUREREREEsZAT0REREQkYQz0REREREQSxjH0Zkpub4vojA1il9FscnvLnSWAiIiIyJwx0JspQRDMal53IiIiIjJPHHJDRERERCRhDPRERERERBLGQE9EREREJGEM9EREREREEsZAT0REREQkYQz0REREREQSxkBPRERERCRhDPRERERERBLGQE9EREREJGEM9EREREREEsZAT0REREQkYQz0REREREQSxkBPRERERCRhDPRERERERBLGQE9EREREJGEM9EREREREEsZAT0REREQkYQz0REREREQSJhe7AGqcVquFqrJa7DKaTW5vC0EQxC6DiIiIqNVhoDdTqspqbOzypNhlNFt0xgZYO9iJXQYRERFRq8MhN0REREREEsZAT0REREQkYQz0REREREQSxkBPRERERCRhvCmWiMjC1dSqce5SCVIzSnCzohYAUFGpQlJqIUID3WBrYyV2iURE1AIM9EREFqisvAYbdmbg6x2XcOpCEWpqNQ3Wl5TVIPLxHbCWyxDezQ1PPdwVT4/tClcXW9FqJiIi/TDQExFZkNKbNZi3KhlfbL1Y3xt/J7UqDZJSlUhKVeKNZUmYPj4QH8zsw2BPRCQhDPQWxGtACEZtnd9gWW15JUoz85Gx+SDS1v0CrVrTZHsikrb9x3LxzLwEXMkv16t9RZUK//k+DdviL2PtvPvw0P2+Bq+RiIgMj4HeAmVuTUBOfDIgCLD3dEXXSYPRd/40tAnsiKNz14hdHhEZmFarxXufn8K7q08ZZH95BRUYM2MvYqaHYsG/IvkUaCIiM8dAb4GKUrKQuSWh/uf09XvwSMIyBD0xHMkLNqG6qFTU+ojIsN5YloSFX541+H4/+SoFFVVqLH+9P0M9EZEZ47SVrYCqshqFyZcgyGRw6dRe7HKIyIBWfJdqlDB/y8pN57FgnfH2T0RELcdA30o4d64L8tXXb4pdChEZyIWs65j7WaJObRI3ReHqvilI3BTV7DbvrDqJ0xeK9KiQiIhMgYHeAsntbWDr5gxbdxe4dvdDv4+ehXtoAAqTL6E0M1/s8ojIANRqDaa/fRDVNWqd2nl5OMCnvSO8PBya3Ual0mLa2wdRU6vbsYiIyDQsPtArlUrExMSga9eusLOzg6+vL2bPno3y8nI888wzEAQBK1euFLtMg+odMwWPp36Fx899ifEHPkPw9FHIjjuG+GkLxS6NiAxk875sHDtbaLLjnUkvxoadGSY7HhERNZ9F3xR7+vRpjB49GgqFAo6OjujRowfy8vKwfPlyZGRkoLi4GADQq1cvsUs1qPRv9yL756OQWcvRtrsfes4YD0dvd6ira+q3kdnIMXbvImRtS8DZZVvrl9+3dAbsPF2xP/pDkaonouZYFZtm8mP+5/vzmD4+kDfIEhGZGYvtoVcqlRg7diwUCgXmzJmD/Px8JCcnQ6FQYOHChYiLi0NiYiIEQUBYWJjY5RpUaaYC+QkpyI0/hXOrtuPXqQvg0asLBix8oX4bTY0Kh2atQOisCWjboxMAwG9UJHxGRuDwq6tErJ6I7ubcpWIcPKkw+XGT04pwIsV0VwWIiKh5LDbQz5o1Czk5OZg5cyYWL14MZ2fn+nUxMTEIDw+HSqVC586d4eLiImqtxlaYlI6MzQfhP34gPCO61S8vOpuJ1NU7cP/yf8LB2w0DFr2I429+gcprJaLWS0R3FpdwtVUem4iIGmeRgT4tLQ2xsbHw8PDAxx9/3Og2ffr0AQCEh4c3uZ/Ro0dDEAS8++67RqvVVM4s2QyNSo3ecyc3XL50CzRqNaL2LYLi8DlkbT8sWo1E1Dwnz4s348zJ80rRjk1ERI2zyEC/adMmaDQaREdHw8nJqdFt7O3tgTsE+h9++AGnT582ap2mVJatQNb2w+gwKAzt+gXXL9eq1ChMTIedexv8EXtA1BqJqHnEDNUnzxdBq9WKdnwiIrqdRQb6+Ph4AMDQoUOb3CYnJwdoItCXlpbiX//6FxYvXmzEKk3v7LK63vi/9tK36xeMrpOHIm3dL+j73nRY2dmIWiMR3d0VhXjPk7hWVAmVioGeiMicCFoL7Grx9fVFTk4OTp061egMNiqVCt7e3lAqlcjIyEBAQECD9f/85z+RkpKC3377DYIgYN68eS0adhMREQGFQrcb2Ky1MszT9NX7mM0hd7BD1K+LcX7NTlz4eg9Gb3sPyjMZSJy3Xud9zZedQK2gMUqdRPQ/WgjIc2v6fJS4KeqOc8x7edhDbiWDSq2BQlnZ5HYKZQUiH9/R6Drv4g8hQ02j68xdvuur0MjaQKa5Ae/rn4ldjij4HhCZJy8vLyQlJenV1iKnrSwvLwcAVFY2/mEVGxsLpVIJZ2dn+Pv7N1iXlJSEtWvX4uTJkwarR6FQIDc3V6c2NoIV0N5gJTQq8t2ncfNKAS6s3w0AODR7JaL2L8aVXcdx7ZhuU+Ll5eehRsuHzhCZRFs1IFg1uurWg6PuRm4la9Z2jcnPuwpoVXq1FZ2zGpABGrVa5/OyxeB7QGRxLDLQe3l5oaSkBMnJyRgwYECDdfn5+Zg7dy4AICwsrMF8ymq1Gi+88AJmzpyJkJAQg9ajK2utDDBih3fHYb3hHzUQ24fPqV9WdvkaTn64EQOXzMCOYXOgqqxu9v46eHdgDz2RieRrK6ARnBtdp1BW3LGtLj30jRG0VfDu0B5SnYk+38oKGgAyKyt4d+wodjmi4HtAZJ70yYu3WGSgHzFiBNLS0rBw4UKMHDkSQUFBAIDExEQ89dRTUCrrbij7+3CclStX4tq1awaf1Uafyye1FVXY2OVJg9bxV7nxp/Bd96m3Lb+wfnd9j70uLl66CGsHOwNVR0R3MmbGHvySkNPouqaGydxydd8U+LR3hEJZCd+R3+t87EGRnfHbl40fWwp8RmxCbkEFvL28kXNOuq+jJfgeEFkei7wpNiYmBu7u7rh69SpCQkIQGhqKwMBA9O3bFwEBARg2bBjwtxtilUol3n77bbzzzjtQqVS4fv06rl+/DgCoqqrC9evXodGwB5qIxNenh0erPDYRETXOIgO9j48PEhISMGbMGNjZ2SE7Oxtubm5Ys2YN4uLicPHiReBvgT4nJwdlZWV44YUX0LZt2/r/AGDhwoVo27Ytrly5ItprIiK6ZWikd6s8NhERNc4ih9wAQHBwMHbu3Hnb8ps3byI7OxsymQw9e/asX961a1ccOHD7POxDhw7F1KlTMW3atBaNbSIiMpQhkd7o1rkN0rNvmPS4ft6OGH2fj0mPSUREd2exgb4pqamp0Gq1CAoKgoPD/6Z2c3JywpAhQxpt07lz5ybXERGZmiAIeHlyMGYvPGbS4744KRhWVhZ5YZeISNJa3Zk5JSUFuMMTYomIpGD6+ED4euk37aQ+2rvb44VJ3U12PCIiaj4G+rvQarUGn/VGTJ3G9Ef/Bc81WNZ18lBMy98Mv1GRotVFRLpxdrTBF+/eZ7Ljff72vXBrY2uy4xERUfMx0Lcyfg/1w5XdJ+p/dvLxRFD0CBQkpYtaFxHp7oF7fXTuNVcoK5Bzrfyu89X/VfSYLhg/rLMeFRIRkSm0ujH08fHxYpdgVDYuDhh3YAms7GxQkaeEzNYazn7tkbH5dxx9fS3aR3bDodkr6zYWBNz76Us4/u91iJx3+5z0RGT+lr/eH5fzbmL34ebNJ363eer/bnCEF9bOM92VACIi0l2r66G3dDWlFcjcloDzX8Rhx8i5OPHOVyhMvogjr30O74E9UZCYDq1KDQAIeWEsChIvoOhspthlE5GebKytsHXJcDw8yNfg+x45oAN2rnwA9natru+HiEhSGOgtkFtPfxSnZAEA3MO6oPhc3Z/9RkXi8q664Tau3XzRaUw/nFm6RdRaiajl7O3k2LZ0BD6Y2QfW8paf1q2sBLz9Qi/sXPkAnBysDVIjEREZDwO9BXIL6Vwf4t3DAlD0Z7jvMKQXcuNPAQDa9wuGk287TDyyAo+eWAXPewIxYNGL6Pb0A6LWTkT6kctleOv5Xjj5/Tj0D/PUez/3BLvjxMYovDejD2ysrQxaIxERGQevo1oYBy83QKtFhaIYAOAW3Alnl22BR+9A3LiUC1VFFQAg/Zu9SP9mb327UVvm4/zanbiyO1G02omo5UKD3HDk27E4kVKIVbFpiN2Theoa9R3bWMtlmPSAP16eHIx7e7WDIAgmq5eIiFqOgd7CuPX0r++dB4Ca0nJ0n/ogqovLGsxuQ0SWSxAE9Atrh35h7bDmnYE4e7EEJ88rce6PEtysqIVWCzjay9EzsC36BHsgvJsbx8kTEUkYz+AWJmf/SeTsP1n/887RrwMAxv22BHsmzmuy3e47rCMi6bKzlaNvqCf6huo/DIeIiMwbA30rsX3IK2KXQERERERGwJtiiYiIiIgkjIGeiIiIiEjCGOiJiIiIiCSMgZ6IiIiISMJ4U6yZktvbIjpjg9hlNJvc3lbsEoiIiIhaJQZ6MyUIAqwd7MQug4iIiIjMHIfcEBERERFJGAM9EREREZGEMdATEREREUkYAz0RERERkYQx0BMRERERSRgDPRERERGRhDHQExERERFJGAM9EREREZGEMdATEREREUkYAz0RERERkYQx0BMRERERSRgDPRERERGRhDHQExERERFJGAM9EREREZGEMdATEREREUkYAz0RERERkYQx0BMRERERSZhc7AKocVqtFqrKarHLaDa5vS0EQRC7DCIiIqJWh4HeTKkqq7Gxy5Nil9Fs0RkbYO1gJ3YZRERERK0Oh9wQEREREUkYAz0RERERkYQx0BMRERERSRgDPRERERGRhDHQExFRq6HVahv8n4jIEnCWGyIiskgajRb7juYi/kQeklKVSE4rwvWyGgBAXmElOgzfhD7B7ogI8cCYQb6ICPEUu2QiIr0w0BMRkUW5XlqNtVvSsfqHC8jKLWtyu/zCCuwsrMDOg1fx7upTiAjxwMuTgxE9pgtsrK1MWjMRUUsw0FsQrwEhGLV1foNlteWVKM3MR8bmg0hb9wu0ao1o9RERGVvcwSt4/r3DyCuo0LltUqoS/3gnAcs2puLrDwYhvJu7UWokIjI0BnoLlLk1ATnxyYAgwN7TFV0nDUbf+dPQJrAjjs5dI3Z5REQGV1WtwssfHsFXP11q8b7OpBcj4vHteH9GH/zfP8L4FGwiMnsM9BaoKCULmVsS6n9OX78HjyQsQ9ATw5G8YBOqi0pFrY+IyJAqKlWImrUPvx7PM9g+VSot3liWhLzCCiz7v/4M9URk1jjLTSugqqxGYfIlCDIZXDq1F7scIiKDqa3VYOKrvxo0zP/Viu/O4/WliUbZNxGRoTDQtxLOneuCfPX1m2KXQkRkMAu+PIPdh3OMeoxPvkpB3MErRj0GEVFLcMiNBZLb28DWzbl+DH23px+Ae2gACpMvoTQzX+zyiIgM4uzFYry/5rRObRI3RcHLwwEKZQUiH9/R7HbPzT+M1G3t0dbFVo9KiYiMq1X00CuVSsTExKBr166ws7ODr68vZs+ejfLycjzzzDMQBAErV64Uu0yD6R0zBY+nfoXHz32J8Qc+Q/D0UciOO4b4aQvFLo2IyCC0Wi2en38ItSrdZu7y8nCAT3tHeHk46NQuv7ACby1P0rFKIiLTsPge+tOnT2P06NFQKBRwdHREjx49kJeXh+XLlyMjIwPFxcUAgF69eoldqsGkf7sX2T8fhcxajrbd/dBzxng4ertDXV1Tv43MRo6xexcha1sCzi7bWr/8vqUzYOfpiv3RH4pUPRHR3Z1IKcTxlEKTHnP9jkv4aFYEXNlLT0RmxqJ76JVKJcaOHQuFQoE5c+YgPz8fycnJUCgUWLhwIeLi4pCYmAhBEBAWFiZ2uQZTmqlAfkIKcuNP4dyq7fh16gJ49OqCAQtfqN9GU6PCoVkrEDprAtr26AQA8BsVCZ+RETj86ioRqyciurv/fJ9m8mNWVqnx9Y6WT4tJRGRoFh3oZ82ahZycHMycOROLFy+Gs7Nz/bqYmBiEh4dDpVKhc+fOcHFxEbVWYypMSkfG5oPwHz8QnhHd6pcXnc1E6uoduH/5P+Hg7YYBi17E8Te/QOW1ElHrJSK6k6pqFX7YmyXKsb/5+Q9RjktEdCcWG+jT0tIQGxsLDw8PfPzxx41u06dPHwBAeHh4/bLffvsNgiDc9p/Uh+ScWbIZGpUavedObrh86RZo1GpE7VsExeFzyNp+WLQaiYiaI+VSCapr1KIc++ylYlRVq0Q5NhFRUyx2DP2mTZug0WgQHR0NJyenRrext7cH/hbob/nPf/6De+65p/5nR0dHI1ZrfGXZCmRtP4wuEwehXb9gFByvu1ytValRmJgOj7Au+CP2gNhlEhHd1cnzStGOrVJpcfZiCfqGeopWAxHR31lsD318fDwAYOjQoU1uk5NTN3dxY4G+R48e6N+/f/1/oaGhRqzWNM4uq+uN/2svfbt+weg6eSjS1v2Cvu9Nh5Wdjag1EhHdTWrGdZGPz2GJRGReBK1WqxW7CGPw9fVFTk4OTp061ehwGZVKBW9vbyiVSmRkZCAgIAD4c8jN0KFDceDAAQwZMsQgtUREREChUOjUxlorwzxNX4McvylyBztE/boY59fsxIWv92D0tvegPJOBxHnrdd7XfNkJ1Aq6TR9HRKSPEsfxqLDt3ei6W/PMN8XLwx5yKxlUag0Uyso7HqepuerblP8Cp+rjelRuHvJdX4VG1gYyzQ14X/9M7HKI6E9eXl5IStJvelyLHXJTXl4OAKisbPyEHRsbC6VSCWdnZ/j7+9+2fvLkyVAqlXB3d0dUVBQWLFgADw8PvWpRKBTIzc3VqY2NYAW01+twzRb57tO4eaUAF9bvBgAcmr0SUfsX48qu47h2TLcZJPLy81CjFWdMKxG1Mh3LgSZmjrw1z/zdyK1kzdquMTdulOBGkW7ndLPirAZkgEat1vmziYjMk8UGei8vL5SUlCA5ORkDBgxosC4/Px9z584FAISFhUEQhPp1bdq0wdy5czFo0CA4OTnh6NGj+Pjjj3Hs2DEkJSXBzs5Or1p0Za2VAUbs8O44rDf8owZi+/A59cvKLl/DyQ83YuCSGdgxbA5UldXN3l8H7w7soScik7juIEd5E+sUyoo7ttW1h74xri4OcLTr2Ox6zU2+lRU0AGRWVvDuKN3XQWRp9MmLt1jskJtZs2ZhxYoV8PX1xf79+xEUFAQASExMxFNPPYXMzEzU1tZixowZd31K7M8//4yoqCh8+eWXmD59uknqr62owsYuT5rkWIYQnbEB1g66f9khItLVmh8v4MX39ZuR6+q+KfBp74ica+XwHfm9Xvs48V0UIntK96ZYnxGbkFtQgY7tHJCz/3GxyyEiA7DYm2JjYmLg7u6Oq1evIiQkBKGhoQgMDETfvn0REBCAYcOGAU3cEPt3Dz/8MBwdHfUe10RERIbTp4e7aMeWywWEBrYV7fhERI2x2EDv4+ODhIQEjBkzBnZ2dsjOzoabmxvWrFmDuLg4XLx4EWhmoL/lr0NziIhIHKGBbrCztRLl2OFB7rCztdjRqkQkURZ9VgoODsbOnTtvW37z5k1kZ2dDJpOhZ8+ed93Pjh07UF5ejr59jTvrDBER3Z2tjRUmPxiAr3dcMvmxp0Z1NfkxiYjuxqIDfVNSU1Oh1WoRFBQEB4eG05s9+eSTCAgIwD333FN/U+wnn3yCXr16YcqUKaLVTERE//Py5GCTB3oHOzmeHhto0mMSETVHqwz0KSkpQBPDbUJCQvDdd99h6dKlqKyshI+PD5577jnMmzcPNjZ86BIRkTnoG+qJe3u1w5HTBSY75j8eCUIbZ34OEJH5sdgx9Hdyp0D/xhtvICUlBaWlpaitrUVWVhY+++wztGnTRoRKDa/TmP7ov+C5Bsu6Th6Kafmb4TcqUrS6iIh0tebtgbCxNs3HmE97R3wws49JjkVEpCsG+lbG76F+uLL7RP3PTj6eCIoegYKkdFHrIiLSVc9AN8x7sfEnxjZFoaxAzrXyu85X/3dr593H3nkiMlutcshNfHy82CUYjY2LA8YdWAIrOxtU5Ckhs7WGs197ZGz+HUdfX4v2kd1waPaf8+4LAu799CUc//c6RM6bKnbpREQ6i5kehqNnCrDz4NVmbR/5+A6dj/HWc+EYdZ+PHtUREZlGq+yht2Q1pRXI3JaA81/EYcfIuTjxzlcoTL6II699Du+BPVGQmA6tSg0ACHlhLAoSL6DobKbYZRMR6UUul+GHxcPw4L3GeeLpK0+F4H0OtSEiM8dAb4HcevqjOCULAOAe1gXF5+r+7DcqEpd31Q23ce3mi05j+uHM0i2i1kpE1FL2dnLsWDESzz/azWD7tJbLsOjVvvj0tX58BgkRmT0GegvkFtK5PsS7hwWg6M9w32FIL+TGnwIAtO8XDCffdph4ZAUePbEKnvcEYsCiF9Ht6QdErZ2ISB821lZY88592L36Qfi0d2zRvvr08EBy7Di8Ni2UYZ6IJKFVjqG3ZA5eboBWiwpFMQDALbgTzi7bAo/egbhxKReqiioAQPo3e5H+zd76dqO2zMf5tTtxZXeiaLUTEbXUgwN9kLptAr7cdhGrfkjDpculzW57b692eOmxYEwZFQC5nP1dRCQdDPQWxq2nf33vPADUlJaj+9QHUV1c1mB2GyIiS+XiZIN/PdUTs6JDcOBEPg4k5uHk+SIkpylRUFzXqSEIgJ+3E/oEe6BPD3c8dL8venV3F7t0IiK9CFqtVit2EXS72ooqbOzypMH2N+63JdgzcR6qiprfW6WL6IwNsHawM8q+iYgMRavVQqXSQi4XWu1wGp8Rm5BbUIGO7RyQs/9xscshIgNgD30rsX3IK2KXQEQkOkEQYG3dOoM8EVkuDhIkIiIiIpIwBnoiIiIiIgljoCciIiIikjAGeiIiIiIiCeNNsWZKbm+L6IwNYpfRbHJ7W7FLICIiImqVGOjNlCAInAaSiIiIiO6KQ26IiIiIiCSMgZ6IiIiISMIY6ImIiIiIJIyBnoiIiIhIwhjoiYiIiIgkjIGeiIiIiEjCGOiJiIiIiCSMgZ6IiIiISMIY6ImIiIiIJIyBnoiIiIhIwhjoiYiIiIgkjIGeiIiIiEjCGOiJiIiIiCSMgZ6IiIiISMIY6ImIiIiIJIyBnoiIiIhIwhjoiYiIiIgkTC52AdQ4rVYLVWW12GU0m9zeFoIgiF0GERERUavDQG+mVJXV2NjlSbHLaLbojA2wdrATuwwiIiKiVodDboiIiIiIJIyBnoiIiIhIwhjoiYiIiIgkjIGeiIiIiEjCGOiJiIiIiCSMs9wQERFZsMLiSpw8X4ST55X442opim/UTYl8vawGazdfQJ8eHugZ2BY21lZil0pEemKgJyIisjA1tWr8FH8Zq2LT8HuSotFtyitVeP69wwAAFydrTI0KxEuPBSM4wNXE1RJRSwlarVYrdhF0u9qKKs5DT0REOtuyLwuzFh5DXkGFXu3HDfXDqrfuRYd2jgavjYiMgz30FsRrQAhGbZ3fYFlteSVKM/ORsfkg0tb9Aq1aI1p9RERkPMqSKsz46Ah+2JPVov1sP3AFvycpsOz/+uOpsV35FHAiCWCgt0CZWxOQE58MCALsPV3RddJg9J0/DW0CO+Lo3DVil0dERAaWlVOGEc/vQmZOmUH2d72sBlP/fRCn04vw6Wv9GOqJzBwDvQUqSslC5paE+p/T1+/BIwnLEPTEcCQv2ITqolJR6yMiIsO5kn8Tg/8Rh6uKcoPve8m3qdBogCUxDPVE5ozTVrYCqspqFCZfgiCTwaVTe7HLISIiA6muUePhmXuNEuZvWbYxFatj04y2fyJqOQb6VsK5c12Qr75+U+xSiIjIQN77/BRSLpXo1CZxUxSu7puCxE1RzW4z97NEZObw6i6RubL4QK9UKhETE4OuXbvCzs4Ovr6+mD17NsrLy/HMM89AEASsXLlS7DINSm5vA1s3Z9i6u8C1ux/6ffQs3EMDUJh8CaWZ+WKXR0REBnDyvBILvzqrczsvDwf4tHeEl4dDs9tUVKnwzLxD4MR4RObJosfQnz59GqNHj4ZCoYCjoyN69OiBvLw8LF++HBkZGSguLgYA9OrVS+xSDap3zBT0jpnSYFl23DEcf+ML0WoiIiLD+nDtaajVpgvYvyXmI+GkAoMivE12TCJqHovtoVcqlRg7diwUCgXmzJmD/Px8JCcnQ6FQYOHChYiLi0NiYiIEQUBYWJjY5RpU+rd7seex+dgX/SGS3v8WVcVlcPR2h7q6pn4bmY0c435bgrDZExq0vW/pDIzY+JYIVRMRUXPlKMqx/cAVkx931Q8cS09kjiw20M+aNQs5OTmYOXMmFi9eDGdn5/p1MTExCA8Ph0qlQufOneHi4iJqrYZWmqlAfkIKcuNP4dyq7fh16gJ49OqCAQtfqN9GU6PCoVkrEDprAtr26AQA8BsVCZ+RETj86ioRqyciortZty0dGo3ph79s2Z+NgqJKkx+XiO7MIgN9WloaYmNj4eHhgY8//rjRbfr06QMACA8Pv23dtm3bcO+998LR0RFt2rTBwIEDkZqaavS6jaUwKR0Zmw/Cf/xAeEZ0q19edDYTqat34P7l/4SDtxsGLHoRx9/8ApXXdLvBioiITOtAojj3Q6lUWhw+fU2UYxNR0ywy0G/atAkajQbR0dFwcnJqdBt7e3ugkUC/fPlyPPbYY7jvvvuwY8cObNq0CSNGjEBlpbR7JM4s2QyNSo3ecyc3XL50CzRqNaL2LYLi8DlkbT8sWo1ERHR3Go0WyWlFoh3/5HmlaMcmosZZ5E2x8fHxAIChQ4c2uU1OTg7wt0CfkZGBuXPnYsmSJZg5c2b98oceesio9ZpCWbYCWdsPo8vEQWjXLxgFx+vGQWpVahQmpsMjrAv+iD0gdplERHQXGVdLUVZeK9rxxfwyQUSNs8hAf/nyZQBAp06dGl2vUqlw+HBdT/RfA/2XX34Ja2trPPfccwatJyIiAgqFQqc21loZ5qGvQes4u2wL/McPRO+5k7Hn0XcBAO36BaPr5KFIW/cL+r43HTtGzoW6quau+/q7oMAg1Aoag9ZLRES3q5b7Ai7PNroucVPUXaej9PKwr///1X1TmtxOoaxA5OM7blu+/7dj8PF5Rue6iejOvLy8kJSUpFdbiwz05eV1T8xraphMbGwslEolnJ2d4e/vX7/8yJEj6NatGzZs2IAPPvgAV69eRWBgIN555x08/vjjetejUCiQm5urUxsbwQrQ8aGuiqOpWO/9aJPrb1zKxTc+/xtyI3eww31LZ+Dkhxtx4es9GL3tPdzzxhNInLdetwMDyMvPQ41WrXM7IiLSkaMj0MRcDrfmmG8OuZWs2dv+VW2tRufPNCIyLosM9F5eXigpKUFycjIGDBjQYF1+fj7mzp0LAAgLC4MgCA3W5ebm4o033sDChQvh6+uLdevW4YknnoCnpydGjBihdz26stbKACN3eEe++zRuXinAhfW7AQCHZq9E1P7FuLLrOK4d021qsg7eHdhDT0RkAjVWbVHYxDqFsuKu7b087CG3kkGl1kChbPr+sKb2ZW0toF3Hjs2ul4iaR5+8eIugtcDHvs2aNQsrVqyAr68v9u/fj6CgIABAYmIinnrqKWRmZqK2thYzZsxo8JTYoKAgXLp0Cdu2bcP48eMBAFqtFr169YKrqyt+//13k72G2ooqbOzypNH233FYbwxe9S9sHz4H5bn/u8Gp+7RR6PHCw9gxbA5UldXN3l90xgZYO9gZqVoiIrolr6AcHUd8r3f7q/umwKe9I3KulcN3pO77mfSAP35YPEzv4xOR4VnkLDcxMTFwd3fH1atXERISgtDQUAQGBqJv374ICAjAsGF1J6K/z3Dj5uYGAA164gVBwIgRI3Du3DkTvwrjyo0/he+6T20Q5gHgwvrd2Dpgpk5hnoiITKdDO0d4e955nLwx9enhLtqxiahxFhnofXx8kJCQgDFjxsDOzg7Z2dlwc3PDmjVrEBcXh4sXLwKNBPqQkJAm91lVVWX0uomIiJqjT7B4obpPDw/Rjk1EjbPIQA8AwcHB2LlzJ8rKylBWVobjx4/j+eefR3l5ObKzsyGTydCzZ88GbcaNGwcA2Lt3b/0yjUaDffv2ITIy0uSvgYiIqDFjh/iJcty2Lja4N1zHGRuIyOgs8qbYO0lNTYVWq0VQUBAcHBpeshw7dizuv/9+PP/88ygqKoKfnx+++OILpKamYt++faLVTERE9FdPPNQFr316wuTz0U8fHwQH+1YXHYjMnsX20DclJSUFaGS4Df4cL79jxw5MnDgRb775JqKionD58mX88ssv9ePuiYiIxObkYI2pUYEmP+6Lk7qb/JhEdHcM9H/j6uqKNWvWoLCwENXV1Thx4gQefPBBE1dJRER0Z289Fw63NrYmO97Lk4MR2KmNyY5HRM3HQN/KdBrTH/0XNHwSbtfJQzEtfzP8RvE+ASIiqfDycMCK1wc0Y8uW69zBCQtf4WcEkblqdQPh4uPjxS5BVH4P9UPGj7/V/+zk44mg6BEoSEoXtS4iItLd4w8F4Offr+D73ZnNbnPrgVHNeQgVAFjLZVj/wSA4OVjrXScRGVerC/SWzsbFAeMOLIGVnQ0q8pSQ2VrD2a89Mjb/jqOvr0X7yG44NPvPh2kJAu799CUc//c6RM6bKnbpRESkI0EQsP6DQSgurcbeI7nNahP5+I5m79/KSsDGBUMwOMK7BVUSkbG1uiE3lq6mtAKZ2xJw/os47Bg5Fyfe+QqFyRdx5LXP4T2wJwoS06FVqQEAIS+MRUHiBRSdbX7PDhERmRdbGytsXzYCjwzvZND92tlaYctnwzHpAX+D7peIDI+B3gK59fRHcUoWAMA9rAuKz9X92W9UJC7vOgEAcO3mi05j+uHM0i2i1kpERC1nZyvHls+GY807Aw0yNGZg7/Y4u/kRjBtq2C8JRGQcDPQWyC2kc32Idw8LQNGf4b7DkF7IjT8FAGjfLxhOvu0w8cgKPHpiFTzvCcSARS+i29MPiFo7ERHpRxAEPP9od5zb+gimjAqAXC7ovA9fL0csf70/fv/yIc5oQyQhHENvYRy83ACtFhWKYgCAW3AnnF22BR69A3HjUi5UFVUAgPRv9iL9m/89EXfUlvk4v3YnruxOFK12IiJquU4dnLHpk6H4rLAfvtiajh/3ZuF85nWo1dpGt3d1tsHA3u3x3MRuGHO/L+Ry9vURSQ0DvYVx6+lf3zsPADWl5eg+9UFUF5fhyu4TotZGRESm4+3pgLdf6I23X+iNikoVzlwswh9XSlFZrYbcSgZXZxv06u4G/47OEATde/OJyHwIWq228a/sJKraiips7PKkwfY37rcl2DNxHqqKSg22z7+KztgAawc7o+ybiIiIiJrGHvpWYvuQV8QugYiIiIiMgAPliIiIiIgkjIGeiIiIiEjCGOiJiIiIiCSMN8WaKa1WC1VltdhlNJvc3pazJBARERGJgIGeiIiIiEjCOOSGiIiIiEjCGOiJiIiIiCSMgZ6IiIiISMIY6ImIiIiIJIyBnoiIiIhIwhjoiYiIiIgkjIGeiIiIiEjCGOiJiIiIiCSMgZ6IiIiISMIY6ImIiIiIJIyBnoiIiIhIwhjoiYiIiIgkjIGeiIiIiEjCGOiJiIiIiCSMgZ6IiIiISMIY6ImIiIiIJIyBnoiIiIhIwhjoiYiIiIgkjIGeiIiIiEjCGOiJiIiIiCSMgZ6IiIiISMIY6ImIiIiIJIyBnoiIiIhIwhjoiYiIiIgkjIGeiIiIiEjC/h9hHPxzwKy+RwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "from qiskit import QuantumCircuit\n", + "from qiskit.quantum_info import SparsePauliOp\n", + "from qiskit_addon_cutting.instructions import Move\n", + "from qiskit_addon_cutting import partition_problem\n", + "\n", + "qc_0 = QuantumCircuit(7)\n", + "for i in range(7):\n", + " qc_0.rx(np.pi / 4, i)\n", + "qc_0.cx(0, 3)\n", + "qc_0.cx(1, 3)\n", + "qc_0.cx(2, 3)\n", + "qc_0.cx(3, 4)\n", + "qc_0.cx(3, 5)\n", + "qc_0.cx(3, 6)\n", + "qc_0.cx(0, 3)\n", + "qc_0.cx(1, 3)\n", + "qc_0.cx(2, 3)\n", + "\n", + "# Define observables\n", + "observable = SparsePauliOp([\"ZIIIIII\", \"IIIZIII\", \"IIIIIIZ\"])\n", + "\n", + "# Draw circuit\n", + "qc_0.draw(\"mpl\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this circuit, a wire cut can be made at qubit $q_3$ which, in the `qiskit-addon-cutting` package is represented by a [`Move`](../api/qiskit-addon-cutting/instructions-move) instruction. This gate is defined as a reset of the second qubit followed by a swap of both qubits, which has the effect of transferring the state of the first qubit wire into the second, while simultaneously discarding the state of the second qubit wire.\n", + "\n", + "We can manually place these `Move` instructions in a new circuit, but for this to work properly, it is important that the second (destination) qubit share no entanglement with the remainder of the system; otherwise, the reset operation will cause the state of the remainder to partially collapse. In order to avoid this in this example, we will include a second `Move` instruction which is reversed.\n", + "\n", + "When adding in the `Move` instructions, a new observable should be included to account for the extra qubit wire that was added. This can be done by including an extra $I$ at index $4$." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAIwCAYAAADH6UtKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAaklEQVR4nOzdd3hUVf7H8c+kFxIgBQKEEkroTbqIAoKCCKKIoEHBdV0LLLqysOr+dhFdC4qLhUWxsiqyKKAgKM2IhGpo0kILBEjIAKGll8nM7w/WrJEEMmFmbmbyfj2Pz8q999zzncje3M/cc8412Ww2mwAAAAAAgNvxMroAAAAAAABQOYR6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwUz5GF4Cy2Ww2WfIKjC6jwnwC/WUymYwuAwAAAACqFUJ9FWXJK9C8ZmOMLqPC4pI/k29QgNFlAAAAAEC1wvB7AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE3xnnoPEtWrrQYtnlZqW1FOnjKPpCt54TolffitbMVWw+oDAAAAADgWod4DHVmcoNT47ZLJpMDIWmo+8iZ1nzZONVs00KbJc4wuDwAAAADgIIR6D3R291EdWZRQ8ucDc1fqzoQ3FXvfzdr+ynwVnM00tD4AAAAAgGMwp74asOQV6Mz2QzJ5eSm0cV2jywEAAAAAOAihvpoIaXIpzBdcyDa6FAAAAACAgzD83gP5BPrJPyykZE59ywduUXj7pjqz/ZAyj6QbXR4AAAAAwEGqRajPyMjQq6++qsWLFys1NVWRkZG666679NJLL2nixIn66KOP9Pbbb2vChAlGl+oQnaeMVucpo0ttS1m+WVue+cCwmox2MOWi5n+XLHNGnry9TWreMFRjbm+uiNoBRpcGAAAAJ7PZbNr082ktXXtc5zMLFOjvo06twjTq1qYKDKgWkQgezOP/Bu/cuVODBw+W2WxWcHCw2rRpo5MnT+qtt95ScnKyzp07J0nq1KmT0aU6zIFPVynlm03y8vVR7VaN1G78cAXXC1dxQWHJMV5+Phq66jUd/SpBu95cXLL9hjfGKyCyltbEvWhQ9Y61de8ZPfPmVq3ZfPKyfU+/uVWjbo3Rq091V93wQEPqAwAAgHN9HZ+iae/u0M795y7b99RrW/TwiJaa9vh1CvD3+GgED+XRc+ozMjI0dOhQmc1mTZo0Senp6dq+fbvMZrOmT5+u5cuXKzExUSaTSR06dDC6XIfJPGJWesJupcXv0J7ZS/T92FcU0amZek1/pOQYa6FF6ye+rfYT71LtNo0lSY0GdVP0wK7a8NRsA6t3nJUbUnXjuOVlBnpJKigs1iffHFbPuKVKSctyeX0AAABwrjc/26M7n/y+zEAvSeczC/Xqx7t1yyMrlJNb5PL6AEfw6FA/ceJEpaamasKECZoxY4ZCQkJK9k2ZMkUdO3aUxWJRkyZNFBoaamitznRm6wElL1ynmOG9Fdm1Zcn2s7uOaO87S9XnrT8qqF6Yer32qLY8+4HyTp03tF5H2Hv4vEY89b3yCoqvemzKyWwNfnylcvMsLqkNAAAAzrd4TYqefHVLhY5N2H5KY5790ek1Ac7gsaE+KSlJCxYsUEREhF5++eUyj+nSpYskqWPHjqW2Hz16VMOGDVNISIhq166tBx54QGfPnnVJ3c7y88yFslqK1XnyqNLb31gka3Gxhq1+TeYNe3R0yQbDanSkVz/epRw7Qvr+o5fm3AMAAMD92Ww2TZ293a42X8cf0/Z9GU6rCXAWjw318+fPl9VqVVxcnGrUqFHmMYGBl+ZR/zrUZ2VlqV+/fkpNTdX8+fP13nvvKSEhQbfffrusVqvL6ne0rBSzji7ZoPo3dlCdHq1LttssxTqTeEAB4TV1eMEPhtboKBnn87Vg5VG72/3rP0my2WxOqQkAAACus377Ke05bP/o03e+SHJKPYAzeWyoj4+PlyT169ev3GNSU1Ol34T69957T2lpafr66691++23a+TIkfr888+1efNmLV261AWVO8+uNy89lf/10/o6PVqr+ah+SvrwW3V//kF5B/gZWqMjrNqYpoLCqw+7/60d+88q9VSOU2oCAACA6yz54Vil2n0VX7l2gJFMNg99NNmwYUOlpqZqx44dZa5sb7FYVK9ePWVkZCg5OVlNmzaVfvUlwA8/lH5q3axZM/Xt21cffvih3bV07dpVZrPZrja+Ni9NtXa3uy97+AQFaNj3M7RvzjLt//dKDf7qeWX8nKzEqXPtPtc0r59UZKoaIxmy/XvoYvBtlWpb5+Js+RafcnhNAAAAcJ3zwXco1/86+xvarKp/fppMzigKuIqoqCht3brV7nYe+96GnJxLT1zz8vLK3L9gwQJlZGQoJCREMTExJdv37dunkSNHXnZ827ZttW/fvkrVYjablZaWZlcbP5O3VLdS3VVYt+ceUPbx09o/d4Ukaf0TszRszQwd/26LTm22b+jRyfSTKrTZ/3TcKWqfkYIr1/S0OU0qJNQDAAC4tfoXJf9KtLMV6aSd9+2A0Tw21EdFRen8+fPavn27evXqVWpfenq6Jk+eLEnq0KGDTKb/fRd3/vx51apV67LzhYWF6cCBA5WuxV6+Ni/JiQ++G/TvrJhhvbXk5kkl27KOndK2F+ep98zxWtp/kix5BRU+X/169avMk/pC73ydkSSbTTJV/HtWkzVP9SIDZFIDZ5YHAAAAJ8vxz9aFSrTzKz6lyAbcC8IYlcmN8uRQP2DAACUlJWn69OkaOHCgYmNjJUmJiYm6//77lZFxaWXLsobmO1plhlAU5eZrXrMxTqlHktLid+jzVmMv275/7oqSJ/f2OHjooHyDAhxU3bWx2WzqOnqJtifZ98aCJx7oqplTUpxWFwAAAFwjK6dQ9W+er+xc+15Z/MGrY3T/0GlOqwtwBo9dKG/KlCkKDw/XiRMn1LZtW7Vv314tWrRQ9+7d1bRpU/Xv318q43V2tWvX1oULl3+vd+7cOYWFhbmsflSeyWTSH+9rY1cbb2+THh3Zymk1AQAAwHVCgv304PBYu9rUCQvQyFtiKnAkULV4bKiPjo5WQkKChgwZooCAAKWkpCgsLExz5szR8uXLdfDgQamMUN+6desy587v27dPrVu3vmw7qqaxw1rogaHNK3z8O3+9Xi1jLp92AQAAAPf08sSu6t4uskLH+vt5adE/b1aAv8cOZIYH89hQr/8G9GXLlikrK0tZWVnasmWL/vCHPygnJ0cpKSny8vJSu3btSrW5/fbbtX79+pLX3UnSli1blJycrKFDhxrwKVAZJpNJHz3fRxPuvfITe38/b338Qh89fDdP6QEAADxJcJCvVs0ZpFuuv/Ic+cjaAVrz3mDdcF3l5jMDRvPYV9pdyZYtW9SzZ0+1bNlS+/fvL7UvMzNT7du3V0REhKZNm6b8/HxNmTJFkZGR2rRpk7y8XPM9iLPn1DtaXPJnVWZO/W8dTLmod79M0rzlyTp9Ll/673D7lyd21YPDYxVRu2rWDQAAgGtns9m0eddpzV6QpKVrjyszu0iS5Ovjpfem9taoW5sqMIAn9HBfHv2kvjy7d++Wyhh6L0mhoaGKj49XvXr1NHr0aP3+97/X9ddfr2XLlrks0MOxYpvU1D8n99SptXGqHxkoSYoKD9TkBzsQ6AEAADycyWRSr4519elLfXVx4wMl94N1wgI07o5YAj3cXrX8G3ylUC9JzZo107Jly1xcFVzBZMcr7gAAAOB5uB+Ep6mWj56vFuo9WeMhPdXzlYdLbWs+qp/GpS9Uo0HdDKsLAAAAAGC/avmkPj4+3ugSDNPoth5K/nJtyZ9rREcqNm6ATm89YGhdAAAAAAD7VctQ78n8QoN0xw8z5R3gp9yTGfLy91VIo7pKXvijNj39vup2a6n1T8y6dLDJpOtff0xb/u9DdZs61ujSAQAAAAB2ItR7mMLMXB35KkFFOfnaNXOh6vftqA4T79LGP7+r+jd11OnEA7JZiiVJbR8ZqtOJ+3V21xGjywYAAAAAVEK1nFPv6cLaxejc7qOSpPAOzXRuz6V/bzSom45995MkqVbLhmo8pId+fmORobUCAAAAACqPJ/UeKKxtk5IgH96hqU6sTJQk1e/bSVtf+EySVLdHa9VoWEcjNr4tSQqMrKVerz2qwDq1deCTVQZWDwAAAACoKEK9hwmKCpNsNuWaz0mSwlo31q43FymicwtdPJQmS26+JOnAJ6tKhfdBi6Zp3/vLdHxFomG1AwAAAADsQ6j3MGHtYkqe0ktSYWaOWo29VQXnsnR8xU+G1gYAAAAAcCxCvYdJXbNNqWu2lfx52eCnJUl3rJ2plSOmlttuxRX2AQAAAACqJkJ9NbGk75+MLgEAAAAA4GCsfg8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuCnm1FdRPoH+ikv+zOgyKswn0N/oEgAAAACg2iHUV1Emk0m+QQFGlwEAAAAAqMIYfg8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAm/IxugCUzWazyZJXYHQZFeYT6C+TyWR0GQAAAABQrRDqqyhLXoHmNRtjdBkVFpf8mXyDAowuAwAAAACqFYbfAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJvyMboAOE5Ur7YatHhaqW1FOXnKPJKu5IXrlPTht7IVWw2rDwAAAADgWIR6D3RkcYJS47dLJpMCI2up+cib1H3aONVs0UCbJs8xujwAAAAAgIMQ6j3Q2d1HdWRRQsmfD8xdqTsT3lTsfTdr+yvzVXA209D6AAAAAACOwZz6asCSV6Az2w/J5OWl0MZ1jS4HAAAAAOAghPpqIqTJpTBfcCHb6FIAAAAAAA5SLUJ9RkaGpkyZoubNmysgIEANGzbUE088oZycHD300EMymUyaNWuW0WU6jE+gn/zDQuQfHqparRqpx0u/V3j7pjqz/ZAyj6QbXR4MkpldqJ8PnNXmn0/r8PFM2Ww2o0sCAACAC50+m6dt+zKUuOeM0k7lGF0OHMTj59Tv3LlTgwcPltlsVnBwsNq0aaOTJ0/qrbfeUnJyss6dOydJ6tSpk9GlOkznKaPVecroUttSlm/Wlmc+MKwmGGdHUoZmL0jSvG+TlZdfXLK9fYvaenxUa425vblqBPkaWiMAAACcw2azafWmNM1ekKRvfjwhq/V/D3b6daunx0e11vD+jeXjUy2e93okjw71GRkZGjp0qMxmsyZNmqSpU6cqJCREkvTqq6/qL3/5i3x8fGQymdShQwejy3WYA5+uUso3m+Tl66ParRqp3fjhCq4XruKCwpJjvPx8NHTVazr6VYJ2vbm4ZPsNb4xXQGQtrYl70aDq4Ugz5u7W5H/+VOa+3YfO67F/bNQbn+3Vd7NvVUx0iMvrAwAAgPMUFVn18LT1+vfSQ2Xu/yExXT8kpmtgr/pa+PrNCq3h5/Iace08+uuYiRMnKjU1VRMmTNCMGTNKAr0kTZkyRR07dpTFYlGTJk0UGhpqaK2OlHnErPSE3UqL36E9s5fo+7GvKKJTM/Wa/kjJMdZCi9ZPfFvtJ96l2m0aS5IaDeqm6IFdteGp2QZWD0d587M95Qb6XzuQclE3P/ydTp3Nc0ldAAAAcD6bzabfP5dQbqD/tdWbTurOJ9eosKj4qsei6vHYUJ+UlKQFCxYoIiJCL7/8cpnHdOnSRZLUsWPHkm2/fAnQvXt3+fv7y2QyuaxmZzmz9YCSF65TzPDeiuzasmT72V1HtPedperz1h8VVC9MvV57VFue/UB5p84bWi+uXao5R5Nev3qg/8XRtCz99a2tTq0JAAAArrNifao++eZwhY+P/yld7y864NSa4BweG+rnz58vq9WquLg41ahRo8xjAgMDpd+E+sOHD2vRokWKiopSt27dXFavs/08c6GslmJ1njyq9PY3FslaXKxhq1+TecMeHV2ywbAa4TjvLzqg4mL7FsL7/Ltknc8scFpNAAAAcJ3ZC5LsbvPOgiQWU3ZDHhvq4+PjJUn9+vUr95jU1FTpN6H+xhtvVHp6upYuXaoBAwa4oFLXyEox6+iSDap/YwfV6dG6ZLvNUqwziQcUEF5Thxf8YGiNcJwPv7L/W9a8/GLN/zbZKfUAAADAddLP5Gp5wgm72+1NvqAtu844pSY4j8culHfs2DFJUuPGjcvcb7FYtGHDpafSvw71Xl6O/56ja9euMpvNdrXxtXlpqro7tI5dby5SzPDe6jx5lFbe/ZwkqU6P1mo+qp+SPvxW3Z9/UEsHTlZxfuFVz/VbsS1iVWSyOrReZ0iv9ZTkVVPp5nRFR0cbXY5T2OStk2F/r1Tbv/xthl768yqH1wQAAFBVVIf7wULvaNlqPlyptrfd+YCCCvc4vCZcXVRUlLZutX9KrMeG+pycS+9dzMsre/GvBQsWKCMjQyEhIYqJiXFqLWazWWlpaXa18TN5S3Xt7GfTXs2td3e5+y8eStMn0f8bfu8TFKAb3hivbS/O0/5/r9Tgr57Xdc/cp8Spc+3rWNLJ9JMqtLnBwhohxZKXZC0utvu/idsw+UphlWuanZOj7HQP/bkAAAComtwPBgVKNSvX9Pz5izp/wUN/Lh7KY0N9VFSUzp8/r+3bt6tXr16l9qWnp2vy5MmSpA4dOjh9MbyoqCi72/javCQnP/ju9twDyj5+WvvnrpAkrX9iloatmaHj323Rqc32zcGpX6++ezyp9/aWVZKXt7fqNWhgdDlOc9KaJ5tXoN3tQoOkEA/+uQAAAFSH+0GLV4BOSZLNJtmZdcJr+igg2DN/LlVdZXKjPDnUDxgwQElJSZo+fboGDhyo2NhYSVJiYqLuv/9+ZWRkSJI6derk9FoqM4SiKDdf85qNcUo9ktSgf2fFDOutJTdPKtmWdeyUtr04T71njtfS/pNkyav4omkHDx2Ub1CAk6p1nOgB85V2Olf1ouopdU+q0eU4zYSXNupf/7HvixkvL5P2rP9QDaPKXlgSAADAE1SX+8Hr7/9Gm34+bVebBnWClLL9R/n4eOzSax7JY/9rTZkyReHh4Tpx4oTatm2r9u3bq0WLFurevbuaNm2q/v37S7+ZT1+dpMXv0OetxionLaPU9v1zV2hxrwl2BXpUPY/d07oCR5U2rG8jAj0AAICHeHyU/feDj4xsRaB3Qx77Xyw6OloJCQkaMmSIAgIClJKSorCwMM2ZM0fLly/XwYMHpWoc6uHZ2javbdeFvGYNP734xy5OrQkAAACuc8+tMbqxS8WHc7dsUlMT7m3j1JrgHB47/F6SWrdurWXLll22PTs7WykpKfLy8lK7du0MqQ1wtjf/0lM5eRb9e+mhKx5XO9RP37x9i9o0q+2y2gAAAOBcfr7e+vrNAbp9wipt3HnlYfgtm9TUyndvVe1Qf5fVB8fx6FBfnr1798pmsyk2NlZBQUGX7V+4cKEkad++faX+3KRJE3Xt2tXF1QKV4+PjpY9f6KOBverr7c/3acvu0u8crRHkoweGttCkse3UNDrUsDoBAADgHLVD/bXmvcGavSBJ7365X4ePZ5baXy8ySH8Y0VIT49oqrCaB3l1Vy1C/e/du6QpD70eOHFnmn8eOHau5c+1/3RtgFJPJpLghzRU3pLl27j+r/r//VuczCxVW008pK0YpJNjP6BIBAADgRIEBPpo0tr3+dH87JWw3a/gTa3Qhq1DhNf11bMUo+fp67IzsaoNQXwabzebiigDn69QqXEEBPjqfWahAfx8CPQAAQDXi5WXSTV3rKTjQRxeyChXg702g9xDV8r/i1UK9J2s8pKd6vvJwqW3NR/XTuPSFajSom2F1AQAAAADsVy2f1MfHxxtdgmEa3dZDyV+uLflzjehIxcYN0OmtBwytCwAAAABgv2oZ6j2ZX2iQ7vhhprwD/JR7MkNe/r4KaVRXyQt/1Kan31fdbi21/olZlw42mXT9649py/99qG5TxxpdOgAAAADAToR6D1OYmasjXyWoKCdfu2YuVP2+HdVh4l3a+Od3Vf+mjjqdeEA2S7Ekqe0jQ3U6cb/O7jpidNkAAAAAgEqolnPqPV1Yuxid231UkhTeoZnO7bn0740GddOx736SJNVq2VCNh/TQz28sMrRWAAAAAEDl8aTeA4W1bVIS5MM7NNWJlYmSpPp9O2nrC59Jkur2aK0aDetoxMa3JUmBkbXU67VHFVintg58ssrA6gEAAAAAFUWo9zBBUWGSzaZc8zlJUljrxtr15iJFdG6hi4fSZMnNlyQd+GRVqfA+aNE07Xt/mY6vSDSsdgAAAACAfQj1HiasXUzJU3pJKszMUauxt6rgXJaOr/jJ0NoAAAAAAI5FqPcwqWu2KXXNtpI/Lxv8tCTpjrUztXLE1HLbrbjCPgAAAABA1USoryaW9P2T0SUAAAAAAByM1e8BAAAAAHBThHoAAAAAANwUoR4AAAAAADfFnPoqyifQX3HJnxldRoX5BPobXQIAAAAAVDuE+irKZDLJNyjA6DIAAAAAAFUYw+8BAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3JSP0QWgbDabTZa8AqPLqDCfQH+ZTCajywAAAACAaoVQX0VZ8go0r9kYo8uosLjkz+QbFGB0GQAAAABQrTD8HgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBTvKfeg0T1aqtBi6eV2laUk6fMI+lKXrhOSR9+K1ux1bD6AAAAAACORaj3QEcWJyg1frtkMikwspaaj7xJ3aeNU80WDbRp8hyjywMAAAAAOAih3gOd3X1URxYllPz5wNyVujPhTcXed7O2vzJfBWczDa0PAAAAAOAYzKmvBix5BTqz/ZBMXl4KbVzX6HIAAAAAAA5CqK8mQppcCvMFF7KNLgUAAAAA4CAMv/dAPoF+8g8LKZlT3/KBWxTevqnObD+kzCPpRpcHAAAAAHCQahHqMzIy9Oqrr2rx4sVKTU1VZGSk7rrrLr300kuaOHGiPvroI7399tuaMGGC0aU6ROcpo9V5yuhS21KWb9aWZz4wrCbASKfO5umDRQe0POGELmQVKijAR13ahOvxUa3VsWW40eUBAADAyQ4cvaB3vtivDTtPKSfPopAgXw3oWV+PjGylRvVqGF3eNfH4UL9z504NHjxYZrNZwcHBatOmjU6ePKm33npLycnJOnfunCSpU6dORpfqMAc+XaWUbzbJy9dHtVs1UrvxwxVcL1zFBYUlx3j5+Wjoqtd09KsE7Xpzccn2G94Yr4DIWloT96JB1QOOU1Rk1VMztmjOl/tVZCn9Osdt+zL03sIDuqlrlOa93FcN6gYbVicAAACc49zFAo39649atu7EZft+2nNGr3y0S3G3NdO7f+utoED3jMcePac+IyNDQ4cOldls1qRJk5Senq7t27fLbDZr+vTpWr58uRITE2UymdShQwejy3WYzCNmpSfsVlr8Du2ZvUTfj31FEZ2aqdf0R0qOsRZatH7i22o/8S7VbtNYktRoUDdFD+yqDU/NNrB6wDEsFqtGPPW9Zs3fd1mg/7Uft5rV6/5vdMLMehMAAACe5OyFfPUZt6zMQP8Lq9WmT5cd1q2PrlBevsWl9TmKR4f6iRMnKjU1VRMmTNCMGTMUEhJSsm/KlCnq2LGjLBaLmjRpotDQUENrdaYzWw8oeeE6xQzvrciuLUu2n911RHvfWao+b/1RQfXC1Ou1R7Xl2Q+Ud+q8ofUCjjDt3R365sfjFTr2hDlHdz75vWw2m9PrAgAAgGs88NcftS/5QoWOXb/jlJ6YvtnpNTmDx4b6pKQkLViwQBEREXr55ZfLPKZLly6SpI4dO5ZsW7hwoUaMGKHGjRsrKChIrVq10l//+ldlZ7v3U7yfZy6U1VKszpNHld7+xiJZi4s1bPVrMm/Yo6NLNhhWI+AouXkW/es/++xqs21fhtZtMzutJgAAALjOvuTz+jYh1a42/156SGfO5TmtJmfx2FA/f/58Wa1WxcXFqUaNshc+CAwMlH4T6mfMmCFvb2+99NJL+u677/TYY4/pnXfe0aBBg2S1lj+Et6rLSjHr6JINqn9jB9Xp0bpku81SrDOJBxQQXlOHF/xgaI2Ao/xnxRGdzyyswJGl/es/SU6pBwAAAK71zhf77W5TWGTVh18ddEo9zuSeKwFUQHx8vCSpX79+5R6Tmnrpm5tfh/pvvvlGkZGRJX++6aabFBkZqbi4OK1fv1433nij3bV07dpVZrN9TwB9bV6aqu5293Ulu95cpJjhvdV58iitvPs5SVKdHq3VfFQ/JX34rbo//6CWDpys4nz7w1Bsi1gVmar+lx7ptZ6SvGoq3Zyu6Ohoo8txuery+c8HD5f8O9vdbtGKnxX9nwecUhMAAKgaqsv9UHmqy+c/Hfqo5FPP7nbPvfa5Zk0d4pSariYqKkpbt261u53Hhvpjx45Jkho3blzmfovFog0bLg01/3Wo/3Wg/0XXrl0lSWlpaZWqxWw2293Wz+Qt1bWzn017Nbfe3eXuv3goTZ9E/2/4vU9QgG54Y7y2vThP+/+9UoO/el7XPXOfEqfOta9jSSfTT6rQVmx3O5cLKZa8JGtxcaX/e7q16vL5GxVL/vY3s9r8PPvnAgAAqs/9UHmqy+cP9q5U2i0otLndz8VjQ31OTo4kKS+v7DkRCxYsUEZGhkJCQhQTE3PFc/3ww6Vh6a1bt77iceWJioqyu42vzUty8oPvbs89oOzjp7V/7gpJ0vonZmnYmhk6/t0Wndps3zDk+vXqu8eTem9vWSV5eXurXoMGRpfjctXl858P8FJuJdp5mQo9+ucCAACqz/1QearL5z/tbVFRJdr5+0kRBv1cKpMb5cmhPioqSufPn9f27dvVq1evUvvS09M1efJkSVKHDh1kMpnKPU9aWpr+9re/adCgQZV+l31lhlAU5eZrXrMxleqvIhr076yYYb215OZJJduyjp3SthfnqffM8Vraf5IseQUVPt/BQwflGxTgpGodJ3rAfKWdzlW9qHpK3WPfwhmeoLp8/nnLD2vMMz/a3S5u2HX65CXP/bkAAIDqcz9Unury+f88Y4te/2SP3e1e/usD+tP9rzqlJmfx2IXyBgwYIEmaPn26Dh7832IHiYmJ6tevnzIyMiTpikE9Oztbd9xxh/z8/PTRRx+5oGrXSYvfoc9bjVVOWkap7fvnrtDiXhPsCvRAVXP3wBhF1Lb/S6bHR1VuNA4AAACqlkfvsf++LjDAW+PuaOGUepzJY0P9lClTFB4erhMnTqht27Zq3769WrRooe7du6tp06bq37+/9Jv59L+Wl5enoUOH6ujRo1q1apXq1bN/kQUAxvD389afxrS1q02f6+qqR4fL19QAAACA+2neKFR3D2xiV5s/jGil2qGVWJjJYB4b6qOjo5WQkKAhQ4YoICBAKSkpCgsL05w5c7R8+fKSp/dlhfqioiLdfffd2rp1q7777ju1adPGgE8A4Fo8/VBHxQ1pVqFjYxvX1MLXb77iVBwAAAC4l4+e76OubSMqdOyg3tF69aluTq/JGTx2Tr3+u7DdsmXLLtuenZ2tlJQUeXl5qV27dqX2/fJu+++//17ffvutund37GvlALiGl5dJn7x4k2IahOiNz/YoO9dy2TEmkzSsbyN9OK2PwmtV/TUhAAAAUHEhwX764cPb9Ng/Nmj+d0dUXGy77Bh/P2/94e6WmjGpu/x8vQ2p81p5dKgvz969e2Wz2RQbG6ugoKBS+8aPH68vv/xSTz/9tIKCgrR58+aSfc2aNSvzlXcAqiYvL5NemNBFk8e116fLDmv5uhP6fvNJFVqsqhHko10L71JMdIjRZQIAAMBJagT56tOX+mr6k9303sIDeuXDn1VQZJW/n5f+MaGrHhzewu0f7njs8Psr2b17t1TO0PvvvvtOkvTKK6+oV69epf5Zvny5y2sFcO1Ca/hp/Og2+nb2rYoMu3TRrlnDj0APAABQTdSvE6znHr+uZDHliFoB+vO49m4f6EWovzzUp6SkyGazlfnPuHHjDKjWsRoP6amerzxcalvzUf00Ln2hGg1yzzkkAAAAAFBdEeqrmUa39dDxFT+V/LlGdKRi4wbo9NYDhtYFAAAAALBftZxTHx8fb3QJTuMXGqQ7fpgp7wA/5Z7MkJe/r0Ia1VXywh+16en3VbdbS61/Ytalg00mXf/6Y9ryfx+q29SxRpcOAAAAALBTtQz1nqwwM1dHvkpQUU6+ds1cqPp9O6rDxLu08c/vqv5NHXU68YBslmJJUttHhup04n6d3XXE6LIBAAAAAJVQLYffe7qwdjE6t/uoJCm8QzOd23Pp3xsN6qZj310ael+rZUM1HtJDP7+xyNBaAQAAAACVx5N6DxTWtklJkA/v0FQnViZKkur37aStL3wmSarbo7VqNKyjERvfliQFRtZSr9ceVWCd2jrwySoDqwcAAAAAVBSh3sMERYVJNptyzeckSWGtG2vXm4sU0bmFLh5KkyU3X5J04JNVpcL7oEXTtO/9ZTq+ItGw2gEAAAAA9iHUe5iwdjElT+klqTAzR63G3qqCc1mlVr0HAAAAALg/Qr2HSV2zTalrtpX8edngpyVJd6ydqZUjppbbbsUV9gEAAAAAqiZCfTWxpO+fjC4BAAAAAOBgrH4PAAAAAICbItQDAAAAAOCmCPUAAAAAALgp5tRXUT6B/opL/szoMirMJ9Df6BIAAAAAoNoh1FdRJpNJvkEBRpcBAAAAAKjCGH4PAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KZ8jC4AZbPZbLLkFRhdRoX5BPrLZDIZXQaAK3C364qzcd0CqheugZfjOgh4BkJ9FWXJK9C8ZmOMLqPC4pI/k29QgNFlALgCd7uuOBvXLaB64Rp4Oa6DgGdg+D0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuCkWykO1UFRk1XFztoosVkmSpdgqm81WbVZ8tdlsMmfklXz+IotV+QUWBfhXn0tATm6RUk/llPwMiq02o0sCAAAulJtn0Ylf3Q9Wt3sBq9VW6vNbiq2yWKzy8ak+z3nPXSwodT+cmV2o0Bp+Rpd1zarPHT2qFZvNpo07T2v+d8naujdDPx88p/yC4pL9p87mK7zPZ7qudYR6dayjcXe0ULOGoYbW7GjmjFzNXXJICdvN2rbvrE6dzSvZd/pcvkJ6faJ2zWurS+sI3TWgiW69voG8vT3nol5UZNWSH47pmx+Pa9u+DCUdvSjrr355mzPy1HDgf9SlTbj6dq2nB4a1UFhNf0NrBgAAjmOxWLU84YS+jj+mbfsytO/IBRUXl74XaDBgvrq0jtBNXaP0wNDmigwLNLRmR9t/9IL+vfSQNu86o+1JGcrMLirZd+psvkKv/0SdW4WrW9tIxQ1ppm7tIg2t19Gycgo1b3myvt9yUtv2ndXRtKySfafP5avm9Z8qtnFNdWkTrsE3RGvkLTFu+dDLZLPZqtdXVG6iKDffrV67UlVeiVJcbNXHXx/S2/P3adfBc3a1vfX6BvrzuPYa0LOB0+pzhW37MvTqx7u0+PsUWSwV/793TIMQPXZPK024t40CA9zvYvaLi1mFmvnpHr236IDSz+RWuF2Av7fuHdxUUx7soFYxtZxao1Hc7bribFXlugXANbgGXs5Tr4PZuUV647M9mvPlAaWeyqlwOz9fL91za4ymjOug9rFhTq3R2ZavO65/frJH8T+l29Wua9sITbyvjeKGNJeXl/uOaD12Mkuvfrxbn3xzWNm5RRVocUl4LX/9bnis/jy2veqEu88XPIT6Kqoyv3iierXVoMXTSp8nJ0+ZR9KVvHCdkj78VrZiq4MrvaQq/FI4cPSCHvx7gjb9fPqazjPujhaaObmHaoW611Pb/AKLnntnh16bu7vUE2l7tWxSUx+/0Ee9OtZ1aH2usHJDqn7/3Hq7foH/lr+ft6Y93lmTHmjvccPRuKEtrSpctwC4DtfAy3nidfCHn07qoanrSz2RtZePj0l/+0NnPfNQR/n6ute9wJlzeZrw8iZ9sfLoNZ2nX7d6+nBaH8VEhzisNlew2Wya8+V+Tf5nol1h/rciagdo9l+v18hbYhxan7O4199SVMiRxQlaN+FNrfvjW9r5+pfy8vFW92nj1POVh40uzWk++uqgOt3z9TUHekmau+SQ2t61WFt2Xfu5XCX5RKa6jF6i6R/tuqZAL0kHUi7qhrHL9dzs7XKX7/yKi62a8NJGDXps5TUFekkqKCzW029s1Q1jl5WasgAAAKouq9Wmya//pP6//+6aAr0kWSw2TZ29XT3ilirVfG33Fa60NjFdbe9cfM2BXpJ+SExX+xGL9Z/vkh1SmytczCrUoMdW6rF/bLymQC9JGefzdc+f43XfX35QQWFxBVoYi1Dvgc7uPqojixJ0ZOE67X1nqZYPeVY5aRmKve9m+Yd71rxxSXrj0z16aGpCqTnz1+rk6Vzd/PB3WrfVviFLRth/9IL6jFuufckXHHZOq9Wmae/u0MRXNlf5YG+xWHXf02v1r/8kOfS8W3afUZ9xy5R2jV8SAAAA57JabXpoaoJm/Hu3Q8+7Y/9Z3TBumY6mXtuXBK7wXcIJDXpspc6cz3fYOXPyLLrv6bX6YNEBh53TWc5nFqj/77/Vqo1pDj3v/O+OaOgfVykv3+LQ8zoaob4asOQV6Mz2QzJ5eSm0sfsNqb6Sj78+qD+9tsUp587Js+j2P67WjqQMp5zfEVLNORr4hxV2zR23x6z5+/S3Wduccm5HsNlseuSFDQ75Rrosh45l6pZHV+hCZoFTzg8AAK7dk69u1twlh5xy7mMnszXwke905lzVHb23cecp3fXU9055omyzSX94fr2+XOWcey1HyC+w6LbHV2p70lmnnH/1ppMaNfmHax4N60yE+moipMmlMF9wIdvoUhzm0LGLGv/SRrvaJM4fphOrRytx/rAKHZ+VU6S4Z35UfkHV+3bOZrPpoecS7Bpubu/nl6QX3/9ZaxOr5oiFBSuO6KOvDtrVxt6fwb7kC3ryVed8cQQAAK7NN2uP6+3P99nVxt57geQTWXr8RfvuOV0lK6dQ9z291q4Rq/Z+fptN+v1zCVV2KsLf/7Vdm3edqfDxlbkf/ubH45o1376/Z65EqPdAPoF+8g8LkX94qGq1aqQeL/1e4e2b6sz2Q8o8UjXDmb2Ki6168O8Jysu37xvJqIggRdcNVlREUIXbJB25oOfe2VGJKp3rw8UH7R5iVJnPL0m/+3vCNc9NcrRTZy8tBGOvyvwM/r30kJavO253XwAAwHnOZxbokRc22N2uMvcCC1en6IuVR+zuy9n+MjNRx07a99CuMp8/M7tID09bX+WmZW7++bRe/2SPXW0qez/89JuJOnw8084KXaNahPqMjAxNmTJFzZs3V0BAgBo2bKgnnnhCOTk5euihh2QymTRr1iyjy3SYzlNG6969H+vePR9p+A//VOsHByll+WbFj5tudGkO8+myw9qw45TL+ntt7m4dTLnosv6uJjO7UJNed93T46NpWZr+0S6X9VcRz761VWcvuG5Y/GP/2CiLxTlvjwAAAPZ7bvZ2p01BLMsfX95UpUZv7kjK0Dtf7HdZfys2pOrr+GMu6+9qbDabHntxg8uGxeflF+tPr252SV/2ct+XUVfQzp07NXjwYJnNZgUHB6tNmzY6efKk3nrrLSUnJ+vcuUvvMu/UqZPRpTrMgU9XKeWbTfLy9VHtVo3UbvxwBdcLV3FBYckxXn4+GrrqNR39KkG73lxcsv2GN8YrILKW1sS9aFD1V2ez2eweZnWtrFab3v0ySf+c3NOl/Zbn02WHlZnt2ifnc77cr//7Qyf5+3m7tN+ynL2Qr8+/de1qrCfMOfrmx+O68+YmLu3XpUwmtXl4iFreP1A1oiOVfzZTR7/ZqJ2vLpAlj3UFAHi+9n+8U+Htmyq8Q1OFNK6r7BOntbD740aXhTJk5RTqYyfNoy/P6XP5+nLVUd0/tIVL+y3PLAcvElwRb3++r8rcC23ceVo7959zaZ/LE07oSGqmmkZXrcXHPfpJfUZGhoYOHSqz2axJkyYpPT1d27dvl9ls1vTp07V8+XIlJibKZDKpQ4cORpfrMJlHzEpP2K20+B3aM3uJvh/7iiI6NVOv6Y+UHGMttGj9xLfVfuJdqt2msSSp0aBuih7YVRuemm1g9VeXuCfDaQthXMnHXx9Sbp7x387abDbNXuD6i/iZ8/latDrF5f2W5eOvDzn0bQcVZcTP3ZW6Pz9O3aeN04WDqdr8fx8pZdkmtXnoNt38ydOSyWR0eQDgdF2ejVNU73bKSjGr4HzVX/G8Opu3PFlZOa6fGlhV7gXOZxa4/AGH/vuqu6Qjjnvj0rUw4r+FzSa968LRERXl0aF+4sSJSk1N1YQJEzRjxgyFhISU7JsyZYo6duwoi8WiJk2aKDS0an3b4khnth5Q8sJ1ihneW5FdW5ZsP7vriPa+s1R93vqjguqFqddrj2rLsx8o79R5Q+u9mv+sMOZ9mReyCrVqU6ohff/ankPnHfr6Onv8Z0XVmEu2wKA5bWs2n1SGA18VU5XUio1W698NVsryzfrhodd0aN4aJT73b/303L9V74b2ihne2+gSAcDpFvZ4XP9p+6BWjX5BuVX8fqi6M+qeZPOuMzp20vgvfL5Ze9yQBxz670LFRissKtaiNcY8bKoq98O/5rGhPikpSQsWLFBERIRefvnlMo/p0qWLJKljx44l2xISEjRgwADVq1dP/v7+io6O1qhRo5SUVDW+lausn2culNVSrM6TR5Xe/sYiWYuLNWz1azJv2KOjS+xfbMTVtu417hVzRvZdUsM+Az+/gX3/orCoWLsOunao1a9tqwI/A2eIufMGmby8tO/95aW2H5q3RkW5+Wo24kbDagMAV8k+ftroElABVqvNkFGbv9i2z7i+f1Hd7wf3Hj7vlFf4VcQJc06Ve8Whx4b6+fPny2q1Ki4uTjVq1CjzmMDAQOk3of78+fNq37693nrrLa1atUrTp0/X3r171atXL6WmGv+UtrKyUsw6umSD6t/YQXV6tC7ZbrMU60ziAQWE19ThBT8YWmNFWK027XDx3JlfqwoXcSNDZfqZXJcuSFOWPYfOq7DIuAXrPDXUR3RqLmtxsTJ2lJ6fWFxQpHN7UhTRqZlhtQEA8GuHjl00ZOj9L6rCvYCRNVSNz2/sPbnR/f+Wx4b6+Ph4SVK/fv3KPeaXkP7rUD9s2DDNnDlTI0eO1E033aS4uDgtXrxYFy9e1KJFi1xQufPsevPSU/lfP62v06O1mo/qp6QPv1X35x+Ud4CfoTVezcnTuYa+Wu1AFVgB3+ga6N/4vwPOEFS3tgrOZclaePm6EbnmcwoIrykvX49fWxUA4AaM/l1sdP9G12DOyFNmdmEFjnQeo/8bHEipGusK/MJkq2ovG3SQhg0bKjU1VTt27ChzZXuLxaJ69eopIyNDycnJatq0abnnOnv2rCIiIjRr1iyNHz/e7lq6du0qs9lsVxtfm5emWrvb3Zc9fIICNOz7Gdo3Z5n2/3ulBn/1vDJ+Tlbi1Ll2n2ua108qMjn/6anFK0ynaj1R7v7E+cOu+M7JqIhA+Xh7yVJslTmj/GEz5oxcdbt36WXbvaxZqndhRiUqd5wzIb9ToW/jMvc56vPrCj+D8KxPFVB0uBKVO0aOX2ddqDG8zH1X+/xywN+BgMK9Cs/+ohKVG+9K15W7Ns2Sl6+3FnZ97LJ9N7z1RzUfeZM+b/mACjONHanhSK66bgGoGuy9t7rjh3/KNzjAo1e/d9frYK5fW52vcU+Z+1xxL+BfeFAR2fMqUbnjnKz9V9lMZT+Mc/b9sCRFnX9V3racSlTuGBeCblNOQI8y97nifjg0d41C8hMqUfmVRUVFaevWrXa389jHLjk5l/6S5eWV/R9qwYIFysjIUEhIiGJiYi7bX1xcLKvVqmPHjumZZ55RVFSU7rmn7IvH1ZjNZqWlpdnVxs/kLdWtVHcV1u25B5R9/LT2z10hSVr/xCwNWzNDx7/bolOb7VtD4GT6SRXaXDCvxa9QqlX+7qiIIEXXDb7qaXy8vSp03G9Ziy12/7d0uJh8ybfsXc7+/JJ0NuOMlG3gz6BWY6nsGTUV/vy6hp9Bfm6O8X8HKulK15XivAL5Btcsc5+3/6W/cJY8Y7+VdzSXXbcAVAmuuLdyN257HQyNMvReoCA/z/h7gZpWqZy3DLviftCcflIqzq5UW4eoly0FlL3LFZ8/8+IFZWZUnftBjw31UVFROn/+vLZv365evXqV2peenq7JkydLkjp06CBTGa9quummm7Rhw6VF45o3b674+HhFRkZWuhZ7+dq8JCd+cdqgf2fFDOutJTdPKtmWdeyUtr04T71njtfS/pPsei91/Xr1XfJNb7EpSFca82DOuPJTRHu+mSyLj5dFdRs0qHC9znDWTypv/XVHff4rnSsiPET+NY37GeT5Bqq8VRWu9vnlgL8DQQFeqm3w34HKutJ1JffUedWMjZaXn89lQ/CDosKUf/airEXGv9LRkVx13QJQNTj73soduet1MN8nWOXNaHbFvUCgv0lhBt8LpJsKZC0n1Tr7flg2q+pHhcuksh8GuEJmoI/KeweBK+6Ha4X6K9jf8X8HKpMb5cnD7ydOnKi3335bDRs21Jo1axQbGytJSkxM1P33368jR46oqKhI48eP16xZsy5rf+DAAV24cEFHjx7Va6+9ptOnT2vDhg1q1KiRS+ovys3XvGZjXNKXI8QlfybfoHK+LnOw+jfPr/RibSdWj1Z03WClnspRw4H/sbv9qEEx+s+r/SvVt6P89a2teumDnyvV9lo/v8kkZW56QDWCyhkq4ALJJzLVfMiXlW5/rT+DWc/20vjRbSrdv5GudF3p/JfR6vjk3fp2+N90esv/Rup4+/tq9L6PdWpzktbEvejCap3PldctAMaz996qOgy/d9froDkjV/X6z690+2u9F5j+ZDdN+V2HSvfvCLc9vlLfra/cIt7X+vlbNqmp/UvvrlTfjvLlqqO658/xlWp7rZ9fkjZ+ert6daw6Q388dqG8KVOmKDw8XCdOnFDbtm3Vvn17tWjRQt27d1fTpk3Vv/+lYPbrRfJ+rWXLlurRo4dGjx6t77//XllZWXr11Vdd/ClQlq5tIgzsu3KjNRxaQ1vjPn+rmFqGBnpJahodolohxi3oaOTfP2c6umSjbFar2jw8pNT2FnED5BsUoCOL1xlWGwAAvxYVEaQGda48b96ZulSBewEjazDyXrSkBgM/v5eXSR1jww3rvyweG+qjo6OVkJCgIUOGKCAgQCkpKQoLC9OcOXO0fPlyHTx4ULpCqP+1WrVqqXnz5jp82LjFwfA/vTrWqZZ9/6JH+0iVMWPEJarC5zeZTOrZwZg6AgO81SE2zJC+ne3C/uPa//EKNRnSU/0+nKwW992srlMfUPfnxsq8ca+OLF5vdIkA4HRN775RHZ4coQ5PjlBAeKh8Q4JK/tz07huNLg+/YtQ9ia+Pl7q0MT7QVff74SYNaigqItCQvju1DFNQYNWaxV61qnGw1q1ba9myZZdtz87OVkpKiry8vNSuXburnuf06dM6cOCAevQoe4VFuNYDQ5vrb//apuJi184cadmkpq7vZPxFrH6dYA2+IVrfJlRuyNW1eOjOWJf3WZaH7ozVig2u//xxtzVTYIDnXjZ/+vtcZZ84o9gxAxR983XKP5eppI++045XF0ieOVMLAEqJvfdmRV3fttS26/5yryRd+oJzIaOWqoqH7myphatTXN7viAFNVCvU3+X9/tYtvRqoQZ0gpZ127VtpAvy9de/gZi7tsywmk0m/Gx5b6Smp16Kq3A//mufenV7B3r17ZbPZFBsbq6Cg0kN3xowZo+bNm6tTp06qVauWDh06pJkzZ8rHx0d/+tOfDKsZ/9OgbrCG92usRWtceyF/fFTrMhdVNMLjo1q7PNR3bBlWJb6ZlaQ7+jVW/TpBOuniX2SP3dPapf25ms1q1d4532jvnG+MLgUADLFixFSjS0AF3XJ9AzVrGKLkE+Utl+Ycj4+qGvcCPj5eemRkK/39X9td2u+9g5sqrKbxX2pI0h/ubqlXPtolq9V1Dx5qBPlqzO3NXdZfRXns8Psr2b17t1TO0PuePXvq22+/1YMPPqjBgwfrtddeU58+fbRz5041b171/gNWV5PGXn2EhSNF1A7QA0Orzn//Qb2j1bbZFd7t5wSTx7WvMl9q+Pp66cm4thU40nH6d6+n66rAHDoAAHBpXvOkB9q7tM8e7SN1w3VVZ3G0P9zdSqE1XLfWkbe3SU+Oce09+JU0rh+iUbde/mpyZ3p0ZCuF1jBubafyEOp/Y8KECfrpp590/vx55eXl6eDBg5ozZ44aN25sQKUoT6+OdfXH+1y3Avnsv15fJYZa/cLb20sfv3CjvL1dE7Jv6xOt+24zfqjVr/3p/nYuWyQmKMBH7z93g0v6AgAAFfPIyFbq46KQ7efrpY+e71NlHnBIUt3wQP3zz66bHvz07zpUubWF3pjSUxG1XfMGh2YNQ/TcY51d0pe9CPXVTOMhPdXzlYdLbWs+qp/GpS9Uo0HdDKurMl6e2FVNo0PsamPOyFXqqZwKvcP0FyNvidHIW1z7LWBFdGsXqSnj7HudSmU+f80QP7339xuq1C8x/XfY2dwX+sjP177LWGV+BtP/1E1No0MrUSUAAHAWLy+TPnr+RgUGeNvVrjL3AtMev05tmtWuRJXO9bs7YzWod7RdbSrz+ds1r62/PVL1Am2d8ED969ledrWpzOc3maSPn79RwQa/Bao8HvueenfnrPfU9/nXE0r+cq1Orr20qESN6EjdOPtJySTt+dfXOr4isVLnNeo9p7sPntNNv1uu85mFTjl/p1Zh+uGD26rUU/pfKyqy6s4/rdHydSeccn4/Xy998/ZA3XK9fb8sXOnz5cka8+xap63jNu6OFvpwWh95eVWtLzUqw1nXFXflru9nBlA5XAMv5ynXwa/jU3T3pHinLaJ8z60x+vyVvvL2rprPQ8+cy9ONDy7X/qMXnXL+uuGBSpg7RC0a13TK+a+VzWbT028k6tWPdzutjzem9NATVWjqwW9Vzb+ZqDS/0CCN3DZHo/d+rGGrX9PwdW/o/pT5un7GozL5eKtut5ZKX7/n0sEmk65//TFt+b8PZS20GF16pbSPDdOqOYMUXsvxobtzq3CtendQlQ30+u/c8i9n9NfgGxwfuv39vLXw9ZurdKCXpPuGNNNHzzsndN9/e3O9P/UGjwj0AAB4quH9m2jey33l4+P439d3D2yiT1+6qcoGekmKDAvUmvcGq3VTx6+3FBURqDXvDaqygV7/XQn/lSe76U/3O2e9pdee6l6lA70I9Z6nMDNXR75K0L4PlmvpwMn66e8f68z2g9r453dVr3c7nU48IJulWJLU9pGhOp24X2d3HTG67GvStW2kNvz7dofOrx49qKl++PA2RYYZ8/5LewQG+OjrNwfoT/e3ddj765tGhyj+g8Ea2reRY07oZOPuiNWytwc67H2lPj4mPT/+Os39x43y8eEyCQBAVTdqUFOtfGeQousGO+R83t4mPfv7jvrPq/3k52vf8H4jNKgbrHUfD9Ed/Rx373Z9pzra+MlQtWtRtebRl8VkMun1P/fQ28/0sns6Rnlqhfjp81f66s/jXLsgY2Vwt+qBwtrF6Nzuo5Kk8A7NdG7PpX9vNKibjn33kySpVsuGajykh35+Y5GhtTpKy5ha2vTpUP1jQhf5XkMIqxMWoEX/vFnzX+2nmiFVb2XL8vj5euufk3tq3cdD1LzRtc39/uN9bbRr4Z26vlPVWd21Igb3aai9X43QmNuvbUG/Tq3CtHX+HfrbI515Qg8AgBvp36O+9iy+65rfI962WS1t/myoXpzYtUo/of+tiNoB+uqNAfrs5ZtUO7Ty97EB/t765+QeWvfxEMXYuX6VkUwmkybc20Y/f3mnbuh8bfexQ29qpH1fj9C9VWyh6PIwp76KupZ5X6N2f6hvBk5Wrvmc+n7wZ51YmajkL3/UXZtmaenNf5YlN18tH7hFHZ8aKWthkSQpMLKWCrPztPO1BTrwySq7+6xKc7JOmLP13sIDen/RAZ06m1ehNm2b1dLjo1przO3Nq+RrKuxRUFishauPavaCJG3cebpCbUJr+GrssBZ6dGSrKrkIjL227cvQOwuS9Pl3ycrLL65Qm4G96uvxUa11+42NPPbpPPNJS6tK1y0Azsc18HKefB3cdfCc3lmQpE+XHVZOXsWmmfbtVk+Pj2qt4f0ay9fOhXirmguZBfr30kOavWC/Dh6r2Fz7BnWC9MjIVvr9XS1VLzLI6TU6k9Vq0+pNaZq9IEnL1p2o0LvsfX28dPfAJnp8VGv17ly3yi0SfSWE+iqqsr94gqLCNHTVq1rQ4feSpLs2vK21j/5TXj4+6vinu/X9Ay+X2W7Qomna9/4yt1so70oKi4q1NjFdW/dmaNu+s0o6ekG5+RZ5e5kUEuyrjrFh6tImQj071FG3dhFu9X/citp7+LzW7zilbfsytGP/WZ3PLFCRxapAfx81axiirm0i1aVNuPr3qK8aVXQ1z2txPrNA8VtOatu+s9q674yOncxRfqFFfr7eiqjlr+taR6hLmwjd2CXqmkc4uANuaEuritctAM7DNfBy1eE6mJldqO+3nNS2fZfuB4+kZim/0CJfHy+F1wzQda3D1aVNhPpcV1ctYxw/J91oNptNm34+rS27z2jbvgztPnReWTlFstlsCg70UeumtdS1bYS6tY3UjV2iPPLBxglzttYmpv/3fjBDp87mqbCoWP5+3oquE6wubSIu3Q93r6864VV/6m1ZfIwuAI4V1i6mZLi9JBVm5qjV2FtVcC5Lx1f8ZGhtrubn661bro+u8gu9OVPb5rXVtrn7P3mvrNqh/hoxMEYjBla9VxICAADnC63hpztvbqI7b25idCmGMJlMur5TXbebVulIDaNq6P6hLXT/0BZGl+I0hHoPk7pmm1LXbCv587LBT0uS7lg7UytHTC233Yor7AMAAAAAVE2E+mpiSd8/GV0CAAAAAMDBPG/SBAAAAAAA1QShHgAAAAAAN0WoBwAAAADATTGnvoryCfRXXPJnRpdRYT6B/kaXAAAAAADVDqG+ijKZTB7/3lAAAAAAwLVh+D0AAAAAAG6KUA8AsFtUr7Yal75Q49IXqseLD5V5TEB4qO4/Nl/j0hdq0KJpLq8RAJyJ6yCAqoJQDwCoNEtegZreeYO8/C6fzdXs7ptkMplkLbIYUhsAuALXQQBGI9QDACrt+Hc/yb92iBrd2u2yfc1H91Pq9ztUXFhkSG0A4ApcBwEYjVAPAKi0s7uP6tzeFDUf3b/U9ohOzVW7VSMdXhBfZrtGg7pp8JJ/KC75M8Ud/lSDl/xDDX9zQzxk+csatesDmbwv/1VVv29HjUtfqDYPDym1veUDt+j2ldM15sg8xR3+VLcufE5R17d1yGcFgLJwHQRgNEI9AOCaHPpPvOrf1EFBUWEl21rc2195Zy7oxOptlx3fcuyt6v/xX+Rfu4Z+/udC/Txzkfxr19DNc/+i2DEDSo47/MVaBUbWUoN+nS87R7ORfWUtsujI4oSSbX1mTVSPlx5S1lGztr7wqXa+9oX8QoN0y4K/q+EtXZ3y2QFAXAcBGIxQDwC4JkcWrZPNYlWze/pKkrwD/BRzR28lL1wnW7G11LF+NYPV9W9jlHk0Xctve0Z7/vW19vzray2/7RllppjVbepY+YUGSZKOLtmg4oIiNRt5U6lz+AQHqNGgbkqN36H8s5mSpEaDu6vZiBu1+en39eOjM7X/4xXaO+cbLRv8tM7tTVH3Fx502c8DQPXDdRCAkQj1AIBrUnA+WydWbVXz/97MNr6th/xqBuvQfy4fclr/xg7yDQ5U0offqSg7r2R7UXaekj78Vr41AlWvTwdJUuGFbJ1YvVUNB3YpucGVpCa395JvUICSv1xbsq3piBtVmJV7aW5rWEjJP341g3Vi1VaFNKqr0Kb1nPyTAFBdcR0EYKTLl+kEAMBOh/4Tr4Hz/qo63Vup+ej+OrP9kC4eTL3suBqN6kqSLhw4cdm+X7aFNK5bsu3wF2vV5PZeajLseh38bI0kqdnIm1RwPksnVv1vSGutFg3kFxKk0Xs+KrfGgMhayjySfo2fFADKxnUQgFEI9QCAa3Zy7c/KOXlWnZ4aqXq922rT0+875Lxp8TuUl3FRzUbepIOfrVFwgwhF9WqjA5+sKv2KKJNJeRkXte7xN8o914X9xx1SEwCUhesgAKMQ6gEA18xmtSp54Y/qMPEuWfIKdPSr9WUel3XslCSpVsuGSl+/u9S+WrENSx0jSbZiq45+laA2D9+uGo3qqOmdN8jk5aXDX/xYqm3mkXRFD6inM9sOyZKb74RPCABXxnUQgFGYUw8AcIgDn6zSzhlfaNNf3is1T/TX0tf9rKKcPLX+3WD5BAeUbPcJDlDr3w1WUXaeTq7bVarNLzeuzUf2VbO7b9LFw2nK2HGo1DHJX/4oL29vdXn2vjL7DYio6YBPCABXxnUQgBF4Ug8AcIictAztfP2LKx5TmJmrrS98pl6vPKzbv31ZhxdcWuSp+ai+Cm1aTxsnv6uirNxSbc7tOapz+46pzR+GyC80WNtemnfZeY8t36xD8+PV+qHbFNa+qVLXbFP+uSwF1wtTZNeWCm0SpUU9xzv4EwNAaVwHARiBUA8AcKkD/16pvNPn1e6xO9Rx0khJ0vm9xxT/4HQdX5FYZpvkL9aq23NjZS0uVvKidWUes+Gp2UrfuEctxwxU+z/eKW9fH+WduaCzu4+WeQMMAEbhOgjAkUw2m81mdBEAAOcrys3XvGZjjC6jyohL/ky+QQEVOBKAJ+AaeDmug4BnYE49AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AQDVRXGzVuYsFys4tks1mM7ocl7PZbMrKKdT5zAIVF1uNLscQhUXFOnshX/kFFqNLAQA4iI/RBThbRkaGXn31VS1evFipqamKjIzUXXfdpZdeekkTJ07URx99pLffflsTJkwwulQAMFT7P96p8PZNFd6hqUIa11X2idNa2P1xo8vCNbLZbFq3zazZC5K0+PsUWSyXwnzDqGA9cncr/X5ES9UNDzS6TKdKO5Wj9xYe0PuLDyj9TK4kyc/XSyNvidH40a3Vs0MdmUwmo8t0msKiYi1ek6LZC5KUsP1UyfYubSL0+KjWGj2oqYICPf6WsGJMJrV5eIha3j9QNaIjlX82U0e/2aidry6QJa/A6OoAoEwmmwd/Vb9z504NHjxYZrNZwcHBio2N1cmTJ3Xq1CkNGTJE586d06ZNm5SQkKAbbrjB6HIBwKmKcvM1r9mYcvePS1+o/HNZOrf7iMI7NFVRdp5Hh/q45M/kGxRgdBlOlZVTqFGTf9B361PLPcbP10sfP3+j7hvSzKW1ucp7C/dr/IsbZSku/3ZnxIAm+vSlmxQY4HnB9tCxi7pt/CodPp5Z7jH16wRp2dsD1bl1hEtrc7WrXQMlqfsLD6rN74fo2LdblBq/Q7VaNFDr3w3WqS1JWnnP85KH3TZXh+sgUB143m+v/8rIyNDQoUNlNps1adIkTZ06VSEhIZKkV199VX/5y1/k4+Mjk8mkDh06GF0uABhuYY/HlX38tCTpjh/+Kd9gbvTcWX6BRUPGryr1ZLYshUVWxT2zVlabTWNub+6y+lzh3S+S9Ng/Nl71uEVrUpSTZ9HStwbK19dzZiampGXpxgeXy5yRd8XjTp7OVd+HvtX6uberfWyYy+qramrFRqv17wYrZflmrf39jJLtWcdPq+eLDylmeG8d/Wq9oTUCQFk85zfXb0ycOFGpqamaMGGCZsyYURLoJWnKlCnq2LGjLBaLmjRpotDQUENrBYCq4JdAD8/w8ge7rhrof+2hqQklQ9M9QfKJTI1/aVOFj1+xIVVvfb7XqTW52u/+nnDVQP+LzOwi3fuXH6rlWgu/iLnzBpm8vLTv/eWlth+at0ZFuflqNuJGw2oDgCvxyFCflJSkBQsWKCIiQi+//HKZx3Tp0kWS1LFjx3LPM3jwYJlMJj333HNOqxUAAEcrLCrWe4v229nGqg8WH3BaTa727hf7ZbXaF1BnL0iyu01VtS/5vH5ITLerzd7kC1q3zey0mqq6iE7NZS0uVsaOQ6W2FxcU6dyeFEV08swpKgDcn0eG+vnz58tqtSouLk41atQo85jAwEuLApUX6r/44gvt3LnTqXUCAOAM36w9XuEntL8250v7g3BVVFhUrI++Pmh3uyOpWVqzOc0pNbnaewsr9wXNu1/Y92WQJwmqW1sF57JkLbz8zQC55nMKCK8pL1+PnbkKwI155JUpPj5ektSvX79yj0lNvbRoUFmhPjMzU08++aRmzJihMWOuvKBKRXTt2lVmc/X95htA1eBr89JUdTe6jCojtkWsikye+VqzzICbpKD+drdLO52r6MbN5WVz71W+LV6hOldrUqXa3nP/k6pRsNnhNblaRsgDkq/9T5YXLtuohM/vd0pNRrvaNdA70F/FhUVl7isuuLTdJ9BPhUWe8zpAT74OAu4oKipKW7dutbudR4b6Y8eOSZIaN25c5n6LxaINGzZI5YT6v/71r4qNjVVcXJxDQr3ZbFZammd88w/AffmZvKW6RldRdZxMP6lCW7HRZThH3TwpqHJN09PPSMVZjq7ItfyKpFqVa3oxM0cXMzzgd3bTYsnX/maWYnnsPcvVroHFeQXyDa5Z5j5v/0s/TEteobPKM4RHXweBasQjQ31OTo4kKS+v7KGHCxYsUEZGhkJCQhQTE1Nq39atW/X+++9r27ZtDqsnKirKYecCgMrytXlJPJApUb9efY99QpXt762LlWlos6p+VG2Z5N4LyFpNAbJvNvn/1ArxVbB/AwdX5HpnfS3Kr0Q7P68CRTZw/89flqtdA3NPnVfN2Gh5+flcNgQ/KCpM+WcvyupBT+nl4ddBwB1VNjd6ZKiPiorS+fPntX37dvXq1avUvvT0dE2ePFmS1KFDB5lMppJ9xcXFeuSRRzRhwgS1bdvWYfVUZggFADhaRd7RXJ0cPHTQY9/PnJKWpaa3fWH3K7XvHBCjxTOPOasslxrw8Hf6fstJu9r4+njpQOIC1QkPdFpdrvL58mTFPbPW7nbTn71HT97/vFNqMtrVroEZOw+rQd9OiujcQqe3JJVs9/b3VVi7Jjq1Oanctu7Kk6+DQHXikQvlDRgwQJI0ffp0HTz4v4VyEhMT1a9fP2VkZEiSOnXqVKrdrFmzdOrUKVa7BwC4tSYNQjSkT0O72z0+qrVT6jHC+NH2f5aRt8R4RKCXpBEDmyiytn1hLTDAW2PvaOG0mqq6o0s2yma1qs3DQ0ptbxE3QL5BATqyeJ1htQHAlXjkk/opU6bo888/14kTJ9S2bVu1atVK+fn5Onz4sAYPHqwmTZpo5cqVpebTZ2Rk6G9/+5tmzJghi8WiCxculOzLz8/XhQsXFBoaKi8vj/weBADU9O4bVSM6UpIUEB4qL18fdXhyhCQpO/WMjizkhtadTH2ss9ZsOan8gorNlx3Qs75u7lHf6XW5ytCbGqlXxzra9PPpCh1fI8hHz/6+/Nfcuht/P289P/46PfaPjRVu85cHO6h2qL9T66rKLuw/rv0fr1Drh25Tvw8nK/X77arZooHaPHSbzBv36sji9UaXCABlMtls9g7Ocw9JSUmaPHmyfvzxR0lSmzZt9NBDD+nhhx9Ws2bNdPToUW3ZskXdu19aBXXnzp3q3LnzFc959OhRNWnSxCX1A4CjXW3o6aBF0xR1fdlTj8wb92rFiKlOrM714pI/8/hhp9+sPa57JsdfNdj37BCpFe8MUs0QP5fV5goZ5/M18JHvtHP/uSseFxzooyVvDtTNPT3nS41f/P1f2/TCnKu/ovfRka00+/+uLzUt0dNUZAqSyctLbR4eotgxA1SjYR3ln8tUytKN2vHqAllyK7NKQdVWHa6DQHXgsaG+PNnZ2QoNDZXJZFJWVpaCgoJKtpc1971fv34aO3asxo0bp549eyoggAsfAPfEnPrSqsvNbOKeM5r27g59m3Disjn2kbUD9PCIlvq/P3RSYIBHDt5TVk6hpr2zQx99fVDnM0uvXO7lZdId/Rpp6qOd1bFluGE1OtuCFUc0/aNd2rH/7GX7WsXU1KQH2uuhu2I9OtCLa2CZqst1EPB0nvkb/Ar27t0rm82m2NjYkkAvSTVq1FDfvn3LbNOkSZNy9wEAUJV1axepZbNu0dHULC3+PkXPvbNd2bkW1Q7104nVo+Xv5210iU4VEuynGX/uoRcmdNGiNSl6/B8blJVrUc0avtq9+C41jKphdIlON2pQU91za4x+2n1Gazaf1Csf/azsXIsiavlr39cjPD7MA4Cnq3YTxHfv3i2V8356AAA8VUx0iCaNba+aNS4NsQ8K8PH4QP9rgQE+GnN7c4X+9/PXCPKtFoH+FyaTST061NFf/9Cp5O+Av583gR4APEC1e1Jvb6ivZrMTAAAAAABuhCf1AAAAAAC4qWr3pD4+Pt7oEgAAAAAAcIhq96QeAAAAAABPQagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATfkYXQAAwDV8Av0Vl/yZ0WVUGT6B/kaXAMCFuAZejusg4BkI9QBQTZhMJvkGBRhdBgAYgmsgAE/F8HsAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN+VjdAEom81mkyWvwOgyKswn0F8mk8noMgAAAACgWiHUV1GWvALNazbG6DIqLC75M/kGBRhdBgAAAABUKwy/BwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3xUJ5AAB4uKycQu1IOqvDJ7KUnVskScrNt2j/0QuKbVxTXl68vQQAAHdFqAcAwAOdMGfrvYUHtHD1UR1IuSibrfT+85mFan3HItUI8lWvjpF6eEQrDe/XWL6+DOIDAMCdEOoBAPAgR1IzNfn1RH39wzFZrbarHp+dW6TVm05q9aaTqhcZpEkPtNMTcW3l40O4BwDAHRDqPUhUr7YatHhaqW1FOXnKPJKu5IXrlPTht7IVWw2rDwDgPFarTbMXJOkvMxOVm2+p1DnSz+Tqz6//pC9WHtXcf9yo1k1rObxOAADgWIR6D3RkcYJS47dLJpMCI2up+cib1H3aONVs0UCbJs8xujwAgIPl5Vs0avIP+ubH4w453097zqjzPV/rs5du0t23xDjknAAAwDkYW+eBzu4+qiOLEnRk4TrtfWeplg95VjlpGYq972b5h4caXR4AwIHyCyy6fcIqhwX6XxQUFmvUlB80/9tkh54XAAA4FqG+GrDkFejM9kMyeXkptHFdo8sBADiIzWbT/c/+qPif0p1yfqvVpgf+70f98NNJp5wfAABcO0J9NRHS5FKYL7iQbXQpAAAH+WzZYS1cnWJXm8T5w3Ri9Wglzh9WoeMtFpse/HuCsnIKK1klAABwJkK9B/IJ9JN/WIj8w0NVq1Uj9Xjp9wpv31Rnth9S5hHnPM0BALhW+plcTXxls93toiKCFF03WFERQRVuc+xktib/M9HuvgAAgPNVi1CfkZGhKVOmqHnz5goICFDDhg31xBNPKCcnRw899JBMJpNmzZpldJkO03nKaN2792Pdu+cjDf/hn2r94CClLN+s+HHTjS4NAOAgL76/UxeyXPf0fM6X+3Xg6AWX9QcAACrG41e/37lzpwYPHiyz2azg4GC1adNGJ0+e1FtvvaXk5GSdO3dOktSpUyejS3WYA5+uUso3m+Tl66ParRqp3fjhCq4XruKC/938efn5aOiq13T0qwTtenNxyfYb3hivgMhaWhP3okHVAwCuJiunUJ98c9jl/b775X7NnNLT5f0CAIDyefST+oyMDA0dOlRms1mTJk1Senq6tm/fLrPZrOnTp2v58uVKTEyUyWRShw4djC7XYTKPmJWesFtp8Tu0Z/YSfT/2FUV0aqZe0x8pOcZaaNH6iW+r/cS7VLtNY0lSo0HdFD2wqzY8NdvA6gEAVzNvebKycopc3u/HSw4pJ9f1/QIAgPJ5dKifOHGiUlNTNWHCBM2YMUMhISEl+6ZMmaKOHTvKYrGoSZMmCg313Fe9ndl6QMkL1ylmeG9Fdm1Zsv3sriPa+85S9XnrjwqqF6Zerz2qLc9+oLxT5w2tFwBwZcvWnTCk34tZhdr482lD+gYAAGXz2FCflJSkBQsWKCIiQi+//HKZx3Tp0kWS1LFjx5Jta9eulclkuuwfdx+e//PMhbJaitV58qjS299YJGtxsYatfk3mDXt0dMkGw2oEAFTMtn0Z1bJvAABwOY+dUz9//nxZrVbFxcWpRo0aZR4TGBgo/SbU/+Jf//qXrrvuupI/BwcHO7Fa58tKMevokg1qNuJG1enRWqe3JEmSbJZinUk8oIgOzXR4wQ9GlwkAuIqTp3NkzsgzrH9CPQAAVYvHPqmPj4+XJPXr16/cY1JTU6VyQn2bNm3Us2fPkn/at2/vxGpdY9ebl57K//ppfZ0erdV8VD8lffituj//oLwD/AytEQBwZcfTcwzt/4TZ2P4BAEBpHvuk/tixY5Kkxo0bl7nfYrFow4ZLQ83LCvWO1LVrV5nNZrva+Nq8NFXd7Wpj3rRXc+vdXe7+i4fS9En0/wK9T1CAbnhjvLa9OE/7/71Sg796Xtc9c58Sp861q19Jim0RqyKT1e52AAD7FPg0lkJ/V+a+xPnDrvr++aiIwJL/PbF6dLnHmTNy1e3epZdt375jl6KjH7e77qoivdZTkldNpZvTFR0dbXQ5huBnAABVU1RUlLZu3Wp3O48N9Tk5l54k5OWVPURxwYIFysjIUEhIiGJiYi7bP2rUKGVkZCg8PFzDhg3TK6+8ooiIiErVYjablZaWZlcbP5O3VLdS3VVYt+ceUPbx09o/d4Ukaf0TszRszQwd/26LTm1OsutcJ9NPqtBW7KRKAQAlggKkctZ2jYoIUnTdik0X8/H2qvCxv1ZUmG/377QqJaRY8pKsxcXu/TmuBT8DAPAoHhvqo6KidP78eW3fvl29evUqtS89PV2TJ0+WJHXo0EEmk6lkX82aNTV58mTdeOONqlGjhjZt2qSXX35Zmzdv1tatWxUQEFCpWuzla/OSnPjgu0H/zooZ1ltLbp5Usi3r2Clte3Gees8cr6X9J8mSV1Dh89WvV58n9QDgAhavIJ0qZ585I/eq7aMiAuXj7SVLsfWKc/PLO5e/T5EiGjSocL1VTbq3t6ySvLy9Vc+NP8e14GcAAFVTZXKjJJlsNpvN4dVUARMnTtTbb7+thg0bas2aNYqNjZUkJSYm6v7779eRI0dUVFSk8ePHa9asWVc81zfffKNhw4bpo48+0oMPPuiS+oty8zWv2RiX9OUIccmfyTfI/i88AAD2sVptqn3Dp8rMrtz74k+sHq3ousFKPZWjhgP/Y3f7//tDJ70woUul+q4KogfMV9rpXDWoE6TUNfcaXY4h+BkAgGfx2IXypkyZovDwcJ04cUJt27ZV+/bt1aJFC3Xv3l1NmzZV//79pQrOp7/99tsVHBxcqfkNAAA4kpeXSde1rtx0MEfo0ibcsL4BAMDlPDbUR0dHKyEhQUOGDFFAQIBSUlIUFhamOXPmaPny5Tp48KBk5yJ5vx6mDwCAUfp1q2dIv74+XurdyckLvgAAALt47Jx6SWrdurWWLVt22fbs7GylpKTIy8tL7dq1u+p5li5dqpycHHXvbt9q9AAAOMNDd8bq+Tk7VFzs2hl0IwY0UWRYoEv7BAAAV+bRob48e/fulc1mU2xsrIKCSr/6Z8yYMWratKmuu+66koXyXn31VXXq1EmjR5f/6h8AAFylQd1gDe/XWIvWpLi03/GjW7u0PwAAcHUeO/z+Snbv3i2VM/S+bdu2+uqrr/TAAw9o8ODB+uijj/Twww9r7dq18vPzM6BaAAAu99eHO8rb23XTwvp3r6fenRl6DwBAVUOo/41nnnlGu3fvVmZmpoqKinT06FH985//VM2aNQ2o1PEaD+mpnq88XGpb81H9NC59oRoN6mZYXQAA+3RuHaFnHqr4ujDXokaQrz6c1oe1ZQAAqIII9dVMo9t66PiKn0r+XCM6UrFxA3R66wFD6wIA2O9vj3RSx5ZhdrUxZ+Qq9VROhd5p/4sZk7qrSYOQSlQIAACcrVrOqY+Pjze6BKfxCw3SHT/MlHeAn3JPZsjL31chjeoqeeGP2vT0+6rbraXWPzHr0sEmk65//TFt+b8P1W3qWKNLBwDYyc/XW8tn3aIbxi5TysnsCrXpdu9Su/qY9EA7/eHulpWsEAAAOFu1fFLvyQozc3XkqwTt+2C5lg6crJ/+/rHObD+ojX9+V/V6t9PpxAOyWYolSW0fGarTift1dtcRo8sGAFRSg7rBWvvRbWrRONTh5/7L7zrotUndGXYPAEAVRqj3QGHtYnRu91FJUniHZjq359K/NxrUTce+uzT0vlbLhmo8pId+fmORobUCAK5d4/oh2vzZMI25vZlDzhdW01+fv9JXrzzZjUAPAEAVR6j3QGFtm5QE+fAOTXX2vwG/ft9OSovfIUmq26O1ajSsoxEb39bdP81W5HUt1Ou1R9XygVsMrR0AUDlhNf316Ut99fWbA9QwKrjS57l7YBPt/eou3XubY74gAAAAzlUt59R7sqCoMMlmU675nCQprHVj7XpzkSI6t9DFQ2my5OZLkg58skoHPllV0m7Qomna9/4yHV+RaFjtAIBrd0e/xhrSp6GWrTuu2QuStHrTyau2qR3qp98Nj9Wj97RW80aOH8YPAACch1DvYcLaxZQ8pZekwswctRp7qwrOZZVa9R4A4Ll8fLw0vH8TDe/fRBcyC7Q96ay27s3QoeMXlVdQLB9vL9UO9VOnluHq0iZcrWJqyceHwXsAALgjQr2HSV2zTalrtpX8edngpyVJd6ydqZUjppbbbsUV9gEA3FetUH/171Ff/XvUN7oUAADgBIT6amJJ3z8ZXQIAAAAAwMEYawcAAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAboqF8qoon0B/xSV/ZnQZFeYT6G90CQAAAABQ7RDqqyiTySTfoACjywAAAAAAVGEMvwcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATfkYXQDKZrPZZMkrMLqMCvMJ9JfJZDK6DAAAAACoVgj1VZQlr0Dzmo0xuowKi0v+TL5BAUaXAQAAAADVCsPvAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAEC1YLPZZLPZSv4dAABPwOr3AADAI+XmWbT4+xRt3HlK2/ad1a5D55RfUCxJOnkmT7FDv1TXNhHq2jZCdw+MUaN6NYwuGQAAuxHqAQCARzmSmqm3P9+nuUsO6UJWYbnHHTqWqUPHMjX/uyOa/M9EDenTUBPuba2BvRrIZDK5tGYAACqLUA8AADxCcbFVMz/dq/+btU0FhcV2tbVabfrmx+P65sfjGjGgiWb/9XrVCQ90Wq0AADgKod6DRPVqq0GLp5XaVpSTp8wj6UpeuE5JH34rW7HVsPoAAHCWVHOO7pkcr00/n77mcy1ak6Ift5n173/cqNv6NHRIfQAAOAuh3gMdWZyg1PjtksmkwMhaaj7yJnWfNk41WzTQpslzjC4PAACHSj6RqZsf/k7HTmY77JwZ5/M1bOJqffKPm3TfkGYOOy8AAI7G6vce6OzuozqyKEFHFq7T3neWavmQZ5WTlqHY+26Wf3io0eUBAOAwJ0/naICDA/0viottuv+vP+rr+BSHnxsAAEch1FcDlrwCndl+SCYvL4U2rmt0OQAAOITNZtO4v61TihMC/S+sVpvG/t86nTA7rw8AAK4Fob6aCGlyKcwXXOCmBADgGT5YdECrN520q03i/GE6sXq0EucPq3CbzOwiPfzcet5tDwCokjw+1GdkZGjKlClq3ry5AgIC1LBhQz3xxBPKycnRQw89JJPJpFmzZhldpkP5BPrJPyxE/uGhqtWqkXq89HuFt2+qM9sPKfNIutHlAQBwzc5eyNek13+yu11URJCi6wYrKiLIrnYrN6ZpwYojdvcHAICzefRCeTt37tTgwYNlNpsVHBysNm3a6OTJk3rrrbeUnJysc+fOSZI6depkdKkO1XnKaHWeMrrUtpTlm7XlmQ8MqwkAAEf6+OtDysopcmmfb87bq9GDWTQPAFC1eOyT+oyMDA0dOlRms1mTJk1Senq6tm/fLrPZrOnTp2v58uVKTEyUyWRShw4djC7XoQ58ukor75mm1XEvausLnyr/XJaC64WruKCw5BgvPx/dsXamOjxxV6m2N7wxXgPm/dWAqgEAqBir1aZ3vkhyeb+bd53R9n0ZLu8XAIAr8dhQP3HiRKWmpmrChAmaMWOGQkJCSvZNmTJFHTt2lMViUZMmTRQa6lkrwmceMSs9YbfS4ndoz+wl+n7sK4ro1Ey9pj9Scoy10KL1E99W+4l3qXabxpKkRoO6KXpgV214araB1QMAcGUbd57SkdQsQ/r+5JvDhvQLAEB5PDLUJyUlacGCBYqIiNDLL79c5jFdunSRJHXs2PGyfV999ZWuv/56BQcHq2bNmurdu7f27t3r9Lqd5czWA0peuE4xw3srsmvLku1ndx3R3neWqs9bf1RQvTD1eu1RbXn2A+WdOm9ovQAAXMlPe84Y1nfiXuP6BgCgLB4Z6ufPny+r1aq4uDjVqFGjzGMCAwOlMkL9W2+9pXvuuUc33HCDli5dqvnz52vAgAHKy8tzSe3O8vPMhbJaitV58qjS299YJGtxsYatfk3mDXt0dMkGw2oEAKAitu07a1jfO/aflcViNax/AAB+yyMXyouPj5ck9evXr9xjUlNTpd+E+uTkZE2ePFkzZ87UhAkTSrbfdtttTq3XFbJSzDq6ZIOajbhRdXq01uktl+Yi2izFOpN4QBEdmunwgh+MLhMAgKvam2zciLK8/GKlnMxW80aeNXUPAOC+PDLUHzt2TJLUuHHjMvdbLBZt2HDpifSvQ/1HH30kX19fPfzwww6tp2vXrjKbzXa18bV5aaq6O7SOXW8uUszw3uo8eZRW3v2cJKlOj9ZqPqqfkj78Vt2ff1BLB05WcX7hVc/1W7EtYlVk4skFAMD5zDUnSt7hZe5LnD/siq+ri4oILPnfE6tHl3ucJJkzctXt3qWXbb++T3/5Fdv3e70qSa/1lORVU+nmdEVHRxtdDgDgv6KiorR161a723lkqM/JyZGkcofML1iwQBkZGQoJCVFMTEzJ9o0bN6ply5b67LPP9I9//EMnTpxQixYt9Pe//1333ntvpesxm81KS0uzq42fyVuqa2c/m/Zqbr27y91/8VCaPon+3/B7n6AA3fDGeG17cZ72/3ulBn/1vK575j4lTp1rX8eSTqafVKGt2O52AADYLdgieZe965f30F+Nj7dXhY4ry5nTp6R8+36vVykhxZKXZC0utvv+BABQ9XhkqI+KitL58+e1fft29erVq9S+9PR0TZ48WZLUoUMHmUymUvvS0tL0zDPPaPr06WrYsKE+/PBD3XfffYqMjNSAAQMqXY+9fG1ekpMffHd77gFlHz+t/XNXSJLWPzFLw9bM0PHvtujUZvteFVS/Xn2e1AMAXOK0t1XlvaHenJF7xbZREYHy8faSpdgqc8aV18sp71x1I2vLx2qrcL1VTbq3t6ySvLy9Va9BA6PLAQD8V2Vyozw11A8YMEBJSUmaPn26Bg4cqNjYWElSYmKi7r//fmVkXHrHbKdOnUq1s1qtys7O1qeffqrhw4dLkm6++Wbt27dPL7zwQqVDfWWGUBTl5mteszGV6q8iGvTvrJhhvbXk5kkl27KOndK2F+ep98zxWtp/kix5BRU+38FDB+UbFOCkagEA+J8xz6zVvOXJZe4ra7j8r51YPVrRdYNlzshTw4H/sbvvoAAfpR3dKW9v911rOHrAfKWdzlW9qHpK3ZNqdDkAgGvkvr+RrmDKlCkKDw/XiRMn1LZtW7Vv314tWrRQ9+7d1bRpU/Xv318qY+X7sLAw6b9fCvzCZDJpwIAB2rNnj4s/hXOlxe/Q563GKicto9T2/XNXaHGvCXYFegAAXKlLmwjD+u7UKsytAz0AwPN45G+l6OhoJSQkaMiQIQoICFBKSorCwsI0Z84cLV++XAcPHpTKCPVt27Yt95z5+flOrxsAAFxd93aR1bJvAADK4pGhXpJat26tZcuWKSsrS1lZWdqyZYv+8Ic/KCcnRykpKfLy8lK7du1KtbnjjjskSatWrSrZZrVatXr1anXr1s3lnwEAAFyuV8c6atYwxJC+xw5rYUi/AACUxyPn1F/J3r17ZbPZFBsbq6Cg0q+8GTp0qPr06aM//OEPOnv2rBo1aqQPPvhAe/fu1erVqw2rGQAA/I+Xl0mP3dNaf379J5f226tjHXVqVfar9AAAMIrHPqkvz+7du6Uyht7rv/Pnly5dqhEjRujZZ5/VsGHDdOzYMX377bcl8/ABAIDxHhweq9Aavi7t88kx5U/TAwDAKIT636hVq5bmzJmjM2fOqKCgQD/99JNuvfVWF1cJAACuJKymv2ZO7umy/obc2FAjb4lxWX8AAFQUob6aaTykp3q+8nCpbc1H9dO49IVqNIh1AwAA7uPB4S00+IZou9qYM3KVeirnqu+z/7WaIX6a87feMplMlagSAADnqnZz6uPj440uwVCNbuuh5C/Xlvy5RnSkYuMG6PTWA4bWBQCAvUwmkz56vo9uGLtMySeyKtTmau+x/y1vb5M+e+kmNagbXMkqAQBwrmr3pN7T+YUGaeS2ORq992MNW/2ahq97Q/enzNf1Mx6Vycdbdbu1VPr6PZcONpl0/euPacv/fShrocXo0gEAsFtURJDWvDdYMQ0cvxq+j49Jn7/SV7ff1Mjh5wYAwFEI9R6mMDNXR75K0L4PlmvpwMn66e8f68z2g9r453dVr3c7nU48IJulWJLU9pGhOp24X2d3HTG6bAAAKq1JgxCt//cQ9bmursPOWScsQMvevkX33NrUYecEAMAZCPUeKKxdjM7tPipJCu/QTOf2XPr3RoO66dh3l17/U6tlQzUe0kM/v7HI0FoBAHCE+nWCtfajIXpjSg8FBnhf07nuHdxU+74eoVt72zdfHwAAI1S7OfXVQVjbJiVBPrxDU51YmShJqt+3k7a+8JkkqW6P1qrRsI5GbHxbkhQYWUu9XntUgXVq68AnqwysHgCAyvHyMumJMe00vH9jzV6QpA+/OqizFwoq1Nbb26Th/Rprwr1t1LdbPafXCgCAoxDqPUxQVJhksynXfE6SFNa6sXa9uUgRnVvo4qE0WXLzJUkHPllVKrwPWjRN+95fpuMrEg2rHQAAR2hcP0TT/9Rd0x6/Tkt+OK5NP5/Wtn0Z+vngOWXlFEmSfH28FNs4VF3aRKhLmwiNGNCExfAAAG6JUO9hwtrFlDyll6TCzBy1GnurCs5l6fiKnwytDQAAVwrw99GoQU01atD/5sVbrTZZrTb5+DADEQDgGQj1HiZ1zTalrtlW8udlg5+WJN2xdqZWjphabrsVV9gHAICn8PIyycuL980DADwHob6aWNL3T0aXAAAAAABwMMaeAQAAAADgpgj1AAAAAAC4KUI9AAAAAABuijn1VZRPoL/ikj8zuowK8wn0N7oEAAAAAKh2CPVVlMlkkm9QgNFlAAAAAACqMIbfAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmfIwuAGWz2Wyy5BUYXUaF+QT6y2QyGV0GAAAAAFQrhPoqypJXoHnNxhhdRoXFJX8m36AAo8sAAAAAgGqF4fcAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClWvwcAAPBQNptNKWnZ2rYvQ9uSMpR2KlfnLl56Ze7F7ELN/zZZXdpEqHmjUHl58WpaAHBHhHoAAAAPcyGzQP9eekjvfLFfB1IulnlMdq5F9z29VpLUuH4NPXJ3Kz10Z6zqhAe6uFoAwLUw2Ww2m9FF4HJFufm8px4AANilqMiq6R//rJc++Fl5+cV2t/fz9dITcW017fHrFBjAsx8AcAdcrT1IVK+2GrR4WqltRTl5yjySruSF65T04beyFVsNqw8AADjP7oPnNO5v67Q96Wylz1FYZNVrc3dr6drj+viFPurVsa5DawQAOB6h3gMdWZyg1PjtksmkwMhaaj7yJnWfNk41WzTQpslzjC4PAAA42KqNqbrzye+Vm29xyPkOpFzUjQ8u12cv9dWoQU0dck4AgHMQ6j3Q2d1HdWRRQsmfD8xdqTsT3lTsfTdr+yvzVXA209D6AACA46zZnKahf1ytwiLHjsazWGy69y8/yMvLpJG3xDj03AAAx+GVdtWAJa9AZ7YfksnLS6GNGUYHAICnSD6RqTuf/N7hgf4XNpsU9/Rabd+X4ZTzAwCuHaG+mghpcinMF1zINroUAADgAFarTb/7e4Kyc4vsapc4f5hOrB6txPnDKnR8kcWqcX9bp8Ii+xfeAwA4H6HeA/kE+sk/LET+4aGq1aqRerz0e4W3b6oz2w8p80i60eUBAAAHmL0gSeu2me1uFxURpOi6wYqKCKpwm92Hzusf7+20uy8AgPNVi1CfkZGhKVOmqHnz5goICFDDhg31xBNPKCcnRw899JBMJpNmzZpldJkO03nKaN2792Pdu+cjDf/hn2r94CClLN+s+HHTjS4NAAA4QFGRVS++79qQ/c9P9igzu9ClfQIArs7jF8rbuXOnBg8eLLPZrODgYLVp00YnT57UW2+9peTkZJ07d06S1KlTJ6NLdZgDn65Syjeb5OXro9qtGqnd+OEKrheu4oL//SL28vPR0FWv6ehXCdr15uKS7Te8MV4BkbW0Ju5Fg6oHAABX8/UPx2TOyHNpnzl5Fn267LDGj27j0n4BAFfm0U/qMzIyNHToUJnNZk2aNEnp6enavn27zGazpk+fruXLlysxMVEmk0kdOnQwulyHyTxiVnrCbqXF79Ce2Uv0/dhXFNGpmXpNf6TkGGuhResnvq32E+9S7TaNJUmNBnVT9MCu2vDUbAOrBwAAVzPny/2G9PvuF8b0CwAon0eH+okTJyo1NVUTJkzQjBkzFBISUrJvypQp6tixoywWi5o0aaLQ0FBDa3WmM1sPKHnhOsUM763Iri1Ltp/ddUR731mqPm/9UUH1wtTrtUe15dkPlHfqvKH1AgCA8hUVWbV+xylD+t5z+LzOXsg3pG8AQNk8NtQnJSVpwYIFioiI0Msvv1zmMV26dJEkdezYsWRb3759ZTKZyvzn0UcfdVn9jvbzzIWyWorVefKo0tvfWCRrcbGGrX5N5g17dHTJBsNqBAAAV7c3+bwKCo1biX4br7cDgCrFY+fUz58/X1arVXFxcapRo0aZxwQGBkq/CfWzZ89WZmZmqeOWL1+uf/zjH7r99tudXLXzZKWYdXTJBjUbcaPq9Git01uSJEk2S7HOJB5QRIdmOrzgB6PLBAAAV7E96ayh/W/bd1a3XB9taA0AgP/x2FAfHx8vSerXr1+5x6Smpkq/CfVt2ly++MuLL76oyMhIDRo0qFK1dO3aVWazfa+c8bV5aaq6V6q/8ux6c5FihvdW58mjtPLu5yRJdXq0VvNR/ZT04bfq/vyDWjpwsorz7V/ZNrZFrIpMVofWCwAALpcVcIMUNLDMfYnzh131VXVREYEl/3ti9ehyjzNn5KrbvUsv2/7S9Lf0r+dW2l03AODKoqKitHXrVrvbeWyoP3bsmCSpcePGZe63WCzasOHSUPNfh/rfOnPmjFasWKHHH39cPj6V+3GZzWalpaXZ1cbP5C3VtbOfTXs1t97d5e6/eChNn0T/b/i9T1CAbnhjvLa9OE/7/71Sg796Xtc9c58Sp861r2NJJ9NPqtBm3FBAAACqjchsqZzc/ss76CvCx9urwsf+WnZOnrLT7buvAQA4j8eG+pycHElSXl7Zr3tZsGCBMjIyFBISopiYmHLPM3/+fFksFt1///2VriUqKsruNr42L8nJD767PfeAso+f1v65KyRJ65+YpWFrZuj4d1t0anOSXeeqX68+T+oBAHCBrIBgZZazz5yRe9X2URGB8vH2kqXYesXX4pV3rhrBAarZoEGF6wUAVExlcqMkmWw2m83h1VQBbdq0UVJSkmbNmqXx48eX2peenq4uXbooPT1dvXv31vr168s9T7du3ZSTk6N9+/a5oOr/KcrN17xmY5x2/gb9O+um2U9qyc2TlJP2vwVvWo0bpDaP3K6l/SfJkldQ4fPFJX8m36AAJ1ULAAB+8cXKIxo1ufLr4JxYPVrRdYOVeipHDQf+x+72bz/TSxPu5V31AFBVeOzq9wMGDJAkTZ8+XQcPHizZnpiYqH79+ikj41KQ7dSpU7nn2L9/v7Zu3XpNT+mrqrT4Hfq81dhSgV6S9s9docW9JtgV6AEAgOt0aRNhcP/hhvYPACjNY0P9lClTFB4erhMnTqht27Zq3769WrRooe7du6tp06bq37+/dJX59J9++qlMJpPi4uJcWDkAAED5mkaHqFaInyF9e3mZ1DGWUA8AVYnHhvro6GglJCRoyJAhCggIUEpKisLCwjRnzhwtX7685Ol9eaHeZrNp3rx56tu3rxo1auTi6gEAAMpmMpl0+00NDen75h71FBTosUsyAYBb8uircuvWrbVs2bLLtmdnZyslJUVeXl5q165dmW3XrVunY8eOaerUqS6oFAAAoOIeu6e1PluW7PJ+Hx/V2uV9AgCuzGOf1F/J3r17ZbPZ1KJFCwUFlf1OmE8//VSBgYG6++7yXxEHAABghF4d66hjyzCX9hldN1i338joRQCoaqplqN+9e7d0haH3+fn5WrhwoYYPH66QkBAXVwcAAHBlJpNJr0/q4dI+X3uqm3x8quWtIwBUadXyyny1UB8QEKALFy7o888/d3Flztd4SE/1fOXhUtuaj+qncekL1WhQN8PqAgAA9rm5Z309OrKVS/q66+YmGjWoqUv6AgDYh1BfzTS6rYeOr/ip5M81oiMVGzdAp7ceMLQuAABgv1ef6qaWTWra1cackavUUzkyZ+RW6Pj6dYI0+/+ul8lkqmSVAABn8uiF8soTHx9vdAlO4xcapDt+mCnvAD/lnsyQl7+vQhrVVfLCH7Xp6fdVt1tLrX9i1qWDTSZd//pj2vJ/H6rb1LFGlw4AAOwUEuyn1e8NUp9xy3XsZHaF2nS7d2mFzx9ZO0Br3husuuGB11AlAMCZquWTek9WmJmrI18laN8Hy7V04GT99PePdWb7QW3887uq17udTicekM1SLElq+8hQnU7cr7O7jhhdNgAAqKSGUTWUMHeIWjet5dDzNqoXrHVOOC8AwLEI9R4orF2Mzu0+KkkK79BM5/Zc+vdGg7rp2HeXht7XatlQjYf00M9vLDK0VgAAcO0aRtXQ1vl36MkxbeWIUfK/uzNWP395p1rFEOgBoKoj1HugsLZNSoJ8eIemOvvfgF+/byelxe+QJNXt0Vo1GtbRiI1v6+6fZivyuhbq9dqjavnALYbWDgAAKico0Eczp/TUuo+HqM91dSt1ji5tIvTtv27Rh9P6qFaov8NrBAA4XrWcU+/JgqLCJJtNueZzkqSw1o21681FiujcQhcPpcmSmy9JOvDJKh34ZFVJu0GLpmnf+8t0fEWiYbUDAIBrd8N1UVo393btPnhO73yRpBUb0nQ0Lavc46PrBmtAz/p6fFRrdWsX6dJaAQDXjlDvYcLaxZQ8pZekwswctRp7qwrOZZVa9R4AAHi29rFhmv1/vSVJZy/ka3vSWZ08nauComL5+XqpbligurSJUB0WwQMAt2ay2Ww2o4vA5Ypy8/X/7dy7CQJREIbRu6D4aMNG7MDAUJuwgi3BJrQAQzMbsQQTExWENTUwMFhZf/acAoZJP+5l9rN1a/MWp205Lutyv1xbm/ludd6V4XT8k9kAAAB85qW+Jw7zTdcrAAAA0DKH8gAAACCUqAcAAIBQoh4AAABCOZT3p5qmKc/bo+s1vjaYjEpVVV2vAQAA0CuiHgAAAEL5fg8AAAChRD0AAACEEvUAAAAQStQDAABAKFEPAAAAoUQ9AAAAhBL1AAAAEErUAwAAQChRDwAAAKFEPQAAAIQS9QAAABBK1AMAAEAoUQ8AAAChRD0AAACEEvUAAAAQStQDAABAKFEPAAAAoUQ9AAAAhBL1AAAAEErUAwAAQChRDwAAAKFEPQAAAIQS9QAAABBK1AMAAEAoUQ8AAAChXqEH1uRmep3XAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc_1 = QuantumCircuit(8)\n", + "for i in [*range(4), *range(5, 8)]:\n", + " qc_1.rx(np.pi / 4, i)\n", + "qc_1.cx(0, 3)\n", + "qc_1.cx(1, 3)\n", + "qc_1.cx(2, 3)\n", + "qc_1.append(Move(), [3, 4])\n", + "qc_1.cx(4, 5)\n", + "qc_1.cx(4, 6)\n", + "qc_1.cx(4, 7)\n", + "qc_1.append(Move(), [4, 3])\n", + "qc_1.cx(0, 3)\n", + "qc_1.cx(1, 3)\n", + "qc_1.cx(2, 3)\n", + "\n", + "observable_expanded = SparsePauliOp([\"ZIIIIIII\", \"IIIIZIII\", \"IIIIIIIZ\"])\n", + "\n", + "qc_1.draw(\"mpl\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + " \n", + " As an alternative to working directly with [`Move`](../api/qiskit-addon-cutting/instructions-move) instructions, you may choose to mark wire cuts using a single-qubit [`CutWire`](../api/qiskit-addon-cutting/instructions-cut-wire) instruction. Once the subexperiments are prepared to be executed, use the [`cut_wires`](../api/qiskit-addon-cutting/qiskit-addon-cutting#cut_wires) method to transform `CutWire` to `Move` instructions on newly allocated qubits. However, in contrast to the manual method, this automatic method does not allow for re-use of qubit wires.\n", + "\n", + "\n", + "### Separate the circuit and observable\n", + "\n", + "Now that the circuit includes `Move` instructions to represent wire cuts, the problem can be separated into partitions. This is accomplished using the [`partition_problem`](../api/qiskit-addon-cutting/qiskit-addon-cutting#partition_problem) method with a set of partition labels to specify how the circuit is separated. Qubits sharing a common partition label will be grouped together, and any non-local gates spanning more than one partition will be cut.\n", + "\n", + "In this partitioning scheme, we will have cut two wires, which results in a sampling overhead of $4^4$.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Subobservables to measure: \n", + "{'A': PauliList(['IIII', 'ZIII', 'IIIZ']), 'B': PauliList(['ZIII', 'IIII', 'IIII'])}\n", + "\n", + "Sampling overhead: 256.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAEvCAYAAABoq3HZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTRklEQVR4nO3deXwMdx8H8M9u7pVD7kOIyCVUgoj7qKOOqqO0aKmjfaotqtQjRdVZNOhDVavaalGqKqgjbqFCHSGOyCUSQUgkkUTkzmb3+UNtm+Zodu3ubHY/79fL6yUz85v5zmayM9/5XSK5XC4HERERERGRARELHQAREREREZG2MREiIiIiIiKDw0SIiIiIiIgMDhMhIiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOAwESIiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgMBEiIiIiIiKDw0SIiIiIiIgMDhMhIiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOAwESIiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgMBEiIiIiIiKDw0SIiIiIiIgMDhMhIiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOAwESIiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgGAsdAKmXXC6HtLhU6DCUYmxhBpFIJHQYRERERGRAmAjpGWlxKbZ6jRE6DKWMTt4CE4m50GEQERERkQFh0zgiIiIiIjI4TISIiIiIiMjgMBEiIiIiIiKDw0SIiIiIiIgMDhMhIiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8N5hAgunVqi/66FlZaVFxYjPyUdyWGnEL/hAOQVMsHiIyIiIiJSNyZCpJCyKxJpEdGASAQLx4bwfrUH2i8cDxufRjg7c73Q4RERERERqQ0TIVJ4GHMLKTsjFT8nbjyMlyO/gO/rvRH92TaUPswXND4iIiIiInVhHyGqkbS4FFnRSRCJxbD2cBY6HCIiIiIitWEi9A/jx4+HSCSq9V9CQoLQYWqNVdMnCVBpXoHQoRARERERqQ2bxtXAx8cHTk5O1a6TSCRaj0cbjC1MYWZnpegj5De2L+xbNUNWdBLyU9KFDo+IiIiISG2YCNVgzpw5GD9+vNBhaFWbkFFoEzKq0rLU8HM4P/t7wWLSBXK5HI8Ly1Ehk8PG0hRisUjokIiIiLRKKpXhUUEZzE2NILEwhkjEeyHVf0yESCHxpyNI3XcWYhNj2DZvgucmD0UDV3tUlJYpthGbGmPQkRW4tTsS177YpVjedfVkmDs2xLHRSwSKXv1S0vLxza8J+OG3G3iYVwoAkJgbY/RAL0wa6Y/Wze2FDpGIiEhjZDI5Ii7cx9fb47H35B1UVMgBAJ6NrPDuq83x5su+cLA1FzpMIpXpfR+h7OxshISEwNvbG+bm5mjcuDE++OADFBYW4q233oJIJMLatWuFDlMn5KdkID0yBvciLuP613twfNxncGjthU6h7yi2kZVJcXrql2g1dRhsW3gAAJr0D4b7C+1w5sOvBYxefeRyOZZ9fxXeA3dgxcYYRRIEAEUlUny3MxFtRvyGdxadhlTK+ZWIiEj/5OaXos/bB/HCxEPYffy2IgkCgFv3HuOj1VFo0u8X7D6eKmicRM9CrxOhK1euoFWrVlixYgUyMjLQokULlJeXY82aNRg5ciTi4+MBAK1bt65SNiwsDEOHDkWvXr0wYsQI/O9//0NWVpYAZyGcrIuJSA47Bc+hXeDYzk+x/OG1FMSu24tua96HxNUOnVa8i/Nzvkfxg1xB41WXRd9cxpw1FyGX177dt2GJmDDvFOT/tiEREVE9UlhUjn7vHsKJqNr7BxeXVGD4h8eZDFG9pbeJUHZ2NgYNGoSMjAzMmDED6enpiI6ORkZGBkJDQxEeHo6oqCiIRCIEBARUKR8eHo49e/bgxIkT2LFjB2bMmAFPT09s2bJFkPMRytVVYZBJK9Bm5sjKy1fvhKyiAoOPrkDGmeu4teeMYDGq0/lrmViw7nKdt9+yPxlbw5M1GhMREZE2zf86GlHXs+u0rVwOjJn9O3IeldZhayLdoreJ0NSpU5GWloYpU6Zg5cqVsLKyUqwLCQlBYGAgpFIpmjZtCmtra8U6X19frFq1CleuXEFeXh4KCwtx6tQp9O3bF4WFhRg7dizCw8MFOivte5yagVt7zsCtewCcOvgrlsulFciKSoS5vQ1ubj8haIzq9NUv8SqUidNILERERNpWVCzFht03lCtTIsWmvUkai4lIU/QyEYqPj8f27dvh4OCAZcuWVbtNUFAQACAwMLDS8jlz5mDatGkIDAyEjY0NJBIJunXrhkOHDmHIkCGQy+WYNm1aleZQt27dwuDBg2FlZQVbW1uMHTsWDx8+1OBZas+1L57U/vy9Vsipgz+8R/ZE/IYDaL9oAozMTQWNUR1yHpVi++EUpcudu5aFq4n68bsmIiLDtuPILeQ9LqvDlpV986vhzLFI+kMvR43btm0bZDIZRo8eDUtLy2q3sbCwAKpJhGoiEokQGhqKPXv24ObNm4iJiVE0qXv8+DF69uwJOzs7bNu2DcXFxQgJCcFLL72EM2fOQCxWLd9s164dMjIylCpjIhdjPtorVSbjbCw2ur5S4/pHSfew2f2vJMhYYo6uqyfj0pKtSNh0GAN2L0Lb2a8jav5GpY77lK+PL8pFwg86UGbkhjKbd+qwZVU9B4yGpOy62mMiIiLSpkcWLwAWXZUud+P2IzRybwIRhL+fk+FxcXHBxYsXlS6nl4lQREQEAKBnz541bpOWlgYokQgBgJ+fH+zs7JCTk4OkpCRFIvTtt9/i3r17OHXqFJo0aQIAcHd3R+fOnbF3714MHTpUpfPIyMjAvXv3lCpjKjICnFU6XJ0FLxiLgjuZSNh4CABw+oO1GHxsJe4cPI8H55RvWnY//T7K5BUaiFRJEgvARrWiubmPkZun3O+KiIhI57iWABaqFb1//wEgV742iUgoepkI3b59GwDg4eFR7XqpVIozZ5507lcmEQIAExMTxT6e2r9/P7p27apIggCgU6dOaNasGfbt26dyIuTi4qJ0GRO5GJp8GdOoVxt4Du6CPb1nKJY9vv0Al5ZsRZdVk7G31wxIi5XrMOnm6qYTNULlYgky8WfPTyUnirNraAaLBo00FRoREZFW5JuL8ViFciJ5GVzdHMFpVkkIqjwzQ18TocLCQgBAcXFxteu3b9+O7OxsWFlZwdPTs877zcrKQmZmJvBnjc9TcXFxePXVV6ts37JlS8TFqd6RXpUqvvKiEmz1GqPyMf/NvYjL+Ln5uCrLEzYeUtQQKetG0g2YSISfkE0ulyNg+G5cv6ncMOANrUxx9/wRSCz08s+JiIgMSFxyLlq+vKsOW1Y2ZlALbF6appGYiDRFLwdLeJoVRkdHV1mXnp6OmTNnAgACAgIgUuLN/+effw65XA4bGxsEBwcrlufm5qJhw4ZVtn/ajI7qB5FIhMmj/OuwZWUThvowCSIiIr3QwssWPYNdlS43aaTy908ioellItSnTx8AQGhoKG7c+GsIyKioKPTs2RPZ2U/Gxv/nRKpHjx7FrFmzkJxceV6YoqIiLFq0CMuXLwcAzJ49G6am9X+UNKpqzEveaOFVNamtiZOdOaa/8ZxGYyIiItKmhZPawsS47o+IQ3o2QYcAR43GRKQJepkIhYSEwN7eHnfv3kXLli3RqlUr+Pj4oH379mjWrBl69eoFVNM/qLCwEKGhofD29oabmxuCg4MRFBQEBwcHzJ8/H3K5HBMnTkRISEilcra2tsjLy6sSR05ODuzs7DR8tqROlhITHPiqL7ybWP/rtvYNzRD+VV80dql+ZEIiIqL6qFuQC7Ys61GnZOj5YFdsXfa8Ui1siHSFXiZC7u7uiIyMxMCBA2Fubo7U1FTY2dlh/fr1CA8PV9QS/TMRCgoKwty5c9G7d2+YmpoiLi4OsbGxcHR0xMiRI3Hs2DGsX7++yh+7v79/tX2B4uLi4O/PquL6xsPNCn9sfgnvjWgOS0nVJm8mxmK8/qIXzm0ZjHYt+QaMiIj0z4h+zXBiw4vo27n6gYBcHCyw4L02OLSuHxpITLQeH5E6iOT/nBlUzxUUFMDa2hoikQiPHz+GRCJ55n2uXLkSc+bMQUpKimIQhfPnz6Njx47YtWsXXn75ZTVEXjeaHixBE0Ynb9GJwRKqk19Qhh1HbmH68nN4XCSFjaUJbux7FU72Ko4tSkREVM8k3X6E3yJuY9H6yygoksLO2hQZJ0bDxEQv36eTATG4Kzg2NhZyuRw+Pj5qSYIAYOLEiXB1dcWQIUOwf/9+hIWF4bXXXkP79u0xZMgQtRyDhGFtaYq3hvnB2vJJnzBLiQmTICIiMig+HjaYOSEANn/eCy3MjZkEkV4wuKs4JiYGUGH+oNpYW1sjIiICrq6uGDVqFP7zn/+gc+fO2L9/P8Ri/fiIPQZ2RMfP3q60zHtkT4xPD0OT/sE1liMiIiIi0kUGN+avJhIhAPDy8sL+/fvVuk9d0uTFDkjecVLxs6W7I3xH90HmxURB4yIiIiIiUgUTIQIAmFpLMOTEKhiZm6LofjbEZiawauKM5LDfcXbWd3AO9sPpD9Y+2VgkQufP38P5uRsQPL/q5KpERERERLrO4BKhiIgIoUPQSWX5RUjZHYnywhJcWxUGt+cDETB1GP747zdw6xGIzKhEyKUVAICW7wxCZlQCHl5LETpsIiIiIiKV6EcHFlILu+c8kRNzCwBgH+CFnOtP/t+kfzBuH7wAAGjo1xgeAzvg6uqdgsZKRERERPQsDK5GiGpm17KpIvmxD2iGu4ejAABuz7fGxcVbAADOHfxh2dgJw//4EgBg4dgQnVa8CwsnWyRuPiJg9EREREREdcdEiAAAEhc7QC5HUUYOAMDO3wPXvtgJhzY+eJR0D9KiEgBA4uYjlRKe/jsXIu67/bhzKEqw2ImIiIiIlMVEiICnzeL+rA0CgLL8QjQf1w+lOY9x59AFQWMjIiIiIlI3JkIEAEg7dglpxy4pft4/YBYAYMjJVTg8fH6N5Q7Vso6IiIiISFcxEaJa7Xl+utAhEBERERGpHUeNIyIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjjsI6RnjC3MMDp5i9BhKMXYwkzoEIiIiIjIwDAR0jMikQgmEnOhwyAiIiIi0mlsGkdERERERAaHiRARERERERkcJkJERERERGRwmAgREREREZHBYSJEREREREQGh4kQEREREREZHCZCRERERERkcJgIERERERGRwWEiREREREREBoeJEBERERERGRwmQkREREREZHCYCBERERERkcFhIkRERERERAaHiRARERERERkcJkJERERERGRwmAgREREREZHBYSJEREREREQGh4kQEREREREZHGOhAyD1ksvlkBaXCh2GUowtzCASiYQOg4iIiIgMCBMhPSMtLsVWrzFCh6GU0clbYCIxFzoMIiIiIjIgbBpHREREREQGh4kQEREREREZHCZCRERERERkcJgIERERERGRwWEiREREREREBoeJEBERERERGRwmQkREREREZHA4jxDBpVNL9N+1sNKy8sJi5KekIznsFOI3HIC8QiZYfERERERE6sZEiBRSdkUiLSIaEIlg4dgQ3q/2QPuF42Hj0whnZ64XOjwiIiIiIrVhIkQKD2NuIWVnpOLnxI2H8XLkF/B9vTeiP9uG0of5gsZHRERERKQu7CP0D+PHj4dIJKr1X0JCgtBhaoW0uBRZ0UkQicWw9nAWOhwiIiIiIrVhjVANfHx84OTkVO06iUSi9XiEYtX0SQJUmlcgdChERERERGrDRKgGc+bMwfjx44UOQ6uMLUxhZmel6CPkN7Yv7Fs1Q1Z0EvJT0oUOj4iIiIhIbZgIkUKbkFFoEzKq0rLU8HM4P/t7wWIiYeUXlOGn/TdxOvoBCoulsGpggj4d3TCyXzNILPj1QURE+u9G6iNs2J2Im3ceo0Img4uDBK8PaIZuQS4QiURCh0fPQO+fZLKzs7F8+XLs2rULaWlpcHR0xLBhw7B06VJMnToVP/zwA7788ktMmTJF6FAFl/jTEaTuOwuxiTFsmzfBc5OHooGrPSpKyxTbiE2NMejICtzaHYlrX+xSLO+6ejLMHRvi2OglAkVP6lRWXoFZq6PwbVgiCoulldb9fCAZM1aex9TXW+KTd1rDyIhdDYmISP/cvJOP9z49g2Pn7ldZt35HAlp6NcT/ZnZA387ugsRHz06vE6ErV65gwIAByMjIQIMGDdCiRQvcv38fa9asQXJyMnJycgAArVu3rlI2LCwMv/32G/Lz8+Hg4ICOHTvijTfegKOjowBnoh35KRlIj4wBANyLuIwHFxLw4p7F6BT6Dn5/bxUAQFYmxempX6L/7kW4e/QScuNuo0n/YLi/0A57en0o8BmQOpSWVeClKUeq/eJ/Kje/DAu/uYyE1DxsXfY8kyEiItIrMTdy0Ovtg8jOLalxm9jkPLw4+Qh+WtIDr73opdX4SD309uklOzsbgwYNQkZGBmbMmIH09HRER0cjIyMDoaGhCA8PR1RUFEQiEQICAqqUDw8Px549e3DixAns2LEDM2bMgKenJ7Zs2SLI+Qgh62IiksNOwXNoFzi281Msf3gtBbHr9qLbmvchcbVDpxXv4vyc71H8IFfQeEk9Ji/5o9Yk6O+2H7qFeV9FazwmIiIibcnLL8WASYdrTYKeqqiQY9zcU4i6nqWV2Ei99DYRmjp1KtLS0jBlyhSsXLkSVlZWinUhISEIDAyEVCpF06ZNYW1trVjn6+uLVatW4cqVK8jLy0NhYSFOnTqFvn37orCwEGPHjkV4eLhAZ6V9V1eFQSatQJuZIysvX70TsooKDD66AhlnruPWnjOCxUjqczejAD/uSVKqzJqfY5FfUFaHLYmIiHTfpr1JuJdZVOfty6UyrNgYo9GYSDP0MhGKj4/H9u3b4eDggGXLllW7TVBQEAAgMDCw0vI5c+Zg2rRpCAwMhI2NDSQSCbp164ZDhw5hyJAhkMvlmDZtGuRyuaLM04Srffv2MDMz06uOc49TM3Brzxm4dQ+AUwd/xXK5tAJZUYkwt7fBze0nBI2R1OfbsETIZPI6bPmXgiIptuy/qbGYiIiItEUul+Pr7crPF7n7eCruZxZqJCbSHL1MhLZt2waZTIbRo0fD0tKy2m0sLCyAahKhmohEIoSGhgIAbt68iZiYvzL/mzdvYufOnXBxcUFwcLBazkGXXPviSe3P32uFnDr4w3tkT8RvOID2iybAyNxU0BhJPQ6dSVOp3MHTqpUjIiLSJan3CnDj9iOly0kr5Dh+vm7Nykl3iOR/r9rQE127dsWZM2fw22+/YciQIdVuM3ToUOzZswe7du3Cyy+/XOd929vbIycnB2FhYRg+fDgAQCaTQSx+klMuWLAACxcuhDo+1nbt2iEjI0OpMiZyMebL2j/zsWtjLDHH4OMrEbd+PxI2HcaA3YuQfTUZUfM3qrS/heILKBfJ1B6nOqU3/BAysQ3Eskdwzfuf0OFoTIbN+6gwclC6nGn5bTg+/kEjMRERkW4whHthmZELsmzeU6msTeEBWJaeV3tM9O9cXFxw8eJFpcvp5ahxt2/fBgB4eHhUu14qleLMmSd9WupaI/SUiYmJYh9PPU2C1C0jIwP37t1TqoypyAhw1kg4CsELxqLgTiYSNh4CAJz+YC0GH1uJOwfP48G5eKX3dz/9PsrkFRqIVI2sKgAxIKuoUPp3Uq9YFAEWyhcrK8nX78+FiIgM415oKgVsVCv6KPcBHuXq6eeip/QyESosfNJGs7i4uNr127dvR3Z2NqysrODp6Vnn/WZlZSEzMxMA4O6u+THjXVxclC5jIhcDGqxcadSrDTwHd8Ge3jMUyx7ffoBLS7aiy6rJ2NtrBqTFpUrt083VTfdrhIyMIAMgNjKCa6NGQoejMbmiTBShidLlrIwfwlqPPxciIjKMe6EcRsiQFUAmrr5rRfWF5IBIBCerIphI9PNz0XWqPDNDXxMhFxcX5ObmIjo6Gp06daq0Lj09HTNnzgQABAQEKDWwweeffw65XA4bGxut9AVSpYqvvKgEW73GaCQe/Dm/0M/Nx1VZnrDxkKKGSFk3km7ARGKuhug0x73PNtzLLIKriyvSrutvf5grCQ/RZsRvSpUxMhIhLvIbuLs00FhcREQkPEO5F8754iKWbbha9wIiEbq1dcapjZxOor7Ry8ES+vTpAwAIDQ3FjRs3FMujoqLQs2dPZGdnA9VMpHr06FHMmjULycnJlZYXFRVh0aJFWL58OQBg9uzZMDXl4ACkf1o3t0ePdsq9VXnlhaZMgoiISG+886ofzM2MlCozbcxzGouHNEcvE6GQkBDY29vj7t27aNmyJVq1agUfHx+0b98ezZo1Q69evYBq+gcVFhYiNDQU3t7ecHNzQ3BwMIKCguDg4ID58+dDLpdj4sSJCAkJEejMiDRvW2hPeLjVrUlAKx9bfDO3i8ZjIiIi0hYPNytsWdoDYnHdWg39d1wrDOvTVONxkfrpZSLk7u6OyMhIDBw4EObm5khNTYWdnR3Wr1+P8PBwRS3RPxOhoKAgzJ07F71794apqSni4uIQGxsLR0dHjBw5EseOHcP69ev1ap4gon9ydZTgzKaX0CnQqdbt+nVuhN9/HIiG1mZai42IiEgbhr/gib1r+sC+Yc33ODNTI3w6JQjLP9S/qVMMhV72EQIAf39/7N+/v8rygoICpKamQiwW47nnKldjNm7cGIsXL9ZilES6qZFzA5zZ/BLOXcvE19vjse1ACipkchiJRXhrmC/eG+GP1s3thQ6TiIhIYwZ2b4K0o6MQdjQV3+1MxOnLDyCTyWFiLMKS99thwlBfONjqdh9nqp3eJkI1iY2NhVwuh6+vLyQSidr2GxYWBgCIi4ur9HPTpk3Rrl07tR2HSFtEIhE6BTqjU6AzTlxIx73MIrg4WGD9vK5Ch0ZERKQV5mbGGPOSN8a85K0YLMLJzgIzJwQIHRqpgcElQjExMYAK8wf9m1dffbXan8eNG4eNG1WbaFSXeAzsCNdurXBu1neKZd4je6Lr6smImBCKO4eiBI2PiIiIiEgZTITURC6Xq3V/uqbJix2QvOOk4mdLd0f4ju6DzIuJgsZFRERERKQKJkIEADC1lmDIiVUwMjdF0f1siM1MYNXEGclhv+PsrO/gHOyH0x+sfbKxSITOn7+H83M3IHh+1TmFiIiIiIh0ncElQhEREUKHoJPK8ouQsjsS5YUluLYqDG7PByJg6jD88d9v4NYjEJlRiZBLKwAALd8ZhMyoBDy8liJ02EREREREKtHL4bNJNXbPeSIn5hYAwD7ACznXn/y/Sf9g3D54AQDQ0K8xPAZ2wNXVOwWNlYiIiIjoWRhcjRDVzK5lU0XyYx/QDHcPPxkAwe351ri4eAsAwLmDPywbO2H4H18CACwcG6LTindh4WSLxM1HBIyeiIiIiKjumAgRAEDiYgfI5SjKyAEA2Pl74NoXO+HQxgePku5BWlQCAEjcfKRSwtN/50LEfbefo8YRERERUb3CRIiAp83i/qwNAoCy/EI0H9cPpTmPcefQBUFjIyIiIiJSNyZCBABIO3YJaccuKX7eP2AWAGDIyVU4PHx+jeUO1bKOiIiIiEhXMRGiWu15frrQIRARERERqR1HjSMiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgcLAEPWNsYYbRyVuEDkMpxhZmQodARERERAaGiZCeEYlEMJGYCx0GEREREZFOY9M4IiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOAwESIiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgMBEiIiIiIiKDw0SIiIiIiIgMDhMhIiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjjGQgdA6iWXyyEtLhU6DKUYW5hBJBIJHQYRERERGRAmQnpGWlyKrV5jhA5DKaOTt8BEYi50GERERERkQNg0joiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOAwESIiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgcB4hgkunlui/a2GlZeWFxchPSUdy2CnEbzgAeYVMsPiIiIiIiNSNiRAppOyKRFpENCASwcKxIbxf7YH2C8fDxqcRzs5cL3R4RERERERqw0SIFB7G3ELKzkjFz4kbD+PlyC/g+3pvRH+2DaUP8wWNj4iIiIhIXdhHqBrjx4+HSCSq9V9CQoLQYWqctLgUWdFJEInFsPZwFjocIiIiIiK1YY1QLXx8fODk5FTtOolEovV4hGDV9EkCVJpXIHQoRERERERqw0SoFnPmzMH48eOFDkNrjC1MYWZnpegj5De2L+xbNUNWdBLyU9KFDo+IiIiISG2YCJFCm5BRaBMyqtKy1PBzOD/7e8FiIhJaRYUMUdezkZlTDGNjMXw9bODdxFrosIiIiLQmL78UF+OyUVBUDkuJCdq1cEBDazOhw3pmBpEIZWdnY/ny5di1axfS0tLg6OiIYcOGYenSpZg6dSp++OEHfPnll5gyZYrQoQoq8acjSN13FmITY9g2b4LnJg9FA1d7VJSWKbYRmxpj0JEVuLU7Ete+2KVY3nX1ZJg7NsSx0UsEip5IvXLzS/FtWAK++TUBqfcrNw3tGeyKSSP9MfyFphCJRILFSEREpEkxN3Kw5udY/HwgBUUlUsVyibkxXn+xGaa+3hKtfO0EjfFZ6H0idOXKFQwYMAAZGRlo0KABWrRogfv372PNmjVITk5GTk4OAKB169ZVyoaFheG3335Dfn4+HBwc0LFjR7zxxhtwdHQU4Ew0Lz8lA+mRMQCAexGX8eBCAl7csxidQt/B7++tAgDIyqQ4PfVL9N+9CHePXkJu3G006R8M9xfaYU+vDwU+AyL1SEnLR//3DiPpdvUjJZ6ISseJqHS88ZI3NizsBhMTjjtDRET65ZeDyRg39xTKyqvOJVlUIsX3u25g876b2PRpd4wa4CVIjM9Kr+/e2dnZGDRoEDIyMjBjxgykp6cjOjoaGRkZCA0NRXh4OKKioiASiRAQEFClfHh4OPbs2YMTJ05gx44dmDFjBjw9PbFlyxZBzkfbsi4mIjnsFDyHdoFjOz/F8ofXUhC7bi+6rXkfElc7dFrxLs7P+R7FD3IFjZdIHTIfFuOFiYdqTIL+7qf9N/Hup2cgl8u1EhsREZE27P/9DkbP/r3aJOjvysplGD37d4SfuqO12NRJrxOhqVOnIi0tDVOmTMHKlSthZWWlWBcSEoLAwEBIpVI0bdoU1tZ/tfn39fXFqlWrcOXKFeTl5aGwsBCnTp1C3759UVhYiLFjxyI8PFygs9Kuq6vCIJNWoM3MkZWXr94JWUUFBh9dgYwz13FrzxnBYiRSp2UbriIl7XGdt/9h9w2cu5ap0ZiIiIi0RSqVYdKSPyCT1e0ln0wmx6Qlf6CiovakSRfpbSIUHx+P7du3w8HBAcuWLat2m6CgIABAYGBgpeVz5szBtGnTEBgYCBsbG0gkEnTr1g2HDh3CkCFDIJfLMW3atEpvgcPCwjB8+HB4eHhAIpGgefPm+Pjjj1FQUL+HnX6cmoFbe87ArXsAnDr4K5bLpRXIikqEub0Nbm4/IWiMROpSVCzFxj1JSpf7enu8RuIhIiLStvDIu7ibUahUmTvphTgQmaaxmDRFbxOhbdu2QSaTYfTo0bC0tKx2GwsLC6CaRKgmIpEIoaGhAICbN28iJiZGsW7lypUwMjLC0qVLcfDgQbz33ntYt24d+vfvD5ms/mXIf3ftiye1P3+vFXLq4A/vkT0Rv+EA2i+aACNzU0FjJFKHvSdvI+9xWR22rOzXw7dQWFSukZiIiIi0adNe5V8IAlDpRaLQ9HawhIiICABAz549a9wmLe1J5lrXRAgA/Pz8YGdnh5ycHCQlJSn6Fu3bt6/SIAo9evSAo6MjRo8ejdOnT6N79+5Kn0O7du2QkZGhVBkTuRjz0V6pMhlnY7HR9ZUa1z9KuofN7n8lQcYSc3RdPRmXlmxFwqbDGLB7EdrOfh1R8zcqddynfH18US7S7WQxveGHgNgG6RnpcHd3FzocrTOU839s3gWQ9FW6XFm5DF7N28BYlqeRuIiIdIGh3AtqYijnn2k9ETBupHS5fYdPw919nEZi+jcuLi64ePGi0uX0NhG6ffs2AMDDw6Pa9VKpFGfOPOnXokwiBAAmJiaKfTxV3Uhy7dq1AwDcu3dPqf0/lZGRoXRZU5ER4KzS4eoseMFYFNzJRMLGQwCA0x+sxeBjK3Hn4Hk8OKd8E6H76fdRJq/QQKRqZFUBiAFZRYXKv896zVDO3yEPkKhW9EFGOlCeo+6IiIh0h6HcC2piKOdvXqZShlBeVlbvPhe9TYQKC5+0bSwuLq52/fbt25GdnQ0rKyt4enrWeb9ZWVnIzHzSMfrf3gacOPGk74y/v3+t29XExcVF6TImcjGgwcqVRr3awHNwF+zpPUOx7PHtB7i0ZCu6rJqMvb1mQFpcqtQ+3VzddL9GyMgIMgBiIyO4NlL+LUl9ZyjnX2QKqDT2oVwKVydriGGh/qCIiHSEodwLamIo5//QuBglKpQzNy6GvUCfiyrPzAAgkuvpuK8tWrRAfHw81q5di8mTJ1dal56ejqCgIKSnp6NLly44ffp0nfc7a9YshIaGwsbGBpmZmTA1rb5vzL1799CmTRsEBQXh4MGDz3w+dVVeVIKtXmO0djx1GJ28BSYSc6HDqJV7n224l1mERk4SpB17TehwtM5Qzr+oWAr3F7YhN1+5fkJjB3lj05IeGouLiEgXGMq9oCaGcv77Tt7B4KlHlS63f+0LGNi9iUZi0hS9HSyhT58+AIDQ0FDcuHFDsTwqKgo9e/ZEdnY2UM1EqkePHsWsWbOQnJxcaXlRUREWLVqE5cuXAwBmz55dYxJUUFCAIUOGwNTUFD/88IPaz42INENiYYwJQ32VLjdppGq1vkRERLrmxW7uaOLaQKkyTd0s0b9L/es3pbeJUEhICOzt7XH37l20bNkSrVq1go+PD9q3b49mzZqhV69eQDX9gwoLCxEaGgpvb2+4ubkhODgYQUFBcHBwwPz58yGXyzFx4kSEhIRUe9zi4mIMGjQIt27dwpEjR+Dq6qqV8yUi9Zj9ViB8PKzrsOUTE1/xQ/tWVfsIEhER1UdGRmKs/6QrjIxEddxehG8+6QIjo/qXVtS/iOvI3d0dkZGRGDhwIMzNzZGamgo7OzusX78e4eHhilqifyZCQUFBmDt3Lnr37g1TU1PExcUhNjYWjo6OGDlyJI4dO4b169dDJKp6cZSXl+OVV17BxYsXcfDgQbRo0UJr50tE6uFga46j6/ujuafNv2775su++GpO52q/D4iIiOqr/l3d8UtoT5iZ1p4qmJmK8UtoT/Srh7VB0OfBEvDnIAX79++vsrygoACpqakQi8V47rnnKq1r3LgxFi9erPSxns5ZdPz4cRw4cADt2ys3hDUR6Q4PNyuc2zIYG3YnYt2vCbh5J7/S+r6dG2HySH8Mer4JkyAiItJLr/T1REtvW6zdFofN+5JQUPTXaMmWEmOMHeSDKa+1gH+zhoLG+Sz0OhGqSWxsLORyOXx9fSGRqDhW7j9MnjwZO3bswKxZsyCRSHDu3DnFOi8vr2qH1yYi3WVjZYoPx7bCtDHPITo+G/3fPYyHj0rhbG+Ow9/0Fzo8IiIijfNv1hBffdwZn01rh2YDfkV2XikcGpoh5eAIWDWovq98faK3TeNqExMTA6gwf1Btno4M99lnn6FTp06V/oWHh6vtOELxGNgRHT97u9Iy75E9MT49DE36BwsWF5GmicUitGvpCHMzIwCAcT1sA01ERPQsrBqYwsz0yX3QzNRIL5IgGGqNkCYSodTUVLXtSxc1ebEDknecVPxs6e4I39F9kHkxUdC4iIiIiIhUwUSIAACm1hIMObEKRuamKLqfDbGZCayaOCM57HecnfUdnIP9cPqDtU82FonQ+fP3cH7uBgTPHyd06ERERERESjPIRCgiIkLoEHROWX4RUnZHorywBNdWhcHt+UAETB2GP/77Ddx6BCIzKhFyaQUAoOU7g5AZlYCH11KEDpuIiIiISCVs7E4Kds95IifmFgDAPsALOdef/L9J/2DcPngBANDQrzE8BnbA1dU7BY2ViIiIiOhZGGSNEFXPrmVTRfJjH9AMdw9HAQDcnm+Ni4u3AACcO/jDsrEThv/xJQDAwrEhOq14FxZOtkjcfETA6ImIiIiI6o6JEAEAJC52gFyOoowcAICdvweufbETDm188CjpHqRFJQCAxM1HKiU8/XcuRNx3+3HnUJRgsRMRERERKYuJEAFPm8X9WRsEAGX5hWg+rh9Kcx7jzqELgsZGRERERKRuTIQIAJB27BLSjl1S/Lx/wCwAwJCTq3B4+Pwayx2qZR0RERERka5iIkS12vP8dKFDICIiIiJSO44aR0REREREBoeJEBERERERGRwmQkREREREZHCYCBERERERkcHhYAl6xtjCDKOTtwgdhlKMLcyEDoGIiIiIDAwTIT0jEolgIjEXOgwiIiIiIp3GpnFERERERGRwmAgREREREZHBYSJEREREREQGh4kQEREREREZHCZCRERERERkcJgIERERERGRwWEiREREREREBoeJEBERERERGRwmQkREREREZHCYCBERERERkcFhIkRERERERAaHiRARERERERkcJkJERERERGRwmAgREREREZHBYSJERER1kpeXhwULFuDkyZNCh1JvPHr0CO+//z4aNWoEc3NztGzZEuvWrYNcLhc6NJXwGlBOeno6Pv74Y/Tv3x+Ojo4QiUQYP3680GER0Z+YCBERUZ3k5eVh4cKFfAiuo7KyMrzwwgv45ptvMHLkSHz55Zfw8/PDpEmTsHDhQqHDUwmvAeUkJiZi6dKliIuLQ3BwsNDhENE/GAsdABERkT76/vvvERUVhTVr1uD9998HALz99tsYPnw4li5digkTJsDDw0PoMEmDgoKCkJmZCUdHR2RnZ8PR0VHokIjob1gjpGfkcjnKi0rq1b/62kSESNeVlZVh+fLlaN26NSQSCWxsbNCuXTusXbtWsc348eMhEomqLf/3ZjwnT56Ep6cnAGDhwoUQiUQQiURo2rSpUjE93WdERAQ6deoEiUQCd3d3hIaGAgByc3Px1ltvwcnJCRKJBC+99BLu379fZT+pqal444034OzsDDMzM3h5eWHOnDkoKipSbLNu3TqIRCLs3bu3SnmZTAZ3d3e0bt260vKLFy/i5ZdfhoODA8zMzODn54clS5ZAKpUqdZ4A8PPPP0MikeDtt9+utHzatGkoLy/H9u3bld6nsngNCHsNWFlZMfkh0mGsEdIz0uJSbPUaI3QYShmdvAUmEnOhwyDSK2VlZejXrx9OnjyJvn37YsyYMTA3N0dMTAx27dqFKVOmKLU/f39/rFq1CtOnT8fLL7+MYcOGAQAsLS2Vju3y5cvYt28fJk6ciLFjx+LXX3/FrFmzYG5ujk2bNqFp06ZYsGABbt68iTVr1mDs2LE4duyYovzt27fRvn17PHr0CJMmTYKPjw9OnjyJZcuW4cyZMzh+/DiMjY0xatQoTJ8+HZs3b8bgwYMrxXD8+HHcu3cPM2bMUCwLDw/HsGHD4O3tjRkzZsDOzg5nz57FvHnzcOXKFezYsaPO5yiTyRAdHY22bdvC3Lzy91v79u0hEokQFRWl9GenDF4Dwl4DRKT7mAgREemh1atX4+TJk5g9ezaWLl1aaZ1MJlN6f87Ozhg6dCimT5+OgIAAjBmj+guXmJgYnD17Fh06dAAAvPXWW/Dw8MD06dMxZcoUrFmzptL2q1atQmJiIvz8/AAAc+bMQVZWFsLDw/Hiiy8CACZNmoSZM2di5cqV2LRpE9566y3Y2tpi0KBB2LdvH3Jzc2Fra6vY5+bNm2FsbIzRo0cDAEpKSvDWW2+hQ4cOiIiIgLHxk9vjO++8g8DAQHz44Yc4efIknn/++TqdY25uLoqLi9GoUaMq68zMzODg4IB79+6p/BnWBa8BYa8BItJ9bBpHRKSHtm7dCltbW8ybN6/KOrFY2K/+Tp06KR6AAcDU1BTt27eHXC7H1KlTK23brVs3AEBSUhLw5wP83r170aZNG8UD8FOzZ8+GWCzG7t27FcvGjRuH0tLSSs3QCgoKsHv3bvTv3x9OTk4AgKNHj+LBgweYMGEC8vLykJ2drfj39DhHjhyp8zk+bZ5lZmZW7Xpzc/NKTbg0gdfAE0JdA0Sk+1gjRESkh5KSktC6desqzbJ0QbNmzaose/qm/mkflH8uf/jwIQAgKysLBQUFaNmyZZV92NnZwdXVFSkpKYplTx90N2/ejHfffRcAsHPnThQWFmLs2LGK7eLj4wEAb775Zo1xP3jwoM7nKJFIAAClpaXVri8pKVFsoym8Bp4Q6hogIt3HRIiIyIDV1ElelY7hdWVkZKT0OlUHVTE2Nsbrr7+O1atX4+bNm/D29sbmzZtha2tbqc/I0/2vWLGiSuf5p9zc3Op8XFtbW1hYWFTb/K20tBTZ2dno0aOHSuekbrwGKu9fXdcAEek+JkJERHrI19cXCQkJKC0trbF5Fv58gw4AOTk5iv8DqPRG/amaHpi1ydHREVZWVoiNja2yLjc3F+np6VUeYseNG4fVq1dj8+bNePvtt3Hy5ElMnDix0ufi4+MDAGjQoAH69OnzzHGKxWK0bdsWly9frvI7uHDhAuRyOdq1a/fMx6kNr4G/CHENEJHuYx8homoUFUtx9uoDrN0Wh3cWnUbOoyfNW3LzS7FyYwxOXLiPR4/LhA5TY2QyOW6kPsK2A8mY+fkFxfnn5Jdi9hdRCDtyC7fSHuv10Oc5j0px9Ow9fLbhKt6cd0rxGeQ9LsP6HQm4GJuF0rIKocOs0ejRo5Gbm4tPP/20yrq//958fX0BoNKIXADw+eefVyn3dHSwnJwcDURcN2KxGIMGDcLly5dx6NChSus+++wzyGQyvPzyy5WWt27dGgEBAdiyZQt++uknyGQyjBs3rtI2/fr1g5OTEz777LNqz6+4uBiPHz9WKtbXXnsNRUVF+PbbbystX716NYyNjTFy5Eil9qcsXgN/EeoaqO8ePCzGgci7WLz+MsbPrfw9+MPuG7ia+BDl5coPvFFfFJdIcf5aJr7+JQ7vLT5T6Vlg+Q/XcPzcfeTmV9/8VR/I5XIk383Hr4dT8NGqC8jJ/+tZ4KNVF/Dr4RQk382v188CrBEi+pNcLseFmCx8vT0e2w/fqvYht6ikAjP/dwEAIBaL8FL3xpg8yh99OjaCWCz8m9JnlfmwGBt238D6sATcvl9QZX1xSQU+23BN8bNfUxu8N6I5xg32QUPrmt841xdSqQz7T93B19vjcfRs1XlLAKCwWIp3F58BADSwMMYbL3lj0kh/tPK1q3Z7oXzwwQfYt28fPv30U0RFRaFv374wNzdHbGwsEhMTFQ+9r732GubMmYOJEyciISEBdnZ2OHToELKzs6vs097eHt7e3vjll1/g5eUFZ2dnNGjQAIMGDdLquS1duhRHjx7F0KFDMWnSJHh7e+PUqVPYvn07unfvXuUBF3/WCMyYMQOhoaHw9fVFx44dK61v0KABNm/ejKFDh8LPzw9vvvkmvL29kZeXh4SEBOzatQu7d+9WasSwt99+Gz/++CM+/PBDpKamwt/fHwcOHMDu3bsxd+5cpeffURavgcqEuAYAKBLRp4NjXLt2TbGse/fu6N69+zN8EupXWlaBnUdT8fWv8Thzufo+UYXFUrw1PxIAYGttiglDffHuq83h42Gj5Wg1IzouG19vj8fPB5NRXFL9s8BHq58Mfy8SAf27uGPyKH/07+IOI6P6X8fwMK8EP/6WhG92xCP5btXkv7ikAst/jFH87NXYCu++6o8JQ31g31D3+iTWRiSvz2kcVVFeVKL0PEIunVqi/66FlfdTWIz8lHQkh51C/IYDkFdo7o2PLswjFJeci7cXnsYfVzJVKt/c0wbfzuuKbkEuao9NG4pLpJj3VTTW/ByLMhXe7knMjTH7PwH4aEIgTEzq500g/NQdTF56ttoEsC76d3HHN590hoebldpjU1VJSQk+//xz/Pzzz0hOToa5uTl8fHwwYcIETJo0SbHd+fPn8eGHH+LSpUuwtLTEsGHDsHz5ctja2mLcuHHYuHGjYtsLFy5g+vTpuHLlCoqKiuDh4YHU1NQ6xyQSiarsE39O6rlp06YqbxZPnjyJnj174scff1RM7AkAt27dwrx583D48GHk5eXB3d0do0aNwty5c6sdhODBgwdwd3eHVCrFp59+io8//rja+K5fv47PPvsMJ06cQFZWFmxtbeHl5YUBAwZg8uTJlZqO1UVeXh7mzp2LXbt24eHDh/Dy8sKkSZMwefJkrTQz4zXwF6Gugdp+z/Pnz8eCBQuU2p+myOVy/HwgGR+uOI/MnBKV9jGinye+nNUJTvYWao9PG27eycfEhadxIipdpfJeja2w/pOu6N2xfvYlKy2rwOL1l7Fy03WVWjyYmxnhv+Na4ZN3WsPUpOZ+gLqEiZCeeZZEKGVXJNIiogGRCBaODeH9ag/Y+nsgcctRnJ25XmMxC5kIVVTIsHJTDOZ9Fa1SAvB3IhEw9fWWWDq1HSQW9aey9ezVB5jwSSQSUx89877a+ttj4+LuOlc7Upu8/FJMW34em/YmPfO+LCUmWDmjPSa+4qcTfSmIiOoiI7sI7yw6g70n7zzzvhxszfHVnE4Y0a/qyIC6SiaT48ufYzF7zcVqa4CU9c6rzbHiw2BYNTBVS3zacCkuG+PnnsL1m7nPvK9WPrbYuLg72rZwUEtsmsRESM88SyIUtXAzYr/Zq1hubGGGlyO/gMTVDr8E/AelD/M1ELFwiVBpWQVe/+gkdh2v+5vMuugY4Ijwr/rBzkb3m4r9cjAZb3z8O6RS9X0NSMyN8dsXffBCp6oTSeqaew8K8cI7hxCfkqfW/U58xQ9ff9xZL5pIEJF+S7iVhxcmHkLag0K17nfuxNZYNLmtzr8UKi+XYcK8U9ganqzW/bZubofD6/rXi9qxPSduY8R/I575hfDfmZka4dcVPTG4p4fa9qkJ9ee1NWmdtLgUWdFJaDqoE6w9nJGloURICOXlMoz4b4Ra3n7907lrWXhh4kGc2PAirC11923Q9kMpeH3WSaj7VUhRiRQvTTmCA1/10+nmARnZRXj+rQO4eUf91/W3YYmQVsjx/YKuOv8QoA5ZWVmoqKj9LaqlpaWio319VlBQgIKC2ptPGhkZwdHRUWsx6QJeA5XVl2vg5p189HzrADKyi9W+70+/vQK5XI5P39fs6IjPoqJChjc+Ponth26pfd9XEnLQ6z8HcGrjSzr9YnTfyTsY/uFxVFSo92GgtKwCwz48jt9W98FLPZqodd/qxNeV/zB+/HiIRKJa/yUkJAgdptZYNXUGAJTmqdZvQld9tPqCRpKgp6LjH/6ZZOhmhevF2CyMmaP+JOipsnIZhk47hpQ03UyepVIZhn5wTCNJ0FM/7L6B5T9eq8OW9V9wcDBcXV1r/bdy5Uqhw1SLlStX/uu5BgcHCx2m1vEaqH/XQGFROV6cfFgjSdBTS767is1qaHasKQvWXdZIEvRUbHIeXvnwOGQy3XwWiL2ZixEzI9SeBD1VUSHHq/+NQFzysze30xTWCNXAx8cHTk5O1a7T9GzgQjG2MIWZnZWij5Df2L6wb9UMWdFJyE9RreOgLoq8lIHVW6rOP1GbqG2D4eIgQUZ2EYJf21uHEkD4qbvYtDcJ44f4qhipZpSWVWD83FNKNYdT5fwLisrx5rxIRHz/os6NqLdyUwzOx2QpVUaVz2DeV9F4qXsTtPS2VTHS+mHr1q0oLq79YapZs6r9BaKioup8jOzsbOzatQvDhg2Dg0Pd252r+4F07Nix6Nq1a63bWFjoflMYdeM1UFl9uAbmrLmIpNvKvQxS5Xtwaug59O7ghkbODVSMVDMuxmZh2YarSpVR5fxPRKVj3a/xmDyqhYqRaoZUKsP4T06hpLTufaJUOf+S0gqM/+QU/tg8CMbGulf/wkSoBnPmzKk0Oo0haBMyCm1CRlValhp+Dudnfy9YTOpWXCLFhHmnlK4JcXGQwF2FL/Fpy8+jb6dGcHPSnRvAp99eQWyycn1iVD3/3y9m6NwNID4lD/O/jla6nCqfQdmfbc/P/jRIr/sLdenSRePHyM7Oxvfff4/u3bsr9RCsbs2aNav2gd7Q8RqoX05HZ2DNz3FKl1Ple/DR4zK8s/gM9q/tq/TxNKWs/MkLQWVrQlS9F4b8Lwovdm0MT3fdGVV05aYYXIytOkR+bVQ9/6jr2fh8cww+ejNQ6bKapr93ZlJa4k9HcHjEQhwdvQQXF/+EkpzHaOBqj4rSvyYOFZsaY8jJVQj4YFilsl1XT0afrdUPRapLfj6QXO2Y+Jry6HGZSjcbTXn0uAyrfrqu1WMu+e6qTk24F/rDNbV2CP03UdezcehMmtaOR0T0bxZ/e0Wrxws/dReX4pR76NakXcdSlX4h+CyKSqT4fHNMHbbUjqJiqdabbi//MQbFJVKtHrMu9D4Rys7ORkhICLy9vWFubo7GjRvjgw8+QGFhId566y2IRCKsXbtW6DB1Qn5KBtIjY3Av4jKuf70Hx8d9BofWXugU+o5iG1mZFKenfolWU4fBtsWTkUCa9A+G+wvtcObDrwWM/t/J5XJ89Uu81o+7YfcNlJTqxh//T/tvorBYu7GkZxVhz4nbWj1mTR7mleCXQylaP+7X27V/3RERVSfp9iMc+eOe1o+7Toe+B4X4Tt687yYKisq1ftzqbD+cgtz8sjpsqT45j0rx62HN9cdSlV4nQleuXEGrVq2wYsUKZGRkoEWLFigvL8eaNWswcuRIxMc/+UNo3bp1lbJhYWEYOnQoevXqhREjRuB///sfsrKU61NQ32VdTERy2Cl4Du0Cx3Z+iuUPr6Ugdt1edFvzPiSudui04l2cn/M9ih/obmc4ALgYm43LCQ+1ftzs3BLsPKbeIbpV9c2vwtyIvtmhGwOMbNqbpNIkcc/q4Ok0pN7TXk0kEVFNvg1LFOS4Px9MxqPH2n34rk7szVxERj/Q+nEfF5bj5wPqHaJbVesFuievE+gZpDZ6mwhlZ2dj0KBByMjIwIwZM5Ceno7o6GhkZGQgNDQU4eHhiIqKgkgkQkBAQJXy4eHh2LNnD06cOIEdO3ZgxowZ8PT0xJYtWwQ5H6FcXRUGmbQCbWaOrLx89U7IKiow+OgKZJy5jlt7zggWY12duCDcgA8nVZylWp2ycoq12hTg705ffqATzeOEugbkcuDUpQxBjq0vrKys0L9/f1hZ6U4be9IuXgPqcUKg+1FxSQUuXBf+hfLJi4b9LFBQVC7Y7yEqNhuFOlIr9pTeJkJTp05FWloapkyZgpUrV1b64gwJCUFgYCCkUimaNm0Ka2trxTpfX1+sWrUKV65cQV5eHgoLC3Hq1Cn07dsXhYWFGDt2LMLDwwU6K+17nJqBW3vOwK17AJw6+CuWy6UVyIpKhLm9DW5uPyFojHV1KV649smX4rRfE6VLMZSWVSAuRfgaw0vxwn0GutQ+vj5q1KgRFi1ahEaNdH+iXtIMXgPPrrSsAtdu5Ah2fF34HhQyBl14FriS8FBjU2f8G5lMjiuJwl1/1dHLRCg+Ph7bt2+Hg4MDli1bVu02QUFBAIDAwMojWMyZMwfTpk1DYGAgbGxsIJFI0K1bNxw6dAhDhgyBXC7HtGnTKs0PExkZiT59+sDV1RVmZmZwd3ev1PSuvrv2xZPan7/XCjl18If3yJ6I33AA7RdNgJG57k4c+lS0gA/BMTdzUFau/SZZfydEs8C/E/oGkJFdhPSsIsGOL+T1pw9KS0tx9+5dlJaWCh0KCYTXwLOLS85FuVS42nld+B4U8l544/Yj5BcI2zxQ6N9BtIAvpasjkuvqjI/PYN68eVi8eDE++OADrF69utptpkyZgq+++grz58/HggUL6rTfxMRENG/eHABw9epVRZO6vXv34sSJE+jcuTOcnJyQlpaGZcuWIS0tDdevX4e7u7tK59GuXTtkZCjXnMZELsZ8WXuVjldXxhJzDD6+EnHr9yNh02EM2L0I2VeTETV/o0r7Wyi+gHKR5r+Y7zecBbm4+rkdno6NXxMXBwsYG4khrZDVOvlcbWPru+SGwkgu3IN4nqQfCs07V7tOXeePWj4D66IjsCoRrglluZETMm0mV7vu384fargGjCuy4PyIA7P83SuvvFLnbTMzM7Ft2za89tprNc7xVp2wsDAVoyNt4DWgXSXGXnhoPbbaddr4HjQtT4Hj400qRK4+6Q0/hExsU+06bTwLOOetgrFMmGbqAJBv0QuPLXpUu04bzwJWxSdhXaz+lkQuLi64ePGi0uX0ch6hiIgIAEDPnj1r3CYt7clwtv+sEaqNn58f7OzskJOTg6SkJEUiNHjwYAwePLjStsHBwfDz88POnTvxwQcfqHQeGRkZuHdPuZFdTEVGgLNKh6uz4AVjUXAnEwkbDwEATn+wFoOPrcSdg+fx4JzytWD30++jTK6F2pKGNVeA1nVsfGMjsUpj6ANARkYmIH2kUlm1cC0GzKtfpY3zz88vRH6W9kcqUjA3Aqq/9yk1N4Kqn4FUKlf671nfFRYW1nnbp5N1FhcXK1WOn7lu4zWgZVZ2gHX1q7TxPVhWViH878NKVGN7KG3cCx88yAbKtD9Yg4JzEVDDfL/aOP/Hj4vw+IHu/E3qZSJ0+/aToXo9PDyqXS+VSnHmzJM308okQgBgYmKi2Edt7O3tAQDGxqp/xC4uLkqXMZGLAQ1WrjTq1Qaeg7tgT+8ZimWPbz/ApSVb0WXVZOztNQPSYuWaLbi5ummnRggVqKn6MyO79poaZd4C1bgPF0cYyS3rHK+6PbIwR0EN69R1/rXty9paAitT4dr2l4vtkFnDun87f6jhGjA2ApzZt6GSBg3qfiN9+uBrYWGhVDn2J9FtvAa0q8TYBjU1jNLG96CZqRgOAv8+MsQy1PTqVRvPAs7O9jCWCff4nW9hgZrGMNXGs4CVpQWsjdV/DajyzAx9bRpnZ2eH3Nxc/PHHH+jUqVOV9Vu3bsWYMWNgZWWFR48eQSQS1Wm/WVlZcHZ2hlwux+nTp6vMpF1RUQGZTIbbt29j9uzZOH36NK5duwZHR0e1ndu/KS8qwVavMVo7njqMTt4CE0kNVRVq1GbEblxJUK2T3t2jo+Du3ABpDwrR+IVflC5vKTHBoz/egFhct2tNE9ZsjcUHoedUKvus5w8Av67shVf7eqpUVh3yC8pg0/knlcs/62fQv4s7Dq7rp/Lx9VFUVFSdt01ISMDYsWOxefNmRRPluggODlYxOtIGXgPalXT7EXwHqd5U8Fm/BycM9cEPi7qrfHx16DpuP85cVq1G5lnP39REjPyzY2FmaqTS8dXhh9038Nb8SJXKquNZ4IdF3TBhqK9KZTVBLwdLeJoVRkdHV1mXnp6OmTNnAgACAgLqnAQBwOeffw65XA4bG5tqv1h79OgBU1NT+Pj44MqVK4iIiNBqEkS1C/J3EOzYbf3tBU2CACCohXDn/+T49oIe39rSFL4eNbSN0wKhz5+IyKuxNawtTQQ7vtD3IQAI8hfuu7iVj52gSRB04F6kC9fA3+llItSnTx8AQGhoKG7cuKFYHhUVhZ49eyI7+8mIFf+cSPXo0aOYNWsWkpMrT3hVVFSERYsWYfny5QCA2bNnw9S06ihpGzZswLlz57Bt2zZYW1ujb9++uHPnjkbOkZQn5B+f0F88ANDaz06wZMzW2hSejYSf+0PI34OuffnXN82bN8eFCxeUqgkg/cJr4NmJxSK0FfCloJAvJBUxGPizQItmtoIlY+ZmRmjRrKEgx66JXiZCISEhsLe3x927d9GyZUu0atUKPj4+aN++PZo1a4ZevXoB1fQPKiwsRGhoKLy9veHm5obg4GAEBQXBwcEB8+fPh1wux8SJExESElLtcf38/NChQweMGjUKx48fx+PHjxXJEwnvxW7uUKICUK1e6t5EmAP/TQOJCXq1dxXk2AO7N1aq9lVTBvUQ5vcgMTdGz2BhPnsior8b1KOxIMd1cbDQiRdC/bq4w8RYmMdfXXgWMDERY0BX1UYzflb9u7jDWKDPvia6FY2auLu7IzIyEgMHDoS5uTlSU1NhZ2eH9evXIzw8XFFL9M9EKCgoCHPnzkXv3r1hamqKuLg4xMbGwtHRESNHjsSxY8ewfv36Oj3QNWzYEN7e3rh586bGzpOU4+FmJciXUHNPG/QUKAH5p0kj/euwlf4c95+G9WkKJzvN90f7p9EDvdDQ2kzrx9Unt2/fxptvvqkYDIcMD68B9Rg/xBfmZtqvEZg4vDlMTIR/7HS2t8DwPk21flwPN0u82E2YBOSf3hshTK3q5FG68Szwd3o5ahwA+Pv7Y//+/VWWFxQUIDU1FWKxGM8991yldY0bN8bixYvVcvzMzEwkJiaiQ4cOatkfqcekkf7Y97t2myu+N8JfJ2pD8GeNyNOOjtrSurkdOgbUfc4PTTIzNcJ/hvlh6fdXtXpcoW46+qS4uBjXr19XDKFMhofXgHrY2ZjhtQHN8ONvSVo7ppGRCG8P99Pa8f7NpJH++OVQilaPOXG4H4yMhE8EAaBPx0bwbmKNm3fytXZMXw8b9GrvprXj1ZVu/Ea0KDY2FnK5HD4+PpBIap84rK7GjBmDBQsW4LfffsPJkyfx3Xff4fnnn4exsTGmT5+ulmOQevTr0gh9O2tv6M7mnjaY+IrufPkbG4uxfLp2R1D6fEYHnUkEAeC/41vB1VE9f/t18cZL3mijA+3iiYieWvBeW1g10N6gCTPGPgd3F9XmndGErm2dMbRX9VOsaEJTN0tMHd1Sa8f7N2KxCJ/PaK/VY37+3/aCDxpVHYNLhGJiYgAV5g+qTceOHXHgwAFMmDABAwYMwIoVK9CtWzdcuXIF3t7eajuOkDwGdkTHz96utMx7ZE+MTw9Dk/71Z2hSkUiE7+Z31coNQCwW4cdF3WFuplsVr6MGNMPLvbVzA3hvRHP06qBbb4Bsrc2w/pMuddjy2bk6SvDFrI5aORYRUV01cbXU2oNwc08bLJzUVivHqiuRSIR1czvDzkY7TZZ/WNQNlhLhRuurzuCeHhjzkpdWjjV2kDdeEqiP7r9hIqQGU6ZMwYULF5Cbm4vi4mLcuHED69evr3FC1/qoyYsdcOfQBcXPlu6O8B3dB5kXEwWNSxVNXC2xdnbV+aVqk5FdhLQHhXWacO6pOf8JRMdA3WgS9ndPbgBd4OZU91oRVc7fr6kNln+o3TdOdTXo+SZKN9NQ9jMQi0XYsKArbNk3iIh00H+G+yk9gIyy34PmZkbY9GkPnXshCAAuDhKlX4qpci+c/kZL9NTBJmEA8MVHndDUre4Tvaty/k3dLLH6I919IaiXE6rWplevXjhx4gT279+PgQMHCh2O2qk6oaqptQRDTqyCkbkpiu5nQ2xmAqsmzkgO+x1nZ32H4X98iZ2d34dcWgGIROj7yye4tGQLguePQ9x3+3HnUN0nxfsnbU2o+k/Lf7iGj1arHndt3h7uh/XzuuhUk7B/ikvORY83DyA7t0Tt+/Zws0TkxoFo7FL3L1htk0plePW/EfgtQv0dr0UiYMNC3Zo0ThcpM5nmo0eP8Mcff6Bz586wsan7fFCcTFO38RoQVlGxFP3fO4TIaNUmGK2NibEYu1b11tmagKfWbovD+8vOamTfowd6YfOSHjrZJOypm3fy0X1CONKz6p7c1JWrowSRGwfCq7G12vetLgZXIxQREQG5XK6XSdCzKMsvQsruSMR9H469L8zEhXk/Iiv6Bv747zdw7fIcMqMSnyRBAFq+MwiZUQl4eE27HQ3VLeTNAHzxUUe1f0FNG9MS33yi20kQALTwskXkxoFo4qredtv+zRrqfBKEP/tL/bqil9qbBpiaiLFl6fNMgtTMxsYGAwYMUOoBmPQLrwH1k1gY4+DX/dQ+nHIDC2Ps+/IFnU+CAGDKay3w3fyuMDJS7z174it+2PRpd51OggDAu4k1Tm8aCK/G6p3r76/96m4SBENMhKhmds95IifmFgDAPsALOdef/L9J/2DcPvikWVxDv8bwGNgBV1fvFDRWdZk6uiXObHoJfk2f/cbq4mCBPV/0waoQ9SdXmtLcsyGu7ngZE4b6PPO+RKInTQAubhui80nQUyYmYmxe0gObl3RHQ6uqkyQrq11LB1z6ZQheH6iddteGJDc3Fzt27EBubq7QoZBAeA1oRgOJCfav7YsvPuoIC/NnH1a7V3tXXN81DP266MZQ0XXxn+F+uLB1MFr52D7zvhxszfHryl5YP6+rzowS92+auVvj8q9D8e6r6hnhdNJIf1z+dSiauet2EgQmQvR3di2bKpIf+4BmePhnUuT2fGvci7gMAHDu4A/Lxk4Y/seXeOXC13Bs64NOK96F39i+gsb+LDoGOuHyr0PxyTutVeo4KTE3xnsjmiN293AM7ln/+oU1tDbDD4u648BXfVWe7K5bW2ec+nEg/jezIyQWutcWvDYikQhvDPJB7O5hGDvIG6YqzHPh6ijB8unBOPvTIDznY6eROA3dgwcPsGLFCjx4oP4mPFQ/8BrQHLFYhKmjW+Ja2DAM691UpdoRz0ZWWD+vC45+OwBNG6m3dkEb2rZwwMVfhmDxlLZwtFW+ub65mRH+M8wXcbuH4dW+nhqJUZOsGphi3SddcOzbAegY4KjSPjoFOuH4dwPw1ceddW5wiJrUrycW0hiJix0gl6MoIwcAYOfvgWtf7IRDGx88SroHadGTfiSJm48gcfMRRbn+Oxc+cx8hXWBhboxFk4Mw+61A7DhyCz/uSULU9SwUFkur3d7URIzWfvYYPdAL4wb7wEYNtQlCG9CtMQZ0a4wLMVlY92s8jp27X+t8Q56NrNC/SyO8N8IfrXzr/8O/m1MDbFrSAytntMcPv93AL4dScP1mLqTS6rtRWluaoFOAE/4zzA9DenroxESBRETPwruJNXau6o20jEJ8tzMRO4/dQvytR5DJqv8etLMxQ7e2zpj4SnP07+Jeb1pD1MTUxAhzJ7bBzPEB2HUsFRt238D5mCwUFJVXu72JsRgBvnZ4/cVmGD/EV2uj0GlS745u6N1xMKLjsrHu13gcPXcft+8X1Li9h5sl+nZqhPdGNK+XU0UwESLgabO4P2uDAKAsvxDNx/VDac7jSqPF6TsLc2OMHeyDsYN9UFEhQ2LqI8Qk5aKgqBwymRwSC2O0aNYQLb1tYWqi/Zm5taF9K0e0b/XkbVDmw2JcisvGg5xilJXLYGZiBDcnCdr628O+ofYHuNAGRzsLfPRmID56MxAlpVJcu5GLG7cfobhECiMjMawbmCDQzw5eja3r/U2fiKg67i4NsHByWyyc3BaFReW4kpiD5Lv5KCmrgImxGA2tTNGmuT083Cx1vj+sKsxMjfDai1547UUvyGRyJN1+hKs3cvC48K9ngeaeDfGcty3MTPXzWaBtCwd8t6AbACA7twSX4rKRkV2M0vIKmJkYwcXBAkEtHOCgQu2ZLmEiRACAtGOXkHbskuLn/QNmAQCGnFyFw8Pn11juUC3r6jsjIzFaeNmihdeztxmur5zsLTCgW2OhwxCMuZlxpcSQiMjQNJCYoEsbZ3Rp4yx0KIIQi0Xw82wIP8+GQociGAdb83rV50sZTISoVnueny50CEREkEgk6NChAySSus9/RfqF1wARqRsTISIi0nlNmjTBl19+KXQYJCBeA0SkbuzdS0REOq+iogIFBQWoqKgQOhQSCK8BIlI3JkJERKTzkpKS0KtXLyQlJQkdCgmE1wARqRubxukZYwszjE7eInQYSjG2qP/DTRIRERFR/cJESM+IRCKYSOr3UIZERERERJrGpnFERERERGRwmAgREREREZHBYdM4IiLSed7e3jh8+DCsrKyEDoUEwmuAiNSNiRAREek8Y2Nj2NraCh0GCYjXABGpG5vGERGRzktLS8OMGTOQlpYmdCgkEF4DRKRuTISIiEjnFRQUIDIyEgUFBUKHQgLhNUBE6sZEiIiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOCI5HK5XOggiIiIavPgwQNs3boVo0ePhrOzs9DhkAB4DRCRujERIiIiIiIig8OmcUREREREZHCYCBERERERkcFhIkRERERERAaHiRARERERERkcJkJERERERGRwmAgREREREZHBYSJEREREREQGh4kQEREREREZHCZCRERERERkcJgIERERERGRwWEiREREREREBoeJEBERERERGRwmQkREREREZHCYCBERERERkcH5P5TxFfW/XFzdAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "partitioned_problem = partition_problem(\n", + " circuit=qc_1, partition_labels=\"AAAABBBB\", observables=observable_expanded.paulis\n", + ")\n", + "subcircuits = partitioned_problem.subcircuits\n", + "subobservables = partitioned_problem.subobservables\n", + "bases = partitioned_problem.bases\n", + "\n", + "print(f'Subobservables to measure: \\n{subobservables}\\n')\n", + "print(f\"Sampling overhead: {np.prod([basis.overhead for basis in bases])}\")\n", + "subcircuits[\"A\"].draw(\"mpl\")" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAEvCAYAAABCEhUaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCpklEQVR4nO3de1wU5f4H8M8uC7ssgtxdFK+ACiZqokimhZmhpqblpfBopVamaeaRtPplZjfCjqZ0sexkmkc5oaZImvcjWiIq3hBvICrIoiuQchFYmN8fxCYByuIus+x83q+Xr2BmnpnvEAwfnnnmGZkgCAKIiIiIJEYudgFEREREYmAIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIonrLz8/He++9h71794pdSpPxxx9/4LXXXkOrVq2gUqnQpUsXfPXVVxAEQezSiKgBeB00TnZ2Nt5++22EhYXBw8MDMpkMzz//vNhlGTAEUb3l5+djwYIF/OGvp9LSUjz++OP4+uuvMXbsWCxbtgydOnXCq6++igULFohdHhE1AK+Dxjl79iw++ugjnD59Gr169RK7nBoUYhdAZK1WrFiBpKQkLF26FK+99hoAYMqUKXj66afx0Ucf4YUXXkDbtm3FLpOIyGx69uyJa9euwcPDAzqdDh4eHmKXVA17gqxYaWkpPv30U3Tv3h1qtRrNmzdHUFAQoqOjDds8//zzkMlktba/s9ty7969aN++PQBgwYIFkMlkkMlkaNeunVE1Ve1z9+7dCAkJgVqthre3NyIjIwEAeXl5mDRpEjw9PaFWq/Hkk0/i6tWrNfaTkZGBf/zjH2jRogWUSiV8fHzw1ltvoaioyLDNV199BZlMhs2bN9doX1FRAW9vb3Tv3r3a8sOHD2PkyJFwd3eHUqlEp06d8OGHH0Kv1xt1ngDwn//8B2q1GlOmTKm2/PXXX0dZWRliYmKM3icRGYfXQXGvg46OjhYXfKoRyCqVlJQIjz76qABAGDRokBAVFSUsW7ZMeOmll4TQ0FDDdhMnThTq+jYAIEycOFEQBEHQarXC4sWLBQDCyJEjhdWrVwurV68WNm7caFRdAITAwEDB1dVVmDt3rvDll18a6lyyZInQo0cPYeTIkcIXX3whzJo1S7CxsREee+yxavvIyMgQPDw8BDs7O+H1118XvvjiC2H06NECAKF///5CWVmZIAiCkJubKyiVSuHpp5+uUcf27dsFAMK//vUvw7ItW7YIdnZ2QkBAgPDRRx8JX3/9tTBx4kRBLpcLzzzzjFHnWV5eLtjb2wt9+/atse727duCTCYzep9EZBxeB8W9Dv7d9evXq309LQFDkJWKjIwUAAjz5s2rsa68vNzwcX1/+AVBEC5evCgAEObPn9/gugAIMplMOHjwoGFZSUmJoNFoBJlMJrz22mvVtp81a5YAQDhz5oxh2XPPPScAEOLj46tt+89//lMAIKxYscKw7JlnnhGUSqWQm5tbbdvx48cLCoVCyMnJEQRBEIqLi4UWLVoI/fr1M1w8qvzrX/8SAAh79uyp93nqdDoBgDBmzJha13t4eAghISH13h8RGY/XwUpiXQf/zhJDEG+HWak1a9bAxcUF7777bo11crm4/9tDQkIQHBxs+NzOzg69e/eGIAiYMWNGtW379esHADh//jzwZ/ft5s2b0aNHDwwZMqTatvPmzYNcLsfGjRsNyyZOnIiSkpJqt54KCgqwceNGhIWFwdPTEwCwY8cO5OTk4IUXXkB+fj50Op3hX9Vxtm/fXu9zrOqOViqVta5XqVTVuqyJyPR4Hawk1nWwKeDAaCt1/vx5dO/eHSqVSuxSaujQoUONZS4uLgBguN/+9+U3btwAAFy/fh0FBQXo0qVLjX24urrCy8sL6enphmVVP+CrVq3CK6+8AgBYv349CgsLMWHCBMN2qampAIAXX3yxzrpzcnLqfY5qtRoAUFJSUuv627dvG7YhIvPgdbCSWNfBpoAhSOLqGgzYkAFw9WVjY2P0uobOq6NQKPDcc89hyZIluHDhAnx9fbFq1Sq4uLhg+PDhNfYfFRVVY5BglZYtW9b7uC4uLrC3t0dWVlaNdSUlJdDpdHjkkUcadE5EZFq8Dlbfv6mug00BQ5CV6tixI86cOYOSkpI6b8ngz78aACA3N9fwMYBqf0VUqetC0Zg8PDzg6OiIlJSUGuvy8vKQnZ1d44d34sSJWLJkCVatWoUpU6Zg7969eOmll6p9Xfz8/AAADg4OGDhw4H3XKZfL8eCDDyI5ObnG/4NDhw5BEAQEBQXd93GIqG68Dv5FjOtgU8AxQVYqPDwceXl5+OCDD2qsu/OviY4dOwIAdu7cWW2bzz77rEa7Zs2aAX9eKMQil8sxbNgwJCcnY9u2bdXWffLJJ6ioqMDIkSOrLe/evTsCAwPx448/YvXq1aioqMDEiROrbfPEE0/A09MTn3zySa3nV1xcjFu3bhlV67PPPouioiJ888031ZYvWbIECoUCY8eONWp/RGQcXgf/ItZ10NKxJ8hKzZw5E3Fxcfjggw+QlJSEQYMGQaVSISUlBWfPnjX8sD/77LN466238NJLL+HMmTNwdXXFtm3boNPpauzTzc0Nvr6+WLduHXx8fNCiRQs4ODhg2LBhjXpuH330EXbs2IGnnnoKr776Knx9fbFv3z7ExMSgf//+NX6w8edfQbNnz0ZkZCQ6duyIPn36VFvv4OCAVatW4amnnkKnTp3w4osvwtfXF/n5+Thz5gw2bNiAjRs34tFHH613nVOmTMH333+PN954AxkZGfD398cvv/yCjRs34p133jF6bhEiMg6vg9WJcR0EYAihVQ+DnDhxwrCsf//+6N+//318Je6T2I+nkfkUFxcLH3zwgRAQECAolUqhefPmQlBQkPDFF19U2+7gwYPCQw89JCiVSsHNzU2YMmWKkJeXV+ujjImJicJDDz0kqNVqAYDQtm1bo2qq6/HIuh5R3bNnjwBA+P7776stT09PF8aPHy94eHgItra2Qvv27YV58+YJhYWFtR5Xq9UKCoVCACB88MEHddZ38uRJITw8XGjZsqVga2sreHp6CiEhIcL7778v3Lhxw6hzFQRByMvLE6ZNmyZ4eXkJdnZ2gr+/v7Bs2TKhoqLC6H0RkfF4HfyLWNdBAHX+u5+pBkxBJvBNjkRERCRBHBNEREREksQxQXTfrl+/jvLy8rtu06xZM8OAwqasoKAABQUFd93GxsbGst+VQ0Qmx+tgdU3mOijqzTgLt3HjRuHJJ58UNBqNYGdnJ2g0GuHRRx8VPv30U7FLsyht27a96z1fS7jvayrz58+/57kaOz6AiJo+Xgeb5nWQY4JqUVpaivDwcMTGxgJ/zuzp5uaGnJwcZGVlwdnZudanBqTqwIEDKC4uvus2HTp0qDZDalJSklHH0Ol02LBhA0aNGgV3d/d6tenVq5dRx6iP9PT0WucOuZO9vT369u1r8mMTkeXidbC6pnId5O2wWkyePBmxsbEICwtDdHQ0fHx8DOvy8/Oxb98+UeuzNI3xja7T6bBixQr079+/3j/85vD3i5gUCIKA4tvlKC7Ro3kzOygU0htKWFZWgZuFpbBXKmCvsrGICfMakyAIuFlQBkEQ4NTMDnK5tM6/PngdbJoYgv5m+/btWL16NYKDgxEXFweFovqXyNnZudo040TWKvePEqzcdA5f/fcMLly+CQCQy2UY2q81Xh3rj0EPtbLqX4bl5RX49bcsfBmTil8SrqCqz7xj2+aYOqYzJo7wg4tT3bMQW4MLl2/i6/+m4t8/n0PezVIAgIO9AuFDffDqWH906+QmdolE98Xq/6TT6XSIiIiAr68vVCoVWrdujZkzZ6KwsBCTJk2CTCZDdHS0YfvFixcDAN55550aAYhIKuL3XUabQeswe9EhQwACgIoKAXH/u4zBr/6K/i/EQ5d3W9Q6zeXajWI8PHELhk7bjvh9fwUgADh36Q/MikpE2ydi8OuBTDHLNBtBELBweTL8nvwJn606ZQhAAFBYrMc3sWfRffTPmLrwAPT6ClFrJbofVv1b/tixYxg8eDC0Wi0cHBwQEBCAq1evYunSpUhLSzNMC171jpXi4mLs3LkTcrkcoaGhSExMxPfff48LFy6gWbNm6NOnDyZPnixqNySRuf2ScAUjZu5EefndhwseSM7BY1O2ImHlUDg1s2u0+swt/2YJBkz+BSlp+Xfd7lZhGZ6cvh2/fPkEHg9p1Wj1NYZ3vziKD745ds/tvv7pDIpu67Hyg/6Su0VI1sFqe4J0Oh2GDRsGrVaL2bNnIzs7G0ePHoVWq0VkZCTi4+ORlJQEmUyGwMBAAMDx48eh1+vh5uaG6OhohISEYPny5di1axc2bdqEefPmwc/PD3v27BH79CTH0dERYWFhcHR0FLsUq3arsBTPvrnnngGoyolzuZi7xLjBnZZuzr8O3TMAVdGXCxgXsQdFxeZ723hjO5CcU68AVGVV3AWs23r3QbJkGrwOmp7VhqAZM2YgMzMT06dPx6JFi6p900RERKBbt27Q6/Vo164dnJycAADZ2dnAn2/hnTt3LoYMGYKUlBSUlJTgxIkTGDBgAPLz8zFq1ChkZlpnN7ilatWqFd5//320amVdf3FbmjXxabhZUGZUm1VxF3CzoLQeW1q+vJsl+DE+zag2uX+UYN026wkBX6w7bXSbL2NSzVILVcfroOlZZQhKTU1FTEwM3N3d8fHHH9e6Tc+ePQEA3bp1MywrLCwEAOj1evj4+GDjxo0ICAiAnZ0dunbtiri4OGg0GuTn52PJkiXV9nfx4kUMHz4cjo6OcHFxwYQJE3Djxg2znqeUlJSU4MqVKygpKRG7FKu2PPaM0W0Ki/VYY2RwsFSr4y7gdsndJ7yrzdc/WUcI0OXdRuyODKPb7U/OQcqFPLPURH/hddD0rHJM0Nq1a1FRUYHw8PA6Z+e0t7cH/haCVCqV4ePp06fD1ta2Whu1Wo2pU6di/vz52LZtGxYtWgQAuHXrFkJDQ+Hq6oq1a9eiuLgYERERePLJJ3HgwAHI5Q3LmkFBQdBqtQ1qa+meeeYZo7a/du0a1q5di2effRaenp71ajNy5MgGVidNAoCrLv8HyIy/LMz5v8X4cPYvZqmrMeWphwGqIKPbHT6ZBW9vb7PU1JhKbbxR1nxKg9r2f3ws7MuM70WSMl4HTUOj0eDw4cMNamuVIWj37t0AgNDQ0Dq3qbqddWcIcnFxMXzs7+9fa7uq5RcvXjQs++abb5CVlYV9+/ahTZs2AABvb2889NBD2Lx5M5566qkGnYdWq0VWVlaD2lq6ql63+qqahKy4uLjeba31a2c+MsC1YZeEwqLbKLSGr7d3CaCqx3Z/I8DGOr7fHByA5g1rmpt/C8i3gq9BI+J1UHxWGYIuXboEAGjbtm2t6/V6PQ4cOAD8LQR17tzZ8LGdXe1Pu1T1Ft35jpgtW7bg4YcfNgQgAAgJCUGHDh0QFxfX4BCk0Wga1K4pcHBwMGr7qh94e3v7erflfXPjXa0ogiBXG92umb0Mza3g6/2HCrj7G5FqJxeK4WUF519mo8Y1ABAEwMinvdyclVA5NP2vQWPiddA07ud3pVWGoKpvlLqmMI+JiYFOp4OjoyPat29vWN6qVSu0adMGly9fRnp6eq09SWlplWMf7uz6Pn36NEaPHl1j2y5duuD06YZ3Dze0e68pMHa6+DNnzmDt2rUYPHhwtbB6N38ft0X39vL7+/FN7Fmj2/1v02d4MKDpTx1x8Pg1hPwjzuh2r4YHY9m8pv+whCAI6DJyA1LT6/d0XBXX5kpkJu2ESmmVv1LMhtdB8VnlwOiqVHj06NEa67KzszFnzhwAQGBgYI25LcaMGQMA+OGHH2q0FQQBK1euBAAMGDDAsDwvLw/Ozs41tnd1dTXMRUTUFEwdU/tt4LsJ7uphFQEIAIIDPfCgv/GzIE8dU79fSJZOJpPh1bHGfw9MGtmRAYiaJKsMQQMHDgQAREZG4ty5c4blSUlJCA0NNbz8tGqSxDvNmTMHTk5OSEhIwMKFCw23vfR6Pd58800cP34cSqUSs2bNarTzocpblYcOHar3Xz/UMN07u2FcWP3fCWRjI8MHr/U0a02NSSaT4YPpPY16HciEYb4I8HGpx5ZNw8ThvujUrv4Dg1q42WNmeBez1kSVeB00PasMQREREXBzc8OVK1fQpUsXdO3aFX5+fujduzc6dOhg6MW5czxQFU9PT6xbtw5KpRLvvvsuvLy8EBwcDI1Gg6ioKCgUCqxYsaLawGkXFxfk59fsPs7NzYWrq6uZz5bItL5f2A+DHrr3OAIbGxn+vaAfBvaxrjEHg/u1xrfzH65XEBravzW+mf9wo9TVWBwd7LD1yyfQwfveE/K5u6jwyxeD0KqFcWNbiCyFVYYgb29vJCQkYOjQoVCpVMjIyICrqyuWL1+O+Ph4Q+9QbSEIAAYPHozk5GSMHz8eCoUCycnJUCgUGDNmDBITEzF+/Phq2/v7+9c69uf06dN1PmVGxrl06RJefPFFw6B3Mh+VUoEtywbhg+k90cqz9kHSA3p7Yec3gzFhuF+j19cYXhzZEdu/DsOjvbxqXd9a44CPZwbh5yUDobSzafT6zK29tyN+Xz0Mr4zuDAf7mre57GzlGP+kDw7+OMxqboU2BbwOmp5MEIT6zY9vJQoKCuDk5ASZTIZbt25BrTb+SZi/W7RoEd566y2kp6cbBkwnJiaiT58+2LBhgyTmaTBWQwYETpgwAatWrap3V3CvXr0aWB1V0esrEPe/y5j4zj7cKiyDk4MtDq4ZDv8ONcfAWauUC3mI+99lfPjtMRQU6eHa3A45e8KhUFjl35A13CwoxX9/vYg3og7iVpEezZvZ4vyW0fBwtRe7tCaP10HxSeOn+A4pKSkQBAF+fn4mCUAA8NJLL8HLywsjRozAli1bEBsbi2effRa9e/fGiBEjTHIMIjEoFHKMfKwdnBwqJw51dLCVVAACgC6+Lpg7qRua//mSWHulQjIBCACcmtlh8tOdDC/Jbaa2ZQAiqyGdn+Q/nTx5ErjLrbCGcHJywu7du+Hl5YVx48Zh8uTJeOihh7Bly5YGzxZNRERE5iW5ZxrNEYIAwMfHB1u2bDHpPomIiMh8JNdNYa4QRObl5eWFBQsWwMur9oGqRETWjtdB05NcT1DVe8WoaWnevDkGDx4sdhlERKLhddD0JNcTRE1TXl4efvrpJ+Tl5YldChGRKHgdND2GIGoScnJyEBUVhZycHLFLISISBa+DpscQRERERJLEEERERESSxBBEREREksQQRE2CWq1GcHCwyWb5JiJqangdND3JPSJPTVObNm2wbNkyscsgIhINr4Omx54gahLKy8tRUFCA8vJysUshIhIFr4OmxxBETcL58+cxYMAAnD9/XuxSiIhEweug6TEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSTxEXlqEnx9ffHrr7/C0dFR7FKIiETB66DpMQRRk6BQKODi4iJ2GUREouF10PR4O4yahMzMTMyePRuZmZlil0JEJApeB02PIYiahIKCAiQkJKCgoEDsUoiIRMHroOkxBBEREZEkMQQRERGRJHFgNImiV69eRm3v7e2N+fPnY+DAgfDy8jJbXUREjYXXQfExBFGT4OXlhffee0/sMoiIRMProOnxdhgRERFJEkMQERERSRJDEBEREUkSQxARERFJEkMQERERSRJDEBEREUkSQxARERFJEkMQERERSRInSySTEgQB+uISscswisJeCZlMJnYZRETUyBiCyKT0xSVY4zNe7DKMEp72I2zVKrHLICKiRsbbYURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEVCtBEHDh8k3Ebr+IwuIyAEBhsR67E68i/2bTegKQiKg2fDqMiAzKyyuwdX8mlv90BgnJOfjjVmm19fm3SvHYlK0AAJ/WjngqtC2mjvWHT2snkSomImo4hiAiQkWFgG/Xn8XH3x3HpasF9WqTduUWPlt1Cp+tOoWwvt5YNLs3uvi6mL1WIiJTYQgi0WlCuiBsw4Jqy8oKi3EzPRtpsfuQ+t0vEMorRKvP2l3MvIVJ8xOwJym7wfvYdiATuw9dxXtTH8Sc57tCoeCddiKyfAxBZDHSNyQgc/dRQCaDvYczfEc/gt4Lnkdzv1b4fc5yscuzSjt+z8KoWbtQUFR23/sqLavAW0sPY9uBTGxe+jiaO9qZpEYiInPhn2tkMW6cvIj09QlIj92HlK82I37oWyjM0qHjc49B6cYxJ6a2bX8mnpy+3SQB6E77jmgx8KWtNcYTERFZGoagu/j5558xbNgweHl5QalUwsvLC6GhoYiKihK7NEnQF5fg+tHzkMnlcGrbQuxyrEpyqg6j3tiJ0jLz3GY8nKLDyNd3opy3MYnIgjEE1aK0tBSjR4/GyJEjsWXLFqjVanTr1g12dnZISEhAZGSk2CVKhmO7yvBTkl+/wbp0byWl5Zjw9j4U3y6vd5uktcNxZcc4JK0dXu82e5KysfQ/pxtYJRGR+XFMUC0mT56M2NhYhIWFITo6Gj4+PoZ1+fn52Ldvn6j1WSuFvR2Uro6GMUGdJgyCW9cOuH70PG6mN3zQLlX3wTfHcOpCnlFtNO5qeLdwMPpYby09jKH9WqNju+ZGtyUiMjeGoL/Zvn07Vq9ejeDgYMTFxUGhqP4lcnZ2xvDh9f9rmOqvR8Q49IgYV21ZRvxBJM5bIVpN1ibnRjEi/32i0Y53u6Qc//fFEcREDWi0YxIR1ZfV3w7T6XSIiIiAr68vVCoVWrdujZkzZ6KwsBCTJk2CTCZDdHS0YfvFixcDAN55550aAYjM6+zq7fh1zALsCP8Qhxeuxu3cW3DwckN5yV8DbOV2CozYuxiBM0dVa/vwkmkYuOZtEapuWr7bcBZl+sYdp7NhVwayrxc16jGJiOrDqn/LHzt2DIMHD4ZWq4WDgwMCAgJw9epVLF26FGlpacjNzQUAdO/eHQBQXFyMnTt3Qi6XIzQ0FImJifj+++9x4cIFNGvWDH369MHkyZPh7u4u8plZp5vpWmQnnAQAZO1ORs6hMxiyaSFCIl/G/6ZWhtOKUj32z1iGsI3v48qOI8g7fQltwnrB+/EgbBrwhshnYNnKyyuwPPZMox9Xr6+ciPHdV3o0+rGJiO7GanuCdDodhg0bBq1Wi9mzZyM7OxtHjx6FVqtFZGQk4uPjkZSUBJlMhsDAQADA8ePHodfr4ebmhujoaISEhGD58uXYtWsXNm3ahHnz5sHPzw979uwR+/Qk4frhs0iL3Yf2T/WFR1Anw/IbJ9KR8tVm9Fv6GtRergiJegWJb61AcY5x41yk5uT5PFzOLhTl2PH7rohyXCKiu7HaEDRjxgxkZmZi+vTpWLRoERwdHQ3rIiIi0K1bN+j1erRr1w5OTpVz0GRnVw6+zcvLw9y5czFkyBCkpKSgpKQEJ06cwIABA5Cfn49Ro0YhMzNTtHOTkuOLY1GhL0ePOWOrL1+yHhXl5Ri+IwraA6dwcdMB0WpsKo6c1ol27OPnclFmpsfxiYgayipDUGpqKmJiYuDu7o6PP/641m169uwJAOjWrZthWWFh5V/Jer0ePj4+2LhxIwICAmBnZ4euXbsiLi4OGo0G+fn5WLJkiaFdVdjq3bs3lEolZDKZ2c9RKm5laHFx0wG07B8Iz2B/w3JBX47rSWehcmuOCzHsmasPMUNQSWk5Tqezp46ILItVhqC1a9eioqIC4eHhaNasWa3b2NvbA38LQSqVyvDx9OnTYWtrW62NWq3G1KlTAQDbtm0zLL9w4QLWr18PjUaDXr16mfx8pO7E55W9Pnf2BnkG+8N3bChSv/sFvd9/ATYqvqLhXi5rxbkVVuWKyMcnIvo7qxwYvXv3bgBAaGhondtU3c66MwS5uPz1Bmx/f/9a21Utv3jxomFZ//79DbfS3nvvPRw4YJpbM0FBQdBqtSbZV2OxFeSYj95GtdH+noKVXs/Uuf6P81lY5f1XAFKoVXh4yTQc+XANzvzwKwZvfB8PznsOSfNXNqjmjn4dUSaz/ls1OscJgK1PreuS1g6Hxl1dZ1uNu73hv1d2jKtzOwDQ6orQ69nNNZZPfH4y7Mua7uSJ2c5vAPLmyNZmw9vbW+xyGp3Uz58sl0ajweHDhxvU1ipD0KVLlwAAbdu2rXW9Xq83BJU7Q1Dnzp0NH9vZ1d6zUNVbVF7+12y7crl5OtS0Wi2ysrLMsm9zsZPZAGZ+w0Wv9yag4PI1nFlZ2Ru3f2Y0hu9chMtbE5FzMNXo/V3NvopSof6zJzdZ7YoA29pX1XcyRIWNvEGTJgJA7o1rwK2m9f1cjWM5IAcqysub3M+lSUj9/MkqWWUIqhrbU1xcXOv6mJgY6HQ6ODo6on379oblrVq1Qps2bXD58mWkp6fX2pOUlpYGAI3yl5BGozH7MUzNVpADZuxUaTWgB9oP74tNj802LLt1KQdHPlyDvounYfOA2dAXlxi1z5ZeLSXRE5RrV47afyIqe2/uRuNuD4WNHPryCmh1de3l7vtyd1VB6dSq3vVammwbG1QAkNvYwKtV0z2PhpL6+ZPlup/flVYZgjQaDfLy8nD06FGEhIRUW5ednY05c+YAAAIDA2sMYh4zZgwWLVqEH374AZMmTaq2ThAErFxZectlwADzz4Db0O49MZUV3cYan/Fm23/W7mT8p/PEGsvPrNxm6Bky1rnz52CrVtVjy6Zt6ZoUzIw8WOu62m5f3enKjnHwbuEAra4YrR9fZ/Sx5XIZLqXuh9q+6V5yvAeuRda1InhpvJB5SnpPh0r9/Mk6WeXA6IEDBwIAIiMjce7cOcPypKQkhIaGQqerfEqmapLEO82ZMwdOTk5ISEjAwoULDbe99Ho93nzzTRw/fhxKpRKzZs1qtPMhMoWeAeJN8unfvnmTDkBEZJ2sMgRFRETAzc0NV65cQZcuXdC1a1f4+fmhd+/e6NChg6EX587xQFU8PT2xbt06KJVKvPvuu/Dy8kJwcDA0Gg2ioqKgUCiwYsWKOgdOE1mqB/3d4NSsjkFBZhbau6UoxyUiuhurDEHe3t5ISEjA0KFDoVKpkJGRAVdXVyxfvhzx8fGG3qHaQhAADB48GMnJyRg/fjwUCgWSk5OhUCgwZswYJCYmYvx4893uITIXe5UCE4f7iXLsV0Z3rsdWRESNy2r7p/39/bFly5YaywsKCpCRkQG5XI4HHnjgru1Xr15t5iqJGtfUMf5Y9p/GfUz9kSANuvi61GNLIqLGZbUhqC4pKSkQBAEdO3aEWl33vCjGio2NBQCcPn262uft2rVDUFCQyY5DdD/8OzhjbFh7xGy7WI+tTePdl/niVCKyTFZ5O+xuTp6sfEt5XbfCGmr06NEYPXo0fvrpp2qfR0dHm/Q4UtV2aB/0+WRKtWW+Y0PxfHYs2oRxlm5jLJsbAg+Xxnka7pXRnTEgmOOBiMgySa4nyFwhSBAEk+6PqmszJBhpP+01fN7M2wMdwwfi2uGzotbVFHm42uPr/+uLp9/YVe82VXP/3Gs+oTu1b+WIT99gQCUiy8UQRBbBzkmNEXsWw0Zlh6KrOsiVtnBs0wJpsf/D73O/RYtenbB/5p+9ajIZHvpsKhLf+Q695tecM4jubdTAdoh8vRfeXJJUr+3vNY/Q33m6qrDtqyfg6MB3uhGR5ZJcCKp6rxhZltKbRUjfmICywts4sTgWLR/thsAZo/DbP79Gy0e64VrSWQj6yjmburw8DNeSzuDGiXSxy27SIl4MhEwGRCyuXxCqr1aeauz4ZjA6tmtu0v0SEZma5MYEkeVyfaA9ck9WDth1C/RB7qnKj9uE9cKlrYcAAM6dWqPt0GAcX7Je1FqtxZwXAhG37HF4eZjmIYHhj7ZB0toR8O/gbJL9ERGZE0MQWQzXLu0MwcctsANu/BmIWj7aHVm7kwEALYL90ay1J57+bRmeOfQlPB70Q0jUK+g0YZCotTdlTz7SBikbR+H5EX6Qy2X1aFGTp6sKqz96BD9/PtBkgYqIyNwkdzuMLJNa4woIAoq0uQAAV/+2OPH5erj38MMf57OgL7oNADi7ajvOrtpuaBe2fgFOf7sFl7eZ9paO1Lg4KfH9wv5Y8OqD+Hb9WXy7/ixybtz9RakA8HCPFnh1rD9GDWwHpZ1No9RKRGQqDEFkEVwfaG/oBQKA0puF6DzxCZTk3sLlbYdErU1K2ng1w8LpPbHg1Qdx7tIfOHJah+TUG7jxRwnK9BWwV9qgfStHBHVxx4P+7nBvpEftiYjMgSGILELmziPI3HnE8PmWwXMBACP2LsavT8+vs922u6yjhpPLZejc3hmd2zsjfKiv2OUQEZkFQxBZtE2PzhK7BCIislIcGE1ERESSxBBEREREksQQRERERJLEEERERESSxIHRZFIKeyXC034UuwyjKOyVYpdAREQiYAgik5LJZLBVc+4YIiKyfLwdRkRERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSpBC7ALIugiBAX1widhlGUdgrIZPJxC6DiIgaGUMQmZS+uARrfMaLXYZRwtN+hK1aJXYZRETUyHg7jIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiI6B7KyytQIQjAn09AEpF14NNhRER/c/JcLjbvvYwjqTocTtHhirbQsC5bV4xHXohHzwA3PBLkhaH9WkOh4N+TRE0RQxAR0Z+9PT9tv4gvY1KRcDSnzu0EAdh3RIt9R7RYvDoFrTzVeOmZznhldGd4utk3as1EdH8Ygkh0mpAuCNuwoNqyssJi3EzPRlrsPqR+9wuE8grR6iPrdy7jD7zw7j78duya0W2zrhVh/pdH8fmaFETPC8G4wR04+SZRE8EQRBYjfUMCMncfBWQy2Hs4w3f0I+i94Hk092uF3+csF7s8slJf/zcVs6IScbuk/L72k/tHCZ6buxexOzKw8oN+cHSwM1mNRGQevJFNFuPGyYtIX5+A9Nh9SPlqM+KHvoXCLB06PvcYlG5OYpdHVuj9r5Mx9YPf7jsA3WnDrgwMnLINeTeb1utjiKSIIegefv75ZwwbNgxeXl5QKpXw8vJCaGgooqKixC7N6umLS3D96HnI5HI4tW0hdjlkZRatPIn5Xx41y74PnbqOodO2o6hYb5b9E5FpMATVobS0FKNHj8bIkSOxZcsWqNVqdOvWDXZ2dkhISEBkZKTYJUqCY7vK8FOSXyB2KWRFfjuWg4jFh8x6jN+PX8O8z5PMegwiuj8cE1SHyZMnIzY2FmFhYYiOjoaPj49hXX5+Pvbt2ydqfdZIYW8HpaujYUxQpwmD4Na1A64fPY+b6dlil0dWovi2Hi/8XwKMne4nae1waNzV0OqK0OvZzfVqs/Q/p/H0wHboH+TVsGKJyKwYgmqxfft2rF69GsHBwYiLi4NCUf3L5OzsjOHDh4tWn7XqETEOPSLGVVuWEX8QifNWiFYTWZ9PvjuBc5f+MLqdxl0N7xYORrebvGA/Un9+GjY27HgnsjSS+KnU6XSIiIiAr68vVCoVWrdujZkzZ6KwsBCTJk2CTCZDdHS0YfvFixcDAN55550aAYjM5+zq7fh1zALsCP8Qhxeuxu3cW3DwckN5SalhG7mdAiP2LkbgzFHV2j68ZBoGrnlbhKqpKSkpLcdX/01t1GOev3QT2w5kNuoxiah+rP43/LFjxzB48GBotVo4ODggICAAV69exdKlS5GWlobc3FwAQPfu3QEAxcXF2LlzJ+RyOUJDQ5GYmIjvv/8eFy5cQLNmzdCnTx9MnjwZ7u7uIp+Z9bmZrkV2wkkAQNbuZOQcOoMhmxYiJPJl/G9qZTCtKNVj/4xlCNv4Pq7sOIK805fQJqwXvB8PwqYBb4h8BmTpYndcxPW8241+3C/WpWJo/zaNflwiujur7gnS6XQYNmwYtFotZs+ejezsbBw9ehRarRaRkZGIj49HUlISZDIZAgMDAQDHjx+HXq+Hm5sboqOjERISguXLl2PXrl3YtGkT5s2bBz8/P+zZs0fs07N61w+fRVrsPrR/qi88gjoZlt84kY6Urzaj39LXoPZyRUjUK0h8awWKc/JErZcs3+q4C6Icd9uBTFy7USzKsYmoblYdgmbMmIHMzExMnz4dixYtgqOjo2FdREQEunXrBr1ej3bt2sHJqXIemuzsygG4eXl5mDt3LoYMGYKUlBSUlJTgxIkTGDBgAPLz8zFq1ChkZrKL29yOL45Fhb4cPeaMrb58yXpUlJdj+I4oaA+cwsVNB0SrkZoGQRBw6NR1kY4NHDmtE+XYRFQ3qw1BqampiImJgbu7Oz7++ONat+nZsycAoFu3boZlhYWVL0rU6/Xw8fHBxo0bERAQADs7O3Tt2hVxcXHQaDTIz8/HkiVLDO1iY2Px9NNPo23btlCr1ejcuTPefvttFBTw0e77cStDi4ubDqBl/0B4Bvsblgv6clxPOguVW3NciGGvHN3bxaxbyLtZWo8tzeMwQxCRxbHaELR27VpUVFQgPDwczZo1q3Ube/vKlx3eGYJUKpXh4+nTp8PW1rZaG7VajalTpwIAtm3bZli+aNEi2NjY4KOPPsLWrVsxdepUfPXVVwgLC0NFBd97dT9OfF7Z63Nnb5BnsD98x4Yi9btf0Pv9F2Cj4isK6O5SLuSLe/w03q4lsjRWOzB69+7dAIDQ0NA6t6m6nXVnCHJxcTF87O/vX2u7quUXL140LIuLi4OHh4fh80ceeQQeHh4IDw/H/v370b9/f6PPISgoCFqt1uh2YrIV5JiP3ka10f6egpVez9S5/o/zWVjl/VcAUqhVeHjJNBz5cA3O/PArBm98Hw/Oew5J81c2qOaOfh1RJmNQtXZFdg8AzUbXuq5qDqC70bjbG/57Zce4Orerax6hnzdvg/d/Jhhdt6XIdn4DkDdHtjYb3t7eYpdDZKDRaHD48OEGtbXaEHTp0iUAQNu2bWtdr9frceBA5TiSO0NQ586dDR/b2dXeu1DVW1Re/tf7hu4MQFWCgoIAAFlZWQ06B61W2+C2YrGT2QBmfsNFr/cmoODyNZxZWdkTt39mNIbvXITLWxORc9D4x5+vZl9FqWC6d0eRhWreEqi9U9ioOYAUNvIGzRdUcru4yf08V+NYDsiBivLypn0eRHew2hBUNbanuLj2JzJiYmKg0+ng6OiI9u3bG5a3atUKbdq0weXLl5Genl5rT1JaWhoA3POvoaonyOrqUboXjUbToHZishXkgBk7VVoN6IH2w/ti02OzDctuXcrBkQ/XoO/iadg8YDb0xca9uLKlV0v2BElAsW0z5NaxTqsrumd7jbs9FDZy6MsroNXV/aRXXfuyV9rAtVWretdrabJtbFABQG5jA68mfB5kfe7nd6VMEIydPL5pCAgIQGpqKqKjozFt2rRq67Kzs9GzZ09kZ2ejb9++2L9/f7X1c+bMwaJFi9CvX78ar8cQBAE9evTA8ePHMWXKFHzzzTe1Hj8rKws9evRAz549sXXrVjOcoWUqK7qNNT7jxS7DKOFpP8JWrarHltSUXcy8hQ5D/tvg9ld2jIN3Cwdk5hSi9ePrjG6/cPqDeOelHg0+vti8B65F1rUitPJUI3Pns2KXQ2QSVjsweuDAgQCAyMhInDt3zrA8KSkJoaGh0Okqn9SomiTxTnPmzIGTkxMSEhKwcOFCw20vvV6PN998E8ePH4dSqcSsWbNqPXZBQQFGjBgBOzs7/Pvf/zbTGRKRMdq1agYXJ/EG0Pf05wSrRJbGakNQREQE3NzccOXKFXTp0gVdu3aFn58fevfujQ4dOmDAgAHA38YDVfH09MS6deugVCrx7rvvwsvLC8HBwdBoNIiKioJCocCKFStqvc1VXFyMYcOG4eLFi9i+fTu8vPjiRCJLIJPJENzVU6RjA0FdGIKILI3VhiBvb28kJCRg6NChUKlUyMjIgKurK5YvX474+HhD71BtIQgABg8ejOTkZIwfPx4KhQLJyclQKBQYM2YMEhMTMX58zVs+ZWVleOaZZ3D48GFs3boVAQEBZj9PIqq/CcN8RTnukH6t4eFqL8qxiahuVjswGn8OSN6yZUuN5QUFBcjIyIBcLscDDzxw1/arV6+u17Gq5iTatWsXfvnlF/Tubdxj4kRkfqMGtoOnqwrXchv3/WGvjm3YwxFEZF5W2xN0NykpKRAEAX5+flCr7z43SH1NmzYNP/30E2bNmgW1Wo2DBw8a/l2/Ls5U/URUndLOBtPGNW4Pbad2zRHWl/PqEFkiSYagkycr31Re162whqh6AuyTTz5BSEhItX/x8fEmO45UtR3aB30+mVJtme/YUDyfHYs2Yb1Eq4uanogXusK/g3OjHEsmA75b0A9yuaxRjkdExrHq22F1MUcIysjIMNm+qKY2Q4KR9tNew+fNvD3QMXwgrh0+K2pd1PSolAqsXNgfIf+IQ0VF/WcIqZr/pz5zClV5fXwX9O1h5tlDiajBGILIItg5qTFiz2LYqOxQdFUHudIWjm1aIC32f/h97rdo0asT9s+MrtxYJsNDn01F4jvfodf8iWKXTk1Q764e+Gx2b8yKSqx3m9pehXE3D/dogQ9fC2pAdUTUWCQZgqreK0aWo/RmEdI3JqCs8DZOLI5Fy0e7IXDGKPz2z6/R8pFuuJZ0FoK+cr6mLi8Pw7WkM7hxIl3ssqkJe/0fD6Doth5vLzti8n2HdPPEluhBsFdJ8hJL1GRIckwQWSbXB9oj92TlS2ndAn2Qe6ry4zZhvXBp6yEAgHOn1mg7NBjHl6wXtVayDm9N6Y4V7z0MtQnDytiw9tixPAzNHcWbmJGI6ochiCyGa5d2huDjFtgBN/4MRC0f7Y6s3ckAgBbB/mjW2hNP/7YMzxz6Eh4P+iEk6hV0mjBI1Nqp6Zo0qhNOrB+JR4Lu7119Hi4q/LRoANZ9OgAOaluT1UdE5sO+WrIIao0rIAgo0la+4tLVvy1OfL4e7j388Mf5LOiLKud1ObtqO86u2m5oF7Z+AU5/uwWXtyWJVjs1fT6tnbB7xRBs3JWBL2NSsftQdr3btvFywCuj/fHSM53g5sx30BE1JQxBZBFcH2hv6AUCgNKbheg88QmU5N7C5W2HRK2NpEEul+Hpx9vj6cfbIzU9H3F7L+NIqg5HTutwMavA8CSZa3MlHvR3Q88Ad/TvqcETD7WCjQ071YmaIqt9izyJw9RvkR+xdzF+fXo+bt+4abJ9/h3fIk/3IggC9HoBCoUMMpk05/zhW+TJGrEniCzapkdniV0CEWQyGWxtpRl+iKwZ+3CJiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkjgwmkxKYa9EeNqPYpdhFIW9UuwSiIhIBAxBZFIymYyPmxMRUZPA22FEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkKsQsg6yIIAvTFJWKXYRSFvRIymUzsMoiIqJExBJFJ6YtLsMZnvNhlGCU87UfYqlVil0FERI2Mt8OIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJL4dBgREdVQVKzHsbM3cOS0Dqcu5CH3j8qpL/JuluCzH06iZ4A7HvR3g1MzO7FLJWowhiAiIgL+nOcr8cR1fBmTiphf01FaVlFjm6Lb5fjnZ4cAAHK5DMMfbYNXx/rjseCWkMs53xY1LQxBJDpNSBeEbVhQbVlZYTFupmcjLXYfUr/7BUJ5zYsxEZlOyoU8TFmwH78fv1bvNhUVAn7efQk/776EAB9nfPPuw+jbo4VZ6yQyJYYgshjpGxKQufsoIJPB3sMZvqMfQe8Fz6O5Xyv8Pme52OURWSW9vgJRK0/iva+O1trzU1+n0/LR7/kteH18F3z4WhDsVfz1QpaP36VkMW6cvIj09QmGz8+u/BUjEz5Hx+cew9FP1qLkxk1R6yOyNrdL9BgXsQeb9lw2yf4EAVi8OgWJJ68jPnoQnJ2UJtkvkbnw6TCyWPriElw/eh4yuRxObdnFTmRKZWUVeGb2bpMFoDv9duwaBr2yDbcKS02+byJTYgi6i59//hnDhg2Dl5cXlEolvLy8EBoaiqioKLFLkwzHdpXhpyS/QOxSiKzK7M8SEb/vitn2n3RKh3+89T8IgmC2YxDdL94Oq0VpaSnCw8MRGxsLAOjQoQNat26NnJwcJCQk4OTJk5gzZ47YZVodhb0dlK6OhjFBnSYMglvXDrh+9DxupmeLXR6R1dhz6CqW/ee0UW2S1g6Hxl0Nra4IvZ7dXK82m/Zcxpr4NIx/0reBlRKZF0NQLSZPnozY2FiEhYUhOjoaPj4+hnX5+fnYt2+fqPVZqx4R49AjYly1ZRnxB5E4b4VoNRFZm8KiMkyav9/odhp3NbxbOBjdbsYnv2Ngn5bQuKuNbktkbrwd9jfbt2/H6tWrERwcjLi4uGoBCACcnZ0xfPhw0eqzZmdXb8evYxZgR/iHOLxwNW7n3oKDlxvKS/4aVyC3U2DE3sUInDmqWtuHl0zDwDVvi1A1UdPyY3waLmbdarTj5d0sNbrXiaixWH0I0ul0iIiIgK+vL1QqFVq3bo2ZM2eisLAQkyZNgkwmQ3R0tGH7xYsXAwDeeecdKBTsKGtMN9O1yE44iazdyTj15SbsmvgJ3Lv7ICTyZcM2FaV67J+xDF1njIJLQFsAQJuwXvB+PAgH3vhSxOqJLJ8gCPgyJrXRj7tiw1mUlpU3+nGJ7sWqQ9CxY8fQtWtXREVFQavVIiAgAGVlZVi6dCnGjh2L1NTKi0H37t0BAMXFxdi5cyfkcjlCQ0ORmJiIV155BQMHDsRTTz2FTz75BDqdTuSzko7rh88iLXYf2j/VFx5BnQzLb5xIR8pXm9Fv6WtQe7kiJOoVJL61AsU5eaLWS2TpDp64hhPnchv9uNdyb2PjrkuNflyie7HaEKTT6TBs2DBotVrMnj0b2dnZOHr0KLRaLSIjIxEfH4+kpCTIZDIEBgYCAI4fPw69Xg83NzdER0cjJCQEy5cvx65du7Bp0ybMmzcPfn5+2LNnj9inJxnHF8eiQl+OHnPGVl++ZD0qyssxfEcUtAdO4eKmA6LVSNRU7Dkk3gMGe5P4cANZHqsNQTNmzEBmZiamT5+ORYsWwdHR0bAuIiIC3bp1g16vR7t27eDk5AQAyM6u/CHNy8vD3LlzMWTIEKSkpKCkpAQnTpzAgAEDkJ+fj1GjRiEzM1O0c5OSWxlaXNx0AC37B8Iz2N+wXNCX43rSWajcmuNCDEMpUX0cOX1DvGOnshedLI9VhqDU1FTExMTA3d0dH3/8ca3b9OzZEwDQrVs3w7LCwkIAgF6vh4+PDzZu3IiAgADY2dmha9euiIuLg0ajQX5+PpYsWWJol5CQgIEDBxrmE/L29q52u43uz4nPK3t97uwN8gz2h+/YUKR+9wt6v/8CbFR8kzXRvSSfES8EHT+bi7L7eC0HkTlY5cjftWvXoqKiAuHh4WjWrFmt29jb2wN/C0Eqlcrw8fTp02Fra1utjVqtxtSpUzF//nxs27YNixYtAv7sOeratStefvlleHp6IjMzEx9//DFCQkJw6tQpeHt7N+g8goKCoNVqG9RWLLaCHPPR26g22t9TsNLrmTrX/3E+C6u8/wpACrUKDy+ZhiMfrsGZH37F4I3v48F5zyFp/soG1dzRryPKZLw4k/W76vIWIKv9VRZV8wDVReNub/jvlR3j6tyurnmESssq0LZDR8iF2w2qnaguGo0Ghw8fblBbqwxBu3fvBgCEhobWuU3V7aw7Q5CLi4vhY39//1rbVS2/ePGiYdnw4cNrPDbfq1cvdOrUCevXr8fMmTMbdB5arRZZWVkNaisWO5kNYOY3XPR6bwIKLl/DmZXbAAD7Z0Zj+M5FuLw1ETkHje99u5p9FaUCn1whCXCWA7LaV9V3HiCFjbxB8wUBQLb2OqDnOwDJclhlCLp0qfIphLZt29a6Xq/X48CByoG0d4agzp07Gz62s6v99kpVb1F5+d1/abq5uQHAfT1mr9FoGtxWLLaCHDBjp0qrAT3QfnhfbHpstmHZrUs5OPLhGvRdPA2bB8yGvrjEqH229GrJniCShKsohwDbWtdpdUV3batxt4fCRg59eQW0uuI6t7vbfrw07pALjnWuJ2qI+/ldaZUhqGpsT3Fx7T+oMTEx0Ol0cHR0RPv27Q3LW7VqhTZt2uDy5ctIT0+vtScpLS0NAGq9xVVeXo6KigpcunQJ8+bNg0ajwZgxYxp8Hg3t3hNTWdFtrPEZb7b9Z+1Oxn86T6yx/MzKbYaeIWOdO38OtmpVPbYkatq6jtqAUxdqn0riXq/CuLJjHLxbOECrK0brx9cZfezmjnbIOn4BMlkdXVFEIrDKgdFVqfDo0aM11mVnZxve+xUYGFjjB7IqtPzwww812gqCgJUrK8edDBgwoMb6Rx55BHZ2dvDz88OxY8ewe/dueHh4mOisiIjuT88Ad/GO7e/GAEQWxypD0MCBAwEAkZGROHfunGF5UlISQkNDDRMeVk2SeKc5c+bAyckJCQkJWLhwoeG2l16vx5tvvonjx49DqVRi1qxZNdp+9913OHjwINauXQsnJycMGjQIly9fNuOZEhHVX88ANxGPLV4AI6qLVYagiIgIuLm54cqVK+jSpQu6du0KPz8/9O7dGx06dDD04tw5HqiKp6cn1q1bB6VSiXfffRdeXl4IDg6GRqNBVFQUFAoFVqxYUevA6U6dOiE4OBjjxo3Drl27cOvWLXz66aeNcs5ERPcytH9riNUZ82T/1uIcmOgurDIEeXt7IyEhAUOHDoVKpUJGRgZcXV2xfPlyxMfHG3qHagtBADB48GAkJydj/PjxUCgUSE5OhkKhwJgxY5CYmIjx4+895sXZ2Rm+vr64cOGCyc+PiKghOng7Iaxvw6bsuB9dfJzRr2fTe9CDrJ9VDozGn4+yb9mypcbygoICZGRkQC6X44EHHrhr+9WrVzf4+NeuXcPZs2cRHBzc4H0QEZnaq2P9sXV/4854P3WsP8cDkUWy2hBUl5SUFAiCgI4dO0KtrntiMGOMHz8evr6+6N69O5ydnXH+/HksXrwYCoWi1rFDRERiGdKvNQb09sLuRnqPWICPMyaP6lSPLYkan1XeDrubkydPAne5FdYQffr0wS+//IIXXngBgwcPRlRUFPr164djx47B19fXZMeRsrZD+6DPJ1OqLfMdG4rns2PRJqyXaHURNTVyuQzfLegHB3vz/w1sYyPDyoX9obSzMfuxiBpCcj1B5ghB06dPx/Tp0022P6qpzZBgpP201/B5M28PdAwfiGuHz4paF1FT1K6VI5bODcGk+Qn1blM1CeK9JlW80/+91B29HuA0IWS5GILIItg5qTFiz2LYqOxQdFUHudIWjm1aIC32f/h97rdo0asT9s+MrtxYJsNDn01F4jvfodf8mhMnEtG9vTiyI3JuFOOtpfWblPVekyn+3SujO+PdV3o0sDqixiG5EFT1XjGyLKU3i5C+MQFlhbdxYnEsWj7aDYEzRuG3f36Nlo90w7WksxD0lXM2dXl5GK4lncGNE+lil03UpM2b3A0qpQ1mL0qEIJhuv7MnPICo2b05GJosnuTGBJHlcn2gPXJPVr6Y1i3QB7mnKj9uE9YLl7YeAgA4d2qNtkODcXzJelFrJbIWs/7xAPb/8CQ6tm1+3/tq6anGlujHseifwQxA1CQwBJHFcO3SzhB83AI74Mafgajlo92RtTsZANAi2B/NWnvi6d+W4ZlDX8LjQT+ERL2CThMGiVo7UVP2UPcWOPbTU3h7Sje4Nlca3d7BXoFp4/xxasMoDO3fxiw1EpmD5G6HkWVSa1wBQUCRNhcA4OrfFic+Xw/3Hn7443wW9EW3AQBnV23H2VXbDe3C1i/A6W+34PK2JNFqJ7IG9ioFPngtCG9P6Y7//noR3286h6RTOhTd1te6vdLOBt07uWL8k774x5O+aO5o1+g1E90vhiCyCK4PtDf0AgFA6c1CdJ74BEpyb+HytkOi1kYkJfYqBSaO8MPEEX4oL6/A2Yw/cPJ8HgqKylBRIcDB3hYBPs7o4uMCW1veTKCmTSYIphwOR1JXVnQba3zu/VqR+hqxdzF+fXo+bt+4abJ9/l142o+wVavMtn8iIrJM7Akii7bpUc64TURE5sG+TCIiIpIkhiAiIiKSJIYgIiIikiQOjCaTEgQB+uISscswisJeyYndiIgkiCGIiIiIJIm3w4iIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiS/h/boJYExyJPYwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subcircuits[\"B\"].draw(\"mpl\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "###" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "qiskit_1-0_scratch_space-fyWgEqUn-py3.11", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/docs/guides/qiskit-addons-cutting.mdx b/docs/guides/qiskit-addons-cutting.mdx index 157e234ad68..85dd512434d 100644 --- a/docs/guides/qiskit-addons-cutting.mdx +++ b/docs/guides/qiskit-addons-cutting.mdx @@ -85,12 +85,67 @@ Additionally, the home directory includes a subdirectory named persistent-volume ## Theoretical Background +In the process of circuit cutting, there are two types of cuts: a **gate** or "space-like" cut where a cut goes through a gate operating on two (or more) qubits, and a **wire** or "time-like" cut which cut directly through a qubit wire (essentially a single-qubit identity gate that has been cut into two pieces). + +There are also three scenarios to consider when preparing a circuit cutting workflow; which center around the availability of classical communication between the circuit executions. The first is where only local operations (LO) are available while the other two introduce classical communication between executions known as local operations and classical communication (LOCC). The LOCC scenarios are then grouped into either near-time, one-directional communication between circuit executions or real-time, bi-directional communication (which you might see in a multi-QPU environment). + +While circuit cutting can be used to execute quantum circuits larger than what is possible on currently available hardware, it does come at a cost. Because the technique can be framed as a quasiprobability decomposition (QPD) problem, there is an exponential sampling overhead required in order to reconstruct the results. This overhead is the factor by which the overall number of shots must increase in order for the quasiprobability decomposition to result in the same amount of error, $\epsilon$, as you would get by executing the original circuit. Each cut gate contributes to this overhead and the amount of overhead added is dependent on the type of gate that was cut (more details on the overhead sampling can be found in final appendix of [[1]](#references)). + +For example, a single cut CNOT gate incurs a sampling overhead of 9 [[2,6]](#references) and a circuit with $n$ wire cuts incurs a sampling overhead of $\mathcal{O}(16^n)$ when classical communication is not available (the LO scenario). This is reduced to $\mathcal{O}(4^n)$ when classical communication becomes available (LOCC scenario) [[4]](#references). However, wire cutting with classical communication (LOCC) is not yet supported by this package. + +Formally, the QPD problem of circuit cutting can be expressed as follows: + +$$ \mathcal{U} = \sum_i a_i \mathcal{F}_i,$$ + +where $\mathcal{U}$ is the quantum channel implementing the desired operation, and each $a_i$ is a real coefficient corresponding to a channel, $\mathcal{F}_i$, that is executable on hardware. + +The results equivalent to the desired channel $\mathcal{U}$ are obtained by first generating the coefficients, $a_i$, then executing subexperiments to obtain the outcomes of the different channels $\mathcal{F}_i$ in order to reconstruct the expectation values corresponding to $\mathcal{U}$. + +### A short example: cutting a RZZGate + +As a basic explicit example, let's consider the decomposition of a cut RZZGate (all the details can be found in [[2]](#references)). A quantum circuit which contains an RZZGate can be simulated by performing six subexperiments where the RZZGate has been replaced with only single-qubit operations (these are the $\mathcal{F}_i$'s from the equation above). The results of this circuit are reconstructed by combining the results of each subexperiment alongside a set of coefficients (the $a_i$'s from the equation above) which can be either positive or negative. + +For some chosen $\theta$ parameter for the RZZGate, the six subexperiments are as follows: +1. With coefficient $a_1 = \cos^2(\theta/2)$, do nothing ($I\otimes I$) +1. With coefficient $a_2 = \sin^2(\theta/2)$, perform a ZGate on each qubit ($Z\otimes Z$) +1. With coefficient $a_3 = -\sin(\theta)/2$, perform a projective measurement in the $Z$ basis on the first qubit and an $S$ on the second ($M_z\otimes S^\dagger$). If the result of the measurement is $1$, flip the sign of that outcome's contribution during reconstruction. +1. With coefficient $a_4 = \sin(\theta)/2$, perform a projective measurement in the $Z$ basis on the first qubit and an $S^\dagger$ on the second ($M_z\otimes S^\dagger$). If the result of the measurement is 1, flip the sign of that outcome's contribution during reconstruction. +1. Same as 3. ($a_5=a_3$), but swap the qubits (perform $S\otimes M_z$ instead). +1. Same as 4. ($a_6=a_4$), but swap the qubits (perform $S^\dagger\otimes M_z$ instead). + +### Sampling overhead reference table + +The below table provides the sampling overhead factor for a variety of two-qubit instructions, provided that only a single instruction is cut. +| Instructions | KAK decomposition angles | Sampling overhead factor | +| --- | --- | --- | +| CSGate, CSdgGate, CSXGate | $\left(\pi/8, 0, 0\right)$ | $3+2\sqrt(2) \approx 2.828$ | +| CXGate, CYGate, CZGate, GHGate, ECRGate | $\left(\pi/4, 0, 0\right)$ | $3^2=9$ | +| iSwapGate, DCXGate | $\left(\pi/4, \pi/4, 0\right)$ | $7^2 = 49$ | +| SwapGate | $\left(\pi/4, \pi/4, \pi/4\right)$ | $7^2 = 49$ | +| RXXGate, RYYGate, RZZGate, RZXGate | $\left(\lvert\theta/2\rvert, 0, 0, \right)$ | $\left(1 + 2\lvert\sin(\theta)\rvert\right)^2$ | +| CRXGate, CRYGate, CRZGate, CPhaseGate | $\left(\lvert\theta/4\rvert, 0, 0\right)$ | $\left(1 + 2\lvert\sin(\theta/2)\rvert\right)^2$ | +| XXPlusYYGate, XXMinusYYGate | $\left(\vert\theta/4\rvert, \lvert\theta/4\rvert, 0\right)$ | $\left(1 + 4\lvert\sin(\theta/2)\rvert + 2\sin^2(\theta/2)\right)^2$ (independent of $\beta$) | +| Move (cut wire in the LO scenario) | N/A | $4^2 = 16$ | ## Next steps - + - Read through the page on [getting started with circuit cutting](/guides/qiskit-addons-cuttng-get-started) ## References + +[1] Christophe Piveteau, David Sutter, Circuit knitting with classical communication, https://arxiv.org/abs/2205.00016 + +[2] Kosuke Mitarai, Keisuke Fujii, Constructing a virtual two-qubit gate by sampling single-qubit operations, https://arxiv.org/abs/1909.07534 + +[3] Kosuke Mitarai, Keisuke Fujii, Overhead for simulating a non-local channel with local channels by quasiprobability sampling, https://arxiv.org/abs/2006.11174 + +[4] Lukas Brenner, Christophe Piveteau, David Sutter, Optimal wire cutting with classical communication, https://arxiv.org/abs/2302.03366 + +[5] K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, https://arxiv.org/abs/1612.02058 + +[6] Lukas Schmitt, Christophe Piveteau, David Sutter, Cutting circuits with multiple two-qubit unitaries, https://arxiv.org/abs/2312.11638 + +[7] Jun Zhang, Jiri Vala, K. Birgitta Whaley, Shankar Sastry, A geometric theory of non-local two-qubit operations, https://arxiv.org/abs/quant-ph/0209120 \ No newline at end of file From f7f7d96e15dc4d10e0897243b7f54d821a8bbe2b Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Thu, 9 Jan 2025 10:55:07 -0500 Subject: [PATCH 03/17] Satiate CI --- docs/guides/_toc.json | 2 +- docs/guides/optimize-for-hardware.mdx | 2 ++ ...-started.ipynb => qiskit-addons-cutting-get-started.ipynb} | 4 +++- qiskit_bot.yaml | 4 ++++ 4 files changed, 10 insertions(+), 2 deletions(-) rename docs/guides/{qiskit-addons-cc-get-started.ipynb => qiskit-addons-cutting-get-started.ipynb} (99%) diff --git a/docs/guides/_toc.json b/docs/guides/_toc.json index f7759e0108d..1ae238da9ed 100644 --- a/docs/guides/_toc.json +++ b/docs/guides/_toc.json @@ -587,7 +587,7 @@ }, { "title": "Get started with circuit cutting", - "url": "/guides/qiskit-addons-cc-get-started" + "url": "/guides/qiskit-addons-cutting-get-started" } ] } diff --git a/docs/guides/optimize-for-hardware.mdx b/docs/guides/optimize-for-hardware.mdx index 6e82cf6745c..681bf9b505d 100644 --- a/docs/guides/optimize-for-hardware.mdx +++ b/docs/guides/optimize-for-hardware.mdx @@ -66,3 +66,5 @@ can be run on IBM® hardware using IBM Qiskit Runtime. * [Getting started with AQC-Tensor](./qiskit-addons-aqc-get-started) * [Operator Backpropagation (OBP)](./qiskit-addons-obp) * [Getting started with OBP](./qiskit-addons-obp-get-started) +* [Circuit cutting](./qiskit-addons-cutting) + * [Getting started with circuit cutting](./qiskit-addons-cutting-get-started) \ No newline at end of file diff --git a/docs/guides/qiskit-addons-cc-get-started.ipynb b/docs/guides/qiskit-addons-cutting-get-started.ipynb similarity index 99% rename from docs/guides/qiskit-addons-cc-get-started.ipynb rename to docs/guides/qiskit-addons-cutting-get-started.ipynb index 069cac245c8..73f2078aa7f 100644 --- a/docs/guides/qiskit-addons-cc-get-started.ipynb +++ b/docs/guides/qiskit-addons-cutting-get-started.ipynb @@ -191,6 +191,7 @@ } ], "metadata": { + "description": "Get started with using the circuit cutting addon", "kernelspec": { "display_name": "qiskit_1-0_scratch_space-fyWgEqUn-py3.11", "language": "python", @@ -207,7 +208,8 @@ "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" - } + }, + "title": "Get started with circuit cutting" }, "nbformat": 4, "nbformat_minor": 2 diff --git a/qiskit_bot.yaml b/qiskit_bot.yaml index fd36d64455c..a9990211544 100644 --- a/qiskit_bot.yaml +++ b/qiskit_bot.yaml @@ -409,3 +409,7 @@ notifications: - "@kaelynj" "docs/guides/qiskit-addons-mpf-get-started": - "@kaelynj" + "docs/guides/qiskit-addons-cutting": + - "@kaelynj" + "docs/guides/qiskit-addons-cutting-get-started": + - "@kaelynj" From c74b4a150cb9ec62d57ebb6bbc3749d6b52de44f Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Thu, 9 Jan 2025 16:48:14 -0500 Subject: [PATCH 04/17] Finish draft of get started with wire cuts The guides pages for the circuit cutting addon should have two get started guides based on the package tutorials. One for wire cutting and another for gate cutting. --- docs/guides/_toc.json | 4 +- docs/guides/optimize-for-hardware.mdx | 2 +- ...pynb => qiskit-addons-cutting-wires.ipynb} | 175 +++++++++++++++--- docs/guides/qiskit-addons-cutting.mdx | 4 +- qiskit_bot.yaml | 2 +- scripts/config/cspell/dictionaries/people.txt | 11 ++ scripts/config/cspell/dictionaries/qiskit.txt | 1 + 7 files changed, 165 insertions(+), 34 deletions(-) rename docs/guides/{qiskit-addons-cutting-get-started.ipynb => qiskit-addons-cutting-wires.ipynb} (61%) diff --git a/docs/guides/_toc.json b/docs/guides/_toc.json index 1ae238da9ed..cec75a6d3df 100644 --- a/docs/guides/_toc.json +++ b/docs/guides/_toc.json @@ -586,8 +586,8 @@ "url": "/guides/qiskit-addons-cutting" }, { - "title": "Get started with circuit cutting", - "url": "/guides/qiskit-addons-cutting-get-started" + "title": "Get started with wire cuts", + "url": "/guides/qiskit-addons-cutting-wires" } ] } diff --git a/docs/guides/optimize-for-hardware.mdx b/docs/guides/optimize-for-hardware.mdx index 681bf9b505d..75c9ee35655 100644 --- a/docs/guides/optimize-for-hardware.mdx +++ b/docs/guides/optimize-for-hardware.mdx @@ -67,4 +67,4 @@ can be run on IBM® hardware using IBM Qiskit Runtime. * [Operator Backpropagation (OBP)](./qiskit-addons-obp) * [Getting started with OBP](./qiskit-addons-obp-get-started) * [Circuit cutting](./qiskit-addons-cutting) - * [Getting started with circuit cutting](./qiskit-addons-cutting-get-started) \ No newline at end of file + * [Getting started with circuit cutting using wire cuts](./qiskit-addons-cutting-wires) \ No newline at end of file diff --git a/docs/guides/qiskit-addons-cutting-get-started.ipynb b/docs/guides/qiskit-addons-cutting-wires.ipynb similarity index 61% rename from docs/guides/qiskit-addons-cutting-get-started.ipynb rename to docs/guides/qiskit-addons-cutting-wires.ipynb index 73f2078aa7f..2c89f64a743 100644 --- a/docs/guides/qiskit-addons-cutting-get-started.ipynb +++ b/docs/guides/qiskit-addons-cutting-wires.ipynb @@ -2,20 +2,24 @@ "cells": [ { "cell_type": "markdown", + "id": "1ce517c0-5dfd-4458-82f6-1a21f248603b", "metadata": {}, "source": [ - "# Get started with circuit cutting\n", + "# Get started with circuit cutting using wire cuts\n", "\n", - "This guide demonstrates a few simple working examples to get started with the `qiskit-addon-cutting` package. These examples will cover reconstructing expectation values of a seven-qubit circuit using wire cutting and reducing circuit depth and width using gate cutting.\n", + "This guide demonstrates a working example of using wire cuts to get started with the `qiskit-addon-cutting` package. It will cover reconstructing expectation values of a seven-qubit circuit using wire cutting and reducing circuit depth and width using gate cutting.\n", "\n", - "## Wire cutting\n", + "A wire cut is represented in this package as a two-qubit [`Move`](../api/qiskit-addon-cutting/instructions-move) instruction, which is defined as a reset of the second qubit the instruction acts on followed by a swap of both qubits. This operation is equivalent to transferring the state of the first qubit to the second qubit, while simultaneously discarding the state of the second qubit (as in, the first qubit ends up in the state $|0\\rangle$).\n", + "\n", + "The package is designed this way primarily because it is consistent with the way you must treat wire cuts when acting on physical qubits. For example, a wire cut might take the state of physical qubit $n$ and continue it as a physical qubit $m$ after the cut. This choice also has the benefit of allowing you to think of \"instruction cutting\" as a unified framework for considering both wire and gate cuts within the same formalism (since a wire cut is just a cut [`Move`](../api/qiskit-addon-cutting/instructions-move) instruction).\n", "\n", "To demonstrate expectation value reconstruction after wire cutting, first create a circuit with several non-local gates and define observables to estimate." ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 1, + "id": "b481ef2d-3912-4eac-9755-335e8f5db886", "metadata": {}, "outputs": [ { @@ -25,7 +29,7 @@ "
" ] }, - "execution_count": 5, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } @@ -33,9 +37,19 @@ "source": [ "import numpy as np\n", "from qiskit import QuantumCircuit\n", + "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", "from qiskit.quantum_info import SparsePauliOp\n", + "from qiskit_ibm_runtime.fake_provider import FakeManilaV2\n", + "from qiskit_ibm_runtime import SamplerV2, Batch\n", + "from qiskit_aer.primitives import EstimatorV2\n", + "\n", "from qiskit_addon_cutting.instructions import Move\n", - "from qiskit_addon_cutting import partition_problem\n", + "from qiskit_addon_cutting import (\n", + " partition_problem,\n", + " generate_cutting_experiments,\n", + ")\n", + "from qiskit_addon_cutting import reconstruct_expectation_values\n", + "\n", "\n", "qc_0 = QuantumCircuit(7)\n", "for i in range(7):\n", @@ -59,18 +73,18 @@ }, { "cell_type": "markdown", + "id": "34609068-25a7-4aae-b786-836984d305d2", "metadata": {}, "source": [ - "In this circuit, a wire cut can be made at qubit $q_3$ which, in the `qiskit-addon-cutting` package is represented by a [`Move`](../api/qiskit-addon-cutting/instructions-move) instruction. This gate is defined as a reset of the second qubit followed by a swap of both qubits, which has the effect of transferring the state of the first qubit wire into the second, while simultaneously discarding the state of the second qubit wire.\n", - "\n", - "We can manually place these `Move` instructions in a new circuit, but for this to work properly, it is important that the second (destination) qubit share no entanglement with the remainder of the system; otherwise, the reset operation will cause the state of the remainder to partially collapse. In order to avoid this in this example, we will include a second `Move` instruction which is reversed.\n", + "The wire to be cut will be made at qubit $q_3$ by manually placing `Move` instructions in a new circuit with one extra qubit, but for this to work properly, it is important that the second (destination) qubit share no entanglement with the remainder of the system; otherwise, the reset operation will cause the state of the remainder to partially collapse. In order to avoid this in this example, we will include a second `Move` instruction which is reversed.\n", "\n", - "When adding in the `Move` instructions, a new observable should be included to account for the extra qubit wire that was added. This can be done by including an extra $I$ at index $4$." + "When adding in the `Move` instructions, a new observable should be created to account for the extra qubit wire that was added. This can be done by including an extra $I$ at index $4$." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 2, + "id": "15461a2c-85a9-4cb2-a632-b9597ccbc4bd", "metadata": {}, "outputs": [ { @@ -80,7 +94,7 @@ "
" ] }, - "execution_count": 6, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -108,9 +122,10 @@ }, { "cell_type": "markdown", + "id": "a57a7ad9-0de4-4df7-9367-918e64c5355c", "metadata": {}, "source": [ - " \n", + "\n", " As an alternative to working directly with [`Move`](../api/qiskit-addon-cutting/instructions-move) instructions, you may choose to mark wire cuts using a single-qubit [`CutWire`](../api/qiskit-addon-cutting/instructions-cut-wire) instruction. Once the subexperiments are prepared to be executed, use the [`cut_wires`](../api/qiskit-addon-cutting/qiskit-addon-cutting#cut_wires) method to transform `CutWire` to `Move` instructions on newly allocated qubits. However, in contrast to the manual method, this automatic method does not allow for re-use of qubit wires.\n", "\n", "\n", @@ -118,12 +133,13 @@ "\n", "Now that the circuit includes `Move` instructions to represent wire cuts, the problem can be separated into partitions. This is accomplished using the [`partition_problem`](../api/qiskit-addon-cutting/qiskit-addon-cutting#partition_problem) method with a set of partition labels to specify how the circuit is separated. Qubits sharing a common partition label will be grouped together, and any non-local gates spanning more than one partition will be cut.\n", "\n", - "In this partitioning scheme, we will have cut two wires, which results in a sampling overhead of $4^4$.\n" + "In this partitioning scheme, we will have cut two wires, which results in a sampling overhead of $4^4$." ] }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 3, + "id": "2139745a-bdc3-40bd-bd6f-d26d2a5b5b14", "metadata": {}, "outputs": [ { @@ -138,42 +154,45 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAEvCAYAAABoq3HZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTRklEQVR4nO3deXwMdx8H8M9u7pVD7kOIyCVUgoj7qKOOqqO0aKmjfaotqtQjRdVZNOhDVavaalGqKqgjbqFCHSGOyCUSQUgkkUTkzmb3+UNtm+Zodu3ubHY/79fL6yUz85v5zmayM9/5XSK5XC4HERERERGRARELHQAREREREZG2MREiIiIiIiKDw0SIiIiIiIgMDhMhIiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOAwESIiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgMBEiIiIiIiKDw0SIiIiIiIgMDhMhIiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOAwESIiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgMBEiIiIiIiKDw0SIiIiIiIgMDhMhIiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOAwESIiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgGAsdAKmXXC6HtLhU6DCUYmxhBpFIJHQYRERERGRAmAjpGWlxKbZ6jRE6DKWMTt4CE4m50GEQERERkQFh0zgiIiIiIjI4TISIiIiIiMjgMBEiIiIiIiKDw0SIiIiIiIgMDhMhIiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8N5hAgunVqi/66FlZaVFxYjPyUdyWGnEL/hAOQVMsHiIyIiIiJSNyZCpJCyKxJpEdGASAQLx4bwfrUH2i8cDxufRjg7c73Q4RERERERqQ0TIVJ4GHMLKTsjFT8nbjyMlyO/gO/rvRH92TaUPswXND4iIiIiInVhHyGqkbS4FFnRSRCJxbD2cBY6HCIiIiIitWEi9A/jx4+HSCSq9V9CQoLQYWqNVdMnCVBpXoHQoRARERERqQ2bxtXAx8cHTk5O1a6TSCRaj0cbjC1MYWZnpegj5De2L+xbNUNWdBLyU9KFDo+IiIiISG2YCNVgzpw5GD9+vNBhaFWbkFFoEzKq0rLU8HM4P/t7wWLSBXK5HI8Ly1Ehk8PG0hRisUjokIiIiLRKKpXhUUEZzE2NILEwhkjEeyHVf0yESCHxpyNI3XcWYhNj2DZvgucmD0UDV3tUlJYpthGbGmPQkRW4tTsS177YpVjedfVkmDs2xLHRSwSKXv1S0vLxza8J+OG3G3iYVwoAkJgbY/RAL0wa6Y/Wze2FDpGIiEhjZDI5Ii7cx9fb47H35B1UVMgBAJ6NrPDuq83x5su+cLA1FzpMIpXpfR+h7OxshISEwNvbG+bm5mjcuDE++OADFBYW4q233oJIJMLatWuFDlMn5KdkID0yBvciLuP613twfNxncGjthU6h7yi2kZVJcXrql2g1dRhsW3gAAJr0D4b7C+1w5sOvBYxefeRyOZZ9fxXeA3dgxcYYRRIEAEUlUny3MxFtRvyGdxadhlTK+ZWIiEj/5OaXos/bB/HCxEPYffy2IgkCgFv3HuOj1VFo0u8X7D6eKmicRM9CrxOhK1euoFWrVlixYgUyMjLQokULlJeXY82aNRg5ciTi4+MBAK1bt65SNiwsDEOHDkWvXr0wYsQI/O9//0NWVpYAZyGcrIuJSA47Bc+hXeDYzk+x/OG1FMSu24tua96HxNUOnVa8i/Nzvkfxg1xB41WXRd9cxpw1FyGX177dt2GJmDDvFOT/tiEREVE9UlhUjn7vHsKJqNr7BxeXVGD4h8eZDFG9pbeJUHZ2NgYNGoSMjAzMmDED6enpiI6ORkZGBkJDQxEeHo6oqCiIRCIEBARUKR8eHo49e/bgxIkT2LFjB2bMmAFPT09s2bJFkPMRytVVYZBJK9Bm5sjKy1fvhKyiAoOPrkDGmeu4teeMYDGq0/lrmViw7nKdt9+yPxlbw5M1GhMREZE2zf86GlHXs+u0rVwOjJn9O3IeldZhayLdoreJ0NSpU5GWloYpU6Zg5cqVsLKyUqwLCQlBYGAgpFIpmjZtCmtra8U6X19frFq1CleuXEFeXh4KCwtx6tQp9O3bF4WFhRg7dizCw8MFOivte5yagVt7zsCtewCcOvgrlsulFciKSoS5vQ1ubj8haIzq9NUv8SqUidNILERERNpWVCzFht03lCtTIsWmvUkai4lIU/QyEYqPj8f27dvh4OCAZcuWVbtNUFAQACAwMLDS8jlz5mDatGkIDAyEjY0NJBIJunXrhkOHDmHIkCGQy+WYNm1aleZQt27dwuDBg2FlZQVbW1uMHTsWDx8+1OBZas+1L57U/vy9Vsipgz+8R/ZE/IYDaL9oAozMTQWNUR1yHpVi++EUpcudu5aFq4n68bsmIiLDtuPILeQ9LqvDlpV986vhzLFI+kMvR43btm0bZDIZRo8eDUtLy2q3sbCwAKpJhGoiEokQGhqKPXv24ObNm4iJiVE0qXv8+DF69uwJOzs7bNu2DcXFxQgJCcFLL72EM2fOQCxWLd9s164dMjIylCpjIhdjPtorVSbjbCw2ur5S4/pHSfew2f2vJMhYYo6uqyfj0pKtSNh0GAN2L0Lb2a8jav5GpY77lK+PL8pFwg86UGbkhjKbd+qwZVU9B4yGpOy62mMiIiLSpkcWLwAWXZUud+P2IzRybwIRhL+fk+FxcXHBxYsXlS6nl4lQREQEAKBnz541bpOWlgYokQgBgJ+fH+zs7JCTk4OkpCRFIvTtt9/i3r17OHXqFJo0aQIAcHd3R+fOnbF3714MHTpUpfPIyMjAvXv3lCpjKjICnFU6XJ0FLxiLgjuZSNh4CABw+oO1GHxsJe4cPI8H55RvWnY//T7K5BUaiFRJEgvARrWiubmPkZun3O+KiIhI57iWABaqFb1//wEgV742iUgoepkI3b59GwDg4eFR7XqpVIozZ5507lcmEQIAExMTxT6e2r9/P7p27apIggCgU6dOaNasGfbt26dyIuTi4qJ0GRO5GJp8GdOoVxt4Du6CPb1nKJY9vv0Al5ZsRZdVk7G31wxIi5XrMOnm6qYTNULlYgky8WfPTyUnirNraAaLBo00FRoREZFW5JuL8ViFciJ5GVzdHMFpVkkIqjwzQ18TocLCQgBAcXFxteu3b9+O7OxsWFlZwdPTs877zcrKQmZmJvBnjc9TcXFxePXVV6ts37JlS8TFqd6RXpUqvvKiEmz1GqPyMf/NvYjL+Ln5uCrLEzYeUtQQKetG0g2YSISfkE0ulyNg+G5cv6ncMOANrUxx9/wRSCz08s+JiIgMSFxyLlq+vKsOW1Y2ZlALbF6appGYiDRFLwdLeJoVRkdHV1mXnp6OmTNnAgACAgIgUuLN/+effw65XA4bGxsEBwcrlufm5qJhw4ZVtn/ajI7qB5FIhMmj/OuwZWUThvowCSIiIr3QwssWPYNdlS43aaTy908ioellItSnTx8AQGhoKG7c+GsIyKioKPTs2RPZ2U/Gxv/nRKpHjx7FrFmzkJxceV6YoqIiLFq0CMuXLwcAzJ49G6am9X+UNKpqzEveaOFVNamtiZOdOaa/8ZxGYyIiItKmhZPawsS47o+IQ3o2QYcAR43GRKQJepkIhYSEwN7eHnfv3kXLli3RqlUr+Pj4oH379mjWrBl69eoFVNM/qLCwEKGhofD29oabmxuCg4MRFBQEBwcHzJ8/H3K5HBMnTkRISEilcra2tsjLy6sSR05ODuzs7DR8tqROlhITHPiqL7ybWP/rtvYNzRD+VV80dql+ZEIiIqL6qFuQC7Ys61GnZOj5YFdsXfa8Ui1siHSFXiZC7u7uiIyMxMCBA2Fubo7U1FTY2dlh/fr1CA8PV9QS/TMRCgoKwty5c9G7d2+YmpoiLi4OsbGxcHR0xMiRI3Hs2DGsX7++yh+7v79/tX2B4uLi4O/PquL6xsPNCn9sfgnvjWgOS0nVJm8mxmK8/qIXzm0ZjHYt+QaMiIj0z4h+zXBiw4vo27n6gYBcHCyw4L02OLSuHxpITLQeH5E6iOT/nBlUzxUUFMDa2hoikQiPHz+GRCJ55n2uXLkSc+bMQUpKimIQhfPnz6Njx47YtWsXXn75ZTVEXjeaHixBE0Ynb9GJwRKqk19Qhh1HbmH68nN4XCSFjaUJbux7FU72Ko4tSkREVM8k3X6E3yJuY9H6yygoksLO2hQZJ0bDxEQv36eTATG4Kzg2NhZyuRw+Pj5qSYIAYOLEiXB1dcWQIUOwf/9+hIWF4bXXXkP79u0xZMgQtRyDhGFtaYq3hvnB2vJJnzBLiQmTICIiMig+HjaYOSEANn/eCy3MjZkEkV4wuKs4JiYGUGH+oNpYW1sjIiICrq6uGDVqFP7zn/+gc+fO2L9/P8Ri/fiIPQZ2RMfP3q60zHtkT4xPD0OT/sE1liMiIiIi0kUGN+avJhIhAPDy8sL+/fvVuk9d0uTFDkjecVLxs6W7I3xH90HmxURB4yIiIiIiUgUTIQIAmFpLMOTEKhiZm6LofjbEZiawauKM5LDfcXbWd3AO9sPpD9Y+2VgkQufP38P5uRsQPL/q5KpERERERLrO4BKhiIgIoUPQSWX5RUjZHYnywhJcWxUGt+cDETB1GP747zdw6xGIzKhEyKUVAICW7wxCZlQCHl5LETpsIiIiIiKV6EcHFlILu+c8kRNzCwBgH+CFnOtP/t+kfzBuH7wAAGjo1xgeAzvg6uqdgsZKRERERPQsDK5GiGpm17KpIvmxD2iGu4ejAABuz7fGxcVbAADOHfxh2dgJw//4EgBg4dgQnVa8CwsnWyRuPiJg9EREREREdcdEiAAAEhc7QC5HUUYOAMDO3wPXvtgJhzY+eJR0D9KiEgBA4uYjlRKe/jsXIu67/bhzKEqw2ImIiIiIlMVEiICnzeL+rA0CgLL8QjQf1w+lOY9x59AFQWMjIiIiIlI3JkIEAEg7dglpxy4pft4/YBYAYMjJVTg8fH6N5Q7Vso6IiIiISFcxEaJa7Xl+utAhEBERERGpHUeNIyIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjjsI6RnjC3MMDp5i9BhKMXYwkzoEIiIiIjIwDAR0jMikQgmEnOhwyAiIiIi0mlsGkdERERERAaHiRARERERERkcJkJERERERGRwmAgREREREZHBYSJEREREREQGh4kQEREREREZHCZCRERERERkcJgIERERERGRwWEiREREREREBoeJEBERERERGRwmQkREREREZHCYCBERERERkcFhIkRERERERAaHiRARERERERkcJkJERERERGRwmAgREREREZHBYSJEREREREQGh4kQEREREREZHGOhAyD1ksvlkBaXCh2GUowtzCASiYQOg4iIiIgMCBMhPSMtLsVWrzFCh6GU0clbYCIxFzoMIiIiIjIgbBpHREREREQGh4kQEREREREZHCZCRERERERkcJgIERERERGRwWEiREREREREBoeJEBERERERGRwmQkREREREZHA4jxDBpVNL9N+1sNKy8sJi5KekIznsFOI3HIC8QiZYfERERERE6sZEiBRSdkUiLSIaEIlg4dgQ3q/2QPuF42Hj0whnZ64XOjwiIiIiIrVhIkQKD2NuIWVnpOLnxI2H8XLkF/B9vTeiP9uG0of5gsZHRERERKQu7CP0D+PHj4dIJKr1X0JCgtBhaoW0uBRZ0UkQicWw9nAWOhwiIiIiIrVhjVANfHx84OTkVO06iUSi9XiEYtX0SQJUmlcgdChERERERGrDRKgGc+bMwfjx44UOQ6uMLUxhZmel6CPkN7Yv7Fs1Q1Z0EvJT0oUOj4iIiIhIbZgIkUKbkFFoEzKq0rLU8HM4P/t7wWIiYeUXlOGn/TdxOvoBCoulsGpggj4d3TCyXzNILPj1QURE+u9G6iNs2J2Im3ceo0Img4uDBK8PaIZuQS4QiURCh0fPQO+fZLKzs7F8+XLs2rULaWlpcHR0xLBhw7B06VJMnToVP/zwA7788ktMmTJF6FAFl/jTEaTuOwuxiTFsmzfBc5OHooGrPSpKyxTbiE2NMejICtzaHYlrX+xSLO+6ejLMHRvi2OglAkVP6lRWXoFZq6PwbVgiCoulldb9fCAZM1aex9TXW+KTd1rDyIhdDYmISP/cvJOP9z49g2Pn7ldZt35HAlp6NcT/ZnZA387ugsRHz06vE6ErV65gwIAByMjIQIMGDdCiRQvcv38fa9asQXJyMnJycgAArVu3rlI2LCwMv/32G/Lz8+Hg4ICOHTvijTfegKOjowBnoh35KRlIj4wBANyLuIwHFxLw4p7F6BT6Dn5/bxUAQFYmxempX6L/7kW4e/QScuNuo0n/YLi/0A57en0o8BmQOpSWVeClKUeq/eJ/Kje/DAu/uYyE1DxsXfY8kyEiItIrMTdy0Ovtg8jOLalxm9jkPLw4+Qh+WtIDr73opdX4SD309uklOzsbgwYNQkZGBmbMmIH09HRER0cjIyMDoaGhCA8PR1RUFEQiEQICAqqUDw8Px549e3DixAns2LEDM2bMgKenJ7Zs2SLI+Qgh62IiksNOwXNoFzi281Msf3gtBbHr9qLbmvchcbVDpxXv4vyc71H8IFfQeEk9Ji/5o9Yk6O+2H7qFeV9FazwmIiIibcnLL8WASYdrTYKeqqiQY9zcU4i6nqWV2Ei99DYRmjp1KtLS0jBlyhSsXLkSVlZWinUhISEIDAyEVCpF06ZNYW1trVjn6+uLVatW4cqVK8jLy0NhYSFOnTqFvn37orCwEGPHjkV4eLhAZ6V9V1eFQSatQJuZIysvX70TsooKDD66AhlnruPWnjOCxUjqczejAD/uSVKqzJqfY5FfUFaHLYmIiHTfpr1JuJdZVOfty6UyrNgYo9GYSDP0MhGKj4/H9u3b4eDggGXLllW7TVBQEAAgMDCw0vI5c+Zg2rRpCAwMhI2NDSQSCbp164ZDhw5hyJAhkMvlmDZtGuRyuaLM04Srffv2MDMz06uOc49TM3Brzxm4dQ+AUwd/xXK5tAJZUYkwt7fBze0nBI2R1OfbsETIZPI6bPmXgiIptuy/qbGYiIiItEUul+Pr7crPF7n7eCruZxZqJCbSHL1MhLZt2waZTIbRo0fD0tKy2m0sLCyAahKhmohEIoSGhgIAbt68iZiYvzL/mzdvYufOnXBxcUFwcLBazkGXXPviSe3P32uFnDr4w3tkT8RvOID2iybAyNxU0BhJPQ6dSVOp3MHTqpUjIiLSJan3CnDj9iOly0kr5Dh+vm7Nykl3iOR/r9rQE127dsWZM2fw22+/YciQIdVuM3ToUOzZswe7du3Cyy+/XOd929vbIycnB2FhYRg+fDgAQCaTQSx+klMuWLAACxcuhDo+1nbt2iEjI0OpMiZyMebL2j/zsWtjLDHH4OMrEbd+PxI2HcaA3YuQfTUZUfM3qrS/heILKBfJ1B6nOqU3/BAysQ3Eskdwzfuf0OFoTIbN+6gwclC6nGn5bTg+/kEjMRERkW4whHthmZELsmzeU6msTeEBWJaeV3tM9O9cXFxw8eJFpcvp5ahxt2/fBgB4eHhUu14qleLMmSd9WupaI/SUiYmJYh9PPU2C1C0jIwP37t1TqoypyAhw1kg4CsELxqLgTiYSNh4CAJz+YC0GH1uJOwfP48G5eKX3dz/9PsrkFRqIVI2sKgAxIKuoUPp3Uq9YFAEWyhcrK8nX78+FiIgM415oKgVsVCv6KPcBHuXq6eeip/QyESosfNJGs7i4uNr127dvR3Z2NqysrODp6Vnn/WZlZSEzMxMA4O6u+THjXVxclC5jIhcDGqxcadSrDTwHd8Ge3jMUyx7ffoBLS7aiy6rJ2NtrBqTFpUrt083VTfdrhIyMIAMgNjKCa6NGQoejMbmiTBShidLlrIwfwlqPPxciIjKMe6EcRsiQFUAmrr5rRfWF5IBIBCerIphI9PNz0XWqPDNDXxMhFxcX5ObmIjo6Gp06daq0Lj09HTNnzgQABAQEKDWwweeffw65XA4bGxut9AVSpYqvvKgEW73GaCQe/Dm/0M/Nx1VZnrDxkKKGSFk3km7ARGKuhug0x73PNtzLLIKriyvSrutvf5grCQ/RZsRvSpUxMhIhLvIbuLs00FhcREQkPEO5F8754iKWbbha9wIiEbq1dcapjZxOor7Ry8ES+vTpAwAIDQ3FjRs3FMujoqLQs2dPZGdnA9VMpHr06FHMmjULycnJlZYXFRVh0aJFWL58OQBg9uzZMDXl4ACkf1o3t0ePdsq9VXnlhaZMgoiISG+886ofzM2MlCozbcxzGouHNEcvE6GQkBDY29vj7t27aNmyJVq1agUfHx+0b98ezZo1Q69evYBq+gcVFhYiNDQU3t7ecHNzQ3BwMIKCguDg4ID58+dDLpdj4sSJCAkJEejMiDRvW2hPeLjVrUlAKx9bfDO3i8ZjIiIi0hYPNytsWdoDYnHdWg39d1wrDOvTVONxkfrpZSLk7u6OyMhIDBw4EObm5khNTYWdnR3Wr1+P8PBwRS3RPxOhoKAgzJ07F71794apqSni4uIQGxsLR0dHjBw5EseOHcP69ev1ap4gon9ydZTgzKaX0CnQqdbt+nVuhN9/HIiG1mZai42IiEgbhr/gib1r+sC+Yc33ODNTI3w6JQjLP9S/qVMMhV72EQIAf39/7N+/v8rygoICpKamQiwW47nnKldjNm7cGIsXL9ZilES6qZFzA5zZ/BLOXcvE19vjse1ACipkchiJRXhrmC/eG+GP1s3thQ6TiIhIYwZ2b4K0o6MQdjQV3+1MxOnLDyCTyWFiLMKS99thwlBfONjqdh9nqp3eJkI1iY2NhVwuh6+vLyQSidr2GxYWBgCIi4ur9HPTpk3Rrl07tR2HSFtEIhE6BTqjU6AzTlxIx73MIrg4WGD9vK5Ch0ZERKQV5mbGGPOSN8a85K0YLMLJzgIzJwQIHRqpgcElQjExMYAK8wf9m1dffbXan8eNG4eNG1WbaFSXeAzsCNdurXBu1neKZd4je6Lr6smImBCKO4eiBI2PiIiIiEgZTITURC6Xq3V/uqbJix2QvOOk4mdLd0f4ju6DzIuJgsZFRERERKQKJkIEADC1lmDIiVUwMjdF0f1siM1MYNXEGclhv+PsrO/gHOyH0x+sfbKxSITOn7+H83M3IHh+1TmFiIiIiIh0ncElQhEREUKHoJPK8ouQsjsS5YUluLYqDG7PByJg6jD88d9v4NYjEJlRiZBLKwAALd8ZhMyoBDy8liJ02EREREREKtHL4bNJNXbPeSIn5hYAwD7ACznXn/y/Sf9g3D54AQDQ0K8xPAZ2wNXVOwWNlYiIiIjoWRhcjRDVzK5lU0XyYx/QDHcPPxkAwe351ri4eAsAwLmDPywbO2H4H18CACwcG6LTindh4WSLxM1HBIyeiIiIiKjumAgRAEDiYgfI5SjKyAEA2Pl74NoXO+HQxgePku5BWlQCAEjcfKRSwtN/50LEfbefo8YRERERUb3CRIiAp83i/qwNAoCy/EI0H9cPpTmPcefQBUFjIyIiIiJSNyZCBABIO3YJaccuKX7eP2AWAGDIyVU4PHx+jeUO1bKOiIiIiEhXMRGiWu15frrQIRARERERqR1HjSMiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgcLAEPWNsYYbRyVuEDkMpxhZmQodARERERAaGiZCeEYlEMJGYCx0GEREREZFOY9M4IiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOAwESIiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgMBEiIiIiIiKDw0SIiIiIiIgMDhMhIiIiIiIyOEyEiIiIiIjI4DARIiIiIiIig8NEiIiIiIiIDA4TISIiIiIiMjjGQgdA6iWXyyEtLhU6DKUYW5hBJBIJHQYRERERGRAmQnpGWlyKrV5jhA5DKaOTt8BEYi50GERERERkQNg0joiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOAwESIiIiIiIoPDRIiIiIiIiAwOEyEiIiIiIjI4TISIiIiIiMjgcB4hgkunlui/a2GlZeWFxchPSUdy2CnEbzgAeYVMsPiIiIiIiNSNiRAppOyKRFpENCASwcKxIbxf7YH2C8fDxqcRzs5cL3R4RERERERqw0SIFB7G3ELKzkjFz4kbD+PlyC/g+3pvRH+2DaUP8wWNj4iIiIhIXdhHqBrjx4+HSCSq9V9CQoLQYWqctLgUWdFJEInFsPZwFjocIiIiIiK1YY1QLXx8fODk5FTtOolEovV4hGDV9EkCVJpXIHQoRERERERqw0SoFnPmzMH48eOFDkNrjC1MYWZnpegj5De2L+xbNUNWdBLyU9KFDo+IiIiISG2YCJFCm5BRaBMyqtKy1PBzOD/7e8FiIhJaRYUMUdezkZlTDGNjMXw9bODdxFrosIiIiLQmL78UF+OyUVBUDkuJCdq1cEBDazOhw3pmBpEIZWdnY/ny5di1axfS0tLg6OiIYcOGYenSpZg6dSp++OEHfPnll5gyZYrQoQoq8acjSN13FmITY9g2b4LnJg9FA1d7VJSWKbYRmxpj0JEVuLU7Ete+2KVY3nX1ZJg7NsSx0UsEip5IvXLzS/FtWAK++TUBqfcrNw3tGeyKSSP9MfyFphCJRILFSEREpEkxN3Kw5udY/HwgBUUlUsVyibkxXn+xGaa+3hKtfO0EjfFZ6H0idOXKFQwYMAAZGRlo0KABWrRogfv372PNmjVITk5GTk4OAKB169ZVyoaFheG3335Dfn4+HBwc0LFjR7zxxhtwdHQU4Ew0Lz8lA+mRMQCAexGX8eBCAl7csxidQt/B7++tAgDIyqQ4PfVL9N+9CHePXkJu3G006R8M9xfaYU+vDwU+AyL1SEnLR//3DiPpdvUjJZ6ISseJqHS88ZI3NizsBhMTjjtDRET65ZeDyRg39xTKyqvOJVlUIsX3u25g876b2PRpd4wa4CVIjM9Kr+/e2dnZGDRoEDIyMjBjxgykp6cjOjoaGRkZCA0NRXh4OKKioiASiRAQEFClfHh4OPbs2YMTJ05gx44dmDFjBjw9PbFlyxZBzkfbsi4mIjnsFDyHdoFjOz/F8ofXUhC7bi+6rXkfElc7dFrxLs7P+R7FD3IFjZdIHTIfFuOFiYdqTIL+7qf9N/Hup2cgl8u1EhsREZE27P/9DkbP/r3aJOjvysplGD37d4SfuqO12NRJrxOhqVOnIi0tDVOmTMHKlSthZWWlWBcSEoLAwEBIpVI0bdoU1tZ/tfn39fXFqlWrcOXKFeTl5aGwsBCnTp1C3759UVhYiLFjxyI8PFygs9Kuq6vCIJNWoM3MkZWXr94JWUUFBh9dgYwz13FrzxnBYiRSp2UbriIl7XGdt/9h9w2cu5ap0ZiIiIi0RSqVYdKSPyCT1e0ln0wmx6Qlf6CiovakSRfpbSIUHx+P7du3w8HBAcuWLat2m6CgIABAYGBgpeVz5szBtGnTEBgYCBsbG0gkEnTr1g2HDh3CkCFDIJfLMW3atEpvgcPCwjB8+HB4eHhAIpGgefPm+Pjjj1FQUL+HnX6cmoFbe87ArXsAnDr4K5bLpRXIikqEub0Nbm4/IWiMROpSVCzFxj1JSpf7enu8RuIhIiLStvDIu7ibUahUmTvphTgQmaaxmDRFbxOhbdu2QSaTYfTo0bC0tKx2GwsLC6CaRKgmIpEIoaGhAICbN28iJiZGsW7lypUwMjLC0qVLcfDgQbz33ntYt24d+vfvD5ms/mXIf3ftiye1P3+vFXLq4A/vkT0Rv+EA2i+aACNzU0FjJFKHvSdvI+9xWR22rOzXw7dQWFSukZiIiIi0adNe5V8IAlDpRaLQ9HawhIiICABAz549a9wmLe1J5lrXRAgA/Pz8YGdnh5ycHCQlJSn6Fu3bt6/SIAo9evSAo6MjRo8ejdOnT6N79+5Kn0O7du2QkZGhVBkTuRjz0V6pMhlnY7HR9ZUa1z9KuofN7n8lQcYSc3RdPRmXlmxFwqbDGLB7EdrOfh1R8zcqddynfH18US7S7WQxveGHgNgG6RnpcHd3FzocrTOU839s3gWQ9FW6XFm5DF7N28BYlqeRuIiIdIGh3AtqYijnn2k9ETBupHS5fYdPw919nEZi+jcuLi64ePGi0uX0NhG6ffs2AMDDw6Pa9VKpFGfOPOnXokwiBAAmJiaKfTxV3Uhy7dq1AwDcu3dPqf0/lZGRoXRZU5ER4KzS4eoseMFYFNzJRMLGQwCA0x+sxeBjK3Hn4Hk8OKd8E6H76fdRJq/QQKRqZFUBiAFZRYXKv896zVDO3yEPkKhW9EFGOlCeo+6IiIh0h6HcC2piKOdvXqZShlBeVlbvPhe9TYQKC5+0bSwuLq52/fbt25GdnQ0rKyt4enrWeb9ZWVnIzHzSMfrf3gacOPGk74y/v3+t29XExcVF6TImcjGgwcqVRr3awHNwF+zpPUOx7PHtB7i0ZCu6rJqMvb1mQFpcqtQ+3VzddL9GyMgIMgBiIyO4NlL+LUl9ZyjnX2QKqDT2oVwKVydriGGh/qCIiHSEodwLamIo5//QuBglKpQzNy6GvUCfiyrPzAAgkuvpuK8tWrRAfHw81q5di8mTJ1dal56ejqCgIKSnp6NLly44ffp0nfc7a9YshIaGwsbGBpmZmTA1rb5vzL1799CmTRsEBQXh4MGDz3w+dVVeVIKtXmO0djx1GJ28BSYSc6HDqJV7n224l1mERk4SpB17TehwtM5Qzr+oWAr3F7YhN1+5fkJjB3lj05IeGouLiEgXGMq9oCaGcv77Tt7B4KlHlS63f+0LGNi9iUZi0hS9HSyhT58+AIDQ0FDcuHFDsTwqKgo9e/ZEdnY2UM1EqkePHsWsWbOQnJxcaXlRUREWLVqE5cuXAwBmz55dYxJUUFCAIUOGwNTUFD/88IPaz42INENiYYwJQ32VLjdppGq1vkRERLrmxW7uaOLaQKkyTd0s0b9L/es3pbeJUEhICOzt7XH37l20bNkSrVq1go+PD9q3b49mzZqhV69eQDX9gwoLCxEaGgpvb2+4ubkhODgYQUFBcHBwwPz58yGXyzFx4kSEhIRUe9zi4mIMGjQIt27dwpEjR+Dq6qqV8yUi9Zj9ViB8PKzrsOUTE1/xQ/tWVfsIEhER1UdGRmKs/6QrjIxEddxehG8+6QIjo/qXVtS/iOvI3d0dkZGRGDhwIMzNzZGamgo7OzusX78e4eHhilqifyZCQUFBmDt3Lnr37g1TU1PExcUhNjYWjo6OGDlyJI4dO4b169dDJKp6cZSXl+OVV17BxYsXcfDgQbRo0UJr50tE6uFga46j6/ujuafNv2775su++GpO52q/D4iIiOqr/l3d8UtoT5iZ1p4qmJmK8UtoT/Srh7VB0OfBEvDnIAX79++vsrygoACpqakQi8V47rnnKq1r3LgxFi9erPSxns5ZdPz4cRw4cADt2ys3hDUR6Q4PNyuc2zIYG3YnYt2vCbh5J7/S+r6dG2HySH8Mer4JkyAiItJLr/T1REtvW6zdFofN+5JQUPTXaMmWEmOMHeSDKa+1gH+zhoLG+Sz0OhGqSWxsLORyOXx9fSGRqDhW7j9MnjwZO3bswKxZsyCRSHDu3DnFOi8vr2qH1yYi3WVjZYoPx7bCtDHPITo+G/3fPYyHj0rhbG+Ow9/0Fzo8IiIijfNv1hBffdwZn01rh2YDfkV2XikcGpoh5eAIWDWovq98faK3TeNqExMTA6gwf1Btno4M99lnn6FTp06V/oWHh6vtOELxGNgRHT97u9Iy75E9MT49DE36BwsWF5GmicUitGvpCHMzIwCAcT1sA01ERPQsrBqYwsz0yX3QzNRIL5IgGGqNkCYSodTUVLXtSxc1ebEDknecVPxs6e4I39F9kHkxUdC4iIiIiIhUwUSIAACm1hIMObEKRuamKLqfDbGZCayaOCM57HecnfUdnIP9cPqDtU82FonQ+fP3cH7uBgTPHyd06ERERERESjPIRCgiIkLoEHROWX4RUnZHorywBNdWhcHt+UAETB2GP/77Ddx6BCIzKhFyaQUAoOU7g5AZlYCH11KEDpuIiIiISCVs7E4Kds95IifmFgDAPsALOdef/L9J/2DcPngBANDQrzE8BnbA1dU7BY2ViIiIiOhZGGSNEFXPrmVTRfJjH9AMdw9HAQDcnm+Ni4u3AACcO/jDsrEThv/xJQDAwrEhOq14FxZOtkjcfETA6ImIiIiI6o6JEAEAJC52gFyOoowcAICdvweufbETDm188CjpHqRFJQCAxM1HKiU8/XcuRNx3+3HnUJRgsRMRERERKYuJEAFPm8X9WRsEAGX5hWg+rh9Kcx7jzqELgsZGRERERKRuTIQIAJB27BLSjl1S/Lx/wCwAwJCTq3B4+Pwayx2qZR0RERERka5iIkS12vP8dKFDICIiIiJSO44aR0REREREBoeJEBERERERGRwmQkREREREZHCYCBERERERkcHhYAl6xtjCDKOTtwgdhlKMLcyEDoGIiIiIDAwTIT0jEolgIjEXOgwiIiIiIp3GpnFERERERGRwmAgREREREZHBYSJEREREREQGh4kQEREREREZHCZCRERERERkcJgIERERERGRwWEiREREREREBoeJEBERERERGRwmQkREREREZHCYCBERERERkcFhIkRERERERAaHiRARERERERkcJkJERERERGRwmAgREREREZHBYSJERER1kpeXhwULFuDkyZNCh1JvPHr0CO+//z4aNWoEc3NztGzZEuvWrYNcLhc6NJXwGlBOeno6Pv74Y/Tv3x+Ojo4QiUQYP3680GER0Z+YCBERUZ3k5eVh4cKFfAiuo7KyMrzwwgv45ptvMHLkSHz55Zfw8/PDpEmTsHDhQqHDUwmvAeUkJiZi6dKliIuLQ3BwsNDhENE/GAsdABERkT76/vvvERUVhTVr1uD9998HALz99tsYPnw4li5digkTJsDDw0PoMEmDgoKCkJmZCUdHR2RnZ8PR0VHokIjob1gjpGfkcjnKi0rq1b/62kSESNeVlZVh+fLlaN26NSQSCWxsbNCuXTusXbtWsc348eMhEomqLf/3ZjwnT56Ep6cnAGDhwoUQiUQQiURo2rSpUjE93WdERAQ6deoEiUQCd3d3hIaGAgByc3Px1ltvwcnJCRKJBC+99BLu379fZT+pqal444034OzsDDMzM3h5eWHOnDkoKipSbLNu3TqIRCLs3bu3SnmZTAZ3d3e0bt260vKLFy/i5ZdfhoODA8zMzODn54clS5ZAKpUqdZ4A8PPPP0MikeDtt9+utHzatGkoLy/H9u3bld6nsngNCHsNWFlZMfkh0mGsEdIz0uJSbPUaI3QYShmdvAUmEnOhwyDSK2VlZejXrx9OnjyJvn37YsyYMTA3N0dMTAx27dqFKVOmKLU/f39/rFq1CtOnT8fLL7+MYcOGAQAsLS2Vju3y5cvYt28fJk6ciLFjx+LXX3/FrFmzYG5ujk2bNqFp06ZYsGABbt68iTVr1mDs2LE4duyYovzt27fRvn17PHr0CJMmTYKPjw9OnjyJZcuW4cyZMzh+/DiMjY0xatQoTJ8+HZs3b8bgwYMrxXD8+HHcu3cPM2bMUCwLDw/HsGHD4O3tjRkzZsDOzg5nz57FvHnzcOXKFezYsaPO5yiTyRAdHY22bdvC3Lzy91v79u0hEokQFRWl9GenDF4Dwl4DRKT7mAgREemh1atX4+TJk5g9ezaWLl1aaZ1MJlN6f87Ozhg6dCimT5+OgIAAjBmj+guXmJgYnD17Fh06dAAAvPXWW/Dw8MD06dMxZcoUrFmzptL2q1atQmJiIvz8/AAAc+bMQVZWFsLDw/Hiiy8CACZNmoSZM2di5cqV2LRpE9566y3Y2tpi0KBB2LdvH3Jzc2Fra6vY5+bNm2FsbIzRo0cDAEpKSvDWW2+hQ4cOiIiIgLHxk9vjO++8g8DAQHz44Yc4efIknn/++TqdY25uLoqLi9GoUaMq68zMzODg4IB79+6p/BnWBa8BYa8BItJ9bBpHRKSHtm7dCltbW8ybN6/KOrFY2K/+Tp06KR6AAcDU1BTt27eHXC7H1KlTK23brVs3AEBSUhLw5wP83r170aZNG8UD8FOzZ8+GWCzG7t27FcvGjRuH0tLSSs3QCgoKsHv3bvTv3x9OTk4AgKNHj+LBgweYMGEC8vLykJ2drfj39DhHjhyp8zk+bZ5lZmZW7Xpzc/NKTbg0gdfAE0JdA0Sk+1gjRESkh5KSktC6desqzbJ0QbNmzaose/qm/mkflH8uf/jwIQAgKysLBQUFaNmyZZV92NnZwdXVFSkpKYplTx90N2/ejHfffRcAsHPnThQWFmLs2LGK7eLj4wEAb775Zo1xP3jwoM7nKJFIAAClpaXVri8pKVFsoym8Bp4Q6hogIt3HRIiIyIDV1ElelY7hdWVkZKT0OlUHVTE2Nsbrr7+O1atX4+bNm/D29sbmzZtha2tbqc/I0/2vWLGiSuf5p9zc3Op8XFtbW1hYWFTb/K20tBTZ2dno0aOHSuekbrwGKu9fXdcAEek+JkJERHrI19cXCQkJKC0trbF5Fv58gw4AOTk5iv8DqPRG/amaHpi1ydHREVZWVoiNja2yLjc3F+np6VUeYseNG4fVq1dj8+bNePvtt3Hy5ElMnDix0ufi4+MDAGjQoAH69OnzzHGKxWK0bdsWly9frvI7uHDhAuRyOdq1a/fMx6kNr4G/CHENEJHuYx8homoUFUtx9uoDrN0Wh3cWnUbOoyfNW3LzS7FyYwxOXLiPR4/LhA5TY2QyOW6kPsK2A8mY+fkFxfnn5Jdi9hdRCDtyC7fSHuv10Oc5j0px9Ow9fLbhKt6cd0rxGeQ9LsP6HQm4GJuF0rIKocOs0ejRo5Gbm4tPP/20yrq//958fX0BoNKIXADw+eefVyn3dHSwnJwcDURcN2KxGIMGDcLly5dx6NChSus+++wzyGQyvPzyy5WWt27dGgEBAdiyZQt++uknyGQyjBs3rtI2/fr1g5OTEz777LNqz6+4uBiPHz9WKtbXXnsNRUVF+PbbbystX716NYyNjTFy5Eil9qcsXgN/EeoaqO8ePCzGgci7WLz+MsbPrfw9+MPuG7ia+BDl5coPvFFfFJdIcf5aJr7+JQ7vLT5T6Vlg+Q/XcPzcfeTmV9/8VR/I5XIk383Hr4dT8NGqC8jJ/+tZ4KNVF/Dr4RQk382v188CrBEi+pNcLseFmCx8vT0e2w/fqvYht6ikAjP/dwEAIBaL8FL3xpg8yh99OjaCWCz8m9JnlfmwGBt238D6sATcvl9QZX1xSQU+23BN8bNfUxu8N6I5xg32QUPrmt841xdSqQz7T93B19vjcfRs1XlLAKCwWIp3F58BADSwMMYbL3lj0kh/tPK1q3Z7oXzwwQfYt28fPv30U0RFRaFv374wNzdHbGwsEhMTFQ+9r732GubMmYOJEyciISEBdnZ2OHToELKzs6vs097eHt7e3vjll1/g5eUFZ2dnNGjQAIMGDdLquS1duhRHjx7F0KFDMWnSJHh7e+PUqVPYvn07unfvXuUBF3/WCMyYMQOhoaHw9fVFx44dK61v0KABNm/ejKFDh8LPzw9vvvkmvL29kZeXh4SEBOzatQu7d+9WasSwt99+Gz/++CM+/PBDpKamwt/fHwcOHMDu3bsxd+5cpeffURavgcqEuAYAKBLRp4NjXLt2TbGse/fu6N69+zN8EupXWlaBnUdT8fWv8Thzufo+UYXFUrw1PxIAYGttiglDffHuq83h42Gj5Wg1IzouG19vj8fPB5NRXFL9s8BHq58Mfy8SAf27uGPyKH/07+IOI6P6X8fwMK8EP/6WhG92xCP5btXkv7ikAst/jFH87NXYCu++6o8JQ31g31D3+iTWRiSvz2kcVVFeVKL0PEIunVqi/66FlfdTWIz8lHQkh51C/IYDkFdo7o2PLswjFJeci7cXnsYfVzJVKt/c0wbfzuuKbkEuao9NG4pLpJj3VTTW/ByLMhXe7knMjTH7PwH4aEIgTEzq500g/NQdTF56ttoEsC76d3HHN590hoebldpjU1VJSQk+//xz/Pzzz0hOToa5uTl8fHwwYcIETJo0SbHd+fPn8eGHH+LSpUuwtLTEsGHDsHz5ctja2mLcuHHYuHGjYtsLFy5g+vTpuHLlCoqKiuDh4YHU1NQ6xyQSiarsE39O6rlp06YqbxZPnjyJnj174scff1RM7AkAt27dwrx583D48GHk5eXB3d0do0aNwty5c6sdhODBgwdwd3eHVCrFp59+io8//rja+K5fv47PPvsMJ06cQFZWFmxtbeHl5YUBAwZg8uTJlZqO1UVeXh7mzp2LXbt24eHDh/Dy8sKkSZMwefJkrTQz4zXwF6Gugdp+z/Pnz8eCBQuU2p+myOVy/HwgGR+uOI/MnBKV9jGinye+nNUJTvYWao9PG27eycfEhadxIipdpfJeja2w/pOu6N2xfvYlKy2rwOL1l7Fy03WVWjyYmxnhv+Na4ZN3WsPUpOZ+gLqEiZCeeZZEKGVXJNIiogGRCBaODeH9ag/Y+nsgcctRnJ25XmMxC5kIVVTIsHJTDOZ9Fa1SAvB3IhEw9fWWWDq1HSQW9aey9ezVB5jwSSQSUx89877a+ttj4+LuOlc7Upu8/FJMW34em/YmPfO+LCUmWDmjPSa+4qcTfSmIiOoiI7sI7yw6g70n7zzzvhxszfHVnE4Y0a/qyIC6SiaT48ufYzF7zcVqa4CU9c6rzbHiw2BYNTBVS3zacCkuG+PnnsL1m7nPvK9WPrbYuLg72rZwUEtsmsRESM88SyIUtXAzYr/Zq1hubGGGlyO/gMTVDr8E/AelD/M1ELFwiVBpWQVe/+gkdh2v+5vMuugY4Ijwr/rBzkb3m4r9cjAZb3z8O6RS9X0NSMyN8dsXffBCp6oTSeqaew8K8cI7hxCfkqfW/U58xQ9ff9xZL5pIEJF+S7iVhxcmHkLag0K17nfuxNZYNLmtzr8UKi+XYcK8U9ganqzW/bZubofD6/rXi9qxPSduY8R/I575hfDfmZka4dcVPTG4p4fa9qkJ9ee1NWmdtLgUWdFJaDqoE6w9nJGloURICOXlMoz4b4Ra3n7907lrWXhh4kGc2PAirC11923Q9kMpeH3WSaj7VUhRiRQvTTmCA1/10+nmARnZRXj+rQO4eUf91/W3YYmQVsjx/YKuOv8QoA5ZWVmoqKj9LaqlpaWio319VlBQgIKC2ptPGhkZwdHRUWsx6QJeA5XVl2vg5p189HzrADKyi9W+70+/vQK5XI5P39fs6IjPoqJChjc+Ponth26pfd9XEnLQ6z8HcGrjSzr9YnTfyTsY/uFxVFSo92GgtKwCwz48jt9W98FLPZqodd/qxNeV/zB+/HiIRKJa/yUkJAgdptZYNXUGAJTmqdZvQld9tPqCRpKgp6LjH/6ZZOhmhevF2CyMmaP+JOipsnIZhk47hpQ03UyepVIZhn5wTCNJ0FM/7L6B5T9eq8OW9V9wcDBcXV1r/bdy5Uqhw1SLlStX/uu5BgcHCx2m1vEaqH/XQGFROV6cfFgjSdBTS767is1qaHasKQvWXdZIEvRUbHIeXvnwOGQy3XwWiL2ZixEzI9SeBD1VUSHHq/+NQFzysze30xTWCNXAx8cHTk5O1a7T9GzgQjG2MIWZnZWij5Df2L6wb9UMWdFJyE9RreOgLoq8lIHVW6rOP1GbqG2D4eIgQUZ2EYJf21uHEkD4qbvYtDcJ44f4qhipZpSWVWD83FNKNYdT5fwLisrx5rxIRHz/os6NqLdyUwzOx2QpVUaVz2DeV9F4qXsTtPS2VTHS+mHr1q0oLq79YapZs6r9BaKioup8jOzsbOzatQvDhg2Dg0Pd252r+4F07Nix6Nq1a63bWFjoflMYdeM1UFl9uAbmrLmIpNvKvQxS5Xtwaug59O7ghkbODVSMVDMuxmZh2YarSpVR5fxPRKVj3a/xmDyqhYqRaoZUKsP4T06hpLTufaJUOf+S0gqM/+QU/tg8CMbGulf/wkSoBnPmzKk0Oo0haBMyCm1CRlValhp+Dudnfy9YTOpWXCLFhHmnlK4JcXGQwF2FL/Fpy8+jb6dGcHPSnRvAp99eQWyycn1iVD3/3y9m6NwNID4lD/O/jla6nCqfQdmfbc/P/jRIr/sLdenSRePHyM7Oxvfff4/u3bsr9RCsbs2aNav2gd7Q8RqoX05HZ2DNz3FKl1Ple/DR4zK8s/gM9q/tq/TxNKWs/MkLQWVrQlS9F4b8Lwovdm0MT3fdGVV05aYYXIytOkR+bVQ9/6jr2fh8cww+ejNQ6bKapr93ZlJa4k9HcHjEQhwdvQQXF/+EkpzHaOBqj4rSvyYOFZsaY8jJVQj4YFilsl1XT0afrdUPRapLfj6QXO2Y+Jry6HGZSjcbTXn0uAyrfrqu1WMu+e6qTk24F/rDNbV2CP03UdezcehMmtaOR0T0bxZ/e0Wrxws/dReX4pR76NakXcdSlX4h+CyKSqT4fHNMHbbUjqJiqdabbi//MQbFJVKtHrMu9D4Rys7ORkhICLy9vWFubo7GjRvjgw8+QGFhId566y2IRCKsXbtW6DB1Qn5KBtIjY3Av4jKuf70Hx8d9BofWXugU+o5iG1mZFKenfolWU4fBtsWTkUCa9A+G+wvtcObDrwWM/t/J5XJ89Uu81o+7YfcNlJTqxh//T/tvorBYu7GkZxVhz4nbWj1mTR7mleCXQylaP+7X27V/3RERVSfp9iMc+eOe1o+7Toe+B4X4Tt687yYKisq1ftzqbD+cgtz8sjpsqT45j0rx62HN9cdSlV4nQleuXEGrVq2wYsUKZGRkoEWLFigvL8eaNWswcuRIxMc/+UNo3bp1lbJhYWEYOnQoevXqhREjRuB///sfsrKU61NQ32VdTERy2Cl4Du0Cx3Z+iuUPr6Ugdt1edFvzPiSudui04l2cn/M9ih/obmc4ALgYm43LCQ+1ftzs3BLsPKbeIbpV9c2vwtyIvtmhGwOMbNqbpNIkcc/q4Ok0pN7TXk0kEVFNvg1LFOS4Px9MxqPH2n34rk7szVxERj/Q+nEfF5bj5wPqHaJbVesFuievE+gZpDZ6mwhlZ2dj0KBByMjIwIwZM5Ceno7o6GhkZGQgNDQU4eHhiIqKgkgkQkBAQJXy4eHh2LNnD06cOIEdO3ZgxowZ8PT0xJYtWwQ5H6FcXRUGmbQCbWaOrLx89U7IKiow+OgKZJy5jlt7zggWY12duCDcgA8nVZylWp2ycoq12hTg705ffqATzeOEugbkcuDUpQxBjq0vrKys0L9/f1hZ6U4be9IuXgPqcUKg+1FxSQUuXBf+hfLJi4b9LFBQVC7Y7yEqNhuFOlIr9pTeJkJTp05FWloapkyZgpUrV1b64gwJCUFgYCCkUimaNm0Ka2trxTpfX1+sWrUKV65cQV5eHgoLC3Hq1Cn07dsXhYWFGDt2LMLDwwU6K+17nJqBW3vOwK17AJw6+CuWy6UVyIpKhLm9DW5uPyFojHV1KV649smX4rRfE6VLMZSWVSAuRfgaw0vxwn0GutQ+vj5q1KgRFi1ahEaNdH+iXtIMXgPPrrSsAtdu5Ah2fF34HhQyBl14FriS8FBjU2f8G5lMjiuJwl1/1dHLRCg+Ph7bt2+Hg4MDli1bVu02QUFBAIDAwMojWMyZMwfTpk1DYGAgbGxsIJFI0K1bNxw6dAhDhgyBXC7HtGnTKs0PExkZiT59+sDV1RVmZmZwd3ev1PSuvrv2xZPan7/XCjl18If3yJ6I33AA7RdNgJG57k4c+lS0gA/BMTdzUFau/SZZfydEs8C/E/oGkJFdhPSsIsGOL+T1pw9KS0tx9+5dlJaWCh0KCYTXwLOLS85FuVS42nld+B4U8l544/Yj5BcI2zxQ6N9BtIAvpasjkuvqjI/PYN68eVi8eDE++OADrF69utptpkyZgq+++grz58/HggUL6rTfxMRENG/eHABw9epVRZO6vXv34sSJE+jcuTOcnJyQlpaGZcuWIS0tDdevX4e7u7tK59GuXTtkZCjXnMZELsZ8WXuVjldXxhJzDD6+EnHr9yNh02EM2L0I2VeTETV/o0r7Wyi+gHKR5r+Y7zecBbm4+rkdno6NXxMXBwsYG4khrZDVOvlcbWPru+SGwkgu3IN4nqQfCs07V7tOXeePWj4D66IjsCoRrglluZETMm0mV7vu384fargGjCuy4PyIA7P83SuvvFLnbTMzM7Ft2za89tprNc7xVp2wsDAVoyNt4DWgXSXGXnhoPbbaddr4HjQtT4Hj400qRK4+6Q0/hExsU+06bTwLOOetgrFMmGbqAJBv0QuPLXpUu04bzwJWxSdhXaz+lkQuLi64ePGi0uX0ch6hiIgIAEDPnj1r3CYt7clwtv+sEaqNn58f7OzskJOTg6SkJEUiNHjwYAwePLjStsHBwfDz88POnTvxwQcfqHQeGRkZuHdPuZFdTEVGgLNKh6uz4AVjUXAnEwkbDwEATn+wFoOPrcSdg+fx4JzytWD30++jTK6F2pKGNVeA1nVsfGMjsUpj6ANARkYmIH2kUlm1cC0GzKtfpY3zz88vRH6W9kcqUjA3Aqq/9yk1N4Kqn4FUKlf671nfFRYW1nnbp5N1FhcXK1WOn7lu4zWgZVZ2gHX1q7TxPVhWViH878NKVGN7KG3cCx88yAbKtD9Yg4JzEVDDfL/aOP/Hj4vw+IHu/E3qZSJ0+/aToXo9PDyqXS+VSnHmzJM308okQgBgYmKi2Edt7O3tAQDGxqp/xC4uLkqXMZGLAQ1WrjTq1Qaeg7tgT+8ZimWPbz/ApSVb0WXVZOztNQPSYuWaLbi5ummnRggVqKn6MyO79poaZd4C1bgPF0cYyS3rHK+6PbIwR0EN69R1/rXty9paAitT4dr2l4vtkFnDun87f6jhGjA2ApzZt6GSBg3qfiN9+uBrYWGhVDn2J9FtvAa0q8TYBjU1jNLG96CZqRgOAv8+MsQy1PTqVRvPAs7O9jCWCff4nW9hgZrGMNXGs4CVpQWsjdV/DajyzAx9bRpnZ2eH3Nxc/PHHH+jUqVOV9Vu3bsWYMWNgZWWFR48eQSQS1Wm/WVlZcHZ2hlwux+nTp6vMpF1RUQGZTIbbt29j9uzZOH36NK5duwZHR0e1ndu/KS8qwVavMVo7njqMTt4CE0kNVRVq1GbEblxJUK2T3t2jo+Du3ABpDwrR+IVflC5vKTHBoz/egFhct2tNE9ZsjcUHoedUKvus5w8Av67shVf7eqpUVh3yC8pg0/knlcs/62fQv4s7Dq7rp/Lx9VFUVFSdt01ISMDYsWOxefNmRRPluggODlYxOtIGXgPalXT7EXwHqd5U8Fm/BycM9cEPi7qrfHx16DpuP85cVq1G5lnP39REjPyzY2FmaqTS8dXhh9038Nb8SJXKquNZ4IdF3TBhqK9KZTVBLwdLeJoVRkdHV1mXnp6OmTNnAgACAgLqnAQBwOeffw65XA4bG5tqv1h79OgBU1NT+Pj44MqVK4iIiNBqEkS1C/J3EOzYbf3tBU2CACCohXDn/+T49oIe39rSFL4eNbSN0wKhz5+IyKuxNawtTQQ7vtD3IQAI8hfuu7iVj52gSRB04F6kC9fA3+llItSnTx8AQGhoKG7cuKFYHhUVhZ49eyI7+8mIFf+cSPXo0aOYNWsWkpMrT3hVVFSERYsWYfny5QCA2bNnw9S06ihpGzZswLlz57Bt2zZYW1ujb9++uHPnjkbOkZQn5B+f0F88ANDaz06wZMzW2hSejYSf+0PI34OuffnXN82bN8eFCxeUqgkg/cJr4NmJxSK0FfCloJAvJBUxGPizQItmtoIlY+ZmRmjRrKEgx66JXiZCISEhsLe3x927d9GyZUu0atUKPj4+aN++PZo1a4ZevXoB1fQPKiwsRGhoKLy9veHm5obg4GAEBQXBwcEB8+fPh1wux8SJExESElLtcf38/NChQweMGjUKx48fx+PHjxXJEwnvxW7uUKICUK1e6t5EmAP/TQOJCXq1dxXk2AO7N1aq9lVTBvUQ5vcgMTdGz2BhPnsior8b1KOxIMd1cbDQiRdC/bq4w8RYmMdfXXgWMDERY0BX1UYzflb9u7jDWKDPvia6FY2auLu7IzIyEgMHDoS5uTlSU1NhZ2eH9evXIzw8XFFL9M9EKCgoCHPnzkXv3r1hamqKuLg4xMbGwtHRESNHjsSxY8ewfv36Oj3QNWzYEN7e3rh586bGzpOU4+FmJciXUHNPG/QUKAH5p0kj/euwlf4c95+G9WkKJzvN90f7p9EDvdDQ2kzrx9Unt2/fxptvvqkYDIcMD68B9Rg/xBfmZtqvEZg4vDlMTIR/7HS2t8DwPk21flwPN0u82E2YBOSf3hshTK3q5FG68Szwd3o5ahwA+Pv7Y//+/VWWFxQUIDU1FWKxGM8991yldY0bN8bixYvVcvzMzEwkJiaiQ4cOatkfqcekkf7Y97t2myu+N8JfJ2pD8GeNyNOOjtrSurkdOgbUfc4PTTIzNcJ/hvlh6fdXtXpcoW46+qS4uBjXr19XDKFMhofXgHrY2ZjhtQHN8ONvSVo7ppGRCG8P99Pa8f7NpJH++OVQilaPOXG4H4yMhE8EAaBPx0bwbmKNm3fytXZMXw8b9GrvprXj1ZVu/Ea0KDY2FnK5HD4+PpBIap84rK7GjBmDBQsW4LfffsPJkyfx3Xff4fnnn4exsTGmT5+ulmOQevTr0gh9O2tv6M7mnjaY+IrufPkbG4uxfLp2R1D6fEYHnUkEAeC/41vB1VE9f/t18cZL3mijA+3iiYieWvBeW1g10N6gCTPGPgd3F9XmndGErm2dMbRX9VOsaEJTN0tMHd1Sa8f7N2KxCJ/PaK/VY37+3/aCDxpVHYNLhGJiYgAV5g+qTceOHXHgwAFMmDABAwYMwIoVK9CtWzdcuXIF3t7eajuOkDwGdkTHz96utMx7ZE+MTw9Dk/71Z2hSkUiE7+Z31coNQCwW4cdF3WFuplsVr6MGNMPLvbVzA3hvRHP06qBbb4Bsrc2w/pMuddjy2bk6SvDFrI5aORYRUV01cbXU2oNwc08bLJzUVivHqiuRSIR1czvDzkY7TZZ/WNQNlhLhRuurzuCeHhjzkpdWjjV2kDdeEqiP7r9hIqQGU6ZMwYULF5Cbm4vi4mLcuHED69evr3FC1/qoyYsdcOfQBcXPlu6O8B3dB5kXEwWNSxVNXC2xdnbV+aVqk5FdhLQHhXWacO6pOf8JRMdA3WgS9ndPbgBd4OZU91oRVc7fr6kNln+o3TdOdTXo+SZKN9NQ9jMQi0XYsKArbNk3iIh00H+G+yk9gIyy34PmZkbY9GkPnXshCAAuDhKlX4qpci+c/kZL9NTBJmEA8MVHndDUre4Tvaty/k3dLLH6I919IaiXE6rWplevXjhx4gT279+PgQMHCh2O2qk6oaqptQRDTqyCkbkpiu5nQ2xmAqsmzkgO+x1nZ32H4X98iZ2d34dcWgGIROj7yye4tGQLguePQ9x3+3HnUN0nxfsnbU2o+k/Lf7iGj1arHndt3h7uh/XzuuhUk7B/ikvORY83DyA7t0Tt+/Zws0TkxoFo7FL3L1htk0plePW/EfgtQv0dr0UiYMNC3Zo0ThcpM5nmo0eP8Mcff6Bz586wsan7fFCcTFO38RoQVlGxFP3fO4TIaNUmGK2NibEYu1b11tmagKfWbovD+8vOamTfowd6YfOSHjrZJOypm3fy0X1CONKz6p7c1JWrowSRGwfCq7G12vetLgZXIxQREQG5XK6XSdCzKMsvQsruSMR9H469L8zEhXk/Iiv6Bv747zdw7fIcMqMSnyRBAFq+MwiZUQl4eE27HQ3VLeTNAHzxUUe1f0FNG9MS33yi20kQALTwskXkxoFo4qredtv+zRrqfBKEP/tL/bqil9qbBpiaiLFl6fNMgtTMxsYGAwYMUOoBmPQLrwH1k1gY4+DX/dQ+nHIDC2Ps+/IFnU+CAGDKay3w3fyuMDJS7z174it+2PRpd51OggDAu4k1Tm8aCK/G6p3r76/96m4SBENMhKhmds95IifmFgDAPsALOdef/L9J/2DcPvikWVxDv8bwGNgBV1fvFDRWdZk6uiXObHoJfk2f/cbq4mCBPV/0waoQ9SdXmtLcsyGu7ngZE4b6PPO+RKInTQAubhui80nQUyYmYmxe0gObl3RHQ6uqkyQrq11LB1z6ZQheH6iddteGJDc3Fzt27EBubq7QoZBAeA1oRgOJCfav7YsvPuoIC/NnH1a7V3tXXN81DP266MZQ0XXxn+F+uLB1MFr52D7zvhxszfHryl5YP6+rzowS92+auVvj8q9D8e6r6hnhdNJIf1z+dSiauet2EgQmQvR3di2bKpIf+4BmePhnUuT2fGvci7gMAHDu4A/Lxk4Y/seXeOXC13Bs64NOK96F39i+gsb+LDoGOuHyr0PxyTutVeo4KTE3xnsjmiN293AM7ln/+oU1tDbDD4u648BXfVWe7K5bW2ec+nEg/jezIyQWutcWvDYikQhvDPJB7O5hGDvIG6YqzHPh6ijB8unBOPvTIDznY6eROA3dgwcPsGLFCjx4oP4mPFQ/8BrQHLFYhKmjW+Ja2DAM691UpdoRz0ZWWD+vC45+OwBNG6m3dkEb2rZwwMVfhmDxlLZwtFW+ub65mRH+M8wXcbuH4dW+nhqJUZOsGphi3SddcOzbAegY4KjSPjoFOuH4dwPw1ceddW5wiJrUrycW0hiJix0gl6MoIwcAYOfvgWtf7IRDGx88SroHadGTfiSJm48gcfMRRbn+Oxc+cx8hXWBhboxFk4Mw+61A7DhyCz/uSULU9SwUFkur3d7URIzWfvYYPdAL4wb7wEYNtQlCG9CtMQZ0a4wLMVlY92s8jp27X+t8Q56NrNC/SyO8N8IfrXzr/8O/m1MDbFrSAytntMcPv93AL4dScP1mLqTS6rtRWluaoFOAE/4zzA9DenroxESBRETPwruJNXau6o20jEJ8tzMRO4/dQvytR5DJqv8etLMxQ7e2zpj4SnP07+Jeb1pD1MTUxAhzJ7bBzPEB2HUsFRt238D5mCwUFJVXu72JsRgBvnZ4/cVmGD/EV2uj0GlS745u6N1xMKLjsrHu13gcPXcft+8X1Li9h5sl+nZqhPdGNK+XU0UwESLgabO4P2uDAKAsvxDNx/VDac7jSqPF6TsLc2OMHeyDsYN9UFEhQ2LqI8Qk5aKgqBwymRwSC2O0aNYQLb1tYWqi/Zm5taF9K0e0b/XkbVDmw2JcisvGg5xilJXLYGZiBDcnCdr628O+ofYHuNAGRzsLfPRmID56MxAlpVJcu5GLG7cfobhECiMjMawbmCDQzw5eja3r/U2fiKg67i4NsHByWyyc3BaFReW4kpiD5Lv5KCmrgImxGA2tTNGmuT083Cx1vj+sKsxMjfDai1547UUvyGRyJN1+hKs3cvC48K9ngeaeDfGcty3MTPXzWaBtCwd8t6AbACA7twSX4rKRkV2M0vIKmJkYwcXBAkEtHOCgQu2ZLmEiRACAtGOXkHbskuLn/QNmAQCGnFyFw8Pn11juUC3r6jsjIzFaeNmihdeztxmur5zsLTCgW2OhwxCMuZlxpcSQiMjQNJCYoEsbZ3Rp4yx0KIIQi0Xw82wIP8+GQociGAdb83rV50sZTISoVnueny50CEREkEgk6NChAySSus9/RfqF1wARqRsTISIi0nlNmjTBl19+KXQYJCBeA0SkbuzdS0REOq+iogIFBQWoqKgQOhQSCK8BIlI3JkJERKTzkpKS0KtXLyQlJQkdCgmE1wARqRubxukZYwszjE7eInQYSjG2qP/DTRIRERFR/cJESM+IRCKYSOr3UIZERERERJrGpnFERERERGRwmAgREREREZHBYdM4IiLSed7e3jh8+DCsrKyEDoUEwmuAiNSNiRAREek8Y2Nj2NraCh0GCYjXABGpG5vGERGRzktLS8OMGTOQlpYmdCgkEF4DRKRuTISIiEjnFRQUIDIyEgUFBUKHQgLhNUBE6sZEiIiIiIiIDA4TISIiIiIiMjhMhIiIiIiIyOCI5HK5XOggiIiIavPgwQNs3boVo0ePhrOzs9DhkAB4DRCRujERIiIiIiIig8OmcUREREREZHCYCBERERERkcFhIkRERERERAaHiRARERERERkcJkJERERERGRwmAgREREREZHBYSJEREREREQGh4kQEREREREZHCZCRERERERkcJgIERERERGRwWEiREREREREBoeJEBERERERGRwmQkREREREZHCYCBERERERkcH5P5TxFfW/XFzdAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAEvCAYAAABoq3HZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPdElEQVR4nO3dd1gU59oG8HuXtlSlCSiKhSIWsABKrBhjLMGWeNSQY4mxRI3GeOQzxsSSxBJNrEdjEhNjNGpsx4I9aERsKHYRC6KCLEqTKm33+8OwkQiGXWZ3lt37d11cCbNTnlnG3bln3nlfiVKpVIKIiIiIiMiISMUugIiIiIiISNcYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGh0GIiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGx1TsAkhYSqUSJQWFYpdRZaaWFpBIJGKXQURERERGhkHIwJQUFGJjk3fELqPKwu5sgJmVTOwyiIiIiMjIsGkcEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERofjCBFcg5uj54455aYV5xUgOyEFd7YdR9zafVCWKkSrj4iIiIhIaAxCpJKwIwpJkbGARAJL59rwHNQFQXNGoJZXPZyatkbs8oiIiIiIBMMgRCrpV+4iYXuU6vf4dQcxIGoZvN9+FbELNqEwPVvU+oiIiIiIhMJnhKhSJQWFeBx7CxKpFHYeLmKXQ0REREQkGAahv0lMTMTatWsxbtw4tG3bFubm5pBIJBgxYoTYpYnCtuGzAFSYlSt2KUREREREgmHTuL9ZunQpli1bJnYZojC1NIeFg63qGSGfYT3g2LIxHsfeQnZCitjlEREREREJhkHob5ycnNC7d28EBgYiICAA+/fvx6pVq8QuSydahw9B6/Ah5aYlRpzGmY9/EK0mfaBQKPEktwgmUglsrc0gkUjELomIiEiniopLkZNXDGtLU8gsePpIhoFH8t/MnDmz3O+nT58WrRZdi//lEBL3nILUzBT2TRugxYT+sHZzRGlhkWoeqbkpQg8twt2dUbi8bIdqeselEyBzro0jYV+KVL3wLsSlYdWWOPy6LwH5T0sAAI61LfBuf2+M+1dTNHa3E7tEIiIirSkuVmDX0Xv475Y4HIv5q2WIv48Dxg/2xdu9m8DGykzUGomqw+CfEUpLS0N4eDg8PT0hk8lQv359TJ48GXl5eRg1ahQkEglWrlwpdpl6ITtBjpSoK0iOvICrq3bh9+EL4NSqCYIXjlXNoygqwYlJK9By0kDYN/MAADToGQj31wIQ/ZFh3DkrLlZg9OwotBm8Cz/suKkKQQCQnlWIReuuwLPPVixYewlKpVLUWomIiLQhMTkH/oN2YtB/IsuFIAC4FJ+BsXOj0aT3bzhz+ZFoNRJVl0EHoYsXL6Jly5ZYtGgR5HI5mjVrhuLiYixfvhyDBw9GXFwcAKBVq1Zil6qXHp+Lx51tx9Gofwc4B/iopqdfTsC11bvRafkHsHJzQPCicTgz4wcUpGaKWq8QFAolhs/8Az/suPnS+ZRK4ONl5/DFdxd1VhsREZEuJKfmofPICMQlZL10vkcZT/Hq6P04fz1NZ7URCclgg1BaWhpCQ0Mhl8sxdepUpKSkIDY2FnK5HAsXLkRERARiYmIgkUjg5+cndrl669KSbVCUlKL1tMHlpy/dDkVpKfoeXgR59FXc3RUtWo1C2rD3NjbtT6jy/J/9NxYxVx9rtSYiIiJdGvt5NB7I86o0b15BCQZPi4RCwRYSVPMYbBCaNGkSkpKSMHHiRCxevBi2traq18LDw+Hv74+SkhI0bNgQdnZ81qMyOYly3N0Vjbqd/VCnna9qurKkFI9j4iFzrIXbW46KWqOQVm6+rvYyq7bEaaUWIiIiXbvzIBv7oh6ouUwODkYnaa0mIm0xyCAUFxeHLVu2wMnJCfPnz69wnrZt2wIA/P39Bdnm3bt30bdvX9ja2sLe3h7Dhg1Denq6IOsW2+Vlz+7+PH9XqE47X3gODkHc2n0ImjsSJjJzUWsUQuz1NMRcVf/2/uYDCcjKLtRKTURERLr0w454aPL467dbb2ijHCKtMshe4zZt2gSFQoGwsDDY2NhUOI+lpSUgUBDKyclBSEgIHBwcsGnTJhQUFCA8PBxvvPEGoqOjIZVqljcDAgIgl8vVWsZMKcUsBKm1jPzUNaxze6vS15/cSsZ6979CkKmVDB2XTsD5Lzfixs8H0WvnXLT5+G3EzFqn1nYBwNvLG8UShdrLaUO+uR9g86bayz0tLIV3yw4wL1Xvb0VERKRv0m2GAuZN1V4u4vcLcHcfqZWaiF7G1dUV586d02hZgwxCkZGRAICQkJBK50lKenYLV4gg9N133yE5ORnHjx9HgwYNAADu7u545ZVXsHv3bvTv31+j9crlciQnJ6u1jLnEBHDRaHNVFjh7GHLvP8KNdQcAACcmr0TfI4txf/8ZpJ5Wr5nYw5SHKFKWaqlSNdk3AirOzf/o8eNMoEC9vxUREZHeaVgCaNDIo7QUap+zEInNIIPQvXv3AAAeHh4Vvl5SUoLo6GcP9wsRhPbu3YuOHTuqQhAABAcHo3HjxtizZ4/GQcjV1VXtZcyUUkCLN1jqdWuNRn07YNerU1XTcu6l4vyXG9FhyQTs7jYVJQVVbyZW162u3twRKjAzR4a6CymVgEQCFydrmCrqaacwIiIiHckwV6BAg+XMpIWoU4/fg6R7mpwvlzHIIJSX96ynk4KCiv8pb9myBWlpabC1tUWjRo2qvb3r169j0KBBL0xv3rw5rl9X/+H7Mprc5ivOf4qNTd7ReJv/JDnyAn5tOvyF6TfWHVDdIVLHzVs3YWYlE6i66snLL0a91zbjSU5RFeb+k0QCfx8HXPjtEiQSiTbLIyIi0rqdvydi4JTf1V5u9pRQzBj9qVZqItIWg+wsoSwZxsbGvvBaSkoKpk2bBgDw8/MT5OQ1MzMTtWvXfmG6g4MDMjLUvsdAIrG2MsOIvl5qLzd+sC9DEBERGYTQLg3g7mKt1jJmplKMGuhThTmJ9ItBBqHu3bsDABYuXIibN/8aGDMmJgYhISFIS3vWMxgHUqW/+2hYCzjbV/0OVfMmtRHWu4lWayIiItIVU1MpvpjYVq1lPhrWAi6OllqriUhbDDIIhYeHw9HREQ8ePEDz5s3RsmVLeHl5ISgoCI0bN0a3bt2ASp4Pio6OhpOTk+rnm2++AQBs3ry53PSyZ4wAwN7eHllZL46+nJGRAQcHB63uKwmrgZsNIv7bAw61LP5xXi8PO+xb9Tqsrcx0UhsREZEuDO/nhfmTA6o074h+Xpg3qWrzEukbgwxC7u7uiIqKQp8+fSCTyZCYmAgHBwesWbMGERERqrtEFQWh4uJipKenq37KnjMqLCwsN724uFi1jK+vb4XPAl2/fh2+vr4vTCf9FtjCGac3hGJor8YwM33xn4ittRnGD/bFyfWhaOCmYTdzREREemz6KH/sWPIqAls4Vfi6l4cd/jsjGD/O7QSplM3DqWaSKJWaDJtVc+Xm5sLOzg4SiQQ5OTmwsrKq9joXL16MGTNmICEhAe7u7gCAM2fOoH379tixYwcGDBggQOVVo+3OEoQWdmeD3nSWUJHU9AL8djABM5afQ25+CWrbmuP+ocGwta75A8gSERFVRczVxzh0MhkLfryE3PwSONaywKM/whiAqMYzyDtCL3Pt2jUolUp4eXkJEoIAYMyYMXBzc0O/fv2wd+9ebNu2DUOHDkVQUBD69esnyDZIHC6Olvjg7eaoZfMs+FhbmjIEERGRUQls4YxPxrRSfRfKLEwYgsggGF0QunLlCiDQ+EFl7OzsEBkZCTc3NwwZMgTvvfceXnnlFezduxdSqWG8xR592qP9gtHlpnkODsGIlG1o0DNQtLqIiIiIiDRhkOMIvYw2ghAANGnSBHv37hV0nfqkQe92uLP1mOp3G3dneId1x6Nz8aLWRURERESkCQYhAgCY21mh39ElMJGZI/9hGqQWZrBt4II72/7AqenfwyXQBycmr3w2s0SCV75+H2dmrkXgrBcHVyUiIiIi0ndGF4QiIyPFLkEvFWXnI2FnFIrznuLykm2o29UffpMG4uR/vkXdLv54FBMPZUkpAKD52FA8irmB9MsJYpdNRERERKQRw3iAhQTh0KIRMq7cBQA4+jVBxtVn/9+gZyDu7T8LAKjtUx8efdrh0tLtotZKRERERFQdRndHiCrn0LyhKvw4+jXGg4MxAIC6XVvh3OcbAAAu7XxhU78O3jy5AgBg6VwbwYvGwbKOPeLXHxKxeiIiIiKiqmMQIgCAlasDoFQiX54BAHDw9cDlZdvh1NoLT24loyT/KQAgfv2hcoGn5/Y5uP79Xtw/ECNa7URERERE6mIQIqCsWdyfd4MAoCg7D02Hv47CjBzcP3BW1NqIiIiIiITGIEQAgKQj55F05Lzq9729pgMA+h1bgoNvzqp0uQMveY2IiIiISF8xCNFL7eo6RewSiIiIiIgEx17jiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8NnhAyMqaUFwu5sELuMKjO1tBC7BCIiIiIyQgxCBkYikcDMSiZ2GUREREREeo1N44iIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGh0GIiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0TEVuwASllKpRElBodhlVJmppQUkEonYZRARERGRkWEQMjAlBYXY2OQdscuosrA7G2BmJRO7DCIiIiIyMmwaR0RERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdHhOEIE1+Dm6LljTrlpxXkFyE5IwZ1txxG3dh+UpQrR6iMiIiIiEhqDEKkk7IhCUmQsIJHA0rk2PAd1QdCcEajlVQ+npq0RuzwiIiIiIsEwCJFK+pW7SNgepfo9ft1BDIhaBu+3X0Xsgk0oTM8WtT4iIiIiIqHwGaG/SUxMxNq1azFu3Di0bdsW5ubmkEgkGDFihNil6VxJQSEex96CRCqFnYeL2OUQEREREQmGd4T+ZunSpVi2bJnYZegN24bPAlBhVq7YpRARERERCYZB6G+cnJzQu3dvBAYGIiAgAPv378eqVavELksnTC3NYeFgq3pGyGdYDzi2bIzHsbeQnZAidnlERERERIJhEPqbmTNnlvv99OnTotWia63Dh6B1+JBy0xIjTuPMxz+IVhOJS56Wj7U7buLyrQwUPC2FQy0L9AtpgNAuDWBqypa1RERk+GKuPsb6PbeRlJoHiQTwcLPBu/290dLbQezSqJoMPgilpaXhq6++wo4dO5CUlARnZ2cMHDgQ8+bNw6RJk/Djjz9ixYoVmDhxotilii7+l0NI3HMKUjNT2DdtgBYT+sPazRGlhUWqeaTmpgg9tAh3d0bh8rIdqukdl06AzLk2joR9KVL1JKTM7EJ8MP8Ufjt4F8Ul5btO/3n3LdSrY4VZ41pj9FtNRauRiIhIm05eTMXkhadx7lraC68t3XANHVu7YOWMYPj7OIpSH1WfQQehixcvolevXpDL5bC2tkazZs3w8OFDLF++HHfu3EFGRgYAoFWrVmKXqheyE+RIiboCAEiOvIDUszfQe9fnCF44Fn+8vwQAoCgqwYlJK9Bz51w8OHwemdfvoUHPQLi/FoBd3T4SeQ9ICI8zCtDl3X2IS8iqdJ7kR/kYMzca9+V5+HxiW53WR0REpG37ox5gwJQjKCyqfBzFExdS0WlEBPaveh0dWrNTqZrIYNu2pKWlITQ0FHK5HFOnTkVKSgpiY2Mhl8uxcOFCREREICYmBhKJBH5+fmKXq5cen4vHnW3H0ah/BzgH+Kimp19OwLXVu9Fp+QewcnNA8KJxODPjBxSkZopaL1WfUqnEgCm/vzQEPe+L7y7ilz23tF4XERGRrsTfzcKg/0S+NASVyckrRt9Jh5GcmqeT2khYBhuEJk2ahKSkJEycOBGLFy+Gra2t6rXw8HD4+/ujpKQEDRs2hJ2dnai16rNLS7ZBUVKK1tMGl5++dDsUpaXoe3gR5NFXcXdXtGg1knD+OCdH9IVUtZb58vtLUCqVWquJiIhIl5ZtvIa8gpIqz5/xpBBrtt3Qak2kHQYZhOLi4rBlyxY4OTlh/vz5Fc7Ttu2z5jz+/v7V3l5Z4AoKCoKFhQUkEkm116kvchLluLsrGnU7+6FOO1/VdGVJKR7HxEPmWAu3txwVtUYSzqotcWovE5/4BJFn2KsgERHVfNm5Rfhl7221l/t+ezyKiku1UhNpj0EGoU2bNkGhUCAsLAw2NjYVzmNpaQkIFIRu376N7du3w9XVFYGBgdVen765vOzZ3Z/n7wrVaecLz8EhiFu7D0FzR8JEZi5qjSSM/SeSNFzugeC1EBER6Vr0hVTk5lf9blAZeVoBLsVnaKUm0h6D7CwhMjISABASElLpPElJz074hAhCnTt3RkrKsyvis2fPRnS0MM3EAgICIJfL1VrGTCnFLASptYz81DWsc3ur0tef3ErGeve/QpCplQwdl07A+S834sbPB9Fr51y0+fhtxMxap9Z2AcDbyxvFkn9ugyu2lNofAdJaSJGnwN3dXexytEIJCXIdZmu07OrvfsbmpW8KXhMREekPY/guzDdvAdgM0mjZXm+8CVlJguA10cu5urri3LlzGi1rkEHo3r17AAAPD48KXy8pKVGFFSGCkFSqnRtrcrkcycnJai1jLjEBtNxxSeDsYci9/wg31h0AAJyYvBJ9jyzG/f1nkHpavaZVD1MeokhZA24l25YCUkBRWqr236RGqV0ESNW/u5efm4H8FAN+X4iIyDi+C22dgIobE/2j9MfJQL6Bvi8GyiCDUF7es547CgoKKnx9y5YtSEtLg62tLRo1aqTj6qrO1dVV7WXMlFJAizdY6nVrjUZ9O2DXq1NV03LupeL8lxvRYckE7O42FSUFhVVeX123ujXjjpCJCRQApCYmcKtXT+xytOZx6UMUSRuqvZy97AmsDPh9ISIi4/guLJUUQq5UABL1LnJLlEVwdQCk9ob5vugzTc6XyxhkEHJ1dUVmZiZiY2MRHBxc7rWUlBRMmzYNAODn56fXHRtocpuvOP8pNjZ5Ryv14M/xhX5tOvyF6TfWHVDdIVLHzVs3YWYlE6g67XHvvgnJj/Lh5uqGpKuaPUdTE2zefwdD/++YWss428vw4NxeWJibaK0uIiISn7F8Fw6ccgQ7f7+n1jLvvdUS3826o7WaSDsMsrOE7t27AwAWLlyImzdvqqbHxMQgJCQEaWnPRgjmQKpE5Q3s3hD1Xa3VWmb8YF+GICIiMhiTw5qrNb+JiQQThzbTWj2kPQYZhMLDw+Ho6IgHDx6gefPmaNmyJby8vBAUFITGjRujW7duQCXPB0VHR8PJyUn188033wAANm/eXG66UB0iEOkTczMT7F7+GuxszKo0f+9O7pg5hhcUiIjIcHQJcMOCDwOqPP/qT16Bn7eDVmsi7TDIIOTu7o6oqCj06dMHMpkMiYmJcHBwwJo1axAREaG6S1RRECouLkZ6errqp+w5o8LCwnLTi4uLdb5fRLrQqqkjota9Ac8GlQ80LJEA7w7wxo4l3WFqapAfI0REZMT+711//HdGMKxklT9FYmdjhg3zu2D0W011WhsJxyCfEQIAX19f7N2794Xpubm5SExMhFQqRYsWLV54vWvXrlAqlTqqkkg/+Xk7IH73WzgYnYTVv93AvqgHKFUoYWoiwdThLTH2raZo5G4rdplERERaM35IM4T18cT6Pbewfs9txMalQaEAzE2l+O8nr2Bor8awtqpaCwrSTwYbhCpz7do1KJVKeHt7w8rKSrD1btu2DQBw/fr1cr83bNgQAQFVv71KpC+kUgl6daqPXp3qqx6QdXG0xIIPDW/QYCIioorUsjXHB283xwdvN1d9Fzo7yPDemz5il0YCMLogdOXKFUCg8YOeN2jQoAp/Hz58ONatU3+gUX3j0ac93Dq1xOnp36umeQ4OQcelExA5ciHuH4gRtT4iIiIiInUwCAnE0JvTNejdDne2/tWtso27M7zDuuPRuXhR6yIiIiIi0gSDEAEAzO2s0O/oEpjIzJH/MA1SCzPYNnDBnW1/4NT07+ES6IMTk1c+m1kiwStfv48zM9cicNaLYwoREREREek7owtCkZGRYpegl4qy85GwMwrFeU9xeck21O3qD79JA3HyP9+ibhd/PIqJh7KkFADQfGwoHsXcQPrlBLHLJiIiIiLSCPu9JRWHFo2QceUuAMDRrwkyrj77/wY9A3Fv/1kAQG2f+vDo0w6Xlm4XtVYiIiIiouowujtCVDmH5g1V4cfRrzEeHHzWAULdrq1w7vMNAACXdr6wqV8Hb55cAQCwdK6N4EXjYFnHHvHrD4lYPRERERFR1TEIEQDAytUBUCqRL88AADj4euDysu1wau2FJ7eSUZL/FAAQv/5QucDTc/scXP9+L3uNIyIiIqIahUGIgLJmcX/eDQKAouw8NB3+OgozcnD/wFlRayMiIiIiEhqDEAEAko6cR9KR86rf9/aaDgDod2wJDr45q9LlDrzkNSIiIiIifcUgRC+1q+sUsUsgIiIiIhIce40jIiIiIiKjwyBERERERERGh0GIiIiIiIiMDoMQEREREREZHXaWYGBMLS0QdmeD2GVUmamlhdglEBEREZERYhAyMBKJBGZWMrHLICIiIiLSa2waR0RERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGx1TsAkhYSqUSJQWFYpdRZaaWFpBIJGKXQURERERGhkHIwJQUFGJjk3fELqPKwu5sgJmVTOwyiIiIiMjIsGkcEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERofjCBFcg5uj54455aYV5xUgOyEFd7YdR9zafVCWKkSrj4iIiIhIaAxCpJKwIwpJkbGARAJL59rwHNQFQXNGoJZXPZyatkbs8oiIiIiIBMMgRCrpV+4iYXuU6vf4dQcxIGoZvN9+FbELNqEwPVvU+oiIiIiIhMJnhCqQmJiItWvXYty4cWjbti3Mzc0hkUgwYsQIsUvTqZKCQjyOvQWJVAo7DxexyyEiIiIiEgzvCFVg6dKlWLZsmdhl6AXbhs8CUGFWrtilEBEREREJhkGoAk5OTujduzcCAwMREBCA/fv3Y9WqVWKXpXWmluawcLBVPSPkM6wHHFs2xuPYW8hOSBG7PCIiIiIiwTAIVWDmzJnlfj99+rRotehS6/AhaB0+pNy0xIjTOPPxD6LVRCS2wqJSnL78CJnZhbC0MEULT3vUc7EWuywiIiKdSXmcj8s3M1BQWILathZo7+cMmUXNjxE1fw+qIC0tDV999RV27NiBpKQkODs7Y+DAgZg3bx4mTZqEH3/8EStWrMDEiRPFLlVU8b8cQuKeU5CamcK+aQO0mNAf1m6OKC0sUs0jNTdF6KFFuLszCpeX7VBN77h0AmTOtXEk7EuRqicSVpI8Dys3X8fanTeRlvlUNd3ERIK+XRvgg6HNEBJUV9QaiYiItOn4uRSs2HQdOyPvobRUqZruWNsC7/b3xsShzdDAzUbUGqvD4IPQxYsX0atXL8jlclhbW6NZs2Z4+PAhli9fjjt37iAjIwMA0KpVK7FLFV12ghwpUVcAAMmRF5B69gZ67/ocwQvH4o/3lwAAFEUlODFpBXrunIsHh88j8/o9NOgZCPfXArCr20ci7wGRME5feoQ3PjiE9KzCF14rLVVi5+/3sPP3e5g1rjVmvd8aEolElDqJiIi0Zd73F/HJivMVvpaeVYhF667ghx3x2L38NXRs46rz+oRg0L3GpaWlITQ0FHK5HFOnTkVKSgpiY2Mhl8uxcOFCREREICYmBhKJBH5+fmKXq3cen4vHnW3H0ah/BzgH+Kimp19OwLXVu9Fp+QewcnNA8KJxODPjBxSkZopaL5EQrt/JRM/3D1YYgv5uzrcXsHjdFZ3URUREpCvLNlytNAQ9LzO7CL0nHMLlmxk6qUtoBh2EJk2ahKSkJEycOBGLFy+Gra2t6rXw8HD4+/ujpKQEDRs2hJ2dnai16qtLS7ZBUVKK1tMGl5++dDsUpaXoe3gR5NFXcXdXtGg1EgnpP1+fxZPcoirM+cwnK85Dnpav1ZqIiIh0JS3zKcKXxFR5/py8YkxdfEarNWmLwQahuLg4bNmyBU5OTpg/f36F87Rt2xYA4O/vX+3tbdu2DW+++SY8PDxgZWWFpk2b4pNPPkFubs3udjonUY67u6JRt7Mf6rTzVU1XlpTicUw8ZI61cHvLUVFrJBLKnQfZOBCdpNYyxSUKrN1xU2s1ERER6dKPO2+iqFih1jJHTj9E/N0srdWkLQYbhDZt2gSFQoGwsDDY2FT8EJelpSUgUBBavHgxTExMMG/ePOzfvx/vv/8+Vq9ejZ49e0KhUO9g0jeXlz27+/P8XaE67XzhOTgEcWv3IWjuSJjIzEWtkUgIv+y5DaWyCjP+zbrdt7RRDhERkc5p+p22fs9twWvRNoPtLCEyMhIAEBISUuk8SUnPrvwKEYT27NkDZ2dn1e9dunSBs7MzwsLCcOLECXTu3FntdQYEBEAul6u1jJlSilkIUmsZ+alrWOf2VqWvP7mVjPXuf4UgUysZOi6dgPNfbsSNnw+i1865aPPx24iZtU6t7QKAt5c3iiX6HxRTan8ESGshRZ4Cd3d3scvROWPZ/0zrfoBFG7WXu30v3aDfFyIiGNF3QWWMZf8f2s8AJBZqL7fkvz/j56/6a6Wml3F1dcW5c+c0WtZgg9C9e/cAAB4eHhW+XlJSgujoZ8+1CBGEng9BZQICAgAAycnJGq1TLpervay5xARw0WhzVRY4exhy7z/CjXUHAAAnJq9E3yOLcX//GaSejlNrXQ9THqJIWaqlSgVkWwpIAUVpqcZ/zxrNWPa/Xh6g/mc/oFQa9vtCRAQj+i6ojLHsfy0FYKL+YgX5+TXufTHYIJSXlwcAKCgoqPD1LVu2IC0tDba2tmjUqJFWajh69NmzM76+vv84b0VcXdXvitBMKQW0eIOlXrfWaNS3A3a9OlU1LedeKs5/uREdlkzA7m5TUVLwz71tlanrVrdm3BEyMYECgNTEBG716oldjs4Zy/5ny0qQo8FyJspsuBrw+0JEBCP6LqiMsex/qjIHJbBUezlbWTHsRHhfNDlfLmOwQcjV1RWZmZmIjY1FcHBwuddSUlIwbdo0AICfn59WxgBJTk7Gp59+ip49e2o8RpEmt/mK859iY5N3NNpeVSRHXsCvTYe/MP3GugOqO0TquHnrJsysZAJVpz3u3Tch+VE+3FzdkHRVvYfpDYGx7P/dpBw06fOb2s8JfT6lJz5+7/+0VRYRkV4wlu+CyhjL/i9edwXTvjmr9nLnj6yAl0ctrdSkLQbbWUL37t0BAAsXLsTNm3/16BQTE4OQkBCkpaUBWhpINTc3F/369YO5uTl+/PFHwddPRNrRyN0WvTvVV2sZM1MpRg3w1lpNREREujSyvxcszNVrG9fjlXo1LgTBkINQeHg4HB0d8eDBAzRv3hwtW7aEl5cXgoKC0LhxY3Tr1g2o5Pmg6OhoODk5qX6++eYbAMDmzZvLTS97xuh5BQUFCA0Nxd27d3Ho0CG4ubnpYG+JSChfTw2CvV3Ve0FcOCUQdRzVb0JARESkjxxry/D1f6re8VYtG3N88592Wq1JWww2CLm7uyMqKgp9+vSBTCZDYmIiHBwcsGbNGkRERKjuElUUhIqLi5Genq76KXvOqLCwsNz04uLiF5Z76623cO7cOezfvx/NmjXT0d4SkVB8GtXGwW97oo7DPzfZ/PKDtpjy7xY6qYuIiEhXJgxphq+mBP7jfE72MhxY/Tqae9rrpC6hGewzQvizk4K9e/e+MD03NxeJiYmQSqVo0eLFk5iuXbtCqeZDAmVjFv3+++/Yt28fgoLU68KaiPRHYAtnXNw6AKt/i8N32+KRml6+05XBPRth4pBm6NhG8wc0iYiI9Nm0kX7o2MYFK369jm2HE1Fc8lfnVnUcZBj9pg/e/5cv6rlYi1pndRh0EKrMtWvXoFQq4e3tDSsrK0HWOWHCBGzduhXTp0+HlZUVTp8+rXqtSZMmFXavTUT6y83ZCnMntMXMMa0QczUN/SYdRvqTQrg6WmLzV93ELo+IiEjrgv1dEOzvgqXhBWg+YDvSsgrhVNsC9w8NUfs5In1ksE3jXubKlSuAQOMHldm/fz8AYMGCBQgODi73ExERIdh2xOLRpz3aLxhdbprn4BCMSNmGBj3/+dYpUU1lbmaCDq1dILN49oFvYiJ8L5NERET6rI6jpSr4WJibGEQIgrHeEdJGEEpMTBRsXfqoQe92uLP1mOp3G3dneId1x6Nz8aLWRURERESkCQYhAgCY21mh39ElMJGZI/9hGqQWZrBt4II72/7AqenfwyXQBycmr3w2s0SCV75+H2dmrkXgrBfHFCIiIiIi0ndGGYQiIyPFLkHvFGXnI2FnFIrznuLykm2o29UffpMG4uR/vkXdLv54FBMPZUkpAKD52FA8irmB9MsJYpdNRERERKQRo3xGiCrm0KIRMq7cBQA4+jVBxtVn/9+gZyDu7X82wnBtn/rw6NMOl5ZuF7VWIiIiIqLqMMo7QlQxh+YNVeHH0a8xHhyMAQDU7doK5z7fAABwaecLm/p18ObJFQAAS+faCF40DpZ17BG//pCI1RMRERERVR2DEAEArFwdAKUS+fIMAICDrwcuL9sOp9ZeeHIrGSX5TwEA8esPlQs8PbfPwfXv9+L+gRjRaiciIiIiUheDEAFlzeL+vBsEAEXZeWg6/HUUZuTg/oGzotZGRERERCQ0BiECACQdOY+kI+dVv+/tNR0A0O/YEhx8c1alyx14yWtERERERPqKQYhealfXKWKXQEREREQkOPYaR0RERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjrsLMHAmFpaIOzOBrHLqDJTSwuxSyAiIiIiI8QgZGAkEgnMrGRil0FEREREpNfYNI6IiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGh0GIiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiKiKsnKysLs2bNx7NgxsUupMZ48eYIPPvgA9erVg0wmQ/PmzbF69WoolUqxS9MIjwH1pKSk4JNPPkHPnj3h7OwMiUSCESNGiF0WEf2JQYiIiKokKysLc+bM4UlwFRUVFeG1117Dt99+i8GDB2PFihXw8fHB+PHjMWfOHLHL0wiPAfXEx8dj3rx5uH79OgIDA8Uuh4j+xlTsAoiIiAzRDz/8gJiYGCxfvhwffPABAGD06NF48803MW/ePIwcORIeHh5il0la1LZtWzx69AjOzs5IS0uDs7Oz2CUR0XN4R8jAKJVKFOc/rTE/NbV5CFFNUFRUhK+++gqtWrWClZUVatWqhYCAAKxcuVI1z4gRIyCRSCpc/vlmPMeOHUOjRo0AAHPmzIFEIoFEIkHDhg3VqqlsnZGRkQgODoaVlRXc3d2xcOFCAEBmZiZGjRqFOnXqwMrKCm+88QYePnz4wnoSExPx73//Gy4uLrCwsECTJk0wY8YM5Ofnq+ZZvXo1JBIJdu/e/cLyCoUC7u7uaNWqVbnp586dw4ABA+Dk5AQLCwv4+Pjgyy+/RElJiVr7CQC//vorrKysMHr06HLTP/zwQxQXF2PLli1qr1NdPAbEPQZsbW0Zfoj0GO8IGZiSgkJsbPKO2GVUWdidDTCzkoldBpHBKSoqwuuvv45jx46hR48eeOeddyCTyXDlyhXs2LEDEydOVGt9vr6+WLJkCaZMmYIBAwZg4MCBAAAbGxu1a7tw4QL27NmDMWPGYNiwYfjtt98wffp0yGQy/Pzzz2jYsCFmz56N27dvY/ny5Rg2bBiOHDmiWv7evXsICgrCkydPMH78eHh5eeHYsWOYP38+oqOj8fvvv8PU1BRDhgzBlClTsH79evTt27dcDb///juSk5MxdepU1bSIiAgMHDgQnp6emDp1KhwcHHDq1Cl89tlnuHjxIrZu3VrlfVQoFIiNjUWbNm0gk5X/jAsKCoJEIkFMTIza7506eAyIewwQkf5jECIiMkBLly7FsWPH8PHHH2PevHnlXlMoFGqvz8XFBf3798eUKVPg5+eHd97R/ILLlStXcOrUKbRr1w4AMGrUKHh4eGDKlCmYOHEili9fXm7+JUuWID4+Hj4+PgCAGTNm4PHjx4iIiEDv3r0BAOPHj8e0adOwePFi/Pzzzxg1ahTs7e0RGhqKPXv2IDMzE/b29qp1rl+/HqampggLCwMAPH36FKNGjUK7du0QGRkJU9NnX49jx46Fv78/PvroIxw7dgxdu3at0j5mZmaioKAA9erVe+E1CwsLODk5ITk5WeP3sCp4DIh7DBCR/mPTOCIiA7Rx40bY29vjs88+e+E1qVTcj/7g4GDVCTAAmJubIygoCEqlEpMmTSo3b6dOnQAAt27dAv48gd+9ezdat26tOgEu8/HHH0MqlWLnzp2qacOHD0dhYWG5Zmi5ubnYuXMnevbsiTp16gAADh8+jNTUVIwcORJZWVlIS0tT/ZRt59ChQ1Xex7LmWRYWFhW+LpPJyjXh0gYeA8+IdQwQkf7jHSEiIgN069YttGrV6oVmWfqgcePGL0wru1Jf9gzK36enp6cDAB4/fozc3Fw0b978hXU4ODjAzc0NCQkJqmllJ7rr16/HuHHjAADbt29HXl4ehg0bppovLi4OAPDuu+9WWndqamqV99HKygoAUFhYWOHrT58+Vc2jLTwGnhHrGCAi/ccgRERkxCp7SF6TB8OrysTERO3XNO1YxdTUFG+//TaWLl2K27dvw9PTE+vXr4e9vX25Z0bK1r9o0aIXHp4vU7du3Spv197eHpaWlhU2fyssLERaWhq6dOmi0T4JjcdA+fULdQwQkf5jECIiMkDe3t64ceMGCgsLK22ehT+voANARkaG6v8BlLuiXqayE2ZdcnZ2hq2tLa5du/bCa5mZmUhJSXnhJHb48OFYunQp1q9fj9GjR+PYsWMYM2ZMuffFy8sLAGBtbY3u3btXu06pVIo2bdrgwoULL/wNzp49C6VSiYCAgGpv52V4DPxFjGOAiPQfnxEiqsCTnCIcPfsQi9ddwahZUch48qx5S2Z2EVZuuo5Tl1KRX6C9q6ViKylR4PLNDKzbdROTF5x6bv8LMWd1LPb+cR8pj7X7fIPYHj7Kw55j9zF7VSyGf/KH6j3IyinCz7tu4eqtDJSUqP/Aua6EhYUhMzMTX3zxxQuvPX9l3dvbGwDK9cgFAF9//fULy5X1DpaRkaGFiqtGKpUiNDQUFy5cwIEDB8q9tmDBAigUCgwYMKDc9FatWsHPzw8bNmzAL7/8AoVCgeHDh5eb5/XXX0edOnWwYMGCCvevoKAAOTk5atU6dOhQ5Ofn47vvvis3fenSpTA1NcXgwYPVWp+6eAz8RaxjoCZTKpW49zAHO44k4pPl58p9Dj7JKcKvEXcQfzcLCoXhDoORnVuEP86l4Jv1VzB6dvlzgeUbryH6Qiry8ovFLlNrSksVuHY7E+t338KUr06r9j8juxCz/huL3UfvITk1r0YPhcI7QkR/UiiUOHwqGau2xGHv8QcVfrjnPy3BB/NPAQAszE0wpGdjjB/si6CWhjFOREJSNtZsvYG1O28iPevFZxvyn5Zi9uoLqt+DWjhjwhBf/Ov1RpBZ1PyPk4KnJdh8IAGrtsTh3LW0CufJKyjBiE+PAwCc7WUYNdAb4wY1hUddWx1X+3KTJ0/Gnj178MUXXyAmJgY9evSATCbDtWvXEB8frzrpHTp0KGbMmIExY8bgxo0bcHBwwIEDB5CW9uL+Ozo6wtPTE5s3b0aTJk3g4uICa2trhIaG6nTf5s2bh8OHD6N///4YP348PD09cfz4cWzZsgWdO3d+4QQXf94RmDp1KhYuXAhvb2+0b9++3OvW1tZYv349+vfvDx8fH7z77rvw9PREVlYWbty4gR07dmDnzp1q9Rg2evRo/PTTT/joo4+QmJgIX19f7Nu3Dzt37sTMmTPVHn9HXTwGyhPjGACgCqJlnWNcvnxZNa1z587o3LlzNd4J4WXnFuGXvbexakscrt/JqnCe3IIShH18DADg7mKNsYN88N5AH7g6afe5N11QKpWIPJOCVVvisOvYPZSWVnwuMHnhaQCAmakUg3o0wvjBvnilVR29uGtaXfdTcvHdthv4fns8HmU8feH1gqelmLvmr3OBNr6OGD/YF0N7NYGVZc06F5Aoa3KMoxcU5z9Vexwh1+Dm6LljTvn15BUgOyEFd7YdR9zafVCWaufKt76MI3T8XArGzI1GfOITjZbv2NoF38/uiKaNagtemy6kZz3Fh1+dxsaIO9DkE8GxtgUWfRSEEf28auSXgFKpxA/b4zF92TnVFS91SCTAsFAvfDOtHRxqVd4ESdeePn2Kr7/+Gr/++ivu3LkDmUwGLy8vjBw5EuPHj1fNd+bMGXz00Uc4f/48bGxsMHDgQHz11Vewt7fH8OHDsW7dOtW8Z8+exZQpU3Dx4kXk5+fDw8MDiYmJVa5JIpG8sE78Oajnzz///MKVxWPHjiEkJAQ//fSTamBPALh79y4+++wzHDx4EFlZWXB3d8eQIUMwc+bMCjshSE1Nhbu7O0pKSvDFF1/gk08+qbC+q1evYsGCBTh69CgeP34Me3t7NGnSBL169cKECRPKNR2riqysLMycORM7duxAeno6mjRpgvHjx2PChAk6+bfCY+AvYh0DL/s7z5o1C7Nnz1ZrfdpSWqrAN+uvYu6ai8jV4C6HqakE4//li3mTAmBtZaaVGrXt9KVHGD3nBK7eztRo+aAWzvh+dkf4eat3jOiLrOxCTP36LNbtuqXRnb7atuaYNykAYwc1hVRaM84FGIQMTHWCUMKOKCRFxgISCSyda8NzUBfY+3ogfsNhnJq2Riv1ih2E8vKLMWP5OSz/9Xq112VhboK549tg6vAWMDGpOa1Od/6eiHGfR1d41UddvTq647vPOsLd1VqQ2nThfkou3psdhcOnXhy5Xl1uzlZY82kHhHZtIEhtRES6cONuFkbMPI4zVx5Xe11N6tvixzmd0DnATZDadOFpYQk++28svl5/tdpN/cxMpfh0bCtMf9cfZmY151xgf9QDjJ5zAsmPqt/svVuQG9bO6YSG9fSrpURFGIQMTHWCUMyc9bj27W7VdFNLCwyIWgYrNwds9nsPhenZgtcrZhBKz3qK3uMP4ezV6n/wP++t1xpiw/yusDCvvFckfaBUKjH/h0v4ZMV5Qdfr6mSJw2t6ooWX/l8Ru3gjHa+POyBICHzeV1MCMW2kn6DrJCLShmMxKeg76TBy8oR71kUqleDHOZ0wvJ+XYOvUlic5RQj94BCiYoXtGr1P5/rYurgbLGX631Rs6S9XMWXRGUHX6WQvw4HVr6NtMydB1ys0/f/rkGhKCgrxOPYWGoYGw87DBY+1EITE8iSnCK+NOYALN9IFX/e2w4koKT2KrYu7wdRUf68Gzfv+EmauFDYEAYA8rQAh7+3H8Z/6wLex/jYVvHorA93e24fM7CLB1x2+JAYAjCYMPX78GKWlpS+dx8bGRvWgfU2Wm5uL3Nzcl85jYmICZ2fDeG6wqngMlFdTjoGo83L0nnAQBU9f/rdTl0KhxIhPjz9rNtxXf8NQXn4xeo0/iFOXHgm+7ojjDzDgwyPYveI1mJvp74VRbYQgAEjLfIpXR+/HsbW90aqpo+DrF4r+nqWJJDExEWvXrsW4cePQtm1bmJubQyKRlGuXbExsG7oAAAqzXv6hX5MolUoM/b+jWglBZf4XeQ/Tl8Zobf3VtfXQXa2EoDJpmU/Ra/xBZOcKHzKEkJldiJ7vH9RKCCoTviQG/4us+nMTNVlgYCDc3Nxe+rN48WKxyxTE4sWL/3FfAwMDxS5T53gM1Lxj4IE8F6GTDgsegp737qwonLyon4PQKpXPwpo2QlCZgyeTMXnBaa2tv7oijt/XSggq8ySnCL3GH0R6lrCtLoTEO0J/s3TpUixbtkzsMkRhamkOCwdb1TNCPsN6wLFlYzyOvYXshBSxyxPMjztvYv+JJLWWidnUF65OVpCn5SNw6O4qLAF888tVDHi1ITq0dtGwUu14lF6A8V+eVGsZTfb/3sNc/Ofrs/huVkcNK9WeKV+dUbsdtCbvwbjPT6JTG1c41ha/QxBt2rhxIwoKCl46T+PGjV+YFhNT9YsFaWlp2LFjBwYOHAgnp6o3tRD6hHTYsGHo2PHlx7SlpaWg26wJNDkG1Pn7g8eAoJRKJUbPPoEnOepdDFL3c7C0VImRn0bh4tb+etdE7LeDd7HtsHoXqzT5Hvh26w28+VpDdG9fT8NKtSMzuxCj50SrtYwm+y9PK8CkBaexcYF6vS3qin4dlXrAyckJvXv3RmBgIAICArB//36sWrVK7LJ0onX4ELQOH1JuWmLEaZz5+AfRahJakjwPHy1W/+qHq5MV3F3U6wBAqQRGfnYcl7cN0KuupSfMO4m0TPWuzmiy/wDw/fZ4DOrRCK8F688XwL6oB/h59y21l9PkPUhN1+8vAKF06NBB69tIS0vDDz/8gM6dO6t1Eiy0xo0bVxjqjB2PgZrlp//dwsGTyWovp8nn4M17T/DpyvNY/J92am9PWx5nFGDCPPUuCKIa34WjZkXh6o6BsLU2V3tZbflo0Rm1xwPUdP9/3XcH/3q9EfqFeKi9rLaxadzfzJw5ExEREZg9ezbeeOMN2Nvbi12SzsT/cggH/zUHh8O+xLnPf8HTjBxYuzmitPCvK0ZSc1P0O7YEfpMHllu249IJ6L6x4q5I9cmyjdeQnau7wc9u3cvG5gMvjs4ulmu3M9W+AlZdnz831oA+mPutbuv5dd8d3LqnWbfsRERCKy1V6PxzeeXmOL1qHvXfzXEVjpWnLfdT8vDz7ts6294/uZuUo9EFweqYs/qCXg68avBBKC0tDeHh4fD09IRMJkP9+vUxefJk5OXlYdSoUZBIJFi5cqXYZeqF7AQ5UqKuIDnyAq6u2oXfhy+AU6smCF44VjWPoqgEJyatQMtJA2Hf7Fmyb9AzEO6vBSD6I/2+c1bwtAQ//u+mzre7akuczrdZmdW/6b6WqNhUXLkp3ij0zzt/PU2Q7mHV9e3WGzrfJhFRRQ5EJyHxoW6f+y0sKsVP/9PtiXdliosV+G57vM63u2pLnN4EgTXbbmg0ZmB1XLiRjrMifP/+E4MOQhcvXkTLli2xaNEiyOVyNGvWDMXFxVi+fDkGDx6MuLhnJ4WtWrUSu1S99PhcPO5sO45G/TvAOcBHNT39cgKurd6NTss/gJWbA4IXjcOZGT+gIFWzAch0ZdvhuxoNllldMVfTcP76iyO061p+QQnW7xHnipS+BIE1ItXx486bKCzS3gPJRERV9e1v4nwOfrtVP4LA3uP31W4SJoS4hCxEnZfrfLt/V1yswNqdur8oDACrRTr2XsZgg1BaWhpCQ0Mhl8sxdepUpKSkIDY2FnK5HAsXLkRERARiYmIgkUjg52ccXdxq4tKSbVCUlKL1tMHlpy/dDkVpKfoeXgR59FXc3aXeA3diOBojXocPx0TcdpnYuDRBx4lQx7Fz4u8/RDwGsnKKcCleP+6K1VS2trbo2bMnbG31f4A+0g4eA9WnUCjxh0gn43ce5CApNU+UbT9P1HOBc+IHoau3M9R+Tlgo+nIu8DyDDUKTJk1CUlISJk6ciMWLF5f74AwPD4e/vz9KSkrQsGFD2NnZiVqrPstJlOPurmjU7eyHOu18VdOVJaV4HBMPmWMt3N5yVNQaq+r8de11l/3P2xb/jpCYNdy4+wR5+eKEsDJZ2YW4fV+8sbD04RioyerVq4e5c+eiXj396XiDdIvHQPXduvdEtAti0JPPQTFr0I/9F+9c6N7DXNFCWGUMMgjFxcVhy5YtcHJywvz58yucp23btgAAf3//am8vKioK3bt3h5ubGywsLODu7l6u6V1Nd3nZs7s/z98VqtPOF56DQxC3dh+C5o6EiUx/ekKpSGFRKa7dEa/pnpgfPGVi48SrQaFQ4pLIzwldFPmOjD58AdZkhYWFePDgAQoLdd+8lfQDj4Hq0+b4eVUh9nehQqEU9T3Qh++B2DhxaxB7+3+nP336CmjTpk1QKBQICwurdBTrsj7+hQhCmZmZaNmyJcaOHYs6deogKSkJ8+fPR3BwMK5evQp3d3eN1hsQEAC5XL3bqGZKKWYhSK1l5KeuYZ3bW5W+/uRWMta7/xWCTK1k6Lh0As5/uRE3fj6IXjvnos3HbyNm1jq1tgsA3l7eKJYo1F5OXaUSa5Tah1f6elnf+JVxdbJU/ffB4SGVzldZ3/q37qZofBwIJc0mDDD3rvA1ofYfL3kPQge8Dcti3T+gWqbArBlgO7jC1/5p/yHAMbBxyy4cWDtU7boN2VtvVf6583ePHj3Cpk2bMHToUNSpU6fKyw0YMEDD6kjb1Pn7g8eAIHIt2gHWvSt8TRefg0uWf4+fFvRTu26hKGCOAofKe7jV9rlAcuoT0c8F0m3+BZg3r/A1XZwLDHlnNKyKrqhd98u4urri3LlzGi1rkEEoMjISABASElLpPElJzwbUFCII9e3bF3379i03LTAwED4+Pti+fTsmT56s0XrlcjmSk9Xr599cYgJoefzOwNnDkHv/EW6sOwAAODF5JfoeWYz7+88g9bR6d8EepjxEkVIHD5Gb2gMv6Qm9qn3jm5pINepDX6mUqP23FFzDEqCSG3fa3n8AyMh4AmSL+B7UqgdU8miBOmMjaPoePH1aLP4xoGfy8qr+vEDZYJ0FBQVqLcf3XH+p83cEjwFhOOUAlXx86eJzMC//KfLE/HtIrQCHyl/W/nehifjHY4MiUc8FMjOzkZmlP/8mDTII3bt3DwDg4VHxwE0lJSWIjn72cL8QQagijo6OAABTU83fYldXV7WXMVNKAS3eYKnXrTUa9e2AXa9OVU3LuZeK819uRIclE7C721SUFFS92UJdt7o6uiNkhZfdW5OnvbwHGVcnS5iaSFFSqoA8rfLR0ytbj1SigJvI7drTLExQ2V9GqP1/2bocHOxgaSvee1BgZofKGsf90/5DgGNAJjOFI59tKMfauupfpGUnvpaWlmotx+dJ9Jc6f0fwGBBEroUNKhvVTBefg9ZWFqgt4t9DATO87HF9bZ8LSFCCuiIfjxkyU1RWuS7OBeztbWFlLex7oMn5chmJUh/6MhSYg4MDMjMzcfLkSQQHB7/w+saNG/HOO+/A1tYWT548gUQiqXRdM2fOxJdffonhw4dj3bqXN/0qLS2FQqHAvXv38PHHH+PEiRO4fPkynJ2dBdmvqijOf4qNTd7R2faqK+zOBphZybS+ndJSBWq98gvyCko0Wv7B4SFwd7FGUmoe6r+2We3l2zZzwrnN4jUHAIAJX57UeEyj6u4/AFzaNgB+3i+5FKdl5649rvA2fVVV9z348J3mWBLeXuPtG6KYmJgqz3vjxg0MGzYM69evR9OmTau8XGBgoIbVkbap8/cHjwFB7Dl2H30nHdZ4+ep+Di78MBDh74rXU69SqUSdrr9q/MB+dfe/aaNaiNulXpNQoYV/cxaL1mnWNE2Ic4GTv7yBYH8tN11Sg0F2llCWDGNjY194LSUlBdOmTQMA+Pn5vTQEqatLly4wNzeHl5cXLl68iMjISJ2GIKqciYkUrZo6irb9ts3E2/ZfNTiJtm2ZhQmaNa4t2vYBoKWXA8xMxfvIE/P9JyKCHnwXif05KJFI0NZXzHMB8b8HxKxBKpXA31v886HnGWQQ6t69OwBg4cKFuHnzr0GjYmJiEBISgrS0Zz1WCD2Q6tq1a3H69Gls2rQJdnZ26NGjB+7fvy/oNkhz/PATb//9vR1gKmIIAQALcxO08HzJg2Japg/HQE3WtGlTnD17Vq07AWRYeAxUX9061qoH3sXQxsgvCurD94CYNTRrXBtWlvr1VI5BBqHw8HA4OjriwYMHaN68OVq2bAkvLy8EBQWhcePG6NatG1DJ80HR0dFwcnJS/XzzzTcAgM2bN5ebXvaM0fN8fHzQrl07DBkyBL///jtycnLw1Vdf6WCPqSpCuzYQZbtSqQS9OorbSwwAtPC0h0fdintR1LY3utQXZbt/F9pFnGPAs4EdfBrWEmXbRETPE+tzsENrF9jbWYiy7eeJtf8A0KeT+N+FTerbwlekFhr6ci7wPIMMQu7u7oiKikKfPn0gk8mQmJgIBwcHrFmzBhEREaq7RBUFoeLiYqSnp6t+ynqpKSwsLDe9uPjlA5LVrl0bnp6euH37tpb2ktTVLaguvD10fzLat2sD1HcVJ4A8z8REirFv6f5KqpmpFO8N9NH5disy+k0fmJgI1xy2qt7/V1NIpbrfriG5d+8e3n33XVVnOGR8eAwIY/xg3yrMJbwJIm3379r5OaNVU90/r9q9fV1468EFMYlEgvf/pftzAYkEGDdI/+7mGmQQAgBfX1/s3bsXOTk5yMnJwZkzZzBmzBjk5eUhMTERUqkULVq0eGG5rl27QqlU/uNP165dX7r9R48eIT4+Hk2aNNHiXpI6pFJx/vGLsc3KjBrgDXMz3f6zH9jd4x/HptAVd1dr9OtacW+S2iKzMMGIfhWP30RVV1BQgKtXr6ouTpHx4TEgjFZNHRHsX/VxmIRQx0GGgd0b6nSblZFIJBj/L92HsvdF2GZlhoV6wVrHTdT6dKoPj7qVjGEhIoMNQpW5du0alEolvLy8YGUlzMnZO++8g9mzZ+N///sfjh07hu+//x5du3aFqakppkyZIsg2SBhjBzXV6V2hXh3d8Vqw/nTdWsfREtPf1U6X8RWxlJngi4kBOtteVXw5qS0szE10tr1Px7SCQy3xm4MQEZVZ9FEQBOwr6h8t+DBQp5+7/2R4Py+d9mLaua0r+nfT7UW4l6lla45Z41rrbHvmZlIs+FA/e280uiB05cqzLgOFHD+offv22LdvH0aOHIlevXph0aJF6NSpEy5evAhPT0/BtiMmjz7t0X7B6HLTPAeHYETKNjToqZ8Hd0UsZab46fNOOvkCsLMxw3efdRS0Z0IhfDLGH/4+uvkCWDA5EJ4N7HSyrapq2qg2vpjYVifbatvMCeEjxesqloioIh1au2DKv19sFaMNvTq6Y0Q/L51sq6rMzUyw7vNOMDXV/vezlcwUP87tpHfNoz8a1gLt/XTTs/Hs99uguYidFb0Mg5AAJk6ciLNnzyIzMxMFBQW4efMm1qxZU+mArjVRg97tcP/AWdXvNu7O8A7rjkfn4kWtSxOvtHLBx6PU+/vL0/KRlJpXpQHnyvx3xitwd9Vs5GVtMjczwc9fdIaVrOq3xTXZ/+7t62Li0GYaVqldU/7dHF0C1BuATd33wMbKDD9/0Vn03vKIiCry+YS2aOml3smpup+DdRxkenlBEABa+zph7nj1Lopp8l24JLwdmtTXrwuC+PO54Z8+7ww7G7MqL6PJ/ndo7YJpI1pqWKX2GeSAqi/TrVs3HD16FHv37kWfPn3ELkdwmg6oam5nhX5Hl8BEZo78h2mQWpjBtoEL7mz7A6emf483T67A9lc+gLKkFJBI0GPzpzj/5QYEzhqO69/vxf0D6g2MV0ZXA6r+nUKhxOg5J/DjzptVmFt9iz4Kwn/0+B8+ABw+lYzQDw6jsKhU8HW3a+mMw9/1hK21ueDrFsqTnCK8Ono/zl9PE3zdljITRKzsgZCguoKv25CoM6DmkydPcPLkSbzyyiuoVavqzVs5mKb+UndAVR4Dwkt5nI/OIyNw+3624Ou2tzPH0bW94e8jfpfZlVEqlZi88DRW/HpdK+ufM74NPtNhEzRNnIiV4/VxB5H/VLMB51/G38cBR9f21oveAitjdJcqIyMjoVQqDTIEVUdRdj4Sdkbh+g8R2P3aNJz97Cc8jr2Jk//5Fm4dWuBRTPyzEASg+dhQPIq5gfTLCWKXrTGpVILvZ3XEpLeFvWMhlUqw4uNgvQ9BAPBacD3sX9VDratBVdEtyE3vQxD+bCP9+/e91L4z9E9q25rj0Lc9GYIEVqtWLfTq1UutE2AyLDwGhOfmbIXjP/URvLl03TpW+OPHPnodgvBnxwnL/q89po8StgmzRAIs/DBQ70MQAHRs44oj3/cU/FnWDq1d9D4EwRiDEFXOoUUjZFy5CwBw9GuCjKvP/r9Bz0Dc2/+sWVxtn/rw6NMOl5ZuF7VWIUilEiybHoz/LesOF8fqDzDn27g2Tq5/Q2+bg1UkJKguru4YiNdfqX6HDjILEyyeGoRDa/Q/BJWpZWuOI9/1wvzJAYL0pte7kzuu7hiIjm2EDVcEZGZmYuvWrcjMzBS7FBIJjwHtcHO2wukNofi/d/0EeY4lrE8TXNk+EC112BlBdUgkEsyfHIj9q16Hu0v1m7N7NrDDHz/2Qfi7Nef50GB/F1zdMVCQMZbMTKX4YmJbHP1B/0MQGIToeQ7NG6rCj6NfY6T/GYrqdm2F5MgLAACXdr6wqV8Hb55cgbfOroJzGy8ELxoHn2E9RK29OvqFeOD6/97EuEFN1XpupoxjbQt8NrY1Yrf0Qzs/3XZJKoT6rjbYv/p1/Di3k0YdG0ilEvTt2gAXf+uPqcNbwsSkZn2smJpKMX2UPy781h99OtfXqCMNb49a+PmLzti7sgfqCfBFSi9KTU3FokWLkJqaKnYpJBIeA9ojszDFgg8DceqXUIQEumm0Dn8fB/xvWXdsmN+1RvaU2bPjswtZk95uBhsr9VtK1LY1x/RRfri0dQA6ta15F8PcnK2wa3l3bJzfFU0bqX/XVSJ51jHG+c398MmYVjDT8VAdmtJtJ+Kkt6xcHQClEvnyDACAg68HLi/bDqfWXnhyKxkl+U8BAPHrDyF+/SHVcj23z6nWM0L6wqGWBVZ/2gHzJwdg/Z7b2BBxG5fiM1BUrKhwfmtLUwS1cMbI/l4Y1KMRZBY1+5+SRCLByP7eGN7XC0dOJ2PN1ngcj5UjLfNpJfM/632tf4gHxg7y0cuxAdTVrIk99q7sgbtJOViz7QZ2Hb2H+MQnqOwpSmd7GboEuGLsoKZ4tV1dvXwYmIhIHUEtnRG5tjfiErKwaksc9p94gDsPciqdv24dK7waVBfvD26K9n51avznYC1bcyybHozPJ7bFhr238cve27hwI6PSZ2mtZKZo28wRI/p5Y0jPxrDS8dg8QpNIJHi7TxMM7d0Yx2JS8O3WGzgWk4JHGRWfCwCAT8NaCO3SAOP+1VQvO4X4JzX7L0aCcWjRSHU3CACKsvPQdPjrKMzIKddbnKGrbWeBSWHNMSmsOYqKS3H1Vibi7mYhv6AEUqkENlZm8PN2gLeHXY2781EVUqkEPV5xR49X3KFUKvFAnocLN9KR8aQQxSUKyMxN0KieLVr7Omp0xawmaORuiwUfBmLBh4HIySvChbh03E3ORWFxKcxMpXCoZYE2vo5wd7Gu8V/6REQV8W1cGys+DgYQjMzsQsReT0dSah4Ki0thbiaFs70MbZs56c1g2UKzszHH+CHNMH5IMxQXK3A9IRPXbmchr6AYUqkE1pamaOnlgKaNahnkuYBEIkFIUF2EBNWFUqlEcmo+YuPSkP7nuYCFmQka1rNB66aOsLOpGU3hK8MgRACApCPnkXTkvOr3vb2mAwD6HVuCg2/OqnS5Ay95raYzNzNBm2ZOaNPMSexSRCGRSNDAzQYN3GzELkU0ttbm6Bzghs76NSYsEZHO2NtZ4NX2xtv5i5mZFP4+jnrf8YO2SCQSuLta6+VwIEJgEKKX2tV1itglEBHBysoK7dq1g5WVYV6Bpn/GY4CIhMYgREREeq9BgwZYsWKF2GWQiHgMEJHQDK9hIxERGZzS0lLk5uaitFT4AYCpZuAxQERCYxAiIiK9d+vWLXTr1g23bt0SuxQSCY8BIhIam8YZGFNLC4Td2SB2GVVmalnzxhogIiIiopqPQcjASCQSmFnJxC6DiIiIiEivsWkcEREREREZHQYhIiIiIiIyOmwaR0REes/T0xMHDx6Era2t2KWQSHgMEJHQGISIiEjvmZqawt7eXuwySEQ8BohIaGwaR0REei8pKQlTp05FUlKS2KWQSHgMEJHQGISIiEjv5ebmIioqCrm5uWKXQiLhMUBEQmMQIiIiIiIio8MgRERERERERodBiIiIiIiIjI5EqVQqxS6CiIjoZVJTU7Fx40aEhYXBxcVF7HJIBDwGiEhoDEJERERERGR02DSOiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdH5f0BzrJ9ubnsaAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, - "execution_count": 10, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "partitioned_problem = partition_problem(\n", - " circuit=qc_1, partition_labels=\"AAAABBBB\", observables=observable_expanded.paulis\n", + " circuit=qc_1,\n", + " partition_labels=\"AAAABBBB\",\n", + " observables=observable_expanded.paulis,\n", ")\n", "subcircuits = partitioned_problem.subcircuits\n", "subobservables = partitioned_problem.subobservables\n", "bases = partitioned_problem.bases\n", "\n", - "print(f'Subobservables to measure: \\n{subobservables}\\n')\n", + "print(f\"Subobservables to measure: \\n{subobservables}\\n\")\n", "print(f\"Sampling overhead: {np.prod([basis.overhead for basis in bases])}\")\n", "subcircuits[\"A\"].draw(\"mpl\")" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 4, + "id": "4aeb3f1f-a55e-49c4-a7bd-837132429ee1", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAEvCAYAAABCEhUaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABCpklEQVR4nO3de1wU5f4H8M8uC7ssgtxdFK+ACiZqokimhZmhpqblpfBopVamaeaRtPplZjfCjqZ0sexkmkc5oaZImvcjWiIq3hBvICrIoiuQchFYmN8fxCYByuIus+x83q+Xr2BmnpnvEAwfnnnmGZkgCAKIiIiIJEYudgFEREREYmAIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIonrLz8/He++9h71794pdSpPxxx9/4LXXXkOrVq2gUqnQpUsXfPXVVxAEQezSiKgBeB00TnZ2Nt5++22EhYXBw8MDMpkMzz//vNhlGTAEUb3l5+djwYIF/OGvp9LSUjz++OP4+uuvMXbsWCxbtgydOnXCq6++igULFohdHhE1AK+Dxjl79iw++ugjnD59Gr169RK7nBoUYhdAZK1WrFiBpKQkLF26FK+99hoAYMqUKXj66afx0Ucf4YUXXkDbtm3FLpOIyGx69uyJa9euwcPDAzqdDh4eHmKXVA17gqxYaWkpPv30U3Tv3h1qtRrNmzdHUFAQoqOjDds8//zzkMlktba/s9ty7969aN++PQBgwYIFkMlkkMlkaNeunVE1Ve1z9+7dCAkJgVqthre3NyIjIwEAeXl5mDRpEjw9PaFWq/Hkk0/i6tWrNfaTkZGBf/zjH2jRogWUSiV8fHzw1ltvoaioyLDNV199BZlMhs2bN9doX1FRAW9vb3Tv3r3a8sOHD2PkyJFwd3eHUqlEp06d8OGHH0Kv1xt1ngDwn//8B2q1GlOmTKm2/PXXX0dZWRliYmKM3icRGYfXQXGvg46OjhYXfKoRyCqVlJQIjz76qABAGDRokBAVFSUsW7ZMeOmll4TQ0FDDdhMnThTq+jYAIEycOFEQBEHQarXC4sWLBQDCyJEjhdWrVwurV68WNm7caFRdAITAwEDB1dVVmDt3rvDll18a6lyyZInQo0cPYeTIkcIXX3whzJo1S7CxsREee+yxavvIyMgQPDw8BDs7O+H1118XvvjiC2H06NECAKF///5CWVmZIAiCkJubKyiVSuHpp5+uUcf27dsFAMK//vUvw7ItW7YIdnZ2QkBAgPDRRx8JX3/9tTBx4kRBLpcLzzzzjFHnWV5eLtjb2wt9+/atse727duCTCYzep9EZBxeB8W9Dv7d9evXq309LQFDkJWKjIwUAAjz5s2rsa68vNzwcX1/+AVBEC5evCgAEObPn9/gugAIMplMOHjwoGFZSUmJoNFoBJlMJrz22mvVtp81a5YAQDhz5oxh2XPPPScAEOLj46tt+89//lMAIKxYscKw7JlnnhGUSqWQm5tbbdvx48cLCoVCyMnJEQRBEIqLi4UWLVoI/fr1M1w8qvzrX/8SAAh79uyp93nqdDoBgDBmzJha13t4eAghISH13h8RGY/XwUpiXQf/zhJDEG+HWak1a9bAxcUF7777bo11crm4/9tDQkIQHBxs+NzOzg69e/eGIAiYMWNGtW379esHADh//jzwZ/ft5s2b0aNHDwwZMqTatvPmzYNcLsfGjRsNyyZOnIiSkpJqt54KCgqwceNGhIWFwdPTEwCwY8cO5OTk4IUXXkB+fj50Op3hX9Vxtm/fXu9zrOqOViqVta5XqVTVuqyJyPR4Hawk1nWwKeDAaCt1/vx5dO/eHSqVSuxSaujQoUONZS4uLgBguN/+9+U3btwAAFy/fh0FBQXo0qVLjX24urrCy8sL6enphmVVP+CrVq3CK6+8AgBYv349CgsLMWHCBMN2qampAIAXX3yxzrpzcnLqfY5qtRoAUFJSUuv627dvG7YhIvPgdbCSWNfBpoAhSOLqGgzYkAFw9WVjY2P0uobOq6NQKPDcc89hyZIluHDhAnx9fbFq1Sq4uLhg+PDhNfYfFRVVY5BglZYtW9b7uC4uLrC3t0dWVlaNdSUlJdDpdHjkkUcadE5EZFq8Dlbfv6mug00BQ5CV6tixI86cOYOSkpI6b8ngz78aACA3N9fwMYBqf0VUqetC0Zg8PDzg6OiIlJSUGuvy8vKQnZ1d44d34sSJWLJkCVatWoUpU6Zg7969eOmll6p9Xfz8/AAADg4OGDhw4H3XKZfL8eCDDyI5ObnG/4NDhw5BEAQEBQXd93GIqG68Dv5FjOtgU8AxQVYqPDwceXl5+OCDD2qsu/OviY4dOwIAdu7cWW2bzz77rEa7Zs2aAX9eKMQil8sxbNgwJCcnY9u2bdXWffLJJ6ioqMDIkSOrLe/evTsCAwPx448/YvXq1aioqMDEiROrbfPEE0/A09MTn3zySa3nV1xcjFu3bhlV67PPPouioiJ888031ZYvWbIECoUCY8eONWp/RGQcXgf/ItZ10NKxJ8hKzZw5E3Fxcfjggw+QlJSEQYMGQaVSISUlBWfPnjX8sD/77LN466238NJLL+HMmTNwdXXFtm3boNPpauzTzc0Nvr6+WLduHXx8fNCiRQs4ODhg2LBhjXpuH330EXbs2IGnnnoKr776Knx9fbFv3z7ExMSgf//+NX6w8edfQbNnz0ZkZCQ6duyIPn36VFvv4OCAVatW4amnnkKnTp3w4osvwtfXF/n5+Thz5gw2bNiAjRs34tFHH613nVOmTMH333+PN954AxkZGfD398cvv/yCjRs34p133jF6bhEiMg6vg9WJcR0EYAihVQ+DnDhxwrCsf//+6N+//318Je6T2I+nkfkUFxcLH3zwgRAQECAolUqhefPmQlBQkPDFF19U2+7gwYPCQw89JCiVSsHNzU2YMmWKkJeXV+ujjImJicJDDz0kqNVqAYDQtm1bo2qq6/HIuh5R3bNnjwBA+P7776stT09PF8aPHy94eHgItra2Qvv27YV58+YJhYWFtR5Xq9UKCoVCACB88MEHddZ38uRJITw8XGjZsqVga2sreHp6CiEhIcL7778v3Lhxw6hzFQRByMvLE6ZNmyZ4eXkJdnZ2gr+/v7Bs2TKhoqLC6H0RkfF4HfyLWNdBAHX+u5+pBkxBJvBNjkRERCRBHBNEREREksQxQXTfrl+/jvLy8rtu06xZM8OAwqasoKAABQUFd93GxsbGst+VQ0Qmx+tgdU3mOijqzTgLt3HjRuHJJ58UNBqNYGdnJ2g0GuHRRx8VPv30U7FLsyht27a96z1fS7jvayrz58+/57kaOz6AiJo+Xgeb5nWQY4JqUVpaivDwcMTGxgJ/zuzp5uaGnJwcZGVlwdnZudanBqTqwIEDKC4uvus2HTp0qDZDalJSklHH0Ol02LBhA0aNGgV3d/d6tenVq5dRx6iP9PT0WucOuZO9vT369u1r8mMTkeXidbC6pnId5O2wWkyePBmxsbEICwtDdHQ0fHx8DOvy8/Oxb98+UeuzNI3xja7T6bBixQr079+/3j/85vD3i5gUCIKA4tvlKC7Ro3kzOygU0htKWFZWgZuFpbBXKmCvsrGICfMakyAIuFlQBkEQ4NTMDnK5tM6/PngdbJoYgv5m+/btWL16NYKDgxEXFweFovqXyNnZudo040TWKvePEqzcdA5f/fcMLly+CQCQy2UY2q81Xh3rj0EPtbLqX4bl5RX49bcsfBmTil8SrqCqz7xj2+aYOqYzJo7wg4tT3bMQW4MLl2/i6/+m4t8/n0PezVIAgIO9AuFDffDqWH906+QmdolE98Xq/6TT6XSIiIiAr68vVCoVWrdujZkzZ6KwsBCTJk2CTCZDdHS0YfvFixcDAN55550aAYhIKuL3XUabQeswe9EhQwACgIoKAXH/u4zBr/6K/i/EQ5d3W9Q6zeXajWI8PHELhk7bjvh9fwUgADh36Q/MikpE2ydi8OuBTDHLNBtBELBweTL8nvwJn606ZQhAAFBYrMc3sWfRffTPmLrwAPT6ClFrJbofVv1b/tixYxg8eDC0Wi0cHBwQEBCAq1evYunSpUhLSzNMC171jpXi4mLs3LkTcrkcoaGhSExMxPfff48LFy6gWbNm6NOnDyZPnixqNySRuf2ScAUjZu5EefndhwseSM7BY1O2ImHlUDg1s2u0+swt/2YJBkz+BSlp+Xfd7lZhGZ6cvh2/fPkEHg9p1Wj1NYZ3vziKD745ds/tvv7pDIpu67Hyg/6Su0VI1sFqe4J0Oh2GDRsGrVaL2bNnIzs7G0ePHoVWq0VkZCTi4+ORlJQEmUyGwMBAAMDx48eh1+vh5uaG6OhohISEYPny5di1axc2bdqEefPmwc/PD3v27BH79CTH0dERYWFhcHR0FLsUq3arsBTPvrnnngGoyolzuZi7xLjBnZZuzr8O3TMAVdGXCxgXsQdFxeZ723hjO5CcU68AVGVV3AWs23r3QbJkGrwOmp7VhqAZM2YgMzMT06dPx6JFi6p900RERKBbt27Q6/Vo164dnJycAADZ2dnAn2/hnTt3LoYMGYKUlBSUlJTgxIkTGDBgAPLz8zFq1ChkZlpnN7ilatWqFd5//320amVdf3FbmjXxabhZUGZUm1VxF3CzoLQeW1q+vJsl+DE+zag2uX+UYN026wkBX6w7bXSbL2NSzVILVcfroOlZZQhKTU1FTEwM3N3d8fHHH9e6Tc+ePQEA3bp1MywrLCwEAOj1evj4+GDjxo0ICAiAnZ0dunbtiri4OGg0GuTn52PJkiXV9nfx4kUMHz4cjo6OcHFxwYQJE3Djxg2znqeUlJSU4MqVKygpKRG7FKu2PPaM0W0Ki/VYY2RwsFSr4y7gdsndJ7yrzdc/WUcI0OXdRuyODKPb7U/OQcqFPLPURH/hddD0rHJM0Nq1a1FRUYHw8PA6Z+e0t7cH/haCVCqV4ePp06fD1ta2Whu1Wo2pU6di/vz52LZtGxYtWgQAuHXrFkJDQ+Hq6oq1a9eiuLgYERERePLJJ3HgwAHI5Q3LmkFBQdBqtQ1qa+meeeYZo7a/du0a1q5di2effRaenp71ajNy5MgGVidNAoCrLv8HyIy/LMz5v8X4cPYvZqmrMeWphwGqIKPbHT6ZBW9vb7PU1JhKbbxR1nxKg9r2f3ws7MuM70WSMl4HTUOj0eDw4cMNamuVIWj37t0AgNDQ0Dq3qbqddWcIcnFxMXzs7+9fa7uq5RcvXjQs++abb5CVlYV9+/ahTZs2AABvb2889NBD2Lx5M5566qkGnYdWq0VWVlaD2lq6ql63+qqahKy4uLjeba31a2c+MsC1YZeEwqLbKLSGr7d3CaCqx3Z/I8DGOr7fHByA5g1rmpt/C8i3gq9BI+J1UHxWGYIuXboEAGjbtm2t6/V6PQ4cOAD8LQR17tzZ8LGdXe1Pu1T1Ft35jpgtW7bg4YcfNgQgAAgJCUGHDh0QFxfX4BCk0Wga1K4pcHBwMGr7qh94e3v7erflfXPjXa0ogiBXG92umb0Mza3g6/2HCrj7G5FqJxeK4WUF519mo8Y1ABAEwMinvdyclVA5NP2vQWPiddA07ud3pVWGoKpvlLqmMI+JiYFOp4OjoyPat29vWN6qVSu0adMGly9fRnp6eq09SWlplWMf7uz6Pn36NEaPHl1j2y5duuD06YZ3Dze0e68pMHa6+DNnzmDt2rUYPHhwtbB6N38ft0X39vL7+/FN7Fmj2/1v02d4MKDpTx1x8Pg1hPwjzuh2r4YHY9m8pv+whCAI6DJyA1LT6/d0XBXX5kpkJu2ESmmVv1LMhtdB8VnlwOiqVHj06NEa67KzszFnzhwAQGBgYI25LcaMGQMA+OGHH2q0FQQBK1euBAAMGDDAsDwvLw/Ozs41tnd1dTXMRUTUFEwdU/tt4LsJ7uphFQEIAIIDPfCgv/GzIE8dU79fSJZOJpPh1bHGfw9MGtmRAYiaJKsMQQMHDgQAREZG4ty5c4blSUlJCA0NNbz8tGqSxDvNmTMHTk5OSEhIwMKFCw23vfR6Pd58800cP34cSqUSs2bNarTzocpblYcOHar3Xz/UMN07u2FcWP3fCWRjI8MHr/U0a02NSSaT4YPpPY16HciEYb4I8HGpx5ZNw8ThvujUrv4Dg1q42WNmeBez1kSVeB00PasMQREREXBzc8OVK1fQpUsXdO3aFX5+fujduzc6dOhg6MW5czxQFU9PT6xbtw5KpRLvvvsuvLy8EBwcDI1Gg6ioKCgUCqxYsaLawGkXFxfk59fsPs7NzYWrq6uZz5bItL5f2A+DHrr3OAIbGxn+vaAfBvaxrjEHg/u1xrfzH65XEBravzW+mf9wo9TVWBwd7LD1yyfQwfveE/K5u6jwyxeD0KqFcWNbiCyFVYYgb29vJCQkYOjQoVCpVMjIyICrqyuWL1+O+Ph4Q+9QbSEIAAYPHozk5GSMHz8eCoUCycnJUCgUGDNmDBITEzF+/Phq2/v7+9c69uf06dN1PmVGxrl06RJefPFFw6B3Mh+VUoEtywbhg+k90cqz9kHSA3p7Yec3gzFhuF+j19cYXhzZEdu/DsOjvbxqXd9a44CPZwbh5yUDobSzafT6zK29tyN+Xz0Mr4zuDAf7mre57GzlGP+kDw7+OMxqboU2BbwOmp5MEIT6zY9vJQoKCuDk5ASZTIZbt25BrTb+SZi/W7RoEd566y2kp6cbBkwnJiaiT58+2LBhgyTmaTBWQwYETpgwAatWrap3V3CvXr0aWB1V0esrEPe/y5j4zj7cKiyDk4MtDq4ZDv8ONcfAWauUC3mI+99lfPjtMRQU6eHa3A45e8KhUFjl35A13CwoxX9/vYg3og7iVpEezZvZ4vyW0fBwtRe7tCaP10HxSeOn+A4pKSkQBAF+fn4mCUAA8NJLL8HLywsjRozAli1bEBsbi2effRa9e/fGiBEjTHIMIjEoFHKMfKwdnBwqJw51dLCVVAACgC6+Lpg7qRua//mSWHulQjIBCACcmtlh8tOdDC/Jbaa2ZQAiqyGdn+Q/nTx5ErjLrbCGcHJywu7du+Hl5YVx48Zh8uTJeOihh7Bly5YGzxZNRERE5iW5ZxrNEYIAwMfHB1u2bDHpPomIiMh8JNdNYa4QRObl5eWFBQsWwMur9oGqRETWjtdB05NcT1DVe8WoaWnevDkGDx4sdhlERKLhddD0JNcTRE1TXl4efvrpJ+Tl5YldChGRKHgdND2GIGoScnJyEBUVhZycHLFLISISBa+DpscQRERERJLEEERERESSxBBEREREksQQRE2CWq1GcHCwyWb5JiJqangdND3JPSJPTVObNm2wbNkyscsgIhINr4Omx54gahLKy8tRUFCA8vJysUshIhIFr4OmxxBETcL58+cxYMAAnD9/XuxSiIhEweug6TEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSTxEXlqEnx9ffHrr7/C0dFR7FKIiETB66DpMQRRk6BQKODi4iJ2GUREouF10PR4O4yahMzMTMyePRuZmZlil0JEJApeB02PIYiahIKCAiQkJKCgoEDsUoiIRMHroOkxBBEREZEkMQQRERGRJHFgNImiV69eRm3v7e2N+fPnY+DAgfDy8jJbXUREjYXXQfExBFGT4OXlhffee0/sMoiIRMProOnxdhgRERFJEkMQERERSRJDEBEREUkSQxARERFJEkMQERERSRJDEBEREUkSQxARERFJEkMQERERSRInSySTEgQB+uISscswisJeCZlMJnYZRETUyBiCyKT0xSVY4zNe7DKMEp72I2zVKrHLICKiRsbbYURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEVCtBEHDh8k3Ebr+IwuIyAEBhsR67E68i/2bTegKQiKg2fDqMiAzKyyuwdX8mlv90BgnJOfjjVmm19fm3SvHYlK0AAJ/WjngqtC2mjvWHT2snkSomImo4hiAiQkWFgG/Xn8XH3x3HpasF9WqTduUWPlt1Cp+tOoWwvt5YNLs3uvi6mL1WIiJTYQgi0WlCuiBsw4Jqy8oKi3EzPRtpsfuQ+t0vEMorRKvP2l3MvIVJ8xOwJym7wfvYdiATuw9dxXtTH8Sc57tCoeCddiKyfAxBZDHSNyQgc/dRQCaDvYczfEc/gt4Lnkdzv1b4fc5yscuzSjt+z8KoWbtQUFR23/sqLavAW0sPY9uBTGxe+jiaO9qZpEYiInPhn2tkMW6cvIj09QlIj92HlK82I37oWyjM0qHjc49B6cYxJ6a2bX8mnpy+3SQB6E77jmgx8KWtNcYTERFZGoagu/j5558xbNgweHl5QalUwsvLC6GhoYiKihK7NEnQF5fg+tHzkMnlcGrbQuxyrEpyqg6j3tiJ0jLz3GY8nKLDyNd3opy3MYnIgjEE1aK0tBSjR4/GyJEjsWXLFqjVanTr1g12dnZISEhAZGSk2CVKhmO7yvBTkl+/wbp0byWl5Zjw9j4U3y6vd5uktcNxZcc4JK0dXu82e5KysfQ/pxtYJRGR+XFMUC0mT56M2NhYhIWFITo6Gj4+PoZ1+fn52Ldvn6j1WSuFvR2Uro6GMUGdJgyCW9cOuH70PG6mN3zQLlX3wTfHcOpCnlFtNO5qeLdwMPpYby09jKH9WqNju+ZGtyUiMjeGoL/Zvn07Vq9ejeDgYMTFxUGhqP4lcnZ2xvDh9f9rmOqvR8Q49IgYV21ZRvxBJM5bIVpN1ibnRjEi/32i0Y53u6Qc//fFEcREDWi0YxIR1ZfV3w7T6XSIiIiAr68vVCoVWrdujZkzZ6KwsBCTJk2CTCZDdHS0YfvFixcDAN55550aAYjM6+zq7fh1zALsCP8Qhxeuxu3cW3DwckN5yV8DbOV2CozYuxiBM0dVa/vwkmkYuOZtEapuWr7bcBZl+sYdp7NhVwayrxc16jGJiOrDqn/LHzt2DIMHD4ZWq4WDgwMCAgJw9epVLF26FGlpacjNzQUAdO/eHQBQXFyMnTt3Qi6XIzQ0FImJifj+++9x4cIFNGvWDH369MHkyZPh7u4u8plZp5vpWmQnnAQAZO1ORs6hMxiyaSFCIl/G/6ZWhtOKUj32z1iGsI3v48qOI8g7fQltwnrB+/EgbBrwhshnYNnKyyuwPPZMox9Xr6+ciPHdV3o0+rGJiO7GanuCdDodhg0bBq1Wi9mzZyM7OxtHjx6FVqtFZGQk4uPjkZSUBJlMhsDAQADA8ePHodfr4ebmhujoaISEhGD58uXYtWsXNm3ahHnz5sHPzw979uwR+/Qk4frhs0iL3Yf2T/WFR1Anw/IbJ9KR8tVm9Fv6GtRergiJegWJb61AcY5x41yk5uT5PFzOLhTl2PH7rohyXCKiu7HaEDRjxgxkZmZi+vTpWLRoERwdHQ3rIiIi0K1bN+j1erRr1w5OTpVz0GRnVw6+zcvLw9y5czFkyBCkpKSgpKQEJ06cwIABA5Cfn49Ro0YhMzNTtHOTkuOLY1GhL0ePOWOrL1+yHhXl5Ri+IwraA6dwcdMB0WpsKo6c1ol27OPnclFmpsfxiYgayipDUGpqKmJiYuDu7o6PP/641m169uwJAOjWrZthWWFh5V/Jer0ePj4+2LhxIwICAmBnZ4euXbsiLi4OGo0G+fn5WLJkiaFdVdjq3bs3lEolZDKZ2c9RKm5laHFx0wG07B8Iz2B/w3JBX47rSWehcmuOCzHsmasPMUNQSWk5Tqezp46ILItVhqC1a9eioqIC4eHhaNasWa3b2NvbA38LQSqVyvDx9OnTYWtrW62NWq3G1KlTAQDbtm0zLL9w4QLWr18PjUaDXr16mfx8pO7E55W9Pnf2BnkG+8N3bChSv/sFvd9/ATYqvqLhXi5rxbkVVuWKyMcnIvo7qxwYvXv3bgBAaGhondtU3c66MwS5uPz1Bmx/f/9a21Utv3jxomFZ//79DbfS3nvvPRw4YJpbM0FBQdBqtSbZV2OxFeSYj95GtdH+noKVXs/Uuf6P81lY5f1XAFKoVXh4yTQc+XANzvzwKwZvfB8PznsOSfNXNqjmjn4dUSaz/ls1OscJgK1PreuS1g6Hxl1dZ1uNu73hv1d2jKtzOwDQ6orQ69nNNZZPfH4y7Mua7uSJ2c5vAPLmyNZmw9vbW+xyGp3Uz58sl0ajweHDhxvU1ipD0KVLlwAAbdu2rXW9Xq83BJU7Q1Dnzp0NH9vZ1d6zUNVbVF7+12y7crl5OtS0Wi2ysrLMsm9zsZPZAGZ+w0Wv9yag4PI1nFlZ2Ru3f2Y0hu9chMtbE5FzMNXo/V3NvopSof6zJzdZ7YoA29pX1XcyRIWNvEGTJgJA7o1rwK2m9f1cjWM5IAcqysub3M+lSUj9/MkqWWUIqhrbU1xcXOv6mJgY6HQ6ODo6on379oblrVq1Qps2bXD58mWkp6fX2pOUlpYGAI3yl5BGozH7MUzNVpADZuxUaTWgB9oP74tNj802LLt1KQdHPlyDvounYfOA2dAXlxi1z5ZeLSXRE5RrV47afyIqe2/uRuNuD4WNHPryCmh1de3l7vtyd1VB6dSq3vVammwbG1QAkNvYwKtV0z2PhpL6+ZPlup/flVYZgjQaDfLy8nD06FGEhIRUW5ednY05c+YAAAIDA2sMYh4zZgwWLVqEH374AZMmTaq2ThAErFxZectlwADzz4Db0O49MZUV3cYan/Fm23/W7mT8p/PEGsvPrNxm6Bky1rnz52CrVtVjy6Zt6ZoUzIw8WOu62m5f3enKjnHwbuEAra4YrR9fZ/Sx5XIZLqXuh9q+6V5yvAeuRda1InhpvJB5SnpPh0r9/Mk6WeXA6IEDBwIAIiMjce7cOcPypKQkhIaGQqerfEqmapLEO82ZMwdOTk5ISEjAwoULDbe99Ho93nzzTRw/fhxKpRKzZs1qtPMhMoWeAeJN8unfvnmTDkBEZJ2sMgRFRETAzc0NV65cQZcuXdC1a1f4+fmhd+/e6NChg6EX587xQFU8PT2xbt06KJVKvPvuu/Dy8kJwcDA0Gg2ioqKgUCiwYsWKOgdOE1mqB/3d4NSsjkFBZhbau6UoxyUiuhurDEHe3t5ISEjA0KFDoVKpkJGRAVdXVyxfvhzx8fGG3qHaQhAADB48GMnJyRg/fjwUCgWSk5OhUCgwZswYJCYmYvx4893uITIXe5UCE4f7iXLsV0Z3rsdWRESNy2r7p/39/bFly5YaywsKCpCRkQG5XI4HHnjgru1Xr15t5iqJGtfUMf5Y9p/GfUz9kSANuvi61GNLIqLGZbUhqC4pKSkQBAEdO3aEWl33vCjGio2NBQCcPn262uft2rVDUFCQyY5DdD/8OzhjbFh7xGy7WI+tTePdl/niVCKyTFZ5O+xuTp6sfEt5XbfCGmr06NEYPXo0fvrpp2qfR0dHm/Q4UtV2aB/0+WRKtWW+Y0PxfHYs2oRxlm5jLJsbAg+Xxnka7pXRnTEgmOOBiMgySa4nyFwhSBAEk+6PqmszJBhpP+01fN7M2wMdwwfi2uGzotbVFHm42uPr/+uLp9/YVe82VXP/3Gs+oTu1b+WIT99gQCUiy8UQRBbBzkmNEXsWw0Zlh6KrOsiVtnBs0wJpsf/D73O/RYtenbB/5p+9ajIZHvpsKhLf+Q695tecM4jubdTAdoh8vRfeXJJUr+3vNY/Q33m6qrDtqyfg6MB3uhGR5ZJcCKp6rxhZltKbRUjfmICywts4sTgWLR/thsAZo/DbP79Gy0e64VrSWQj6yjmburw8DNeSzuDGiXSxy27SIl4MhEwGRCyuXxCqr1aeauz4ZjA6tmtu0v0SEZma5MYEkeVyfaA9ck9WDth1C/RB7qnKj9uE9cKlrYcAAM6dWqPt0GAcX7Je1FqtxZwXAhG37HF4eZjmIYHhj7ZB0toR8O/gbJL9ERGZE0MQWQzXLu0MwcctsANu/BmIWj7aHVm7kwEALYL90ay1J57+bRmeOfQlPB70Q0jUK+g0YZCotTdlTz7SBikbR+H5EX6Qy2X1aFGTp6sKqz96BD9/PtBkgYqIyNwkdzuMLJNa4woIAoq0uQAAV/+2OPH5erj38MMf57OgL7oNADi7ajvOrtpuaBe2fgFOf7sFl7eZ9paO1Lg4KfH9wv5Y8OqD+Hb9WXy7/ixybtz9RakA8HCPFnh1rD9GDWwHpZ1No9RKRGQqDEFkEVwfaG/oBQKA0puF6DzxCZTk3sLlbYdErU1K2ng1w8LpPbHg1Qdx7tIfOHJah+TUG7jxRwnK9BWwV9qgfStHBHVxx4P+7nBvpEftiYjMgSGILELmziPI3HnE8PmWwXMBACP2LsavT8+vs922u6yjhpPLZejc3hmd2zsjfKiv2OUQEZkFQxBZtE2PzhK7BCIislIcGE1ERESSxBBEREREksQQRERERJLEEERERESSxIHRZFIKeyXC034UuwyjKOyVYpdAREQiYAgik5LJZLBVc+4YIiKyfLwdRkRERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSpBC7ALIugiBAX1widhlGUdgrIZPJxC6DiIgaGUMQmZS+uARrfMaLXYZRwtN+hK1aJXYZRETUyHg7jIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiI6B7KyytQIQjAn09AEpF14NNhRER/c/JcLjbvvYwjqTocTtHhirbQsC5bV4xHXohHzwA3PBLkhaH9WkOh4N+TRE0RQxAR0Z+9PT9tv4gvY1KRcDSnzu0EAdh3RIt9R7RYvDoFrTzVeOmZznhldGd4utk3as1EdH8Ygkh0mpAuCNuwoNqyssJi3EzPRlrsPqR+9wuE8grR6iPrdy7jD7zw7j78duya0W2zrhVh/pdH8fmaFETPC8G4wR04+SZRE8EQRBYjfUMCMncfBWQy2Hs4w3f0I+i94Hk092uF3+csF7s8slJf/zcVs6IScbuk/L72k/tHCZ6buxexOzKw8oN+cHSwM1mNRGQevJFNFuPGyYtIX5+A9Nh9SPlqM+KHvoXCLB06PvcYlG5OYpdHVuj9r5Mx9YPf7jsA3WnDrgwMnLINeTeb1utjiKSIIegefv75ZwwbNgxeXl5QKpXw8vJCaGgooqKixC7N6umLS3D96HnI5HI4tW0hdjlkZRatPIn5Xx41y74PnbqOodO2o6hYb5b9E5FpMATVobS0FKNHj8bIkSOxZcsWqNVqdOvWDXZ2dkhISEBkZKTYJUqCY7vK8FOSXyB2KWRFfjuWg4jFh8x6jN+PX8O8z5PMegwiuj8cE1SHyZMnIzY2FmFhYYiOjoaPj49hXX5+Pvbt2ydqfdZIYW8HpaujYUxQpwmD4Na1A64fPY+b6dlil0dWovi2Hi/8XwKMne4nae1waNzV0OqK0OvZzfVqs/Q/p/H0wHboH+TVsGKJyKwYgmqxfft2rF69GsHBwYiLi4NCUf3L5OzsjOHDh4tWn7XqETEOPSLGVVuWEX8QifNWiFYTWZ9PvjuBc5f+MLqdxl0N7xYORrebvGA/Un9+GjY27HgnsjSS+KnU6XSIiIiAr68vVCoVWrdujZkzZ6KwsBCTJk2CTCZDdHS0YfvFixcDAN55550aAYjM5+zq7fh1zALsCP8Qhxeuxu3cW3DwckN5SalhG7mdAiP2LkbgzFHV2j68ZBoGrnlbhKqpKSkpLcdX/01t1GOev3QT2w5kNuoxiah+rP43/LFjxzB48GBotVo4ODggICAAV69exdKlS5GWlobc3FwAQPfu3QEAxcXF2LlzJ+RyOUJDQ5GYmIjvv/8eFy5cQLNmzdCnTx9MnjwZ7u7uIp+Z9bmZrkV2wkkAQNbuZOQcOoMhmxYiJPJl/G9qZTCtKNVj/4xlCNv4Pq7sOIK805fQJqwXvB8PwqYBb4h8BmTpYndcxPW8241+3C/WpWJo/zaNflwiujur7gnS6XQYNmwYtFotZs+ejezsbBw9ehRarRaRkZGIj49HUlISZDIZAgMDAQDHjx+HXq+Hm5sboqOjERISguXLl2PXrl3YtGkT5s2bBz8/P+zZs0fs07N61w+fRVrsPrR/qi88gjoZlt84kY6Urzaj39LXoPZyRUjUK0h8awWKc/JErZcs3+q4C6Icd9uBTFy7USzKsYmoblYdgmbMmIHMzExMnz4dixYtgqOjo2FdREQEunXrBr1ej3bt2sHJqXIemuzsygG4eXl5mDt3LoYMGYKUlBSUlJTgxIkTGDBgAPLz8zFq1ChkZrKL29yOL45Fhb4cPeaMrb58yXpUlJdj+I4oaA+cwsVNB0SrkZoGQRBw6NR1kY4NHDmtE+XYRFQ3qw1BqampiImJgbu7Oz7++ONat+nZsycAoFu3boZlhYWVL0rU6/Xw8fHBxo0bERAQADs7O3Tt2hVxcXHQaDTIz8/HkiVLDO1iY2Px9NNPo23btlCr1ejcuTPefvttFBTw0e77cStDi4ubDqBl/0B4Bvsblgv6clxPOguVW3NciGGvHN3bxaxbyLtZWo8tzeMwQxCRxbHaELR27VpUVFQgPDwczZo1q3Ube/vKlx3eGYJUKpXh4+nTp8PW1rZaG7VajalTpwIAtm3bZli+aNEi2NjY4KOPPsLWrVsxdepUfPXVVwgLC0NFBd97dT9OfF7Z63Nnb5BnsD98x4Yi9btf0Pv9F2Cj4isK6O5SLuSLe/w03q4lsjRWOzB69+7dAIDQ0NA6t6m6nXVnCHJxcTF87O/vX2u7quUXL140LIuLi4OHh4fh80ceeQQeHh4IDw/H/v370b9/f6PPISgoCFqt1uh2YrIV5JiP3ka10f6egpVez9S5/o/zWVjl/VcAUqhVeHjJNBz5cA3O/PArBm98Hw/Oew5J81c2qOaOfh1RJmNQtXZFdg8AzUbXuq5qDqC70bjbG/57Zce4Orerax6hnzdvg/d/Jhhdt6XIdn4DkDdHtjYb3t7eYpdDZKDRaHD48OEGtbXaEHTp0iUAQNu2bWtdr9frceBA5TiSO0NQ586dDR/b2dXeu1DVW1Re/tf7hu4MQFWCgoIAAFlZWQ06B61W2+C2YrGT2QBmfsNFr/cmoODyNZxZWdkTt39mNIbvXITLWxORc9D4x5+vZl9FqWC6d0eRhWreEqi9U9ioOYAUNvIGzRdUcru4yf08V+NYDsiBivLypn0eRHew2hBUNbanuLj2JzJiYmKg0+ng6OiI9u3bG5a3atUKbdq0weXLl5Genl5rT1JaWhoA3POvoaonyOrqUboXjUbToHZishXkgBk7VVoN6IH2w/ti02OzDctuXcrBkQ/XoO/iadg8YDb0xca9uLKlV0v2BElAsW0z5NaxTqsrumd7jbs9FDZy6MsroNXV/aRXXfuyV9rAtVWretdrabJtbFABQG5jA68mfB5kfe7nd6VMEIydPL5pCAgIQGpqKqKjozFt2rRq67Kzs9GzZ09kZ2ejb9++2L9/f7X1c+bMwaJFi9CvX78ar8cQBAE9evTA8ePHMWXKFHzzzTe1Hj8rKws9evRAz549sXXrVjOcoWUqK7qNNT7jxS7DKOFpP8JWrarHltSUXcy8hQ5D/tvg9ld2jIN3Cwdk5hSi9ePrjG6/cPqDeOelHg0+vti8B65F1rUitPJUI3Pns2KXQ2QSVjsweuDAgQCAyMhInDt3zrA8KSkJoaGh0Okqn9SomiTxTnPmzIGTkxMSEhKwcOFCw20vvV6PN998E8ePH4dSqcSsWbNqPXZBQQFGjBgBOzs7/Pvf/zbTGRKRMdq1agYXJ/EG0Pf05wSrRJbGakNQREQE3NzccOXKFXTp0gVdu3aFn58fevfujQ4dOmDAgAHA38YDVfH09MS6deugVCrx7rvvwsvLC8HBwdBoNIiKioJCocCKFStqvc1VXFyMYcOG4eLFi9i+fTu8vPjiRCJLIJPJENzVU6RjA0FdGIKILI3VhiBvb28kJCRg6NChUKlUyMjIgKurK5YvX474+HhD71BtIQgABg8ejOTkZIwfPx4KhQLJyclQKBQYM2YMEhMTMX58zVs+ZWVleOaZZ3D48GFs3boVAQEBZj9PIqq/CcN8RTnukH6t4eFqL8qxiahuVjswGn8OSN6yZUuN5QUFBcjIyIBcLscDDzxw1/arV6+u17Gq5iTatWsXfvnlF/Tubdxj4kRkfqMGtoOnqwrXchv3/WGvjm3YwxFEZF5W2xN0NykpKRAEAX5+flCr7z43SH1NmzYNP/30E2bNmgW1Wo2DBw8a/l2/Ls5U/URUndLOBtPGNW4Pbad2zRHWl/PqEFkiSYagkycr31Re162whqh6AuyTTz5BSEhItX/x8fEmO45UtR3aB30+mVJtme/YUDyfHYs2Yb1Eq4uanogXusK/g3OjHEsmA75b0A9yuaxRjkdExrHq22F1MUcIysjIMNm+qKY2Q4KR9tNew+fNvD3QMXwgrh0+K2pd1PSolAqsXNgfIf+IQ0VF/WcIqZr/pz5zClV5fXwX9O1h5tlDiajBGILIItg5qTFiz2LYqOxQdFUHudIWjm1aIC32f/h97rdo0asT9s+MrtxYJsNDn01F4jvfodf8iWKXTk1Q764e+Gx2b8yKSqx3m9pehXE3D/dogQ9fC2pAdUTUWCQZgqreK0aWo/RmEdI3JqCs8DZOLI5Fy0e7IXDGKPz2z6/R8pFuuJZ0FoK+cr6mLi8Pw7WkM7hxIl3ssqkJe/0fD6Doth5vLzti8n2HdPPEluhBsFdJ8hJL1GRIckwQWSbXB9oj92TlS2ndAn2Qe6ry4zZhvXBp6yEAgHOn1mg7NBjHl6wXtVayDm9N6Y4V7z0MtQnDytiw9tixPAzNHcWbmJGI6ochiCyGa5d2huDjFtgBN/4MRC0f7Y6s3ckAgBbB/mjW2hNP/7YMzxz6Eh4P+iEk6hV0mjBI1Nqp6Zo0qhNOrB+JR4Lu7119Hi4q/LRoANZ9OgAOaluT1UdE5sO+WrIIao0rIAgo0la+4tLVvy1OfL4e7j388Mf5LOiLKud1ObtqO86u2m5oF7Z+AU5/uwWXtyWJVjs1fT6tnbB7xRBs3JWBL2NSsftQdr3btvFywCuj/fHSM53g5sx30BE1JQxBZBFcH2hv6AUCgNKbheg88QmU5N7C5W2HRK2NpEEul+Hpx9vj6cfbIzU9H3F7L+NIqg5HTutwMavA8CSZa3MlHvR3Q88Ad/TvqcETD7WCjQ071YmaIqt9izyJw9RvkR+xdzF+fXo+bt+4abJ9/h3fIk/3IggC9HoBCoUMMpk05/zhW+TJGrEniCzapkdniV0CEWQyGWxtpRl+iKwZ+3CJiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkjgwmkxKYa9EeNqPYpdhFIW9UuwSiIhIBAxBZFIymYyPmxMRUZPA22FEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkKsQsg6yIIAvTFJWKXYRSFvRIymUzsMoiIqJExBJFJ6YtLsMZnvNhlGCU87UfYqlVil0FERI2Mt8OIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJL4dBgREdVQVKzHsbM3cOS0Dqcu5CH3j8qpL/JuluCzH06iZ4A7HvR3g1MzO7FLJWowhiAiIgL+nOcr8cR1fBmTiphf01FaVlFjm6Lb5fjnZ4cAAHK5DMMfbYNXx/rjseCWkMs53xY1LQxBJDpNSBeEbVhQbVlZYTFupmcjLXYfUr/7BUJ5zYsxEZlOyoU8TFmwH78fv1bvNhUVAn7efQk/776EAB9nfPPuw+jbo4VZ6yQyJYYgshjpGxKQufsoIJPB3sMZvqMfQe8Fz6O5Xyv8Pme52OURWSW9vgJRK0/iva+O1trzU1+n0/LR7/kteH18F3z4WhDsVfz1QpaP36VkMW6cvIj09QmGz8+u/BUjEz5Hx+cew9FP1qLkxk1R6yOyNrdL9BgXsQeb9lw2yf4EAVi8OgWJJ68jPnoQnJ2UJtkvkbnw6TCyWPriElw/eh4yuRxObdnFTmRKZWUVeGb2bpMFoDv9duwaBr2yDbcKS02+byJTYgi6i59//hnDhg2Dl5cXlEolvLy8EBoaiqioKLFLkwzHdpXhpyS/QOxSiKzK7M8SEb/vitn2n3RKh3+89T8IgmC2YxDdL94Oq0VpaSnCw8MRGxsLAOjQoQNat26NnJwcJCQk4OTJk5gzZ47YZVodhb0dlK6OhjFBnSYMglvXDrh+9DxupmeLXR6R1dhz6CqW/ee0UW2S1g6Hxl0Nra4IvZ7dXK82m/Zcxpr4NIx/0reBlRKZF0NQLSZPnozY2FiEhYUhOjoaPj4+hnX5+fnYt2+fqPVZqx4R49AjYly1ZRnxB5E4b4VoNRFZm8KiMkyav9/odhp3NbxbOBjdbsYnv2Ngn5bQuKuNbktkbrwd9jfbt2/H6tWrERwcjLi4uGoBCACcnZ0xfPhw0eqzZmdXb8evYxZgR/iHOLxwNW7n3oKDlxvKS/4aVyC3U2DE3sUInDmqWtuHl0zDwDVvi1A1UdPyY3waLmbdarTj5d0sNbrXiaixWH0I0ul0iIiIgK+vL1QqFVq3bo2ZM2eisLAQkyZNgkwmQ3R0tGH7xYsXAwDeeecdKBTsKGtMN9O1yE44iazdyTj15SbsmvgJ3Lv7ICTyZcM2FaV67J+xDF1njIJLQFsAQJuwXvB+PAgH3vhSxOqJLJ8gCPgyJrXRj7tiw1mUlpU3+nGJ7sWqQ9CxY8fQtWtXREVFQavVIiAgAGVlZVi6dCnGjh2L1NTKi0H37t0BAMXFxdi5cyfkcjlCQ0ORmJiIV155BQMHDsRTTz2FTz75BDqdTuSzko7rh88iLXYf2j/VFx5BnQzLb5xIR8pXm9Fv6WtQe7kiJOoVJL61AsU5eaLWS2TpDp64hhPnchv9uNdyb2PjrkuNflyie7HaEKTT6TBs2DBotVrMnj0b2dnZOHr0KLRaLSIjIxEfH4+kpCTIZDIEBgYCAI4fPw69Xg83NzdER0cjJCQEy5cvx65du7Bp0ybMmzcPfn5+2LNnj9inJxnHF8eiQl+OHnPGVl++ZD0qyssxfEcUtAdO4eKmA6LVSNRU7Dkk3gMGe5P4cANZHqsNQTNmzEBmZiamT5+ORYsWwdHR0bAuIiIC3bp1g16vR7t27eDk5AQAyM6u/CHNy8vD3LlzMWTIEKSkpKCkpAQnTpzAgAEDkJ+fj1GjRiEzM1O0c5OSWxlaXNx0AC37B8Iz2N+wXNCX43rSWajcmuNCDEMpUX0cOX1DvGOnshedLI9VhqDU1FTExMTA3d0dH3/8ca3b9OzZEwDQrVs3w7LCwkIAgF6vh4+PDzZu3IiAgADY2dmha9euiIuLg0ajQX5+PpYsWWJol5CQgIEDBxrmE/L29q52u43uz4nPK3t97uwN8gz2h+/YUKR+9wt6v/8CbFR8kzXRvSSfES8EHT+bi7L7eC0HkTlY5cjftWvXoqKiAuHh4WjWrFmt29jb2wN/C0Eqlcrw8fTp02Fra1utjVqtxtSpUzF//nxs27YNixYtAv7sOeratStefvlleHp6IjMzEx9//DFCQkJw6tQpeHt7N+g8goKCoNVqG9RWLLaCHPPR26g22t9TsNLrmTrX/3E+C6u8/wpACrUKDy+ZhiMfrsGZH37F4I3v48F5zyFp/soG1dzRryPKZLw4k/W76vIWIKv9VRZV8wDVReNub/jvlR3j6tyurnmESssq0LZDR8iF2w2qnaguGo0Ghw8fblBbqwxBu3fvBgCEhobWuU3V7aw7Q5CLi4vhY39//1rbVS2/ePGiYdnw4cNrPDbfq1cvdOrUCevXr8fMmTMbdB5arRZZWVkNaisWO5kNYOY3XPR6bwIKLl/DmZXbAAD7Z0Zj+M5FuLw1ETkHje99u5p9FaUCn1whCXCWA7LaV9V3HiCFjbxB8wUBQLb2OqDnOwDJclhlCLp0qfIphLZt29a6Xq/X48CByoG0d4agzp07Gz62s6v99kpVb1F5+d1/abq5uQHAfT1mr9FoGtxWLLaCHDBjp0qrAT3QfnhfbHpstmHZrUs5OPLhGvRdPA2bB8yGvrjEqH229GrJniCShKsohwDbWtdpdUV3batxt4fCRg59eQW0uuI6t7vbfrw07pALjnWuJ2qI+/ldaZUhqGpsT3Fx7T+oMTEx0Ol0cHR0RPv27Q3LW7VqhTZt2uDy5ctIT0+vtScpLS0NAGq9xVVeXo6KigpcunQJ8+bNg0ajwZgxYxp8Hg3t3hNTWdFtrPEZb7b9Z+1Oxn86T6yx/MzKbYaeIWOdO38OtmpVPbYkatq6jtqAUxdqn0riXq/CuLJjHLxbOECrK0brx9cZfezmjnbIOn4BMlkdXVFEIrDKgdFVqfDo0aM11mVnZxve+xUYGFjjB7IqtPzwww812gqCgJUrK8edDBgwoMb6Rx55BHZ2dvDz88OxY8ewe/dueHh4mOisiIjuT88Ad/GO7e/GAEQWxypD0MCBAwEAkZGROHfunGF5UlISQkNDDRMeVk2SeKc5c+bAyckJCQkJWLhwoeG2l16vx5tvvonjx49DqVRi1qxZNdp+9913OHjwINauXQsnJycMGjQIly9fNuOZEhHVX88ANxGPLV4AI6qLVYagiIgIuLm54cqVK+jSpQu6du0KPz8/9O7dGx06dDD04tw5HqiKp6cn1q1bB6VSiXfffRdeXl4IDg6GRqNBVFQUFAoFVqxYUevA6U6dOiE4OBjjxo3Drl27cOvWLXz66aeNcs5ERPcytH9riNUZ82T/1uIcmOgurDIEeXt7IyEhAUOHDoVKpUJGRgZcXV2xfPlyxMfHG3qHagtBADB48GAkJydj/PjxUCgUSE5OhkKhwJgxY5CYmIjx4+895sXZ2Rm+vr64cOGCyc+PiKghOng7Iaxvw6bsuB9dfJzRr2fTe9CDrJ9VDozGn4+yb9mypcbygoICZGRkQC6X44EHHrhr+9WrVzf4+NeuXcPZs2cRHBzc4H0QEZnaq2P9sXV/4854P3WsP8cDkUWy2hBUl5SUFAiCgI4dO0KtrntiMGOMHz8evr6+6N69O5ydnXH+/HksXrwYCoWi1rFDRERiGdKvNQb09sLuRnqPWICPMyaP6lSPLYkan1XeDrubkydPAne5FdYQffr0wS+//IIXXngBgwcPRlRUFPr164djx47B19fXZMeRsrZD+6DPJ1OqLfMdG4rns2PRJqyXaHURNTVyuQzfLegHB3vz/w1sYyPDyoX9obSzMfuxiBpCcj1B5ghB06dPx/Tp0022P6qpzZBgpP201/B5M28PdAwfiGuHz4paF1FT1K6VI5bODcGk+Qn1blM1CeK9JlW80/+91B29HuA0IWS5GILIItg5qTFiz2LYqOxQdFUHudIWjm1aIC32f/h97rdo0asT9s+MrtxYJsNDn01F4jvfodf8mhMnEtG9vTiyI3JuFOOtpfWblPVekyn+3SujO+PdV3o0sDqixiG5EFT1XjGyLKU3i5C+MQFlhbdxYnEsWj7aDYEzRuG3f36Nlo90w7WksxD0lXM2dXl5GK4lncGNE+lil03UpM2b3A0qpQ1mL0qEIJhuv7MnPICo2b05GJosnuTGBJHlcn2gPXJPVr6Y1i3QB7mnKj9uE9YLl7YeAgA4d2qNtkODcXzJelFrJbIWs/7xAPb/8CQ6tm1+3/tq6anGlujHseifwQxA1CQwBJHFcO3SzhB83AI74Mafgajlo92RtTsZANAi2B/NWnvi6d+W4ZlDX8LjQT+ERL2CThMGiVo7UVP2UPcWOPbTU3h7Sje4Nlca3d7BXoFp4/xxasMoDO3fxiw1EpmD5G6HkWVSa1wBQUCRNhcA4OrfFic+Xw/3Hn7443wW9EW3AQBnV23H2VXbDe3C1i/A6W+34PK2JNFqJ7IG9ioFPngtCG9P6Y7//noR3286h6RTOhTd1te6vdLOBt07uWL8k774x5O+aO5o1+g1E90vhiCyCK4PtDf0AgFA6c1CdJ74BEpyb+HytkOi1kYkJfYqBSaO8MPEEX4oL6/A2Yw/cPJ8HgqKylBRIcDB3hYBPs7o4uMCW1veTKCmTSYIphwOR1JXVnQba3zu/VqR+hqxdzF+fXo+bt+4abJ9/l142o+wVavMtn8iIrJM7Akii7bpUc64TURE5sG+TCIiIpIkhiAiIiKSJIYgIiIikiQOjCaTEgQB+uISscswisJeyYndiIgkiCGIiIiIJIm3w4iIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiS/h/boJYExyJPYwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAEvCAYAAABCEhUaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAwUlEQVR4nO3deVxU9f4/8Newg4LKDqIg4AIquIGCK2WKuZfmmlperdRc8krX6pfZLcv0plct02vdvpYZBno1MRdCEykVNZMUkEVUkBEHUPZlZs7vD4REQGdwmANzXs/Hw0dyts/7GPPhxTmf8zkyQRAEEBEREUmMkdgFEBEREYmBIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYg0dvfuXbz33ns4ceKE2KW0GPfu3cPrr7+O9u3bw8LCAt27d8fWrVshCILYpRFRI7Af1E52djbefvtthIaGwsHBATKZDHPmzBG7rBoMQaSxu3fvYvXq1fzwa6iiogLPPPMMvvjiC0yZMgWbN29G165dsWDBAqxevVrs8oioEdgPaic5ORlr1qzBlStXEBAQIHY5dZiIXQCRodqxYwfi4+OxadMmvP766wCAefPm4fnnn8eaNWvw0ksvwd3dXewyiYiaTN++fZGTkwMHBwcoFAo4ODiIXVItvBJkwCoqKvDJJ5+gV69esLKyQps2bdCvXz9s2bKlZps5c+ZAJpPVu/+Dly1PnDiBTp06AQBWr14NmUwGmUwGDw8PrWqqPmZMTAyCgoJgZWUFNzc3rF27FgCQn5+PuXPnwtHREVZWVhgzZgxu3bpV5zgZGRl48cUX4eTkBHNzc3h5eeGtt95CSUlJzTZbt26FTCbDgQMH6uyvVqvh5uaGXr161Vp+7tw5TJw4Efb29jA3N0fXrl3x4YcfQqlUanWeAPDdd9/BysoK8+bNq7V86dKlqKysRHh4uNbHJCLtsB8Utx+0trZudsGnFoEMUnl5uTBs2DABgDBixAhh3bp1wubNm4X58+cLISEhNdvNnj1baOjbAIAwe/ZsQRAEQS6XCxs2bBAACBMnThS++eYb4ZtvvhH27dunVV0ABD8/P8HW1lb4xz/+IXz++ec1dW7cuFHo3bu3MHHiROGzzz4Tli1bJhgbGwtPP/10rWNkZGQIDg4OgpmZmbB06VLhs88+EyZPniwAEIYMGSJUVlYKgiAIeXl5grm5ufD888/XqePo0aMCAOHTTz+tWXbw4EHBzMxM8PX1FdasWSN88cUXwuzZswUjIyNh0qRJWp2nSqUSLC0thYEDB9ZZV1ZWJshkMq2PSUTaYT8obj/4sDt37tT692wOGIIM1Nq1awUAwsqVK+usU6lUNX/X9MMvCIJw7do1AYCwatWqRtcFQJDJZMLp06drlpWXlwvOzs6CTCYTXn/99VrbL1u2TAAgJCUl1SybPn26AECIioqqte3f//53AYCwY8eOmmWTJk0SzM3Nhby8vFrbzpw5UzAxMRFu374tCIIglJaWCk5OTsLgwYNrOo9qn376qQBAOH78uMbnqVAoBADCCy+8UO96BwcHISgoSOPjEZH22A9WEasffFhzDEG8HWagdu3ahXbt2uHdd9+ts87ISNz/7UFBQejfv3/N12ZmZggMDIQgCFi8eHGtbQcPHgwASElJAe5fvj1w4AB69+6NZ599tta2K1euhJGREfbt21ezbPbs2SgvL69166moqAj79u1DaGgoHB0dAQDHjh3D7du38dJLL+Hu3btQKBQ1f6rbOXr0qMbnWH052tzcvN71FhYWtS5ZE5HusR+sIlY/2BJwYLSBSklJQa9evWBhYSF2KXV4enrWWdauXTsAqLnf/vDy3NxcAMCdO3dQVFSE7t271zmGra0tXFxckJ6eXrOs+gO+c+dOvPrqqwCAyMhIFBcXY9asWTXbJSYmAgBefvnlBuu+ffu2xudoZWUFACgvL693fVlZWc02RNQ02A9WEasfbAkYgiSuocGAjRkApyljY2Ot1zV2Xh0TExNMnz4dGzduRGpqKry9vbFz5060a9cO48aNq3P8devW1RkkWM3V1VXjdtu1awdLS0tkZWXVWVdeXg6FQoGhQ4c26pyISLfYD9Y+vq76wZaAIchAdenSBUlJSSgvL2/wlgzu/9YAAHl5eTV/B1Drt4hqDXUU+uTg4ABra2tcvny5zrr8/HxkZ2fX+fDOnj0bGzduxM6dOzFv3jycOHEC8+fPr/Xv0rlzZwBAq1atMHz48Ceu08jICH369MHvv/9e5//B2bNnIQgC+vXr98TtEFHD2A/+RYx+sCXgmCADNWPGDOTn5+ODDz6os+7B3ya6dOkCAIiOjq61zb/+9a86+7Vu3Rq431GIxcjICGPHjsXvv/+Ow4cP11r38ccfQ61WY+LEibWW9+rVC35+fvj222/xzTffQK1WY/bs2bW2GTlyJBwdHfHxxx/Xe36lpaUoLCzUqtZp06ahpKQE27dvr7V848aNMDExwZQpU7Q6HhFph/3gX8TqB5s7XgkyUEuWLMGPP/6IDz74APHx8RgxYgQsLCxw+fJlJCcn13zYp02bhrfeegvz589HUlISbG1tcfjwYSgUijrHtLOzg7e3N77//nt4eXnByckJrVq1wtixY/V6bmvWrMGxY8cwYcIELFiwAN7e3jh58iTCw8MxZMiQOh9s3P8taPny5Vi7di26dOmCAQMG1FrfqlUr7Ny5ExMmTEDXrl3x8ssvw9vbG3fv3kVSUhL27t2Lffv2YdiwYRrXOW/ePPz3v//FG2+8gYyMDPj4+ODQoUPYt28f3nnnHa3nFiEi7bAfrE2MfhBATQitfhjk0qVLNcuGDBmCIUOGPMG/xBMS+/E0ajqlpaXCBx98IPj6+grm5uZCmzZthH79+gmfffZZre1Onz4tBAcHC+bm5oKdnZ0wb948IT8/v95HGc+cOSMEBwcLVlZWAgDB3d1dq5oaejyyoUdUjx8/LgAQ/vvf/9Zanp6eLsycOVNwcHAQTE1NhU6dOgkrV64UiouL621XLpcLJiYmAgDhgw8+aLC+hIQEYcaMGYKrq6tgamoqODo6CkFBQcL7778v5ObmanWugiAI+fn5wsKFCwUXFxfBzMxM8PHxETZv3iyo1Wqtj0VE2mM/+Bex+kEADf55kqkGdEEm8E2OREREJEEcE0RERESSxDFB9MTu3LkDlUr1yG1at25dM6CwJSsqKkJRUdEjtzE2Nm7e78ohIp1jP1hbS+kHeTvsAYIg4Ndff8WBAwcQGxuLpKQkFBYWwtbWFgEBAZg/f36tORWoioeHB65fv/7IbVatWoX33ntPbzU1lffeew+rV69+5Dbu7u7IyMjQW01EJD72g7W1lH6QIegBP//8c83cCDKZDF5eXmjTpg1SU1Nx79494P5Mmjt27GgWc0U0F3FxcSgtLX3kNp6enrVmSI2Pj9eqDYVCgb179+K5556Dvb29RvsEBARo1YYm0tPT65075EGWlpYYOHCgztsmouaL/WBtLaUf5O2wBwiCAE9PTyxbtgxTp06t+SZTqVTYvHkz3njjDXz11Vfo27cvFixYIHa5zYY+vtEVCgV27NiBIUOGaPzhbwoPd2JSUVauRHGpEtatTGFm2vBMt4ZKpVKjoLgSJsYytLYyldwvQYIgoLhUiYpKNdq0NoWxMYeTPoz9YMvEEPSAwMBAJCUlwdTUtNZyY2NjLF26FElJSdi2bRu2b9/OEEQGr6RUie8Pp+Pz8EScv/LXfCmD+zhhwRQfPDfcw6ADkSAI+O2PHHwenogfjl5DRaUaAODiYIV5z3XF/Eld0d6pldhlNqnbuaXYEZmMbRFJuCkvBgCYmMjw3NMeWDDFB0P6OksuEJJhMfg4r1AoEBYWBm9vb1hYWKBDhw5YsmQJiouLMXfuXMhkMmzZsgUAYGNjUycAPWjkyJEAgOTkZL3VTySG3xMV6Dz2B8xdFVsrAAFA7IXbmPbmCXSfuBcp1++JVmNTKi1TYvLyGAycdRC7otJqAhAAZN8pwfvbfodHaDj+E5Ekap1NaVdUKjqO+B7vbDlfE4AAQKkUsOfINQx7+RBGLzyKwuIKUeskehIGHYIuXryInj17Yt26dZDL5fD19UVlZSU2bdqEKVOm1Lwxt6EXxT2srKwMeOAN4USGKOFqHobNPYRbOSWP3C71RgGGvBSFjCzDmka/slKNiUujERn96EGdSpWA+e/H4Ys9iXqrTV++PZiKmSt/qRX+6vPTqUyMXngUZeVN96JRoqZksCFIoVBg7NixkMvlWL58ObKzs3HhwgXI5XKsXbsWUVFRiI+Ph0wmg5+fn0bHDA8PBwAMHjy4iaunh1lbWyM0NBTW1tZil2LQBEHA1DePo6CoUqPt5YpSvPxubJPXpU//3nUZR37N0nj7hWt+Q9rNgiatSZ+y75Ro9f809sJtfLTjUpPWRFXYD+qewYagxYsXIzMzE4sWLcL69etrfdOEhYXB398fSqUSHh4esLGxeezxDh06hP3799fsT/rVvn17vP/++2jfvr3YpRi0E/HZuJJ2V6t9jsdnIzFdu32aK7VawOfh2l3ZUasFbPvBcG6L/ScyGZXKR18Betj2yCRUPuaqET059oO6Z5AhKDExEeHh4bC3t8dHH31U7zZ9+/YFAPj7+z/2eGlpaXjxxReB++EqODi4zjbXrl3DuHHjYG1tjXbt2mHWrFnIzc194nOhKuXl5bh58ybKy8vFLsWgbWvkGBdDCQHRp7NwrRG3977cdxUVlY+eKK8lUKsFbG/E94BcUYoDJx49Rw49OfaDumeQT4ft3r0barUaM2bMaHB2TktLS0CDECSXyxEaGoq8vDyMGDEC69evr7NNYWEhQkJCYGtri927d6O0tBRhYWEYM2YM4uLiYGTUuKzZr18/yOXyRu3b3E2aNEmr7XNycrB7925MmzYNjo6OGu0zceLERlYnXbdtFgAmTlrv98XX+xGxWbv/p81RkXkQ0CpU6/3y7pXD3bMnjIWWfVtMLbNAdruVjdr3pdfewZKyX3RekyFjP6gbzs7OOHfuXKP2NcgQFBMTAwAICQlpcJvMzEzgMSGoOvikpqZi4MCB2LdvX71Pj23fvh1ZWVk4efIkOnbsCABwc3NDcHAwDhw4gAkTJjTqPORyObKyNB+b0JIUFxdrsNVfqichKy0t1XhfQ/23a1KthEb1CuUVasP493YoBhr51Ls8RwFU3NF1RfplYgO0a9yuhUUlKLxtAN8DesR+UHwGGYKqpy53d3evd71SqURcXBzwiBBUUFCA0NBQJCQkoE+fPoiKimrwqbCDBw9i0KBBNQEIAIKCguDp6Ykff/yx0SHI2dm5Ufu1BK1aafeTpvoDb2lpqfG+vG+uvTtGFWjMA88WpkrYGcC/d7G5CRo7usnF0QZGgpmOK9IvAca4JagBmfZXr9u0MkZrA/ge0Cf2g7rxJD8rDTIEVX+jNDSFeXh4OBQKBaytrdGpU6c660tKSjBmzBjEx8fDx8cHR44cQZs2bRps78qVK5g8eXKd5d27d8eVK1cafR6NvbzXEmg7XXxSUhJ2796NUaNGoVu3bhrts3HjxkZWJ12f7kzA8vVntd7vq08XYNqz/2qSmvTpdm4pOjzzvdYDg4cPcMWx7alNVpc+TVwajf/FaDe+RyYD/oj9L9xd+dSSNtgPis8gB0ZXp8ILFy7UWZednY0VK1YAAPz8/OrMdlpRUYGJEyciNjYWXl5eiI6Ofuz05Pn5+Wjbtm2d5ba2tsjLy3vCsyHSn5cmdIGlhXazQDvaWuC54R5NVpM+OdlZYtIz2p/Lgik+TVKPGBZO1f5cxgzpyABELZJBhqDql6CuXbsWV69erVkeHx+PkJAQKBRVM+A+PEmiSqXC9OnTcfToUbi5uSE6Ohqurq56rp7q061bN5w9e1bj336ocdrZmOPNlzSbN6va6gV9YG5mOK/PeOtv/mhtpflF8uBejhg7tKMGW7YMTwW6YvgAzfs9C3NjvPuqZhPO0pNhP6h7BhmCwsLCYGdnh5s3b6J79+7o2bMnOnfujMDAQHh6euKpp54C6hkPtGfPHkRGRgIAzMzMMHPmTAwaNKjePw8+tdWuXTvcvVt3JEFeXh5sbW2b/HyJdOndV3vjlcmadbLvvtIbr75gOFdBAKBHZ1v8b+MzaGX5+CDUu5sd9v/7GZiYGE5XamQkQ8S/nsYAP4fHbmthbow9655Cv+6P35aoOTKcT+4D3NzcEBsbi9GjR8PCwgIZGRmwtbXFtm3bEBUVVXN16OEQ9ODcC+np6YiLi2vwT/UrNADAx8en3rE/V65cgY+PYf2AEMv169fx8ssv1wx6p6Yjk8mw9Z1gbH93ILp1qn8sXO9udghfF4LVC/vovT59eHqAK+J2jsGEp9xhZFT3BaG2bczx99k98ct/n4V9OwtRamxKbazNELPjWbz1N3841HN+MhkwekgHnPzvaIwdZjhXwZo79oO6JxMEQRC7CH0qKiqCjY0NZDIZCgsLdfIesPXr1+Ott95Ceno63NzcAABnzpzBgAEDsHfvXknM06CtxgwInDVrFnbu3KnxpeCAgIBGVkfVBEHA8bPZmLA0GoXFlbBpZYqj20IR2NNBMm8PvykvQsSxDLz72XkUlSjRzsYMWdHTYGlhkM+V1FFeocK+nzMwf/UpFJYoYdPaFBf3TEQnN44BelLsB8VnkFeCHuXy5csQBAGdO3fW2YtQ58+fDxcXF4wfPx4HDx5EREQEpk2bhsDAQIwfP14nbRCJQSaT4an+rrBpVTU/lnUrU/T3c5RMAAKADs6tsezFHmjTuurxdysLE8kEIAAwNzPG1FFesLl//tZWpgxAZDAkF4ISEhIADV+XoSkbGxvExMTAxcUFU6dOxd/+9jcEBwfj4MGDjZ4tmoiIiJqWdH6dua8pQhAAeHl54eDBgzo9JhERETUdyV2maKoQRE3LxcUFq1evhouLi9ilEBGJgv2g7knuSlD1e8WoZWnTpg1GjRoldhlERKJhP6h7krsSRC1Tfn4+fvjhB+Tn54tdChGRKNgP6h5DELUIt2/fxrp163D79m2xSyEiEgX7Qd1jCCIiIiJJYggiIiIiSWIIIiIiIkliCKIWwcrKCv3799fZLN9ERC0N+0Hdk9wj8tQydezYEZs3bxa7DCIi0bAf1D1eCaIWQaVSoaioCCqVSuxSiIhEwX5Q9xiCqEVISUnBU089hZSUFLFLISISBftB3WMIIiIiIkliCCIiIiJJYggiIiIiSWIIIiIiIkniI/LUInh7e+PIkSOwtrYWuxQiIlGwH9Q9hiBqEUxMTNCuXTuxyyAiEg37Qd3j7TBqETIzM7F8+XJkZmaKXQoRkSjYD+oeQxC1CEVFRYiNjUVRUZHYpRARiYL9oO4xBBEREZEkMQQRERGRJHFgNIkiICBAq+3d3NywatUqDB8+HC4uLk1WFxGRvrAfFB9DELUILi4ueO+998Qug4hINOwHdY+3w4iIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIiEiSGIKIiIhIkjhZIumUIAhQlpaLXYZWTCzNIZPJxC6DiIj0jCGIdEpZWo5dXjPFLkMrM9K+hamVhdhlEBGRnvF2GBEREUkSQxARERFJEkMQERERSRJDEBEREUkSQxAR1UsQBGTKi3Hg+HUUlyoBAMWlShyKvYnbuaVil0dE9MT4dBgR1RAEAXG/38bWPUmIPp2FnLyyWuvvFlZg9MKjAID2jlYIHeiGBVN80MfXXqSKiYgajyGIiAAAB45fx//77AIuXc3TaPusnBJ8ue8qvtx3Ff17OuDjpQEYFuDS5HUSEekKQxCJzjmoO0L3rq61rLK4FAXp2UiLOInELw9BUKlFq8/Q5d0rx+KPf8OuqLRGH+NMwh2EzD2EhVN98PHSALS2MtVpjURETYEhiJqN9L2xyIy5AMhksHRoC+/JQxG4eg7adG6P31ZsE7s8g3Q5NR8jXz2MrJwSnRzvs+8Tcey3Wzi6bSTcXa11ckwioqbCgdHUbOQmXEN6ZCzSI07i8tYDiBr9FoqzFOgy/WmY29mIXZ7BSbiahyEvReksAFW7ev0eBs+JwvVbhTo9LhGRrjEEPUAQBMTFxeHNN99EcHAwbG1tYWpqCicnJ4wZMwYHDhwQu0RJUZaW486FFMiMjGDj7iR2OQYl+04JRrx6GHn3muY9bzflxXjmlcMoKKpokuMTEekCQ9ADYmJiMGjQIHzyySc4ffo07Ozs4O/vj/LyckRFRWH8+PGYO3cuBEEQu1TJsPaoCj/ld4vELsVgCIKAV/8ZB7lC88fc43ePw81jUxG/e5zG+6RcL8CKT882skoioqbHEPQAQRDg6emJzZs3IycnBykpKTh37hxyc3OxYcMGyGQyfPXVV9i6davYpRokE0szmNtaw9zOBm27dUT/NX+DXU9P3LmQgoL0bLHLMxi7otJw4MQNrfZxtreCm1MrONtbabXf9ohkRJ/O0rJCIiL94MDoBwQGBiIpKQmmprWfbDE2NsbSpUuRlJSEbdu2Yfv27ViwYIFodRqq3mFT0Ttsaq1lGVGncWblDtFqMjSVlWq8uTFer20uX38WF3+YAJlMptd2iYgex+CvBCkUCoSFhcHb2xsWFhbo0KEDlixZguLiYsydOxcymQxbtmwBANjY2NQJQA8aOXIkACA5OVlv9UtJ8jdHceSF1Tg240Oc++c3KMsrRCsXO6jK/xpXYmRmgvEnNsBvyXO19h20cSGG73pbhKpblgMnruOWjgdCP86lq3n47Y8cvbZJRKQJg74SdPHiRYwaNQpyuRytWrWCr68vbt26hU2bNiEtLQ15eVWTwvXq1Uuj45WVVc2ea2Wl3S0B0kxBuhzZsQkAgKyY33H7bBKe3f9PBK19Bb+8tgEAoK5Q4tTizQjd9z5uHjuP/CvX0TE0AG7P9MP+p94Q+Qyav8/DE0Vp97PvExHci4Pbiah5MdgrQQqFAmPHjoVcLsfy5cuRnZ2NCxcuQC6XY+3atYiKikJ8fDxkMhn8/Pw0OmZ4eDgAYPDgwU1cPQHAnXPJSIs4iU4TBsKhX9ea5bmX0nF56wEM3vQ6rFxsEbTuVZx5awdKb+eLWm9zV1RSiePx4oytOhR7kw8UEFGzY7AhaPHixcjMzMSiRYuwfv16WFv/NXFbWFgY/P39oVQq4eHhARubx89Bc+jQIezfv79mf9KPPzZEQK1UofeKKbWXb4yEWqXCuGPrII/7E9f2x4lWY0txMSkXYuWQu4UVSM/kvEFE1LwYZAhKTExEeHg47O3t8dFHH9W7Td++fQEA/v7+jz1eWloaXnzxReB+uAoODq61vjpsBQYGwtzcnANAdagwQ45r++PgOsQPjv19apYLShXuxCfDwq4NUsOPi1pjS3EhMVfU9s9fUYjaPhHRwwwyBO3evRtqtRozZsxA69at693G0tIS0CAEyeVyhIaGIi8vDyNGjMD69evrbJOamorIyEg4OzsjICBAR2dB1S79u+qqz4NXgxz7+8B7SggSvzyEwPdfgrGFmag1tgQ3ssWda+lGdrGo7RMRPUwmGOCN+kGDBiEuLg7/+9//MH78+Hq3mTBhAvbv34+9e/di4sSJ9W6Tl5eHYcOGISEhAQMHDsTRo0frHRStVqthZFSVJ9977z2sXr1aJ+Mf+vXrB7lc/sTH0SdTwQir1IFN2oaJlQXG/bweV7YdRNL/HcGofe9D8Uca4ld93ajjrTY6i0qZ4b+g9a7Vsyi26F/vuvjd4x45B5CzvSVMjI2gVKkfO8miXFGCgGl1Z1e3LvkZNmUnG1F585Dd9g2ojdrASH0PLnc/FbscvZP6+VPz5ezsjHPnzjVqX4N8Ouz69esAAHd393rXK5VKxMVVjSFp6EpQQUEBQkNDkZCQgD59+iAqKqrBp8KqA5CuyeVyZGW1rInmzGTGQBM/BBTw3iwU3chB0teHAQCnlmzBuOj1uPHTGdw+rf3TT7eyb6FCUDVBpc2Myz3Aov5V1ZMhPo6JsZFG29Wn8F4+ChUt6/u5FmsVYASoVaoW97nUCamfPxkkgwxBxcVVl91LS+v/jTU8PBwKhQLW1tbo1KlTnfUlJSUYM2YM4uPj4ePjgyNHjqBNmzZNXvfDnJ2d9d7mkzIVjIAmvKjS/qne6DRuIPY/vbxmWeH12zj/4S4M3LAQB55aDmWpdu/DcnVxlcSVoEILIxQ0sE6uePTcQdpeCapPW2tjtDJvr3G9zU22sTHUAIyMjeHSvuWeR2NJ/fyp+XqSn5UGGYKcnZ2Rn5+PCxcuICgoqNa67OxsrFixAgDg5+dXZxBzRUUFJk6ciNjYWHh5eSE6Ohr29vZ6rb9aYy/viamypAy7vGY22fGzYn7Hd91m11me9PXhmitD2rqachWmVg1cIjEgR+IyEfrakXrX1Xf76kE3j02Fm1MryBWl6PDM941q/5fDO+HXxbZR+zYHbsN3IyunBC7OLsj8M1PscvRO6udPhskgB0YPHz4cALB27VpcvXq1Znl8fDxCQkKgUFQ9pfLwJIkqlQrTp0/H0aNH4ebmhujoaLi6uuq5eqKm0ddXnDAPABbmxvD1bCta+0RE9THIK0FhYWH47rvvcPPmTXTv3h3dunVDWVkZUlNTMWrUKHh4eODIkSN1xgPt2bMHkZGRAAAzMzPMnNnwFY2IiIgWebuKpMu+nQV6eLfDn6n6n1RycB8nmJgY5O9cRNSCGWQIcnNzQ2xsLFasWIFffvkFGRkZ8PX1xbZt2zBv3jx4eXkB9QyKLi//ayxJeno60tPTG2yj+hUaRC3Jqy90w6I1v+m/3ck+GmxFRKRfBhmCAMDHxwcHDx6ss7yoqAgZGRkwMjJCjx49aq2bM2cO5syZo8cqifTrxTHe+MfGcygqqdRbm66OVhg3rKPe2iMi0pTBhqCGXL58GYIgoEuXLjp9EWpERAQA4MqVK7W+9vDwQL9+/XTWDtGTsGlthuWzemD1F7/rrc135vXirTAiapYk1zMlJFS9pVyT12VoY/LkyZg8eTJ++OGHWl9v2bJFp+1IlfvoARjw8bxay7ynhGBOdgQ6hnKWbm28Nc9fb09phQS44JXJ3fTSFhGRtiR3JaipQpABTrzdrHR8tj/SfjhR83VrNwd0mTEcOeeSRa2rJTIzNcbX/xyM/jN+RKVSs/mRquf+edx8Qg+ybmWKL1cPhpER36VHRM0TQxA1C2Y2Vhh/fAOMLcxQcksBI3NTWHd0QlrEL/jtH/+BU0BXnFpy/6qaTIbgf72GM+98iYBVdecMosfr7WOP3WuH4YUVx6FWPz7AP24eoYeZmxnjwKZn0MnN+gmqJCJqWpILQTExMWKXQPWoKChB+r5YVBaX4dKGCLgO84ff4ufw69+/gOtQf+TEJ0NQVr3aovsrY5ETn4TcSw0/vUeP9/wznbBnHTDtzRMaXxHSRGsrUxzYNBzDAlx0dkwioqYguTFB1HzZ9uiEvIRrAAA7Py/k/Vn1946hAbj+01kAQNuuHeA+uj/+2Bgpaq2G4vlnOiFu5xj4eulmIsPAHg44+904hARyklEiav4YgqjZsO3uURN87Pw8kXs/ELkO64WsmKqnmZz6+6B1B0c8/+tmTDr7ORz6dEbQulfRddYIUWtvyQJ6OOD89+Oxcq4/LMyNG3WM1lam+HhpP8TtHAMfzgxNRC2E5G6HUfNk5WwLCAJK5HkAAFsfd1z6dyTse3fGvZQsKEuqJqdM3nkUyTuP1uwXGrkaV/5zEDcOx4tWuyGwMDfBmiX9sHx2D3y9PwVb9yQi7WbhY/fr4d0OC6b4YOYYL1i3MtNLrUREusIQRM2CbY9ONVeBAKCioBjdZo9EeV4hbhw+K2ptUmLX1gLLZ/fEG7N64PqtIpy/osD5K7mQ55agolINczNjtHe0Qj9fe/T1tYero1WdlxATEbUUDEHULGRGn0dm9Pmarw+O+gcAYPyJDTjy/KoG9zv8iHXUeDKZDB7treHR3hrPP9NJ7HKIiJoEQxA1a/uHLRO7BCIiMlAcGE1ERESSxBBEREREksQQRERERJLEEERERESSxIHRpFMmluaYkfat2GVoxcTSXOwSiIhIBAxBpFMymQymVhZil0FERPRYvB1GREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJLEEERERESSxBBEREREksQQRERERJJkInYBZFgEQYCytFzsMrRiYmkOmUwmdhlERKRnDEGkU8rScuzymil2GVqZkfYtTK0sxC6DiIj0jLfDiIiISJIYgoiIiEiSGIKIiIhIkhiCiIiISJIYgoiIHkOtFiAIAnD/CUgiMgx8OoyI6CHXbxUiMjoD5y4rcO6KAinXC2rW3bpTiv7TD6Cvrx2Ceznhuac9YGXJrpSoJeInl4jo/hWeY79lYcvuRETF3oRa3fAVn7N/3sHZP+9g654kvG79G+aM74zXp/vC081GrzUT0ZNhCCLROQd1R+je1bWWVRaXoiA9G2kRJ5H45SEIKrVo9ZHhy8ktxWsf/Iq9P2dove/dwgps/PYyvvghCR8s6oulM7vD2JgjDYhaAoYgajbS98YiM+YCIJPB0qEtvCcPReDqOWjTuT1+W7FN7PLIQEWdvIHZ75xE7t0nm+m8rFyFv//rLCKjM7Bn3VNwc26lsxqJqGnw1xVqNnITriE9MhbpESdxeesBRI1+C8VZCnSZ/jTM7XibgXRvV1Qqxi+JfuIA9KDf/sjBoDkHkZ5ZoMHWRCQmhqCHCIKAuLg4vPnmmwgODoatrS1MTU3h5OSEMWPG4MCBA2KXKBnK0nLcuZACmZERbNydxC6HDMz/YjIw6+2TUKl0/7TX9VtFGD7vMG7lFOv82ESkOwxBD4mJicGgQYPwySef4PTp07Czs4O/vz/Ky8sRFRWF8ePHY+7cuXxMVk+sParCT/ndIrFLIQNyI7sIs94++cjBz0/qWlYhXno3ln0FUTPGEPQQQRDg6emJzZs3IycnBykpKTh37hxyc3OxYcMGyGQyfPXVV9i6davYpRocE0szmNtaw9zOBm27dUT/NX+DXU9P3LmQgoL0bLHLIwMhCALmrz6FwuJKrfaL3z0ON49NRfzucRrvc/TXLHy592ojqiQifeDA6IcEBgYiKSkJpqamtZYbGxtj6dKlSEpKwrZt27B9+3YsWLBAtDoNUe+wqegdNrXWsoyo0zizcodoNZHh+f6ndBz5NUvr/ZztreDmpP1g5zfWn8HEp91h19ZC632JqGlJ4kqQQqFAWFgYvL29YWFhgQ4dOmDJkiUoLi7G3LlzIZPJsGXLFgCAjY1NnQD0oJEjRwIAkpOT9Va/VCR/cxRHXliNYzM+xLl/foOyvEK0crGDqryiZhsjMxOMP7EBfkueq7XvoI0LMXzX2yJUTS3Nv3dd1mt7hcWV+Hp/il7bJCLNGHwIunjxInr27Il169ZBLpfD19cXlZWV2LRpE6ZMmYLExEQAQK9evTQ6XllZGQDAysqqSeuWooJ0ObJjE5AV8zv+/Hw/fp79Mex7eSFo7Ss126grlDi1eDN6Ln4O7XzdAQAdQwPg9kw/xL3xuYjVU0tw/ooCZxLu6L3drXsSm3T8ERE1jkGHIIVCgbFjx0Iul2P58uXIzs7GhQsXIJfLsXbtWkRFRSE+Ph4ymQx+fn4aHTM8PBwAMHjw4Caunu6cS0ZaxEl0mjAQDv261izPvZSOy1sPYPCm12HlYougda/izFs7UHo7X9R6qfn75sdUUdpNu1mIXy/eFqVtImqYQYegxYsXIzMzE4sWLcL69ethbW1dsy4sLAz+/v5QKpXw8PCAjc3j56E5dOgQ9u/fX7M/Nb0/NkRArVSh94optZdvjIRapcK4Y+sgj/sT1/bHiVYjtRxn/9T/VaBq8ZcVorVNRPUz2BCUmJiI8PBw2Nvb46OPPqp3m759+wIA/P39H3u8tLQ0vPjii8D9cBUcHFxrfUREBJ5//nm4u7vDysoK3bp1w9tvv42iIj7a/SQKM+S4tj8OrkP84Njfp2a5oFThTnwyLOzaIDX8uKg1UsugVKpxMTlXtPbPX2EIImpuDDYE7d69G2q1GjNmzEDr1q3r3cbS0hLQIATJ5XKEhoYiLy8PI0aMwPr16+tss379ehgbG2PNmjX46aef8Nprr2Hr1q0IDQ2FWs33Xj2JS/+uuurz4NUgx/4+8J4SgsQvDyHw/ZdgbGEmao3U/F3LKkRpmUq09i+n8XYtUXNjsI/Ix8TEAABCQkIa3CYzMxN4TAiqDj6pqakYOHAg9u3bV+/TYz/++CMcHBxqvh46dCgcHBwwY8YMnDp1CkOGDNH6HPr16we5XK71fmIyFYywCoFa7SP/7TK+dpnU4Pp7KVnY6fZXADKxssCgjQtx/sNdSPq/Ixi17330WTkd8au+blTNXTp3QaWMQdXQVRg7A21eq3dd/O5xcLZ/9MMOzvaWNf+9eWxqg9vJFSUImFZ3ZvmEyylwc3PTuu7mIrvtG4BRG2TLs1v0eZDhcXZ2xrlz5xq1r8GGoOvXrwMA3N3d612vVCoRF1c1jqShEFRQUIDQ0FAkJCSgT58+iIqKavCpsAcDULV+/foBALKytJ+TBPevQDV2X7GYyYyBJn7DRcB7s1B0IwdJXx8GAJxasgXjotfjxk9ncPt0otbHu5V9CxWCeFcISE8sZECb+ldpMweQibFRo+YLUikrW9znuRZrFWAEqFWqln0eRA8w2BBUXFz1zp7S0tJ614eHh0OhUMDa2hqdOnWqs76kpARjxoxBfHw8fHx8cOTIEbRp00AP2oDjx6vGqvj4+Dx22/o4Ozs3aj8xmQpGQBNeVGn/VG90GjcQ+59eXrOs8PptnP9wFwZuWIgDTy2HslS7l2G6urjySpAEKI3aoaHns+SKksfu72xvCRNjIyhVasgV9fcrjzqWqbEAx/btNa63uck2NoYagJGxMVxa8HmQ4XmSn5UywUBfbOPr64vExERs2bIFCxcurLUuOzsbffv2RXZ2NgYOHIhTp07VWl9RUYGxY8fi6NGj8PLywsmTJ+Hq6qpV+1lZWejduzf69u2Ln376SSfn1BJUlpRhl9dMscvQyoy0b2Fqxdl8DZ1SqYZN8M5Gjwu6eWwq3JxaIfN2MTo8873W+88c44Vv1gxrVNvNgdvw3cjKKUF7RytkRk8TuxwinTDYgdHDhw8HAKxduxZXr/717p74+HiEhIRAoah6UuPhSRJVKhWmT5+Oo0ePws3NDdHR0VoHoKKiIowfPx5mZmb46quvdHI+RPRkTEyM0KurnWjt9/WxF61tIqqfwd4OCwsLw3fffYebN2+ie/fu6NatG8rKypCamopRo0bBw8MDR44cqTMeaM+ePYiMjAQAmJmZYebMhq9qRERE1LkMV1pairFjx+LatWuIjY2Fi4tLE50hEWmrf08H/PZHjihtB/asO26QiMRlsCHIzc0NsbGxWLFiBX755RdkZGTA19cX27Ztw7x58+Dl5QXUMyi6vPyv8STp6elIT09vsI3qV2hUq6ysxKRJk3Du3Dn8/PPP8PX11fl5EVHjvTjGGxu/1e+7wwDAu6MNBvg56r1dIno0gw1BuD8g+eDBg3WWFxUVISMjA0ZGRujRo0etdXPmzMGcOXO0bqt6TqKff/4Zhw4dQmCgdo+JE1HT6+NrjwF+Djh9Sb8zR7/2QjcYGcn02iYRPZ7Bjgl6lMuXL0MQBHTu3FlnL0JduHAhfvjhByxbtgxWVlY4ffp0zZ87d8Sbqp+Ialv2Yg8NttKdNtZmmDO+i17bJCLNSDIEJSQkABq+LkNT1U+AffzxxwgKCqr1JyoqSmftSJX76AEY8PG8Wsu8p4RgTnYEOoYGiFYXtTyTR3TCs4P1N9nfhhX9YdvGXG/tEZHmDPp2WEOaIgRlZGTo7FhUV8dn+yPthxM1X7d2c0CXGcORcy5Z1Lqo5ZHJZNj+7iB0f24v7hVWaLxf9fw/mswpVO3ZwW6YM75zo+okoqbHEETNgpmNFcYf3wBjCzOU3FLAyNwU1h2dkBbxC377x3/gFNAVp5ZsqdpYJkPwv17DmXe+RMCq2WKXTi1Qe6dW+HbNUExYGg2VSrOp0up7FcajeHWwxperB0Mm41ggouZKkiGo+r1i1HxUFJQgfV8sKovLcGlDBFyH+cNv8XP49e9fwHWoP3LikyEoqya56/7KWOTEJyH3UsNP7hE9zpihHbHro2GY+dYJKJW6nTPW080a0dtHPfZ9ZEQkLkmOCaLmybZHJ+QlXAMA2Pl5Ie/Pqr93DA3A9Z/OAgDadu0A99H98cfGSFFrJcMwJdQTP24aAUdb3c0YPriPE2K/Hg2P9tY6OyYRNQ2GIGo2bLt71AQfOz9P5N4PRK7DeiEr5ncAgFN/H7Tu4Ijnf92MSWc/h0Ofzgha9yq6zhohau3UcoUOcsPlfc9jaqjnEx3H0sIY/35zAE58NRqujtq/YJWI9E+St8Oo+bFytgUEASXyPACArY87Lv07Eva9O+NeShaUJVUTUybvPIrknUdr9guNXI0r/zmIG4fjRaudWj77dhbY/UkI5k/qis++T8T/jl/XeKyQXVtzzJ3YBQum+MDdlVd/iFoShiBqFmx7dKq5CgQAFQXF6DZ7JMrzCnHj8FlRayPpCAl0RUigK7JuFyMyOgPnryhw/ooCV68XoFKpBgBYtzKFfxdb9PW1R5C/I8aHdISFObtSopbIYN8iT+LQ9Vvkx5/YgCPPr0JZboHOjvkwvkWeNKFUqmFkJJPszM98izwZIv76Qs3a/mHLxC6BCLj/FnoiMiz8VBMREZEkMQQRERGRJDEEERERkSQxBBEREZEkcWA06ZSJpTlmpH0rdhlaMbHkG76JiKSIIYh0SiaT8XFzIiJqEXg7jIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkyUTsAsiwCIIAZWm52GVoxcTSHDKZTOwyiIhIzxiCSKeUpeXY5TVT7DK0MiPtW5haWYhdBhER6RlvhxEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJPHpMCIiqqOiUoU/U/Jx/ooCf1zNQ969qqkv8gvK8eH2i+jra4++vnZwsLUUu1SiRmMIIiKiGonpd7F1TyL+70AKCooq66wvKVPhnS3na74eFuCCBVN8MCHEHaamvLlALQtDEInOOag7QveurrWssrgUBenZSIs4icQvD0FQqUWrj0gKbuUUY8GHv2L/8Rta7XciPhsn4rPh6miFTW8OwPPPdGqyGol0jSGImo30vbHIjLkAyGSwdGgL78lDEbh6Dtp0bo/fVmwTuzwigyQIAnYeSMXST07jbmFFo49zK6cEk5bHYEpoJ2xZGQz7dpyAlJo/XrukZiM34RrSI2ORHnESl7ceQNTot1CcpUCX6U/D3M5G7PKIDI5aLeCNdWcw5/+dfKIA9KDww9fQf8YBXMss1MnxiJoSQxA1W8rScty5kAKZkRFs3J3ELofIoAiCgGWfnMbGby/r/NjpmYUY+nIUbsqLdH5sIl1iCHqAIAiIi4vDm2++ieDgYNja2sLU1BROTk4YM2YMDhw4IHaJkmPtURV+yu+yMyXSpa3hidj03ZUmO/5NeTFGLzyK8gpVk7VB9KQ4JugBMTExGD58OABAJpPBy8sLnp6eSE1NRVRUFKKiovDyyy9jx44dfOt4EzCxNIO5rXXNmKCus0bArqcn7lxIQUF6ttjlERmMtJsFWPFpvFb7xO8eB2d7K8gVJQiYptkvhAkp+fjntt/xwev9GlkpUdNiCHqAIAjw9PTEsmXLMHXqVNjb2wMAVCoVNm/ejDfeeANfffUV+vbtiwULFohdrsHpHTYVvcOm1lqWEXUaZ1buEK0mIkMjCALmropFSZlSq/2c7a3g5tRK6/Y+/uoSnnvaA3187bXel6ip8XbYAwIDA5GUlIRFixbVBCAAMDY2xtKlSzF//nwAwPbt20Ws0nAlf3MUR15YjWMzPsS5f36DsrxCtHKxg6r8rwGbRmYmGH9iA/yWPFdr30EbF2L4rrdFqJqoZTl5Xo5fzsn11p5KJWDNjj/01h6RNgw+BCkUCoSFhcHb2xsWFhbo0KEDlixZguLiYsydOxcymQxbtmwBANjY2MDU1LTBY40cORIAkJycrLf6paQgXY7s2ARkxfyOPz/fj59nfwz7Xl4IWvtKzTbqCiVOLd6MnoufQztfdwBAx9AAuD3TD3FvfC5i9UQtw+fhiXpv83/HryPrdrHe2yV6HIMOQRcvXkTPnj2xbt06yOVy+Pr6orKyEps2bcKUKVOQmFjVGfTq1Uuj45WVlQEArKysmrRuqnLnXDLSIk6i04SBcOjXtWZ57qV0XN56AIM3vQ4rF1sErXsVZ97agdLb+aLWS9Tc3c4txd6fM/TerkolYMde/vJIzY/BhiCFQoGxY8dCLpdj+fLlyM7OxoULFyCXy7F27VpERUUhPj4eMpkMfn5+Gh0zPDwcADB48OAmrp6q/bEhAmqlCr1XTKm9fGMk1CoVxh1bB3ncn7i2P060Golairjfb0OpFERp+4Qeb8ERacpgQ9DixYuRmZmJRYsWYf369bC2tq5ZFxYWBn9/fyiVSnh4eMDG5vET8R06dAj79++v2Z/0ozBDjmv74+A6xA+O/X1qlgtKFe7EJ8PCrg1Sw4+LWiNRS3H+ikK0ti8kKqBWixPAiBpikCEoMTER4eHhsLe3x0cffVTvNn379gUA+Pv7P/Z4aWlpePHFF4H74So4OLjW+tjYWAwfPhwuLi4wNzeHm5tbrdtt9GQu/bvqqs+DV4Mc+/vAe0oIEr88hMD3X4KxhZmoNRK1BL8n5YrWdkFRJdJuFojWPlF9DPIR+d27d0OtVmPGjBlo3bp1vdtYWloCGoQguVyO0NBQ5OXlYcSIEVi/fn2dbfLz89GzZ0+88sorcHR0RGZmJj766CMEBQXhzz//hJubW6POo1+/fpDLW9YlZFPBCKsQqNU+8t8u42uXSQ2uv5eShZ1ufwUgEysLDNq4EOc/3IWk/zuCUfveR5+V0xG/6utG1dylcxdUyviCVjJ8OTbzAZP29a6rngeoIc72ljX/vXlsaoPbAWhwLqHgoSNhrszUum6iR3F2dsa5c+cata9BhqCYmBgAQEhISIPbZGZWfRAfFYKqg09qaioGDhyIffv21fv02Lhx4zBu3LhaywICAtC1a1dERkZiyZIljToPuVyOrKysRu0rFjOZMdDEb7gIeG8Wim7kIOnrwwCAU0u2YFz0etz46Qxun9b+6tut7FuoEDirLUmAparBXl/TeYBMjI0aNV8QACgU+UBxy+rTyLAZZAi6fv06AMDd3b3e9UqlEnFxVQNpGwpBBQUFCA0NRUJCAvr06YOoqCitngqzs7MDAJiYNP6f2NnZudH7isVUMAKa8KJK+6d6o9O4gdj/9PKaZYXXb+P8h7swcMNCHHhqOZSl5Vod09XFlVeCSBJyTI1Q2cA6uaLkkfs621vCxNgISpUackXpI7dt6FgOdm1h1rb+K1FEjfUkPytlgiAY3Eg1W1tb5Ofn49dff0VQUFCd9bt27cLMmTNhbW2Ne/fu1XkFRklJCUJDQxEbGwsfHx+cPHmy1uSJDVGpVFCr1bh+/TpWrlyJU6dO4dKlS3BwcNDp+TVnlSVl2OU1U+wytDIj7VuYWlmIXQZRk5u8/GdEHGvcI/I3j02Fm1MrZN4uRodnvm/UMW79PA0uDpxihJoPgxwYXZ0KL1y4UGdddnY2VqxYAQDw8/OrE4AqKiowceJExMbGwsvLC9HR0RoFIAAYOnQozMzM0LlzZ1y8eBExMTGSCkBE1Lz1FfHVFa6OVgxA1OwYZAiqfgnq2rVrcfXq1Zrl8fHxCAkJgUJR9Zjow5MkqlQqTJ8+HUePHoWbmxuio6Ph6uqqcbtffvklTp8+jd27d8PGxgYjRozAjRs3dHZeRERPQswQ1NeH7w6j5scgxwSFhYXhu+++w82bN9G9e3d069YNZWVlSE1NxahRo+Dh4YEjR47UGQ+0Z88eREZGAgDMzMwwc2bDt3UiIiLq3Ifs2rVqVuP+/fsjNDQUHh4e+OSTT2pey0FEJKaBvZzQ1toMdwsrNNhat8YM7aD3NokexyBDkJubG2JjY7FixQr88ssvyMjIgK+vL7Zt24Z58+bBy8sLqGdQdHn5XwNq09PTkZ6e3mAb1a/QaEjbtm3h7e2N1NTUJz4fIiJdsLI0wUsTOmPDN5f12q5Na1PMeNZLr20SacIgQxAA+Pj44ODBg3WWFxUVISMjA0ZGRujRo0etdXPmzMGcOXN00n5OTg6Sk5PRv39/nRyPiEgXXp3so/cQNHtcZ7Syavjl1ERiMdgQ1JDLly9DEAR06dJFZy9CnTlzJry9vdGrVy+0bdsWKSkp2LBhA0xMTLBs2TKdtEFEpAtdPNrgtRe6YeueJL20Z9fWHG/P0+wl1UT6ZpADox8lISEB0PB1GZoaMGAADh06hJdeegmjRo3CunXrMHjwYFy8eBHe3t46a0fK3EcPwICP59Va5j0lBHOyI9AxNEC0uohaok/eCISHa/2z6evalpVBcLKz1EtbRNqS3JWgpghBixYtwqJFi3R2PKqr47P9kfbDiZqvW7s5oMuM4cg5lyxqXUQtUWsrU3z9wRAMn/+Txm+Vr54A8XGTKj5oaqgnpoR6NrpOoqbGEETNgpmNFcYf3wBjCzOU3FLAyNwU1h2dkBbxC377x3/gFNAVp5bcf8pOJkPwv17DmXe+RMCq2WKXTtQiDe3ngl0fDcP0f5yASvX4IFTfu8AeZURwe3z9wZA6c7ERNSeSC0HV7xWj5qWioATp+2JRWVyGSxsi4DrMH36Ln8Ovf/8CrkP9kROfDEFZ9X6v7q+MRU58EnIvNfz0HhE93gsjPWFmaoRpb55AWbnu3p838Wl3fPfxMJibGevsmERNQXJjgqj5su3RCXkJ1wAAdn5eyPuz6u8dQwNw/aezAIC2XTvAfXR//LExUtRaiQzFhKc88McPExHcy/GJj2XdyhTb3x2IyE+fhoW55H7HphaIIYiaDdvuHjXBx87PE7n3A5HrsF7IivkdAODU3wetOzji+V83Y9LZz+HQpzOC1r2KrrNGiFo7UUvWxaMNTv53NDb9YwA6OGv/hngTExmmhnriz73PYd6kbrwFRi0Gozo1C1bOtoAgoESeBwCw9XHHpX9Hwr53Z9xLyYKypGpyyuSdR5G882jNfqGRq3HlPwdx43C8aLUTGQJjYyO8Pr07XnvBB1GxN/GfyGTE/X67wdmljY1l8PVsixdGdsLfnusKZ3u+F4xaHoYgahZse3SquQoEABUFxeg2eyTK8wpx4/BZUWsjkhITEyOMD3HH+BB3CIKAa1mF+D0xF/eKKqFUqWFpbozOHdvAv6stLC34I4RaNpkgCJo9H0mkgcqSMuzyavida9oaf2IDjjy/CmW5BTo75sNmpH0LUyuLJjs+ERE1T4zx1KztH8YZt4mIqGlwYDQRERFJEkMQERERSRJDEBEREUkSB0aTTgmCAGVpudhlaMXE0pzzmhARSRBDEBEREUkSb4cRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJP1/jwT81rYDlcQAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "execution_count": 11, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -184,6 +203,106 @@ }, { "cell_type": "markdown", + "id": "529493ef-f14e-4a97-ba11-f337ffc4381b", + "metadata": {}, + "source": [ + "### Generate subexperiments to execute and post-process results\n", + "\n", + "To estimate the expectation value of the full-sized circuit, several subexperiments are generated from the decomposed gates' joint quasiprobability distribution and then executed on one (or more) QPUs. The [`generate_cutting_experiments`](../api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) method will accomplish this by ingesting arguments for the `subcircuits` and `subobservables` dictionaries we created above as well as the number of samples to take from the distribution.\n", + "\n", + "The following code block generates the subexperiments and executes them using a local simulator. (To run these on a QPU, change the `backend` to your chosen QPU resource.)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "f395ca92-f7d5-4e2b-a989-782f8d439a63", + "metadata": {}, + "outputs": [], + "source": [ + "# Generate subexperiments\n", + "subexperiments, coefficients = generate_cutting_experiments(\n", + " circuits=subcircuits, observables=subobservables, num_samples=np.inf\n", + ")\n", + "\n", + "# Set a backend to use and transpile the subexperiments\n", + "backend = FakeManilaV2()\n", + "pass_manager = generate_preset_pass_manager(\n", + " optimization_level=1, backend=backend\n", + ")\n", + "isa_subexperiments = {\n", + " label: pass_manager.run(partition_subexpts)\n", + " for label, partition_subexpts in subexperiments.items()\n", + "}\n", + "\n", + "# Submit each partition's subexperiments to the Qiskit Runtime Sampler\n", + "# primitive, in a single batch so that the jobs will run back-to-back.\n", + "with Batch(backend=backend) as batch:\n", + " sampler = SamplerV2(mode=batch)\n", + " jobs = {\n", + " label: sampler.run(subsystem_subexpts, shots=2**12)\n", + " for label, subsystem_subexpts in isa_subexperiments.items()\n", + " }\n", + "\n", + "\n", + "# Retrieve results\n", + "results = {label: job.result() for label, job in jobs.items()}" + ] + }, + { + "cell_type": "markdown", + "id": "adbf1366-7f9d-47b0-967c-d26feb4bf7b1", + "metadata": {}, + "source": [ + "Lastly the expectation value of the full circuit can be reconstructed using the [`reconstruct_expectation_values`](../api/qiskit-addon-cutting/qiskit-addon-cutting#reconstruct_expectation_values) method.\n", + "\n", + "The code block below reconstructs the results and compares them with the exact expectation value." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "59a8a47c-4141-47c0-8eee-a73f95d5378b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reconstructed expectation value: 1.44399792\n", + "Exact expectation value: 1.59099026\n", + "Error in estimation: -0.14699234\n", + "Relative error in estimation: -0.09239047\n" + ] + } + ], + "source": [ + "reconstructed_expval_terms = reconstruct_expectation_values(\n", + " results,\n", + " coefficients,\n", + " subobservables,\n", + ")\n", + "reconstructed_expval = np.dot(reconstructed_expval_terms, observable.coeffs)\n", + "\n", + "\n", + "# Compute the exact expectation value using the `qiskit_aer` package.\n", + "estimator = EstimatorV2()\n", + "exact_expval = estimator.run([(qc_0, observable)]).result()[0].data.evs\n", + "print(\n", + " f\"Reconstructed expectation value: {np.real(np.round(reconstructed_expval, 8))}\"\n", + ")\n", + "print(f\"Exact expectation value: {np.round(exact_expval, 8)}\")\n", + "print(\n", + " f\"Error in estimation: {np.real(np.round(reconstructed_expval-exact_expval, 8))}\"\n", + ")\n", + "print(\n", + " f\"Relative error in estimation: {np.real(np.round((reconstructed_expval-exact_expval) / exact_expval, 8))}\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "cdeff42f-843a-4605-8c1d-da48e77d000e", "metadata": {}, "source": [ "###" @@ -191,9 +310,9 @@ } ], "metadata": { - "description": "Get started with using the circuit cutting addon", + "description": "A worked example of wire cutting using the circuit cutting addon to get started with the package", "kernelspec": { - "display_name": "qiskit_1-0_scratch_space-fyWgEqUn-py3.11", + "display_name": "Python 3", "language": "python", "name": "python3" }, @@ -207,9 +326,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.11.7" + "version": "3" }, - "title": "Get started with circuit cutting" + "title": "Get started with wire cuts" }, "nbformat": 4, "nbformat_minor": 2 diff --git a/docs/guides/qiskit-addons-cutting.mdx b/docs/guides/qiskit-addons-cutting.mdx index 85dd512434d..0b3974dc437 100644 --- a/docs/guides/qiskit-addons-cutting.mdx +++ b/docs/guides/qiskit-addons-cutting.mdx @@ -70,7 +70,7 @@ docker compose up Once the container is running, you should see a message similar to: ``` notebook_1 | To access the server, open this file in a browser: -notebook_1 | file:///home/jovyan/.local/share/jupyter/runtime/jpserver-7-open.html +notebook_1 | file:///home/$USERNAME/.local/share/jupyter/runtime/jpserver-7-open.html notebook_1 | Or copy and paste one of these URLs: notebook_1 | http://e4a04564eb39:8888/lab?token=00ed70b5342f79f0a970ee9821c271eeffaf760a7dcd36ec notebook_1 | or http://127.0.0.1:8888/lab?token=00ed70b5342f79f0a970ee9821c271eeffaf760a7dcd36ec @@ -130,7 +130,7 @@ The below table provides the sampling overhead factor for a variety of two-qubit ## Next steps - - Read through the page on [getting started with circuit cutting](/guides/qiskit-addons-cuttng-get-started) + - Read through the page on [getting started with circuit cutting using wire cuts](/guides/qiskit-addons-cutting-wires) diff --git a/qiskit_bot.yaml b/qiskit_bot.yaml index a9990211544..15739a5ac9f 100644 --- a/qiskit_bot.yaml +++ b/qiskit_bot.yaml @@ -411,5 +411,5 @@ notifications: - "@kaelynj" "docs/guides/qiskit-addons-cutting": - "@kaelynj" - "docs/guides/qiskit-addons-cutting-get-started": + "docs/guides/qiskit-addons-cutting-wires": - "@kaelynj" diff --git a/scripts/config/cspell/dictionaries/people.txt b/scripts/config/cspell/dictionaries/people.txt index d703d79b763..690a8148485 100644 --- a/scripts/config/cspell/dictionaries/people.txt +++ b/scripts/config/cspell/dictionaries/people.txt @@ -6,6 +6,7 @@ Almaden Alon Ambainis Bajpe +Birgitta Boeblingen Bravyi Bremner @@ -25,6 +26,7 @@ Easwar Eisert Fock Frobenius +Fujii Golecha Gosset Gottesman @@ -41,7 +43,9 @@ Ising Iten Itoko Javadi +Jiri Jurcevic +Keisuke Ketan Kitaev Koenig @@ -52,10 +56,12 @@ Kutin Lauer Lindblad Luca +Lukas Margolus Martonosi Maslov Merkel +Mitarai Mølmer Mosca Moscas @@ -70,6 +76,7 @@ Ochsner Ourense Paik Paulis +Piveteau Poppler Prakash Raban @@ -80,6 +87,7 @@ Robledo Roetteler Ruchir Rueschlikon +Sastry Shaohan Shaydulin Shende @@ -92,8 +100,10 @@ Sørensen Sutter Svore Tapp +Temme Toffoli Uhrig +Vala Vazirani Vedral Vishal @@ -104,5 +114,6 @@ Weyl Woerner Wörner Yufei +Zhang Zhuk Zoufal diff --git a/scripts/config/cspell/dictionaries/qiskit.txt b/scripts/config/cspell/dictionaries/qiskit.txt index 86093919732..799df17a0ef 100644 --- a/scripts/config/cspell/dictionaries/qiskit.txt +++ b/scripts/config/cspell/dictionaries/qiskit.txt @@ -130,6 +130,7 @@ ipywidgets iqft iswap ISYM +jpserver kwarg kwargs kwparams From d60595bc0923578679264a1c1a73aa06f92a140b Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Mon, 13 Jan 2025 09:28:45 -0500 Subject: [PATCH 05/17] Finish draft of gate cutting page --- docs/guides/_toc.json | 4 + docs/guides/optimize-for-hardware.mdx | 1 + docs/guides/qiskit-addons-cutting-gates.ipynb | 433 ++++++++++++++++++ qiskit_bot.yaml | 2 + scripts/config/cspell/dictionaries/qiskit.txt | 1 + 5 files changed, 441 insertions(+) create mode 100644 docs/guides/qiskit-addons-cutting-gates.ipynb diff --git a/docs/guides/_toc.json b/docs/guides/_toc.json index cec75a6d3df..9caade17be2 100644 --- a/docs/guides/_toc.json +++ b/docs/guides/_toc.json @@ -585,6 +585,10 @@ "title": "Circuit cutting overview", "url": "/guides/qiskit-addons-cutting" }, + { + "title": "Get started with gate cuts", + "url": "/guides/qiskit-addons-cutting-gates" + }, { "title": "Get started with wire cuts", "url": "/guides/qiskit-addons-cutting-wires" diff --git a/docs/guides/optimize-for-hardware.mdx b/docs/guides/optimize-for-hardware.mdx index 75c9ee35655..2fec999bb0f 100644 --- a/docs/guides/optimize-for-hardware.mdx +++ b/docs/guides/optimize-for-hardware.mdx @@ -67,4 +67,5 @@ can be run on IBM® hardware using IBM Qiskit Runtime. * [Operator Backpropagation (OBP)](./qiskit-addons-obp) * [Getting started with OBP](./qiskit-addons-obp-get-started) * [Circuit cutting](./qiskit-addons-cutting) + * [Getting started with circuit cutting using gate cuts](./qiskit-addons-cutting-gates) * [Getting started with circuit cutting using wire cuts](./qiskit-addons-cutting-wires) \ No newline at end of file diff --git a/docs/guides/qiskit-addons-cutting-gates.ipynb b/docs/guides/qiskit-addons-cutting-gates.ipynb new file mode 100644 index 00000000000..f93a01e8e44 --- /dev/null +++ b/docs/guides/qiskit-addons-cutting-gates.ipynb @@ -0,0 +1,433 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "8fd79758-2771-41ce-b17e-e8bfdf5b1023", + "metadata": {}, + "source": [ + "# Get started with circuit cutting using gate cuts\n", + "\n", + "This guide demonstrates two working examples of using gate cuts to get started working with the `qiskit-addon-cutting` package. It will cover using gate cutting to reduce the circuit width (the number of qubits) and circuit depth (the number of circuit instructions). We will cut gates to enable the reconstruction of a four-qubit circuit using two two-qubit subexperiments.\n", + "\n", + "The first example will use the [`EfficentSU2`](../api/qiskit/qiskit.circuit.library.EfficientSU2) ansatz and reconstructs the following observable:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "98d0719f-a7bc-4d6c-ade8-5a2020730087", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Observable: SparsePauliOp(['ZZII', 'IZZI', 'IIZZ', 'XIXI', 'ZIZZ', 'IXIX'],\n", + " coeffs=[ 1.+0.j, 1.+0.j, -1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAApQAAAD2CAYAAABobBdEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABDXElEQVR4nO3deXhMd/sG8HtmMiHJJEKQiSQEEWuUqB+hsVNb0QXVFu3b3VJbtXRRLdXqQquLKhpKK7R9LfWiiNJqSalQsYRYk8hEdtmXmfP7IxUi20zOnDlnxv25Ltdlzpz5zhPO/c0zczaVIAgCiIiIiIhqSS13AURERERk39hQEhEREZEobCiJiIiISBQ2lEREREQkChtKIiIiIhKFDSURERERicKGkoiIiIhEYUNJRERERKKwoSQiIiIiUdhQEhEREZEobCiJiIiISBQ2lEREREQkChtKIiIiIhKFDSURERERicKGkoiIiIhEYUNJRERERKKwoSQiIiIiUdhQEhEREZEobCiJiIiISBQ2lEREREQkChtKIiIiIhKFDSURERERicKGkoiIiIhEYUNJRERERKKwoSQiIiIiUdhQEhEREZEobCiJiIiISBQ2lEREREQkChtKIiIiIhKFDSURERERicKGkoiIiIhEYUNJRERERKI4yV2Ao4mc+D6yLxvkLgPuAXr0XztH1BgzooDEPKuVJIqvK7C0m9xVKIdStjM42LbG7cyxMTfSYG4IbCitL/uyAZnnEuQuwyoS84CL2XJXQZVxpO0M3NbIRpgbIulwlzcRERERicKGkoiIiIhEYUNJRERERKKwoSQiIiIiUXhSjkzu+2QyAsf2BQCYjEbkJ2ci6Y8YHFv0HfIM6XKXZ7HLnz6JtH1rSx+o1dDW94F7cD/4TngPzl6+cpd3V3OkbY3bGdkKc0NkGX5DKSPD4dPY2PEZ/Hjvi/ht8ifw6hCAPl/PkrusWtO1C0PHNUkIXnUVzWd9j7xL0bi4eLTcZZGDbWvczshWmBsi87GhlJGpqAT5KZnIM6Qj+fAZxK7fi8ZdW0Orc5G7tFpROTlDW18PZy9fuLfvhUaDnkNu7CEY827IXdpdz5G2NW5nZCvMDZH52FAqhIt3fQQM7w5TiRGC0SR3OaIVpV1Dxp8/AmpN6R9SDEfa1ridka0wN0TV4zGUMtL3aI/H49ZBpVbDyaUOACBm+TaU5BcCAPqsnIVrB07g3Pq9AIAGHZqj15fT8PPA2TAWFstae2WyY/YjeqwOgskEoSgfAOA9ahY0dd0AABmHNiNp49vlXlMQfxr+z3yKRkNelKXmu4UjbWvczshWmBvmhsxn1w3liRMnMG/ePOzfvx+CIKBfv35Yvnw5goKCMGzYMERERMhdYrVSjp3HwWmfQ1NHi4ARPdAkrCOiF28oe/6vN8MxZOsCXNkRhcKMHIS+/yyiXlutuInqJregbgiYvhZCUQEyDm7CjRN70eTxhWXP1w99EPVDHyx7nHl4CxLXvQavfhNlqth8giDgVFwGrqcXQOeqRUhbLzg52c8X/I60rTnyduZoBEHA6QuZSE7Lh85Vi85tvKDVMjdyYG5IanbbUEZGRmL48OFo1qwZ3njjDbi4uGDNmjUYMmQIcnJy0KlTJ7lLrJGxoKjsvrLHP9wI9wA9ur37NP58+SsAQJ4hHadWbMe9b45HanQcsi4mIengSZmrrpra2QV1fQIBAC7NOqDQcAHxX09FsykrK6xblJqAqysmI/CtnVDXcZWhWvMIgoBvt8VhyboY/HPu1pmdTRq54sWxbTD7yY6o46z8XUaOtK054nbmaARBwHf/u4CP157E8dhbufFp6IIXxrTFK08Fo24d5f/6YW6YGzKf/XxUvE1KSgrGjh2LkJAQREdHY/bs2ZgyZQoiIyNx9epVALCLhvJOxz/aiMCxfeF1T8uyZWfDd8GztT+Cp4zCkbfXylqfpXzGzUdqZDhyzx8tt1wwmXBp6RPQPzwHrgEdZauvJoIgYOaHUXjyzd9w8nz5y4Qkpebhzc+PYfALu5BfUCJbjbXlSNuavW9njkYQBLyy5AjGv3YAJ86Vz40hLR9vfXkMg57fhbx85kZOzA1Zm102lIsXL0ZGRgbCw8Ph4nLrbLt69eohJCQEsNOGMvuSAfF7jiJkzrhbCwUBsd/uQULkMRSm2dfZeHWbtIJn1wdwbf3r5ZYnbVoIjYsHGg+fKltt5vh+xwV8sv4UUPrfUM7Nx/uPGvDK0iMyVCeOI21r9r6dOZpNv1zCR2tLv6WrKje/H0vGzI+iZKhOHOaGqGp22VBGREQgLCwMQUFBlT7v7e0NvV4PACgpKcG0adPQoEEDeHp64umnn0ZBQYGNKzZfzJfb4NunE/Sh7W8tNJkgmITqXqZY3g/Oxo3ju5F9cj8AIOfMH0jbuxoBL4XLXVq1BEHAkm9joFLVvO7q/8YiK7vIFmVZlSNta/a6nTmipevMy82areeQnlVoi5KsirkhqpzyD2K5g8FgQGJiIsaOHVvhOZPJhJMnT6Jz585lyxYtWoRff/0VJ0+ehLOzM0aMGIFXXnkFy5YtM+v9SkpKYDAYzK6vuNi83TgHp39R6fKUo7FY4/OI2e9XXR0JCQkix/AGoDVr3YBpaypdrmvbA122lk60JTmZuLR0PAJeWgMnDy8LaylGQkKyRa8R42JCLo6dSTNr3fxCI8L/G41H+tvujhPmbmdwsG3N0bYzR3M5KQ9RJ1PMWrewyIRvfozGo/f7SV7XTcxNecwNVUav18PJyfL20O4aytzcXACAqpKPwFu3bsX169fL7e5etWoVPvjgA/j6lv6ynz9/PkaPHo2lS5dCo6n5ZAqDwQB/f3+z61voNRC+Wg+z15fKuXPnMMaCuivT7rMYuDRtb8aa5knZtRzFGUmI/2ZGueVefSfCe+SMKl+Hf38e//s7WK2WGrkGAi3nmL36jJfnYUbqbklLup1StjMocFuzq+3M0bi0AAJfM3v12XPfwexndkpa0u2Ym6oxN3RTfHw8/Pws/6Bndw2lv78/NBoNDhw4UG75lStXMHVq6TEfNxvKzMxMxMfHl2swQ0JCkJ2djcuXL6Nly5awB3Gb9iNu0365yxDN55G58HlkrtxlmMdk4WERRuUeRmEJR9jW7Go7czSmfMvWZ24Ug7khseyuoXR2dsaECRMQHh6OkSNHYtiwYYiPj8fKlSvh7e2NxMTEsgYyOzsbAODp6Vn2+pt/v/lcTfR6PeLj482u79CY95F7yfxd5FIJCgpC/KZvRI0x9bQ34hUy3wcFBeEXC/4fxDKZBNz39O9IuJ5f4cSCO6nVQNSvq6H3qmur8hSzncHBtjVbb2eOxmQS0Oe5g7iclFdzblTAn3tWwLex7W5jyNxIg7lxLDfPQbGU3TWUALBs2TJotVps3boV+/btQ2hoKDZv3ox33nkHcXFxZSfruLu7AwCysrLK/oEyMzPLPVcTJycni7761WqV8U+q1VpWd6VjnAeggMkKALRareifx1LTxwdj1kd/1bjewwOa4957Am1S001K2c7gYNuaHNuZo5k+viOmLT5c43oj+jZDt5BWNqnpJuZGGswNwV7P8tbpdFixYgUMBgOys7Oxe/duhIaGIiYmBsHBwVCrS38sT09P+Pv74/jx42WvjY6Ohru7OwICAmT8CcgeTB3XHkPDqp8kW/q54/O5oTariUjpJo1tixF9mla7TnNfHZa/0cNmNRGR9OyyoaxMZmYmEhISKlx/8plnnsF7772Ha9euISUlBfPnz8eTTz5p1gk5dHfTatXY/MkAvPJUMDzcyp9JqdGo8OjgFvhz3QNo7GW7XXZESufkpMaPH/fHnKc7VsyNWoUx9zfHofUjoG/IO7AQORKHaShPniy9kO6dDeVrr72GXr16oX379ggMDETbtm2xePFimaoke+Os1WDxjP/Dtchx+PL1W9+o/PXdCGz4oC+bSaJKaLVqvDeta4XcHP5uBDZ+2A/ezA2Rw3H4htLJyQnLli1DRkYGsrKysHr16nJ315Fbq8f6Y+i2dzFk6wJ4tql8N9Hgn95G6OLnbF5bbaTuXoWzr/TA2Tn3If9y5fe0jX29D658+YLNaxPDzVWLB3rf+v9p3EA525C5HGlbc9TtzNHcmRu9HTaSzA2ReRymoZw0aRIEQUD37t3lLsVszp46tJ44CDsfmoc/Zi5HtwVPVVjHb0AXFOdYeCkOmZRkpyNl13K0XnQAAVNWI37VtArrZB7ZDo2LeSdEkfU40rbG7YxshbkhMp/DNJT2qFHnQBj+PAWhxIgbF66hTgMPlLtnmUqFNk8Nxtk1u+Qs02y55/+CrkMfqJy0qOvXGiU3UiGYTGXPCyYTUnZ8gUZDJ8ta593IkbY1bmdkK8wNkfnYUMrI2VOHoqzcssfFOflw9rh1oHrgmD64siMKxoJimSq0jDE7HU66+mWP1S7uMOZllT1O27cWnqEPQa213fUaqZQjbWvczshWmBsi87GhlFFRVi6cPdzKHmt1Lii6kQcA0NTRosVDYYiL2CdjhZbR6OrDmJtZ9tiUnw2Na73SvxcVIP3Ad2jYv+IuI5KeI21r3M7IVpgbIvMp5yqvd6GUY+fR6eUxUGnU0Pk3RmH6Ddy8vYSuaWM413PDgHVz4eypg0tjT7Qc3RsXfjhQ47hycQvqhmsb3oJgLEHh9ctw8mgI1b/XBC1MvgRjbibiFgxHSU46ijMMSNv3Lbz6TZC77LuCI21r3M7IVpgb5obMx4ZSRkWZOTj/fSSGbF4AQTDh8NxV8O3bCc6eOlzafBDbB78KANCHtkfzUT0VO1Hd5OTeAA0HPoPYub0AtRpNn/8CWcd2wZidjga9H0PbJUcBANkn9yP99whOVjbkSNsatzOyFeaGyHwqQajpjqtkiS29pyPzXILcZcAzyA+jDnwiaowxvwIXzbvlueRauAOb+spbQ4IhF/6DIgAA8bsfhZ/ercbXSEUp2xkcbFtTwnbmaJibyjE35Gh4DCURERERicKGkoiIiIhE4TGUVuYeoJe7BMBKdfgq6Fa7SqpFCZSyncHBtjWl1EHSYG6koZQ6SF48hpLITEo6FozIXjA3RHcH7vImIiIiIlHYUBIRERGRKGwoiYiIiEgUNpREREREJAobSiIiIiIShQ0lEREREYnChpKIiIiIRGFDSURERESisKEkIiIiIlHYUBIRERGRKGwoiYiIiEgUNpREREREJAobSiIiIiIShQ0lEREREYnChpKIiIiIRHGSuwBHEznxfWRfNshdBtwD9Oi/do6oMWZEAYl5VitJFF9XYGk3uasgqTA30mBuHBtzIw3mpnbYUFpZ9mUDMs8lyF2GVSTmARez5a6C7gbMDZHlmBtSEu7yJiIiIiJR2FASERERkShsKImIiIhIFB5DSVSNlPR8/HokCUdPpSL6TFrZ8tc/O4o+XX3Qq4seLf09ZK2RSGlSMwr+zU0Kjp2+lZvXlt3KTWBT5obIkbChJKrE36dTseTbGPyw+xKKS0wVnv/25zh8+3McAGBA9yaYOq4dHujTFCqVSoZqiZTh2OlULF0fg02/XEJRccXcrNseh3XbS3PT7/98MPWxdhjZtxlzQ+QA2FDK5L5PJiNwbF8AgMloRH5yJpL+iMGxRd8hz5Aud3kWu/zpk0jbt7b0gVoNbX0fuAf3g++E9+Ds5St3eWbLLyjBm5//jSXrYiAI5r1m7+Fr2Hv4Gkb0aYqv3uwJn0auUpd512JulKmgsARvfXkMH62NgclkXnD2/ZWEfX8lYVgvf3w9ryeaNHaTvM67FXNDtsBjKGVkOHwaGzs+gx/vfRG/Tf4EXh0C0OfrWXKXVWu6dmHouCYJwauuovms75F3KRoXF4+WuyyzGVLz0P2Jn/Hxt+Y3k7fbtv8qgh/+L47EpEhRHv2LuVGW5LR89Bi/HR+EnzS7mbzd/36LR/DDm3H4xHVJ6qNSzA1JjQ2ljExFJchPyUSeIR3Jh88gdv1eNO7aGlqdi9yl1YrKyRna+no4e/nCvX0vNBr0HHJjD8GYd0Pu0mqUmlGAvk/vwD/nqv60rtGo4OvtCl9vV2g0le+iS8ssxIDnduLY6VQJq727MTfKkZ5ViP7P7ED02bQq1zEnN+lZhRj4/E5+GJMQc0NSY0OpEC7e9REwvDtMJUYIxorHHtmborRryPjzR0CtKf2jYIIgYOIbB3D2Ula16+kbuiBhzzgk7BkHfcOqJ+EbOcV4aGYksnOLJKiWbsfcyEcQBPxn3m84dSGz2vXMzU1OXgkenhmJrGzmRmrMDUmBx1DKSN+jPR6PWweVWg0nlzoAgJjl21CSXwgA6LNyFq4dOIFz6/cCABp0aI5eX07DzwNnw1hYLGvtlcmO2Y/osToIJhOEonwAgPeoWdDULT02KuPQZiRtfLvcawriT8P/mU/RaMiLstQMAGu3nceO3617t4kr13LwypIjWP5mT6uOS8wNFJKb73dcwNZfr1p1zHhDLl7+OAor54dZdVxibqCQ3Dgyu24oT5w4gXnz5mH//v0QBAH9+vXD8uXLERQUhGHDhiEiIkLuEquVcuw8Dk77HJo6WgSM6IEmYR0RvXhD2fN/vRmOIVsX4MqOKBRm5CD0/WcR9dpqRYYbANyCuiFg+loIRQXIOLgJN07sRZPHF5Y9Xz/0QdQPfbDscebhLUhc9xq8+k2UqWKgqNiIOZ8clWTsr344ixnjOyAooJ4k49fW1aQcfP3jWRz+JwVGk4DWAfXw3MOtEdKuodylmYW5kT83JSUmvLr0iCRjr/rvOcwY3wHtWtaXZPzaSjDk4uufzuLQiesoMQpo1dQDzz3SGve2byR3aWZhbuTPjaOz213ekZGR6N69O2JjY/HGG29g0aJFSEhIwJAhQ5CTk4NOnTrJXWKNjAVFpfdijY3H8Q83Ijv+Orq9+3TZ83mGdJxasR33vjkerccPRNbFJCQdPClrzdVRO7ugrk8gXJp1QJPH30Ed7+aI/3pqpesWpSbg6orJaD47Auo68p0VvTnyCpLT8iUb/6sfzkg2tqUEQcAbnx1F88Eb8e7KE9j31zUcOJqEFT+cRZdHt2LUtD3IyVPmL4/bMTfy52bb/qtIvJ4n2fhf/XBWsrEtJQgC5n95DAGDN2LBiuOIPFyam5U/xaLruG14YMpuuzi8hbmRPzeOzi4bypSUFIwdOxYhISGIjo7G7NmzMWXKFERGRuLq1dJdMPbQUN7p+EcbETi2L7zuaVm27Gz4Lni29kfwlFE48vZaWeuzlM+4+UiNDEfu+fLfAAomEy4tfQL6h+fANaCjbPUBwLc/n5d4/DgItTllXAJvfXkM7648gZsn4goCyp3NvvXXq3h4ZiSMdnZMFXNje1LnZt3PcbU6Y1wKC1Ycx9tfRcP4bz0Cyudm+2/xGDVtL4orue6mkjE3ZG122VAuXrwYGRkZCA8Ph4vLrYO869Wrh5CQEMBOG8rsSwbE7zmKkDnjbi0UBMR+uwcJkcdQmGZfZ6/VbdIKnl0fwLX1r5dbnrRpITQuHmg8vPJPk7YiCAKiTkp7VmlaZiEuJmRL+h7mSEzOxaKVJ2pcb/efidj+W7xNarIW5sb2pM5NZnYRzl+p/iQ5WzCk5mHB19E1rrfvryRs/fWKTWqyFuaGrM0uj6GMiIhAWFgYgoKCKn3e29sber0eALBp0yYsW7YMx48fR8OGDXH58mWL3qukpAQGg8Hs9YuLSywa/04xX27DsJ/fhT60PQyHTpUuNJkgWPhpvbi4BAkJ4k40KS72BqAVNYb3g7MRO6cnsk/uh3twH+Sc+QNpe1ej7ZJjFtZSjISEZFG13Cnxej7SMgvLLdNoVFWeiepz23KfKtYxpObDaCz/f7Xn4DnUCdNbpebaWrI+ruwblhrXXRuNLq1se6Ykc1OeknOTnF4IQ2r5w0SkyM3ug+fgpm1ilZpra1nEBZSUmLcNLf32OLq3E/f/binmpjwl58ae6PV6ODlZ3h6qBKXsjzOTwWCAj48PZs6ciY8//rjccyaTCT4+PujcuTN27doFANizZw/S0tKQnJyMpUuXWtxQJiQkwN/f3+z1F3oNhK/WuveoDRzTB173tETU66vNfk1i8Q28kbZH1Pu2+ywGLk3bixrjdiU5mTgzMwQBU1bDvWNfi16bf/UUTk/tYLVaAAAuzYDAN8st8vV2RcKecVW+pCZ+AzcgMfmOY8sSvwPSf631mFbR7CXAPRgw5xZ3xjzg9Eu2qKoMc1M1xeWmrj/Q6q1yiyTJzbUIIG1vrce0iqaTAY9OZuamADg9xRZVlWFuqqa43NiR+Ph4+Pn5Wfw6u/uGMjc3FwAqvffr1q1bcf369XK7uwcOHAgA2LJliw2rpMqk7FqO4owkxH8zo9xyr74T4T1yRpWvk46N7h+shPsUqyw5ukUB9VIZ5eXGRuwtNxZljKR21+ZGRnb3DWVRURFcXV3RuXNnHDly67IVV65cQc+ePZGYmIgNGzbg0UcfLfe6LVu2YPr06ZLv8j405n3kXjJ/fam4NdcjdNMcUWNMPe2N+ALb7sKpin/dYnzWzrq7IC4l5qLXswfLLatp192RDaMAAF3HbUFSasWzwyvbdffpy8F4qJ+8u+7mf30Wq7fUfIyXCkDHIA9s/yTUJnXdxNxIQ4rcXDXkoed/fi+3TIrcfDS9A8YOkve+zAtXx2LFTzX/zlCpgHbN3bHr8x42qesm5kYaUuTGntR2l7fdfUPp7OyMCRMmIDw8HCNHjsSwYcMQHx+PlStXwtvbG4mJiVY9IcfJycmir361WmX8k2q1ltVd6RjnARRYrSRRtFqt6J/nTk2aCNC5RpW7VI7RKFTc9VaJpNR8s9YDgH6hgfDzayCqVrFmPakzq6EUAEx74h6r/1vXhLmRhhS58fUVUM89qtwdbaTITf8egfDz8xJVq1gzJ7qb1VAKAvDSEx2ZGzFjOHhu7gZ2+R39smXL8NxzzyEqKgqzZs1CVFQUNm/ejCZNmsDV1bXKk3WIbqdWqxDSVtpfWK51ndCmuaek72GOti088fiwlmatN/b+FjapieyTSqXCvRJfBL9uHQ3aK+DC5kEB9TBxRKua12vmgceH1pwvIkdmlw2lTqfDihUrYDAYkJ2djd27dyM0NBQxMTEIDg6GWm2XPxbJ4NHB0jZPowc1h5OTMrbHVfPvw6h+zSosv3mkWrsWntj91WC4uijjWw9SLqlz8/CAAGi1ysjNink98fCAgArLb+amdUA97F4xGG6uythdSyQXZSTWCjIzM5GQkFBhd7fRaERBQQGKi4shCAIKCgpQWFhY5Th0d3lieEvoJPxFMGlsW8nGtlTdOk74aUl//PLV/RgYeuvYtJB2Xli7sBeORoyEn95N1hrJPowb0gL13J0lG19JuanjrMGmj/phz9eDcX+PW7np3NYL4QvCEL1pFJo1cZe1RiIlcJiG8uTJ0ltE3dlQrlu3Di4uLhgzZgyuXr0KFxcXtG7dWqYqK2r1WH8M3fYuhmxdAM82TStdZ/BPbyN08XM2r602UnevwtlXeuDsnPuQf7ny23bFvt4HV758wea1VcbdzRmznwyWZOyhYX7o2kFZ98dWq1UY1MMP37wdVrZsyycDMWFEK7jUtZ9vJpkbebm5avHqU9LcdWRQD1+E3tNYkrFrS61WYUB3X6yafys3Wz8diCdHBjE3MrK33Dg6h28on3zySQiCUO6PpWd6S8XZU4fWEwdh50Pz8MfM5ei24KkK6/gN6ILiHOnuNW1NJdnpSNm1HK0XHUDAlNWIXzWtwjqZR7ZD46KsT/Nzn74HndpY96SZeu7O+HrefZVe3orEYW6UYfaTwbi3vXU/MLm7abHyLeZGCswNSc1hGspJkyZBEAR0795d7lLM1qhzIAx/noJQYsSNC9dQp4FH+WuvqVRo89RgnF2zS84yzZZ7/i/oOvSBykmLun6tUXIjFYLp1v1tBZMJKTu+QKOhk2Wt805arRobFveFl2edatczpObDb+AG+A3cUOFOIbfTaFRYu7AXfL25+1gKzI0yODmp8f37fdCoft1q1zM3N2q1CuHvhKGpj06Caom5Iak5TENpj5w9dSjKyi17XJyTD2cP17LHgWP64MqOKBgLiqsYQVmM2elw0t06M1Pt4g5j3q378abtWwvP0Ieg1lb/C0gObZp7Yu/XQ6r95Xjz0iiJyXkVrpl3k5NGhe/f74ORfSue/ELWwdwoR6tm9bB35RB4e1V+DUqYmRuNRoVv3+2Fhwc2l7DauxtzQ1JjQymjoqxcOHvc+hZLq3NB0Y3Sa7Rp6mjR4qEwxEXsk7FCy2h09WHMzSx7bMrPhsa1XunfiwqQfuA7NOxfcTeLUnRq44W/N44sd+C9Jdq28MTBtcMxhpfdkRRzoywdgxrg6IaRGHJf7a7bF9SsHn4LH4bHhwVavTa6hbkhqbGhlFHKsfPw7t4WKo0a7gF6FKbfKL1CLgBd08ZwrueGAevmosubT8C3f2e0HN1b7pKr5RbUDdmnfoNgLEFBUhycPBpC9e8lnAqTL8GYm4m4BcORsPYVZP29A2n7vpW75Ar89TrsXH4/vn23F4JbmXcdvCaNXbFwShcc2zgS3Toq62QCR8TcKC83fno3/O+LQVj/Xm/c09q845F9GrninckhOP7DKPTo5C15jXc75kZ5uXE09nN6mgMqyszB+e8jMWTzAgiCCYfnroJv305w9tTh0uaD2D74VQCAPrQ9mo/qiQs/HJC75Go5uTdAw4HPIHZuL0CtRtPnv0DWsV0wZqejQe/H0HbJUQBA9sn9SP89Al79JshdcqVUKhXGP9AKTwwPxJ/Hr2PXHwn4+3QqzlzMRF5BCZy1GrTwc0eXdl7o1UWPYWFNFXPNvLsBc6Pc3Dw+LBCPDW2Jw/9cx86Dpbk5faE0N1on9b+5aYheXfQY3ou5sSXmRpm5cSR2dy9vpdvSezoyzyXIXQY8g/ww6sAnosYY8ytwMdtqJYnSwh3Y1FfuKhxHgiEX/oMiAADxux+V/fqTzI00mBvrYm4qx9wQuMubiIiIiMRiQ0lEREREorChJCIiIiJReFKOlbkH6OUuAbBSHb6uZqxkI0qqhayPuZGGkmoh62NupKGkWuwJT8ohugsp7eQCInvA3BBVjbu8iYiIiEgUNpREREREJAobSiIiIiIShQ0lEREREYnChpKIiIiIRGFDSURERESisKEkIiIiIlHYUBIRERGRKGwoiYiIiEgUNpREREREJAobSiIiIiIShQ0lEREREYnChpKIiIiIRGFDSURERESisKEkIiIiIlGc5C7A0UROfB/Zlw1ylwH3AD36r50jaowZUUBintVKEsXXFVjaTe4qiGqmlDkADjYPcA5wbMyNNGyZGzaUVpZ92YDMcwlyl2EViXnAxWy5qyCyL440B4DzANkIc2P/uMubiIiIiERhQ0lEREREorChJLrLCIKAeENO2ePzV7NQUmKStSYipbszN+euMDdEt+MxlER3gaJiI/679zLWbotD1MnryLhRVPZcv2d2wqWuBp1ae2HMoOaYOLIV6nvUkbVeIiUoKjZiy74rWLP1PKJOpiA9q7Dsuf7P7kTdOhp0at0Aowc1x5Mjg9CgHnNDdy82lDK575PJCBzbFwBgMhqRn5yJpD9icGzRd8gzpMtdnsUuf/ok0vatLX2gVkNb3wfuwf3gO+E9OHv5yl3eXUsQBKzddh5zPjmK5LT8KtfLLzDi0InrOHTiOl777CimP94Bb73YGXWcNTat927jSPOAI80BgiBg/fY4vLL0CAypVeemoNCIw/+k4PA/KXj9s7/x0mPt8PakENStw1+tUmJulIm7vGVkOHwaGzs+gx/vfRG/Tf4EXh0C0OfrWXKXVWu6dmHouCYJwauuovms75F3KRoXF4+Wu6y7VmpGAYZP2Y2n3vy92mbyTvkFRry3+gRCxm7ByXP2NTnbI0eaBxxhDkjPKsSoaXsx4fXfqm0m71RQaMQH4SfRecwWHD+bJmmNxNwoERtKGZmKSpCfkok8QzqSD59B7Pq9aNy1NbQ6F7lLqxWVkzO09fVw9vKFe/teaDToOeTGHoIx74bcpd11ktPy0eup/2HH77W/DMfpC5kIe+p/iPrnulVro/IcaR6w9zkgJT0fvZ/6H7btv1rrMc5eykKvp/6HP48nW7U2Ko+5UR42lArh4l0fAcO7w1RihGC0/wO9i9KuIePPHwG1pvQP2UxBYQkGv7gLZy5mVrmORqOCr7crfL1dodGoqlwvK7sIQyb9ggvx9jWx2StHmgfsbQ4oLDJi6OTdiInLqHIdc3OTnVuMoZN349zlLImqpdsxN8rAAz1kpO/RHo/HrYNKrYaTS+nB3DHLt6Ekv/TA7z4rZ+HagRM4t34vAKBBh+bo9eU0/DxwNoyFxbLWXpnsmP2IHquDYDJBKCrdVeQ9ahY0dd0AABmHNiNp49vlXlMQfxr+z3yKRkNelKVmRzR/eTSOn61+V7W+oQsS9owDAPgN3IDE5Kpv6ZBxowj/mfc7fl09FGp11b9EqXYcaR6w5zlgwYpoHD2VWu06luQmK7sI/3nrdxz4Zig0Gn53Y23MjTJyczu7bihPnDiBefPmYf/+/RAEAf369cPy5csRFBSEYcOGISIiQu4Sq5Vy7DwOTvscmjpaBIzogSZhHRG9eEPZ83+9GY4hWxfgyo4oFGbkIPT9ZxH12mrFheEmt6BuCJi+FkJRATIObsKNE3vR5PGFZc/XD30Q9UMfLHuceXgLEte9Bq9+E2Wq2PGciE3Dh2tOWn3c3/42YNV/Y/HcI22sPrZYgiDg7KUsJKflw91Ni3uCGsDJyX5+gTvSPGCvc0DM+XS8/80/Vh/3j+hkrPjhLCY92s7qY1tD7KVMJKXmQ+fqhE6tvZgbmdhrbu5ktw1lZGQkhg8fjmbNmuGNN96Ai4sL1qxZgyFDhiAnJwedOnWSu8QaGQuKyu5devzDjXAP0KPbu0/jz5e/AgDkGdJxasV23PvmeKRGxyHrYhKSDlq/WbAWtbML6voEAgBcmnVAoeEC4r+eimZTVlZYtyg1AVdXTEbgWzuhruMqQ7WO6ZP1p2AyCZKM/fHaGDz7cGuoVMr4llIQBHy/4wKWfBuDY2dunQTh29gVL45pi5efDLaLs9QdaR6w1zng0+9OwWiUJjdL1sXghTFtFfXt/oZ/c3P09K1vZJs0csULY9pg9pPBdnGWOnMjf27uZD8fR26TkpKCsWPHIiQkBNHR0Zg9ezamTJmCyMhIXL1aejC1PTSUdzr+0UYEju0Lr3tali07G74Lnq39ETxlFI68vVbW+izlM24+UiPDkXv+aLnlgsmES0ufgP7hOXAN6ChbfY4mPasQEbsuSjb+uStZ2BeVJNn4lhAEAa8uPYIn5h5A9B1n1F5LycMbn/+NIS/+gvyCEtlqrC1HmgfsYQ7IvFGI73ZckGz8C/HZ2P1nomTjW+q1T4/isTn78feZ8rv3k1LzMO+LY7j/hV+Ql8/cyMkeclMZu2woFy9ejIyMDISHh8PF5dYZXfXq1UNISAhgpw1l9iUD4vccRciccbcWCgJiv92DhMhjKEyzrxMj6jZpBc+uD+Da+tfLLU/atBAaFw80Hj5Vttoc0YGjSSgoNEr6Hr/8Wfuzxq1p466LZbv2hTu+WLr5+NcjSXj5479kqE4cR5oH7GEOOBidjPyCuyM3P+25hPdWnwCqyc1vfxsw48PDMlQnDnMjP7tsKCMiIhAWFoagoKBKn/f29oZer0dhYSGeffZZtGjRAu7u7ggKCsJnn31m83otEfPlNvj26QR9aPtbC00mCBLtxpSa94OzceP4bmSf3A8AyDnzB9L2rkbAS+Fyl+Zw/j5d/QkF9vIe5li6Lgbm7Hn/Zss5ZN4orHlFhXGkeUDpcwBzU9HabeeRlllgi5KsirmRl/IPlLiDwWBAYmIixo4dW+E5k8mEkydPonPnzgCAkpIS6PV67N69Gy1atMA///yD+++/H97e3hgzZoxZ71dSUgKDwWB2fcXF5u0qODj9i0qXpxyNxRqfR8x+v+rqSEgQ96m4uNgbgNasdQOmral0ua5tD3TZWhrmkpxMXFo6HgEvrYGTh5eFtRQjIYHXdatO9Ony26lGo4K+YeXXZPO5bblPFesAgCE1v9yxZTFx6aK3K7EuXcvFXzHm/YIuKDQi/L/HMXqA7e44Ye4cAAebB+x1Dvj7VPnDOKTIzSkF5CYhOR9/HDfvmrKFRSZ88+NxjBvsJ3ldNzE35cmZG71eDycny9tDu2soc3NzAaDSEwO2bt2K69evl+3udnNzw4IFC8qe79SpE0aMGIGDBw+a3VAaDAb4+/ubXd9Cr4Hw1XqYvb5Uzp07hzEW1F2Zdp/FwKVpezPWNE/KruUozkhC/Dczyi336jsR3iNnVPk6/Pvz+N/fwWq1OKRmLwEet46ruf0SJ9U5smFUlc/deWmU6ynpFuVBEq4tgJavmb36zNnzMTN1l6Ql3U4pcwAUOA8ocg5oNhnw6Fz2UIrcpGdky58blwAg8A2zV3/ltQV45dkdkpZ0O+amarbOTXx8PPz8LP8wYXcNpb+/PzQaDQ4cOFBu+ZUrVzB1aulxBVUdP1lcXIzff/8dL7/8sk1qtZa4TfsRt2m/3GWI5vPIXPg8MlfuMhyXIO1xYAAAkw3eoyZGC3fFmcy/fZ6SOcI8oMg5wBa5scV71MRoYQ5M9rfLuzLMje2oBOHOQ3OV7z//+Q/Cw8MxYsQIDBs2DPHx8Vi5ciW8vb3xzz//4MyZM2jTpuL18p5//nkcO3YMf/zxB5ydnc16L0t3eR8a8z5yL5m/vlTcmusRummOqDGmnvZGfIF5u7yl5l+3GJ+14y7v6ryz8ixWbr5S9rimXXc3v2HpOm4Lkqq4Z/Gdu+66tPXElo+7Wb12S5hMAsKe+R3xyfkVTiy4k1oNHF7TGz4N69qqPMXMAXCweUCqOWDRN7FY/uPlssdS5KZjKw/879NQq9duCUEQ0Oe5g7h0La/G3KhUwB/f9IK/t+1uY8jcSKM2ublrdnkDwLJly6DVarF161bs27cPoaGh2Lx5M9555x3ExcVVerLOzJkzcejQIezbt8/sZhIAnJycLPrqV6tVxj+pVmtZ3ZWOcR6AQj6karVa0T+Po+vzf4XlGkqjUaj2Th43JaXmm7UeAIR2aqKI/4fp4zti5odRNa43sm8zdO0UaJOablLKHAAHmwekmgP6dCsq11A6cm5mTLgHU987VON6w3s1RWiXVjap6SbmRhq2/N1pl2d563Q6rFixAgaDAdnZ2di9ezdCQ0MRExOD4OBgqNXlf6zp06djz549iIyMRMOGDWWrm0hKYV28zTqDU4zeXfTSvoGZpjzaDkPDqp8km/vq8OXrPWxWE9mn+zp7S37RcaXk5oXRbTCiT9Nq12mqd8NXbzI3ZDm7bCgrk5mZiYSEhArHT7700kvYu3cv9u3bh0aNGslWH5HU/PU6DAuT7sB/by8XjOhb/S8jW9Fq1dj8yQDMfjIY7m7ldytp1CqMHtQcf657APqGyrqTBClPk8ZuNTZZYjSsXxcPDQiQbHxLODmp8ePH/fHqfzrC447cqNUqPDwgAIe/G4Emjd1kq5Hsl8M0lCdPll7k+PaG8sqVK/jss88QFxeH5s2bQ6fTQafTYciQITJWSiSdlx633ln5d3phdBs4a5VzK0NnrQYfzPw/XIsch8/n3jo+7fB3I7Dpo35sJslsLz0m3b22n3+ktaJuAarVqvH+9K64FjkOX7x265vIw+sfwI9L+sOnEXNDtePQDWWzZs0gCAIKCgqQk5NT9mfnzp0yVlpeq8f6Y+i2dzFk6wJ4tqn8U/Lgn95G6OLnbF5bbaTuXoWzr/TA2Tn3If9y5fdNjX29D658+YLNa7sbDAz1xdjBza0+blCzenj1P8q71RcA6Fy1GNm3WdljvZftTiSwFkeaB+xxDuj7f03w+LCWZqxpmZb+7pj79D1WH9ca3Fy15b6Z9bHDD2DMjbI4TEM5adIkCIKA7t27y12K2Zw9dWg9cRB2PjQPf8xcjm4Lnqqwjt+ALijOsY/LnpRkpyNl13K0XnQAAVNWI37VtArrZB7ZDo2Luyz13S0+n9ujyrNUbzKk5sNv4Ab4DdwAQxVnqt7kpFEhfEEYXOoq56B5R+JI84A9zwHL5oTCt3H1TZUludFoVPjm7TC4ucp/pq8jYm6Ux2EaSnvUqHMgDH+eglBixI0L11CngQfKnVWhUqHNU4Nxdo3tLsosRu75v6Dr0AcqJy3q+rVGyY1UCCZT2fOCyYSUHV+g0dDJstbp6BrWr4tfvhqMBvXqVLnOzTNZE5Pzyl3e5E5qtQrrFvVGj07eElVLjjQP2PMc0KBeHexafj+8PMXnRqUCwt8JQ697fSSqlpgb5WFDKSNnTx2KsnLLHhfn5MPZ49Yn5MAxfXBlRxSMBcUyVWgZY3Y6nHT1yx6rXdxhzMsqe5y2by08Qx+CWmu7awLerToGNcCBb4YisGnt7zxRz90ZPy3ph0eHWH9XIN3iSPOAvc8BHVo1wO9rhiOoWb1aj+Gh02LTh/0w/gHbXnbnbsPcKA8bShkVZeXC2ePW2XRanQuKbpRe10xTR4sWD4UhLmKfjBVaRqOrD2NuZtljU342NK6lE7OpqADpB75Dw/4Vd0uQNDq0aoATPzyIGePbW3w5oWG9/HHqvw9hVD9lnJ3qyBxpHnCEOaBtC08c/2EUXp4YbPHlhAb39EPMfx/CI4OsfxwzlcfcKA8PipJRyrHz6PTyGKg0auj8G6Mw/QZu3sJA17QxnOu5YcC6uXD21MGlsSdaju6NCz8cqHFcubgFdcO1DW9BMJag8PplOHk0hOrfa4IWJl+CMTcTcQuGoyQnHcUZBqTt+xZe/SbIXbZDc3VxwpLZ3fHSY+2x4sezWLP1fJXHfulctXhkYAAmjW2Lrh14iS1bcaR5wFHmAJe6Tvhw1v9hyri2+PrHWIRvPY+klMovYu7m4oSHBwRg8qPt0LVDQ6ikvhgsAcyNInPDhlJGRZk5OP99JIZsXgBBMOHw3FXw7dsJzp46XNp8ENsHvwoA0Ie2R/NRPRUbhpuc3Bug4cBnEDu3F6BWo+nzXyDr2C4Ys9PRoPdjaLvkKAAg++R+pP8eochAOKoAX3e8N60rFr10LxKSc/H36VQkpxXAZBLg6e6MTm28ENTMAxoNd1rYmiPNA442BzRr4o53X7oXC6d2QWJyHv4+k4rktNLbKnq6O+Oe1g3QOqAecyMD5kZ57PJe3kq2pfd0ZJ5LkLsMeAb5YdSBT0SNMeZX4GK21UoSpYU7sKmv3FWQUiUYcuE/KAIAEL/7Ufjp5bsws1LmADjYPMA5wPqYm8oxN7XDj1VEREREJAobSiIiIiIShcdQWpl7gF7uEgAr1eGroBsnKKkWouooZQ6Ag80DSqmDpMHcSMOWdfAYSiKye0o6FozIXjA3ZE3c5U1EREREorChJCIiIiJR2FASERERkShsKImIiIhIFDaURERERCQKG0oiIiIiEoUNJRERERGJwoaSiIiIiERhQ0lEREREorChJCIiIiJR2FASERERkShsKImIiIhIFDaURERERCQKG0oiIiIiEoUNJRERERGJ4iR3AY4mcuL7yL5skLsMuAfo0X/tHFFjzIgCEvOsVpIovq7A0m5yV0FUM6XMAXCweYBzgGNjbqRhy9ywobSy7MsGZJ5LkLsMq0jMAy5my10FkX1xpDkAnAfIRpgb+8dd3kREREQkChtKIiIiIhKFDSURERERicJjKInILqVlFuDXv5Lw95lUHDudVrb8zS/+Ru979ejVRY8Wfh6y1kikNOlZhfj1r2v4+3Qa/j6dWrb8jc9LcxMWokdgU+aGLMeGkojsSvSZVCxddwqbdl9CYZGxwvNrtp7Hmq3nAQADQ5tg6rj2GN7bHyqVSoZqiZThRGwalq47hYhdFyvNzdpt57F2W2lu+ndrgqmPtcOIPk2ZGzIbG0qZ3PfJZASO7QsAMBmNyE/ORNIfMTi26DvkGdLlLs9ilz99Emn71pY+UKuhre8D9+B+8J3wHpy9fOUujxxAQWEJ3vryGD5aGwOTSTDrNXsOXcOeQ9cwok9TrJjXE/qGrpLXaQlHmgc4ByhTYZER73wVjcXh/8BoNC83kVHXEBl1DcN7+WPFvJ5o0thN8jotwdwoE4+hlJHh8Gls7PgMfrz3Rfw2+RN4dQhAn69nyV1WrenahaHjmiQEr7qK5rO+R96laFxcPFrussgBXE/LR4/x2/FB+Emzm8nbbdt/FcEPb8aRmBRJ6hPDkeYBzgHKkppRgPsmbseiVSfMbiZvt/23eAQ/vBmHT1yXpD4xmBvlYUMpI1NRCfJTMpFnSEfy4TOIXb8Xjbu2hlbnIndptaJycoa2vh7OXr5wb98LjQY9h9zYQzDm3ZC7NLJjaZkF6PfMDkSfTatyHY1GBV9vV/h6u0KjqXwXXWpGAQY8txPHbjtuTAkcaR7gHKAcGTcK0f/ZnTh6qurt3ZzcpGcVYuDzOxX3YYy5UR42lArh4l0fAcO7w1RihGA0yV2OaEVp15Dx54+AWlP6h6gWBEHAU2/+jlMXMqtdT9/QBQl7xiFhzzjoG1b9C+VGTjEemhmJ7NwiCaoVz5HmAc4B8hEEAc+8dRD/nKt+96+5ucnJK8FDMyKRlc3cSM2ec8NjKGWk79Eej8etg0qthpNLHQBAzPJtKMkvBAD0WTkL1w6cwLn1ewEADTo0R68vp+HngbNhLCyWtfbKZMfsR/RYHQSTCUJRPgDAe9QsaOqWHn+TcWgzkja+Xe41BfGn4f/Mp2g05EVZaiZl++5/F/DzgatWHfPKtRy8suQIlr/Z06rj1pYjzQOcA5Rh0y+X8N/Iy1YdMyE5F7M+isKqt8OsOm5tMTfKy41dN5QnTpzAvHnzsH//fgiCgH79+mH58uUICgrCsGHDEBERIXeJ1Uo5dh4Hp30OTR0tAkb0QJOwjohevKHs+b/eDMeQrQtwZUcUCjNyEPr+s4h6bbXiwnCTW1A3BExfC6GoABkHN+HGib1o8vjCsufrhz6I+qEPlj3OPLwFieteg1e/iTJVTEpWXGzCq58ckWTsr344ixnjOyAooJ4k41vCkeYBzgHyMxpNmL3kL0nGXr35HGZO6IB2LetLMr4lmBvl5cZud3lHRkaie/fuiI2NxRtvvIFFixYhISEBQ4YMQU5ODjp16iR3iTUyFhSV3r80Nh7HP9yI7Pjr6Pbu02XP5xnScWrFdtz75ni0Hj8QWReTkHTwpKw1V0ft7IK6PoFwadYBTR5/B3W8myP+66mVrluUmoCrKyaj+ewIqOso68xbUoZt+6/g2vU8ycb/6oczko1tCUeaBzgHyO9/v8Uj3pAr2fjLN52VbGxLMDfKy41dNpQpKSkYO3YsQkJCEB0djdmzZ2PKlCmIjIzE1aulu8fsoaG80/GPNiJwbF943dOybNnZ8F3wbO2P4CmjcOTttbLWZymfcfORGhmO3PNHyy0XTCZcWvoE9A/PgWtAR9nqI2Vbuy1O8vFrc8a41BxpHuAcYHtS52bd9jgYFXicInMjP7tsKBcvXoyMjAyEh4fDxeXWgcT16tVDSEgIYKcNZfYlA+L3HEXInHG3FgoCYr/dg4TIYyhMs68zvuo2aQXPrg/g2vrXyy1P2rQQGhcPNB5e+ScwIkEQEHVS2kuVpGcV4mJCtqTvURuONA9wDrA9qXOTlV2Ec1eUtw0yN/Kzy2MoIyIiEBYWhqCgoEqf9/b2hl6vBwBMmjQJP//8M7KysuDu7o7Ro0fjgw8+gLOzs1nvVVJSAoPBYHZtxcUlZq9bmZgvt2HYz+9CH9oehkOnSheaTBAs/CaluLgECQkJomopLvYGoBU1hveDsxE7pyeyT+6He3Af5Jz5A2l7V6PtkmMW1lKMhIRkUbWQ/UhKLcD19IJyyzQaVZVnovrcttyninUMqfkVrsX3y++xqNvbxyo13yR2DoCDzQOcA2wnNbMQiXccJiJFbvYcPAd35yZWqfkm5qY8OXOj1+vh5GR5e6gSBEF5+3yqYTAY4OPjg5kzZ+Ljjz8u95zJZIKPjw86d+6MXbt2AQBOnz6NZs2awc3NDampqRg9ejR69+6N+fPnm/V+CQkJ8Pf3N7u+hV4D4au17n1QA8f0gdc9LRH1+mqzX5NYfANvpO0R9b7tPouBS9P2osa4XUlOJs7MDEHAlNVw79jXotfmXz2F01M7WK0WUri6TYFW88ot8vV2RcKecVW+pCZ+AzcgMfmOYzKvfQ+k7av1mJWRYg6Ag8wDnAMkVscXCCp/NrAkuUnaCKSK267uxNxUzda5iY+Ph5+fn4VV2uE3lLm5pQcbV3Z/0a1bt+L69evldne3a9eu7O+CIECtVuP8+fM2qpZul7JrOYozkhD/zYxyy736ToT3yBlVvo7uRra6fzDvU2xLnAMkZrP7bjM3tmQvubG7byiLiorg6uqKzp0748iRW5cUuXLlCnr27InExERs2LABjz76aNlz77//PhYuXIjc3Fx4eXlh586d6Nq1q1nvZ+ku70Nj3kfuJfPXl4pbcz1CN80RNcbU096ILxC3y9ta/OsW47N23N11t7iclIewp38vt6ymXXdHNowCAHQdtwVJqfkV1qls192SmR0weoB175erlDkADjYPcA6oWeL1fHR/8rdyy6TIzYfT2uPR+y3/Bqs6zI00apOb2u7ytrtvKJ2dnTFhwgSEh4dj5MiRGDZsGOLj47Fy5Up4e3sjMTGxwgk5c+bMwZw5c3DmzBl899138PEx/5gpJycni7761WqV8U+q1VpWd6VjnAdQYMaKNqDVakX/PGQ/mjQR4O52GNm5t64ZZzQKFXe9VSIpNd+s9QCgX2gg/Py8RNV6J6XMAXCweYBzQM18fQXU9ziMjBu37mgjRW76hgbCz6+hqFrvxNxIw5a5scuzvJctW4bnnnsOUVFRmDVrFqKiorB582Y0adIErq6uVZ6s07ZtW9xzzz0YP368zWsmIvOp1Sp0aWfdX1h3qltHg3Yt5L9AM5G1qFQq3Nte2tw4a9XoEMjcUEV22VDqdDqsWLECBoMB2dnZ2L17N0JDQxETE4Pg4GCo1VX/WMXFxTh37pxN6yUiy429v7mk4z8yMABarV1OgURVGnt/C0nHf7B/M9Rxtq97TJNtOMxsmpmZiYSEhHK7u7OysrBmzRpkZmZCEAT8888/WLhwIe6//35ZayWimj0+rCXc3aQ7BmnS2LaSjU0kl3FDWqKeu3mXxauNSWOYG6qcwzSUJ0+W3lLp9oZSpVJh/fr1aNGiBdzd3TFq1CgMHToUn332mYyVltfqsf4Yuu1dDNm6AJ5tmla6zuCf3kbo4udsXlttpO5ehbOv9MDZOfch/3Llt7mKfb0Prnz5gs1rI/vi7uaMV54KlmTs+3v4onvHxpKMXRuONA9wDpCXq4sT5vxHmruo9O/WBGFd9JKMXRvMjbI4dEPp4eGBvXv3Ij09HTk5Obh48SI++ugjuLm5yVjpLc6eOrSeOAg7H5qHP2YuR7cFT1VYx29AFxTnVDzzTolKstORsms5Wi86gIApqxG/alqFdTKPbIfGxV2W+sj+vPrUPejcxronzXjotFg5/75KLz0mB0eaBzgHKMPLE4PRtYN1j6XUuWqxirmRhKPkxmEaykmTJkEQBHTv3l3uUszWqHMgDH+eglBixI0L11CngUf564ipVGjz1GCcXbNLzjLNlnv+L+g69IHKSYu6fq1RciMVgunWPV8FkwkpO75Ao6GTZa2T7IdWq8b3i/vAy7NOtesZUvPhN3AD/AZugKGSS5/cpFarEP5OL/jrdRJUWzuONA9wDlAGJyc1vnuvDxrVr1vteubmRqUCVr99HwJ8ldPQMDfK4zANpT1y9tShKCu37HFxTj6cPVzLHgeO6YMrO6JgLCiuYgRlMWanw0l36+w/tYs7jHlZZY/T9q2FZ+hDUGurn+SIbtemuSf2fj2k2l+ONy+NkpicV+GaeTdpNCqse7c3HhoQIGG1lnOkeYBzgHK0alYPkSuHwNur8mtQwoLcrFnQC2MkPtnHUsyN8rChlFFRVi6cPW7tftfqXFB0o/Q6YJo6WrR4KAxxEda9LZyUNLr6MOZmlj025WdD41qv9O9FBUg/8B0a9q+4W4KoJp3aeOFoxEgMDK3d/YODmtXDb+HD8NiwllavTSxHmgc4ByhLcFADHN0wEoN71u46hIFNPfDrqqGYMKKV1WsTi7lRHjaUMko5dh7e3dtCpVHDPUCPwvQbwL83LtI1bQznem4YsG4uurz5BHz7d0bL0b3lLrlabkHdkH3qNwjGEhQkxcHJoyFU/17CqTD5Eoy5mYhbMBwJa19B1t87kLbvW7lLJjvS1EeHX74ajDULepl9HTx9QxfMf7Ezjv8wCj06eUteY2040jzAOUB5/PRu2PHlIKxb1BsdgxqY9RpvLxfMe74zTvzwoKJOwrkdc6M8yrk0/V2oKDMH57+PxJDNCyAIJhyeuwq+fTvB2VOHS5sPYvvgVwEA+tD2aD6qJy78cEDukqvl5N4ADQc+g9i5vQC1Gk2f/wJZx3bBmJ2OBr0fQ9slRwEA2Sf3I/33CHj1myB3yWRnVCoVJo5shQkjAnHwWDJ2/ZGAv0+n4sylTOQVGOGsVaO5rzu6tPVC73t98EDvpoq/1qQjzQOcA5RJpVLhieGBeHxYS/x5/Dp2HozH36fTcPpiBvIKjNA6qdHcV4cu7RqiV4geI/o2hbNW2deaZG6Ux+7u5a10W3pPR+a5BLnLgGeQH0Yd+ETUGGN+BS5mW60kUVq4A5v6yl0FUc2UMgfAweYBzgGOjbmRhi1zo+yP7kRERESkeGwoiYiIiEgUNpREREREJApPyrEy9wBlnBFnjTp8Xc1YyUaUVAtRdZQyB8DB5gGl1EHSYG6kYcs6eFIOEREREYnCXd5EREREJAobSiIiIiIShQ0lEREREYnChpKIiIiIRGFDSURERESisKEkIiIiIlHYUBIRERGRKGwoiYiIiEgUNpREREREJAobSiIiIiIShQ0lEREREYnChpKIiIiIRGFDSURERESisKEkIiIiIlHYUBIRERGRKGwoiYiIiEgUNpREREREJAobSiIiIiIShQ0lEREREYnChpKIiIiIRGFDSURERESisKEkIiIiIlH+H+nhttQL8zvJAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "from qiskit.circuit.library import EfficientSU2\n", + "from qiskit.quantum_info import SparsePauliOp\n", + "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", + "from qiskit_ibm_runtime.fake_provider import FakeManilaV2\n", + "from qiskit_ibm_runtime import SamplerV2, Batch\n", + "from qiskit_aer.primitives import EstimatorV2\n", + "from qiskit_addon_cutting import (\n", + " partition_problem,\n", + " generate_cutting_experiments,\n", + " reconstruct_expectation_values,\n", + ")\n", + "\n", + "qc = EfficientSU2(4, entanglement=\"linear\", reps=2).decompose()\n", + "qc.assign_parameters([0.4] * len(qc.parameters), inplace=True)\n", + "\n", + "\n", + "observable = SparsePauliOp([\"ZZII\", \"IZZI\", \"-IIZZ\", \"XIXI\", \"ZIZZ\", \"IXIX\"])\n", + "print(f\"Observable: {observable}\")\n", + "\n", + "qc.draw(\"mpl\", scale=0.8)" + ] + }, + { + "cell_type": "markdown", + "id": "1eaf95b7-7c95-4c65-9ab6-d2654bc2b988", + "metadata": {}, + "source": [ + "## Gate cutting to reduce circuit width\n", + "\n", + "We will start by partitioning the circuit and observable into *subcircuits* and *subobservables* using the [`partition_problem`](../api/qiskit-addon-cutting/qiskit-addon-cutting#partition_problem) method. This function will ingest a partitioning scheme according to a label string of the form `\"AABB\"` where each label in this string corresponds to the `circuit` qubit in the same index. Qubits sharing a common partition label will be grouped together, and any non-local gates which span more than one partition will be cut.\n", + "\n", + "\n", + " The observables kwarg to partition_problem is of type PauliList. Observable term coefficients and phases are ignored during decomposition of the problem and execution of the subexperiments. They may be re-applied during reconstruction of the expectation value.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "a5454265-3785-4a54-b423-baf7815b97ec", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sampling overhead: 81.0\n", + "Subobservables: {'A': PauliList(['II', 'ZI', 'ZZ', 'XI', 'ZZ', 'IX']), 'B': PauliList(['ZZ', 'IZ', 'II', 'XI', 'ZI', 'IX'])}\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAACPCAYAAAA4J1eUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo0ElEQVR4nO3deVxU9f4/8BcMg6wCiiwCikW4m2LmkjsuaV0FK8hcb5Fet6vGV1Ozm2VaevOadrUsDBW7otXP5XrVLETKNFxABS0UF2SAMRBQ9mVmfn+YGLLNHJg5cw6v5+PR49Gc+czhPXjOi/fMOedzLHQ6nQ5ERERERGQwS7ELICIiIiKSKjbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQnEZpqIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJBCbaSIiIiIigdhMExEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQlkJXYBzVnMtA9RcFMtdhkAAEdfDwRuX9KodSyMBzKKm6wkwbzsgPV9xa6i+ZHb9mwq3G9ITswlB5gBwjAHhGEzLaKCm2rkX1GJXUaTySgGrheIXQWJRW7bs6lwvyE5YQ4YjhkgfTzNg4iIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUC8AFEiBn48B36hwwAAWo0GJbfzkfVzMhJWf4Vida7Y5Rnk5obpuHNs+/0HlpZQunjCsftweE39ANatvcQuj0xATtuzqXC/ITlhBgjDHDBP/GZaQtS/XMbuHmH45qlZ+HHOx2jdzRdDPw8XuyxBHLoMQo9tWegecQsdwv+D4huJuL7mJbHLIhOS0/ZsKtxvSE6YAcIwB8wPm2kJ0ZZXoiQ7H8XqXNz+5Vek7PwBbn06QulgK3ZpBrOwsobSxQPWrb3g2HUw2oyagaKUU9AU3xO7NDIROW3PpsL9huSEGSAMc8D8sJmWKFt3F/g+3w/aSg10Gq3Y5TRK+Z1M5J38BrBU3P+Pmh05bc+mwv2G5IQZIAxzwDzI+pzplJQUvPfee0hISEBmZiYqKirQrl07jB07FosWLYKnp6fYJRrEY0BXTEqNgoWlJaxsWwAAkj89gMqSMgDA0C/CkRl3AVd2/gAAaNWtAwZvno//jlwETVmFqLU/qiD5OBJDHaDTaqErLwEAuAeFQ2FjDwDIO7UXWbvfrfaa0vTL8AnbgDZjZolSMzUtOW3PpsL9huSEGSAMc8D8yLqZVqlUyMrKQnBwMLy9vWFlZYWkpCR8/vnniI6Oxvnz5+Hm5iZ2mXrLTriKE/P/DUULJXzHDUDbQT2QuGZX1fOn347EmP0rkXYoHmV5hej/4euIX7bVLEPH3r8vfBdsh668FHkn9uDehR/QdtL7Vc+79A+GS//gqsf5v+xDRtQytB4+TaSKDaNSF+G66h6USkt0f6IVHOyUYpdkduS0PZuK3PcbOams1OJ8yh0UFlfC09UWHTs4i12S2WEGCMMcMD+ybqYDAwMRGBhYY/ngwYMREhKCbdu2YfHixaLUJoSmtBwFN9UAgPP/3A1HXw/0XfUaTv7fZwCAYnUuLm05iKfenoKcxFTcvZ6FrBNJIlddO0trW9h4+gEAbNt3Q5n6GtI/n4f2c7+oMbY8R4VbW+bA753DsGxhJ0K1+juRoMbqiAs48rMKOt39ZQ52Vpg27gksn9ETHq7mXb8pyWl7NhW57jdyUlpWibWRSdjy9W/IzC6uWv5UF1eET+uGl8c8Lmp95oQZIAxzwPxI9pzpCxcuYPz48XByckLLli0RFBSErKwsODo64uWXX673te3btwcA5OXlmaha4zj/0W74hQ5D6ycfhvNvkUfg3NEH3ecG4cy720WtzxCeE1cgJyYSRVfPVluu02pxY/1keLywBHa+PUSrTx+7j1zH0FcP4fCJh400ABQWV2JT9K/o+8oBpGUWiFmiWZPT9mwqcthv5KSouAKjZh7BO5sTkJVTXO25c7/mYOKbx/HWxrN1vr65YwYIwxwQnySb6ZiYGPTr1w8pKSlYvnw5Vq9eDZVKhTFjxqCwsBA9e/asNr60tBQ5OTlQqVQ4evQoZs6cCQAYO3asSO+gaRTcUCP9+7MIWDLx4UKdDik7vocqJgFld6RzZa9N2yfg3OcvyNz5VrXlWXveh8K2Jdyenydabfq4cvMupiyLg/bPXfQjbqmLMGFhDHT1jGnO5LQ9m4rU9xu5WfjPePyUcBu4v+lW8+Dx6ogL+Pb7GyJUZ/6YAcIwB8QnuWY6OzsboaGhCAgIQGJiIhYtWoS5c+ciJiYGt27dAoAazXRERATatGkDHx8fjB49Gvn5+di5cycGDRok0rtoOsmbD8BraE949O/6cKFWC51Weg2be/Ai3Dt/FAVJxwEAhb/+jDs/bIXv3yPFLq1Bm3f/iopKbY0/oI9K+PUOTvzxx5ZqktP2bCpS3m/kJCevFNsPXG1wnAWAj3deMklNUsQMEIY5IC7JnTO9Zs0a5OXlITIyEra2D+eidHJyQkBAAGJiYmo000FBQejUqRMKCwuRmJiIAwcOICcnp8lrq6yshFqt1nt8RUWl3mNPLNhU6/LssynY5vmi3uuprxaVStXIdbgDaPhCO9/522pd7tB5AHrvvx+YlYX5uLF+Cnz/vg1WLVsbWEcFVCrTNqw7DlzRe+zney6gg7v+//ZSIbft2VSa834jJ18dTkd5RcNTuukAnEi8jfiEq/Byk998yvrmADPgIX0zAMwBo/Pw8ICVleGtseSa6ejoaAwaNAj+/v61Pu/u7g4PD49qy7y9veHt7Q380Vi/8MIL6NOnD4qLi7F06dKqcZWVlQgPD0dUVBS0Wi1eeOEFbNq0CTY2NnrVplar4ePjo/d7eb/1SHgpW+o93piuXLmCEANqr02XT5Jh266rHiMbln3kU1TkZSH9y4XVlrceNg3u4xfW+Tr88V58Rndrkjr0YwF0r3nhR610OuyMPoCda581dlEmJ7ft2VSa734jM22eAzyC9Rh4X7+BI4GSNKOWJAZzyYHmmgFgDjRKenp6Vb9oCEk102q1GhkZGQgNDa3xnFarRVJSEnr16tXgenr06IFevXph8+bN1Zrp1atXIzY2FklJSbC2tsa4ceOwePFibNy4scnfizGl7jmO1D3HxS6jUTxfXArPF5fqMdIc6ABNKaDQ40OXhQWgLTVFUbIhh+3ZVKS138iMofu1hjmgL2aAYZgDpiepZrqoqAgAYGFhUeO5/fv34/fff69xikddSkpKkJubW21ZREQE1q5dCy8vLwDAihUr8NJLL2H9+vVQKBq+s5CHhwfS09P1fDfAqZAPUXRD/9NCjMnf3x/pe75s1DrmXXZHuhn8ffD398d3Bvw7NIW///Mi9sZm6TX283WzMWbAu3qMlBa5bc+m0pz3GzlJyyrGoLCfGrxuwsICeMzLHrH/O1Pr3zKpM5ccYAYI09xz4NEzG/QlqWbax8cHCoUCcXFx1ZanpaVh3rz7V6v+uZlWq9W1/mJiY2ORnJyMoUOHVi3Lz89Henp6tdcHBASgoKAAN2/exOOPNzw3qJWVlUGHB5RK8/n1K5WG1V7rOq4CMINAUCqVjX4vhlr0qhJ7Yw/WO8bCAvBys8NfJ/SClZXkrv1tkNy2Z1NpzvuNnHh7A88NuomDP9bfiOh0wIIpPQw6JVBKzCUHmAHCMAeEMY+tXk/W1taYOnUqIiMjMX78eDz33HNIT0/HF198AXd3d2RkZFRrhmfNmoWsrCwMHz4c7du3R2lpKc6dO4fo6Gg4Ojpi3bp1VWMLCu7P/+vs/PAuVQ/+/8FzRHXp/6Q73vlbL7z7WSIsLGpOi2VhAdhYK7Dno+GybKSJCPjs7WcwYMp/cUtdVOeY8cPa4W8vdTJpXURkXJL7q75x40bMmDED8fHxCA8PR3x8PPbu3Yu2bdvCzs6u2oWJEydOhKurK6KiojB//nwsWbIEp0+fxsyZM3Hx4sVqjbejoyMA4O7du1XL8vPzqz1HVJ8VswOw5R/PwMut5l2mBvZyx0/bn0f/J91FqY2IjM/L3R6ndv4FEwJ9YWlZ/RSOlvZKLHmtB77+KJAfqIlkRlLfTAOAg4MDtmzZgi1btlRbnpycjO7du8PS8mFIhYSEICQkRK/1Ojs7w8fHB+fPn0fHjh0BAImJiXB0dISvr28TvwuSqxkvdsKrQf7Ydegapi7/EQBwdMuzGNnfS+zSiMgE2rrZ49v1gTiTlI2nJx0AAGxaNgDTxvnB3k6/6c+ISFpk8fE4Pz8fKpVK74sP6xIWFoYPPvgAmZmZyM7OxooVKzB9+nS9Lj40hSdeCcTYA6swZv9KOHdqV+uYZ799F/3XzDB5bULkHI3Ab4sH4LclA1FyM6nWMSlvDUXa5r+ZvLbGsLKyxLCn21Y97tzBud7xzZnctmlTkOt+IzeebR4eoRo3tB0b6TowAwzHDDA/smimk5Lub0yNbaaXLVuGwYMHo2vXrvDz80Pnzp2xZs2aJqqycaydHdBx2igcnvAP/PzGp+i78q81xniP6I2KwhJR6jNUZUEuso98io6r4+A7dyvSI+bXGJN/5iAUtjzFRq7ktk2bAvcbkhNmgOGYAeaJzfSfWFlZYePGjcjLy8Pdu3exdevWandZFFObXn5Qn7wEXaUG965lokWrlvevanvAwgKd/vosftt2RMwy9VZ09TQcug2FhZUSNt4dUXkvBzrtw7uH6bRaZB/ahDZj54haJxmP3LZpU+B+Q3LCDDAcM8A8yaKZnj17NnQ6Hfr16yd2KUZj7eyA8rsPrxCvKCyBdcuHhxH9QoYi7VA8NKUVIlVoGE1BLqwcXKoeW9o6QlP88OLPO8e2w7n/BFgq9bv7JEmP3LZpU+B+Q3LCDDAcM8A8yaKZbg7K7xbBuqV91WOlgy3K7xUDABQtlHhswiCkRh8TsULDKBxcoCnKr3qsLSmAws7p/v+XlyI37iu4BtY85EfyIbdt2hS435CcMAMMxwwwT5KbzaO5yk64ip7/FwILhSUcfNxQlnuvajJjh3ZusHayx4iopbB2doCtmzMef2kIrn0d1+B6xWLv3xeZu96BTlOJst9vwqqlKyz+mIml7PYNaIrykbryeVQW5qIiT407x3ag9fCpYpdNTUhu27QpcL8hOWEGGI4ZYJ7YTEtEeX4hrv4nBmP2roROp8UvSyPgNawnrJ0dcGPvCRx89k0AgEf/rugQ9IzZB46VYyu4jgxDytLBgKUl2s3chLsJR6ApyEWrIa+g87/OAgAKko4j96dohoEMyW2bNgXuNyQnzADDMQPMk4VO9+i92shU9g1ZgPwrKrHLAAA4+3sjKO7jRq0jJBa4bgY3i3zMEdgzTNwaVOoi+IyKBgCkH30Z3h72Db5G6uS2PZsK9xt5ao4ZADPKAWaAMMwBYXjONBERERGRQGymiYiIiIgE4jnTInL09RC7hCpNUYuXnR6DTMBc6mhu5LY9m4q5bK/mUgdJm7nse+ZShz7Mad8zp1qkhOdMExlBcz1fkojuYwYQNR88zYOIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJBCbaSIiIiIigdhMExEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNREYxYsQITJ8+XewyqikoKMDrr7+O1q1bw97eHmPGjMG1a9fELotItswxBxYsWIC+ffvCzs4OVlZWYpdDMsBmmoiajSlTpiAmJgbffPMNTpw4AZ1Oh5EjR6KkpETs0ojIRDQaDV555RXMnj1b7FJIJviRTEQx0z5EwU212GUAABx9PRC4fUmj1rEwHsgobrKSBPOyA9b3FbsKedi0aRM2bdqEa9euwcnJCYMGDcK3334LX19fhIWFYfny5VVjw8LCkJqaiuPHj2P69OmIiYkBAGzfvh0AEBsbi6FDh9b78yorK7Fq1Srs2LEDKpUKrq6umDBhAj755BOcPHkSQ4YMwZ49exAcHFy1zlGjRuHgwYMYPXp0veu+cuUK9u/fj++++w7Dhg0DAOzatQseHh7YvXu3aN+emUsOyCkDwBxoUnLKAQD45JNPAADbtm1r1O+lqZhLBkBmOWDKDGAzLaKCm2rkX1GJXUaTySgGrheIXQU1lXfeeQfr1q3Dhx9+iFGjRqGwsBCHDx/W67UbNmzA9evX4enpiQ0bNgAAWrVq1eDrXnvtNRw+fBjr1q3DgAEDkJ2djVOnTgEABgwYgBUrVuC1115D7969YWtri8mTJ2PhwoV6/QH9+eefoVQqERgYWLXMxcUFTz/9NE6cOCFaMy2nHGAGyI/ccsAcySkD0ExzgM00EdVQVFSEtWvXYuXKlZg7d27V8oCAAL1e7+TkBGtra9ja2sLDw0Ov16SmpmLHjh34+uuv8eKLLwIAHn/8cfTr169qzNKlSxEbG4tJkybB0dERXl5eWLVqlV7rz8rKgqurKxQKRbXlHh4eyMrK0msdRM2JHHOAyBjYTBNRDZcuXUJpaSlGjRplsp+ZkJAAAPX+TEtLS0RFRaFz586orKzExYsXoVQqTVYjUXPCHCDSDy9AJCKDWVpaQqfTVVtWUVFhkp99/vx5FBUVobS0FOnp6Xq/ztPTEzk5OdBoNNWW3759G56enkaolEjepJgDRMbAZpqoiZSWVeLICRVWfX4es97/uWr5/62Lx6boyzh3OafGHx5z1aVLF9jY2ODo0aO1Pu/m5obMzMxqyxITE6s9tra2rtG41ufBoeO6fiYAqNVqTJs2DW+99Rbmzp2LyZMnIzc3V6/1P/PMM6ioqMCxY8eqluXn5yM+Ph4DBw7Uu06i+qTeuofIfVew/N/nqpa99s5PWLbhLL79/gZy75aJWp8h5JgDRMbA0zyIGinjdhE2fHUJX+67gjv5Nf9Q7v7uBnZ/dwMA0P0JF8wO7YxXg/1hrVTUsjbz4ODggPDwcKxYsQK2trZV08cdOnQIS5cuxYgRI7B582YEBwejffv2+Oyzz5CWllbt4qIOHTogNja2agYAJyeneg/F+vn5YdKkSZg9ezZKS0vRv39/5Obm4uTJk5g/fz50Oh2mTp2KTp064e2334ZGo8GPP/6IV199Ffv27WvwPfn7+2P8+PGYNWsWtm7dCicnJyxbtgxeXl4IDQ1tst8dNT86nQ77Y9PwyX8u49jpmuffHz2VgaOnMgAANi0UePnZx7BwSjf08G/4YjwxyTEH8Md52YWFhbh16xbwx7fcD362g4NDo39v1PywmZaIgR/PgV/o/em8tBoNSm7nI+vnZCSs/grFaml9Ir+5YTruHLs/TRIsLaF08YRj9+HwmvoBrFt7iV2e3nQ6Hb7cewVvfBSPe4X6HdpMupqHWe+fxGdf/4ZtKwejZ6fWRq9TqJUrV6JNmzbYuHEjFi5cCBcXFwwePBgA8OabbyItLQ2hoaFQKpWYPXs2XnrpJaSmpla9Pjw8HElJSXjyySdRVFSk15RYkZGReO+997B8+XJkZmbCzc2t6iKktWvX4uzZs7hw4QIUCgUUCgWio6PRu3dvbNq0CXPmzGnwPUVFReGNN95AcHAwSktLMXjwYBw9ehS2traN/n0Zm5wyADLKgYzbRZi58mf870f9TjUoLdNg2/6riDqYijf/2gP/+FsvtLA23w/WcsyBsLAwxMXFVT3u1asXoOe0fWKTUw7IJQMAwEInlePOMrRvyAK9p8MZ+PEcOLR3R9yMf8FCYQlHX3f0Wx2GisJSHBr3VqNrcfb3RlDcx41aR0isftPh3NwwHWXq63hs8R7otBqUqa/h1pY5UNg4otPak42qAQAecwT2DGv0aupVUaHFtOVx2HX4uuB1WCkssPXdQZg67okmrY2kRd8ckFMGQCY5cOrCbTw35yjy7pULXsdTXV1xePNouLrYNGltJB3sBaSbAQ/wnGkJ0ZZXoiQ7H8XqXNz+5Vek7PwBbn06Qulg/t+qPcrCyhpKFw9Yt/aCY9fBaDNqBopSTkFTfE/s0hqk0WgxaenxehtphcICXu528HK3g0JhUeuYSo0O05b/iKj/XjVitSQncsoASDwHziRnY9TMI3U20vpkAACcvZSDwNcPI++edM6lJnHJKQeknAF/JvvTPFJSUvDee+8hISEBmZmZqKioQLt27TB27FgsWrRIslfx27q7wPf5ftBWaqDTaMUup1HK72Qi7+Q3gKXi/n9mbm1kEr4+eqPeMR6utlB9PxEA4D1yFzJu1307qNfeOYFenVqj2xPmff5kY82ePbveO47FxcWhvLwc27Ztw/Tp02FtbV3v+vr06VPtcdeuXZGWllbr2MmTJ+Ozzz4TWLl5klMGQGI5kH+vDMELfkBhcWWdYwzJgItXcjHj3RP4el1gnWPkgjnQtOSUA1LKgEfJvplWqVTIyspCcHAwvL29YWVlhaSkJHz++eeIjo7G+fPn4ebmJnaZevEY0BWTUqNgYWkJK9sWAIDkTw+gsuT+NxpDvwhHZtwFXNn5AwCgVbcOGLx5Pv47chE0ZaaZrkhfBcnHkRjqAJ1WC115CQDAPSgcCht7AEDeqb3I2v1utdeUpl+GT9gGtBkzS5SaAeBSah5WfJrQpOusqNRi+ts/4VTUX6BUyvdg0YQJEzBixIh6x5SXlyMiIgKvvPJKg39EH3Xo0KE6p+Vq2bKlQesyV3LKAEg4B8LXnUbG7017v+Rvvr+JPd9dR8jox5p0veaGOdB4csoBqWbAo2TfTAcGBla7ffADgwcPRkhICLZt24bFixeLUpuhshOu4sT8f0PRQgnfcQPQdlAPJK7ZVfX86bcjMWb/SqQdikdZXiH6f/g64pdtNbudBwDs/fvCd8F26MpLkXdiD+5d+AFtJ71f9bxL/2C49A+uepz/yz5kRC1D6+HTRKr4vrc+OYvyiqb/9H/ucg6ij1zDlL/I9/zpB1fyG0v79u2Ntm5zIacMgERz4FJqHr7ce8Uo6170r9N4YYQvFAr5fqhmDjSenHJAihlQG0nvsRcuXMD48ePh5OSEli1bIigoCFlZWXB0dMTLL79c72sf7HB5eXkmqrbxNKXlKLipRn5KOs7/czcK0n9H31WvVT1frM7FpS0H8dTbU9BxykjcvZ6FrBNJotZcF0trW9h4+sG2fTe0nfQeWrh3QPrn82odW56jwq0tc9BhUTQsW9iZvNYHbmUV4r9xxrs5wObdvxpt3SQPcsoASDQHPt1jvP30VlYRDp/Q70I0ar7klANSzIDaSLaZjomJQb9+/ZCSkoLly5dj9erVUKlUGDNmDAoLC9GzZ89q40tLS5GTkwOVSoWjR49i5syZAICxY8eK9A4a7/xHu+EXOgytn3y8atlvkUfg3NEH3ecG4cy720WtzxCeE1cgJyYSRVfPVluu02pxY/1keLywBHa+PUSrDwC++t81aLXGm/zml4vZSLmRb7T1S4GVlRXGjRsHKyvZHzRrEnLKAEggBzQaLaIOpuoxUrht+3lBMnPAMHLKAXPPgLpIspnOzs5GaGgoAgICkJiYiEWLFmHu3LmIiYmpmoT90WY6IiICbdq0gY+PD0aPHo38/Hzs3LkTgwYNEuldNF7BDTXSvz+LgCUTHy7U6ZCy43uoYhJQdkc6V8PatH0Czn3+gsyd1af2ydrzPhS2LeH2fO2fVE0pPul3o/+M08nZRv8Z5szGxgbLly+HjQ2nCdOHnDIAEsiBlJt39Z5TXqjmngFgDhhMTjlg7hlQF0l+7FuzZg3y8vIQGRlZ7WYLTk5OCAgIQExMTI1mOigoCJ06dUJhYSESExNx4MAB5OTkNGldlZWVUKvVeo+vqKj7SnB9JW8+gOf+uwoe/btCferS/YVaLXQGfoNaUVEJlapxhxcrKtwB1H1nq4a4By9CypJnUJB0HI7dh6Lw159x54et6Pwvwy74q6iogEp1W3AddTmTXL2ZVigs4OFa+1REnn9a7lnHGABQ55RAo3n4bxV3+iaG9ZLe9Eb6KCoqanBMWVkZNm7ciL///e9o0aJFvWMbu72ai8bmgJwyAGaeA9+fyKyxrK4cEJoB6eoinE++Blfn+rd/qWIO1MReoDoxM8DDw0PQERFJ3rTF29sbfn5+OH78eI3nRowYgeTk5Aab2osXL6JPnz5YsWIFli5dWrV8z5492LhxI86fPw9XV1fcvHlT77pUKhV8fHz0Hv9+65HwUjb91cV+IUPR+snHEf/WVr1fk1FxD8vvfN+on9vlk2TYtuvaqHU8UFmYj1/fCIDv3K1w7GHYrOslty7h8rxuTVJHNV0/BSwfBoSXu13V1FdC1ZgyKz8eSP+iUes0V2FhYQ2OKS8vx44dOzB16tQGr+KPiIhowurEY4wckEMGwBxzwHUU4BlSbVFjc6DWafOu/AMoq9m4ywFzoCb2AnUzdQakp6fD29vbwCol+M20Wq1GRkYGQkNDazyn1WqRlJRUdWvQ+vTo0QO9evXC5s2bqzXTLi4umDt3Lm7fvo3169c3ef2kn+wjn6IiLwvpXy6strz1sGlwH7+wztcZV903XpDWzyCSBvPLARPtnxaSPAOTqMmZXwbUTnLfTF+7dg1+fn4IDw/HRx99VO25vXv3YsKECXjzzTfx4YcfNriuJ598EqmpqbUedtq3bx8WLFhg0DfThp7mcSrkQxTd0H+8Mdl38ED/PUsatY55l92RXtq4Q7xNwcemAp90afrTPHpOjMWduw/vdtbQaR5ndgUBAPpM3IesnJJaxz16iHfyWB98MLdLk9duDlJTG75wq6ioCM8//zwOHjwIe3v7esf6+fk1YXXiMZcckFMGwEg58J8j6Xhz4+Vqy+o7zUNIBgBA/PbBaNtGnqd7MQdqMpcMgMxyQEgGCD3NQ3LfTPv4+EChUCAuLq7a8rS0NMybd//E9D+fL61Wq+Hh4VFjPbGxsUhOTsbQoUObrDYrKyuDDg8olebz61cqDau91nVcBVDaZCUJr0OpbPR7qU1AF1d8f+rhoVeNRlfvXc0eyMop0WscAAzs3c4otZuDrKysBscolUqEhYXB2dm5wcO7cvk9mUsOyCkDYKQcGNavBfBIM61PDhiSAa2cWqBPTz9YWMjzKBVzoCZzyQDILAeM1QvUxnz+BfVkbW2NqVOnIjIyEuPHj8dzzz2H9PR0fPHFF3B3d0dGRka1ZnrWrFnIysrC8OHD0b59e5SWluLcuXOIjo6Go6Mj1q1bJ+r7Iel4qkubas20MfTu0tqo6zd31tbWmDFjhthlENWqh38rKK0sUVFpvNs2P9XVVbaNtL6YAyQ1kjwxa+PGjZgxYwbi4+MRHh6O+Ph47N27F23btoWdnR38/f2rxk6cOBGurq6IiorC/PnzsWTJEpw+fRozZ87ExYsXa8z6QVSXkNEdjLp+v3YtEdDZ1ag/w9yVlJRg3rx5KCmp/ZA4kZhaWCsQHGjcO+y9/Ky8byeuD+YASY3kvpkGAAcHB2zZsgVbtmyptjw5ORndu3eHpeXDzwghISEICQmpZS1EhunZqTUG9HTDyfPGmW96VkgnWFo272+kNBoN4uPjodFoxC6FqFazQztjz3c3jLJul5bWCB3NZpo5QFIjyW+ma5Ofnw+VStXob5o1Gg1KS0tRUVEBnU6H0tJSlJWVNVmdjfHEK4EYe2AVxuxfCedO7Wod8+y376L/GmkcHss5GoHfFg/Ab0sGouRm7bc6TXlrKNI2/83ktdVlxawAo6zX290eYRM6GmXdJC9yygEpZsDg3h4Y/rSnUda95NUnYWcrye+4yITklAGQaA48SjbNdFLS/X+AxjbTUVFRsLW1RUhICG7dugVbW1t07Ch+k2Pt7ICO00bh8IR/4Oc3PkXflX+tMcZ7RG9UFErjsFhlQS6yj3yKjqvj4Dt3K9Ij5tcYk3/mIBS2jqLUV5eR/b3w+gtNvz1ErBiIlg71X2hDJKcckGoGWFhYIGLFINg3cdP7dLc2eGOqEebHJ1mRUwZAwjnwKDbTj5g+fTp0Ol21/wyZHs9Y2vTyg/rkJegqNbh3LRMtWrUE/nyRioUFOv31Wfy27YiYZeqt6OppOHQbCgsrJWy8O6LyXg502ocX9ei0WmQf2oQ2Y+eIWmdt1v3f0+jVqf4LBdU5JfAeuQveI3dBXceUWA+8+WoPjH5G+lekN4UWLVpg2bJlDd71rLmSUw5IOQM6eDti67uDUN91goZkQBsXG+z8YAisrGTzJ7lRmAN1k1MGQOI58Gey2XNnz54NnU6Hfv36iV2KUVg7O6D87sP5sCsKS2Dd0q7qsV/IUKQdioemtEKkCg2jKciFlYNL1WNLW0doiu9WPb5zbDuc+0+ApdJGpArr5mhvjaNbnkVA57ob6gfTZWXcLq4xh+yfvTG1Gz6Y/5SRKpUepVKJoKAgKJXiz1FqjuSUA1LOAAAIffYxRL43uM7rHPTNAA9XW8R8MQZPtHcyYrXSwhyom5wyADLIgQdk00zLXfndIli3fDh5vdLBFuX37s9bqmihxGMTBiE1+piIFRpG4eACTVF+1WNtSQEUdvf/mGjLS5Eb9xVcA2sevjIXri42iIt8DnNe7izo9c6O1tixajA+Cn+62U+D9WfFxcUIDQ1FcbF+c/I2N3LKAalnAABMG/8Ejm8di8d9hB2CHjPQG2f+Mx7d/Vs1eW1Sxhyom5wyADLJAbCZlo7shKtw79cZFgpLOPp6oCz3HvDHzSsd2rnB2skeI6KWovfbk+EV2AuPvzRE7JLrZe/fFwWXfoROU4nSrFRYtXSFxR+zsJTdvgFNUT5SVz4P1fbFuHvuEO4c2yF2yTU42Cnx72UDcPzLsRjRr61er7GzscKMFzvi0t4JmPKXJ9hIP0Kr1eLGjRvQao03j6+UySkH5JABADCotwcufB2Mt2f2hFsr/b496+HfClGrh+B/m0bB26P+O/w1R8yBuskpAyCjHOBlwxJRnl+Iq/+JwZi9K6HTafHL0gh4DesJa2cH3Nh7AgeffRMA4NG/KzoEPYNrX8c1uE4xWTm2guvIMKQsHQxYWqLdzE24m3AEmoJctBryCjr/6ywAoCDpOHJ/ikbr4VPFLrlOQ57yxJCnPJFyIx//LyYN5y7n4MKVXNwtKK+61XDvzq7o18MNL43qACdHXmhIwsgpB+SUAfZ2Srw3pzeWz+iJA7G38GOCGucu5+BGRiEqKrWws1Ggy2Mu6N2lNcYM9MGAnm78IE2CyCkDIKMcsNDpdHWfzEVGtW/IAuRfUYldBgDA2d8bQXEfN2odIbHA9YImK0mwxxyBPcPEroIedebMmQbHFBYWYvjw4Th27BgcHBzqHdunT58mrE485pIDcsoAMAfMFnOgJnPJAMgsB0yZATzNg4jMho2NDTZs2AAbG/O+2ISIjIc5QFLD0zyIyGxYWVmhf//+YpdBRCJiDpDU8JtpIjIbhYWFGDZsGAoLC8UuhYhEwhwgqeE30yJy9PUQu4QqTVGLl50eg0zAXOogYYqKivQYJR/mkgNyygCYWS1kuOaUA+aSAZBZDpiyDjbTIgrcvkTsEprU+r5iV0AkPXLKAWYAkeHklAFopjnA0zyIiIiIiARiM01EZsPW1ha7du2Cra2t2KUQkUiYAyQ1bKaJyGxYWlrC3d0dlpaMJqLmijlAUsMtlYjMRlFREYYPH96sLj4iouqYAyQ1bKaJiIiIiARiM01EREREJBCbaSIiIiIigSx0Op1O7CKIiABAp9OhoKAAjo6OsLCwELscIhIBc4Ckhs00EREREZFAPM2DiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBPr/a7kI63WZY9kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "partitioned_problem = partition_problem(\n", + " circuit=qc, partition_labels=\"AABB\", observables=observable.paulis\n", + ")\n", + "subcircuits = partitioned_problem.subcircuits\n", + "subobservables = partitioned_problem.subobservables\n", + "bases = partitioned_problem.bases\n", + "\n", + "\n", + "print(f\"Sampling overhead: {np.prod([basis.overhead for basis in bases])}\")\n", + "print(f\"Subobservables: {subobservables}\")\n", + "subcircuits[\"A\"].draw(\"mpl\", scale=0.8)" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "1c527720-0d06-48a1-88b6-9ff95a77a068", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAACPCAYAAAA4J1eUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnzElEQVR4nO3deVhU9f4H8PfMMAPDIiAoIKCopLmmmLlm7qmVe1Jq6s3lGup1IXPJXLJMbXEpNUsvbuXW/ZHWNTNJMZdIL2pgbigoIGMoi+zLzPz+MFECYebMcmYO79fz8DzOmTPf+QDOm8/M+Z7vken1ej2IiIiIiMhocrELICIiIiKyV2ymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQnEZpqIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJBCbaSIiIiIigdhMExEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmsiG9O7dG+PGjRO7jHJycnIwceJEeHl5wcXFBf3798e1a9fELotIsmwxB2bMmIEOHTrA2dkZDg4OYpdDZFPYTBNRlV577TVERUXhm2++wfHjx6HX69GnTx8UFBSIXRoRWYlWq8XIkSMRFhYmdilENofNNJGZrVu3Ds2bN4ejoyPq1q2LYcOGAQCCgoLw3nvvldt3woQJ6N69OwBg3LhxiIqKwtatWyGTySCTyXD06NFqn6+0tBRLlixB48aN4ejoCH9/f0ybNg0AcPLkSSiVSkRGRpbtf+TIESiVSvz444/Vjn3lyhXs27cPn3/+OXr06IG2bdti586dSE1Nxe7du43+2RDVFFLKAQD49NNPMX36dLRs2dKonwNRTcBjNSKKGrscOUkascsAALgF+aLX1rkmjTEzBkjNN1tJgvk7A6s6iPPcixYtwscff4zly5ejb9++yM3NxQ8//GDQY9esWYPr16/Dz88Pa9asAQDUrl272seNHz8eP/zwAz7++GN07twZ6enpOHXqFACgc+fOWLx4McaPH4927dpBrVZj9OjRmDlzJp5//vlqxz5x4gSUSiV69epVts3T0xPPPPMMjh8/bnOHou2RreSAlDIAzAGz5gBZlq1kACSWA9bMADbTIspJ0iDrSorYZZhNaj5wPUfsKsSTl5eHlStXYunSpZg6dWrZ9pCQEIMe7+7uDpVKBbVaDV9fX4Mek5CQgG3btmHv3r0YPnw4AKBx48bo2LFj2T7z5s3DkSNHMGrUKLi5ucHf3x/vv/++QeOnpaXB29sbCoWi3HZfX1+kpaUZNAZVTUo5UNMzABLNAbIsKWUAamgOsJkmMpMLFy6gsLAQffv2tdpzxsbGAkCVzymXy7F9+3Y0a9YMpaWl+P3336FUKq1WI1FNwhwgqnk4Z5rISuRyOfR6fbltJSUlVnnuc+fOIS8vD4WFhUhOTjb4cX5+frhz5w60Wm257bdv34afn58FKiWSNnvMASKqGptpIjNp3rw5nJyccOjQoUrvr1u3Lm7dulVu29mzZ8vdVqlUFRrXqjw4dPy45wQAjUaDsWPH4u2338bUqVMxevRoZGRkGDR+ly5dUFJSgp9//rlsW1ZWFmJiYtC1a1eD6ySqKaSYA0RUNU7zIDITV1dXhIeHY/HixVCr1WXLxx04cADz5s1D7969sX79egwZMgQNGjTA559/jhs3bpQ7uahhw4Y4cuQIrl27Bnd3d7i7u1d5KDY4OBijRo1CWFgYCgsL0alTJ2RkZODkyZOYPn069Ho9xowZgyeffBLvvPMOtFotjh07htdffx3ffvtttd9TkyZNMGjQILzxxhvYvHkz3N3dMX/+fPj7+yM0NNRsPzsiqZBiDuCvedm5ubm4efMm8Nen3A+e29XV1eSfG5E9YzNtJ7qunoLg0B4AAJ1Wi4LbWUg7EY/YZV8hX2Nfny4krRmHuz9vvX9DLofS0w9urXrCf8wHUHn5i12eSZYuXYo6depg7dq1mDlzJjw9PdGtWzcAwJw5c3Djxg2EhoZCqVQiLCwML7/8MhISEsoeHx4ejri4ODz11FPIy8vDkSNHypbMepyIiAi8++67WLBgAW7duoW6deuWnYS0cuVKnDlzBufPn4dCoYBCocCuXbvQrl07rFu3DlOmTKn2e9q+fTtmzZqFIUOGoLCwEN26dcOhQ4egVqtN/nmR4aSUAWAO2F0OTJgwAdHR0WW327ZtC/y1xF51tZH5SCkHpJQBMv3fJ2+R1Xz73AyDz+DtunoKXBv4IHrSJ5Ap5HAL8kHHZRNQkluIAwPfNrkWjyYBGBy92qQxRhwx7AzepDXjUKS5jkZv7YFep0WR5hpubpwChZMbnlx50qQaAKCRG7Cnh8nDEFmFoTkgpQwAc4CoDHsB+88Azpm2I7riUhSkZyFfk4Hbv17E5R2HUbd9Uyhd7e8TQpmDCkpPX6i8/OHWohvq9J2EvMunoM2/J3ZpRDZLShkA5gCRIFLKAalkAJtpO6X28UTQix2hK9VCr9WJXY5Jiu/eQubJbwC54v4XlVm2bBlcXV0f+2WqFi1aPHbsyZMnm+V7IMuQUgaAOVAl5gA9jpRywJ4zoEbNmc7Pz0fLli2RmJiIKVOm4LPPPhO7JKP4dm6BUQnbIZPL4aB2BADEb9iP0oIiAED3L8NxK/o8ruw4DACo3bIhuq2fju/6zIa2yDpLLxkqJ/4ozoa6Qq/TQV9cAADwGRwOhZMLACDzVCTSdi8p95jC5D8QOGEN6vR/Q5SaxfDMM89g27Ztj73/9OnTKC4uxpYtWzBu3DioVKoqx2vfvn252wcOHHjssly1atUSWDVZipQyAMwBg5w+fbraHDhx4oTgDABzwO5IKQekkgE1qpleuHAh0tPTxS5DsPTYqzg+/TMoHJUIGtgZ9Z5tjbMrdpbd/9s7Eei/byluHIhBUWYuOi2fiJj5m23uxQMALk06IGjGVuiLC5F5fA/unT+MeqPeK7vfs9MQeHYaUnY769dvkbp9Prx6jhWpYnE8OJO/KsXFxdi0aRNGjhxZ7R/Sv2vQoIGJFdqfFE0erqfcg1IpR6snasPV2X4uXCGlDABzwGDV5UBubq7gDEANzIHSUh3OXb6L3PxS+Hqr8WRDD7FLMoqUckAqGVBjmunY2FisXr0aK1euRHh4uNjlCKItLEZOkgYAcO7D3XAL8kWH98fj5JufAwDyNRm4sPF7PP3Oa7hzNgHZ19OQdjxO5KorJ1ep4eQXDABQN2iJIs01JH8xDQ2mfllh3+I7Kbi5cQqCF/0AuaOzCNWSFJw4exvLNp3DD8dT8OC0a1dnB4x56QksmNQGfnVs//+WlDIAzAGyssKiUny4JQ6f77mEW+n5ZdvbNfNC+NhWeHVAY1HrM5SUckAqGWC3c6bPnz+PQYMGwd3dHbVq1cLgwYORlpYGNzc3vPLKK+X21Wq1mDhxIvr164ehQ4eKVrO5nftoN4JDe8DrqYcBcCniIDyaBqLV1ME4vWSrqPUZw+/VxbgTFYG8q2fKbdfrdEhcNRq+w+bCOai1aPWRfdt7KBHdX/8vDvzysJEGgNz8UqzffREdRu1HUqqBy1DYECllAJgDZEH5BaXo98aPWLguFml38svdF3vpLkbOPYp5a06LVp8ppJQD9poBdtlMR0VFoWPHjrh8+TIWLFiAZcuWISUlBf3790dubi7atGlTbv9Vq1bh0qVLdjdHujo5iRok/3QGIXNffbhRr8flbT8hJSoWRXft52xYp3pPwKP9S7i1o/zSPml73oNCXQt1X5wmWm22zsHBAQMHDoSDQ4050GSUqzeyMWruUWh1j18FNFmThyEzDle4zLOtk1IGgDkgGDOgeuEfxSD6zP1Pc//+Mn9we/nm37H3UKII1ZlGSjlgrxlgd810eno6QkNDERISgrNnz2L27NmYOnUqoqKiyq7M9GgznZiYiEWLFmHhwoUICgoSsXLLiF+/H/7d28C3U4uHG3U66KtoHGyVz5DZuHfuEHLijgIAci+ewN3DmxH0rwixS7NpTk5OWLBgAZycnMQuxSZt2HMRJaW6Cn9A/+7c5Qwc+5/GWmWZjZQyAMwBQZgBVcvILkLEvivV7ieTAat3xFulJnOTUg7YYwbY3dvYFStWIDMzExEREeWuwObu7o6QkBBERUWVa6YnT56MRo0aYdasWRavrbS0FBqN4X+MS0pKDd73+Ix1lW5PP3MZW/yGGzxOVbWkpBi2aPzjx/ABUP3JXEHTt1S63bVZZ7Tbd/+FX5qbhcRVryHoX1vgUMvLyDpKkJJy26jH2Kq8vLxq9ykqKsLatWvxr3/9C46OjlXua+rv2B5t21/9H9EHvtjzOxr7ai1az98ZmgNSygAwBwzGDDDdrh9TUFRc/bJxej1w8tyfOPW/qwj0sd6azewFyhMzA3x9fQUd4bG7ZnrXrl149tln0aRJk0rv9/Hxga+vLwBgx44d+Omnn3Ds2DEoldX/YktLSxEeHo7t27dDp9Nh2LBhWLduncHv9jUaDQIDAw3+Xt7z6gN/pW0sO3TlyhWMMKL2yjT/NB7q+i0M2LN66Qc3oCQzDcn/nlluu1ePsfAZNPOxj8Nf30vg8y3NUofYJkyYUO0+xcXFOHDgALy9vas9k3/Tpk1mrM5OtPwCkBlwEE6vx9e7v8PXH/azRlVlbCUHbC0DwBwAmAHmUac/4DvM4N07P/s8UGC96R62kgGwwRywdgYkJycjICDA6DrtqpnWaDRITU1FaGhohft0Oh3i4uLQtm1b4K936rNmzcKAAQPg6+uLhIQEAEBqaioAIDs7GwkJCfD29oaHx/1lcZYtW4YjR44gLi4OKpUKAwcOxFtvvYW1a9da9fs0VcKeo0jYc1TsMkziN3we/IbPE7sMkgJdESB3un8MtyoyGaArtFZVFiWFDABzgMxFa+TrmjlgM+wlA2R6Ozrj5tq1awgODkZ4eDg++uijcvdFRkZi6NChmDNnDpYvX46srCx4enpWO+aHH36IN998EwBQv359rFy5smw1kB9//BEvv/wyMjMzoVBUfzUeY6d5nBqxHHmJtjFH06WhLzrtmWvSGNP+8EFyofhr9gY6leDT5vZ/eBdA2ZvAquTl5eHFF1/E999/DxcXlyr3DQ4ONmN19mHGR3H4z8+3DNp34/ynMKCrr8VrepSt5ICUMgASygFmgOlSbheg8+vHqj1vQiYDGtZzxtEvukJW3ZtvM7KVDIDEckBIBtSIaR6BgYFQKBSIjo4ut/3GjRuYNu3+GZ4P5ku7uLhg7969FcZIT09HWFgY+vXrh/Hjx6N16/tLrGRlZSE5ObncfOuQkBDk5OQgKSkJjRtXv/6kg4ODUYcHlErb+fErlcbVXukYVwHYwBt6pVJp8vdiK9LS0qrdR6lUYsKECfDw8Kj2EK9Ufi7GmP26qtpmWiYD/Lyd8Y9hIVAqrXtetq3kgJQyABLKAWaA6QICgIHdk7DvyM0q99PrgemjWxs1XdMcbCUDILEcsGYG2M5v0AAqlQpjxoxBREQEBg0ahBdeeAHJycn48ssv4ePjg9TU1LJmWKlUYvjwipPxk5KSAACNGzcud39Ozv01Zh9M+Xj03w/uI7JFKpUKkyZNErsMm9WhdV0sCQvBovWxkMkqLoslA+CkUmDvxz2t3kgTmQMzoHobFnTBuUsZuJGW+9h9XnquPsJCm1m1LpIGu/vLsXbtWkyaNAkxMTEIDw9HTEwMIiMjUa9ePTg7Oz/2xMTquLm5AX/NpX4gKyur3H1EtqigoADTpk1DQUGB2KXYrIWT2+KLhV0Q4FPxEHiXtj6IjngBndv4iFIbkamYAdXzq+OMUztewrDeQZDLy0/hqOWixJzXW+M/n/SCg4PdtUVkA+zqk2kAcHV1xcaNG7Fx48Zy2+Pj49GqVSvI5VW/EIKCgiq9MIOHhwcCAwNx7tw5NG3aFABw9uxZuLm5SXJ9apIOrVaLmJgYaLXWXdLN3kwc/iReH9IEX//3GsYsOAYAOPR5P/Tp7C92aUQmYQYYxq+OM775pBdOx6fjmZH7AQDr5nfG2IHBcHEWf44v2S9JvAXLyspCSkpKhSsfGmvChAn44IMPcOvWLaSnp2Px4sUYN26cQScfWsMTI3thwP730X/fUng8Wb/Sffr9Zwk6rbCPw313Dm3Cpbc649LcrihIiqt0n8tvd8eN9ZOtXhtJk0IhR49n6pXdbtbIo8r9bZGUcoAZQGLw83Yu+/fA7vXtrpGWUgZAIjkgiWY6Lu7+D9/UZnr+/Pno1q0bWrRogeDgYDRr1gwrVqwwU5WmUXm4ounYvvhh6EKcmLUBHZb+o8I+Ab3boSTXPg7zleZkIP3gBjRdFo2gqZuRvGl6hX2yTn8PhZpTbIgekFIOMAOIjCelDICEcoDN9CMcHBywdu1aZGZmIjs7G5s3by53lUUx1WkbDM3JC9CXanHv2i041q5Vft1cmQxP/qMfLm05KGaZBsu7+htcW3aHzEEJp4CmKL13B3rdwytU6XU6pB9YhzoDpohapz1wdHTE/Pnzq73yGdk/KeUAM8B8mAE1h5QyABLKAUk002FhYdDr9ejYsaPYpViMysMVxdkPLytbklsAVa2Hh6qCR3THjQMx0BaWiFShcbQ5GXBwfbgOuFztBm3+w5M/7/68FR6dhkKuNOzqkzWZUqnE4MGDDbrKJ9k3KeUAM8B8mAE1h5QyABLKAUk00zVBcXYeVLUerkSgdFWj+F4+AEDhqESjoc8iYdfPIlZoHIWrJ7R5WWW3dQU5UDi73/93cSEyor+Cd6+Kh6+oovz8fISGhiI/P1/sUsjCpJQDzADzYQbUHFLKAEgoB+xuNY+aKj32Ktq8OQIyhRyugXVRlHGvbMFc1/p1oXJ3Qe/t86DycIW6rgcav/wcru2NrnZcsbg06YBbOxdBry1F0Z9JcKjlDdlfK7EU3U6ENi8LCUtfRGluBkoyNbj78zZ49Rwjdtk2SafTITExEbpHDo2RNEkpB5gB5sMMqDmklAGQUA6wmbYTxVm5uPp1FPpHLoVer8Ov8zbBv0cbqDxckRh5HN/3mwMA8O3UAg0Hd7HpFw8AOLjVhnefCbg8rxsgl6P+P9chO/YgtDkZqP3cSDT75AwAICfuKDJ+2WWTLx4ia5NSDjADiIwnpQyAhHKAzbQdubLjMK7sOFx2O/OPGxX20Zy6AM2pC1auTJg6z09CnecfWbqn4VMV9nFr1R1urbpbtzAiGyalHGAGEBlPShkAieQA50wT2TknJyesWbMGTk62fYIGEVkGM4BIXPxkmsjOOTg4oFOnTmKXQUQiYQYQiYvNtIjcgnzFLqGMOWrxdzZgJyuwlTqsJTc3Fy+99BK+++47uLq6il0OGclWckBKGQAbq8XSmAH2zVYyABLLAWvWwWZaRL22zhW7BLNa1UHsCmquvLw8A/YiWySlHGAGiIcZYL+klAGooTnAOdNERERERAKxmSYiIiIiEojNNJGdU6vV2LlzJ9RqtdilEJEImAFE4mIzTWTn5HI5fHx8IJfz5UxUEzEDiMTFVx6RncvLy0PPnj15AhJRDcUMIBIXm2kiIiIiIoHYTBMRERERCcR1polsWPv27avdp6ioCIsWLULnzp3h6OholbqIyDqYAUS2j800kZ1zdHTE4sWLxS6DiETCDCASF6d5EBEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgE4tJ4Iooauxw5SRqxywAAuAX5otfWuSaNMTMGSM03W0mC+TsDqzqIXQWRYWwlB6SUAWAOkB2xlQyAxHLAmhnAZlpEOUkaZF1JEbsMs0nNB67niF0FkX2RUg4wA4iMJ6UMQA3NAU7zICIiIiISiM00EREREZFAbKaJiIiIiATinGkikrzColJEn9HgzIU7+PX3P8u2h38cg27tfNGxdV2ENPOCTCYTtU4ispxryffwS6wG0Wcenuw3ftEvaNfcG+2ae6F7ez94eTiJWiPZJzbTRCRZqbfzsPbrC9gceQV3s4oq3L/nx0Ts+TERANAy2BNhoc0wfmgTqJQKEaolInPT6/XYf/QmPv36D0TF3Kpw/6FTqTh0KhUA4KhS4JV+jTDztRZ4qqmXCNWSvWIzbSe6rp6C4NAeAACdVouC21lIOxGP2GVfIV+TIXZ5RklaMw53f956/4ZcDqWnH9xa9YT/mA+g8vIXuzySAL1ejy37rmLmhzHIzik26DHxCZkIe/8kNuy5iC1LuyGkubfF6zSGlDIAzAGyglt/5uGf757A98eSDdq/qFiLrfuvYsd/E/DWuNZY9EZbOKps6421lHJAShnAOdN2RPPrH9jdegK+efoNHJuyGl4tg9D9i3CxyxLEtfmzaL0lDa023UTD8K+Rn3gW11e8LHZZJAElJTq8Nj8ary/8xeBG+lFxVzPxzKj92LrvqkXqM4WUMgDMAbKgmN//RKthkQY30o/SavX4YPN5dBnzPdIzCixSnymklANSyQA203ZEV1yKgvQs5GsycPvXi7i84zDqtm8Kpata7NKMJnNQQenpC5WXP9xadEOdvpOQd/kUtPn3xC6N7JhWq8Po+Ufx1X+vPXYfhUIGfx9n+Ps4Q6GofI60VqvHuHeO2VxDLaUMAHOALOTMhXT0+edBZGRXnNoFAzMAAP73xx30mvjDY8cRi5RyQCoZUOOa6fz8fDRq1AgymQxTp04VuxzB1D6eCHqxI3SlWui1OrHLMUnx3VvIPPkNIFfc/yIS6OOt8WVzoB/H11uNlJ9eRcpPr8LXu+o/PhOXHMfvV2zz0KmUMgDMATKT7JxiDJkRhZy8ksfuY0wGxF3NxITFv0Cv11ugWtNJKQfsOQNq3JzphQsXIj09XewyBPHt3AKjErZDJpfDQe0IAIjfsB+lBfffNXf/Mhy3os/jyo7DAIDaLRui2/rp+K7PbGiLHh8sYsiJP4qzoa7Q63TQF98/jOYzOBwKJxcAQOapSKTtXlLuMYXJfyBwwhrU6f+GKDWTbbt4PQsL18eadcySUh3GLTiGmK8GQqkU/7MHKWUAmANkAW9+HIOU23lmHTMy6gZ2H7yOV/o3Nuu4QkkpB6SSATWqmY6NjcXq1auxcuVKhIfb3/yi9NirOD79MygclQga2Bn1nm2Nsyt2lt3/2zsR6L9vKW4ciEFRZi46LZ+ImPmbbe7FAwAuTTogaMZW6IsLkXl8D+6dP4x6o94ru9+z0xB4dhpSdjvr12+Run0+vHqOFalisnVvf3oGRcVas4979tJdfHUgAeMGNTH72MaSUgaAOUBmdvF6Fjb93xWLjP3WqtMY3qchHBzEf1MtpRyQSgaI/7/CBOfPn8egQYPg7u6OWrVqYfDgwUhLS4ObmxteeeWVcvtqtVpMnDgR/fr1w9ChQ0Wr2RTawmLkJGmQdTkZ5z7cjZzkP9Hh/fFl9+drMnBh4/d4+p3X0PS1Psi+noa043Gi1vw4cpUaTn7BUDdoiXqj3oWjT0MkfzGt0n2L76Tg5sYpaDh7F+SOzlavlWxfiiYP+47ctNj4G3ZfstjYxpBSBoA5QGa2Yc9Fi42drMnDf38x/mRGS5BSDkglA+y2mY6KikLHjh1x+fJlLFiwAMuWLUNKSgr69++P3NxctGnTptz+q1atwqVLl/DZZ5+JVrO5nftoN4JDe8DrqYeHni5FHIRH00C0mjoYp5dsFbU+Y/i9uhh3oiKQd/VMue16nQ6Jq0bDd9hcOAe1Fq0+sm1fHUiATme5OY2/xafj4vUsi40vlJQyAMwBMoFOp8f27xIs+hxbbOyE5AeklAP2mgF22Uynp6cjNDQUISEhOHv2LGbPno2pU6ciKioKN2/e/3Tq0WY6MTERixYtwsKFCxEUFCRi5eaVk6hB8k9nEDL31Ycb9Xpc3vYTUqJiUXTXfs6Gdar3BDzav4RbO94utz1tz3tQqGuh7ouVv1MlAoCYOMufB/GbFZ7DWFLKADAHyARXbmQjS8BSmMb4Ld72MgASywF7zQC7nDO9YsUKZGZmIiIiAmr1wzNx3d3dERISgqioqHLN9OTJk9GoUSPMmjXLonWVlpZCo9EYsOd9JSWlJj9n/Pr9eOG79+HbqQU0py7c36jTQW/kp3QlJaVISUkxqZaSEh8ASsGP9xkyG5fndkFO3FG4teqO3IsncPfwZjT7xLiTykpKSpCScltwHWR/TseV/30rFLLHnqXv98h2vyrO5NfcKYBW+/B1FH06Cb3amX/pKVNzQEoZAOYACfTT8YpXN3xcDgjNgFt/5iP292uoW9vRLDU/wF6gPDEzwNfXFw4OxrfGMr2trvdShYCAAAQHB+Po0aMV7uvduzfi4+PLmtodO3ZgzJgxOHbsGLp27QoASEpKQsOGDTFlypQK0z727NmDtWvX4ty5c/D29kZSUpLBdaWkpCAwMNDg/d/z6gN/ZS2D9zdU8Iju8HqqMWLe3mzwY1JL7mHB3Z9Met7mn8ZDXb+FSWM8UJqbhYuzQhA0dTPcWvcw6rEFNy/gj2ktzVIH2YkW6wG5quymv48zUn56tcqHVCegz06k3s5/uCHrNyD5C5PGrIwlckAKGQDmABnDqw9QL7TcJlNzoEIGAMDVxUChac3m37EXeDxrZ0BycjICAgKMrNIOP5nWaDRITU1FaGhohft0Oh3i4uLQtm1bAEBRURFmzZqFAQMGwNfXFwkJ9+dTpaamAgCys7ORkJAAb29veHh4AAA8PT0xdepU3L59G6tWrbLq90YPpR/cgJLMNCT/e2a57V49xsJn0MzHPo5qqsdfeMG+noMexRwgg1nt5ckcsCZ7yQC7+2T62rVrCA4ORnh4OD766KNy90VGRmLo0KGYM2cOli9fjqysLHh6elY75ocffog333yz3LZvv/0WM2bMMOqTaWOneZwasRx5iYbvb0kuDX3Rac9ck8aY9ocPkgtNO8RrDoFOJfi0OQ/v1iQho44gPfPhfMnqpnmc3jkYAND+1W+RdqfyywX//RDvqP4BWD7NfJ+6PmArOSClDABzoMbZdSgFs1dfKLetqmkeQjIAAE5FdEOAj3mne9lKBkBiOSAkA4RO87C7T6YDAwOhUCgQHR1dbvuNGzcwbdr9iekP5ku7uLhg7969FcZIT09HWFgY+vXrh/Hjx6N1a/OcGerg4GDU4QGl0nZ+/EqlcbVXOsZVAIVmK0l4HUqlyd8L2ZeQZnXw48nUsttarb7i4dlKpN0pMGg/AOgSUt8i/69sJQeklAFgDtQ4PTs6ASjfTBuSA8ZkgGctFTqEBEMmM++n07aSAZBYDlgzA2znN2gglUqFMWPGICIiAoMGDcILL7yA5ORkfPnll/Dx8UFqampZM61UKjF8+PAKYzz4tLlx48aV3k9E9uXpFt7lmmlLaNfc26LjE5FwLZ/whKNKYZELNz0Q0szb7I00SYNdLo23du1aTJo0CTExMQgPD0dMTAwiIyNRr149ODs7o0kT8a9URkTWM+L5RhYdv1GAG55uwWaayFaplAoM6dnAos/xSj/L5gzZL7v7ZBoAXF1dsXHjRmzcuLHc9vj4eLRq1QpyedXvEYKCgmBnU8WJqAqtm9RG17Y+OH7WMnNk3xjRDHI5P5EismVhoc2w6+B1i4zt7qbCq/3ZTFPl7PKT6cpkZWUhJSWlwpUPjaXValFYWIiSkhLo9XoUFhaiqKjIbHWa4omRvTBg//vov28pPJ6sX+k+/f6zBJ1WTLJ6bULcObQJl97qjEtzu6IgqfJLnV5+uzturJ9s9drI/iwJC7HIuP51nTFxWFOLjC2ElHKAGUDm1DXEB7061LPI2HNfbw0XZ/FPqoPEMgASyQHJNNNxcfd/AaY209u3b4darcaIESNw8+ZNqNVqNG0q/h9SlYcrmo7tix+GLsSJWRvQYek/KuwT0LsdSnIrPyvZ1pTmZCD94AY0XRaNoKmbkbxpeoV9sk5/D4XaTZT6yP707FAPk19+0uzjfrmoK9zdVAbsaXlSygFmAJmbTCbD5iVd4WrmpvfpFt54c2wrs44plJQyABLKATbTfzNu3Djo9fpyX8Ysj2cpddoGQ3PyAvSlWty7dguOtWsBj54IIZPhyX/0w6UtB8Us02B5V3+Da8vukDko4RTQFKX37kCv05Xdr9fpkH5gHeoMmCJqnWRfVs5qX+2Jgpo7BQjosxMBfXZC85glsR6YPa4V+j9r+IWYLE1KOcAMIEtoUM8N/373WVR1nqAxGVDH0wlffdAdDg620S5JKQMgoRywjf8dZhAWFga9Xo+OHTuKXYpFqDxcUZydV3a7JLcAqlrOZbeDR3THjQMx0BaWiFShcbQ5GXBwfbgGuFztBm1+dtntuz9vhUenoZArnUSqkOyRm4sKP37+fJUnCz5YLiv1dn6FNWQfNWN0C6yY2d5ClQojpRxgBpClvNy3Iba9/xwUiso7akMzwMdLjcNf9keTIHcLVmscKWUAJJQDkmmmpa44Ow+qWi5lt5WuahTfu782psJRiUZDn0XCrp9FrNA4CldPaPOyym7rCnKgcL4fWLriQmREfwXvXhUPXxFVx8vDCUc3D8C0kc0FPd7DTYWt73XDJ7M72NwyWFLKAWYAWdLoF4NxdPMABNcXdpnufl0CcHrnQLRuUtvstZlCShkACeUAm2k7kR57FT4dm0GmkMMtyBdFGfeAv1Ykca1fFyp3F/TePg/t3hkN/15t0fjl58QuuUouTTog58Ix6LWlKExLgEMtb8j+WoWl6HYitHlZSFj6IlK2voXs/x3A3Z+3iV0y2REXZyXWzu2E6H8PQJ9Ohp2Q5OzkgInDmuJC5FCMGfiEzTXSkFgOMAPI0rqG+OL83iFYNLktfLwMu2phqyc8se39bjiwvi8CfV0tXqOxpJQBkFAO2OXSeDVRcVYurn4dhf6RS6HX6/DrvE3w79EGKg9XJEYex/f95gAAfDu1QMPBXXBtb3S1Y4rJwa02vPtMwOV53QC5HPX/uQ7ZsQehzclA7edGotknZwAAOXFHkfHLLnj1HCN2yWSHuj3th0NP++FKUjb+czgJ//vjDs5fyUB2TnHZpYbbNfNGh1Z18HLfhvCo5Sh2yVWSUg4wA8ganNUOWBwWgvkTn8L+IzfxS6wG/7t4F9dTclBSqoOzkwLNG3miXXMv9O8aiM5t6trkG+kHpJQBkFAOyPRccFk03z43A1lXUsQuAwDg0SQAg6NXmzTGiCPA9RyzlSRYIzdgTw+xqyAyjK3kgJQyAMwBsiO2kgGQWA5YMwM4zYOIiIiISCA200REREREArGZJiIiIiISiCcgisgtyFfsEsqYoxZ/ZwN2sgJbqYPIELaSA1LKANhYLURVsZUMgMRywJp18AREIiIiIiKBOM2DiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQnEZpqIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJND/A+5BcUMpX91oAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subcircuits[\"B\"].draw(\"mpl\", scale=0.8)" + ] + }, + { + "cell_type": "markdown", + "id": "8a03df45-252b-424f-9fe0-9748084f14c3", + "metadata": {}, + "source": [ + "The next step is then to generate the *subexperiments* to be executed on a QPU. This is done through the [`generate_cutting_experiments`](../api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) which accepts circuit and observable arguments as dictionaries mapping the qubit partition label to the respective *subcircuit* and *subobservable*.\n", + "\n", + "To estimate the expectation value of the full-sized circuit, many subexperiments are generated from the decomposed gates' joint quasiprobability distribution and then executed on one or more QPUs. The number of samples to be taken from this distribution is controlled by the `num_samples` argument.\n", + "\n", + "The following code block generates the subexperiments and executes them using the `Sampler` primitive on a local simulator. (To run these on a QPU, change the `backend` to your chosen QPU resource.)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "1be6d145-4a18-4c41-bf59-d9b24d2ce024", + "metadata": {}, + "outputs": [], + "source": [ + "subexperiments, coefficients = generate_cutting_experiments(\n", + " circuits=subcircuits, observables=subobservables, num_samples=np.inf\n", + ")\n", + "\n", + "# Set a backend to use and transpile the subexperiments\n", + "backend = FakeManilaV2()\n", + "pass_manager = generate_preset_pass_manager(\n", + " optimization_level=1, backend=backend\n", + ")\n", + "isa_subexperiments = {\n", + " label: pass_manager.run(partition_subexpts)\n", + " for label, partition_subexpts in subexperiments.items()\n", + "}\n", + "\n", + "# Submit each partition's subexperiments to the Qiskit Runtime Sampler\n", + "# primitive, in a single batch so that the jobs will run back-to-back.\n", + "with Batch(backend=backend) as batch:\n", + " sampler = SamplerV2(mode=batch)\n", + " jobs = {\n", + " label: sampler.run(subsystem_subexpts, shots=2**12)\n", + " for label, subsystem_subexpts in isa_subexperiments.items()\n", + " }\n", + "\n", + "# Retrieve results\n", + "results = {label: job.result() for label, job in jobs.items()}" + ] + }, + { + "cell_type": "markdown", + "id": "64e762ad-0660-4c78-8ea7-fb9d226357d7", + "metadata": {}, + "source": [ + "Lastly the expectation value of the full circuit can be reconstructed using the [`reconstruct_expectation_values`](../api/qiskit-addon-cutting/qiskit-addon-cutting#reconstruct_expectation_values) method.\n", + "\n", + "The code block below reconstructs the results and compares them with the exact expectation value." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "b3cf1b65-df16-4bd4-a083-f65cec6c49dc", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reconstructed expectation value: 0.59146589\n", + "Exact expectation value: 0.56254612\n", + "Error in estimation: 0.02891977\n", + "Relative error in estimation: 0.0514087\n" + ] + } + ], + "source": [ + "# Get expectation values for each observable term\n", + "reconstructed_expval_terms = reconstruct_expectation_values(\n", + " results,\n", + " coefficients,\n", + " subobservables,\n", + ")\n", + "\n", + "# Reconstruct final expectation value\n", + "reconstructed_expval = np.dot(reconstructed_expval_terms, observable.coeffs)\n", + "\n", + "\n", + "estimator = EstimatorV2()\n", + "exact_expval = estimator.run([(qc, observable)]).result()[0].data.evs\n", + "print(\n", + " f\"Reconstructed expectation value: {np.real(np.round(reconstructed_expval, 8))}\"\n", + ")\n", + "print(f\"Exact expectation value: {np.round(exact_expval, 8)}\")\n", + "print(\n", + " f\"Error in estimation: {np.real(np.round(reconstructed_expval-exact_expval, 8))}\"\n", + ")\n", + "print(\n", + " f\"Relative error in estimation: {np.real(np.round((reconstructed_expval-exact_expval) / exact_expval, 8))}\"\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "1a04014c-a9a4-42e6-b268-d5c8fe7b2b94", + "metadata": {}, + "source": [ + "## Gate cutting to reduce circuit depth\n", + "\n", + "Next we'll demonstrate a workflow which reduces a circuit's depth by cutting distant gates, avoiding a large series of swap gates that would otherwise be introduced.\n", + "\n", + "We'll start first with the [`EfficientSU2`](../api/qiskit/qiskit.circuit.library.EfficientSU2) ansatz, but with \"circular\" entanglement in order to introduce distant gates. We'll also define the same observable to measure as the previous example." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "deb97473-a17b-4208-91a7-831b12303258", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Observable: SparsePauliOp(['ZZII', 'IZZI', 'IIZZ', 'XIXI', 'ZIZZ', 'IXIX'],\n", + " coeffs=[ 1.+0.j, 1.+0.j, -1.+0.j, 1.+0.j, 1.+0.j, 1.+0.j])\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABGQAAAD2CAYAAACQlVGeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABecUlEQVR4nO3deXhMZxsG8HuyyiokZCIJUcS+JGIJRVBFqaKW6oKiaFFKtUppiyrdq1+prSittVW7InZFtbbEmhAkkSG77JnlfH+kEpFtJplzzszk/l1Xr8uceeedx/c5dybPvOc9CkEQBBARERERERERkWSs5C6AiIiIiIiIiKiyYUOGiIiIiIiIiEhibMgQEREREREREUmMDRkiIiIiIiIiIomxIUNEREREREREJDE2ZIiIiIiIiIiIJMaGDBERERERERGRxNiQISIiIiIiIiKSGBsyREREREREREQSY0OGiIiIiIiIiEhibMgQEREREREREUmMDRkiIiIiIiIiIomxIUNEREREREREJDE2ZIiIiIiIiIiIJMaGDBERERERERGRxNiQISIiIiIiIiKSGBsyREREREREREQSY0OGiIiIiIiIiEhibMgQEREREREREUmMDRkiIiIiIiIiIomxIUNEREREREREJDE2ZIiIiIiIiIiIJMaGDBERERERERGRxNiQISIiIiIiIiKSGBsyREREREREREQSY0OGiIiIiIiIiEhibMgQEREREREREUmMDRkiIiIiIiIiIomxIUNEREREREREJDE2ZIiIiIiIiIiIJMaGDBERERERERGRxNiQISIiIiIiIiKSmI3cBVia0BELkXZbJXcZcPFTovvaGRWa450zQGym0UqqEG9H4Jt2cldBYuF5Iw6eN0TyYKaJg5lGJA9mmjiYaQQ2ZIwv7bYKKTdi5C7DKGIzgVtpcldBlQHPGyKyJMw0IrIkzDQi8fCSJSIiIiIiIiIiibEhQ0REREREREQkMV6yRKSHtIxcXL+diqxsLWxtrPCUjwtqujvIXRYRUbmkZ6pxLSolP9Pq+rjAk5lGRGYqI1ONa7dTkZGphq2tFfxqucCrhqPcZRERlYkNGaISXI9KwY9brmHfyRhcv50KQSj8vK/SCV2ClBg3qBE6BnhCoVDIVSoRUZki7z7Ej5uvYs+JGFyLSimSad41HdG5tRLjBjdC59ZKZhoRmbRbMQ/x4+Zr2HM8GlejUqHTFQ61WjUd0SnQE2NfbISubb2YaURkktiQkcnT305A/aFdAQA6rRZZ91MQdzIc5xb8gkxVktzlGez2dyOReGht3gMrK9hW84JL827wHv4Z7Ny95S7PINGqdExccAo7jtwtY1wG1u+6ifW7biKgkTt+nN0RbZvXkKzOyojnDZHh7j3IwMTPTmFb6J1Sx8U+yMSGvbewYe8tNG9QDT/O7ogOrTwlq7MyYqYRGU6VkIm3F57G1gNRRRrLj7v3IBOb9kVh074oNKnnhqWzOqBzkJeUpVZKlpRrzDSSAveQkZHq9BVsajEGW4PexLEJ38K9mR9Clk+Tu6xyc27SCS3WxKH5yruoO+1XZEadx61Fg+UuyyC/7I5Es4G/l9mMedL5a4kIfm0nZi3+B1qtTrT6iOcNkSE2/3kLTQf8XmYz5klhEcl4esQuvPf138w0kTHTiPT3+8HbaDrgd2zZX3oz5klXbqYgZPQevPP5aajVzDSxWVKuMdNIbGzIyEiXq0FWfAoyVUm4f/oqrq8/iJptGsLW2Tyv41fY2MG2mhJ27t5wadoZNZ4di4zrp6DNfCh3aXr5Zl04Xv3gKB6mq8v1ep1OwIKVFzF81jH+AiMinjdE+lmy8QqGTj+MlLTccr1eEIAv1oRh2PtHoNEw08TCTCPSz4qt1zBoWiiSUnPK9XpBAL5dfxmD3w1Frlpr9PqogCXlGjONxMaGjIlw8KwGv77todNoIVjAL/O5ifeQ/NdWwMo67z8T98vuSEz94kypY6ytFfD2dIS3pyOsrUu+DvnXPTfLnIuMg+cNUfG27o/ChAWnSh2jb6Zt2R+FiZ+VPhcZBzONqHg7Dt/BuHknS10Vo2+mbT98F+PmnhSnUCrCknKNmUZi4B4yMlJ2aIpXItdBYWUFGwd7AED40h3QZOV1/kNWTMO9oxdxY/1BAED1ZnXReclk7OwxHdqc8q3iEFNa+BGcH+oMQaeDkJsFAPDsPw3WVZwAAMmntiFu0yeFXpMdfQW+Y75Djd5vylIzAMSoMvDWp3+VOU7p4YCYA8MAAD49NiD2fmaJYxf/egXPh9TGM+15famx8bwxjfOGTJcqIRPj5pX9y4YhmbZsyzX0C6mN5zr5GrVWYqaBmUZliE/KwpiPT5R5iZIhmbZmewT6hdTGgO5+xi6XLCzXmGkkNrNuyFy8eBFz5szBkSNHIAgCunXrhqVLl8Lf3x99+vTBxo0b5S6xVPHnInBi8v9gbW8Lv34dUKtTC5xftCH/+b9nr0bv7fNwZ88Z5CSnI3jhGzgzc5XJBdUjTv7t4DdlLYTcbCSf2IyHFw+i1ivz85+vFjwA1YIH5D9OOf0HYtfNhHu3ETJVnGfSwlPlvkypNKM/Oo4bOwfD3s70OugpD3MQFpEMrU5AfV9X+Cid5C5JbzxvTOO8IdM15fPT5V7SX5qxn5xAxK7BcKhieh8dHqbn4tKNJGi0Aur5usBX6Sx3SXpjpjHTqHTvfvU34pOzjT7vm/P/Qo9gbzg72hp97opKy8jFxetJUGt0eMrHBXVquchdkkEsKdeYaSQ20/tUpafQ0FD07dsXderUwYcffggHBwesWbMGvXv3Rnp6Olq1aiV3iWXSZuci7bYKAHDhi01w8VOi3aej8de7PwIAMlVJuLxsF4Jmv4aE85FIvRWHuBNhMlddMis7B1Txqg8AcKjTDDmqm4hePgl1Jq4oMjY3IQZ3l01A/Y/2wsreUYZq80TefYg/Dhm22aW+7sZl4PeDtzHsuXqizF8ed+PSMW/ZeazffRPZOXnXTysUQJ9Ovpj1Riu0b1lT7hLLxPNG/vOGTNede2nYsv+2KHPHPsjE5j+jMOKFBqLMXx4xqgzMX3EB63ZGIjNbA/yXab06+mDWG63QMcD07xLFTGOmUcnuPcjAr3tvijL3/cQs/LrnJsYOaiTK/OURF5+J+csvYO2OCGRkafKP9+zgjZljWprNXaIsKdeYaSQ2s9xDJj4+HkOHDkVgYCDOnz+P6dOnY+LEiQgNDcXdu3l3xzGHhsyTLny5CfWHdoV7y4Jf4K+t3ge3hr5oPrE/zn6yVtb6DOU17GMkhK5GRsQ/hY4LOh2ivnkVyhdnwNGvhWz14b9l+GJasumqqPMb4npUCtoO246Vv9/Ib8bgv03udh2LRufXd2P7YXGaU2LieUNUYMVv16HTGXDrEQOZUqbdjH6Idq/swLIt1/KbMfgv0/aeiEHIqN3Yuj9K1hrLg5lGVGDVthvQaCpHpt2OTUO7V3ZgyaarhZoxAPDnX7HoNmYvft0tTnNKbJaUa8w0MjazbMgsWrQIycnJWL16NRwcCnbrrlq1KgIDAwEzbcikRakQfeAfBM4YVnBQEHD95wOICT2HnETz2s27Sq0GcGvzPO6tn1XoeNzm+bB2cEXNvpNkq+2RP/+KEXX+kxfuIz1T/uWXWq0O/d4+gPtJJS/51Wh1GDr9EO7GpUtaW0XxvCEq8OdfsaLO/3d4PJIfGv9yKEPpdAL6Tz6Ie/El7xGh1Ql4ecYR3Iw2rwxgphEVEDvTLl5Pwv3ELFHfQx+CIGDgO6GIVmWUOEYnCBgx+yiuRaVIWpsxWFKuMdPI2MyyIbNx40Z06tQJ/v7+xT7v6ekJpVIJANBoNJg8eTKqV68ONzc3jB49GtnZxr8O1VjCl+yAd0grKIObFhzU6SCI+I2nmDwHTMfDC/uRFnYEAJB+9SQSD66C39ur5S4NmVkaXLkl7g81QQAuXEsU9T30se9kDG7cKf2HnSAAObk6LN8q7qohMfC8IQJy1VpcupEk+vucuyJ/ph36+x7CI5NLHSMIgFqjw4+bmWlyY6ZReWi1Opy/Kn7e/HslQfT3KMvxf1U4X8bnRUEANBrBpFb1GMKSco2ZRsZkdnvIqFQqxMbGYujQoUWe0+l0CAsLQ0BAQP6xBQsW4PDhwwgLC4OdnR369euH9957D4sXL9br/TQaDVQqld71qdUaPUYBJ6b8UOzx+H+uY43XIL3fr7Q6YmIqtvpDrfYEoN9GZ36T1xR73LlxB7Tenhe0mvQURH3zGvzeXgMbV3cDa1EjJua+Qa8py9WoNGi1hX8IWFsroPRwKHa812PHvUoYo0rIKjLnX+ei4FdTv38XYlm5NVzvsWu3X8f4AUpR63kSz5vCTPm8IdN1MyYDuerCtxQVI9NOnY9CQx95b126YosBmbbjOiYPrSVqPU9iphXGTKPyuKvKLHQ5IkTLtDtoUbfk22RLYcXWK3qP/XnHDbz3qrR3vNM30yByrjHTyJQplUrY2BjeXjG7hkxGRt5SPoWiaHBu374dDx48KHS50sqVK/H555/D2zvv9sMff/wxBg8ejG+++QbW1mXf/UalUsHXV//Qm+/eA962rnqPF8uNGzcwxIC6i9Pk+3A41G6qx0j9xO9bCnVyHKJ/eqfQcfeuI+D5wjslvg7//X18ezYzWi0AAIe6QP3Cyw0fv2Viac5u6F/s8eJus/j+jNl4/43QChZbQX5TAefGebtdliFGlWrQv3lj4HlTMpM7b8h0VfEFGnxU6JAYmTZ7zjzMfuvPChZbQXUmAS4t9Mq0+KQsZloFMNNINvZegP+8QofEyLT58xdi/uTdFSy2gmq/CVRtrdfQ1HQNfH1rA5BuZQkzrWTMNHokOjoaPj4+Br/O7Boyvr6+sLa2xtGjRwsdv3PnDiZNyrtm71FDJiUlBdHR0YUaNIGBgUhLS8Pt27dRr57p3P2mNJGbjyBy8xG5y6gwr0EfwGvQB3KXUUCQaNWKVO9TGp2e10cLAqA13Uv6DMHzhiqdSpVp2Xo1YyAIeWMtADONKh1Bq8cgM3qf0uj72UsQACFX0maMmCwh15hpVFEKQRDM7oweNWoUVq9ejX79+qFPnz6Ijo7GihUr4OnpiUuXLuHq1ato1KgRoqOjUbt2bcTFxeXvKaNWq2FnZ4fz58/rtfGvoZcsnRqyEBlR+o8Xi1NdJYI3z6jQHJOueCI6W78lfWLzraLG902Mu6TvYYYaTQcfKnSsrKWwj75xaTPsD8QlFG1yFLcU9pf5rdE50MOotRvqt9B7mPKVfrcTfK2PLxZMaCJ6TY/jeSMOMc4bMl1Z2Vo0GnQQuseuJhIj01Z/FIBn2tU0dvkG2XlMhbcWXtRr7NBnvfHlFGm/gWSmiYOZVrnkqHVo/OJBqB+7y5IYmbZsZks897S0l2o/6c9TDzBm3nm9xg7o6oXF06W9iw8zTRzMNMtSaS5ZAoDFixfD1tYW27dvx6FDhxAcHIxt27Zh7ty5iIyMzN/s18XFBQCQmpqa35BJSUkp9FxZbGxsDFp6ZGtrGv+T2toaVnexc0QAMJEvFm1tbSv89ylO/dquiLxbsNmtVisUWcpanLiELL3GAUDPzo3g7lalQnVW1LiXlJi/6gYSU3NQUgtW8d/3LdNfD4KPT3VJ6+N5Iw6xzhsyXY3ruuHyzYLNysXKNK8ajhWqs6JGD/bCvJU3oErMKjHTHpk+Kgg+PtI2xZlp4mCmVT7NG1THucc29hUj057t1BA+3vr9XiCWEQNq4ZMVNxBzP0OPTGsNHx9PqUoDmGmiYaYRzPUuS87Ozli2bBlUKhXS0tKwf/9+BAcHIzw8HM2bN4eVVd5fy83NDb6+vrhw4UL+a8+fPw8XFxf4+fnJ+DcgUxESJO43Is3qV5O9GQMAVextsPnLbrCztSp2lb9CkdeM+erdtmjuL20zhoiMJ6SNl6jz+9epKnszBgDsbK2x+ctusLezRnEXLj3Kuc8mB6F1E3lXKBJR+YmdaXVqOaNOLWdR30MfNjZW2PJlNzjY25SaaR+/GYDgltI2Y4hIXGbZkClOSkoKYmJiilyGNGbMGHz22We4d+8e4uPj8fHHH2PkyJF6behLlm/c4Eaizj9+iLjzG6Jr21o4vOo5BLcseqlBXW8XrFvQBVOHN5elNiIyjrGDKk+mPR2oxLHVffB0YNFfTup4OWP1vE6YMbqlLLURkXGMfbGhqPOPH9yo2BuFyKFdi5o4sbYPuhTThPJVOmH5nI746M1AWWojIvFYTEMmLCxvf4wnGzIzZ85E586d0bRpU9SvXx+NGzfGokWLZKqSTE1Q0xrFNiiMoaqLHV7rW1+UucsruKUnTv78PPYt7Zl/7NeFIYjYNRivmlitRGS4Fv7VRftG2cXJFiNfaCDK3OXVplkNHFvTF/uX9co/tn5BF0TuHoyRL/jLWhsRVVzDum7o2cFblLkdq9hgVH/TyomAxh44vOo5HFzeO//Yz592wa09Q/CGyA13IpKHxTdkbGxssHjxYiQnJyM1NRWrVq2Cg0Pxm4HJocHL3fHcjk/Re/s8uDWqXeyYXr99guBFYyWvrTwS9q/Etfc64NqMp5F1u/hNZK/PCsGdJeMlr60kP87uCBsb43878t177eHqbGf0eY2hab1q+X/uFKiElZVpfDukL543RCVbMqsD7O2Mvwr0y2ltUc3V3ujzGkPjum75f+4S5AVra/P6eMNMIyrZ9x8Ew6GK8TNt4ZQg1HQ3nd8JHtfQr2r+n7u2YabJjZlGYjKvs7sUb731FgRBQPv27eUuRW92bs5oOOJZ7B04ByenLkW7ea8XGePzTGuo0/W8ZbHMNGlJiN+3FA0XHIXfxFWIXjm5yJiUs7tg7SDvxmlPauFfHR+PL3sJqCohCz49NsCnxwaoitm5/3HPd6mN4f244kQMPG+IStf4KTfMn9i6zHGGZFrPDt54Q+RLByorZhpR6RrUqYpFU9qUOc6QTOvaxgsTXpL2jpKVBTONyDAW05AxRzUC6kP112UIGi0e3rwH++quKLTjqkKBRq/3wrU1++QsU28ZEX/DuVkIFDa2qOLTEJqHCRAeu/+qoNMhfs8PqPHcBFnrLM7MN1pi7KDSf9l4tLN/7P3MIrdMfFxwy5r4dVGIyVyTbGl43hCVbdqIZpg4rPRfNvTNtKCmHtj8ZTdmmkiYaURlmzisCaYOL/329fpmWqtG1fHbN93NbnWwuWCmERmGDRkZ2bk5Izc1I/+xOj0Ldq4Fd6+oPyQEd/acgTZbLVOFhtGmJcHGueBSGCsHF2gzU/MfJx5aC7fggbCylf+uQ09SKBRY+mFHzBzTsti7EOnrha61sX9ZLzg72hqzPHoMzxuisikUCiye0R4fvxlQoV86+nT2ReiK3iZ7+aUlYKYRlU2hUODLaW3x6aTWsLYuf6Y928Ebh1c+Z7KXX1oCZhqRYdiQkVFuagbsXJ3yH9s6OyD3YSYAwNreFk8N7ITIjYdkrNAw1s7VoM1IyX+sy0qDtWPeNbC63GwkHf0FHt2LLls0FVZWCnz6dhBOrO0L/zpV9XhFgWqudli3oAu2ffsMmzEi43lDpB+FQoGP3gzEXz/3ReOn3PR4RYGqLnb4aW4n7Py+B5sxImOmEelHoVBg5hutcHr982hWv5oeryjg4mSLZXM6Yt/SnnBjM0ZUzDQiw9jIXUBlFn8uAq3eHQKFtRWcfWsiJ+khIOQtsXSuXRN2VZ3wzLoPYOfmDIeabqg3uAtubjkqd9klcvJvh3sbPoKg1SDnwW3YuHpAYZXX88u5HwVtRgoi5/WFJj0J6mQVEg/9DPduw+Uuu4gOrTxxedtA7D4ejSWbruLQ3/eg0RS/9DWgkTvGD2mEl5+rx0aMRHjemOZ5Q6arXYuaCPttAPaeiMEPG68i9Mw9qDW6Yse2bFgd4wY1wqt968HFiY0YKTDTmGlkmKCmNXBhS3/8+Vcslmy6igOnYpGrLj7TmjeohrGDGuG1vvVR1YWZJgVmGjONDMOGjIxyU9IR8Wsoem+bB0HQ4fQHK+HdtRXs3JwRte0EdvV6HwCgDG6Kuv07mnRYAYCNS3V49BiD6x90BqysUHvcD0g9tw/atCRU7/IyGn/9DwAgLewIko5vNOmwsrGxwgtd6+CFrnWQnaNBWEQyTp6/j3e+OAMA2PxFVzzbwYc/3GXA88Z0zxsyXdbWVujbpTb6dqmNnFwtwiOTcfxfVX6mbfq8K57t4M1vjmXATGOmkeGsra3wXCdfPNfJF7lqLcIjknH8nApTPs/LtA2LQtCzow8vTZIBM42ZRoZRCIJQ8q5XZLA/ukxByo0YucuAm78P+h/9tkJzDDkM3EozWkkV8pQLsLmrvDXEqDLg++xGAED0/pfgo3Qq8zWmytT+LjxvxGEK5w2ZLlPLgYowtb8LM00czDQqjanlQEWY2t+FmSYOZhqBe8gQEREREREREUmPDRkiIiIiIiIiIolxDxkjc/FTyl0CYKQ6vB31GCQRU6qFjI/njThMqRaiyoSZJg5TqoWoMmGmicOUaiH5sCFjZN3XzpC7BKP5pp3cFVBlwfOGiCwJM42ILAkzjUg8vGSJiIiIiIiIiEhibMgQEREREREREUmMDRkiIiIiIiIiIomxIUNEREREREREJDE2ZIiIiIiIiIiIJMaGDBERERERERGRxNiQISIiIiIiIiKSGBsyREREREREREQSY0OGiIiIiIiIiEhibMgQEREREREREUmMDRkiIiIiIiIiIomxIUNEREREREREJDE2ZIiIiIiIiIiIJMaGDBERERERERGRxNiQISIiIiIiIiKSmI3cBVia0BELkXZbJXcZcPFTovvaGRWa450zQGym0UqqEG9H4Jt2cldBVDZTyQBYWA4wA4jkwUwTBzONSB7MNHEw08qPDRkjS7utQsqNGLnLMIrYTOBWmtxVEJkXS8oAMAeIKj1mGhFZEmYamRpeskREREREREREJDE2ZIiIiIiIiIiIJMaGDBERERERERGRxLiHDFElIQgCzlyKx+lLD3Di/P384+PnnURwy5oIauqBkDZesLezlrVOIiJ9CIKAs+EJOH3pAY7/W7BB47i5J9C+ZU0ENfFA17ZeqGLPjzpEZPoEQcC/VxJw6uIDHHss08bOPYH2LfI+p3Vt4wWHKsw0IkvCM5rIwmVla7B86zUs3XwN12+nFnl+9/Fo7D4eDQCoUa0KRg/0x+RXmkLp4ShDtUREpcvJ1WLFb9exZNNVXL2VUuT5PSdisOdE3oaN7m72GNU/L9O8PZ1kqJaIqHS5ai1W/X4DSzZdRXhkcpHn956Iwd7/Mq2aqx1e7++PKa82ha/SWYZqicjY2JCRydPfTkD9oV0BADqtFln3UxB3MhznFvyCTFWS3OUZ7PZ3I5F4aG3eAysr2FbzgkvzbvAe/hns3L3lLq/SOnXxPl6ffbzYRkxx4pOzsXDVJSzbcg2LZwTjlT71oFAoRK+zsrKkHGAGkBTOhsdj5OxjuHKzaCOmOIkpOfhiTRiW/3Yd30xvh5EvNGCmiYiZRmSYc1cSMHL2MYRFFG3EFCf5YS6+/jkcK367jq+mtcWYFxsy00TETCMpcA8ZGalOX8GmFmOwNehNHJvwLdyb+SFk+TS5yyo35yad0GJNHJqvvIu6035FZtR53Fo0WO6yKq0lG6/g6RG79W7GPC75YS5em3kUoz86Do1GJ0p9lMeScoAZQGJasfUa2r+6U+9mzONS03Ixas5xDJ91FGo1M01MzDQi/azdHoF2r+zQuxnzuLQMNcbOPYmX3juMXLVWlPooDzONxMaGjIx0uRpkxacgU5WE+6ev4vr6g6jZpiFsnR3kLq1cFDZ2sK2mhJ27N1yadkaNZ8ci4/opaDMfyl1apbNk4xVMWHAKOp1Q7PPW1gp4ezrC29MR1tYlf7Oy+o8IjJpzvMR5qOIsKQeYASSWVb9fx9i5Jyucaet33cRrs45Aq2VTRizMNKKy/bwjAiNnH4NGW7FM2/xnFF567zC/PBMRM43ExoaMiXDwrAa/vu2h02ghWMAHxdzEe0j+aytgZZ33H0nm9MUHmLTwdKljlB4OiDkwDDEHhkHpUfoPlHW7IvHDxitGrpKKY0k5wAwgYzl3JQHj5p0sdYwhmbZpXxS+WXfZyFVScZhpREWF3UjCmI9PlDrGkEzbFnoHi366ZOQqqTjMNBID95CRkbJDU7wSuQ4KKyvYONgDAMKX7oAmKwcAELJiGu4dvYgb6w8CAKo3q4vOSyZjZ4/p0OaoZa29OGnhR3B+qDMEnQ5CbhYAwLP/NFhXydtIMfnUNsRt+qTQa7Kjr8B3zHeo0ftNWWq2NNk5Grw+55jRV7TM+PYfPNfJF/V8XY06L1lWDjADyNhy1VqMnH0M2hK+RS6vD//3L/p28UWjum5GnZeYacw0Ko1arcPI2cegNvKKlk9+PI9+IbXR3L+6UeclZhozTXxm3ZC5ePEi5syZgyNHjkAQBHTr1g1Lly6Fv78/+vTpg40bN8pdYqniz0XgxOT/wdreFn79OqBWpxY4v2hD/vN/z16N3tvn4c6eM8hJTkfwwjdwZuYqkzu5H3Hybwe/KWsh5GYj+cRmPLx4ELVemZ//fLXgAagWPCD/ccrpPxC7bibcu42QqWLLs2rbDVyLMnzPmLJkZmsw+3//4tdFXY0+d0VotTrsPhaN9btv4n5iFpwdbdAvpA5e6VMPzo62cpenF0vKAWYAGdva7RHl2l+hLDm5Wsxa/C9++6a70eeuCK1Wh70nYrBuVyRUCVlwcrBB386+eLVvfbg628ldnl6Yacw0KtmGvTdx7mqi0edVa3SYufgf7Pzfs0afuyJ0OgF/nozBzzsjcS8+E45VbPBcJx8Mf74Bqrow06TGTDNNZtuQCQ0NRd++fVGnTh18+OGHcHBwwJo1a9C7d2+kp6ejVatWcpdYJm12LtJuqwAAF77YBBc/Jdp9Ohp/vfsjACBTlYTLy3YhaPZrSDgfidRbcYg7ESZz1SWzsnNAFa/6AACHOs2Qo7qJ6OWTUGfiiiJjcxNicHfZBNT/aC+s7Hl7ZWMQBAFLNl0Vbf6tB27j2/eyUNPdNK6ZvR6VgucnHUDE3bzrXhUKQBCAPcdjMP3rv/HrwhD07VJb7jLLZEk5wAwgYxIEAUs2i5dp24/cQez9DJO5HfbN6IfoO3F/flNdoQAg5N3y9v1vz+LnT7tgQHc/ucssEzONmUYlE/Nz2u7j0bgdmwY/bxfR3sMQt2PT0Hfiflz+byP2R5/T9p2MwYxv/8HqeZ0wpOdTcpdZJmYaM01sZrmHTHx8PIYOHYrAwECcP38e06dPx8SJExEaGoq7d+8CgFk0ZJ504ctNqD+0K9xb1ss/dm31Prg19EXzif1x9pO1stZnKK9hHyMhdDUyIv4pdFzQ6RD1zatQvjgDjn4tZKvP0vx7JaFcdx/Rl1qjw8Z9t0Sb3xAxqgyEjNqT34wB8n7IP5KeqcaAKQcRevqePAVWgCXlADOAKiI8IhkXrol3W1GtVsCve26KNr8h4uIzETJqd6EVjoIAPIq1jCwNBk87hH0nYmSrsbyYaUR5btxOxZmweNHmFwRg/e5I0eY3RHxSFkJG7clvxuCJz2lZORq89N5h7Dh8R54CK4CZRsZmlg2ZRYsWITk5GatXr4aDQ8G39VWrVkVgYCBgpg2ZtCgVog/8g8AZwwoOCgKu/3wAMaHnkJNoXjtgV6nVAG5tnse99bMKHY/bPB/WDq6o2XeSbLVZIjF/yD/yd7j476GPz1ZdhCoxq8TnBQHQ6gS888VpCIJ53SHKknKAGUAVUZky7Ys1lxBzP7PE5wUB0AkCpnzOTJMTM40q4kzYA9Hf4++wBNHfQx9frwvHnbj0Ep9/FGNTPj9tdnfyZKaRsZnlJUsbN25Ep06d4O/vX+zznp6eUCqVAIDNmzdj8eLFuHDhAjw8PHD79m2D3kuj0UClUuk9Xq3WGDT/k8KX7ECfnZ9CGdwUqlP/3QVCp4NgYFip1RrExFTsmzS12hNAxfbh8BwwHddndERa2BG4NA9B+tWTSDy4Co2/PmdgLWrExNyvUC0VFZeQXfBnVRygqSJrPU86/s/dQo+trRUl7szv9dhxr1J271clZBXaTPPvS6oK/7uqqPRMDdZsv1HmOEEAwiKSsf1AOIKaVJOkNhghA2BhOWBJGWBpTD3Tjv1T+JtTUTIt7L7smZaVo8XK366XOU4QgOu3U7FlzyV0aOkuSW1gphXBTDNdpp5pR8+Kn2lnw+XPtBy1Dsv0uNxUEICo2HT8suMCugbVkKQ2MNOKYKYZj1KphI2N4e0VhWBmX7WoVCp4eXlh6tSp+Oqrrwo9p9Pp4OXlhYCAAOzbtw8AcODAASQmJuL+/fv45ptvDG7IxMTEwNfXV+/x8917wNvWuHeiqT8kBO4t6+HMrFV6vyZW/RAfJh6o0Ps2+T4cDrWbVmiOx2nSU3B1aiD8Jq6CSwvDNofNunsZVyY1M1ot5WJTDWj8Rd6fr04HNMbfaLJC6kwCXFvmP/T2dETMgWGlvqQsPj02IPbxb201acDVdyo0Z4U51AHqz9Z//L0NQGKomBUVIkYGwEJywOwzwNKYeqbVHg9UDcp/KEqmabOBKxMrNGeF2XsD/p/oMfA/cVuBhH1iVlQIM61kzDQTY+qZ5jsGcGuf/1CUTNNpgMvjKzRnhdl5Ag0/1X/8/T+AB7vErKgQZlrJmGkVEx0dDR8fH4NfZ3YrZDIyMgAACoWiyHPbt2/HgwcPCl2u1KNHDwDAH3/8IWGVVJz4fUuhTo5D9E+Ff6F37zoCni/I/Es+6ckUrnI0sAaFtViFkIGYAWSYoj/njf8WErxHmTUYmmkmUDMBzDQyGDOteKbw2ZLATJON2a2Qyc3NhaOjIwICAnD27Nn843fu3EHHjh0RGxuLDRs24KWXXir0uj/++ANTpkwR/ZKlU0MWIiNK//FicaqrRPDmGRWaY9IVT0Rnm8atg32rqPF9E/kvWWo7/CgA4O+fu8DLw7SWwr79xSVsOxyX/7ispbBnN/QHALQZ9gfiEorfj+XJpbC1lQ44+VNno9duiKTUXLR+9Qg0Wv2ia+0ngejWRrqlsKaSAbCwHDCFDLA0pp5p734bjk37Y/Mfi5FpSnd7nF0XYvTaDZGarkbgy4eRq9Ev05Z/2Aq9O3iKXtcjzDRxMNOMz9QzbeYPV7Bud3T+YzEyrbqrLS5u7Gb02g2RkaVBq2GHkZ2r02v8/95vgRe6eIle1yPMNHEw08p/yZLZrZCxs7PD8OHDsXr1arzwwgvo06cPoqOjsWLFCnh6eiI2NtaoG/ra2NgYtPTI1tY0/ie1tTWs7mLniACQrcdACdja2lb471NhNhn5f/RSesFHaRq3Sn2kQ0ByoYaMVisUXsZagriELL3GAUBQU0/Z/3/w8QEG9bhT5h2fFArAx9MJr/RrCWtr6b59MZUMgIXlgElkgKUx8UzrGJhaqCEjRqa1blpT9n9XPgCGPReNtTsiSh2nUABKdweMHBAAW1tmWrnnYKZZLhPPtKdbpxdqyIiRaYFNapjEv6vh/Rpg+dbS98ZSAHB3s8eYwYGwt5NuNTMzTRzMtPIzyzViixcvxtixY3HmzBlMmzYNZ86cwbZt21CrVi04OjqWuNkvkSULauphEe+hjw/GtISDvXWJK3MV/20WN3dCoKTNGCIyHkkyrYlpZNp7rzeHk4NNqVcbCALw8VuBkjZjiMh4pMgbU/mc9u6I5nBxtC090wDMGR8gaTOGyBSZ5U91Z2dnLFu2DCqVCmlpadi/fz+Cg4MRHh6O5s2bw8rKLP9aRBXydIAnatV0FPU9hvSsK+r8+mrhXx07vu8BJ4e8bzme/HkvAPhyWluMfIHNWSJz1bZZDfjVchb1PYb2ekrU+fXVpF417P7hWbg45i07L+6XmAVvB2HsoEbSF0dERtGqkTv861QV9T2G9jSNTGtQpyr2Lu2Jqs52QAmZ9tH4AEwc1kT64ohMjMV0LlJSUhATE1PkciWtVovs7Gyo1WoIgoDs7Gzk5OTIVieRWGxsrDBOxA/rvTr6oJ6v8XelL69n2nsjcvcQfDqpNZ7ydck/PvKFBgj/fSCmjWgua31EVDHW1lYYP0S8TOvaxguNn3ITbX5DdQnyQuTuwfhschDq+RRk7Wt96+PS1gH4YEzLUl9PRKbNykqBN0XMtA6taqJVI3fR5jdUxwBPROwajM/faYMGtQsy7ZXn6uH85v74+K3AYm/SQlTZWExDJiwsDACKNGTWrVsHBwcHDBkyBHfv3oWDgwMaNmwoU5VFNXi5O57b8Sl6b58Ht0a1ix3T67dPELxorOS1lUfC/pW49l4HXJvxNLJuhxU75vqsENxZIvMt+SzUhJcao2Z1429ip1AAc8Ybb28mY/F0d8DMN1rhyKo++cfmTWiNpvWryVqXoSwpB5gBZEzjBjWCVw1xVv599GaAKPNWRI3qDpgxuiUOr3ou/9iCt4PQ3L+6rHUZiplGVLzRA/3hK9LeNp+8FSjKvBXhUa0Kpr/eAqErCjJt4ZQ2JtU40gczjcRk8Q2ZkSNHQhCEQv8Zeqclsdi5OaPhiGexd+AcnJy6FO3mvV5kjM8zraFOL35ndVOjSUtC/L6laLjgKPwmrkL0yslFxqSc3QVrB5diX08V5+5WBUs/7Gj0eae+1gzBLaW7q0dlYkk5wAwgY3NztcfyOcbPtInDmqBLkHR39ahMmGlEJXNxssPKj582+rxjBzXEM+29jT4vMdNIfBbTkHnrrbcgCALat28vdyl6qxFQH6q/LkPQaPHw5j3YV3ctfJGlQoFGr/fCtTX75CxTbxkRf8O5WQgUNrao4tMQmocJEHQFt7wTdDrE7/kBNZ6bIGudlm7gM35lXpOrSsiCT48N8OmxAaoSbqX4SMcAT8yb2NrIVdIjlpQDzAASQ98utTFteLNSxxiSae2a18DCyUFGrpIeYaYRle7ZDj6YWcYliIZkWmBjd3w5ra2Rq6RHmGkkNotpyJgjOzdn5KYW3KJPnZ4FO9eCpdn1h4Tgzp4z0GarZarQMNq0JNg4F1wqYuXgAm1mav7jxENr4RY8EFa2xr+khgr77v32GD+45OuUH91qMfZ+JrRaocRxTwd4Yvf/noVDFdO5RaClsaQcYAaQWL6Y1hZvv1xyo1nfTGvXvAb2Lu0Jp/82zyXjY6YRlW3+pNZ4t5S97vTNtNZNPPDnj73g4mQnUqXETCOxsSEjo9zUDNi5FlxHauvsgNyHmQAAa3tbPDWwEyI3HpKxQsNYO1eDNiMl/7EuKw3Wjnm7yetys5F09Bd4dC+6zI+Mz8pKgSUfdsDKj5+Gq7Phv3hYWSnw3uvNcWB5L1R14Q95MVlSDjADSCwKhQLfvt8ea+d3hls5MkmhAKYOb4ZDK59DNVd7UWqkPMw0orIpFAp8PrUNfvksBNWrli+TJr3cBEd/eg4e1fjLs5iYaSQ2NmRkFH8uAp7tG0NhbQUXPyVykh4CQl4X3Ll2TdhVdcIz6z5A69mvwrt7AOoN7iJ3yaVy8m+HtMvHIGg1yI6LhI2rBxT/3YI8534UtBkpiJzXFzFr30Pqv3uQeOhnuUu2aAqFAqMHNkT47wMxeoA/HKpY6/EaoG9nX5xa9zwWvdMWVey5MkZslpQDzAASk0KhwPB+DXB520CMHdQQjnqs3FMogN5P++DE2r746t12cHRgpomNmUakH4VCgZf71MPlbQPx5pBGcNZz5d6zHbxx9KfnsHhGMFf7SYCZRmLjJxMZ5aakI+LXUPTeNg+CoMPpD1bCu2sr2Lk5I2rbCezq9T4AQBncFHX7d8TNLUflLrlUNi7V4dFjDK5/0BmwskLtcT8g9dw+aNOSUL3Ly2j89T8AgLSwI0g6vhHu3YbLXXKl4Kt0xspPOuGLaW2xZX8U/g6Lx79XE3A/MRs6nQA3Fzu0alQdrRt7YFCPuqjrw428pGRJOcAMICnUqumEZXOexufv5GXambAH+PdKIu4nZUGrFVDVuSDTXuzhh3q+rnrMSsbCTCMyjNLDEUs+7IiFU9pg64HbOH3pAf69kgBVYl6muTrboqV/dbRu4oGB3f3g71dV7pIrFWYaiY0NGZndWH8QN9YfzH+cfOVOkTGqU5ehOnVZ4srKp0bPsajR87FbvtUtummZS/MQuDQPkbYwQjVXe4wd1AhjB5W8twzJw5JygBlAUqnqYocxLzbEmBcbyl0KPYGZRmQ4V2c7jBrgj1ED/OUuhZ7ATCMx8ZIlIiIiIiIiIiKJsSFDRERERERERCQxNmSIiIiIiIiIiCTGPWSMzMVPKXcJgJHq8HY0SilGYUq1EJXGVDIAFpYDplIHUWXDTBOHqdRBVNkw08RhKnWYIzZkjKz72hlyl2A037STuwIi82NJGQDmAFGlx0wjIkvCTCNTw0uWiIiIiIiIiIgkxoYMEREREREREZHE2JAhIiIiIiIiIpIYGzJERERERERERBJjQ4aIiIiIiIiISGJsyBARERERERERSYwNGSIiIiIiIiIiibEhQ0REREREREQkMTZkiIiIiIiIiIgkxoYMEREREREREZHE2JAhIiIiIiIiIpIYGzJERERERERERBJjQ4aIiIiIiIiISGJsyBARERERERERSYwNGSIiIiIiIiIiidnIXYClCR2xEGm3VXKXARc/JbqvnVGhOd45A8RmGq2kCvF2BL5pJ3cVRJUPM00czDQieTDTxMFMI5IHM00cUmYaGzJGlnZbhZQbMXKXYRSxmcCtNLmrICI5MdOIyJIw04jIkjDTzB8vWSIiIiIiIiIikhgbMkREREREREREEmNDhojMWkamGuGRyfmPk1JzZK2HiKgiMrM0uHyzINMSU7JlrYeIqCKysgtnWkIyM43ocdxDhojMTuTdh/hx81XsPRmDa1Gp0OmE/OdaDt6G2l5O6NLaC+MGN0KHVjWhUChkrZeIqDS3Yh5i2ZZr2HM8BldupRTKtFZD/oCv0gmdWysx9sWG6NRayUwjIpN2OzYNy7Zew+5j0bhyKwVabUGmBQz9Az6eTng6wBNjBzVESBsvZhpVamzIyOTpbyeg/tCuAACdVous+ymIOxmOcwt+QaYqSe7yDHb7u5FIPLQ274GVFWyrecGleTd4D/8Mdu7ecpdHFiL2fgYmLTyFbaF3Sh13Ny4D63ZFYt2uSAQ0cseyOR3RplkNyeqsjJhpRIZTJWTi7YWnsfVAFASh5HHRqgz8svsmftl9Ey38q+PH2R0Q3NJTylIrHWYakeEeJGZh8qLT2PTnrVIzLeZ+Bjbuu4WN+26haT03LP2wIzq1VkpZaqVkSblmSZnGS5ZkpDp9BZtajMHWoDdxbMK3cG/mh5Dl0+Quq9ycm3RCizVxaL7yLupO+xWZUedxa9FgucsiC7Fx7000Hfh7mc2YJ52/loj2r+7ErMX/FPrWmYyPmUakv98ORKFJ/9+wZX/pzZgnXbqRhKdH7Mb73/wNrVYnZomVHjONSH87Dt9B04G/Y+O+0psxT7p8MwVdRu3GO5+fhlrNTBObJeWapWQaGzIy0uVqkBWfgkxVEu6fvorr6w+iZpuGsHV2kLu0clHY2MG2mhJ27t5wadoZNZ4di4zrp6DNfCh3aWTmvv/1Moa9fwSpabnler1OJ2DByot4beZR/gIjImYakX6Wb72GQdMOIflh+TPt89VhGPb+EWg0zDSxMNOI9LNm+w30n3Kw3PvDCALw7frLGPxuKJsyIrOkXLOUTGNDxkQ4eFaDX9/20Gm0ECzgF8bcxHtI/msrYGWd9x9ROW3adwtvLzxd6hhrawW8PR3h7ekIa+uSr0P+dc9NTP3ijAhV0pOYaUTF2xZ6G+PnnSx1jL6ZtmV/FCZ+dkqEKulJzDSi4u0+dhejPzpR6qoYfTNt++G7GDv3hDiFUhGWlGvmnGncQ0ZGyg5N8UrkOiisrGDjYA8ACF+6A5qsvLvEhKyYhntHL+LG+oMAgOrN6qLzksnY2WM6tDlqWWsvTlr4EZwf6gxBp4OQmwUA8Ow/DdZVnAAAyae2IW7TJ4Vekx19Bb5jvkON3m/KUjOZtrj4zDJ/cQEApYcDYg4MAwD49NiA2PuZJY5d/OsVPB9SG8+0N6/rS80BM42ZRqV7kJiFsXNPlrmc35BMW7blGp7v4os+nWsbu9xKj5nGTKPSJaZkY/RHJ8q8JNyQTFuzPQL9QmpjQHc/o9dLlpVrlpJpZt2QuXjxIubMmYMjR45AEAR069YNS5cuhb+/P/r06YONGzfKXWKp4s9F4MTk/8Ha3hZ+/TqgVqcWOL9oQ/7zf89ejd7b5+HOnjPISU5H8MI3cGbmKpM7GR5x8m8HvylrIeRmI/nEZjy8eBC1Xpmf/3y14AGoFjwg/3HK6T8Qu24m3LuNkKliMnVvLzyFlHJeplSa0R8dx42dg2FvZ3od9IfpuQiPTIZGo0P92q6oVdNJ7pL0xkxjplHp3vnijCi3fB079yQidtaCo4PpfaxLy8jLNLVah6d8XOGjZKbJhZlGxjb9679xPzHL6POOn3cSz7SvBRcnO6PPXVEZmWpcikiCWq1DXR8X+Cqd5S7JIJaUa5aSaab3k1tPoaGh6Nu3L+rUqYMPP/wQDg4OWLNmDXr37o309HS0atVK7hLLpM3ORdptFQDgwheb4OKnRLtPR+Ovd38EAGSqknB52S4EzX4NCecjkXorDnEnwmSuumRWdg6o4lUfAOBQpxlyVDcRvXwS6kxcUWRsbkIM7i6bgPof7YWVvaMM1ZKpi4pJw28Hb4sy9924DPx24DZe7lNPlPnLI0aVgfkrLmDdzkhkZmsAAFYKoE/n2pj1Rku0a1FT7hLLxExjplHJYlR5dxURw70Hmdj05y283t9flPnLIy4+E/OXX8DPOyOQnpmXaQoF0PtpH8wc0wodA0z/LlHMNGYalUyVkIn1u26KMveDpGz8svsmxg9pLMr85XE/MQufrriANdsjkJZR0Jzo1dEHH4xugc5BXrLWpy9LyjVLyTSz3EMmPj4eQ4cORWBgIM6fP4/p06dj4sSJCA0Nxd27dwHALBoyT7rw5SbUH9oV7i0Lfkm8tnof3Br6ovnE/jj7yVpZ6zOU17CPkRC6GhkR/xQ6Luh0iPrmVShfnAFHvxay1UembdnWawbt0m+oJZuvije5gSLupKLty9uxbMu1/GYMAOgEYOfRu+g0cje2Hzbs7lKmgJlGVGD5b9dEvdPbkk2mk2lRMWlo+/J2LNl0Nb8Zg/827txzPAYho3Zj6/4oWWssD2YaUYFVv9+AWsRNxU0p06JV6Wj/yg58/+uVQs0YANh3MgbdxuzFr7vFaU6JzZJyzVwzzSwbMosWLUJycjJWr14NB4eCHaGrVq2KwMBAwEwbMmlRKkQf+AeBM4YVHBQEXP/5AGJCzyEn0bx2jK5SqwHc2jyPe+tnFToet3k+rB1cUbPvJNlqI9O372SMqPP/deE+0jKMfzmUoXQ6Af3ePoC4hJKX/Gq0Ogydfgh37qVJWltFMdOICvx5MlbU+f+5nIDEFONfDmUoQRDQf8pBxJSyR4RWJ+DlGUcQede8MoCZRlTgz7/E/ZwWFpGMuPiSc0QqgiDgxamhuH0vvcQxOkHAiNlHcfVWiqS1GYMl5Zq5ZppZNmQ2btyITp06wd+/+KW5np6eUCqVyMnJwRtvvIGnnnoKLi4u8Pf3x/fffy95vYYIX7ID3iGtoAxuWnBQp4Mg4rdqYvIcMB0PL+xHWtgRAED61ZNIPLgKfm+vlrs0MmHZORpcvpks6nsIAnD+aqKo76GP/X/F4lpUaqljBAHIydVh2ZbrktVlLMw0IkCt1uHijSTR3+ecCWTakbNxuFTG31UQALVGh6UmtFJRX8w0orwvk85fEz/T/r2SIPp7lOXUxQc4G156HYIAaDSCSa3qMYQl5Zo5ZprZ7SGjUqkQGxuLoUOHFnlOp9MhLCwMAQEBAACNRgOlUon9+/fjqaeewqVLl9CzZ094enpiyJAher2fRqOBSqXSuz61WqPHKODElB+KPR7/z3Ws8Rqk9/uVVkdMTMU612q1JwBbvcb6TV5T7HHnxh3QenveyaxJT0HUN6/B7+01sHF1N7AWNWJi7hv0GmOLSyj45jFOFQdoqshajyW7ficdGk3hHwLW1gooPRyKHe/12HGvEsaoErKg1Rae8+S/t/GUUmuUmstrxZZLeo1TAFi7/TreelEpek2PY6YVxkyj8oi6l4Gc3MJZI0amnTp3G4195f0AvXxzuN5jf95xA++8JO0d75hphTHTqDzuxWchPbPwpTtiZNrp83fQqp686weWbbqi99ifd9zA+6/5ilrPk/TNNIica8w0QKlUwsbG8PaK2TVkMjIyAAAKRdF72G/fvh0PHjzIv1zJyckJ8+bNy3++VatW6NevH06cOKF3Q0alUsHXV/8Ta757D3jbuuo9Xiw3btzAEAPqLk6T78PhULupHiP1E79vKdTJcYj+6Z1Cx927joDnC++U+Dr89/fx7dnMaLWUi001oPEXAIC2bdoCGnFXcFRqDnWA+rMLHXr8lomlObuhf7HHi7vN4sxZczBz/MEKFltBflMA56Z5u12WQgBw70GaQXlkDMy0kjHTSG/23oB/4VtvipFpH308Hx9N3FfBYiuozgTApVWZmQYACcnZzLQKYKY9gZkmHTtPoOGnhQ6JkWmffvY5Pn1nVwWLrSDfcYBbG72GPszQwNe3DgDx9tZ5EjOtZFJnWnR0NHx8fAyu0+waMr6+vrC2tsbRo0cLHb9z5w4mTcq7Lqyk/WPUajWOHz+Od999V5JajSVy8xFEbj4idxkV5jXoA3gN+kDuMsgcCBKtWpHqfUqj03PPB0HQf6yJY6ZR5VOJMk2bo1czJi/TcqSoSHTMNKp0+DmthLFqSZsxYrKEXDOXTFMIgpj3MRHHqFGjsHr1avTr1w99+vRBdHQ0VqxYAU9PT1y6dAlXr15Fo0aNirxu3LhxOHfuHE6ePAk7O/3ua2/oJUunhixERpT+48XiVFeJ4M0zKjTHpCueiM7Wb9mY2HyrqPF9E/mXwrYdntcI/PvnLvDy4FJYsaRlatBkUGihY2UthX30jUubYX8Uu0FucUthf54biK5BNYxau6F+P3QPk7/U73aCL/fywaK3jffNgT6YaeJgplUuWdlaNB4UCu1j1+OLkWmr5gTg2fY1jV6/IXYdV+HNzy7qNXbQM7XwzdTmotf0OGaaOJhplUuuWofGLx5ErkbcTFv6QUv07STtpdpP2n/6AUbPPa/X2H5dlPjh/Zai1/Q4Zpo4ypNpleaSJQBYvHgxbG1tsX37dhw6dAjBwcHYtm0b5s6di8jIyGI3+506dSpOnTqFQ4cO6d2MAQAbGxuDlh7Z2prG/6S2tobVXewcEQBM5At5W1vbCv99KswmI/+PXkov+CidZC3H0vnXqYobdwo2u9VqhSJLWYsTl5Cl1zgA6NW5EWpUL/7Dg1TGDlVi/qoIJKRkl3ibb8V/lyxNHxUEHx/DroGtKGaaOJhplU+Tem4Iiyi4hEKMTOvZqSG8PeX9/3H0oFqYu+IGVIlZJWbaI9NfD4KPj7RNcWaaOJhplU+Lhu7453LBZrdiZNqznfzh4yPv5TgjBtTC3BURuKtK1yPTWsPHR9oGEjNNHFJmmlneZcnZ2RnLli2DSqVCWloa9u/fj+DgYISHh6N58+awsir815oyZQoOHDiA0NBQeHh4yFY3EemvS5C4P9AaP+UmezMGAKrY22DTF11hZ2tV7Cp/hSKvGbNoShu0aiRtM4aIjKdLkJeo89fzdUGtmo6ivoc+bG2tsOWr7rC3s0ZxFy49yrm5EwLRtrm8KxSJqPy6tBb3c5qPpxPqeruI+h76sLa2wuYvu8HB3qbUTPtwbCs8HSjvah4yT2bZkClOSkoKYmJiiuwf8/bbb+PgwYM4dOgQatTgD34iczF+cNHLDs1pfkN0bVsLh1c9h/Ytil5qUFvpjNXzOuG9US1kqY2IjGPsiw1FnX/coEbF3vBADh0DPHFsdR90DPAs8pyPpxNWfPQ0Zo8LkKU2IjKON8TOtMENTSbT2javgRNr+6BTMU2oWjUcsWRWB8ydEChLbWT+LKYhExaWtwfD4w2ZO3fu4Pvvv0dkZCTq1q0LZ2dnODs7o3fv3jJWSkT6CGziUeyHeWNwdbbF8OfrizJ3eQW39MRf657H3iU984+tW9AFN/cMxsgXil6GSUTmpbl/dXRtI84qGScHG7ze37Ryok2zGji+ti/+XFqQaT/P74yovUMwRuRf5IhIfA3ruqFXR3Eu6ahib40xA00rJwIae+Do6j44sKxX/rG18zvj9r6heHNoY5NpHpH5seiGTJ06dSAIArKzs5Genp7/3969e2WstLAGL3fHczs+Re/t8+DWqHaxY3r99gmCF42VvLbySNi/Etfe64BrM55G1u3iNyq9PisEd5aMl7w2Mj9LZnWArY3xY+rrd9vBzdXe6PMaQ7P61fL/HBLkBWtr84ppZhpRyX6Y1QH2dtZGn/fzd9rAo5ppbmDapF5BpnVtW4uZJjNmGhnT9x8Ew6GK8TNtwdtBUHrIfwlmcRrVdcv/c7e2tWAjwudUMTHTTI95/QsqxVtvvQVBENC+fXu5S9GbnZszGo54FnsHzsHJqUvRbt7rRcb4PNMa6vSiO5GbIk1aEuL3LUXDBUfhN3EVoldOLjIm5ewuWDvIfz0omYcW/tXx8ZtlL2tXJWTBp8cG+PTYAFUxO/c/7rlOPhg1wLS+SbYUzDSi0jV+yg2fTmpd5jhDMu2Z9rUwfkhjI1ZJjzDTiEpXv7YrPn+nbZnjDMm0zq2VePvlJkaskh5hppkmi2nImKMaAfWh+usyBI0WD2/eg311VxTa1VOhQKPXe+Hamn1ylqm3jIi/4dwsBAobW1TxaQjNwwQIOl3+84JOh/g9P6DGcxNkrZPMywdjWmLsoNKXrT7a2T/2fmaRWyY+rm2zGtiwqCuXlYqEmUZUtqnDm2HisNJ/2dA30wIbu2PLl91gZcVMEwMzjahsE15qjGnDm5U6Rt9Ma96gGrZ9+4zZraQzF8w008R/7TKyc3NGbmrBLfrU6Vmwcy1Ynld/SAju7DkDbbZapgoNo01Lgo1zwdJkKwcXaDMLbluceGgt3IIHwsrWNJdVk2lSKBRY+mFHfDC6ZbF3IdJXn86+OLiiF1yd9b/tPRmGmUZUNoVCgcUz2uOj8QEVaqT07OCN0BW9TfbyS0vATCMqm0KhwBfT2mL+xNawti5/pnVr64UjP/VB9arMNLEw00wTGzIyyk3NgJ2rU/5jW2cH5D7MBABY29viqYGdELnxkIwVGsbauRq0GSn5j3VZabB2rJr359xsJB39BR7diy6NIyqLlZUCCyYH4fiavvCvU9Wg11Z1scNPczth5/c94OLEZoyYmGlE+lEoFPj4rUD89XNfNH7KTY9XFHBxssXyOR2xd2lPNmNExkwj0o9CocCssa1wev3zhfbC04ezoy2WzOqAA8t7sxkjMmaaabKRu4DKLP5cBFq9OwQKays4+9ZETtJDQMhbxudcuybsqjrhmXUfwM7NGQ413VBvcBfc3HJU7rJL5OTfDvc2fARBq0HOg9uwcfWAwiqv55dzPwrajBREzusLTXoS1MkqJB76Ge7dhstdNpmRjgGeuLxtIHYevYsfNl7FkX/iSlz62sK/OsYNaohX+9bnqhiJMNOYaWSYdi1qIuy3Adh9LBo/bLqKQ3/fg0ZTfKY1reeGcYMbYfjzDVDVhZkmBWYaM40ME9S0Bi5s6Y99J2Pww8arOHj6HtQaXbFjGz/lhrEvNsTIFxqwuSwRZpppZhobMjLKTUlHxK+h6L1tHgRBh9MfrIR311awc3NG1LYT2NXrfQCAMrgp6vbvaNInBADYuFSHR48xuP5BZ8DKCrXH/YDUc/ugTUtC9S4vo/HX/wAA0sKOIOn4RpM8Icj02dhYYUB3Pwzo7oesbA0u3UjC1agUZGZpYGdrjbreLghs4o5q/OEuOWYaM40MZ21thX5d66Bf1zrIztEgLCIZl28mIzNLA1sbK9T1cUFgYw9+cywDZhozjQxnbW2FPp1ro0/n2sjJ1SIsIgmXI1OQkaWGrY0V/LxdENjYHe5upn0ZiSVipplmprEhI7Mb6w/ixvqD+Y+Tr9wpMkZ16jJUpy5LXFn51Og5FjV6PnabtLoti4xxaR4Cl+Yh0hZGFsmhig3ataiJdi1qyl0K/YeZRlR+Vext0KZZDbRpVkPuUug/zDSi8rO3s0ZQ0xoIaspMMxXMNNPDPWSIiIiIiIiIiCTGhgwRERERERERkcR4yZKRufgp5S4BMFId3o56DJKIKdVCVJkw08RhSrUQVSbMNHGYUi1ElQkzTRxS1sKGjJF1XztD7hKM5pt2cldARHJjphGRJWGmEZElYaaZP16yREREREREREQkMTZkiIiIiIiIiIgkxoYMEREREREREZHE2JAhIiIiIiIiIpIYGzJERERERERERBJjQ4aIiIiIiIiISGJsyBARERERERERSYwNGSIiIiIiIiIiibEhQ0REREREREQkMTZkiIiIiIiIiIgkxoYMEREREREREZHE2JAhIiIiIiIiIpIYGzJERERERERERBJjQ4aIiIiIiIiISGJsyBARERERERERScxG7gIsTeiIhUi7rZK7DLj4KdF97YwKzfHOGSA202glVYi3I/BNO7mrIKp8mGniYKYRyYOZJg5mGpE8mGnikDLT2JAxsrTbKqTciJG7DKOIzQRupcldBRHJiZlGRJaEmUZEloSZZv54yRIRERERERERkcTYkCEiIiIiIiIikhgbMkREREREREREEuMeMkREMhMEAWfDE3Am7AGOn7uff/zNT0+iQ0tPBDX1QOfWStjbWctaJxGRPgRBwL9XEnD6UjyOnyvYbPLNT0+iffOaCGrqgS5BSlSx58dQIjJ9giDg/NVEnL70AMf+fSzT5p9EuxY10LqxB0LaeMGhCjONDMd/NUREMsnO0WDl7zewZNNVXL2VUuT5XUejsetoNACgRrUqGDOwId5+pQmUHo4yVEtEVLqcXC1+2paXaeGRyUWefzzTPKpVwaj+DTD5laaoVdNJhmqJiEqnVuuwentepl28nlTk+V3HorHrWF6mVa9qj1H9/TH5labwUTLTSH9syMjk6W8noP7QrgAAnVaLrPspiDsZjnMLfkGmqugJb+pufzcSiYfW5j2wsoJtNS+4NO8G7+Gfwc7dW+7yiEzO32HxGDn7WLGNmOLEJ2fjs1UX8eOWq1g8Ixiv9KkHhUIhep36YqYRVW7/XknAyA+PFduIKU5CcjY+Xx2GZVuv49v32mFEvwbMNBEx04gMc/F6IkbOPoYL1/Q735NSc/Dl2jAs23oNX01rizEvNjSpTIOF5ZolZRr3kJGR6vQVbGoxBluD3sSxCd/CvZkfQpZPk7uscnNu0gkt1sSh+cq7qDvtV2RGncetRYPlLovI5Czfeg3Br+3UuxnzuOSHuXht5lGM/ug4NBqdKPWVFzONqHJa/ccNtHtlh97NmMelpuXi9dnHMXzWUajVzDQxMdOI9PPL7kgEDduudzPmcWkZaoydexIvvXcYuWqtKPVVhCXlmqVkGhsyMtLlapAVn4JMVRLun76K6+sPomabhrB1dpC7tHJR2NjBtpoSdu7ecGnaGTWeHYuM66egzXwod2lEJmP51msYN/ckdDqh2OetrRXw9nSEt6cjrK1L/mZl9R8RGDXneInzyIGZRlT5rNl+A6PmHIdWW7FMW7/rJl6bdQRarek0ZZhpRJXPr7tv4rWZR6HRVCzTNv8ZhZfeO2xyX55ZUq5ZSqaxIWMiHDyrwa9ve+g0Wggm9GGkvHIT7yH5r62AlXXef0SEs+HxeHP+X6WOUXo4IObAMMQcGAalR+k/HNftisT/NlwxcpXGwUwjsnwXryfijU9OlDrGkEzbtC8KX/8cbuQqjYOZRmT5Lkcm4/U5xyCU8l2XIZm2LfQOFv500fiFGokl5Zo5Zxr3kJGRskNTvBK5DgorK9g42AMAwpfugCYrBwAQsmIa7h29iBvrDwIAqjeri85LJmNnj+nQ5qhlrb04aeFHcH6oMwSdDkJuFgDAs/80WFfJ29gq+dQ2xG36pNBrsqOvwHfMd6jR+01ZaiaSSk6uFq/PPmb0FS0zvjuL5zr5on5tV6POWx7MNGYaVR5qtQ4jZx8r8Vvk8pr9wzk8H1Ibjeq6GXXe8mCmMdOo8tBodHh9zjHkGvnSybk/XsALIXXQ3L+6UectL0vKNUvJNLNuyFy8eBFz5szBkSNHIAgCunXrhqVLl8Lf3x99+vTBxo0b5S6xVPHnInBi8v9gbW8Lv34dUKtTC5xftCH/+b9nr0bv7fNwZ88Z5CSnI3jhGzgzc5XJnQyPOPm3g9+UtRBys5F8YjMeXjyIWq/Mz3++WvAAVAsekP845fQfiF03E+7dRshUsX60Wh32HI/Bit+u5x/bsPcmJrzUBI4OZn0KkYRW/3EDl28avmdMWbKytZjzw7/4dVFXo89tKGaa+WTan3/FYtmWa/nHftkdiQnDmsDZ0VbW2sh8rN8dWa79FcqSk6vFrMX/4rdvuht9bkMx08wj03Q6AQdOxeLHzQWZ9vPOCEx6uQlcnOxkrY3Mx+Y/o3A2PMHo86o1Onyw+B/s+t+zRp+7PCwp1ywl08z2kqXQ0FC0b98e169fx4cffogFCxYgJiYGvXv3Rnp6Olq1aiV3iWXSZuci7bYKKdejceGLTUiLfoB2n47Ofz5TlYTLy3YhaPZraPhaD6TeikPciTBZay6NlZ0DqnjVh0OdZqj1ylzYe9ZF9PJJxY7NTYjB3WUTUHf6RljZm+4tfG/cTkWT/r+h39sHsPPo3fzj731zFt7PbMC+EzGy1kfmQRAELNl0VbT5tx64jQeJWaLNry9mmuln2s3oh2j+4jb0mbAfO44UZNqM7/6Bd/cN2PnYMaLSiJlp24/cQez9DNHm1xczzfQz7XZsGloN3oZeb/6JPw7fyT8+6/t/Uav7Bvx+8Las9ZH5WLJZvEzbczwat2PTRJvfEJaUa5aSaWbZkImPj8fQoUMRGBiI8+fPY/r06Zg4cSJCQ0Nx927eh0lzaMg86cKXm1B/aFe4t6yXf+za6n1wa+iL5hP74+wna2Wtz1Bewz5GQuhqZET8U+i4oNMh6ptXoXxxBhz9WshWX1liVBno8vpu3LhT/MZQqem5eP7t/ThyNk7y2si8XLiWiLAIw+8+oi+1RocNe2+KNn95MdNMS1x8JkJG7S7x7l5pmWoMfOcgDpyKlbw2Mi9Xbibjn8vG/yb5Ea1WwC+7mWliM/dMe5CYhZBRe0r8+ZqRpcHgaaHYfYyNZipd5N2HOHn+vmjzC0Levn+myJJyzVwzzSwbMosWLUJycjJWr14NB4eCzZSqVq2KwMBAwEwbMmlRKkQf+AeBM4YVHBQEXP/5AGJCzyEn0bx2jK5SqwHc2jyPe+tnFToet3k+rB1cUbNv8R1MU7Fg5QWoSll1IAh5HxqnfnEaQmm7f1GldyYsXvT3+FuEZbYVxUwzLZ+vvoSY+5klPi8IgFYnYMrnzDQqnTSZJv57GIqZZlq++jkMd+LSS3xeEAABwJTPz5jUHQnJ9PwtRaZJ8B7lYUm5Zq6ZZpYbYGzcuBGdOnWCv79/sc97enpCqVQCAN566y3s3LkTqampcHFxweDBg/H555/Dzk6/a0o1Gg1UKpXetanVGr3HFid8yQ702fkplMFNoTp1Oe+gTgfBwB8karUGMTEVu5xGrfYEULH9BDwHTMf1GR2RFnYELs1DkH71JBIPrkLjr88ZWIsaMTHida6flJ6pwdodEWWOEwTg/LUk7Aq9jIBG8m9ASKbp+D+Fv52ztlaUuDO/12PHvUrZvV+VkFXoNrOnL8ZV+JwvDjOtMHPNtKxsLVb9fr3McYIAXLmZgt/2haF9c9PYgJBMz7Gzdwo9FiPT/g67z0wrc47Km2k5ah2Wb70GBfKaLiURhLzVDxt3XUTnQA/J6iPzcvRs4UvbRMm08AcmmWkwUq4x0wClUgkbG8PbKwrBzL4GU6lU8PLywtSpU/HVV18Vek6n08HLywsBAQHYt28fAODKlSuoU6cOnJyckJCQgMGDB6NLly74+OOP9Xq/mJgY+Pr66l3ffPce8LY17t1O6g8JgXvLejgza5Xer4lVP8SHiQcq9L5Nvg+HQ+2mFZrjcZr0FFydGgi/iavg0sKwDUiz7l7GlUnNjFZLmRzqAvVn6THwP/d+BRIPiVkRmbM6EwDXgPyH3p6OiDkwrNSXlMWnxwbEPr7aQZsBXJlcoTmLw0wrmVllWhUfoIF+P/cAAHGbgYT9YlZE5sx3HODWJv+hKJmmywEuT6jQnMVhppXMrDLN3gvwn6f/eNU2IH63mBWROfMZDVQLzn8oSqYJWiB8XIXmLI4YmYZy5BozDYiOjoaPj4+BVZrhCpmMjLxN3hQKRZHntm/fjgcPHhS6XKlJkyb5fxYEAVZWVoiIKHvlAxlf/L6lUCfHIfqndwodd+86Ap4vvFPi62RRzL+v0pnl1X8kGUP/PZnqe9DjzCrTDM4oZhqVwuCfkeV6Ewnegx5nXplm4L8PSf7Nkvliplkic8k0s1shk5ubC0dHRwQEBODs2bP5x+/cuYOOHTsiNjYWGzZswEsvvZT/3MKFCzF//nxkZGTA3d0de/fuRZs2bUp4h8IMvWTp1JCFyIjSf7xYnOoqEbx5RoXmmHTFE9HZpnELVN8qanzfRLqlsAkpOQh69Si0ei7V+3luILoG1RC9LjJPU74Mw2+H7uU/Lmsp7NkN/QEAbYb9gbiE4vcxenIprE/NKji1povRa2emiUPqTEtJUyPwlcNQa/TLtJWzA9AzuKbodZF5eu+7cGz4s2DzZzEyrWZ1e/y7PsTotTPTxCF1pqVlahDw8mHk5Or0Gr9kRks831kpel1knj5ccgVrd0XnPxYj09xcbBG2qZvRa2emiaM8mVbeS5bMboWMnZ0dhg8fjtWrV+OFF15Anz59EB0djRUrVsDT0xOxsbFFNvSdMWMGZsyYgatXr+KXX36Bl5eX3u9nY2Nj0NIjW1vT+J/U1tawuoudIwJAttFKqhBbW9sK/30M4eMDDHzmDrbsjyp1nEIB1FY64+XnW8Lamt8oU/E6BCYXashotULhZawliEvI0mscALRuWlOUc4SZJg7JMw3A0F53sH5X6XeuUSgApbsDRgxoBRsbZhoVr2Prh4UaMqJkWpMazLSy5qjEmQYAr/Spj5+23Sh1jAKAR7UqGDUoAPZ21pLVRubl6dYZhRoyYmRaYGMPZlpZc1TSTDPLT1uLFy/G2LFjcebMGUybNg1nzpzBtm3bUKtWLTg6Opa42W/jxo3RsmVLvPbaa5LXTObng9EtYG9nVeIqV8V/m8V98lYgmzFUqqAm4m8kGNSUmxVS6d5/vQUc7K1LXbn/KNPYjKHSSJFprSV4DzJv00c2h7OjTemZBmDOeDZjqHRSfIZiplFJzPITl7OzM5YtWwaVSoW0tDTs378fwcHBCA8PR/PmzWFlVfJfS61W48aN0rvpRAAQ0NgD27/rAQf7vM7zkz/wBQBfTmuLES80kKdAMhsdWnnCu6ajqO8x5NmnRJ2fzF+zBtWx63/Pwsmh+EwDgAVvB+GNQY2kL47MSlBTD9T1dhH1PYb2rCvq/GT+GtV1w+7/PQtXp7xLHIrLtI/GB2DCS42lL47MSsuG1dHQr6qo7/FSL35Oo+KZZUOmOCkpKYiJiSl0uVJqairWrFmDlJQUCIKAS5cuYf78+ejZs6estZL56NnRB5G7B2PuhEDU93WFq5MtvGs64q2hjRH22wBMG9Fc7hLJDNjYWGHcYPF+ye0RXAv+In+QIMvQrV0tRO4egk8ntUaD2nmZVquGI8YPboSLWwfggzEt5S6RzIC1tRXGi5hpnVsr0awBb7tOZesc5IUbOwfjs8lBaOhXFa5OtvDycMAbLzbEuU0v4OO3Aou9EQjR4xQKBd4cIl6mtWteA4FcIUMlMI2LzowgLCwMAAo1ZBQKBdavX4+pU6ciNzcXNWvWxMCBA/HJJ5/IWGlhDV7ujgYvdYMg6HDq/RVIuXa3yJhev32C1MhYnHp/uSw1GiJh/0okHPwJsLJCnfFL4eBXtGFxfVYIqng3Qp23fpSlRkN51XDE7HEBmD0uQI/RRMV7a2hj/G/DFTxIMu7FsQoFMMeE/m0y00yfp7sDZr7RCjPfaKXHaKLijR3UEN/9ehn3Hui3f4IhPhrPTBOLJWZaTXcHzBjdEjNGs6FM5TdqgD++XheOu3EZRp/74zcDjT5neTHTTI/FrJApriHj6uqKgwcPIikpCenp6bh16xa+/PJLODk5yVhpATs3ZzQc8Sz2DpyDk1OXot2814uM8XmmNdTpxe/ebWo0aUmI37cUDRcchd/EVYheObnImJSzu2DtIO4yZyJT5O5WBT/O7mj0eSe/0hRPB5rGnSOYaUSVh5urPZbPMX6mvTmkEbq1q2X0ecuDmUZUebg42WHlx52MPu+oAf7o9bS0G16XhJlmmiymIfPWW29BEAS0b99e7lL0ViOgPlR/XYag0eLhzXuwr+5a+AJYhQKNXu+Fa2v2yVmm3jIi/oZzsxAobGxRxachNA8TIOgKbkco6HSI3/MDajw3QdY6ieQyoLsfJr3cpNQxqoQs+PTYAJ8eG6Aq4VaKj7RvUQOfTgoycpXlx0wjqlz6dK6Nd8u4dNeQTAtq6oHPp7Y1cpXlx0wjqlx6BHtj1hulr7QyJNNaNqyOr99tZ+Qqy4+ZZpospiFjjuzcnJGbWrAsTp2eBTvXgo0/6w8JwZ09Z6DNVstUoWG0aUmwca6W/9jKwQXazNT8x4mH1sIteCCsbKvIVCGR/L59r32pey88utVi7P1MaLVCieOCW9bEniU94ehgOleeMtOIKp/Pp7bB26U0mvXNtKCmHti3tCecHW1FqtRwzDSiymfexNaYPrLkRrO+mdaqUXXs/7EXqrrYiVSp4ZhppokNGRnlpmbAzrXg8ilbZwfkPsy7Ftva3hZPDeyEyI2HZKzQMNbO1aDNSMl/rMtKg7Vj3kajutxsJB39BR7diy6NI6pMrKwUWPJhB6z46Gm4OBn+i4dCAUwd3gyhK3qjmqu9KDWWFzONqPJRKBT49v32WDOvc7l/8Xj75SY4suo5uLuZ1odmZhpR5aNQKLDonTb45bMQVHMtX6a9OaQRjq3ug5ruDkavryKYaaaJDRkZxZ+LgGf7xlBYW8HFT4mcpIeAkNdpda5dE3ZVnfDMug/Qevar8O4egHqDu8hdcqmc/Nsh7fIxCFoNsuMiYePqAcV/tyDPuR8FbUYKIuf1Rcza95D67x4kHvpZ7pKJZKFQKDDmxYYI/30gXu/fAFXsrfV6Xa+OPjixti++ercdHKqYzsqYR5hpzDSqnBQKBUa80ACXfx+IMQP94ahnPvUIroVjq/vguxnBcDKhlTGPMNOYaVQ5KRQKvNynHq788SLGD24EJz1XI3dr64VDK3tjyYcd4eJkOitjHmGmmWamKQRBKHmtFRnsjy5TkHIjRu/x/q8+g/pDukIQdDj9wUo4elaDnZszoradyB+jDG6Kuv07GrTTtZu/D/of/dbg+h835DBwK82w18T/uRyJoWsAKyvUHvcD1Mlx0KYloXqXl/PHpIUdQdLxjQbtdP2UC7C5q2G1EJmLpNQcbNkfhTNhD/DvlUQ8SMqCVivAzdUOrRq6o3UTdwzqURf1fF0lr42ZxkwjMlTKw7xMOx0Wj3+vJOB+Yl6mVXWxQ0v/6mjdxAODevihQZ2qktfGTGOmERkqNS0XWw9E4fSlvM9pcQl5lyu5OtuipX/e57SBz/ihUV03yWtjppl/prEhY2SGnhRikeukEAt/0BPJg5kmDmYakTyYaeJgphHJg5kmDikzjZcsERERERERERFJjA0ZIiIiIiIiIiKJsSFDRERERERERCQx07tNh5lz8VPKXQJgpDq8HfUYJBFTqoWoMmGmicOUaiGqTJhp4jClWogqE2aaOKSshZv6EhERERERERFJjJcsERERERERERFJjA0ZIiIiIiIiIiKJsSFDRERERERERCQxNmSIiIiIiIiIiCTGhgwRERERERERkcTYkCEiIiIiIiIikhgbMkREREREREREEmNDhoiIiIiIiIhIYmzIEBERERERERFJjA0ZIiIiIiIiIiKJsSFDRERERERERCQxNmSIiIiIiIiIiCTGhgwRERERERERkcTYkCEiIiIiIiIikhgbMkREREREREREEmNDhoiIiIiIiIhIYmzIEBERERERERFJjA0ZIiIiIiIiIiKJsSFDRERERERERCQxNmSIiIiIiIiIiCTGhgwRERERERERkcTYkCEiIiIiIiIiktj/AexSd6bwduIlAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from qiskit.circuit.library import EfficientSU2\n", + "from qiskit.quantum_info import SparsePauliOp\n", + "from qiskit_ibm_runtime import SamplerV2\n", + "from qiskit_aer.primitives import EstimatorV2\n", + "\n", + "from qiskit_addon_cutting import (\n", + " cut_gates,\n", + " generate_cutting_experiments,\n", + " reconstruct_expectation_values,\n", + ")\n", + "\n", + "\n", + "circuit = EfficientSU2(num_qubits=4, entanglement=\"circular\").decompose()\n", + "circuit.assign_parameters([0.4] * len(circuit.parameters), inplace=True)\n", + "\n", + "\n", + "observable = SparsePauliOp([\"ZZII\", \"IZZI\", \"-IIZZ\", \"XIXI\", \"ZIZZ\", \"IXIX\"])\n", + "print(f\"Observable: {observable}\")\n", + "circuit.draw(\"mpl\", scale=0.8)" + ] + }, + { + "cell_type": "markdown", + "id": "8ef29b75-e790-4f3a-b2f7-4a18928cf5e6", + "metadata": {}, + "source": [ + "Each of the [`CNOT`](../api/qiskit/qiskit.circuit.library.CXGate) gates between qubits $q_0$ and $q_3$ will introduce two swap gates after transpilation (assuming the qubits are connected together in a straight line). To avoid this increase in depth, we can replace these distant gates with [`TwoQubitQPDGate`s](../api/qiskit-addon-cutting/qpd-two-qubit-qpd-gate) using the [`cut_gates()`](../api/qiskit-addon-cutting/qiskit-addon-cutting#cut_gates) method. This function will also return a list of [`QPDBasis`](../api/qiskit-addon-cutting/qpd-qpd-basis) instances - one for each decomposition." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "f417c494-949a-48c9-aa95-18a07cc65b26", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABP4AAAD2CAYAAABGHEm+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABd+klEQVR4nO3dd3hTZf8G8DtpU+ikUEpT2kLLKHsVEMoeokwFZIgDcaEgCoooqIAIorwqIL6KLJmyxB+CCAgUmbJnyyy7LQ100r2S8/ujL4VCR9ImOSdP7s91cV3m5MnJtya5e/rNOc+jkiRJAhEREREREREREQlFLXcBREREREREREREZH5s/BEREREREREREQmIjT8iIiIiIiIiIiIBsfFHREREREREREQkIDb+iIiIiIiIiIiIBMTGHxERERERERERkYDY+CMiIiIiIiIiIhIQG39EREREREREREQCYuOPiIiIiIiIiIhIQGz8ERERERERERERCYiNPyIiIiIiIiIiIgGx8UdERERERERERCQgNv6IiIiIiIiIiIgExMYfERERERERERGRgNj4IyIiIiIiIiIiEhAbf0RERERERERERAJi44+IiIiIiIiIiEhAbPwREREREREREREJiI0/IiIiIiIiIiIiAbHxR0REREREREREJCA2/oiIiIiIiIiIiATExh8REREREREREZGA2PgjIiIiIiIiIiISEBt/REREREREREREAmLjj4iIiIiIiIiISEBs/BEREREREREREQmIjT8iIiIiIiIiIiIBsfFHREREREREREQkIDb+iIiIiIiIiIiIBMTGHxERERERERERkYDY+CMiIiIiIiIiIhIQG39EREREREREREQCcpS7ANGEvfI1Um/o5C4D7oFadF8+sVz7eP8IEJNhtpLKxc8FmNPGus+plNfS2szx3rFnSnrfiJQDcmQAKZuSPmvWwnwuP6W8b0TKZzCj6RFK+ZxZGzO6fJT0vhEpo5nPBDb+zC/1hg7Jl6PlLsMsYjKAa6lyVyEfkV5Lsh7R3jf2ngOkXKJ91sg6RHrfMJ9JqUT6nJH1iPa+YUaTkvBSXyIiIiIiIiIiIgGx8UdERERERERERCQgNv6IiIiIiIiIiIgExMYfERERERERERGRgLi4h0w6zH0HdYZ2BQAY9Hpk3klG7MEInJz5KzJ0iXKXZ7Ib349Awu7l+TfUamgq+8K9STf4Df8KTl5+cpdHpEgi5QAzgIhEIlI+gxlNRIIRKaOZz2QNPONPRrrD57Gu6RvY0GoU9r0zF16NA9Fl4Xi5yyozt4Yd0XRZLJosvoWg8auRcf0Urs0aLHdZRIomUg4wA4hIJCLlM5jRRCQYkTKa+UyWxsafjAw5eciMS0aGLhF3Dl/ApVW7UK11PWjcnOUurUxUjk7QVNbCycsP7o06wfupkUi/dAj6jBS5SyNSLJFygBlARCIRKZ/BjCYiwYiU0cxnsjQ2/hTC2acyAvu2hSFPD0lvkLuccstJuI2kfzcAaof8f0RUKpFygBlARCIRKZ/BjCYiwYiU0cxnsgTO8ScjbbtGePHKSqjUajg6VwAARMzfjLzMbABAl0XjcXvvGVxetQsAUKVxEDr9NBZ/9pgAfXaurLUXJTViD04NdYNkMEDKyQQA+PQfD4eKrgCApEMbEbtuWqHHZEWdR8Ab38O71yhZaiaSm0g5wAwgIpGIlM9gRhORYETKaOYzWZpNN/7OnDmDKVOmYM+ePZAkCd26dcP8+fMRHByMPn36YO3atXKXWKK4k5E4MPa/cKigQeAz7VC9Y1OcmrWm4P6jk5ei16bpuLn1CLKT0hD69Zs48skSxQXVfa7BbRA4bjmknCwkHViPlDO7UP3FGQX3Vw4dgMqhAwpuJx/+AzErP4FXt1dkqphEIEkSzl1Jwt3ELLi5aBDSwAuOjrZzMrNIOcAMIKJHpaTl4OzlROTpJdTyd0cNXze5SzKaSPkMZjQRFeHi9WTcvpsBl4qOCGnoBSeN7ZxhJlJGM5/J0my28RcWFoa+ffuiZs2a+Oyzz+Ds7Ixly5ahV69eSEtLQ/PmzeUusVT6rByk3tABAE5/sw7ugVq0+fJ1/PvhzwCADF0izi3YglaTX0b8qSu4dy0WsQfCZa66eGonZ1T0rQMAcK7ZGNm6q4ha+C5qjln02Nic+GjcWvAO6kzdBnUFFxmqLTuftg3Q6K1nUKVxINz8vXFy1hqcnfu73GXZHUmSsGrLFcxeEYHTlx6s3lXd2wVvD6mPCSOaoGIF5UecSDlgLxlAysaMVoaYO+mYsfA0Vvx5BRlZeQAAlQp4up0/PnmjGTq21MpdYqlEymcwo0kBmM/KsWHHdXyz7CyORsQXbPOuXBFvPlcPk95oBjcXjaz1GUOkjGY+k6XZzmkxD4mLi8PQoUMREhKCU6dOYcKECRgzZgzCwsJw69YtALCJxt+jTn+7DnWGdoVXs9oF2y4u3Q7PegFoMqY/jk1bLmt9pvId9jniw5YiPfJ4oe2SwYDrc16C9rmJcAlsKlt9ZeXoUhHJkVE4Pn0lMu4kyV2OXZIkCR9+dxTDP92HM5cTC90XG5+BKT+eRM9RfyPzf39s2hKRckDUDCBlY0bL71p0Ctq8uBk//3axoOkHAJIEbD8YjW5vbMX6v6/JWmNZiJTPYEaTDJjPyjB9wSkM/nA3jp2LL7Q9PjkLMxefQZfXtiIlLUe2+spKpIxmPpO52WTjb9asWUhKSsLSpUvh7Pxg1Z5KlSohJCQEsNHGX+p1HaJ2HkfIxGEPNkoSLq3Yieiwk8hOsK1VfSpWrwvP1v1we9WnhbbHrp8BB2cPVOv7rmy1lUfM7lM4OXM1bmz+F4Yc5Z0qbg/WbruG2SsigP/9Ifmw+7f3Htdh/LdHZKiufETKAVEzgJSNGS0vSZLQf+wuxNzNKHaM3iDhpUl7EXnznlVrKy+R8hnMaJIB81l+W/dHYcqPJ4ESjqFPnI/HqBn/ylBd+YiU0cxnMjebbPytXbsWHTt2RHBwcJH3+/j4QKvNv4QkLy8PY8eORZUqVeDp6YnXX38dWVlZVq7YeBE/bYZfl+bQhjZ6sNFggGSQSnqYYvkMmICU0zuQGr4HAJB24SASdi1B4HtL5S6NbNiclRFQqUoft3RTJJJSsq1RklmJlAPMACL78s/RWIRHlnwmjyQBuXkGzF9/wWp1mYtI+QxmNJHdmbsqwqhx67Zfw+276Ravx9xEymjmM5mT8ifAeoROp0NMTAyGDh362H0GgwHh4eFo0aJFwbaZM2fin3/+QXh4OJycnPDMM8/go48+wrx584x6vry8POh0OqPry8017tLCA+N+LHJ73PFLWOY7yOjnK6mO6Ojocu7DB4Bx8zsEjl1W5Ha3Bu3QclN+0OalJeP6nJcR+N4yOHp4mVhLLqKj75j0mPIy9rUUjTneO5Z0/Xb6Y5cmFCcrW4+lv5/GkB5+Fq/rPlPeNyLlgIgZQMpmjxmt9HwGgEW/GfdHJQCs2ByJD4b5W7SeR/E4rTBmNFmCPeYzbCCj45OzsfPQbaPG6g0SFq4/hTf6B1q8rvt4DF0Y85mKo9Vq4ehoWivP5hp/6en53zyoijjdZ9OmTbh7926hy3wXL16M//znP/Dzy//D//PPP8fgwYMxZ84cODiUvmqRTqdDQECA0fXN8OoBP42H0eMt5fLlyxhiQt1FafhDBJxrNDJipHHits9HblIson55v9B2r66vwOfZ94t9HP738wQ83dhstRhDKa+ltZnjvWNRLrWB2pOMHj7+o88xPn67RUt6mJLeN0rLAVvLAFI2JX3WrEXx+QwANccA7s1gzGnZCclZJh1jmYNS3jdKy2cwo8mMlPI5szbFZ3QFXyB4utHDp82YjWnvbrRoSQ9T0vtGaRnNfKaHRUVFwd/ftC9Oba7xFxAQAAcHB+zdu7fQ9ps3b+Ldd/Ovdb/f+EtOTkZUVFShRmBISAhSU1Nx48YN1K5dG7bgyvo9uLJ+j9xllJvvoEnwHWR8w4aoSPpM08YbTByvUCLkADOAyA7os4xq+kGSAIPtTcVQFBHyGcxoIvHpTZzuyqDc6bFMIUJGM5+pvGyu8efk5IThw4dj6dKlePbZZ9GnTx9ERUVh0aJF8PHxQUxMTEGjLzU1FQDg6elZ8Pj7/33/vtJotVpERUUZXd+hIV8j/brxlwZbSnBwMKLW/1Kufbx73gdRCsn74OBg/G3C62AOSnktrc0c7x1LMhgkdHpzP27pMh+blPhRajVwOGwxfKtWtFZ5inrfiJQDcmQAKZuSPmvWovR8BoC/Dujw9swzpQ9UqTD46dqY/bd9/m4XKZ/BjKZHKOVzZm1Kz2hJktBn7GFEXE0p9RgaAP7ZNBt1AhZaozRAYe8bkTKa+Sye++tZmMLmGn8AMG/ePGg0GmzatAm7d+9GaGgoNm7ciC+++AJXrlwpWPTD3d0dAHDv3r2C/znJycmF7iuNo6OjSadRajTK+F+q0ZhWd5H7iASggLACAI1GU+6fx/TnLPq1dHSpCI+g/PeTWuMIZ29PVGkUiNz0LKTeUMYvq/Iwx3vH0sa91BTvf1P6ir39uwaidfM6VqnpPqVkAATLATkygJTNHjPaFvL5teeq44tFkYiNzyj1D8sJr7WCv7+3tUoDFJTRIuUzmNH0CHvMZ9hIRn/wSiZenby/1HHd21RHl9D6VqnpPqXkMwTLaOYzwVYbf25ubliwYAEWLFhQaHtERASaNGkCtTp/sWJPT08EBATg9OnTqFevHgDg1KlTcHd3R2Cg9SYqJbFUbVYbPf9vWsHtBq/1QoPXekH37zlsf26qrLXZizHDGiLsyG1s2Vf8t1e1/N3x02ftrFoXEcmPGS0vjUaN377rhiff3IasbD0e7f2pVPlX+c4Y0xKtG1u36UdE8mI+y294v7rYeeg2Vm+9WpDHj6ru7YIl0zrIUR4RWYhNNv6KkpycjOjoaPTp06fQ9jfeeANfffUVOnbsCI1Gg88//xwjRowwamEPoqLoDp0zy2pRVHaOjmr835wnMfnHE5i/7gJS0nML7nNQqzDoqUB8/3EofLycZa2TiKyPGS2/ds19sG9ZH4z/9ij2nSh8Fk8NrRumvN0Crw0Ilq0+IpIH81l+arUKK77shHqBlfD9r+eQeO/BXKtqFfBM15qYN7EtArRustZJROallrsAcwkPDwceWtjjvk8++QSdOnVCo0aNUKdOHTRo0ACzZs2SqUoiMheNRo2vx7XG7bBh+OnTB2f2HV39DNb+pxubfkREMmrVyBt7l/bBjgU9C7atnNkZV7cOZtOPiEhGDg5qTHm7BWJ2PY+FU9oXbD+0sh82zn2STT8iAQnf+HN0dMS8efOQlJSEe/fuYcmSJXB2Vk5DoO4L3dF785fotWk6POvXKHJMz9+nIXTWSKvXVhbxOxbj4kftcHFiB2TeCC9yzKVPu+DmT29bvTYSk6uLBv06P/jsVKuinM+3sUTKAWYAET2sQdCDBda6tPKFg4NtHXqKlM9gRhPRQypWcESvDgEFt6tXc5W1nrIQKaOZz2RJtnX0VYLRo0dDkiS0bdtW7lKM5uTphnqvPIVtA6fg4Afz0Wb6q4+N8X+yJXLTMmWpz1R5qYmI2z4f9WbuReCYJYhaPPaxMcnHtsDB2biFVYjsgUg5wAwgIpGIlM9gRhORYETKaOYzWZowjT9b5N2iDnT/noOUp0fK1duoUMUjf9br+1Qq1H+1Jy4u2y5nmUZLjzwKt8ZdoHLUoKJ/PeSlxEMyGArulwwGxG39Ed6935G1TiIlESkHmAFEJBKR8hnMaCISjEgZzXwmS2PjT0ZOnm7IuZdecDs3LRNOHi4Ft+sM6YKbW49An5VbzB6URZ+aCEe3ygW31c7u0GfcK7idsHs5PEMHQq2pKFOFRMojUg4wA4hIJCLlM5jRRCQYkTKa+UyWxsafjHLupcPJ48FcCho3Z+SkZAAAHCpoUGtgR1xZu1vGCk3j4FYZ+vTkgtuGzFQ4uFTK/++cLCTu/RVVuz9+CjaRPRMpB5gBRCQSkfIZzGgiEoxIGc18JktzlLsAexZ3MhLNPxwClYMabgHVkJ2YAkgSAMCtRjU4VXLFkysnwcnTDc7VPFF7cGdc/W2v3GUXyzW4DW6vmQpJn4fsuzfg6FEVKnV+bzn7znXo05NxZXpf5KUlIjdJh4TdK+DVbbjcZRPJSqQcYAYQkUhEymcwo4lIMCJlNPOZLI2NPxnlJKchcnUYem2cDkky4PCkxfDr2hxOnm64vvEAtvT8GACgDW2EoP7tFRtU9zm6V0HVHm/g0qROgFqNGm/9iHsnt0OfmogqnV9Ag9nHAQCp4XuQuH8tw4pIsBxgBhCRSETKZzCjiUgwImU085ksjY0/mV1etQuXV+0quJ10/uZjY3SHzkF36JyVKysb76dHwvvph5ZLD2r22Bj3Jl3g3qSLdQsjUjCRcoAZQEQiESmfwYwmIsGIlNHMZ7IkzvFHREREREREREQkIDb+iIiIiIiIiIiIBMRLfc3MPVArdwmAmerwczFikJUoqRaikiglAyBYDiilDiKybUrJaJHyGQqrhYhsk1LyGYJltFLqIHmx8Wdm3ZdPlLsEs5nTRu4KiGyPSBkA5gARCUakjGY+E5FIRMpnMKNJYXipLxERERERERERkYDY+CMiIiIiIiIiIhIQG39EREREREREREQCYuOPiIiIiIiIiIhIQGz8ERERERERERERCYiNPyIiIiIiIiIiIgGx8UdERERERERERCQgNv6IiIiIiIiIiIgExMYfERERERERERGRgNj4IyIiIiIiIiIiEhAbf0RERERERERERAJi44+IiIiIiIiIiEhAbPwREREREREREREJiI0/IiIiIiIiIiIiAbHxR0REREREREREJCBHuQsQTdgrXyP1hk7uMuAeqEX35RPLtY/3jwAxGWYrqVz8XIA5beSugsj+MNMsg5lGROWllHyGYBnNfCYic1BKRouUz2BGlxkbf2aWekOH5MvRcpdhFjEZwLVUuasgIjkx04iIlEmkfAYzmogEI1JGM59tHy/1JSIiIiIiIiIiEhAbf0RERERERERERAJi44+IiIiIiIiIiEhAnOOPiGxSXGIm/jkWixPn43HyfELB9k9/OI7OrXzRqaUWdWp4yFojEZE9kiQJxyLicfjsXew/8WBi87e+OIC2zaqhVcOq6PqELypW4GEoEZG1JaVkY/eR2zhxPgHHz8cXbJ/0/TF0aqlFx5Za1A/ylLVGIjIvHnERkU05eT4es1dG4Lcd15GTa3js/hV/XsGKP68AALo94Yv3XmyEZ7rUgEqlkqFaIiL7kZ2jx+L/u4Sf1l3A+avJj92/9UA0th7In+i8SqUKeK1/MMa91Ah+Pq4yVEtEZF8iIhMxZ9U5rNl2FZlZ+sfuX/XXVaz66yoAoEMLH4wZ1hBDng7iMTSRANj4k0mHue+gztCuAACDXo/MO8mIPRiBkzN/RYYuUe7yTHbj+xFI2L08/4ZaDU1lX7g36Qa/4V/ByctP7vJIAJlZeZjy40nMXhkBg0Ey6jG7j8Zi99FY9O0UgAVT2qN6Nf5xaSnMNCL7dvxcHEZ8tg/nimj4FSXxXja+XR6Ohb9fxJwJbfFq/7r849KCRMpo5jORaXJy9Zi56Ay+XHQaeXrjjqEPnLqDA6fuYNHvl7BkWgfUrO5u8TrtGTOaLI1z/MlId/g81jV9AxtajcK+d+bCq3EguiwcL3dZZebWsCOaLotFk8W3EDR+NTKun8K1WYPlLosEcCchE6Ev/4lvl4cb3fR72JZ9UWg6aCOOnL1rkfooHzONyD4t+b9LaPvSn0Y3/R6WkpaL16fux0uT9iK3iLO4yXxEymjmM5FxklKy0eW1rZj28ymjm34PCztyG02e24h/jt62SH30ADOaLImNPxkZcvKQGZeMDF0i7hy+gEurdqFa63rQuDnLXVqZqBydoKmshZOXH9wbdYL3UyORfukQ9BkpcpdGNiw+KQtdX9+KM5eK/7bLwUEFPx8X+Pm4wMGh6DNGEpKz0eOt7Tjx0FwmZF7MNCL788vGy3jj8wPQF/MHpTH5DACrt17Fi5P2QK9n889SRMpo5jNR6VLScvDUW9tx6EzxX3wbk9Gp6bno/c4O7Dsea8FqiRlNlsTGn0I4+1RGYN+2MOTpIQlw0JuTcBtJ/24A1A75/4jKQJIkvDp5Hy5cK/ksEm1VZ0TvHIboncOgrVr8L8fU9FwMfH8XUtJyLFAtPYyZRiS+0xcT8NYXB0ocY2w+A8BvO67ju+URZq6SiiJSRjOfiYr2zsx/cfxcyV94G5vRWdl6DBq/G3GJmRaolB7FjCZz4xx/MtK2a4QXr6yESq2Go3MFAEDE/M3Iy8wGAHRZNB63957B5VW7AABVGgeh009j8WePCdBn58pae1FSI/bg1FA3SAYDpJz8Xwo+/cfDoWL+vGpJhzYidt20Qo/JijqPgDe+h3evUbLUTMq2assVbNkXZdZ93opNx4TZR7FgSgez7peYaWCmkR3JydVjxOR9Zbp0rCRTfjqJfl1qoEEtrihpbiJlNPOZqGSb/7mJVVuumnWfcUlZGPPVIaz7pptZ90v5mNHMaEuy6cbfmTNnMGXKFOzZsweSJKFbt26YP38+goOD0adPH6xdu1buEksUdzISB8b+Fw4VNAh8ph2qd2yKU7PWFNx/dPJS9No0HTe3HkF2UhpCv34TRz5ZorgP9n2uwW0QOG45pJwsJB1Yj5Qzu1D9xRkF91cOHYDKoQMKbicf/gMxKz+BV7dXZKqYlCw314CP5x63yL4XbriE919ujPpByvrDMkqXhoUbLuHw2bvI00sIrumBkYPqo2XDqnKXZhRmGjON7MeqLVdLnIKhrLJz9Phk3nFsnPuk2fddHnq9AdsPRmPlliuIjcuEq7Mj+nQKwMt968DDzUnu8owiUkYzn4mKZzBImDD7mEX2vf7v6/jg5bto07SaRfZfVrr4DCz+v0vYd0KHnFwDavm7483n6qFt02o2s3AUM5oZbUk22/gLCwtD3759UbNmTXz22WdwdnbGsmXL0KtXL6SlpaF58+Zyl1gqfVYOUm/oAACnv1kH90At2nz5Ov798GcAQIYuEecWbEGryS8j/tQV3LsWi9gD4TJXXTy1kzMq+tYBADjXbIxs3VVELXwXNccsemxsTnw0bi14B3WmboO6gosM1ZLSbfrnJmLjMiy2/5/XX8Tcj9tabP+mkCQJU386iS8XnoZBAu4fn+w5FouFGy6hX+ca+PXrznB3VfYfl8w0ZhrZB0mS8OPa8xbb/+Y9txCtS4e/VhkrsV+NSkG/d3cWTDuhUgGSBGw7EI2P5xzD8hmd8FyPILnLLJVIGc18Jire7qO3cfnmPYvtf/76i4pp/EmShO+WR2DS98eQp5egAgAVsPe4Dkv/iES3J3zx23fdUaVSBblLLRUzmhltSTY5x19cXByGDh2KkJAQnDp1ChMmTMCYMWMQFhaGW7duAYBNNP4edfrbdagztCu8mtUu2HZx6XZ41gtAkzH9cWzaclnrM5XvsM8RH7YU6ZGFz9qSDAZcn/MStM9NhEtgU9nqI2VbvjnSovtfueVKmVYItoRp809h+oL8ph+Q/wel9FBpf+69hYHvhyEvz7bm+GCmEYnp/NVknLyQYLH9GwwSft16xWL7N4UuPgNdX99aaK7Zh/M5IysPQz7cjb/23ZKnwHIQKaOZz0QPWPoYet3f15CVnWfR5zDW96vOYcLsowXTTkiPZPTuo7HoPfpvxdRrCmY0mZNNNv5mzZqFpKQkLF26FM7ODyYhrVSpEkJCQgAbbfylXtchaudxhEwc9mCjJOHSip2IDjuJ7ATbWgWnYvW68GzdD7dXfVpoe+z6GXBw9kC1vu/KVhspmyRJOBIeZ9HnSLyXjatR8n+mbt9Nx5eLTpc6btfh29i8x7b+sGSmEYnJ0vkMAEfDlbEC+7fLwhGlSy/2fknK/0Pz/f8cgSQp48skY4mU0cxnogcsndFZ2XqERyZZ9DmMkZySjU/mHUdpF/IeCY/Dmm3XrFSV+TCjyZxs8lLftWvXomPHjggODi7yfh8fH2i1WgDA+vXrMW/ePJw+fRpVq1bFjRs3THquvLw86HQ6o8fn5pbv24SInzajz59fQhvaCLpD5/I3GgyQTDwzKTc3D9HR0eWqJTfXB4CmXPvwGTABlya2R2r4Hrg36YK0CweRsGsJGsw+aWItuYiOvlOuWkxV3tfSVpnjvVNesfFZiEvKKrTNwUFV7Gpjvg9t9y1mjC4+E/pHJqHfceAynB18zVJzWc1dfcXoyfHnrDiFJ+pbN7aZaYXZcqaJxh4zWgn5DAD7jhU+lipvPqOIjD4WcUf2nzUzW49Fv1+E6n9nkRRHkoDIWylY99dZdGjuZbX6zPEZECmjmc/KYY/5DIVkdFpGHiJvFm4IWeIYOuzfK/D1zDZLzWX1y6abyMzWlzpOBWDuyjPo0cq6l5EqJaOVkM9gRpuVVquFo6NpfxOqJBv7elKn08HX1xcffPABvvvuu0L3GQwG+Pr6okWLFti+fTsAYOfOnUhISMCdO3cwZ84ckxt/0dHRCAgIMHr8DK8e8NN4mPQcpakzpAu8mtXGkU+XGP2YmNwUfJaws1zP2/CHCDjXaFSufTwsLy0ZFz4IQeCYJXBv2tWkx2beOofz7zY2Wy3GsMRraQvM8d4pt4o1gLpTCm3y83FB9M5hxT6kNP491iDmziNzBt5eDSTsLvM+zaLmu4B70wcT+5VEnwmct+43Ysy04tlaponGHjNaEfkMAAFvAZ6tC26WN59RVEYbsoFz75Rrn+VWoToQ/IXx43W/A3HbLFlRIZb6DIiQ0cxnedljPkMpGa2pCtT/utAmixxD3/kDuLulzPs0C//Xgcqhxo2VDEDEW6V8jWNeSslopeUzmNHlFhUVBX9/f5MeY3Nn/KWn519uUdTqPJs2bcLdu3cLXebbo0cPAMAff/xhxSqpKHHb5yM3KRZRv7xfaLtX11fg8+z7xT6O7JG1Vt9SwCpfKhNmXDBlLFkcM43sllVWSLSxfAZsdQYdITGfyW5ZbQVbG8tolfp/GV36GYJkecxo67O5M/5ycnLg4uKCFi1a4NixB8uU37x5E+3bt0dMTAzWrFmD559/vtDj/vjjD4wbN87il/oeGvI10q8bP95SXIO0CF0/sVz7ePe8D6KyyndKr7kEVMzFDw2te0qvUl5LazPHe6e8bsRmoOPr+wttK+0yhWNr+gMAWg/7A7HxmY+NKeoyhdkfNMbgJ/3MWrupvlh0EYs23ix1nEoFNK7tga3zjPxm00yU8jlgptGjlPLetCYl5DMAfPR9BNb8HVNwu7z5jCIyulqVCjixqovZazdFSnouWrywBzm5xi2stOCTZujdQWvxuu5T0mdApIxmPpefkt6b1qSEjE5KyUHT5/8ptM0Sx9DT3qqP156tadbaTTV39VV8t6r0haBUKqCG1hkHlnSySl33KeVzIFI+gxkNlPFSX5s748/JyQnDhw/H0qVL8eyzz6JPnz6IiorCokWL4OPjg5iYGLMu7OHo6GjSaZQajTL+l2o0ptVd5D4iAWQZMdAKNBpNuX8e059TGa+ltZnjvVNe1atLcHc9jNT03IJter30+GUGRYiNzzRqHAB0b1cX/v5VylVreY0f4WZU40+SgPdebGq3nwNmGj1KKe9Na1JCPgNA+5YphRp/lsjnlg29FfGzvtgnCkv/KHmFTJUKqFbFGSOeawEnjYPValPSZ0CkjGY+l5+S3pvWpISM9gfg73MU0XceLEpkiYzu0qYW/P3lnSf7/VcqY+7qq9CXMt+dJAFjhjXhMXR59qGQfAYzusxs8pqEefPmYeTIkThy5AjGjx+PI0eOYOPGjahevTpcXFyKXfSDiGyDWq1Cy4ZVLfoczhUd0LCWp0Wfwxj1gjzxct86pY6rH1QJw3rVskpNREQlaWXhfAaAVo0s/xzG+OjVpnBzcSzx6jlJAqa+bd2mHxFRcSydn2q1Ci0aWG8ho+L4+bhi9PMNSh1XQ+uK1weyP0D2zSYbf25ubliwYAF0Oh1SU1OxY8cOhIaGIiIiAk2aNIFabZM/FhE95Pmelm1yDXoyCI6OysiKhVPbY0D3xy+XuP93Zv2gSvj7555wdVHGKfZEZN9aN/ZGkJ+7RZ9j6NPK+KKjfpAn/vrvU/Bwzc/fohqA08eEYNTQ0v/4JCKyBksfQ/fpGAB3VyeLPoexZn/YBsP7Pf4F+v2sDqzuhp0Le6GyRwXrF0ekIMr4q9cMkpOTER0d/dhlvnq9HllZWcjNzYUkScjKykJ2trxLjxNR6V7sUxsebpZrdI1W0B9pFSs4YsN33bFjQU88FfpgzsGQBl5YNr0TTq7rjxq+brLWSER0n1qtwqgh9S22/86ttGhUp7LF9m+qTq18EbllML4e1wp1Ah6s0PhS3zo4s2EAPhvZQtb6iIgeNqB7Tfh4FT2nnzko6Rja0VGNZTM6Ye8vvdG3c0DB9qZ1q2DhlPYI/7+BCA6sJGuNREogTOMvPDwcAB5r/K1cuRLOzs4YMmQIbt26BWdnZ9SrV0+mKh9X94Xu6L35S/TaNB2e9WsUOabn79MQOmuk1Wsri/gdi3Hxo3a4OLEDMm+EFznm0qddcPOnt61eG9kWNxcNPhrR1CL77tneH22aeltk32WlVqvQI9QPS6Z1LNj2x/c98MqzdeFcURlzhBiDmUZkH0YOqg+/ai4W2ffUt5XXSPOu4oyPX2uG3Yt7F2z76r1WaBos7zyxphIpo5nPREVz0jhg8lvmm/P+Ye2aV8NT7eRdGO9RKpUKnVr5Yv6n7Qu2bfnvU3hzUH242dDVMiLlM5jRiiN842/EiBGQJKnQP1NX9rUUJ0831HvlKWwbOAUHP5iPNtNffWyM/5MtkZtW9Ap4SpOXmoi47fNRb+ZeBI5ZgqjFYx8bk3xsCxycLXt5EInjo1ebIsTMc4h4uGmwaGoHqEqasInKhJlGZD8quTth4dQOZt/v6KEN0PWJ6mbfL4mV0cxnopKNGtIAnVuZd5XxihUcsPSLTlCreQxtbiLlM5jRiiRM42/06NGQJAlt27aVuxSjebeoA92/5yDl6ZFy9TYqVPEoPHmMSoX6r/bExWXb5SzTaOmRR+HWuAtUjhpU9K+HvJR4SAZDwf2SwYC4rT/Cu/c7stZJtkOjUWP1111QtXLFEsfp4jPh32MN/HusgS6++F+IarUKy6Z3gr/W1QLVEjONyL707hiACSOalDjG2HwGgNaNq2LW+63NXCXdJ1JGM5+JSqZWq7Diy86lnpltSkYvmNyel81aiEj5DGa0IgnT+LNFTp5uyLn3YKn13LRMOHk8COc6Q7rg5tYj0GflylShafSpiXB0ezAnj9rZHfqMewW3E3Yvh2foQKg1JTdxiB5WL8gTuxb2RLUqxb9v9HoJMXcyEHMnA3q9VOQYRwcVVs3sjAHdAy1YrX1jphHZn1nvt8a4lxoVe78x+QwATzT2xrafnrapy7JsjUgZzXwmKl0NXzfsXtwbASV84W1MRqtUwMIp7TH8mboWrNa+iZTPYEYrEht/Msq5lw4njwdBrHFzRk5KBgDAoYIGtQZ2xJW1u2Ws0DQObpWhT08uuG3ITIWDS/63QoacLCTu/RVVuz9+2jJRaZrV88Lxtc+iZ3v/Mj2+XmAl7F/WF8N61zZ7bfQAM43I/qhUKsye0AYrvuwET3fTV3lUqYBxLzXCP0t6w8uTfwBYkkgZzXwmMk5wYCUcW/MsBpbxi+8gP3eELeqFNwdZbkEnEiufwYxWJDb+ZBR3MhI+bRtA5aCGe6AW2YkpgJT/TYtbjWpwquSKJ1dOQsvJL8GvewvUHtxZ7pJL5BrcBqnn9kHS5yEr9gocPapCpc5/i2XfuQ59ejKuTO+L6OUf4d6JrUjYvULuksmGBGjdsPWnp7ByZmejJ1OvXs0F08eE4NT6/mjbrJrFa7R3zDRmGtknlUqFl/vVxfk/nsNbg+vD1dm4BYl6tvfH/mV9MeejtnAx8jFUdiJlNPOZyHg+Xs7YMLsbNnzXDa0bVzXqMd6VK+Kzkc1x9vcBnHfVCkTKZzCjFYlHWTLKSU5D5Oow9No4HZJkwOFJi+HXtTmcPN1wfeMBbOn5MQBAG9oIQf3b4+pve+UuuUSO7lVQtccbuDSpE6BWo8ZbP+Leye3QpyaiSucX0GD2cQBAavgeJO5fC69uw+UumWyMSqXCS33r4MU+tfHv6bvYfjAaJ87H48K1ZGRk5cFJ44AgPze0bFgVnVtp0adjDWg0/H7DWphpzDSyb77eLvh5cnvMGtcaG3Zex+Gzd3HifALuJGZCr5dQyc0JzepVQcuGXnjuySDUqeEhd8l2RaSMZj4TmUalUuG5HkF4rkcQjkXEYev+KBw/F49zV5ORnpkLjaMaNavnH0N3aOGDZ7vWRAUnB7nLthsi5TOY0YrExp/MLq/ahcurdhXcTjp/87ExukPnoDt0zsqVlY330yPh/fRDS4wHNXtsjHuTLnBv0sW6hZFQVCoV2rfwQfsWPnKXQo9gphFRJXcnvD6wHl4fWE/uUugRImU085mobFo39kbrxt5yl0GPECmfwYxWHJ4KQ0REREREREREJCA2/oiIiIiIiIiIiATExh8REREREREREZGAOMefmbkHauUuATBTHX4uZinFLJRUC5E9YaZZhpJqISLbpJR8hmAZrZQ6iMi2KSWjRcpnKKwWW8LGn5l1Xz5R7hLMZk4buSsgIrkx04iIlEmkfAYzmogEI1JGM59tHy/1JSIiIiIiIiIiEhAbf0QK9dS6Kegw9x25yyAiokcwn4mIlIsZTURUGBt/REREREREREREAmLjj8iC6o/oif575+DlG2swNHwJuiz+EAAw6OhPaDruuUJj2337Nnr+Pg0A0GHuO6jeqSnqDO2KEbEbMCJ2A7ShjUp9PpWDGs0+GIyBh/6Ll2+sweCTC9BmxmsAAO9W9TD81lrU6PVEwXhtu0YYfmstqndpZuafnIhI2ZjPRETKxYwmIjIfLu5BZCHNPxyCRm/3w4kvf8XtvWfg6FoR/t1aGPXYI5OXwq2mDzLvJOHo5KUAgOzktFIf1372aPh1a4Fj05Yj7tglVPTygHeregCAuOOXcPq79Wj/3SgknL2GvKwcdPzvezi3cAtu7zlTzp+WiMh2MJ+JiJSLGU1EZF5s/BFZgKNzBTQe/SxO/WcdLi7dXrA9Mfy6UY/PTc2AIScP+qwcZMYlG/UY90At6gzpgn/e+BY3/zoMAEi9eQdxJyMLxpydtxHado3R6cexyE3LRIYuESe/XmPyz0dEZKuYz0REysWMJiIyP17qS2QBnvUC4OhcAbf3Wu9bQK8mQQBQ8nNKEva/Ow+V69eAT9sG2Pv2HEh5eqvVSEQkN+YzEZFyMaOJiMyPjT8iGUgGCVCpCm1Ta6xzAm6VxkFwdKkAhwpOcPWrapXnJCKyFcxnIiLlYkYTEZmOjT8iC0i+HI28zGxU71z0hL9Z8ffg4lO50LYqjYMK3Tbk5kHlYPxHNOF/l0AU95wA4OztiQ7fj8HZ7/8PF5duQ6cf3oOTp5vRz0FEZOuYz0REysWMJiIyPzb+iCwgLyML5xb8ieYfDkb9ET3hUcsXlRvWRJN3BwAAbu8/i6Bn2qF652bwqF0draeNgJt/4W8OU2/dhVfTWnCv6YMKVdyhcnQo8TlTb+hw9fd9aPv1m6j1XEe41/SBV7PaaPBG74IxHX54F/euxODMnA04Pn0VshJT0GHOaAv9XyAiUh7mMxGRcjGjiYjMj4t7EFnIqVlrkZWQggav90Lraa8g51467hy+AAAI/+8fcPP3Ruef34chT49Ly/7GjT8PwSPIt+Dx537ejMoNauCZsG+hcXXG9oFToTt0rsTnPDDuRzT/YDBCPh4GZ5/KyIpPwc2/DgEAGr/TH1Wb1sKmJz+EZDBAMhiw9+056Pf3f1B/RE9cXLa9xH0TEYmC+UxEpFzMaCIi81JJkiTJXQSREv3ReRySL0fLXYbVeQb7o//euXKXYbeidekIeGotACBqx/Pw17rKXRKRItljRjOf5ceMJiqdPeYzmNGyYz4TFY+X+hIREREREREREQmIl/oS2Ygm7w1E0/cGFHv/r3Vetmo9RESUj/lMRKRczGgisnds/BHZiEsrduDG5n/lLoOIiB7BfCYiUi5mNBHZOzb+zCzsla+RekMndxlwD9Si+/KJ5drH+0eAmAyzlVQufi7AnDZyVyGvnOQ05CSnyV0Gkc1SSj5DsIxmPjOficxBKRktUj6DGQ0wo4nKTSn5DMEy2pr5zMafmaXe0AkzmW1MBnAtVe4qiIjMQ6R8BjOaiAQjUkYzn4lIJCLlM+w0o7m4BxERERERERERkYDY+CMiIiIiIiIiIhIQG39ERAohSRKidA/moLl88x7y8gyy1kRERPkyMvNw7mpSwe2E5CxZ6yEionySJOH23fSC2xevJyM3l8fQRPdxjj8iIhnl5OqxMewmlm2KxNGIOCTeyy64r/ub2+Bc0QHN63lh8FNBGPFsXVT2qCBrvURE9uR6dCp+/u0Ctu6PxoXrydDrpYL7mg/5AwFaV3QM0WLkoHro1FILlUola71ERPYiL8+ALftu4ZeNkTh09i7ikx58GdPjre2o4OSApsGV8dyTgXitfzC8qzjLWi+RnNj4k0mHue+gztCuAACDXo/MO8mIPRiBkzN/RYYuUe7yTHbj+xFI2L08/4ZaDU1lX7g36Qa/4V/ByctP7vKIFEeSJKzYfAUfzz2GOwmZxY7LzNLj0Jm7OHTmLj794TjGvtgIU99ugYoVGN+WJFJGM5+JTKeLz8DYWYfx247rkKTix0Xp0rF661Ws3noVTepWxs+T26Ndcx9rlmp3RMpnMKOJymTDjuv44NsjiNKlFzsmO0ePYxHxOBYRjyk/nsTbg+tj5nut4OqisWqt9kakjBYpn3mpr4x0h89jXdM3sKHVKOx7Zy68Ggeiy8LxcpdVZm4NO6Lpslg0WXwLQeNXI+P6KVybNVjusogUJyE5C/3e3YkRk/eV2PR7VGaWHl8vOYuWz2/C2cu29YvTFomU0cxnIuP9364baDTg/7D+75Kbfo8Kj0xCh1e2YMJ3RzlNg4WJlM9gRhMZLSUtB0Mn7MbgD3eX2PR7VE6uAfNWn0fTQRtx5Oxdi9ZIYmW0KPnMxp+MDDl5yIxLRoYuEXcOX8ClVbtQrXU9aNxs8zRklaMTNJW1cPLyg3ujTvB+aiTSLx2CPiNF7tKIFONuQiY6vfoX/toXVeZ9nL+ajI4jtuDwGR64WJJIGc18JjLOog0XMWh8WKFpF0whScC3y8Px/Ef/cH4pCxIpn8GMJjJKcko2ur+5Dev/vl7mfVyLTkXXN7Yi7PBts9ZGhYmU0aLkMxt/CuHsUxmBfdvCkKeHpLf9A8WchNtI+ncDoHbI/0dEyM7Ro9fov3H+anKxYxwcVPDzcYGfjwscHIqfKyolLRe9Rv+NK7ds65eOrRIpo5nPREXb9M9NvDX9YIln+Rmb0b/vuoF3Zv5rmUKpEJHyGcxooiLl5Rnw7NhdOH4uvtgxxuZzZpYez47dyatnrESkjLblfOYkUTLStmuEF6+shEqthqNz/oT9EfM3Iy8z/1vmLovG4/beM7i8ahcAoErjIHT6aSz+7DEB+uxcWWsvSmrEHpwa6gbJYICUk3/5ok//8XCo6AoASDq0EbHrphV6TFbUeQS88T28e42SpWYia5o2/xROXkgocYy2qjOidw4DAPj3WIOYOxnFjk1OzcFrU/Zhzy99oFZzQnlzEymjmc9EJYtLzMSbnx8o9dJeUzJ60e+X0K9zDfTrUsPc5do9kfIZzGiiUs1eEYF9J3QljjEln9Mz8/DKZ3tx9NdnodHwXChzEymjRclnm278nTlzBlOmTMGePXsgSRK6deuG+fPnIzg4GH369MHatWvlLrFEcScjcWDsf+FQQYPAZ9qhesemODVrTcH9RycvRa9N03Fz6xFkJ6Uh9Os3ceSTJYr7MNznGtwGgeOWQ8rJQtKB9Ug5swvVX5xRcH/l0AGoHDqg4Hby4T8Qs/ITeHV7RaaKiazn7OVEzFp61uz73X/yDhZuuIi3hzQw+77LS5IkXLpxD7r4TLi5OKJ5PS84OtrOwZVIGc18JirZ+G+PIu6hFSHN5a3pB9HtCV9FTiaflpGL8MhE5OYaUMvfA/5aV7lLMppI+QxmNFGJrkWnYMpPJ82+39MXE/HdinBMfL2Z2fdtDpE37yHmbgZcKjqief0qcNLYzhlmImW0KPlss42/sLAw9O3bFzVr1sRnn30GZ2dnLFu2DL169UJaWhqaN28ud4ml0mflIPVG/jcXp79ZB/dALdp8+Tr+/fBnAECGLhHnFmxBq8kvI/7UFdy7FovYA+EyV108tZMzKvrWAQA412yMbN1VRC18FzXHLHpsbE58NG4teAd1pm6DuoKLDNUSWdf3v56DwWDCLPEmmL0yAiMH1VfUWX+r/7qK2SvCceKhMxz9qrng7SH18eErTWxiVWKRMpr5TFS823fTsXrbVYvsOzYuA2u3X8PrA+tZZP9lERuXgS8XncbyzZFIy8gDAKhUQK8O/pj0ejN0CNHKXWKpRMpnMKOJSvTj2gvIztFbZN/f/3oO44c3UdRZfxvDbuCbZeE49NBc3tWqVMTIQfXx8WtN4abAL5IeJVJGi5LPynmHmyAuLg5Dhw5FSEgITp06hQkTJmDMmDEICwvDrVu3AMAmGn+POv3tOtQZ2hVezWoXbLu4dDs86wWgyZj+ODZtuaz1mcp32OeID1uK9MjjhbZLBgOuz3kJ2ucmwiWwqWz1EVlLUko2Vm+1zB+VABB5MwVhR5QzSfHEucfw4qQ9OHmx8GXNt+MyMPm/J9Fz1N/IzMqTrb6yEimjmc9EDyz6/RL0est8MQMAP627YLF9m+pGTCravLgZP669UND0w/8WJdm6PxpdX9+K9X9fk7XGshApn8GMJiqQmZWHpX9cttj+dfGZ+OOfmxbbv6m+WnwGA98Pw+FHVh6OS8rCjIWn0eW1rbiXmiNbfWUlUkbbaj7bZONv1qxZSEpKwtKlS+Hs/GBlmEqVKiEkJASw0cZf6nUdonYeR8jEYQ82ShIurdiJ6LCTyE6wrUn8K1avC8/W/XB71aeFtseunwEHZw9U6/uubLURWdO+EzpkZVvmm8r7/j4YbdH9G2v939cw65f8S5ofnSvr/u29x3X44JsjMlRXPiJlNPOZ6IHtFs7PkxcSEG+By4hNJUkSBozbhShderFj9AYJL03ai8s37lm1tvISKZ/BjCYqcDQiDkkplm10KeUY+u+D0fhkXn4zqbhj6BPn4/H29IMyVFc+ImW0reazTTb+1q5di44dOyI4OLjI+318fKDVapGdnY0333wTtWrVgru7O4KDg/HDDz9YvV5TRPy0GX5dmkMb2ujBRoMBkoUuEbQ0nwETkHJ6B1LD9wAA0i4cRMKuJQh8b6ncpRFZzYnzxa9AZrbnKGXREGuZszICxlxwvHTTZSSlZFuhIvMSKaOZz0T5K0WescLKjtb4PVCafSd0OH2p5J9VkoDcPAPmr1fOWYrGEimfwYwmAqx2DC1/PgPA3FXnjBr3247riC7hCxylEimjbTGflT/J0iN0Oh1iYmIwdOjQx+4zGAwIDw9HixYtAAB5eXnQarXYsWMHatWqhbNnz+Lpp5+Gj48PhgwZYtTz5eXlQacreQWhh+XmGnf52oFxPxa5Pe74JSzzHWT085VUR3R0+b69yM31AWDcHAKBY5cVud2tQTu03JT/Yc5LS8b1OS8j8L1lcPTwMrGWXERH3zHpMeVl7GspGnO8d6iwU+diC912cFBBW9W5yLG+D233LWYM/ndpwsOXpkVEJsj+ut2MzcDhs3FGjc3OMWDJhlN4/il/i9d1nymfaZEyWsR8hp1mNPPZ/G7GZiAzq/AZ2eXN6EfzGQD+PXkDjWqapeQyW7jeuD8qAWDF5ssY/4L18hk8hn6MLWe0PeYzmNEWcSKi8FQ2ljiGPn8lSfbXLfFejtFnn+sNEhauP4WRAwMtXtd9PIYuTO581mq1cHQ0rZVnc42/9PT87rZK9fg5JZs2bcLdu3cLLvN1dXXF9OnTC+5v3rw5nnnmGRw4cMDoxp9Op0NAQIDR9c3w6gE/jYfR4y3l8uXLGGJC3UVp+EMEnGs0MmKkceK2z0duUiyifnm/0Havrq/A59n3i30c/vfzBDzd2Gy1GEMpr6W1meO9Q4+o+S7g8WDFMG1VZ0TvHFbiQwDg2Jr+xd7n32MNYu5kFNyOT7hnUlZZhHMQUOdTIwbmmzDxC0x4fZtFS3qYkj7TSstoW8tnKOz1tBbmswVUqA4Ef1FoU3kz+tF8BoAvpn+FL97bWs5iy6nGaMCjRf5KHqVITMm1+u8UpXymlZbPsMGMVspraW3MaAvwfx2oHFpw0xLH0Dl5EgICagCQ8cwzJx+g3pdGD58+cy6mj/3doiU9TEmfaaVltBz5HBUVBX9/076cs7nGX0BAABwcHLB3795C22/evIl3382/nrq4+f1yc3Oxf/9+fPjhh1ap1VyurN+DK+v3yF1GufkOmgTfQZPkLoPI+iTLzu+X/xwK+HbdYOIcVnr557wyBxEymvlMdssa+QwFZbQRTT9IEmCwvakYiiJCPoMZTfbMKsfQenmbfijDMbSp4xVKhIy2lXxWSdKjU0cq32uvvYalS5fimWeeQZ8+fRAVFYVFixbBx8cHZ8+exYULF1C/fv3HHvfWW2/h5MmTOHjwIJycnIx6LlMv9T005GukXzd+vKW4BmkRun5iufbx7nkfRGUpY7nwgIq5+KGhdS9TUMpraW3meO9QYTOWXMKC328U3C7tMoX731K2HvYHYuMzixz36GUKzYMr4c+5bc1euykMBgmdRx7AzdiMxyYlfpRaBRz8pRP8fYq/FMPclPSZFimj5chnKOz1tBbms/llZuvRcFAY8h7K0/JmdFGX+i78rDl6tfMxe/2m2HpAh7dmnjFq7MCuvvh+gnVXJVTKZ1qkfAaPoa2KGW1+89ZexTcrrhTctsQxdC0/F+xd1NHstZuqz9hDCI9MMaoFufOndqgf6G6FqvIp6TMtUkaXNZ/t4lJfAJg3bx40Gg02bdqE3bt3IzQ0FBs3bsQXX3yBK1euFLnoxwcffIBDhw5h9+7dRjf9AMDR0dGk0yg1GmX8L9VoTKu7yH1EAlDIlwkajabcP4/pz6mM19LazPHeocK6PJFdqPGn10uPXQZWlNj4TKPGAUBoc19FvG7jXmqCcf8pfcXefl1qoG3Lulap6T4lfaZFymg58hkKez2thflsGY3qVMaZhxa9sERGP92xHvx93cpVZ3m9+lx1fLE4ErfjSv9yZsJrreDvX81apQEK+kyLlM/gMbRVMaPNr1tbFGr8WSKf2zTVKuJ1+2B4c4yYvK/UcZ1bafFkhwZWqek+JX2mRcpoa+azTa7q6+bmhgULFkCn0yE1NRU7duxAaGgoIiIi0KRJE6jVhX+scePGYefOnQgLC0PVqlVlq5uI7FOHFlqo1casdVt2nVv5WnT/xnrn+Ybo26nkeTdq+rph/mftrVYTEVFJOrfUWnT/QX7uCNC6WvQ5jKHRqLH+226o6ORQ5BW/97d9PqoF2jazbtOPiKgobZp6o4KTg0WfQynH0C/3q4MXetcGABT3V4OPV0Us/aKTVesiMdhk468oycnJiI6Ofmx+v/feew+7du3C7t274e3tLVt9RGS//LWupTbDyqNalYro303m5SL/x9FRjd/ndMdHrzaBu2vhU+jVahUG9QjEoVX94OvtIluNREQPe2vw49PDmHf/9YpclE4O7Zr7YN+yPmjf/PHLjv2quWDBlPaYOipEltqIiB5V2aMChj4dZLH9u7lo8ELvWhbbvynUahVWfNkJn49qAU+PwlcoqlRAv841cHjVMwjyt94lviQOYRp/4eHhwCMLe9y8eRM//PADrly5gqCgILi5ucHNzQ29evWSsVIiskfvvWC+1f0e9dbg+hb/NtQUThoHzHr/CcSGDcN/Jz1Yie3wqn747bvubPoRkaI0rF0ZT7atbpF9u1R0xGv9H5+CRk6tGnlj//K+2PFzz4JtK2Z0wo3tQzFykGWboEREpnr3hYYW2/er/evC3dX4acAszcFBjamjQhCzaxh+fujqmIPL+2LzDz0Q6MemH5WN0I2/mjVrQpIkZGVlIS0treDftm3bZKy0sLovdEfvzV+i16bp8Kxfo8gxPX+fhtBZI61eW1nE71iMix+1w8WJHZB5I7zIMZc+7YKbP71t9dqI5NS9bXUM62X+bxTr1vTAxNeamX2/5uDqosGzXR+ciehb1fYafiJlNPOZqHj/nRRqkS9QZr3fGt5VrLeIkSka1PIs+O+uT1SHg4Nt/VkgUj6DGU1UrFaNvDFqiPm/lPCr5oIvRivzDGfnio7o89DVQgFaeeeILQuRMlqEfLat3/AlGD16NCRJQtu28q5qaQonTzfUe+UpbBs4BQc/mI820199bIz/ky2Rm1b0ikRKk5eaiLjt81Fv5l4EjlmCqMVjHxuTfGwLHJz5TQXZpx8mhZZ6tpsuPhP+PdbAv8ca6IpZjew+BwcVln7RCS7OyplwVyQiZTTzmahk9YI88dXYVqWOMyWjuz3hi9FDrTsBu70QKZ/BjCYq1az3W6NWKZe4mpLPKhWwaGoHeHpUMHOlBMEyWpR8FqbxZ4u8W9SB7t9zkPL0SLl6GxWqeKDQbMsqFeq/2hMXl22Xs0yjpUcehVvjLlA5alDRvx7yUuIhGQwF90sGA+K2/gjv3u/IWieRXLw8K+Lv+U/Dy7P4g4z7q5XF3MmAXl/8sotqtQrLZ3RC+xaPz9NE5iFSRjOfiUo37qVGeK+US8qMzejm9atgw+zuFl/YyV6JlM9gRhOVyt3VCX//3LPEL9CNzWcA+PGTdujV0XLzb9s7kTJalHxm409GTp5uyLmXXnA7Ny0TTh4PwqzOkC64ufUI9Fm5MlVoGn1qIhzdKhfcVju7Q59xr+B2wu7l8AwdCLWmokwVEsmvSXAV7P2lD+rW9CjzPjzcNNjwXTe82KeOWWujwkTKaOYzUelUKhXmftwWn49qUa6GXY/Q6vhncW9U5pkkFiNSPoMZTWSUOjU8cGB5HzSpW9mI0UVzqeiIFV92wiiejW1RImW0KPnMxp+Mcu6lw8nDteC2xs0ZOSkZAACHChrUGtgRV9bulrFC0zi4VYY+PbngtiEzFQ4ulfL/OycLiXt/RdXuj5/mS2RvGtWpjNPrB+CD4Y1N/uOyVwd/nPu/5zCge6DF6qN8ImU085nIOCqVClNHheDQyn5oWNvTiEc84O6qwc+T2+Pvn3vy8jELEymfwYwmMlotfw8cX/ssJr/VHI6Oph1Dd26lxdnfB+DlfnUtVh/lEymjRclnTgwlo7iTkWj+4RCoHNRwC6iG7MQUQMo/LdmtRjU4VXLFkysnwcnTDc7VPFF7cGdc/W2v3GUXyzW4DW6vmQpJn4fsuzfg6FEVKnV+bzn7znXo05NxZXpf5KUlIjdJh4TdK+DVbbjcZRPJwsXZEd992AbvvdAQC367hGWbIxEbl1HkWFdnRwzqEYR3nm+A1o29rV6rvRIpo5nPRKZ5ook3zm4YgK37o/Hj2vMIO3obeXlFXzrWqLYnRg6qj1eeqYtK7spZHVJkIuUzmNFEJnHSOOCLd1ri7cH1sej3S1iy8TKidOlFjnWu6ID+XWti9NAGaN/CByoVp1+wBpEyWpR8ZuNPRjnJaYhcHYZeG6dDkgw4PGkx/Lo2h5OnG65vPIAtPT8GAGhDGyGof3vFfhjuc3Svgqo93sClSZ0AtRo13voR905uhz41EVU6v4AGs48DAFLD9yBx/1pFfiCIrK1mdXfMHNsKX77XEtF30nHifDzuJmZBr5fg6e6E5vW9EFzTw+ZWWxSBSBnNfCYynYODGv261EC/LjWQlZ2H8MgknLuahIzMPGgc1Qjyd0dIg6qoUoln91mbSPkMZjRRmVSv5oqpo0IwdVQIbt9Nx4nzCYiNz5/fz8NNg2bBVVA/yBOOjjyGtjaRMlqUfGbjT2aXV+3C5VW7Cm4nnb/52BjdoXPQHTpn5crKxvvpkfB++qEluYOaPTbGvUkXuDfpYt3CiBROpVIhQOuGAK2b3KXQQ0TKaOYzUdlVrOCI1o29eda1goiUz2BGE5VL9WquqF7N1YiRZC0iZbQI+cz2NxERERERERERkYDY+CMiIiIiIiIiIhIQL/U1M/dArdwlAGaqw8/FiEFWoqRaiMg2KSWfIVhGK6UOIrJtSslokfIZCquFiGyTUvIZgmW0Netg48/Mui+fKHcJZjOnjdwVEBGZj0j5DGY0EQlGpIxmPhORSETKZ9hpRvNSXyIiIiIiIiIiIgGx8UdERERERERERCQgNv6IiIiIiIiIiIgExMYfERERERERERGRgNj4IyIiIiIiIiIiEhAbf0RERERERERERAJi44+IiIiIiIiIiEhAbPwREREREREREREJiI0/IiIiIiIiIiIiAbHxR0REREREREREJCA2/oiIiIiIiIiIiATExh8REREREREREZGA2PgjIiIiIiIiIiISEBt/REREREREREREAmLjj4iIiIiIiIiISECOchcgmrBXvkbqDZ3cZcA9UIvuyyeWax/vHwFiMsxWUrn4uQBz2shdBRHZMqXkMwTLaOYzEZmDUjJapHwGM5qIzEAp+QzBMtqa+czGn5ml3tAh+XK03GWYRUwGcC1V7iqIiMxDpHwGM5qIBCNSRjOfiUgkIuUz7DSjeakvERERERERERGRgNj4IyIiIiIiIiIiEhAbf0RERERERERERALiHH9ERGRWCclZ2HMsFifOJ+DE+fiC7ZN/PIHOrbToGKJF7QAPWWskIrJHkiTh5IUEHD57F/tOPJiofdSMg2jbtBpaNaqKzq20qFiBfyIQEVlbcko29hzPP4Y+fu7BMfQn846jcystOrTwQb0gT1lrJNvE3+pERGQWpy8mYM7KCKz7+zqyc/SP3b9sUySWbYoEADzZtjreHdYQ/brUgEqlkqFaIiL7kZOrxy8bL+OndRcQHpn02P1b9kVhy74oAICXZwW81j8YY19sBD8fVxmqJSKyLxeuJWPOygj8+tdVZGTlPXb/yi1XsHLLFQBAxxAfjBnWEIOfCuIxNBmNjT+ZdJj7DuoM7QoAMOj1yLyTjNiDETg581dk6BLlLs9kN74fgYTdy/NvqNXQVPaFe5Nu8Bv+FZy8/OQuj4gsKCs7D9N+PoX/LA2HwSAZ9Zhdh29j1+Hb6Ne5BhZMaQ9fbxeL12kKkTKa+Uxk306ej8eIyfuKbPgVJSE5G98sC8eCDRcxZ0JbvNq/rqL+uBQpn8GMJrJrubkGfP3LGUxfcBq5eQajHrP/5B3sP3kHCzdcwpJpHVCzurvF6zSFSBktUj5zjj8Z6Q6fx7qmb2BDq1HY985ceDUORJeF4+Uuq8zcGnZE02WxaLL4FoLGr0bG9VO4Nmuw3GURkQXdTchE++Fb8PWSs0Y3/R72595baPLc/+FoeJxF6isPkTKa+Uxkn5ZvikSbFzcb3fR7WEpaLl6fuh8vTdqL3Fzj/iC1FpHyGcxoIruUnJKNbm9sxZQfTxrd9HtY2JHbaPLcRvxz9LZF6isPkTJalHxm409Ghpw8ZMYlI0OXiDuHL+DSql2o1roeNG7OcpdWJipHJ2gqa+Hk5Qf3Rp3g/dRIpF86BH1GitylEZEFJN7LxpMjt+HkhYRixzg4qODn4wI/Hxc4OBR9xkhCcv5+Hp4PUAlEymjmM5H9WflnJEZM3oc8fdFfyhiTzwCweutVvDhpD/R65TT/RMpnMKOJ7E5aRi56jvobB07dKXaMMRmdmp6L3u/swL7jsRas1nQiZbQo+czGn0I4+1RGYN+2MOTpISnowKqschJuI+nfDYDaIf8fEQlFkiS8PnV/qWeRaKs6I3rnMETvHAZt1eJ/2aem52LAuF1IScuxQLXlJ1JGM5+JxHf2ciJen3qgxDHG5jMA/LbjOr5dHm7mKs1DpHwGM5rILrz71SEcKeVqF2MzOitbj0HjdyMuMdMClZafSBlty/nMOf5kpG3XCC9eWQmVWg1H5woAgIj5m5GXmQ0A6LJoPG7vPYPLq3YBAKo0DkKnn8bizx4ToM/OlbX2oqRG7MGpoW6QDAZIOfnB49N/PBwq5k8MnXRoI2LXTSv0mKyo8wh443t49xolS81EVDZrt13DH7tvmnWfUbp0TJh9FAumdDDrfstKpIxmPhPZj9xcA16dvK9Ml46VZMqPJ9Gvcw00rF3ZrPstC5HyGcxoIrvy175bBYvdmUtcUhbGfHUI677pZtb9lpVIGS1KPtt04+/MmTOYMmUK9uzZA0mS0K1bN8yfPx/BwcHo06cP1q5dK3eJJYo7GYkDY/8LhwoaBD7TDtU7NsWpWWsK7j86eSl6bZqOm1uPIDspDaFfv4kjnyxR3IfhPtfgNggctxxSThaSDqxHypldqP7ijIL7K4cOQOXQAQW3kw//gZiVn8Cr2ysyVUxEZZGXZ8BHc45ZZN8LN1zC+y83Rv0gT4vs3xQiZTTzmch+rNl2tcQpGMoqJ9eAT384gY1znzT7vk0lUj6DGU1kNyRJwoTZljmGXv/3dXzw8l20aVrNIvs3hUgZLUo+2+ylvmFhYWjbti0uXbqEzz77DDNnzkR0dDR69eqFtLQ0NG/eXO4SS6XPykHqDR2SL0Xh9DfrkBp1F22+fL3g/gxdIs4t2IJWk19GvZd74N61WMQeUOZlFgCgdnJGRd86cK7ZGNVf/AIVfIIQtfDdIsfmxEfj1oJ3EDRhLdQVlLWapzH8urXAMzu/wcs31mDQ0Z/Q8K2+cpdEZDVb9t1C9J10i+3/5/UXLbZvU4iU0cxnIvvx07oLFtv35j23EK2zXP4bS6R8BjNa7pKIrGbvcR0uXEu22P7n8xja7ETJZ5ts/MXFxWHo0KEICQnBqVOnMGHCBIwZMwZhYWG4desWANhE4+9Rp79dhzpDu8KrWe2CbReXbodnvQA0GdMfx6Ytl7U+U/kO+xzxYUuRHnm80HbJYMD1OS9B+9xEuAQ2la2+svJqVhvdl32M6H9OYXOPD3H62/VoOfEF1Bv+lNylEVnF8s1XLLr/FX9GlmmFYEsTKaOZz0RiunQ9udR5o8rDYJCw6i/L/g4oC5HyGcxoImEt32zeS3wftXb7NWRl51n0OcpCpIy21Xy2ycbfrFmzkJSUhKVLl8LZ+cFEl5UqVUJISAhgo42/1Os6RO08jpCJwx5slCRcWrET0WEnkZ1gWyvHVKxeF56t++H2qk8LbY9dPwMOzh6o1rfoTrnSNRrZF/Gnr+LkzNW4FxmDK+v34MIv29BkTH+5SyOyCkv+UQkASSk5uHJLeXknUkYzn4nEZOl8BoCjEZZ/DlOJlM9gRhMJy9IZnZ2jx9nLJS+8JweRMtpW89km5/hbu3YtOnbsiODg4CLv9/HxgVarBQCMHj0af/75J+7duwd3d3cMHjwY//nPf+Dk5GTUc+Xl5UGn0xldW25u+TrsET9tRp8/v4Q2tBF0h87lbzQYIJl49ktubh6io6PLVUturg8ATbn24TNgAi5NbI/U8D1wb9IFaRcOImHXEjSYfdLEWnIRHV38cueWUNxrWe2J+ohcHVZoW8w/p9F49LNw8a2CjNhEK1VoGeZ475C47iRmIzYuo9A2BwdVsauN+T603beYMbr4TOj1hTPu7/2X4OJY3Sw131fefIZgGW3L+YxiXk/mM9m7vUdvFLpd3nxGERl95Owdi7wPeQxdmC1nNI+hiR6XnpmHi9cLX+ZriWPonQcjUb1ytllqvo/H0IXJnc9arRaOjqa18myu8afT6RATE4OhQ4c+dp/BYEB4eDhatGhRsG3MmDH45ptv4Orqivj4eAwePBgzZ87E559/bvTzBQQEGF3fDK8e8NN4lDruwLgfi9wed/wSlvkOMvr5inP58mUMMaHuojT8IQLONRoZNTZw7LIit7s1aIeWm/I/zHlpybg+52UEvrcMjh5eJtVy+fJlBDzd2KTHlFdxr6VzNU9kxhUO7cy7Sf+7r7LNH7SY471DAqsYANSdWmiTtqozoncOK/Yh9x1bU/Q3+v491iDmTuFm4nvvf4r3EnaVs9jCjM1nCJbRIuYzink9mc9k9wJGAp5PFNwsbz6jiIy+fSfVpGNjY/EYujBbzmgeQxMVQeMF1J9VaJMljqE/mzoLn43aXM5iC+MxdGFy53NUVBT8/f1NeozNNf7S0/MnFFapVI/dt2nTJty9e7fQZb4NGzYs+G9JkqBWqxEZadlr66locdvnIzcpFlG/vF9ou1fXV+Dz7PvFPo6I7FARGU+Ww3wmEoU1spP5bG3MaCIRWCs7mdHWZCv5rJIkSXkzqJcgJycHLi4uaNGiBY4de7AU9s2bN9G+fXvExMRgzZo1eP755wvu+/rrrzFjxgykp6fDy8sL27ZtQ+vWrY16PlMv9T005GukXzd+vKW4BmkRun5iufbx7nkfRGWV7zIFcwmomIsfGlr3MoXiXstBx+YjcnUYzszZULBN274xem74HOtDRtr8t5XmeO+QuG7pMtD+tf2FtpV2mcL9bylbD/sDsfGZj40p6jKFb8c1xtCn/Mxau1LyGYJltBz5jGJeT+Yz2buJP5zDr9seXAJV3nxGERld1dMJp1Z3NXvtSslokfIZPIa2KmY0lSQ5NRdNhu4utM0Sx9BT3qyHNwcEmrV2peQzBMvosuazXVzq6+TkhOHDh2Pp0qV49tln0adPH0RFRWHRokXw8fFBTEzMYwt7TJw4ERMnTsSFCxfw66+/wtfX1+jnc3R0NOk0So1GGf9LNRrT6i5yH5EAssxWUrloNJpy/zymP2fRr+XdoxdRvUvzQgctfl2bIy3qrs0fsMBM7x0Sl5+fhEruR3AvNadgm14vPXaZQVFi4zONGgcA3UJrw9+/arlqfZRS8hmCZbQc+YxiXk/mM9m79iGphRp/lsjnkIbeFnkfKiWjRcpn8BjaqpjRVBJ/ADV8XXErNr1gmyUyukubWvD3N+882UrJZwiW0dbMZ5tc1XfevHkYOXIkjhw5gvHjx+PIkSPYuHEjqlevDhcXl2IX/WjQoAGaNWuGl19+2eo1kzjOLdwC7xZ10GLiMFSqUx21B3dGg9d6Ify/f8hdGpHFqVQqtGpo3obcoyo4OaBRncoWfQ4SE/OZ7F3rxpbNZwAW/x1A4mJGk71r3cjbovtXqYCQBsxoepxyWrcmcHNzw4IFC7BgwYJC2yMiItCkSROo1cX3M3Nzc3H58mUrVEmiSjhzFbtf/Q9CJr2Axm8/g8y4ZJyctQaXVuyQuzQiqxj6dBDCjty22P6fezIQThoHi+2fxMV8JnsX0qAqage442pUqsWeY2jPWhbbN4mNGU32bmjPWvh91w0jRpZNrw7+qOTuZLH9k+2yycZfUZKTkxEdHY0+ffoUbLt37x42btyI/v37o1KlSggPD8eMGTPw9NNPy1or2b7osJOIDjNtuW4iUbzQuzY+nH0UKWm5Ftn/6KENLLJfsg/MZ7JnarUKo4Y0wIffHbXI/ju08EHT4CoW2TfZB2Y02bP+XWtCW9UZumLmVC0vHkNTcWzyUt+ihIeHA0Ch+f1UKhVWrVqFWrVqwd3dHf3790fv3r3xww8/yFhpYXVf6I7em79Er03T4Vm/RpFjev4+DaGzRlq9trKI37EYFz9qh4sTOyDzRniRYy592gU3f3rb6rURkXm4umjw8atNLbLvHqHV0a55NYvsuyxEymjmM5F9eGNgPfhVc7HIvj8fFWKR/ZaFSPkMZjSRXdBo1Jg8srkRI03Xpok3erZXzhyTImW0CPksdOPPw8MDu3btQmJiItLS0nDt2jV8++23cHV1lbHSB5w83VDvlaewbeAUHPxgPtpMf/WxMf5PtkRummW+ETC3vNRExG2fj3oz9yJwzBJELR772JjkY1vg4OwuS31EZD4fvdoULc08z5O7qwaLP+8IlUpl1v2WlUgZzXwmsh+V3J2waGoHs+/3rcH10b2teSeMLyuR8hnMaCK78vaQBujS2vjFRo1RwckBy2Z0goODMto7ImW0KPmsjHeGGYwePRqSJKFt27Zyl2I07xZ1oPv3HKQ8PVKu3kaFKh75M3Lep1Kh/qs9cXHZdjnLNFp65FG4Ne4ClaMGFf3rIS8lHpLBUHC/ZDAgbuuP8O79jqx1ElH5OTqqsfrrLqhauWKJ43TxmfDvsQb+PdaUeFmDSgX8Mq0javi6WaDashEpo5nPRPalV8cAfPRqkxLHGJvPABDSwAvffNDazFWWnUj5DGY0kV1Rq1VYPqNTqWdmm5LRP33aDvWDPM1cadmJlNGi5LMwjT9b5OTphpx7D5bzzk3LhJPHgwCoM6QLbm49An2WZebRMjd9aiIc3R6sxKl2doc+417B7YTdy+EZOhBqTcmNAiKyDcGBlbBrYU9Uq1L8Z1qvlxBzJwMxdzKg10tFjnFwUGHFl50x6KkgC1ZrOpEymvlMZH++Htca415qVOz9xuQzALRsWBV//9wT7q7KmTBepHwGM5rI7tTwdcPuxb0RoC3+SkRjM/rHT0Lx2oBgC1VaNiJltCj5zMafjHLupcPJ48GHXePmjJyUDACAQwUNag3siCtrd8tYoWkc3CpDn55ccNuQmQoHl0r5/52ThcS9v6Jq98dP8yUi29WsnheOr30WT7fzK9Pj69b0wJ4lvfFS3zpmr628RMpo5jOR/VGpVJg9oQ2Wz+gEzzKu8jhmWEPs+aV3qWd3W5tI+QxmNJFdCg6shGNrnsWA7jXL9Pgavq7YsaAnRj/f0Oy1lZdIGS1KPrPxJ6O4k5HwadsAKgc13AO1yE5MAaT8br5bjWpwquSKJ1dOQsvJL8GvewvUHtxZ7pJL5BrcBqnn9kHS5yEr9gocPapCpc5/i2XfuQ59ejKuTO+L6OUf4d6JrUjYvULukonIDAK0btg2/2ksn9EJTepWNuIRgI+XM6a+3QKn1w9AhxCtxWssC5EymvlMZJ9UKhWGP1MX5zYOxJvP1YNLRUejHvdk2+rY80tv/DApFG4uGovXaSqR8hnMaCK75ePljN9nd8f6b7sZPXe2l2cFfPxaU4T/PhA9Qsv2xbuliZTRouSzcb/9ySJyktMQuToMvTZOhyQZcHjSYvh1bQ4nTzdc33gAW3p+DADQhjZCUP/2uPrbXrlLLpGjexVU7fEGLk3qBKjVqPHWj7h3cjv0qYmo0vkFNJh9HACQGr4HifvXwqvbcLlLJiIzuf/H5cv96uDgqTvYfjAaJ84n4Py1JGRk6aFxVKOWvztaNvBCp5Za9OtSA04aB7nLLpFIGc18JrJv1au5YuHUDvjmgyfw247rOHz2Lk5ciIcuPhN6vYRK7k5oFlwFLRtWxXNPBiI4sJLcJZdIpHwGM5rIrqlUKgx+KgiDnwrC0fA4/LUvCicuxCPiShLSM/OgcVSjpq8rWjasig4tfNC/W01UrKDsNo5IGS1KPqskSSr+gnEy2R+dxyH5crTcZcAz2B/9984t1z6G/ANcSzVbSeVSyx1Y39W6z6mU19LazPHeIVIiJX2mRcpoOfIZCns9rYX5TCJTymdapHwGj6GtihlNolLSZ1qkjLZmPvNSXyIiIiIiIiIiIgGx8UdERERERERERCQgNv6IiIiIiIiIiIgEpOxZIW2Qe6AyVqc0Rx1+LmYpxSzkqEUpr6W12evPTeJT0ntbpIyWqw4lvZ7WYo8/M9kPpby/Rcpn8Bjaquz15ybxKem9LVJGW7MOLu5BREREREREREQkIF7qS0REREREREREJCA2/oiIiIiIiIiIiATExh8REREREREREZGA2PgjIiIiIiIiIiISEBt/REREREREREREAmLjj4iIiIiIiIiISEBs/BEREREREREREQmIjT8iIiIiIiIiIiIBsfFHREREREREREQkIDb+iIiIiIiIiIiIBMTGHxERERERERERkYDY+CMiIiIiIiIiIhIQG39EREREREREREQCYuOPiIiIiIiIiIhIQGz8ERERERERERERCYiNPyIiIiIiIiIiIgGx8UdERERERERERCQgNv6IiIiIiIiIiIgExMYfERERERERERGRgNj4IyIiIiIiIiIiEhAbf0RERERERERERAJi44+IiIiIiIiIiEhA/w/J0WUXMpepYgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Find the indices of the distant gates\n", + "cut_indices = [\n", + " i\n", + " for i, instruction in enumerate(circuit.data)\n", + " if {circuit.find_bit(q)[0] for q in instruction.qubits} == {0, 3}\n", + "]\n", + "\n", + "# Decompose distant CNOTs into TwoQubitQPDGate instances\n", + "qpd_circuit, bases = cut_gates(circuit, cut_indices)\n", + "\n", + "qpd_circuit.draw(\"mpl\", scale=0.8)" + ] + }, + { + "cell_type": "markdown", + "id": "d86da948-fd26-40a9-bf58-faabb99b7a9c", + "metadata": {}, + "source": [ + "Now that the cut gate instructions have been added, the subexperiments will have a smaller depth after transpilation than the original circuit. The code snippet below generates the subexperiments using the [`generate_cutting_experiments`](../api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) as before, but for this example we just use the `qpd_circuit` instead of dictionaries since we did not partition the problem.\n", + "\n", + "Once the subexperiments are generated, we can then transpile them and use the `Sampler` primitive to sample the distribution and reconstruct the estimated expectation values. The following code block generates the subexperiments, transpiles and executes them, then reconstructs the results and compares them to the exact expectation value." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "37bff595-f422-4354-94da-b03c17fd4a3b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Reconstructed expectation value: 0.54345703\n", + "Exact expectation value: 0.50497603\n", + "Error in estimation: 0.038481\n", + "Relative error in estimation: 0.07620362\n" + ] + } + ], + "source": [ + "# Generate the subexperiments and sampling coefficients\n", + "subexperiments, coefficients = generate_cutting_experiments(\n", + " circuits=qpd_circuit, observables=observable.paulis, num_samples=np.inf\n", + ")\n", + "\n", + "# Set a backend to use and transpile the subexperiments\n", + "backend = FakeManilaV2()\n", + "pass_manager = generate_preset_pass_manager(\n", + " optimization_level=1, backend=backend\n", + ")\n", + "isa_subexperiments = pass_manager.run(subexperiments)\n", + "\n", + "# Set up the Qiskit Runtime Sampler primitive, submit the subexperiments, and retrieve the results\n", + "sampler = SamplerV2(backend)\n", + "job = sampler.run(isa_subexperiments)\n", + "results = job.result()\n", + "\n", + "\n", + "# Reconstruct the results\n", + "reconstructed_expval_terms = reconstruct_expectation_values(\n", + " results,\n", + " coefficients,\n", + " observable.paulis,\n", + ")\n", + "# Reconstruct final expectation value\n", + "reconstructed_expval = np.dot(reconstructed_expval_terms, observable.coeffs)\n", + "\n", + "estimator = EstimatorV2()\n", + "exact_expval = estimator.run([(circuit, observable)]).result()[0].data.evs\n", + "print(\n", + " f\"Reconstructed expectation value: {np.real(np.round(reconstructed_expval, 8))}\"\n", + ")\n", + "print(f\"Exact expectation value: {np.round(exact_expval, 8)}\")\n", + "print(\n", + " f\"Error in estimation: {np.real(np.round(reconstructed_expval-exact_expval, 8))}\"\n", + ")\n", + "print(\n", + " f\"Relative error in estimation: {np.real(np.round((reconstructed_expval-exact_expval) / exact_expval, 8))}\"\n", + ")" + ] + } + ], + "metadata": { + "description": "A couple worked examples of gate cutting using the circuit cutting addon to get started with the package", + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3" + }, + "title": "Get started with gate cutting" + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/qiskit_bot.yaml b/qiskit_bot.yaml index 15739a5ac9f..0f46a77e500 100644 --- a/qiskit_bot.yaml +++ b/qiskit_bot.yaml @@ -413,3 +413,5 @@ notifications: - "@kaelynj" "docs/guides/qiskit-addons-cutting-wires": - "@kaelynj" + "docs/guides/qiskit-addons-cutting-gates": + - "@kaelynj" diff --git a/scripts/config/cspell/dictionaries/qiskit.txt b/scripts/config/cspell/dictionaries/qiskit.txt index 799df17a0ef..b96ef2b8ebd 100644 --- a/scripts/config/cspell/dictionaries/qiskit.txt +++ b/scripts/config/cspell/dictionaries/qiskit.txt @@ -1,3 +1,4 @@ +AABB ALAP ASPLOS Abelian From 3be47cd2e456c80682c7ce4bc2637c0cbfeaad14 Mon Sep 17 00:00:00 2001 From: abbycross Date: Mon, 13 Jan 2025 16:51:56 -0500 Subject: [PATCH 06/17] Update _toc.json for consistency --- docs/guides/_toc.json | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/docs/guides/_toc.json b/docs/guides/_toc.json index 9caade17be2..42e8ce4af5e 100644 --- a/docs/guides/_toc.json +++ b/docs/guides/_toc.json @@ -534,7 +534,7 @@ "url": "/guides/qiskit-addons-sqd" }, { - "title": "Getting started with SQD", + "title": "Get started with SQD", "url": "/guides/qiskit-addons-sqd-get-started" } ] @@ -547,7 +547,7 @@ "url": "/guides/qiskit-addons-aqc" }, { - "title": "Getting started with AQC-Tensor", + "title": "Get started with AQC-Tensor", "url": "/guides/qiskit-addons-aqc-get-started" } ] @@ -560,7 +560,7 @@ "url": "/guides/qiskit-addons-obp" }, { - "title": "Getting started with OBP", + "title": "Get started with OBP", "url": "/guides/qiskit-addons-obp-get-started" } ] From dfbbdd93f5f9093e17102bed5d11988276d31239 Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Tue, 14 Jan 2025 10:17:15 -0500 Subject: [PATCH 07/17] Apply suggestions from @abbycross' code review Co-authored-by: abbycross --- docs/guides/optimize-for-hardware.mdx | 8 +++--- docs/guides/qiskit-addons-cutting-gates.ipynb | 26 +++++++++---------- docs/guides/qiskit-addons-cutting.mdx | 18 ++++++------- 3 files changed, 26 insertions(+), 26 deletions(-) diff --git a/docs/guides/optimize-for-hardware.mdx b/docs/guides/optimize-for-hardware.mdx index 2fec999bb0f..85dd84928d7 100644 --- a/docs/guides/optimize-for-hardware.mdx +++ b/docs/guides/optimize-for-hardware.mdx @@ -63,9 +63,9 @@ can be run on IBM® hardware using IBM Qiskit Runtime. ### Qiskit addons * [Approximate Quantum Compilation with Tensor Networks (AQC-Tensor)](./qiskit-addons-aqc) - * [Getting started with AQC-Tensor](./qiskit-addons-aqc-get-started) + * [Get started with AQC-Tensor](./qiskit-addons-aqc-get-started) * [Operator Backpropagation (OBP)](./qiskit-addons-obp) - * [Getting started with OBP](./qiskit-addons-obp-get-started) + * [Get started with OBP](./qiskit-addons-obp-get-started) * [Circuit cutting](./qiskit-addons-cutting) - * [Getting started with circuit cutting using gate cuts](./qiskit-addons-cutting-gates) - * [Getting started with circuit cutting using wire cuts](./qiskit-addons-cutting-wires) \ No newline at end of file + * [Get started with circuit cutting using gate cuts](./qiskit-addons-cutting-gates) + * [Get started with circuit cutting using wire cuts](./qiskit-addons-cutting-wires) \ No newline at end of file diff --git a/docs/guides/qiskit-addons-cutting-gates.ipynb b/docs/guides/qiskit-addons-cutting-gates.ipynb index f93a01e8e44..228e9b963cd 100644 --- a/docs/guides/qiskit-addons-cutting-gates.ipynb +++ b/docs/guides/qiskit-addons-cutting-gates.ipynb @@ -7,9 +7,9 @@ "source": [ "# Get started with circuit cutting using gate cuts\n", "\n", - "This guide demonstrates two working examples of using gate cuts to get started working with the `qiskit-addon-cutting` package. It will cover using gate cutting to reduce the circuit width (the number of qubits) and circuit depth (the number of circuit instructions). We will cut gates to enable the reconstruction of a four-qubit circuit using two two-qubit subexperiments.\n", + "This guide demonstrates two working examples of gate cuts with the `qiskit-addon-cutting` package. It covers using gate cutting to reduce the circuit width (the number of qubits) and circuit depth (the number of circuit instructions). The gate cutting enables reconstructing a four-qubit circuit using two two-qubit subexperiments.\n", "\n", - "The first example will use the [`EfficentSU2`](../api/qiskit/qiskit.circuit.library.EfficientSU2) ansatz and reconstructs the following observable:" + "The first example uses the [`EfficentSU2`](/api/qiskit/qiskit.circuit.library.EfficientSU2) ansatz and reconstructs the following observable:" ] }, { @@ -69,10 +69,10 @@ "source": [ "## Gate cutting to reduce circuit width\n", "\n", - "We will start by partitioning the circuit and observable into *subcircuits* and *subobservables* using the [`partition_problem`](../api/qiskit-addon-cutting/qiskit-addon-cutting#partition_problem) method. This function will ingest a partitioning scheme according to a label string of the form `\"AABB\"` where each label in this string corresponds to the `circuit` qubit in the same index. Qubits sharing a common partition label will be grouped together, and any non-local gates which span more than one partition will be cut.\n", + "First, partition the circuit and observable into *subcircuits* and *subobservables* using the [`partition_problem`](/api/qiskit-addon-cutting/qiskit-addon-cutting#partition_problem) method. This function ingests a partitioning scheme according to a label string of the form `\"AABB\"` where each label in this string corresponds to the `circuit` qubit in the same index. Qubits sharing a common partition label are grouped together, and any non-local gates that span more than one partition will be cut.\n", "\n", "\n", - " The observables kwarg to partition_problem is of type PauliList. Observable term coefficients and phases are ignored during decomposition of the problem and execution of the subexperiments. They may be re-applied during reconstruction of the expectation value.\n", + " The `observables` kwarg to `partition_problem` is of type PauliList. Observable term coefficients and phases are ignored during decomposition of the problem and execution of the subexperiments. They may be re-applied during reconstruction of the expectation value.\n", "" ] }, @@ -143,9 +143,9 @@ "id": "8a03df45-252b-424f-9fe0-9748084f14c3", "metadata": {}, "source": [ - "The next step is then to generate the *subexperiments* to be executed on a QPU. This is done through the [`generate_cutting_experiments`](../api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) which accepts circuit and observable arguments as dictionaries mapping the qubit partition label to the respective *subcircuit* and *subobservable*.\n", + "The next step is then to generate the *subexperiments* to be executed on a QPU. This is done through the [`generate_cutting_experiments`](/api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) method, which accepts circuit and observable arguments as dictionaries mapping the qubit partition label to the respective *subcircuit* and *subobservable*.\n", "\n", - "To estimate the expectation value of the full-sized circuit, many subexperiments are generated from the decomposed gates' joint quasiprobability distribution and then executed on one or more QPUs. The number of samples to be taken from this distribution is controlled by the `num_samples` argument.\n", + "To estimate the expectation value of the full-sized circuit, many subexperiments are generated from the decomposed gates' joint quasi-probability distribution and then executed on one or more QPUs. The number of samples to be taken from this distribution is controlled by the `num_samples` argument.\n", "\n", "The following code block generates the subexperiments and executes them using the `Sampler` primitive on a local simulator. (To run these on a QPU, change the `backend` to your chosen QPU resource.)" ] @@ -189,7 +189,7 @@ "id": "64e762ad-0660-4c78-8ea7-fb9d226357d7", "metadata": {}, "source": [ - "Lastly the expectation value of the full circuit can be reconstructed using the [`reconstruct_expectation_values`](../api/qiskit-addon-cutting/qiskit-addon-cutting#reconstruct_expectation_values) method.\n", + "Lastly, the expectation value of the full circuit can be reconstructed using the [`reconstruct_expectation_values`](/api/qiskit-addon-cutting/qiskit-addon-cutting#reconstruct_expectation_values) method.\n", "\n", "The code block below reconstructs the results and compares them with the exact expectation value." ] @@ -244,9 +244,9 @@ "source": [ "## Gate cutting to reduce circuit depth\n", "\n", - "Next we'll demonstrate a workflow which reduces a circuit's depth by cutting distant gates, avoiding a large series of swap gates that would otherwise be introduced.\n", + "The following workflow reduces a circuit's depth by cutting distant gates, avoiding a large series of swap gates that would otherwise be introduced.\n", "\n", - "We'll start first with the [`EfficientSU2`](../api/qiskit/qiskit.circuit.library.EfficientSU2) ansatz, but with \"circular\" entanglement in order to introduce distant gates. We'll also define the same observable to measure as the previous example." + "Start with the [`EfficientSU2`](/api/qiskit/qiskit.circuit.library.EfficientSU2) ansatz, but with \"circular\" entanglement in order to introduce distant gates. Here you will define the same observable to measure as the previous example." ] }, { @@ -302,7 +302,7 @@ "id": "8ef29b75-e790-4f3a-b2f7-4a18928cf5e6", "metadata": {}, "source": [ - "Each of the [`CNOT`](../api/qiskit/qiskit.circuit.library.CXGate) gates between qubits $q_0$ and $q_3$ will introduce two swap gates after transpilation (assuming the qubits are connected together in a straight line). To avoid this increase in depth, we can replace these distant gates with [`TwoQubitQPDGate`s](../api/qiskit-addon-cutting/qpd-two-qubit-qpd-gate) using the [`cut_gates()`](../api/qiskit-addon-cutting/qiskit-addon-cutting#cut_gates) method. This function will also return a list of [`QPDBasis`](../api/qiskit-addon-cutting/qpd-qpd-basis) instances - one for each decomposition." + "Each of the [`CNOT`](/api/qiskit/qiskit.circuit.library.CXGate) gates between qubits $q_0$ and $q_3$ introduce two swap gates after transpilation (assuming the qubits are connected in a straight line). To avoid this increase in depth, you can replace these distant gates with [`TwoQubitQPDGate`s](/api/qiskit-addon-cutting/qpd-two-qubit-qpd-gate) using the [`cut_gates()`](/api/qiskit-addon-cutting/qiskit-addon-cutting#cut_gates) method. This function also returns a list of [`QPDBasis`](../api/qiskit-addon-cutting/qpd-qpd-basis) instances - one for each decomposition." ] }, { @@ -342,9 +342,9 @@ "id": "d86da948-fd26-40a9-bf58-faabb99b7a9c", "metadata": {}, "source": [ - "Now that the cut gate instructions have been added, the subexperiments will have a smaller depth after transpilation than the original circuit. The code snippet below generates the subexperiments using the [`generate_cutting_experiments`](../api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) as before, but for this example we just use the `qpd_circuit` instead of dictionaries since we did not partition the problem.\n", + "Now that the cut gate instructions have been added, the subexperiments will have a smaller depth after transpilation than the original circuit. The code snippet below generates the subexperiments using the [`generate_cutting_experiments`](/api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) method as before, but for this example, use the `qpd_circuit` instead of dictionaries since you did not partition the problem.\n", "\n", - "Once the subexperiments are generated, we can then transpile them and use the `Sampler` primitive to sample the distribution and reconstruct the estimated expectation values. The following code block generates the subexperiments, transpiles and executes them, then reconstructs the results and compares them to the exact expectation value." + "Once the subexperiments are generated, you can then transpile them, then use the `Sampler` primitive to sample the distribution and reconstruct the estimated expectation values. The following code block generates, transpiles, and executes the subexperiments. It then reconstructs the results and compares them to the exact expectation value." ] }, { @@ -408,7 +408,7 @@ } ], "metadata": { - "description": "A couple worked examples of gate cutting using the circuit cutting addon to get started with the package", + "description": "Two worked examples of gate cutting using the circuit cutting addon to get started with the package", "kernelspec": { "display_name": "Python 3", "language": "python", diff --git a/docs/guides/qiskit-addons-cutting.mdx b/docs/guides/qiskit-addons-cutting.mdx index 0b3974dc437..63d607b5aa3 100644 --- a/docs/guides/qiskit-addons-cutting.mdx +++ b/docs/guides/qiskit-addons-cutting.mdx @@ -1,5 +1,5 @@ --- -title: Circuit Cutting +title: Circuit cutting description: Overview of the addon for circuit cutting to build utility-scale workloads --- @@ -7,11 +7,11 @@ description: Overview of the addon for circuit cutting to build utility-scale wo Circuit cutting is a technique to increase the size of circuits we can run on quantum hardware at the cost of an additional sampling overhead This package implements this technique; where a handful of gates and/or wires are cut, resulting in smaller circuits that are better suited for execution on hardware. These smaller circuits are then executed and the results of the original circuit are reconstructed through using classical post-processing. However, the trade-off is that the overall number of shots must increase by a factor exponential in the number of cuts made. Circuit cutting can also be used to engineer gates between distant qubits which would otherwise require a large swap overhead. -### Key terms +### Important terms -- **subcircuits**: The set of circuits resulting from cutting gates in a `QuantumCircuit` and then separating the disconnected qubit subsets into smaller circuits. These circuits contain [`SingleQubitQPDGate`s](../api/qiskit-addon-cutting/qpd-single-qubit-qpd-gate) and are used to instantiate each subexperiment. +- **subcircuits**: The set of circuits resulting from cutting gates in a `QuantumCircuit` and then separating the disconnected qubit subsets into smaller circuits. These circuits contain [`SingleQubitQPDGate`s](/api/qiskit-addon-cutting/qpd-single-qubit-qpd-gate) and are used to instantiate each subexperiment. -- **subexperiment**: A term used to describe the unique circuit samples associated with a subcircuit which are sent to a QPU for execution. +- **subexperiment**: A term used to describe the unique circuit samples associated with a subcircuit, which are sent to a QPU for execution. ## Install the circuit cutting package @@ -19,7 +19,7 @@ There are three ways to install the circuit cutting package: PyPI, building from ### Install from PyPI -The most straightforward way to install the `qiskit-addon-cutting` package is via PyPI +The most straightforward way to install the `qiskit-addon-cutting` package is with PyPI: ```bash pip install qiskit-addon-cutting ``` @@ -45,11 +45,11 @@ pip install tox notebook -e '.[notebook-dependencies,dev]' ### Use within Docker -A dockerfile is included in the addon repository which can be used to build a docker image. There is also a `compose.yaml` file which allows you to use the Docker image with the following commands +The dockerfile included in the addon repository can be used to build a Docker image. There is also a `compose.yaml` file that allows you to use the Docker image with the following commands.
-Click here to read how to use this package within Docker +Click here to read how to use this package within Docker. ```bash @@ -83,9 +83,9 @@ Additionally, the home directory includes a subdirectory named persistent-volume
-## Theoretical Background +## Theoretical background -In the process of circuit cutting, there are two types of cuts: a **gate** or "space-like" cut where a cut goes through a gate operating on two (or more) qubits, and a **wire** or "time-like" cut which cut directly through a qubit wire (essentially a single-qubit identity gate that has been cut into two pieces). +In the circuit cutting process, there are two types of cuts: a **gate** or "space-like" cut, where a cut goes through a gate operating on two (or more) qubits, and a **wire** or "time-like" cut, which cuts directly through a qubit wire (essentially a single-qubit identity gate that has been cut into two pieces). There are also three scenarios to consider when preparing a circuit cutting workflow; which center around the availability of classical communication between the circuit executions. The first is where only local operations (LO) are available while the other two introduce classical communication between executions known as local operations and classical communication (LOCC). The LOCC scenarios are then grouped into either near-time, one-directional communication between circuit executions or real-time, bi-directional communication (which you might see in a multi-QPU environment). From ec3f74748cced581f2c50c3bc651b15b2cd2f5f3 Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Tue, 14 Jan 2025 10:23:24 -0500 Subject: [PATCH 08/17] Add cutting diagram and address review comments --- docs/guides/qiskit-addons-cutting.mdx | 8 +++++--- .../qiskit-addons/circuit-cutting-diagram.png | Bin 0 -> 56729 bytes 2 files changed, 5 insertions(+), 3 deletions(-) create mode 100644 public/images/guides/qiskit-addons/circuit-cutting-diagram.png diff --git a/docs/guides/qiskit-addons-cutting.mdx b/docs/guides/qiskit-addons-cutting.mdx index 63d607b5aa3..74cdd653fa5 100644 --- a/docs/guides/qiskit-addons-cutting.mdx +++ b/docs/guides/qiskit-addons-cutting.mdx @@ -5,7 +5,7 @@ description: Overview of the addon for circuit cutting to build utility-scale wo # Circuit cutting -Circuit cutting is a technique to increase the size of circuits we can run on quantum hardware at the cost of an additional sampling overhead This package implements this technique; where a handful of gates and/or wires are cut, resulting in smaller circuits that are better suited for execution on hardware. These smaller circuits are then executed and the results of the original circuit are reconstructed through using classical post-processing. However, the trade-off is that the overall number of shots must increase by a factor exponential in the number of cuts made. Circuit cutting can also be used to engineer gates between distant qubits which would otherwise require a large swap overhead. +Circuit cutting is a technique to increase the size of circuits we can run on quantum hardware at the cost of an additional sampling overhead This package implements this technique; where a handful of gates and/or wires are cut, resulting in smaller circuits that are better suited for execution on hardware. These smaller circuits are then executed and the results of the original circuit are reconstructed through using classical post-processing. However, the trade-off is that the overall number of shots must increase by a factor that is dependent on the number and type of cuts made (known as the sampling overhead). Circuit cutting can also be used to engineer gates between distant qubits which would otherwise require a large swap overhead. ### Important terms @@ -36,7 +36,7 @@ If you wish to contribute to this package or want to install it manually, first ```bash git clone git@github.com:Qiskit/qiskit-addon-cutting.git ``` -and install the package via `pip`. If you plan on running the tutorials found in the package repository, install the notebook dependencies as well. If you plan on developing in the repository, you may also want to install the `dev` dependencies. +and install the package with `pip`. To run the tutorials found in the package repository, install the notebook dependencies as well. Install the `deve` dependencies if you plan on developing in the repository. ```bash pip install tox notebook -e '.[notebook-dependencies,dev]' ``` @@ -85,7 +85,9 @@ Additionally, the home directory includes a subdirectory named persistent-volume ## Theoretical background -In the circuit cutting process, there are two types of cuts: a **gate** or "space-like" cut, where a cut goes through a gate operating on two (or more) qubits, and a **wire** or "time-like" cut, which cuts directly through a qubit wire (essentially a single-qubit identity gate that has been cut into two pieces). +In the circuit cutting process, there are two types of cuts: a **gate** or "space-like" cut, where a cut goes through a gate operating on two (or more) qubits, and a **wire** or "time-like" cut, which cuts directly through a qubit wire (essentially a single-qubit identity gate that has been cut into two pieces). + +![Diagram of circuit cutting by taking one larger circuit and cutting it into two smaller ones](/images/guides/qiskit-addons/circuit-cutting-diagram.png) There are also three scenarios to consider when preparing a circuit cutting workflow; which center around the availability of classical communication between the circuit executions. The first is where only local operations (LO) are available while the other two introduce classical communication between executions known as local operations and classical communication (LOCC). The LOCC scenarios are then grouped into either near-time, one-directional communication between circuit executions or real-time, bi-directional communication (which you might see in a multi-QPU environment). diff --git a/public/images/guides/qiskit-addons/circuit-cutting-diagram.png b/public/images/guides/qiskit-addons/circuit-cutting-diagram.png new file mode 100644 index 0000000000000000000000000000000000000000..1d07c033f8624ae6fe1420c58caa5fc2e0def6b1 GIT binary patch literal 56729 zcmeFa2~>^y`#!uK2j>`1M}~GKbPy>g?FK0s8bn2gR2nE6grq{zaGWnvb|IvhW;Cb_ zm6Sv6qIu9jiMFXi8YK$>kw zZ#2}MG@d!0!C*|%TdTDR{}X30M!Wqq7N2Mvm%hROem=0))P=#AoKOFax+pstS1^8Y z)i!b6>tyF(vvaQrW0``yva+(un4Zml{Nrb)45i-{KQy@?x%ehT^YijKi$^7GPtz`#M-Oz44)xY?V}lIW+3ZR5{MOgW5qFApHf&h@L?5w{1qcBecWSs#uzWxNYJ=~+JcTc$((7lTLianjMgW7Ri1_#c~m`QYAr zth-dDv*~bioPyFV`^xD4uHq%tnZ~#FHY{Z`_FPod*wm-7`~x?BXLEa`Ml)`DsJ;-l za$?fQHvA_DKF+o)zwxd;HSbXTwh6gIeb2)+tBW`Aht3;6&Zx@1>3RHZ;bV}Rn|s69 z(|B9Q5&oMqUg@WrU6R{AeSNUJ0XICJzZ+Lx96O0Ay3N9ED|7P+(+t~!QR5`ea`^W< z>!xwE?@VQkZi2#AlRJA&_uhVL>=0hvRV{cN|9?dW|G(O(A|hiP7+Ehn3#9^&cHCEC zU%M)Ak)1#C&3j}CTV?$Q^-irbvozH3vG=#T-u}(QeRmxuZjVif^jM_BW?tmfRFr%5 zW%Lhqct>$=YJ0p5v9o?%bk0G4lB7$CLS@2+DAq~2DwlGN8PYmu)^eE(mn_*36Ylc* zoUTrDu4na;jGl)RmgIka^{DzXQ|-geM=eieQ}u1qU*GG<^}n_`ffK72WIfQ+nueVu zBPYkcD7#H()v8sZ)2Hinzb&TspyXPyYFxqDIcutB-dXFE`_*=$gzE2jy}pmn3oEX! zsm7;4^9}q)jUF4Tpj2~b-}B6`Z^P)*>UaZx&B0ew9L%N5dgk^u*hS4$-fO~ix@22& zS!C$jmkl^X24Tw1?a6oJ6-?6)zIk$ag{Oypr24XW!wBZQdGn0S%$TyqNxs;CT03{{ zWbJ##dUnfUDh3G$A$spqw&OtE&C?6T&jsPQ`X9l4sxC91d5;WL+h@F)bxjh>bC~(p z^!DNfU4U1q$#!dJ9ha*;K4yY-RjeLn-F@eA^RC`HtD^xm$0ZLpDzKHeblS86BVEa9 z?;?-x-+Q;|Q0q^OjT=01s>>Yrtir4dMswoC35OrIC!LruL#_J8m`UQw`qK5*a%Q)R z96N8%Ub18fdx!t+Bc0ae=ge*%`iM8(D`%RXA7UwIa(mBKrqSp(Z{Bp$(g$r=Ax85} zN3recjq0?Hr_tK}GK&`ZJ(|3Hu}9B)5gL=)YRS!fUw6gw>p*)dH}dGG)7T@+-H6bd%YiOV##4b|ozDKVgo*Wm$Kei9Xnx*g3Q}2KIr^23^#LF5- z4`t^Vty{OQ1q;cxi}F++J6U2Tw)LK#wx_ZIsx7{*7u3#2@lDCig*mW4&SlHqY27eR zwtnCw{HDVWdBE~dnJioBWXt<%`!ipioXN7^m}HtU-y)?ZeRnaPF*<5k7>&Mq>G2aL#5i*~ zX&$|8bS}@IKYw}Y?sfX1tcCM8L`p~<`}~*36e&)iloYoxFc5<%)cDdkRc`woeO-o+ z$J=Osc|RET6&OxqmJ9dnn#p=xxvDWU%zycF>?FMW=f?}8^8Xqq70x*ulzq5kmP+$6 z7Yq`stb1y*WYx@rRi<_k)37(U_J!fvvic6+%-@#hG4*(Qy?iNhQGZMW;< zKlmH_O4i}NlDg2gG&>~~m$xPFU)(>cAEqp4;pgjnzweo>{QaJ)_qEB}KV)(PTD#Q9 zaGaXuVgIJLDsH{ahx#;ygRhH@w8jNT=j5o{c;RGM!gS4CaqLLATdk>>BV*-I%hB34 z(`;7<=DsuxrrT3f;>RqGORR@+ve`wQvl;5T*B5w}PCjVrA79pUJ!ZD1Ci{*_Zta#0 zTn@Y1m(6l|k)t{?*iFxB-K3@UA*Z{{xwBwKAsscG#G~0c0T`aHv$M0gYo)e`NSbwl zAMMLVw>pc?n#~&up51m-e7ivZ@-H8s-wpih&vAvjgDs}JySt0E@3Q)&Zpw>X6IGr( zd1760Wfd&qEyGF~O-;>g*VbRlHAjx+j0}IPys<5H(jsPZx$*XW(=6^CV$ZNVGUo;C z;`^sJwqb+2xr{#U08gRQ(mc|Ygq6CQPfP8{pR6^o;et8+;}$4 za%!^KZ9j3R9EJTkog8299HUp7N8!&}5;TV#a=v}KC$_91P7vWlT$5qqjM|8~W9e*) z&dyQr8tkt>-0Z1Xo8J2MT~r`kjckDCaQ~6vukUQ$MI0_OiGn$laH}yIugjmV*SE-u zzWnP?#q`0!!TzQWuNmb2Xl}$D8+!VlJL#53YQ$i7ch+uqD)9RDF*q%E$6v=)-(I#6 z4cK!|5W2gySWRQAxxW8pbG-iPT+eShINnP!2pIj-Q#Yt9%$++6mO>TFV1s!>;1zgg z*$F|8au=h_!*R@%;bLS0)Y=k#eUE&~dKaCTC`0abo4K?0 z>o;$aB+#RqWa;3u6^E^ubOXf!Ov&ZpVNw8*lc(jFJ7RxAVO4f`Jpqu zzKA#|bl~QG`?NjbfNM{sZXx#Mmkr(%8U!iT%H(@+Aa&bW1MOBL%+gS$;v&aKa6FRm zr~dHxYI6?uU%>0Azz_B>1awM{C21udlIjQ**l3AxN4m=Dshp z?fMPtmi*I|naE%~`AzBiIzl9^~b{M~1~rEvB>g z-}`unRzGIdpJScBz6mbGibe%!4f;QMQ!Q!Jw4SM z3VlVSt?>%Z2q8EtzI_Pde-CdwWAxaGMVDi21&Ljvl4D&8`%}|ByPP1C=XdtCC)xKP z!_XQT9^z7bcXE$@;vY8b+z)a`fn zirEwfBnL%T(i|mal=)RvRoU0y+&NKFjV1Z`0N$tY=FUe;)3-a_SAy?}I%ni52-Rys z!}ez{oNpLz;@*Tyjv)SQi?#206KutStC2vqQwdj>`8L!s+P(X2YrWdZ$&#U+h7JfY zEqdNpN@LxZz7-DXv(-qiRp&d+k!8~N5G1weY7Q9b7>iS?0Sj?#u~n`*Q)!PV#ZMp7 zi{)`Qk1wAjb)`IA-?*8Yn$rC)EwPGJ(Crl@*c)YS%OfR6kDFXlH1MTEN>a_WsA$h4 zL_^&CsTSi7^d8Pt$9TI}r@vMHHY?9*h`B1Stokz(v2gXd-Y3Py{^MpHnSJNko*Pd-Jes0; z=0<9+noU5Pks#7CZp67x+w=7LllB0~wZ5?nh9JHpxf9~_o(oHloh~)@x!aI^jfg9UL6AwDx9{Dm%Y$ ze-~%7m5H6M4tv*$d`nj=e?io-UooK5Fo??}n|8Rl2M%`M%iQNHHT?M$FNzy`u!fG? zU&qHd4BiiKJ$JqJOKwNrh!+jSv!`;pi)AG4LIP2R-V0EBO>Z*?v$_i zwwSHF4ttfHw^#$xGaJ~*GHgm%2kuGn{fX+;vNAHha1wZ@wuTHl^{ygmax=cZlsK#R zRIG7s*c}`fBfb|ycRLig_d|#!_G`;C$5aDu(v6|bP5A~YO`^q@wp)Gye>tu%VHC)2ify|s?bRPtLdpYit*^opX)`c!p&A5MD`sx)ll_n*T%VXtqUa&pQ+xUsbRCdrUmK5`EcyoNY?B016W^7>e-Z=7N-wjlh#YL55}WgJNzC%?l_7AEAEE$=XQ2O{zT zfys=ew)LvFkIvv3nX@jI9<6bdLcMWAK13ez@#V*N($mvbF=IBJEd>{m&XrpCe}47U zt1#Wyci-J6yr7ygYJ$7cqmJB5vmE9p2h> z;L#*8Cq`!4`0?XgkTyIi(g~0VaW3TujMVHK$ON;_wEN3v%P?8?XV2|^-r+s+jZSrv z<^AlX&k>Kez>1b!z7f!Kcc})RB38#A!Objpycgy&r)!`@vHT1T(q{g1OzgA`nnSJ^ zE?qLVEe%r%oUkP4cbgP7Bw%9LKi6}-;4f`HKD#ZZxK~vWX{7H#Y$8^Nh_p1b?2>{F zM=My~B6{l$W5gGS^Sj;@%hrV|?_(Z*;cmw{=62h$P9DxK_(?nVb3QV!Fa-gs6&94O zR?Q3RG>5sG(QfUv&Isvk!&{XQ+rp?$N19#If4QxG=PAh+WKGv{EOU>!^TNNs4JIDB zJYouC_a^u>UfgG!eieJF5}stHqOJZhI7%a9W8ddl{gz5x>dt;1Q^ zTk-lK=hG$&{7Dcp9y{}qZg-PAjR%Y6Dsj&GJ4S{(E-yd4pX0R2&zG!rxcl1>F;j!s zs5NGZ){g`M@>wMWL6(cR-%0Aq2D(UR@JvXk$ICy)<$k$49nPo#2*o*$(k65BaOa3w zx%>w{cx&BS71xQ)vBk3ER<&U#S87DnCO)1MASv!S(4)s)_x0;nnpZ7LOUvvn`^tLK z6J}4^^Sr;4OREAiX`EzoPN!GrS&~gR5B>a<-JZfnKL_qx{i3{JPQaZjNEbY9n*{{wLJa3h0-y&O=cz<0#QEG)c z&?1{a4Q2T1D2`Igi@01SX0`Fq^L+qdDBc`9apqZ$cwDZ!N+g1LUUUX@Yw+_UZrhDi zLvCqRce$q2qmz@?a~H)esZUt)-tG~Me3i@^Slqq$duxF(wcfiD7xnI>8Vo5n)GZjz6`Kd<&-I*_`)m&x3(=`*2>ubh$!VmfqB46Jn?>1ov>kpuJT%o z7t#b}Nc&78R~c(`k>{9m%R>|wu#1i-BcKWjud6u;&w`;;zzG{146Nx1S=IY`AlDno zDIUvmtXZ3>H=sbaG1y+N6pj;Gvr<4 zd8v)*SpgW!{}E&5{!RbMe$Jg6J$n+vmySXU(oB7Bk_?Y*ARvsz=Sh9`EPLrQI=uDi zaf?F@^LT7#kpfc0_R2JyLW&-lcG~h%`ur!Xyz?RJT_i7zbv9P5rtLX9Sa^~IgE$-Z z4-)hLEKc;qaTf1Id}{vn^Hgg%0AQ7Xs4wd9UvHyqcN(f>Yyg!9_5~CWUiON&I?B;^11Q)9>R1W@Y2OKI9ZL6|A-Jp`FK|>{kcD z!}z{rI!5&y5uldrFEBx@tU7db!Ox-Cv&>t!Gt;oievg=W{Z?&_LTGc`P1VYzn~ zUn)>2lnCN1GY~lZMbl=?AebLNL~1FttY%=_Jph4S(pk3Tf3q|B|5#T-7Hi{eBBOzi zg>q^(0?Ooqg;{UI*r8!t7A{7pEc4wN0Jf|reh8D78>+tg7i;X5$ggnY{{?$Jda~+l z3OBrD7>u)PRv0t%gYU$7%Bz!=>j)@WBiV0Hx9LA9z~O>KxJP!leI*bO#}wh&Mw z>i^IDGT=nt`39k}QtLDbjeh$1ZI~11!5^cEasT!q<06}}W3)lY(s?O)!vn|*441tT z-7W3oVT&}r6H!+_QSe=_A1myBa=|3?z)rP00l>R;?;ZL`*t?&fACJrg^^;)3U_6-q z0n!gQ2sQ%LyVk<;)~}TE>c5H&dH}3Dd`OLAaqyBrgacb6TMa;s=K|b!-77g}%$PKQ zJi10kMxrxj6e7KyzVG=RgTneBg;?@onrUbVd<$nCT}<$){5FR-PcAArx8z?|b+*>h z0{UNov~UK|zTP8WyaPd8^sM0@E+00*V>6c>+(rB^i3wb@);ZQDofcEH%_j8|Xf+w3BTUyR4*Z5-Yiny0pySpzu9F5DHUI3L+#q`?*TO2wKu|YoQ>uQlU zpJptPDNR-Zz`1aQNFehAb!WN%#vbLfhmv{j;k<7aID3FI^D);E9LC-si0PfB;gJvg zF<5>##q~5oo~i)M9H}J$A6o-0qJUbU2Oz$7v1N|x&}Uy?9^bVgY6Zck1;EE!z|4cG zW%$TdfEbWkb8?~{NLla|1;7J?IgFJ`xF-)ayS#`8KJkpzsQMqthBe(g9GExs(W!OQ zNhlrik;oCqP>CeW9`8?BZ*7W&I3Rag2a5QJH3raCH3dsBX2SIRNh*!Ms5H55o;dUO z*(o_)Ph?~^{&7wA5R;MqlBm`R@|m+i9D`R&rnzeQcCM|p;_9D>ALrjedXkBFz~+6$ z)iiMbuFK}m4FDBJ#3}8oKgP|P2@GeQZmkhk1v_&m$ulewaUKC(7jx?t%f=SqLuH0t z`4M1uMCkZO9D26UMv}p(Pd_p#*#p~g_R(XSn>1j6!z>ZpHe$~aOyE}5xQHG>bSS+p zEGWIMTDm2ntMrPNp1n_rcxZXBo`dim4X0V;&P_4lTFOKNLti*I51`4$1nSKjw59{@!$7Jgg{0ER$f zJPv`taAgrhW)G{S4)fCbD}Q6YzD2+%={#ty>J~DU_BX0R;1Eu_6CSYyL{b%GlX9lL zs7P9|{5>rsNd)OBcn=R|f^p>fjGnxITlzXhB}&qRNjI86uQA+1I65 zD_F=%wxt!$@&_+f2o^!Hi*zO=;Q_dGT59m+I1rp&ID7fX$R$NY$ebYgKhq1g zT?TTLs|WZo>PkcL<%jmVwpPs}r*{sR{BY;pydk-Uw0-~SI?JPSq*6dyXa;sf0zxVg z5z^+7PKpc8D!}4!lakG+N?oa~s{F)ew%t}yHmss$h?0H9?18?I;>5WAIay7{WmupMe-k98%SwKz!+1({uzy{C2zLV_cJIEZ#8S_tnz0Xi2G zdIqTT*O83F&CZ*)eHrd=ez3`SrSCjH>q(3JWX3axEN#YV*O(mqD5=zU!*W`|p{EyQ z=htriAg7R~z0qiK{hHt9Wfs|MN&6|tBqrUmXd52xw|M*NozMP|kln@IUpE}Ie3zuw ztr}QfQr1vsha51#*VlK2=YST@sKmjdIU%>l>lSQo4BF1y{=UB3EZujX(2gMi0l=#u z)9n*UPC_&W;DKMks@d44AU{^Xl24l+Ky=_^{=vDD6}oiylkxsK;AD4E=AUtACc%6p z2D`QIx$^$3HNs>E> z&_VS}ql*nNK7|7>AJoG)RL`SRg+~)9O;UjQlz_q{zqNgQejX_mQf}Jcf-~GzJN*&S zNIX>Y;>C+;4YpxCLSFtfR5`c-$x_I|D2ja*GJA<-nj?c`diUpmMpibdvFaL11_>#N@6Nsz%7Gq=ETKC$ztc}Sk9^~OvHEyy*F zUC7*OY|QZ)HQM?`jyumPw8n>3&0AJHUYCHk`I;YZRkr~0FWFTSB{+=Q-QZIS!Qh2H zrT_%DfKKc;(rCg62Oz5DECGM{9+*M);uz4soe(@MRC8;)Pz;p%*BKVBMz%1{^oKPg zXu*a6++96r5(r^BLHfpv3ng6ik6}Zm;i%T{xshyLXK~mdc-Mss7xGDx1YOX6`ER5s zBSgnmvNwSbe5^DoiPTt*!yNvY#==`d*-Ik>sUv=XL<@n%lDfp}+wrhY){pF-I zK+qS5xS7YZyazk`A4v_LeViyIuoHeQu$2Bp&8b-KyZy8U>{n6J!b_xEfDR&3xN2X4uRsa*Lf)FI}L32#u$L%+yQQ^^1v)p4*{OWn$UQgL6e!&golg(+R;} zyivqri)_}(DN>QVEkw?KzU)a_CJ0z;h6lew?1As}N8yOLnzD%wsJHf)v;NeW1-lAJ zo&z<4I3#+8!L?>^sruon3T*%Al)SJ*?hnRV@0^Ebl?H6^x; z4`|Qj)i+KY`?ADs+nINRQ6qzPOd|&HI0xmZ3@-!}Gy}l;R`sn_ND;3o>5hDJJ6;vD zTQ|Gz+{qn*qJ@BlLrd*C`_?*(S_iT&)#Xgl9Q+-3hS2TZeO;#i>JR6@gO&8d@jIMV zj6pT6>_G{x$*2=98^72NN}&Y_F|_#Tjvxl*&)%5Xy?aUOC==)?|&I zip%Qm2brTwSHg~ez{)vH-00|Zzt{K!Vl&7c@r*;Tg|p~mI{rM_?(0EtMm*IVdyXAc z0cqgzp@KXHVGg@5C;sYvL@yzVpGlU85F)~K^F&DX{Qej{juXDj1u!B`HX@e1_gLWU zTRIWT4+mtFsmaP`zC2EYy|k_2JwV<4w~of*!s&8m7dT_;)cB`swpFWSg(2p`z9~CX zN^je?ZH24GNs1D)E-$-q;psVRPVTCGS|DZ@eojmi><99lb3(tea9w#%z>0zQq}ss# z-Mm3ViAGx#gw0KZ=kDMrPT3!7gn1bg!ca z+fu_881^x}*ali|Zf^UJ<%{U%!}MM<-E6->qj!rr7)}Zz&1(@Pt9F+tDz>*tYiw~R zAB7x}{@Cv!etX&W=iu3_VH3)e7T!YQBx|TS)Kijomt@v}E_T;GJ*9a6p#TTIas`2o zBA51+qWlGlZehU0NYN_+$#>ShC~Ym*5A_OUvvt1peN@!kECto3H&OE{kw_sILs*s} z05wC;pH!>fj%;_3csA$)R3LJXk~`e}fVcoJ>@Pd7_!W2HYU`2hxp0@{4K9TgDx-wC zC-pbMR*-7exJ(3D&&TH~idH|-n@c$7izt9lcU?4hF6kQo95=;~>j9;y!CnZmD2vq5 z%7>V{1&JM-coYjNgTfz!)n>}iaP$?qs{v{ULN=^P+5@_eK%RyBJjVq#AfmIJaaNKr zT_H*}0Zsxj&yHb;1PXgvt6jK}8b@^s10)q4yLyQa#0KrTuN_0KmZ)(!sF}+jq${D3xFl`1{<^Hm2+3>L= zwlP>@4&JD$e;f(-*!Hik-?&koXh$O3mHRE2^NOwVqNu6#^21i- zk$l_o8(T_qg(XA?toa+Z@6Xzej7Ww(q3m`j=Owux(Cx7b?$5vnQaykHcRs0qIuTVQ zD7cd}C8I$aR^pDvrXN8^ntlMp=3u^n{pLQ;>QiQpF&HQ}{6@SdYyWvbC8F@Mdzp1I z_eYxz{NXjn9En@nfmaV%Wu`etod5DZ{2ppe-rSJfLD6&{XsDRK`qsWHi>Q7-E*X%9 z!;iOiBt#rCgA7-i?R^$SFJE)Nc;XzjK=!l2rt4Ovj(7n;j!T^1x|;G>lj+!=nW-?B z{kR${B6Uj2>j+at4uyy4~Lh zLfro8^{uuBxg<7COiYB#hD1)_Q7A8`!wdad7DJe35#;&un+h+BMwX5~f45&LCZ zc1&Z&yn1v>R(#s3ju-d2ggkS`!_D`T90#W?fkI4RXdKxZoj+V;m3`Rw5H6bMHB@@eSx5F zOGDyM%19MJRh;b@j{D@-8LruxKh^Iy?VFI8DTgWE2a41nt$h>3`|@f>j(UeFHeC2z zJ&`16a7*9ncYuSui8YRJt94Me^H_4f=RAIhbxdvuZ^gPfVpWrF*P2Z_WVv}Si66H$ z$Y`{iiP?FGh@|EY?CJT?pvZ3Dhctpp9p3CWzr3RC*`6YVN##9eLL{MXhSjliVkmWa z8{#~t=53hbo{V^T<@z0en(V%~^&q#$SrE~0J{Rex6s&k3chW`%evpf=#J?N~xFo0( z^f|7V_q65Sn26P_R5Y*~)b#v2z_D0m+u?0KjU)sLIGIqto+QWJ;jP+obu~{9m-kqY z3B34hp&mbhNlb+hK%3OV*RL;HBr6*ORekIEoCu^)&Ok@voy)MzByjjQaC6)`UT7Gb z?!HJR28fO01%+4@za`<2r4>xyu7&-Iq=a+*MoOss z9Cys{+p1fG}*9I+yM0%0OT ze#)SXw7V!8ImDb%L-iexPE84f!*y+R3aP&Y|gv8Jh+ z7#9~IL;zJ<5!QK1@{kFoT^0h-4eO@Wa940=b<{A6LZr(qhfScdIRsx(El%~QfdP?V$GC-HB&S$&~<^D!$(L>iRkY@vS4!v#%&)WSX{xseL#Kajkf=p z%1K5#rAE$iUS9*wgcV(>0iBiHApm*sF94_e$PIUOO!rHC1ssR7&53@@QNf(i;`p#C~Rek#ODLqMA z!M@@O)zvWTijJx?_Bg^CoIx6@$PSyA8VEOE4H@jO6rnTks=g@yfx)sQKYWI%w21Ba zT4NUDHYyUg7eFIeooU)N@DqD|JDyTtdhswGZ)DB)yH1 zzc7JMmMPcLXOI#dfPtlQ#ZV^OXqLLnpD zOhWKpms|*$N5pi2bKBU$B0@)Sw^2hq37TwD7&|8~tLA>YWym*nf_b>I`=45cf6U|m z+w=N==;Mt;LD*<*-MUp!!F=<)utfc4l|Cq}$*M0IC!~3k?xQ2DZuhy^25T)uO6`9W zzPm}QXaIkGnB#=omN`cF^@|($s3^lnXU!}Ao>+bR3ly~cz5qMk2v_uqk&ys|HE|c- z+TK-oYvak^Z#_?V>yv^l3TqZ8K$9zOe*bEX@T<%Kp`m6+3Lw^%kAyY!SM)Xto+`6K z_=M1j!Y8zRADo_Wa5A&LUncSWvVY%glkjfp-!EG%yiAy2F|O!s7G5Si5DaEAqA68W zmWOhRzd!5Dd4aBk;3}$RVx`De^xv;tFvid%_Q@Px|HG+JdaV5>vShWqJEVbL=yH6k_x$eqOxqO(ytyS@x zj08V37PZpj`_h%yDFdz4o`E8Fa?WQYmMvxfp}tsFq8EVhqD70UTF>Ba=cILYs9uq; zNU=X8pY{4YD|#$!4Vzc}xSb`K>^-i?W*3S-1&JkkO0d?8J4ncNBPDwg``RDrm0iMc zj=?$vI2B?UgM>>NNe8xU-FnfGKfJU58ALj zn5=Qoj~ehCiGOr+5c2UE;i< zfK5_Zl08X?%@LfiR>2lgLZ5j3x*w=ZEj>Lw(i+=?8jQ9f@8(CPemw^;{+z&6l^$}t+TEu5I6o6GOUk+!DF0L<>S z0J25S>595z4ye_$c)_7pQ@nkt5CRD&VL6DR@is{hh)m;=y$$NB6z(j5>Q^Y3D83#jPY?GxjsiPc}8+MUpP8{1DObQu<$g;2MGZ~&C{E*ZU8(4 zaPSCx)YS|EqY3~FYFpOZsFm4ie@SqhLhk^f<{&BOVhaTTA2`-AC*O}`@0}=rEW{GH zm{OKWkiP`VGf2~3;&J7Tz<&8WJOZ4O$V{pQ0NC2v^CcA3Dbxo6KxsrVQa-LK@;qvt z;ipt;qc)&QJIlR?6(dsa5@|~U(wR_)5}ijS-1&r{$p0A*_;fkj zM33f=wdg0o=}U~FiuTb{)PKR!bRx8mt?umucEBq$Bq=N+U=~$WQ2BQDnXwhtPk5z@ zOrt;Xx;58Ke=2SA3fmv0Q}go8h8OH*6D)KYS2pHIUAw2UBI;MGvTv_6nLjd^r%>0H z2@;UTN{F1R$FinuH-EPBGZ{*huuo~K3HKw7--U&nNt)jpsHK&U3Ot&i{YWb7K@QO0 zX;xgtI}^2LEkxT>^8>t{HR5N3U?VNL=)JC}CMv`nMsaF(P}+i~hks`&%vE#VRl=iU3i|lcb;@6-d?B ze0^y=giDhKpdMwF(eP?%WoqrQ#RtKuO{E4CX8>Oj2MhT8^pf2Exf$`WIE1+4plqeI zhX)uF;4-OVsSHjH(KY7K)8pB|gJbG<1sPP$G>i2g=AP{@omB{@(;wSXT>oCjd-Ev9 zi35Ebyl2&Y>@8-+k5zoTHQy{xb1uXpI&Xmz22z~@o=qc_0sc&42C8#!%zA+;uFLYp z*I>9Hnb!egNW&zJLjUWaH%`7wQ3%uz@RJGfz?n3;L=w6FtX(lzz+XYe25h*&p1J{%g z<>f)2I@1CH|B4D3XEs)F5KPkODBrHL6i11J1FT$JbsDNPd19M{@Pq3pr^jPR<0N^g zeh$f_eMjz@zEmt%pGq1M91%q$1nS%G9qDX=L|YbCFp^iTPt`0PgF!MUYx(Y(QP2lM zy#VJ>yw2RE^q_VOO%|$+#H73joq;>W8fwQ(bAXIO0)%QO()a?@nNFkBJ^MF8C*K3J zAZ=f(XvJzo0&c*SBg}|G^_#qv=b)}+U0&v5%PX9RDO&O+q@T*zaW1@xpzOS1HFTZ# z261Q3OvcT0%YNNA7dH^be*M9*^M%Ct|li=ya z&F;z%>efTV@MM~wa>K5ml18eXB^Fr!V z2`$x0h97*gFeImf0DKdms8mMt0(dpCLQCV~30=hOCm;Ax?y|sj%QdA(Qv-&jUul+{ zayoU)A$uY1eu!)=;Waces@np2-e2nEH5D3);v})9yL=xSi3q%Y#cbm(ENFtZ5`^1{ z^4S6%@qHIet?X&idCDE^F0$l=2@&T_9TbS9Do;kFE0`JkYq_cRuC=Ci+BhTt&=&;F zcm|eP0*(?khXOQ`brBPd6XccEt#u-%MM$*2kKYiL`!L!Fg+1nwQBOBL9*N^b|lS}X4%Xb<4Ia;Uw`-?ayyV4g|LsA#%o8k>{_#KK^tDm=jeaMRo`+b=+q zF?C7K=hg8Cs4}KtVM6$M({Z;J3;Gk>`jLJ{dnib0OQphoR-q3;B3V~-4wIEflKi!>r6KWtHLZphF7GmxS~BN z!?$B(C+QqMZHz{^Qap6GW*2fPi%%QhAog-OhO-eytXRhA~ec~c?)w#&Om;z|IyNyfPVX>HXRy2d8M&xOjYcei$ zxa~qTOnQ^o9O`L8D$I;{lgZ0opQW~IF$gorG*JOE*)0p>7{VH<&k^00A1?tq=CLio zwa-xKx-oU+(f~1l%%Lk}6NU%s^5PY4{(xi+9j*eQ_H|XWF@0r^7GI=rbj_}O29E)@ zy3Sfxpm(4!iU+LjKmXxe z3sf^I(RSsLlpGLQ==%e?yU@~*NJvD8;?G!CouTW;RE{jp}-%w%TC&Vv}D`FSypGC{6cD zAJ%3m^{r4dws3o@Z#zPGG-k`jgsK)n-(Co3Ijy3E) zwJLxdtRK8qx-5|>1#1Yu5y@eVBL7MuBYV`IeU$A%{1>nA8ccQ3tXJb2q*vye>n1)% z_$&VLT@q_@-%m9!NIvv+dnn1!AzeEMZNrom{X3wA(#Q(?2ozoFD02XIcLPC(%ZQ-D`Uc* ztAbtY&X)ZK0#~tlGRbi`sObtZ9evCE??sM{6jT zZuq*>WEi>?d!M4_glxzDK@wpBZ%}k(2xn#;vqj$t51_t9g|N_5mw&jq20lrg4qM|f z*g!5kS^1#8=WWn_!_8<4UggDXJ`*UFMZ9mO6{>kcCr#4l4 zk)@-mRW(UOYW|e=)|%L`U9Z2Wx_2$^)Dnh3S-W!TQm76ZN0uO6fuGv-wj0IoIn-CH z1;Gj%P(*As1x}=ex4|}8o6uGoV)^Pq?5eb07&!z>!5q!^_YTJ-u}PIdG70cHSS=6A z6=0FbULQXmicp+%uE$6>yf$R=QqCY++3<&h{+0g-A;R+Doojr zHzQEtF3|icu*@Jl(i+V1&d^^TlEkYSo5nTd)Rv&QnM4JcOB|BYJ%O14qLwbtq&EhE zcByT@{T3#L4V2(52g$~w{&zLR*yVut#`|KfDD|pRUDDd{`tXFUZsa>i(ur5JDDP>@ z&dp`!?Cn8H6=%doVvl#Wa4A)y#zfF?P?b3K99he~`0y{SokwQnHB*H^u=znfC^tw& z4(nT$`Q9(Bt{Cl^Afmx4u|Tw4#DeYwvcU&x-Kq5o)n>rJ7i8|=s91iq7RJ)_v*y`( z*2Ke6*C4h~S|Cp58MmiGTB4XBsrUqmw+yx^YaZ*RbO%%&NlD;GZMdK_;xFixkRB5s+Tq(ZtBPv9L!w{>f5PV zrv$pfVDX{bytfIuLyAVITNaj$Vm`)~`ur&~MzTvcTe>4#hMEJ~@o}?SfQ8sl? zpQu**Pg9>Bb+0Z^XnTWZ=@U(%D36Fjbq;$eNx`BUJwM(HoaY(NXx8OZMn0VRe6~|StNf} zsxwz4p}Aq@S|N$Baa&qcrAmqC6@ zsuLTsQMkv~2JfN5usEZPUS2%_@=4q+%6r(Ixys*ds97p7E$V(SAXiR~6MYRbtQJHc zXqNjK|4T5+aO>_j>g42UuC>|o`;CM9nWN4oOgB;<@0~b)<>=35YYaY!F#Jj#p{Zn9 z`sv)}eqqkGdNVToJA3vc$4N?Qx<1F;HCG$t)NY(wC&FOqh{}IL~(3}SyGUp+CrYue7n4@o7oU<=}1*QJXKy$0`^qA z$Vz`V6175*bD1NjK|HC&Qz=2t`3r2}qgEdU_dyK`fK2IA|Kwr4mlX zGbK+>j~ZDdKIYYiBHLKUogQOy^!~Ds=cuJ&Ck|4)v!!2ej>^0jfsEIwrj~kO2byv4HHl#zh(4Cc7iRz>MDa;>gfI)*MvJ%=ei&&Y2Po? z7v9;7cW1iWhwqn-5ng63fQ%T7(v5D&8{nM4roB0p8QejdpExt~utMZEw zKIHpbyo?eqWkJ$n98vsvnGrR#m*2zq*)^az4nMvY)8?DX@dc<~OKyF$l3ZNkd%;5A zJS_z7S^LvYo;=C=q3Ea|Usoe~p0vRf`(zd*wRW!h_fXh^p*$G*u5?HwRlneij1l2% zt*rEbzq3IA^ZiE~FA0=D1$$8uOPv%G6t+L6!Z<1o;wA~FxBh})dROu~n&%rYMHEN1 z#>~56!pFb87|-XP8Lqa%2S_E&&TUA9pn=Uec>U;?Pw4hT!d#@dsMUR7%ad#t9Y^`0 zE_FbksWva~=sV(HsIxEphUhQaF^y^bo+pfmKLz@2D4m2;%}T}n`8$>IEatX$3;~hU z&)kB)@)42Wzav~phW#?3yHb-AtcFkR!u6wh-|#8>1e7fRK!6gvVf-uvki?=@smcoW z9>Ywig^^LCHgU|fizHTFuv=Pqt2+w~__t!nAc^J=W8Zg`OTtxqe$8aXiYI~}x{eoK z_VN2=e+jl7qv*S4W_+k%qF43_&BDf;!cnEK7tDgs@mRqF&IY!^XA0lowUY1w0Ybs#$`_jiC-c3@ZUL#p z_(}z`4!2B&H*I(&(48@4?7x5Z{SJQ#?@%OcV#^qR{`(vVE$GGr!Z|p&=KCB(3+G_@ zZilmh%1Il7eyBYQ8Z99qvii>%HzllsC8ToQy4rTBHFO)!YA~6Rw%;K1j?t_pMR(Ul z?uV8xtM$veV{QLR_Wa{J9-+xzE6){mx;^fEwS7UVVf^m&zEHiB*={0APO+`FuPZfz zbQ8|oEeKk(EYdDuO7pId_Z(I$C#ABF*tz|BsAkITir4+wulqk|ZLL_)JU%(xPWIG{ zl*!@m58aFX*>$p?&et28hxXkc9hI6P#~)s%gk_k-tn6M4uS@sO_O8FW-amU?dF^$> zAwb;;XU!8};qWa&Ed+?CN$iC>I2ijE%p1pG@I4_sK~R?pOukwkUEGu9l<#C};TO z#0f7;`+nK_@0b1iZZU$(Zn|BF;PF|Gwy;NtEjZuZ&VP-W5vx#& zj$U`Jj4nmdgfJG^^;aDrM5;XCyC5E(Jws_X-%T*?Fz50A<}M2F|_S!@se+*Q{ZR25OYdL_&qM^uu5RFiE z1!SruPy$RsAk>9R1C4S%$9lq=8>QYwc<*PvJN1KQ^|unc$pH&hUR>Z*EFAjuWeO+j z-H?IPyc7no+TzHvmyM`LTM(XWBDlRj7d*l3b6-uBOr*b zXX9S&i1fYGTsj{>cNq41TVAT6v`;h`JSR^2ZcE4Xk5BXRLa{kk2IO>qdfqvBu){HZ zU;Wuv4qD3rnawARhuYwjL}_YTdfwjMA&!Y_>S?C(5@G`Sd}95wjUp@A1O3 z!@|*H+3yElLPH)=dsL~Tz@^qP{gd=Puix0?jZ2Sqm{u465uus0o;gZ1S;=vabwf9X zk!;m0S@n}zvQkHCnq|;vNXz#zr!D@nc0b^a88}> zjT%B|QAYtA$`q)$pM)c{q-x=lYZn&tx4vi!p(^wX9H=ub{hk87!*`#ADmk`*U}vLf zg+;&ip}+CniWx%CQBqK4cB=yXGywt5$T!g(;o~>!AaKh{p5j$NrzO!c)31|TSa?o% zmY7AhtKO;VQNoDq&PmF^N!Mi~_00tG38jzt1sP~2I}@dsP9&J14(@c~YwGF}9`TQl z&y>&9P8`*n;)MMZy^nA0E29RLst{7xynOISCp7jlK*fV6&nfh431fQ=R7Y`mjRRR+ z^c>^;k`VT&`ZLrSpVy)+X2DZ^5aEsTcG62xKOEXU8s;QPqUV#s zgF1nd(BJhZhU5oAWq3+E2kgUQYm{#~Ow@L0`NQf=v5u!4+kxZnlp63yT|_u1q6(<7 z6dLuq!zxl!4qg&Dc86lw@aq{ZZIALm2yr_cUjz(q^IXQhD&rZ`<(uhMqEdC)HfQVh zsh+9o^6cet#OzT2R$PnZkxfN}Y==1Xjm<};1rrRWAO6mJVHB?-t!=y&xozv#X&_<( zPe@`IoHa$~qGiM{ zUbsLKNGQMRCSG}yQ+tc;2>bo@(YMe$&ZW;fuyIaPZXJnUQ?A>zwD8*)Mma-RQ7|L- z^9jO(v+wCq<6N|$B{>}ZHWbnX&Yj!V-p-|-9rTM(yuKD&=~!4;aJWP@P+>ataDn1# zvF2u<*dq8DObuzq@Pbbt6ca=vCp`^95{VKF0Pu8zaq?=y zpdin|0Dj$1TANx{`KyVn=CPTCzk?Bts1C?f;gp-1NCIlO8s{~Ha3t%;u@WCzX zLjgYG$4Vq@uWG*AMp%966)c!hrG>O$o0EZ=PdK14;g;=H5}@vf7mJht_g93133MX!WZS&0zi zVacj9vMqkFP>>5h)uCX5_VVv23UQ7nwjeJlZVu7zB;s}Jh6Lcc96fPmM4|(5! zGntyt&KX6wPSPz3=TOGU!3)22z3dz-?QJOnGR=dRru-VrABxWlpr?W&5Mk3tpPVzN z;sfFC_-Xq?Wi1%>B%mrOW^NI;Y3|H?2+2WP=UdVkt2l>HPU88z2gUIJG(v%t`Bq4R z{`U&tdijYUYJYBqDy@^kIf&XDE{-zZ%1V%}PJ(_x{6Rx~T5?GCKtG*)z-Z!-c?k3? z(4xp}$~X~3xHK)C3O{$ije{AL^jOv>iyx!uH<$W$uhWww@%QVkzo2-8?3o-A<3MqfR$)TD)1Ubq`pJXlwQ|IK2t?BcxS`WC;`gUrn zglF2_sp;z5nl1U!OCcEz!qCFpM@c37n!Akm%(X4v8tuE-z08vzF2Wy& zHd&h_k-(<)yYX&H^kE#(7rT$o*n_5)W>%I;{$44B!qKk^Zq+7z)2Y(R0cCNE9=BF4GKf|@+ZC# zc8yJq+TGn!EBkQbVjC2}kB$}js3b)V|KVPU@9c)sBdZ7Mgi1qItt0nDDM~DPqnz~C zLKqs_4<~ZkV%rahsl|?I;y#7cGG3Wf59qiU7|?g>S(WsiJ^UY2lrUMzV~Zb1Y$v@m z&SM)V02O&rok#vGXqqt9~a6F?BBVQwpl2b>OnNO{pC{4!M>{* z+7+GUk%epKKG1sqF|iCk6xFa;4F8fTfRH0@O50w`_IH)ry{jFX+_73Z%_z)qO{jA> zbacr$gHLl6s%%X!QP4KbCaQM9Yu(K)ufn5!;v~di3^f zq^A8|7&E1r9H31e@t-L7l1@H`-24gxY7V-gtNgSf(DXr&J9gytcb1(WM(w?wKo2}3 z@ns;>mkVQmwdXoEA@!*Zr?aHwbxqIz@v*P)!P|FX4lDk=kl9yIxOsBv@YihV{lnSW zT=JO!VqTt$&+Z+5WE0iKA@_>gBI~qr4<88-**-i7=ewe zZ)%ml^Qiz()Nokh>SfX%bb=1Y>3;T~vqr1A?Vm)ctEpB0Y!H#EEyavOBW#0%gQRcb z(G~XH*7QEm*=XNUn=AlQ7kZ$9zVKY%94D><^qW?ciXq@3T&nUPxV>j`4FM+;69b@V zoUhaOA3C&%ywWI&Dj!4fxw%O6^_222q~^p0*B!Gu7tnqQ87o}AqjPp4IYJ!a3_#w> zuZchhGVB_?eW|g!*>XhP2V$yoh&*i-v-(S+_wFTED_ZUJ zW#VK(GQoq&nXxlr6Ij*G{&iI6iP|%0M`VyDA`IN77ZLH05eN#yZn?hek{x#=L=qwL zajoR~4OXe_CsTCkXX`sXe~GcfjpUkBug;WQh?vxnOU&NAx=0Wd^fYJ7w7(1@1AKuO zh_&PU6C|q8lLqm;rF`hxBONM+fi1Fd1van-8`A;>(kj7jv$=JnR9i4xpL9%sh zq*pa=4=O>0x?`s%-uNh*1oH;W-6g$8M|%iG(aS-u(i>dP?(*s$UOANGige?N*xu4o z&C$^G*6N^>eM@deZT@h!s4SP!vez}35tQcN^J~VDRW*@S6=s8TuI}`T-;0uNdqc0T z=vy~mVI`c%dV0*lvbAOD#PyZlr{Bm(`^#(%;3?>pv343+V>{j9^+>;buF1Zwye{wC z-mbmbbc+);VDUni!OpGCZ}*m}Qqk&w-rEj7<-N`O=313b3_IKA4!hXtaBUHqyx=^> zK56!-m(eo)d?yz6>hDzAqr)Tn&F&pw=UXvtpHplSyy&%yfO2XK?8HpITAV;ij96vM z?c6n&qk9bPH3BP68 zSz7VPJhe}@|4q+|%e_XRS|(Rag>i9+T4aiPZm|$*nq&W9Pu$)I(X}1yi?7U-&MU^7 zgQu^EGQ#}uVL3;2MyXM~FC(ZRf?LvCWp$~_8aFGMQk2;9!&W#-X32Fwz}Y^G_Nu-J z5$!4bertzYpaF_u#=&Er!jUM3ndN`7f6(0@wB~E zCzB~~*W8uYZN0PYdUK~w^Yb(nosfMmQbTuJ-BvHvN$A{o%wa`s!Eh1w*f;5Ss_Xe< zAF*p}PX4$gUtd$USWP~B&rJP3)>nOPg@}%+6#`voLSe}UyV(2)$2I@F-*d0gXQsb> z*Di16u-(#hpRdi^R^(s2+E-l9e-C$;YSG-Ehn*2-oII>fu%WInUWAQ~C(P#}ErZa( z=z>62p8ST{*SE+0@Zo{W+H&vKH%HG z%F0RG%4wuJ|ADVbfQz&39{$8|$F%O^=@9Y0&d~gbL-|R*`M>j&iUMXRk8koK1n+fy z|DN5G`;%~0+}clUUJtBLT#_f-|A)KzlikuMl`XJ6F-g8ceJqfD@L`x!0b^IT%OsH< zplgfqYK$+N?a`(+r*~yXsj~{(FV$!zVGOy!Sr`G9=~$r5gb3>*v8s>ubJ zAS!^9#UoY0$;{&0cZuA5{P;2KE3_Fd8h<%*979ZIoI^-woRgq!mxg&%we*veOu{9KULj?-{VSqjofxoN=gdt*@(VlJG0B#ww?SLsF6w8 z)PXE;+>&3@?hd?MG7P1vP%wDE3D|l?Sw0B?m4?hRch8i5srFg%bMko>E_)2jpIc;T z#AQ^4o`Gic(mFe}@72AE0%+X29!Qi>MT0tyJbG(IP?ce!bLW4vruqt#ym2grGFa+~ z0(I>q^7n^us2297ln+8sew*bqty0vEnz6RF0+Q$k?M2fOv$8VU*O~yap%*s$)h1@S z0N5-$HUBX4bX#a0WFP}4)hBO^04OP4MwN?+`~KcCtCjKXL8NWO(<8~V?ino}w!Rl= zY-H+_arx%XR#|5b%O;@mpF}zQfkFiZ4&;UO){Xa|GCI=i?p_W=`IXWdSu3NMrbj=c zF6kRD7e*E3mV5cGkGDFU6H?U+?0x(C0SRQhQaXK0UP!Leaa=5l(;_w&9v*dywO@zN zRm&LHaDtC5nL`LH?}>428mEqVY1tlUz!<-@InQSs4HuhX3b5|x{M*k_lbt({ak2fd zdFfq^On^IbCY_xkPpfQ?61nj*q!u;>E#|5 zx>p}B7^Pa+=h!6is(d`}mx14>_*8%<{j^(7?(8G+Oo_U3vGKu%vFWKr;V*&qm@yun zpt_J;D1$fd#NO=r7^Y^=R?K0~!GDpK*ncw~ zMk9s3?w}KQ2}F)C2B@2o#s$8vEh5`QSiMC8<-2!JG2%80G2fO%wOP^(oHd-uTLdz8 zqPT40?f>WjG2cEN{prh}9T@@9A--5|bKSc9StotDW~-~6I-r-2e=hvsqp)kXZArQ7 ziR}^kk1I`U2bb9~f}C#$2+)z(*wQ7=40|&Snz98wHRJqE)nj>dUR^zv7$i8$TbTJ+ zxa5B`0Qi6Q+y0-MpBV=9|Nm;}_dj^^2N3e;>nY!gDQzwJ!L^h<>e}pg8V`cV2=hm5 z$r^*Y%W{TYMm~r|h0N=g6Nt+g7!%tl$XX4|pwFt7(;;QPphrK4C6q_c8bFo%j$Rx`y@6hKdtiUYZq; z4%KpHGrHuC9}jlu<23m`q};kN)H5JW6}cG)E1N_9<8kyB{1 zkHVJ%fpj3ap}~v;rmj~38c_@8*qJ`0X1m(2texUf*LF4lxE~#A^%!F!`K7PwhRf3# zB|ZGL=Oz+#k4W4$ULWTo7?=L6e@`lJzeTPP_ZKYz{zB>u^jWVn07W6K9qJMJnQhw&O;ozXGkGKju04m1N%%!5;2SCnvnzB>n;7t4Ww;A(NQ=5T z=g9bnc(bpr8Ie{wb&6LcM-2m{*=25SE^U@{4t#k+dvOy4Ry6~5@B+8>>~dZfG4p%| zY1Wa{ax*m`d2(-wdZMXM$serf9znnao~vLFxKqguKvM+JOJ0_aU-BQ6{Q)I$Ck;V@ zvAa)SN3&uMaCT-l)8)(5XuTz?*Hg0njxW_z+RsSuVa?E|)ekXusMb$LWCZ#>LS|d1 zB~}+qf-GcQO?fzhDP(!MU}mXiOASX2ryB*{AQzLXzrhuBU(MOof%2OqJ?rgqJ-TOUzn5%xt4jV8ITzym8sxm zzzNjkGHjb=c~5Nkn6K~y2Mni=PoQYBPfw6M9hhxUbJ)Zmf+mnlP2P;dZwX$Zo#AG& zJ-`+nsUWL@PlJ3(QY973&s#htTn;-LEwsl?D=suhHmel@EXD=?lqcxf3dpC)W`rsy zfT}j5LzomD={eyAW)8gL;2=XC(%~ar0BR4)pTep2-9Dql(}K$WATd2zX?a8xg)!ngM)mK z!=?tJshdZE+GWV7bGKS2z%O^wO@|^62i5yYcF5X^{069r99<`T!~r3`t~C$aUCoJx zH1c}?$#z2KplE@@M^_o|N)Pz3Y_ULdoF)1ea_J;=n+}rj?`4*$QMhGNSTJhbfBWsX zvu6HT=oY5ie+vckEA*@)x2)A7+#4*CUTU3&ci~%XBy`?Mjvly$jRn3QN>Bqax-*gs zZXZCLoZ0&Ulc3Vu3lQOTVsE3*761m1{8XPz)IKvEbWC%|0a?^ z$%T#qADR+vCqBB#@5_CQCf}=M%7daeFC>gq7W(S3R_YiVbbojft%#J#_GJMP%0;*J zax$cuAZaFQZne&c3WR4c>3vdZkhH@F&d_iH)ggvT-b6W(o#``Sn_mKA3pf7J8~EsI z-p5VtDo4HVqC(TgBqQWhc2TL(!5%oP;DsV|&5B?mT1v36rmHAr!h z06Jol`SMXy1H5f1&WoL{m$Y85PVya0%o-1Y=Fl#T4Ut^>AnAd##Mju2Uv}ftMn+3r zv&yq-A&|3_?6QJws*jbSvRss)H3|+;^Nd{wV8WPzCURw_fO<%>V3u!J9oTofY`X6F zh52tu(Fw$eumoWJMqaJu;E5p`3?XYFV?u(usbPl14g#buV&g|&T#5K~l%0eUv8R8r zL|u!6m`_Ya6KfL$aw;=J(}?IxD0Cbl?24EkM(^MZwCiGo3~Q5hJoe}jre()f;LA)? zwEX_xsSJ+gf!d%*@(Z{o_yfceCkeBFV}D)3?ITM(Ng#*pz20ug9#vkv^j+GeK9Yn* zo9GYJZ9CB2uyy6iRJ0sYCmt2D^NIv{T2)=LXM9b6;6QuVM?pA`$WNY4MiYl`+jBI8 zub{R+u~U@-Wc?sj4apQ*Ce)5eN<%a^<+9rblYYJ1r)nc10o6B zP&hzGrlHr88CNHD{4T0ABAh9+`#BwF>Mw?3iUB=J)V6~1`%eH}p)g6+?6+Xid!q;> z$9o0J-tmcN#K0FNbAi9kZ%VpOD0gcbl-&g>KA_gg4v=Uwiu9fsKf9ovtrzAzq`3Qb zc=&PuixK2_MI5$$3LjV&!3A&^1&y1GMJGWjsA0D``6CY-VjHh{dul&(TfbG3_Ieq=kXyCp@fg;Md^lt9zlAxc?oNajk^SD19c$Z>?_ zLq^ck3kW6$dc~@t86pA|&j4b~6|k%b!n2-`J_Taq-J@IJ?nD)`b-gWxq*F&k5GM?w z16o=s41$AbEi3(1jf|9wop~&w>tjL zgOgCAD9cQ-$q#Aemw9fDhT&hD#WNI~G#Ui$k5<3ob~)1+JY~preGXson5xXw&Lv^H z?_174tmo%&yRNC?RMSt>jZU3|Vk_C@LS=#?9$tsW zqYc{j&BZ1rI~Np9wKUtEG+PpPUE^rOaI((b8e2KsAR+sV* zwgd(Y8GeYnP6mv?+eE<7dVUg*qC|i6BiYSiwd6#00}$}=;l-Hnr=`{ILE3^TVb1hC zAs!k9A}Z_h#wMm)%io*e%D=w!NRQgCiQ$GO@&*%|$8{IKyOGvlF`bBx?)J>F0wG){ zlrZXT3{`vl)pb?)t=?4FTYqS8z2#;wKkHBSwpR7%I~-DI`|Iy&Kd`!LDpYNJ-sqNA z|9tvIx#=YQVyU4s5RI^#`Akb@LU%4+f1OLnjU>-i{Qqs2ofAzB?Tnj(Kig3@HKx2p$I$)6gr z&%At@mbrR-kV?hT5l4nv)xQ(WRUdOMyS2zo- zupjtc?9#VbKK4L=j2|k}2C81pGNC-hW^0jkYpA(A;(ns;H{EQ(95Da2Z z0`?Hm5&k4dMaEHx*IL&}N{Mt9i?kr6FwrwoTV~VGWrCb612h(s@5S~*wCUu&pm)j( zIwJCgm9JiKIk-jF^e%VQKKpeGSy^v-NcTz@Plx?ichk2t1~1KYeP{o#D#!lV zn&xPEThE6M7TNuVJP!Xd#m|QuU2{VlU6qjvW7XN8&`5SIP%$hhYT1G20wVK~-oxd~ z6u3y=hx(e&CLe^{sV55M8;Edx)ePQVDT3V2AOCz}b51oLzS%c6#=d*vTD5ITzJ^I9 zK0j}*GkY@eXJOU0rZ9!ZFjQE6fMVR;yg)INA1R|UjFW~t%nuhYP7gmAprr^k!=Qkf zP0aZ*W1J+whFXY`En^^%rx{fnmk6ot+_@9JDMS};KkCm5d;?q~_p5_QUb#sV-|$k$ zEaNAd>A43Uf>1TwCoa28ju{yC{YhQ1v?n17BL_!u&=zm%HAb=(=%rSRwT&C3@0g>) zpk|RHRS_%2s@y^(O2FPY&KTgS*h_(3j?siX*6_TPHuCiM9PLbtXfDIz7 zXr~r9TdK?~iV}THANAfV3LG3LFX(95R2@My9oM}u44Rlmsu{Dl;PPeiqoXBGIZ#Y- z_sshV*Ey=`=s?OIw7OBGA<0Y8xzX4;kAND;&2651;GKjx;W!GkwgVNP*>#Z`*vxk0 z-fwk1i8FF>)3iU!$zBFyS$tSD*ZNQF$24h&c@txwGeq;-i;Jv)Ib*sIk`yPqK-CU#M^7E8s zPgD7$gQm^AFUdR&DTr$Gw=k`B$94z;=~OI8ifd==bmO)4itv_{^X$J}t6-972-?*N zt}o`l0^M&J`at$Ji{I}KZEU%@CI>WjA4X-l*VeAZYeUaian9%uR(;&`|uwlC({mWfyEwG(&N3M_;^X0+t!3qd*W!_8cG8OD<}+f-8PqK|#xZqYqWO1VeXsyb<3Y@Y`=+;zY(xr^h9GA05%+zbAdRIHo%ePNzcLt=pfZzRtOl z9rK6y!S5c7hgN?#I98&rouZmlx8*K(pu~m)5(O8`vl=$4yw}a|--9(i@TOS&f!g=z zL@0=<(0$+b2kK=N0wf+wEdf-}bhyhXFRz4tmuTnxv7xk7&t~t~7Gy1+sY;8^-`|Q| zN%`G_RSgwSnoG(G6zm@kRyS!F4GnZZ9*0AW%&W)6XvJ2uB8l_)JFi_2w1AZQLI-$ItK!?sLo(ywBw{7O}!bAu^62h|hpduJ+fI_4^M zERH%hOm@y^t;zd)g6-c0km)ZuL}#EBnec2L_s%dmXUgBa;b?l6#YR3_NQxv(jV)^Q zfV38g>XL2~Wqstktl3tiKFbA=R^gqsXvwU^axzk=JB2zt^J^O~lR;0dSYlCL{X;A# z0@e>_-|oz}Z2MI{gJ@=3nprAizBz3YJuPV6a^iCEaH7soTufQsgNtzhX<)1TyJuCG@;4 zu|tmD%=T2{FV+TrAT#iC2RXVhf5W#Yn(A%+YR}i^5s9ZeLE{aFmt!Y zw?2c?plqyi!RFb}YjZv@w|m6mxY1@gHBz!M1X>2qPNkWTOOAv~k7yk7)-_tW^4z4# zO|dVHAJ&~tGUqwFEmYUEW3*F2`D}ar22VDw7z*tRy8PQfm%jf%Sg+x+ldvb-`6@Vv zN(>G39k0=z3|$glzf{xAL{)g9v`xJf{Ze(1`DuKc+H@Kce#Q?a8tx$8$QX}*IA`+J zs_J~&cgTA-X1WG4Y<6fnGh%*oaH{#js{8!p!mD$J#Pj$^Ywd`q|&!VS&4&i^F0x`b>$GfKYr*t?$SpVNO1pepdS+5a){HNdiY?e^bWG^};?qY@n zyXjPggiEq|De=AVb^g@2-O%pdml4B}*l8rTMp@>4;TCOqfwc@iRa&FsAm?J;_!RSH z!TZ|3Skb|DZ4H#TZI50M!tGRhchf%^Vwe7%qVSfrVLMC`#jt--1VRXS0yJXoS&Bj* zG09c<1xZ;m2YJLb#{5}+fIwcnGnd(()>(nV|El7_7X}gjOJ-$Vn776D za?|H4?0;|M`mY|g^yapGaF!Ww2HrGWE;(ILe!QXlewAT@`RjAkCoQ&(+_s^QCIjCG zs`OG-6$x1a?EP{8N%CI2*l3Cr@4Ps&z|yy|?G|?|r(&BO9e~$uKl|#Q9vL#te+fi~ zT$L$vBu8D;Bq%=uh|N3(UZ-tgsl#z+_M@rC2k1g#nn@>Z z(OMPi;X5)x$otutU$7Y@aHR|Y>U$_x(FU?E&4Lew@pdA3&3`rGIxRFd@B!P{@^0B7 zkK7eJpf9jJl|GG1=n_Z!R!2wD>dh4tGp`dP!2jxG2CC9IXp378YH7Pb6C0~>ts|J4 zHXyghLAead^HFX!#%K=S3{BGI@-9xhQsFxIf@Hs`E|+||L0Xhmp*h^t*ILNzK1Hg> z015!ytb?!hG4k_UXbpo->hCLGQ@M>G4=Rm8W=pg`M*AWw_ipkdj}21sCR+%i?N)8% ziY-CI{$lEnFhh-y1hN_ZrSf63+2WCpB)Cf$5Vi-N1hx{Werk!QS{pv*4Q|115^jAu zXCWSmY?6hAhD5kkNsRbvQPV$y^W8n(?bP>mlW4k2MxG*&vpNvs_O ztCO!Do*>@$z!|C)k_jSC{)8%~^sZ=MKqCo-uJvSwOcf`GBp69x5ueQ+bC7%gfEtx~ z7aAwpm)q0&_;4w8NkQrQ76=7&lT>*Cjq0HnxePatG<$oK&Lm;sP!6ypZAl^!pm667 zbKBi0G?piPOV9}#diVhvE~XJlAP43{?Ai5%*wJV4kmXB&oeFFm60*kZxYUKc$yIVz zFxj`7ZkJvq^LB4Rj_YSHsdu-IbU)d(Q_P}K#$l+7lK@*lv&5%4d11Z;1}GX2bC7}0 z&VU^9v4AV+LFuLBB!amow;8%|pf0@R8vZ7qck7HOpc6keksAeDD%7I^viqqYv#y9qdx@DsO|?Kq~uJZST0CWAh|xti9m77|KbR5Moc=FXTBxecb?m|8&jz zaVGwWnUMz%BwjXA_i&M%W;$9qbKvO19L!K--6Wf#(HiDdiL(()jDKp}@K?gPsjN#y z%gvf_{Gfjz{Rwi_kso=saH>t{`oh`aKRSdKFG~5$=BCN#AW5C9R0>4rb(Gu8m4KDgbG(9PVtxXU2Y!%ZWr9yN2C4DP8+alU1Z;v63t44*5d=u` z+EO=!Vl`5(a`2-Kbtme5qPbKkrK=;8>j2iak&A5WUQjbBVCmu(syLH@1*95yL5;r( z8bndAmT_&O0VzkIzYRN3Bd=Hpe{2LMKY|{=oB8=0SOJO&g;P(KJ-`e-6evlj)u2yn zD|iVjSH6V+fHw^_GX16+zM&yRG-lh)#g4Y_ilAO(UqB+=q#OSN@38Nnh@dU;JMfs6 zlkBYwJX|(gwd7$|?lOD_ZO{FmAn{j$V`C(}g&^-`^ndNd`YY0(eh%G-FE9}nX__VM zqSjm{C>3I>L-Nq1En5`x$4uuI+x)VQs|v2@`FxAmWGJcMUpHtdx&~$MDMpb?Dj~_ZdP)MWV5?57!9Z>dT z04aaL&=1gq#)nr^qqHjmB%>U1ycSqrWHGlDWeD<;QaEwq1er2WDaNu(vuR8X5)|iv zNE1fjd%$sYaz?54VV2Op9v^r8$|Jh|#6 zB>Mx_(Pm!=S;}kTUeFLMLxp#W{y4b;T4~C!dnj*d5F-h9q$W#hsZkw9(M3fEtXb(; zOAf8Uq*Z~{>bP!KUV{ zSqhbgi~-r?i~+H{N)0KZtj+ph1HM~E`r2!_H=o=|>^I-m=cHF~ZO4LpcKv@ynAg1k zj{vB8H8FUpeKp5{crLIV(>J_3+j!DP@jqaY_(=d;i-9ZSujI_!jI0j!5JZ*%zEzPR zE{H4+Rn*n}aV7*`5eXw;rcamcZfUt}Cc#{&&V}hGI+3{#d91Tw#Kw$KrQt{sWNM@- zv>UHkD3Rh5j_nr^F?O}$rzQfLnErb4u*nJB_5q4VGM;(Aa$7u>Q)sX{#5G53kB(_y zbB}F3mu=(ZFfax!{!vS87;@zq_175>Rr+Ln`1HE7MY~-;hKkKIzD8t7g(?w~@;gKY z5~?Oxfn-wx0-PvsAZ;KLXx}|CT;WH$P6(j9qnia)0x?APF z*(z;t>3S2^r7y;UVz}eQvihjekIH2( zmKwooq@|XKVZbXR!T9KfC-#fJ*6Hc#Uu*G7-;zu{@P5)ard*Uf9Ck?{{+(%Cy+OeP{K!B{o&?eNQ-oE*}AzN2^K99SEN{V>(Z76&dYIz&Da zRX<`gnqo+8a9@cX$HPmBX79ZFc%uJnw$6F+;)hFsRNrXhIIqP?0ooS#<8+2NGNQf< zKP80#j|~*pG;vLkCYur%aVh&v4r?b6ot0|8dcMjMin|}g#AQ|ch3RF@Zqq6m0F*I0 z?2U3Bhll?}d0#-j8+F!7Lz)as-XH*khFliA)?*-R`@udrslh1T(D90jQ=X=)^$%p`j;Okz>d!?POU zQsM|WG#zpttHW5$`hipr|fX=P#nvAu>lYbjBn# zs!nH$qS5VP+aY@rJDDZ+^t&WA0!-E5ohj4Z3)As%%vxl%;7kRuC}Ve3F|!f3HYSxs zE|eSjiG-q=2f^~P#2yGdwJ9=}=lCl+nGR$>DOgRu;Ixet-BHEbGG9A{+_@;mk<3Wi z{(wFaFU2Ez^hDRl1xrFC*WKNngprE%#Zzd*3D2;D38C_?F7US4`uF8jGeR5d)2*As zFD$r9BcDV(NbzpHW@^k^JFpMmBBLp)kBS01O9)3HX^#}d+>>UdPFC;0`OI5vnKc+| zk+UYq%qQSpED5I5(VC}ujounL`(4I-Uq`&r^B9lij~)h8UW4Cs;l z5Knw8N$-IgzXVU{IH`uXMclnBKs+q$$dngW0g9?$r*gsRHO3o-Rh4FOjf9oTN84g1 z>aVMV@VPx>Jk)kYaSAA(BIjPY}AGJ|9twCRUh;3(V2nRuOpFM9FkqJ+EYlKeL5V> z)OtJfIw3%?<`17;O6at;n%){=gL?Xyd81Jn16&ssy;CNWOFMJpLY_o#Zk4gv@AinN zzo&mREayRdrXRzf1b>^cS$J@iyiw?d7VR_lgkUWQe>WIQi1L~}-q2J2NKGvzT76Nc zxCMu{wCfgt(BKQ@Hw)z@XN!Fb5cvtkYbLz)z+3^89 zjG^2)T7FL(ZP3*}~M`}vh~U8;{>kREsisI^}5 zlwELdkS_ttlkAQ;#rz730-kNVL+z5KjwbVxlWEWZFw}UoaAr#IeaNe z>?rsrMyqdW8H{TibdT?fd(z{f%hRwH$oIx4=iJ%(>`=fq+@L#W@M2R^>~>xUvyPYA z_w;Pnl-{?Dt6E+hz`i0wc%~Y2FxuHBL#bwI~)BR@z$vZNk~ygp{6=ZRiq z+p#0Bot|jdZhgGjQ$R z`2q!!WsnQ-Lh)~4e{2J|9KHB419AQ>a(WL?cUSTL{_S7Xr29yOiB<|O1?DG%axcne z2$&&qJnccDq_dWsRmgI(Jg8-7R@O#VlCDh5Why^NfNwLfzl2D$4xDuP;Gz){j)p>np5d{Bi}MA|=+=p3>~4zLE>Sxs>t=L;e)hdUH)mAl%j zM6(VtPhM#%v3lkz!cQkft7ng#o_R_$|MqX~gV-^hpRQ?aV6WA#8UE6>XUDnzZ6`OW zJ^A94z=h;r&n`Yy;8VV){k1{;R(IZO?<-@4ugO;)ieM>Tgnz-X8x` z_0UT5lyhd5ir;>C`EBAI!JW0cR=RHvQvSx|cv#6~^N`t-rfdIN-Dalps>XDUXz*~G zb;(4@3G0$ILBmd;T;BP=#O!CT_U>n}pU4?=({%2ssVR{!**egT zHRYbI&mP|BRDEVsmcscRt$-MIyCp6|0wyR*v(IFmyKXgB?80b_iRvmGCP)tG0hOOtQIh7AT^Z8AW^ z;%Lmh3+h!yp7GZo+Z}QCe7b!k=AO4<4?o*}TV;Qx$b*+W4ecK8^Ey6%`c#juws2#8|iuJc3@7X#Qd}C=AYYaBk^mS^siO? zO^fXl7r6v3%6h)|KwC{@$wK+f^KCYJJ|E^{f4MDQd5*Ty1?_#jRipORqkndGUd|f1 zY4L}u^&hskR(4E0uB3naI(=koPvb3j;pry5G)TnOk-A;;Imt&GG*k64kMz`5aUthcR&uFPXx9;PxanbIW__(NoKI{~4$u@tWPV8l**sGk%10i8X zA$(a`UhmyqN7qb%Vvz#3{t$!fz8ct<F;Sv&O_Bu7zLuzNdeX*$(nm_zmjmZ06g~~dXS5zEg z@Z3gavjxmFf#!9)K6_R^|8_y2foSMrn|)36=YE!j`s}~0`V3?9|L4cAeTI7<`RwB? z%yIT;hyPDLd6mYz3@d0K8HlyooIUHu!E<09-Wy)jn%T?8pBWmGpFQEv#`gVc5w;;{ zu^(3Oy?yYWAIGNri78g62^}Wt$F(#5NwdfN{Q2W5o@NR9D{+2t=wD6Kv!4QtcKEG6 z|KHz&-t?cIWVd7@A|hz8vB=fTqrcqb=NVq2uzR;P8NbEGZh(YpXGK$!ZrrCQ7yHV9 z|85eQwb8nvprDWlP{Zkisjd)+SATzT{bI_=mXd^B80o7uCz9=Az4@DuW6bpruHbmssH-5adr3E-eNzY_sPb>bSCc~0*p#!Xe+f8LYcyB>;Uk1UA zjg2B-E{GtU?ZE>fIC3fZd_RA_!SUnaT8@g!%E|$#KnDf|6_$OGiRPVA@97b5krEPx zCG!C8EvJh>7VjhZT*#KLulf7V**c=`9lUqA;F@|=e0;n|REC$Amq_4`=Xx4LP+>L% z?AR)RI$R-miUqgki9hU_{$pLwd%ePzDkJFY5I$xNrc4{E^BZ#&eS$2qq##$P;^^oo z<#6m=cYQ#2cQJ9eIIVe$Ab69};NC+~o(RW+2k1>v+cK-OulfscD+&nx*@Ky9j zlhsCymR8B^iNfq)bRx8(z`JhuCpRo!r8V#A@1tq1<7q@kH;_?LRaNEuV!q+ovtqO_ z=Ul7UI9g(RqwHrBQ`17cul_dIskT-D#XfN1-y!kK#|tg|Bp7W|UdO$CzNd$WK3X+| z?M3pZD__6XRM>W56e-b7WS9PyKKj6G3=S_Mav}!LA%>z4VOxBodAkdi|9x%YQ5e&g zD6uBJMnxYK)QVf}JbXRFd(qkMf57KXW~OXNNQi-!D8aWC)zxY^5~?J!^3Y}e$C1!k z6|NBK&~eYH<4~BAPYeW3T_iNt}p_pXH=N1>#mh>T1y z)L$b!KFNqqK`QDL8O9YLkoN`FWUPS|skN8<)QFV<8hFK0%gV~k8Z**8d{?0swjm|K?QqIf@0k}NG%pRUHt zt&@|J2H%Tap7f`dJ#voovn-w*h?d_Fv3cB4_md;itx0}0-6uTl14aI|iVy(wZoyz# zu?5elIk#ad%)!B-;A>+x49waLduxm^bRuXd*z|_75on6s`cuLAoYrH!2!mz9RmHuPoHjMJ~OTrD;j(9l@zU@kM95J&@2|Jk|2v0E)9gY)ae3J*#MM}7vMi^q^;+V}XaDqo3zfSKB z3HS;|tWre4lis?u@R1>gwnd9`kE1Syk)hPIR#V+^4Gm4re*}!;b==RsB5BoPiqO<7 z4taCo+;L+B90=%R9`*sMY5~Bq0jGG3Izyp=V&Y#9_bsr8LTDJ5bTvFl<7vf2IX>0h zGqn+gg?~gk8<1y&E956DW=QQFLks+r?!EiJshDm^;~V z&SPg!f@1e!LI3p-0O6Z_zq`XA=)t zSXgj=;ijmruFknyadz@A5|Na=Me!fBojicezS9$>(>zZW#P@r(;2b53q$p%MvB1gA~wCb&# z_5*Ykh}c}9@NzjOeG>F?Fi6Qpa}*i@T8#KtK=KoCfuyYkg(4y%KJX$jva@@{6Pc1CPH=;UhDHI${FBEu1I`R2 z7+AGDfzP8A@GE~yi~|wOJv_r35#MlgaTP#YydefMx+Il=2KyY#et^ntxH%;wqqavZ z$^>22aS`#GUwoXN%nzGT1g+^hxeH^S2;~ZELe3T1?~$)L5m9SXm4oIkNQ;Y$6H%Ia zz;@XE_5mMKb*3Ies(Z>ze0(ki9Ro%&AACqiHG%k4kl$q#(^*(wYupn#GX8~wV4uUQ z=tJ7A^zPKxw19~q9I+YMp21i9ZYxFl0QbH5*YXdnz6j)nYg;ngm7DwUQy@YcfFGzJ z-ID$1kjL^(jk|`-6^`;` zIBP1=Ak>e3Ls|^TmPKy7w)Dm)18$o(uY>!SI=e`a`yE7U_WA^)Kv)Ysk<`--8ga_6 z0J;gb}6| zuM_g@*|Syo*;Ad_?__)IRnygg-Jcmjh%u{6zK07#o0w3@X9M1ipW|tke)4xA{zYYa{m%Z$RpnbW~tVN1?jFG?Uh9^`r6M=e)tguEG$IVZd z&<1Rze8^k9G;FFpY>grT#?)QXTJSUWB=((}O@Y_1U$^qZ*}q?~ASyOCmgftb>Z+aC5qyfr zi!oFH#u2K;NepS5%{mu6thdugo@i3`HBNb+DLr=_)-TR3WRelp}L zQAR&>F!Er2N7VyS#C1I{sWntsPCtkN_fisr5iE(r$hFa%?0=wPU>L>HuyHL;?{pNo ziFW#r>;~^N>JG%PT7X;c^Pv^fx6gaj-!t5jvat4^9^qzvpF#z66+2TW8)YJY&bP?( zSJyfAk69aO_QJ0p8^d>GljPGvm?t`#3;Z8TB2s~~au63p!Y#n0RXOL_l+TPgqF2z2 z!QkknZD9JJm$(b;iU?g;w`~qR&F-_dD!+9Gf)%ap}>x^gi+c zahfX2CVy&WZm(MDR)>U1@J=zquwgEd%_I?@A39CAj zXn#v(On3-f#N~4u1v8^hF!m9&;VPhwJM9?s{yxKb#R`piA5USk-AAi5Eh|INaJk{_ z;o>b@V$?=NJJB4&_6)vO@W+6wtd{$+TJ;+AgJ@4hq{S>^My7c%8vFP1IYkh`(8Qj)3 zkONmgoVR8TX_>cdynLqAogwmfrRsq8;X)ZQL?Dei8OW#EqmW;a;!F*7l+R$(7CeG9L8i=qR~#fNElr_XW_qH(y}dmjLkqc8sb8lap?4q;2qOm;+RZMGvyse& zW~x~}iK^fw-w@J6UYUdjOcF?v`tx6l3O-p1Dfc?Oqd;LiFeb5##E&PYdZt}CRrA2v z3;~g1U}?@;x!x;8@-%STlQmWq{|+=wTTan$Q0=J7Gl&2MbmiKRvj;i(&f(sra8>y^={rm5~|Blj-=j1S~ zkdjdDqQ@&Pq_6?G3~2Gic#%*-zK)>LmJ;u54wUamT-3pP`gV49VY>YM{G2>I`;g0# z2@L&atM;!qH$ec6R`>Sq?h<`llc2!B^6KgvLqkJYsR%0=P0<}sA+;%xo=@Rn>Nc_{ z5Hu9R|CB^sC)g}GUSo;fn=_V)Wm#OK|0oeIm<2IeljYhflZ~GQXXJLLKEs^;zpcFg u&&gRY=6@bL>p}cCLp}dD4LF|(`3 Date: Tue, 14 Jan 2025 10:25:41 -0500 Subject: [PATCH 09/17] One more small edit to intro page --- docs/guides/qiskit-addons-cutting.mdx | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/guides/qiskit-addons-cutting.mdx b/docs/guides/qiskit-addons-cutting.mdx index 74cdd653fa5..59e59c30d53 100644 --- a/docs/guides/qiskit-addons-cutting.mdx +++ b/docs/guides/qiskit-addons-cutting.mdx @@ -5,7 +5,7 @@ description: Overview of the addon for circuit cutting to build utility-scale wo # Circuit cutting -Circuit cutting is a technique to increase the size of circuits we can run on quantum hardware at the cost of an additional sampling overhead This package implements this technique; where a handful of gates and/or wires are cut, resulting in smaller circuits that are better suited for execution on hardware. These smaller circuits are then executed and the results of the original circuit are reconstructed through using classical post-processing. However, the trade-off is that the overall number of shots must increase by a factor that is dependent on the number and type of cuts made (known as the sampling overhead). Circuit cutting can also be used to engineer gates between distant qubits which would otherwise require a large swap overhead. +Circuit cutting is a technique to increase the size of circuits that can run on quantum hardware, at the cost of an additional sampling overhead. This addon implements this technique, in which a handful of gates, wires, or both are cut, resulting in smaller circuits that are better suited for execution on hardware. These smaller circuits are then executed, and the results of the original circuit are reconstructed through classical post-processing. However, the trade-off is that the overall number of shots must increase by a factor that is dependent on the number and type of cuts made (known as the sampling overhead). Circuit cutting can also be used to engineer gates between distant qubits which would otherwise require a large swap overhead. ### Important terms @@ -36,7 +36,7 @@ If you wish to contribute to this package or want to install it manually, first ```bash git clone git@github.com:Qiskit/qiskit-addon-cutting.git ``` -and install the package with `pip`. To run the tutorials found in the package repository, install the notebook dependencies as well. Install the `deve` dependencies if you plan on developing in the repository. +and install the package with `pip`. To run the tutorials found in the package repository, install the notebook dependencies as well. Install the `dev` dependencies if you plan on developing in the repository. ```bash pip install tox notebook -e '.[notebook-dependencies,dev]' ``` From 9d719b4d7704e9c3fb52f1c2ce64ebf7bccef924 Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Tue, 14 Jan 2025 10:27:28 -0500 Subject: [PATCH 10/17] Another small missed edit --- docs/guides/qiskit-addons-cutting.mdx | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/docs/guides/qiskit-addons-cutting.mdx b/docs/guides/qiskit-addons-cutting.mdx index 59e59c30d53..cd08bef5cc4 100644 --- a/docs/guides/qiskit-addons-cutting.mdx +++ b/docs/guides/qiskit-addons-cutting.mdx @@ -31,7 +31,7 @@ pip install qiskit-addon-cutting Click here to read how to install this package manually. -If you wish to contribute to this package or want to install it manually, first clone the repository: +To contribute to this package or to install it manually, first clone the repository: ```bash git clone git@github.com:Qiskit/qiskit-addon-cutting.git From ec4f475cce0311046dfc8f8d3f591fc21cd38ea9 Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Tue, 14 Jan 2025 10:31:55 -0500 Subject: [PATCH 11/17] Apply suggestions from code review Missed these on my first pass of the review comments. Co-authored-by: abbycross --- docs/guides/qiskit-addons-cutting-wires.ipynb | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/docs/guides/qiskit-addons-cutting-wires.ipynb b/docs/guides/qiskit-addons-cutting-wires.ipynb index 2c89f64a743..71e5dca18f3 100644 --- a/docs/guides/qiskit-addons-cutting-wires.ipynb +++ b/docs/guides/qiskit-addons-cutting-wires.ipynb @@ -7,11 +7,11 @@ "source": [ "# Get started with circuit cutting using wire cuts\n", "\n", - "This guide demonstrates a working example of using wire cuts to get started with the `qiskit-addon-cutting` package. It will cover reconstructing expectation values of a seven-qubit circuit using wire cutting and reducing circuit depth and width using gate cutting.\n", + "This guide demonstrates a working example of wire cuts with the `qiskit-addon-cutting` package. It covers reconstructing expectation values of a seven-qubit circuit using wire cutting and reducing circuit depth and width using gate cutting.\n", "\n", "A wire cut is represented in this package as a two-qubit [`Move`](../api/qiskit-addon-cutting/instructions-move) instruction, which is defined as a reset of the second qubit the instruction acts on followed by a swap of both qubits. This operation is equivalent to transferring the state of the first qubit to the second qubit, while simultaneously discarding the state of the second qubit (as in, the first qubit ends up in the state $|0\\rangle$).\n", "\n", - "The package is designed this way primarily because it is consistent with the way you must treat wire cuts when acting on physical qubits. For example, a wire cut might take the state of physical qubit $n$ and continue it as a physical qubit $m$ after the cut. This choice also has the benefit of allowing you to think of \"instruction cutting\" as a unified framework for considering both wire and gate cuts within the same formalism (since a wire cut is just a cut [`Move`](../api/qiskit-addon-cutting/instructions-move) instruction).\n", + "The package is designed to be consistent with the way you must treat wire cuts when acting on physical qubits. For example, a wire cut might take the state of physical qubit $n$ and continue it as a physical qubit $m$ after the cut. You can think of \"instruction cutting\" as a unified framework for considering both wire and gate cuts within the same formalism (since a wire cut is just a cut [`Move`](/api/qiskit-addon-cutting/instructions-move) instruction).\n", "\n", "To demonstrate expectation value reconstruction after wire cutting, first create a circuit with several non-local gates and define observables to estimate." ] @@ -76,9 +76,9 @@ "id": "34609068-25a7-4aae-b786-836984d305d2", "metadata": {}, "source": [ - "The wire to be cut will be made at qubit $q_3$ by manually placing `Move` instructions in a new circuit with one extra qubit, but for this to work properly, it is important that the second (destination) qubit share no entanglement with the remainder of the system; otherwise, the reset operation will cause the state of the remainder to partially collapse. In order to avoid this in this example, we will include a second `Move` instruction which is reversed.\n", + "Make the wire cut at qubit $q_3$ by manually placing `Move` instructions in a new circuit with one extra qubit - but for this to work properly, the second (destination) qubit must share no entanglement with the remainder of the system; otherwise, the reset operation will cause the state of the remainder to partially collapse. In this example, you can avoid this by including a second `Move` instruction, which is reversed.\n", "\n", - "When adding in the `Move` instructions, a new observable should be created to account for the extra qubit wire that was added. This can be done by including an extra $I$ at index $4$." + "When adding in the `Move` instructions, a new observable should be created to account for the added qubit wire. Do this by including an extra $I$ at index $4$." ] }, { @@ -126,14 +126,14 @@ "metadata": {}, "source": [ "\n", - " As an alternative to working directly with [`Move`](../api/qiskit-addon-cutting/instructions-move) instructions, you may choose to mark wire cuts using a single-qubit [`CutWire`](../api/qiskit-addon-cutting/instructions-cut-wire) instruction. Once the subexperiments are prepared to be executed, use the [`cut_wires`](../api/qiskit-addon-cutting/qiskit-addon-cutting#cut_wires) method to transform `CutWire` to `Move` instructions on newly allocated qubits. However, in contrast to the manual method, this automatic method does not allow for re-use of qubit wires.\n", + " As an alternative to working directly with [`Move`](/api/qiskit-addon-cutting/instructions-move) instructions, you can choose to make wire cuts using a single-qubit [`CutWire`](/api/qiskit-addon-cutting/instructions-cut-wire) instruction. Once the subexperiments are prepared to be executed, use the [`cut_wires`](/api/qiskit-addon-cutting/qiskit-addon-cutting#cut_wires) method to transform `CutWire` to `Move` instructions on newly allocated qubits. However, in contrast to the manual method, this automatic method does not allow for re-use of qubit wires.\n", "\n", "\n", "### Separate the circuit and observable\n", "\n", - "Now that the circuit includes `Move` instructions to represent wire cuts, the problem can be separated into partitions. This is accomplished using the [`partition_problem`](../api/qiskit-addon-cutting/qiskit-addon-cutting#partition_problem) method with a set of partition labels to specify how the circuit is separated. Qubits sharing a common partition label will be grouped together, and any non-local gates spanning more than one partition will be cut.\n", + "Now that the circuit includes `Move` instructions to represent wire cuts, the problem can be separated into partitions. This is accomplished using the [`partition_problem`](/api/qiskit-addon-cutting/qiskit-addon-cutting#partition_problem) method with a set of partition labels to specify how the circuit is separated. Qubits sharing a common partition label are grouped together, and any non-local gates spanning more than one partition are cut.\n", "\n", - "In this partitioning scheme, we will have cut two wires, which results in a sampling overhead of $4^4$." + "In this partitioning scheme, you have cut two wires, resulting in a sampling overhead of $4^4$." ] }, { @@ -208,7 +208,7 @@ "source": [ "### Generate subexperiments to execute and post-process results\n", "\n", - "To estimate the expectation value of the full-sized circuit, several subexperiments are generated from the decomposed gates' joint quasiprobability distribution and then executed on one (or more) QPUs. The [`generate_cutting_experiments`](../api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) method will accomplish this by ingesting arguments for the `subcircuits` and `subobservables` dictionaries we created above as well as the number of samples to take from the distribution.\n", + "To estimate the expectation value of the full-sized circuit, several subexperiments are generated from the decomposed gates' joint quasi-probability distribution and then executed on one (or more) QPUs. The [`generate_cutting_experiments`](/api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) method does this by ingesting arguments for the `subcircuits` and `subobservables` dictionaries you created above, as well as for the number of samples to take from the distribution.\n", "\n", "The following code block generates the subexperiments and executes them using a local simulator. (To run these on a QPU, change the `backend` to your chosen QPU resource.)" ] @@ -254,7 +254,7 @@ "id": "adbf1366-7f9d-47b0-967c-d26feb4bf7b1", "metadata": {}, "source": [ - "Lastly the expectation value of the full circuit can be reconstructed using the [`reconstruct_expectation_values`](../api/qiskit-addon-cutting/qiskit-addon-cutting#reconstruct_expectation_values) method.\n", + "Lastly, the expectation value of the full circuit can be reconstructed using the [`reconstruct_expectation_values`](/api/qiskit-addon-cutting/qiskit-addon-cutting#reconstruct_expectation_values) method.\n", "\n", "The code block below reconstructs the results and compares them with the exact expectation value." ] From 9800fc79f12aaf9c721d10f11f50240806b8de0b Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Tue, 14 Jan 2025 10:35:21 -0500 Subject: [PATCH 12/17] Convert png to avif --- docs/guides/qiskit-addons-cutting.mdx | 2 +- .../qiskit-addons/circuit-cutting-diagram.avif | Bin 0 -> 11105 bytes .../qiskit-addons/circuit-cutting-diagram.png | Bin 56729 -> 0 bytes 3 files changed, 1 insertion(+), 1 deletion(-) create mode 100644 public/images/guides/qiskit-addons/circuit-cutting-diagram.avif delete mode 100644 public/images/guides/qiskit-addons/circuit-cutting-diagram.png diff --git a/docs/guides/qiskit-addons-cutting.mdx b/docs/guides/qiskit-addons-cutting.mdx index cd08bef5cc4..1a993d3da9c 100644 --- a/docs/guides/qiskit-addons-cutting.mdx +++ b/docs/guides/qiskit-addons-cutting.mdx @@ -87,7 +87,7 @@ Additionally, the home directory includes a subdirectory named persistent-volume In the circuit cutting process, there are two types of cuts: a **gate** or "space-like" cut, where a cut goes through a gate operating on two (or more) qubits, and a **wire** or "time-like" cut, which cuts directly through a qubit wire (essentially a single-qubit identity gate that has been cut into two pieces). -![Diagram of circuit cutting by taking one larger circuit and cutting it into two smaller ones](/images/guides/qiskit-addons/circuit-cutting-diagram.png) +![Diagram of circuit cutting by taking one larger circuit and cutting it into two smaller ones](/images/guides/qiskit-addons/circuit-cutting-diagram.avif) There are also three scenarios to consider when preparing a circuit cutting workflow; which center around the availability of classical communication between the circuit executions. The first is where only local operations (LO) are available while the other two introduce classical communication between executions known as local operations and classical communication (LOCC). The LOCC scenarios are then grouped into either near-time, one-directional communication between circuit executions or real-time, bi-directional communication (which you might see in a multi-QPU environment). diff --git a/public/images/guides/qiskit-addons/circuit-cutting-diagram.avif b/public/images/guides/qiskit-addons/circuit-cutting-diagram.avif new file mode 100644 index 0000000000000000000000000000000000000000..f9ad428fc54f78c5360106b7e5f008a020332035 GIT binary patch literal 11105 zcmZvBQ;=YR4rSZ6ZQHhO+qOAvo71*!8`HLJ+ub|!-oDzO&8P001~< zE}jmCZkA>Mf90RGwKQY2wKV+80n=?wT@3&E{|cdniH*~LApn4brLoKZ@c%5FgQbh@ ze+b}T&0=X|Z~Tvm2mk>6ef|ny7r?*BKjHZ=0(||Shtl$|m&4N1?muJvCm;1MG5v4h zzrh$7{}ui}=ikWxoGX?NP7Z&A^_C9C_J1w1vAvCxow1F_-?zg8fCc<@!5F$R3J1dA z{DlB0md*~Q{{R30EH(fDu z1DCU>vx}*%GuPi7OB+i=Cr>Uz8wZR3tm*%Df%#YZ|LcPAzb?QK5dZq%SvuJMZ@)kQ zfFOXO;1B>nAVI(&A%CM-mQJSsUB}<~{&utZyB5HI3!|*IH8FHS0)PU?rgO1&*;8Pm z|4S$Y9&Zu0>d5VWE7Xjw^4&n){dvrg%{By1_@Gr>2^Fn==W7hc;Kr6I$ z`7;DZ!+|tDg_AEfLHycIw)=)l#L2)zTGMIm6k67GSbfz&4C722!$x65H^?^wZlHrx!!{yukDciDHv~~>!?_88>c^^Jc!-$u5uxZx=Rd|)@cVD zW}U@}+hCY(bdVe!KR*=p3FTn!P%Y;4-Q6MiDao?9^$I<8picxlLvlEu-lA06VQ&4O zJii|M4X&NX#5&+6MG<#yGgs8=rXgrM|6Oav`Be27?CH*%J+d`B_;TRJ*}J#VpICq5^!8!cPvz zQ>bZYIIPco`n%TXaCX8a2Owv;I#=@Z!gom<6mhj9oRvI3D@zWllr;*A@z3P*m;}+c z%1*2wYrqzw#!VMZmcjNXf8nOB#on(ab~oBNIwNpOX@ivpAapYw-AuR5CFh4LltE-3 ztCV+{0ayp0r|C|Ja`HS(pvF)C5WvrM|7fYsu<~D)!l0Xllw5we^=50Wfp&Ms^U0{+ zFJ9OQD&oP5LWU5-cTXsc<##BHR8Jr}eH<8@57-w>-pfXg$XjcIVuUHFZ!F#s#9(lI zn`MOGn`l<0T|-+#Lw45l#STSLIp!r}!Y@r(4}@!jZ0C>g1o&M0il10=tHQbR19c|& z78J`VL2Tk6P1pJ$whEb|ZLeC&e2$%)Iii+T{=UY&sNY|yKEy(QExpxXtq7nzQj zBqe$4hug93SP>fGdJVme=&9#aSx}r$;4Sw}01B9T&LQP&>K*%2&FJ^OMgBOt(neH0 zG7IR4D1LeK$nvUoG|T77O)yUAp+E%wGUZH$CdcaOv12_692ta;NUcfq*X__N>6mc6 z%jfx{hFUj0!I#c$3$c+h2Pp8agHxZ5l01|0-tbvaY$<9`*kxGrh|eyk+(RJU{_NKA zyz|@xMu~&UDmDVqY537ov8C40fj~Opm|G<7pTJ7Krz+Tz?TUJl^=rg9PmJ<$D_iZ@ zETBOQr>007wRxqn^Bi###ORJ+Qr7Ar34a>Dt`ofdi)%qX#=MDvM%Mb-8Cm(IhMva2zHlgTtEytpg)l#3TGn^}yT5rJn)KuCO_{;U zgOfixg%a$EGMpREtc!l_;3(7UXn^!yLcSp!Xyb2%uze7Zc!YfIyk9CZI8NGk zG!cjz3>CIetn1*Hzl)JxLOp3Utj+FV$#=lqbzzuM&7hzVD&o9PZU!}Ea+?u9fb&kY zV@;B_SUC>`&Vo_2TM^jWyDzVzV8x<4u{*eU)Jf6Load-T2cCEt=p54n z$muNtLp?h?Mz-I|Tdum`V?C+2!l*^djM1NQpT^<_N!^q+6Qg9d;R5k_IzR>>Gqz~U zdbh;0((iQ}V`3P@R8hk+UUG&We=ox73{0n?#Wj$8%GtDp#%Cn$vL(5h>lmvk$As=1 z6Z~e9Rx&vy#;zQ!6({~l>ziDCxhWPWFs&Ueq!iPbNoCuJe=AzFR$Be$(dt4wV>rwz zpaMa519e#n;CJ9(mZBPUCUbfg-23+Ox|Rbf_v_?G+ULDDY0_kr0XbvOuQ2$sbM-`- z^+~N-GS|>AoyE|9RypeJV@(HN?_g~bA~Pe=%nW>164uWTL(=*C9eZ%^Qj3(5$tJ0S z(3Zt}T?L-CTKtT6=}Qm~W0QEhrIS&DgWwd z4}!vEg+lZ6fTE0J%6x5V*A-w>zi|f~O}5o`*2#&-4QvpkAm}d-wloRS2rPcU(NF!x zQV=EUvU)E<;ZuUXF7+0{iYB$Coteko6BOK$CFWl-J2t-kC*7UJ8{d# zcUhlJjBoEA)(S1>EZRQv>f#=&Pzo)^Zh#~m5(NR{E5;o*QB(CN4hqN&u80Me_L2=v zHZ;kpfI=&IpZ)^PH|Q9WQO-~M;x#z88OqIzc1H(db?Ml`$mH0C@6}y4`q*QOAhFwu zB`{8ZIHMHwD*MuyjbCeE|wSi|kAB1ydmA^l0 zhD2fTlyVyOCDqTSp;P*M_p{0ZN3O=Lrb;8rH3x2dx7C^(n zh8PJNNsCi3VZ3kasx+`d^yeu#E`)rFPJ|XDt0SJG;`Z3O3k`bBOQrHh9Vuyatymop zHI0dI{qQs6IKGk0o35KtbGT1_GXsWPVpUz)%wopvHbNfZ`KYhyldih>hmiu-k89k7 zmG?JKT`C>)eHWdK_#7po%iyrigKyq)%(Y-Z>X0bF)hn%tyQ|v=mNJi5)CTe9m;+*5 zdD*8Rj8;18?j0Uxe8f54Bl!B5F}JK7T=@wJGQTC@d>LF@@3J9i4^&CMM=YoW92vY> zB>X8T(V8X?DrZCLAkYxSN#p$ z=w(Rk^6*!{`fcv#hrTG2LuejGKoihY8 zxtzIeaH_>C3ug~wCfdiFbq)_>1W!w;Z&*)*}En=5oa!%7%(PHjeD-B5a za5&M5zH_u*x!-tL(8C zSNJ8fsY3}gY~EW;7`j5tMjs!>Bt|1H#M7gP9-jn?oT2m#C0n{KFwC<~59nUIgK|@R zU>Om^&4_S`+GS+aA%V$#RJ~Mxe8DD9;4hN)%mKeU*)wek+vn;*U`l>2BWWv<%<5cj zg)`@Ibv?=`&hR65M4*taoEbGXFXpN2oU=lqu zW+}X!8K_gA)lgK!o|qxmIEd(3gU0KqVl8y_(o5t=8FRCw2~`f?T0Sfhj<~9{z<0T= z9mr%5a4oQ6yy(!dOTj%FR|Huu1w=FA`zHRU`li~h<|OrX-|i5RM1BlxtI~! zEd%cAiOR0_^f~Jx!3nM+o?a@xkAXLo(@X3&22mZhkg9PdC`# zH!U)Zw-=1Y57a>DF|tK;*gE3bSr0A*3aXc;qTv}*hi7@EKXm%b$=>n%HKW!g&n*?f z9#SzyL0mKPGU&*}A(50IX36Uq3T50pFCcWx4UAzFyrB3|vs%$e`zSO?6OEbz-s!uDNmfRuH3mFrXfdO};7)c%7FC-pxo2#N z38F=j4$}u+V?KKIw+)&tMv07kVXnD2`qpt%YWJW*>H9o6F9_@F%EDPykjC$xvxm-o zY0uI7c6{8|^`Et`%zo|M>1p8pBQ(UwanfgmG+5|}32^XRZ&_+WW}~511r#s5Kk;!U z1nN~~1}38p)MtpZT?Yq|vV`h{H5QiJFNcFs$k#gR3|K-?%PMZ*ryRJm3UZTzHBjC z=Cw5BFOnBb_x1ZFgMb=4VaXESrkX3&kVX60n^)YEtv#&NmQpDc$#L&Iw@=s*d zsa~*^LQF9?ncEKZX`$-8rf`SHp8Le#8pOXe1iagODF*hmfwF4(5~-)<>tFy}JhoL= z;~KGrI`G32&tzc)VWoLmB-n*{4Cx_g#k+`pem=5S&|)g(@uwx*8=v`q5Si&sBoZiA zw8B7niuljun5@tRh9M|xZX|yG$(J}(BCYkJx|ge>;M|`DUT|W#`KY-Q#4mfWdprP5T zjs&NY_Jl zPblzuU0gOL$W6j3s9$_bV}bThxfV_mTw^)wy%^~GV&Xyd&HkyRn8xYvpM4h;Otj1L zR`9hv+js~Vg%L{(CB5(RB&Wl2%B54(L7%r$qYeb`Ms}Alh%1~lC`6@l+%i(QbbNT< z=p@s+FK<(HkcD3QG}g|0zSL*jXwOqrgf|Wp5>@gEk99O1h!0bv{uwTBMoHo*tt}^+ z2#NypX*_79R;c`B+=M=vky4f2wbLHA3WMHoYzdrr4ybf)xMZ}q;b0*16ap}B9dO6N zx7+W1&~z<4?3D6Z8P~T3VKq|%r^2)e0Pq?Q>-3FwN+SSYSyG(*PLe^4$xw+E!Zd=H zz6^;6YmlTDEFOy|a9W{EHeO&DsWyc#2oH^9B(f}I+vAo;wF?iDI%Dcc#NUhv zzhxpFFYj@KeaW`Uv_OKFk983S!3}`!{Zbzz9BM^$D?8)l>dFI$ z!Oj;;)NU4fAn!!8&b6Ey5LLRR${wShMEw?6Mz}g8xzGdopz`dW?H}6l-4T&g?0T8L zs=5{C@fz!h|MbA^#k9wVTp7csb@*(1ONmc|rUF&75{!rUM2Vxep%E+dGDg0B8aTxI zd63?kpHZ(#Trw%LkGR*p4W+#Nnm%V|q8Nhe`~*e~Q;77y&d_X_g!HJ)EU$2E-LJcW z6a?k+rN`(eg8YoBdOt8PKbaAm+Fe~+p>O|~3?WOWe+Bz9sPOkrrq81kDKUw*n>!68 zPsJ@Qb{G_5By1*oh(yP*w>w1n;GX&*n$uVKv)eRA$tIqP%XPJ(a_`SZ1jSC|x>4_q z4xl4~r|8GO`z8-`;=oMFeY&l93zj#P#`LJFzt@Wu))U-M8UFGe7?s9C9`k3bG(j#p z$IkrKK%m;(6>u5bG z%t&Mu{N;_A10sI&RXm*Q%gkLPz(2eUP#)o5-yfyyVMW18*Rd@xk|NJex9dC9q%<66 zKp1#317z???~-IVn*j6o%=9C@Hed4MYy|asm1u}UMvjf_?~TluA*lV{eB8-{;G0_^ zg~$Ck;Ds`VPeegFI^dg!7YxaM5I$gM5NVV5P`yg7 zGlr$wcQDn)CBmrS>d|JC)vXV3U6F|JBt#Y}?3fQd468=4q;Eg8s~3PG$i9i<>n+lx z8b*dzT&(AqyVyr?dcGFOP}WD5S_QsHdZ(YjdrP|sUE~)AbRmI&)n%zrr<|o~fXHI6 z?0AvonXWud<|UW#VpGm`I(i(vQmO^`-JLCa06;FeVE_DtRl!hLEqhR5EV+vfQ#~IV z&W-LyV96L{^5bzGZyp`|G_EQ1xY|ioeG(Z(mI+6Og7z1(Kr{w;Fr9)Qp z9CRZmi5Du_d`+gAp1nh&V7NsJcEr*Ew-b#BNV)HR905dOHWVd^kf#(nwceDp&$en& zIv0d?zAb*JUk31u_Y8HqQlT|#0;?}zw)p1>hiTb)XcXizml-=VsVfzmfxls}sM{a< zuB790CvH85#ccZ}yU=s%Eq-=AXb^@YOkf)Gb!QT%iInI}6t93`?nCxjKN2Gsz0|G;x;2hlZpsM zgMhA_nX|bA8Vl|8PNR{%4Bht1$*Tp`9=o>;-GB_Sy#gG~ zr8>x(8}Ph&Wm!BQc4@_W4rchm-GmpUx`IkCUXL|2oAOF($2q5@fLAs&4Ap zFlfHkU|j{Sw7njFiy4kbyVi0;;)O!SYB{9_NBTXZ2ZpXM(s>YKf4DHvqX! zuVAmRW#5+?6SU`&F@+5M)ukJ5gT!3G|WjC#c5%k7N&xbe#snj4Dr?iNRg z0~7#VWiIYHJBgShc)A3l{R^0gg$GSVjanF~x9h}ryqbKK3h|Cmv7nWePda??Y_k!L0!9AH8)00|lX}rnW~S>6DcKQO|LvX+ zaS;(KJeCKDWP}z=R)xkilMyoWS^&A{Q;P^D`%GNFenu-a@kUEQ8hc-q5jSiueN8!@M>>1xikYwN z5vVG#WS?@_d=pB|;L zs9*OtZ(>JzOM3WD!2TOIK5ng)$7u*`OjyV-Y{}SelySOsrLYx zqUi=3VxXe^Ob3j57CaVZ%gnUN&}*n$(-{GH|7qm}C+hF*Q+ zuMZG!U+&RHCOeR>&b8es+PLHET1t2*| z^7~=PYjka#MQt2Jq&d%t5D*kVYpxc)Lnx_wCY}@xT05u)#sryI`T{o{R(`~$p0Cf= z(m7-GFv%&idn_|14`ed>!YG;F&2WWVHVjtj2}(%-)bTDmUT2@xkY@w6&OyWE^-4hB z{yn}4ovc}5i`Y|m!g5u_&!yv)h|w86zK2kx2lp(WHy`>fdpq@|jup+PUfAf{TLwgI zAanS-;Xo7%iANSv*F_S~ghk;zp8T&mMsOq{^)5a8!WPu#)xipOp4#{AhM1zzvm~8I zYYApeMK2-DG_WUtWe3R@v>vrROffyBtaLE`lO7d{SnN~aUi}yj?l3Q?f@;*Q^ry#E zuHozD^v+VYQyRIEdrC1MpKT2ACNjc`(&9i=XP(ui#F%{+G@aMTQ;pTMA4r+!!WclR zXAN7@88#qjbx7@}!+Wk@3)h4@vE+|iqceLcf*|zqI^>%~>A9wYs_{~)ys@CKzCrjd zZDeg&LuyhA4mLV7ob#oZJPKl&uisjPuPZ0{dx@yABgoqKNFf-cKzyV*der{AQXM5W zl6cEQy04v?oSmFsIp-J0>Ys~U2b!5sDrdGXXj&yiLTkBEzNb-GWiebeVm<8lPFS0g zjJ3w*K9L$}OmeEL+{?;31!t0jzUve`bqTM`Mu2!7Hu7AWYroGQlB1&3PtJ5xCyQ7_%&QI*ZozN4Y=!ydnjmwWjyxLj8`E|O6dCbDzQjHW zYV~K&(f6%lhscr?`&@oa3t+0vgwP^qlfr2hpytuL_%B)L5LMmI@ZX{X<{id>nhqq5 zqfz~i(;X3T4)%aw) zf;d0mhiybOJ1B;Nm`O1VOeoNk7chDJt-QDmbHiK4fd?4%2+N!Fj48~rNlj5 zBevLa7pD+%{4&A`a_+juPes^wWA8q=9i04X7E9qKC}X(#H`f~yxzk=}@ed6exgWnF8Ub4yf<<{S!^(6lxd;-$W9^X; z&4Fm5CJ~?KXnTgcE;rCg)Pa4lw)O%YpstmQ+NDCAIU_!fIdGIjn~3vZIEb_zAa7BK z8my$8N~W_CNbQ(f03XOGIDc{}X7P*dg5XhHQuTYcA+Q>LW%m1ASoMbmf2`0)&V4kC zn8W$2So@EaD|JXe&S0%DgGqG^FaFSM+F(=r@~2n=%yx$PP$u$o5xnC#EqWw z@+QJ>%!>85@{{r--1CK~!nC-lnA=+}CnQZCJGMS9=0Hf51-1^sl=W?G6UN+vyQWYywz=DA=sA&9Y7mUeY#IxnsTTf{@j%jmDX$%Xoy7hKsh`Zj2n7aZmnTee4@6fDMj2u~WAq`B4U=Zg z^*a}TISl2W&6{P3>`v3T+7s9mt)Mf@*RN>|Zs9a-ooqlz@)%nR+6w#DzI-x*W}MJy zqa5~68=w-91oR1jC0zNt5c>WpI3Z^pz<5FmB@v0f%ZeU)4IbO$4&F}9&~7uBp%Zi? z?>9hZb(HKUBmF5@+2y_2IFmf}Qm?#QA}s{D;3NNfbs#<`Qx2@R8YbJs0c}=&Tq_Vu z>9L7)qnSWxCOn?ndCgh#FGj?uoe!lt7R$<@^(#v0h4A_k|raRx?O(7G)@V0&) zb4NGeHl)nh_NiWQhQ*M0zLwMMv^YA78Kd>jYbEH$3t+{XN2lVzE0;soRlkm^Ji)oxA6`x@#)pt>#a*RM`(4%ScTv?fKJVmbNeuA5VuK|Ho#b9h3wq*Ojy$_$n4$K$ zdWZBWyX&&|W32Zs6oZyL#?yYuu8{AVG2w<9ki>}|uNdR*wp$3$klotT&iN;Qwd_Z{ zwfE-JaRC(rIA2JGtD*8gBxh(2$Ie8P+gDWrE)rz#fGMwbNWzO;b}x~qA`dx7xWxzQ zfo;yTYoTJwsK4Z;r{9vnxg>CsorG4*Gpn023Zfe|D%@O#tah)*`aPVz{A@%!8RV}v zhd|{C#sRn?+K(@fTOqt%vAv9$T2r@|)?M(q*jnH|#r)#Nw=?3nq-$g|!hc8(s!Ukb zwUCphclSAzII1gP%J?Dr^J{}jr;H=$=z9gdvkz-wkehloxVRp7!l>8B{P}7t8S+D! zXZ1l_gO~MZB)(u=ZXyfsi8eg)?mw=IOmGe~@fq9TOEx4=udKy=-iAnQZh+{nv z)970#k*Qr|-M`i@u34%>K7*}L5&chdHUr!(U-F+!O{2#hWwK00)yZ0#og~;HH$o~v z(Kef1MOe6?8@+E91m_oOKL9mV001aSlO{W|l>Q!1zdtBXVG}uoa0z5<5Tr82Z@R01 zjn6&s8gQsF2@%}G*P)f#?9MluW|@?SpXk`@CV-@ui)G2c5ACi#*0_hbSf z6hVo*Ott`g=Q88`2TH{qobShVffPAGa8AB&m>4Pu`)NR^xX<39CVD_i_|zPZrp{t58TQaA~^(xh;U? zVyV%BtC(!}DKG|LFn;%RYn(JAI-%HKz1JdeQOC>Urbw$kmR~5=pWOKBg&aAgQcP(J zr#~NC20s0j(;fcl!tQg0cI$I-ax|_BoTY}g#}-SJbCgXVU=Xw#XDcD;D@u+5+aQu) zwMBfz<&Ki^Y=Kk5M@j9QR+YB6J6SP$;LfGcN#O@0Y~N4rI*urmMT`AsRvS9_n^W4a zo8Hb6IK|(`7iysZILj;H*l3r6k1c>XkXnfCHIkqy5tM;qN)oB}RCoVfy5X%f@$gi! zc@bd-JaTCaS^>xupJ>$@dXjC+TM50|Do30`IGY(^$TTk2nPIS0t~jnSS7qmMto$Iy zBq+;)6amoE?@Q5Fqe831ONPJTd^~&nt)u0OrqMk0{^oF*9gb1m%F!Y?lC6kQ`0Zyh zsY_Q|4?Ozz&#ZUi_>i*H8VUzT{F}=k*bZ>y|`}74@lr|38?%IbCjcx zdLy>lppOmTN(yxFeqi#XL`KPMr&>Gyvh`UvMk^xf$pKjEm_#_#gObU2u3PXEqojI) z5|W%)O0(=|L|KsXwr_evz=&>kJmVgvEgkef6Ki(YI~2>Rx=%uSwSKR8Sthao$A~Q- u?$ZGRnDs8KiMalvN|Gpl|54b)tB9Y!xFjnKVI4v=x|p83Kpw^h!TldyCi3I} literal 0 HcmV?d00001 diff --git a/public/images/guides/qiskit-addons/circuit-cutting-diagram.png b/public/images/guides/qiskit-addons/circuit-cutting-diagram.png deleted file mode 100644 index 1d07c033f8624ae6fe1420c58caa5fc2e0def6b1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 56729 zcmeFa2~>^y`#!uK2j>`1M}~GKbPy>g?FK0s8bn2gR2nE6grq{zaGWnvb|IvhW;Cb_ zm6Sv6qIu9jiMFXi8YK$>kw zZ#2}MG@d!0!C*|%TdTDR{}X30M!Wqq7N2Mvm%hROem=0))P=#AoKOFax+pstS1^8Y z)i!b6>tyF(vvaQrW0``yva+(un4Zml{Nrb)45i-{KQy@?x%ehT^YijKi$^7GPtz`#M-Oz44)xY?V}lIW+3ZR5{MOgW5qFApHf&h@L?5w{1qcBecWSs#uzWxNYJ=~+JcTc$((7lTLianjMgW7Ri1_#c~m`QYAr zth-dDv*~bioPyFV`^xD4uHq%tnZ~#FHY{Z`_FPod*wm-7`~x?BXLEa`Ml)`DsJ;-l za$?fQHvA_DKF+o)zwxd;HSbXTwh6gIeb2)+tBW`Aht3;6&Zx@1>3RHZ;bV}Rn|s69 z(|B9Q5&oMqUg@WrU6R{AeSNUJ0XICJzZ+Lx96O0Ay3N9ED|7P+(+t~!QR5`ea`^W< z>!xwE?@VQkZi2#AlRJA&_uhVL>=0hvRV{cN|9?dW|G(O(A|hiP7+Ehn3#9^&cHCEC zU%M)Ak)1#C&3j}CTV?$Q^-irbvozH3vG=#T-u}(QeRmxuZjVif^jM_BW?tmfRFr%5 zW%Lhqct>$=YJ0p5v9o?%bk0G4lB7$CLS@2+DAq~2DwlGN8PYmu)^eE(mn_*36Ylc* zoUTrDu4na;jGl)RmgIka^{DzXQ|-geM=eieQ}u1qU*GG<^}n_`ffK72WIfQ+nueVu zBPYkcD7#H()v8sZ)2Hinzb&TspyXPyYFxqDIcutB-dXFE`_*=$gzE2jy}pmn3oEX! zsm7;4^9}q)jUF4Tpj2~b-}B6`Z^P)*>UaZx&B0ew9L%N5dgk^u*hS4$-fO~ix@22& zS!C$jmkl^X24Tw1?a6oJ6-?6)zIk$ag{Oypr24XW!wBZQdGn0S%$TyqNxs;CT03{{ zWbJ##dUnfUDh3G$A$spqw&OtE&C?6T&jsPQ`X9l4sxC91d5;WL+h@F)bxjh>bC~(p z^!DNfU4U1q$#!dJ9ha*;K4yY-RjeLn-F@eA^RC`HtD^xm$0ZLpDzKHeblS86BVEa9 z?;?-x-+Q;|Q0q^OjT=01s>>Yrtir4dMswoC35OrIC!LruL#_J8m`UQw`qK5*a%Q)R z96N8%Ub18fdx!t+Bc0ae=ge*%`iM8(D`%RXA7UwIa(mBKrqSp(Z{Bp$(g$r=Ax85} zN3recjq0?Hr_tK}GK&`ZJ(|3Hu}9B)5gL=)YRS!fUw6gw>p*)dH}dGG)7T@+-H6bd%YiOV##4b|ozDKVgo*Wm$Kei9Xnx*g3Q}2KIr^23^#LF5- z4`t^Vty{OQ1q;cxi}F++J6U2Tw)LK#wx_ZIsx7{*7u3#2@lDCig*mW4&SlHqY27eR zwtnCw{HDVWdBE~dnJioBWXt<%`!ipioXN7^m}HtU-y)?ZeRnaPF*<5k7>&Mq>G2aL#5i*~ zX&$|8bS}@IKYw}Y?sfX1tcCM8L`p~<`}~*36e&)iloYoxFc5<%)cDdkRc`woeO-o+ z$J=Osc|RET6&OxqmJ9dnn#p=xxvDWU%zycF>?FMW=f?}8^8Xqq70x*ulzq5kmP+$6 z7Yq`stb1y*WYx@rRi<_k)37(U_J!fvvic6+%-@#hG4*(Qy?iNhQGZMW;< zKlmH_O4i}NlDg2gG&>~~m$xPFU)(>cAEqp4;pgjnzweo>{QaJ)_qEB}KV)(PTD#Q9 zaGaXuVgIJLDsH{ahx#;ygRhH@w8jNT=j5o{c;RGM!gS4CaqLLATdk>>BV*-I%hB34 z(`;7<=DsuxrrT3f;>RqGORR@+ve`wQvl;5T*B5w}PCjVrA79pUJ!ZD1Ci{*_Zta#0 zTn@Y1m(6l|k)t{?*iFxB-K3@UA*Z{{xwBwKAsscG#G~0c0T`aHv$M0gYo)e`NSbwl zAMMLVw>pc?n#~&up51m-e7ivZ@-H8s-wpih&vAvjgDs}JySt0E@3Q)&Zpw>X6IGr( zd1760Wfd&qEyGF~O-;>g*VbRlHAjx+j0}IPys<5H(jsPZx$*XW(=6^CV$ZNVGUo;C z;`^sJwqb+2xr{#U08gRQ(mc|Ygq6CQPfP8{pR6^o;et8+;}$4 za%!^KZ9j3R9EJTkog8299HUp7N8!&}5;TV#a=v}KC$_91P7vWlT$5qqjM|8~W9e*) z&dyQr8tkt>-0Z1Xo8J2MT~r`kjckDCaQ~6vukUQ$MI0_OiGn$laH}yIugjmV*SE-u zzWnP?#q`0!!TzQWuNmb2Xl}$D8+!VlJL#53YQ$i7ch+uqD)9RDF*q%E$6v=)-(I#6 z4cK!|5W2gySWRQAxxW8pbG-iPT+eShINnP!2pIj-Q#Yt9%$++6mO>TFV1s!>;1zgg z*$F|8au=h_!*R@%;bLS0)Y=k#eUE&~dKaCTC`0abo4K?0 z>o;$aB+#RqWa;3u6^E^ubOXf!Ov&ZpVNw8*lc(jFJ7RxAVO4f`Jpqu zzKA#|bl~QG`?NjbfNM{sZXx#Mmkr(%8U!iT%H(@+Aa&bW1MOBL%+gS$;v&aKa6FRm zr~dHxYI6?uU%>0Azz_B>1awM{C21udlIjQ**l3AxN4m=Dshp z?fMPtmi*I|naE%~`AzBiIzl9^~b{M~1~rEvB>g z-}`unRzGIdpJScBz6mbGibe%!4f;QMQ!Q!Jw4SM z3VlVSt?>%Z2q8EtzI_Pde-CdwWAxaGMVDi21&Ljvl4D&8`%}|ByPP1C=XdtCC)xKP z!_XQT9^z7bcXE$@;vY8b+z)a`fn zirEwfBnL%T(i|mal=)RvRoU0y+&NKFjV1Z`0N$tY=FUe;)3-a_SAy?}I%ni52-Rys z!}ez{oNpLz;@*Tyjv)SQi?#206KutStC2vqQwdj>`8L!s+P(X2YrWdZ$&#U+h7JfY zEqdNpN@LxZz7-DXv(-qiRp&d+k!8~N5G1weY7Q9b7>iS?0Sj?#u~n`*Q)!PV#ZMp7 zi{)`Qk1wAjb)`IA-?*8Yn$rC)EwPGJ(Crl@*c)YS%OfR6kDFXlH1MTEN>a_WsA$h4 zL_^&CsTSi7^d8Pt$9TI}r@vMHHY?9*h`B1Stokz(v2gXd-Y3Py{^MpHnSJNko*Pd-Jes0; z=0<9+noU5Pks#7CZp67x+w=7LllB0~wZ5?nh9JHpxf9~_o(oHloh~)@x!aI^jfg9UL6AwDx9{Dm%Y$ ze-~%7m5H6M4tv*$d`nj=e?io-UooK5Fo??}n|8Rl2M%`M%iQNHHT?M$FNzy`u!fG? zU&qHd4BiiKJ$JqJOKwNrh!+jSv!`;pi)AG4LIP2R-V0EBO>Z*?v$_i zwwSHF4ttfHw^#$xGaJ~*GHgm%2kuGn{fX+;vNAHha1wZ@wuTHl^{ygmax=cZlsK#R zRIG7s*c}`fBfb|ycRLig_d|#!_G`;C$5aDu(v6|bP5A~YO`^q@wp)Gye>tu%VHC)2ify|s?bRPtLdpYit*^opX)`c!p&A5MD`sx)ll_n*T%VXtqUa&pQ+xUsbRCdrUmK5`EcyoNY?B016W^7>e-Z=7N-wjlh#YL55}WgJNzC%?l_7AEAEE$=XQ2O{zT zfys=ew)LvFkIvv3nX@jI9<6bdLcMWAK13ez@#V*N($mvbF=IBJEd>{m&XrpCe}47U zt1#Wyci-J6yr7ygYJ$7cqmJB5vmE9p2h> z;L#*8Cq`!4`0?XgkTyIi(g~0VaW3TujMVHK$ON;_wEN3v%P?8?XV2|^-r+s+jZSrv z<^AlX&k>Kez>1b!z7f!Kcc})RB38#A!Objpycgy&r)!`@vHT1T(q{g1OzgA`nnSJ^ zE?qLVEe%r%oUkP4cbgP7Bw%9LKi6}-;4f`HKD#ZZxK~vWX{7H#Y$8^Nh_p1b?2>{F zM=My~B6{l$W5gGS^Sj;@%hrV|?_(Z*;cmw{=62h$P9DxK_(?nVb3QV!Fa-gs6&94O zR?Q3RG>5sG(QfUv&Isvk!&{XQ+rp?$N19#If4QxG=PAh+WKGv{EOU>!^TNNs4JIDB zJYouC_a^u>UfgG!eieJF5}stHqOJZhI7%a9W8ddl{gz5x>dt;1Q^ zTk-lK=hG$&{7Dcp9y{}qZg-PAjR%Y6Dsj&GJ4S{(E-yd4pX0R2&zG!rxcl1>F;j!s zs5NGZ){g`M@>wMWL6(cR-%0Aq2D(UR@JvXk$ICy)<$k$49nPo#2*o*$(k65BaOa3w zx%>w{cx&BS71xQ)vBk3ER<&U#S87DnCO)1MASv!S(4)s)_x0;nnpZ7LOUvvn`^tLK z6J}4^^Sr;4OREAiX`EzoPN!GrS&~gR5B>a<-JZfnKL_qx{i3{JPQaZjNEbY9n*{{wLJa3h0-y&O=cz<0#QEG)c z&?1{a4Q2T1D2`Igi@01SX0`Fq^L+qdDBc`9apqZ$cwDZ!N+g1LUUUX@Yw+_UZrhDi zLvCqRce$q2qmz@?a~H)esZUt)-tG~Me3i@^Slqq$duxF(wcfiD7xnI>8Vo5n)GZjz6`Kd<&-I*_`)m&x3(=`*2>ubh$!VmfqB46Jn?>1ov>kpuJT%o z7t#b}Nc&78R~c(`k>{9m%R>|wu#1i-BcKWjud6u;&w`;;zzG{146Nx1S=IY`AlDno zDIUvmtXZ3>H=sbaG1y+N6pj;Gvr<4 zd8v)*SpgW!{}E&5{!RbMe$Jg6J$n+vmySXU(oB7Bk_?Y*ARvsz=Sh9`EPLrQI=uDi zaf?F@^LT7#kpfc0_R2JyLW&-lcG~h%`ur!Xyz?RJT_i7zbv9P5rtLX9Sa^~IgE$-Z z4-)hLEKc;qaTf1Id}{vn^Hgg%0AQ7Xs4wd9UvHyqcN(f>Yyg!9_5~CWUiON&I?B;^11Q)9>R1W@Y2OKI9ZL6|A-Jp`FK|>{kcD z!}z{rI!5&y5uldrFEBx@tU7db!Ox-Cv&>t!Gt;oievg=W{Z?&_LTGc`P1VYzn~ zUn)>2lnCN1GY~lZMbl=?AebLNL~1FttY%=_Jph4S(pk3Tf3q|B|5#T-7Hi{eBBOzi zg>q^(0?Ooqg;{UI*r8!t7A{7pEc4wN0Jf|reh8D78>+tg7i;X5$ggnY{{?$Jda~+l z3OBrD7>u)PRv0t%gYU$7%Bz!=>j)@WBiV0Hx9LA9z~O>KxJP!leI*bO#}wh&Mw z>i^IDGT=nt`39k}QtLDbjeh$1ZI~11!5^cEasT!q<06}}W3)lY(s?O)!vn|*441tT z-7W3oVT&}r6H!+_QSe=_A1myBa=|3?z)rP00l>R;?;ZL`*t?&fACJrg^^;)3U_6-q z0n!gQ2sQ%LyVk<;)~}TE>c5H&dH}3Dd`OLAaqyBrgacb6TMa;s=K|b!-77g}%$PKQ zJi10kMxrxj6e7KyzVG=RgTneBg;?@onrUbVd<$nCT}<$){5FR-PcAArx8z?|b+*>h z0{UNov~UK|zTP8WyaPd8^sM0@E+00*V>6c>+(rB^i3wb@);ZQDofcEH%_j8|Xf+w3BTUyR4*Z5-Yiny0pySpzu9F5DHUI3L+#q`?*TO2wKu|YoQ>uQlU zpJptPDNR-Zz`1aQNFehAb!WN%#vbLfhmv{j;k<7aID3FI^D);E9LC-si0PfB;gJvg zF<5>##q~5oo~i)M9H}J$A6o-0qJUbU2Oz$7v1N|x&}Uy?9^bVgY6Zck1;EE!z|4cG zW%$TdfEbWkb8?~{NLla|1;7J?IgFJ`xF-)ayS#`8KJkpzsQMqthBe(g9GExs(W!OQ zNhlrik;oCqP>CeW9`8?BZ*7W&I3Rag2a5QJH3raCH3dsBX2SIRNh*!Ms5H55o;dUO z*(o_)Ph?~^{&7wA5R;MqlBm`R@|m+i9D`R&rnzeQcCM|p;_9D>ALrjedXkBFz~+6$ z)iiMbuFK}m4FDBJ#3}8oKgP|P2@GeQZmkhk1v_&m$ulewaUKC(7jx?t%f=SqLuH0t z`4M1uMCkZO9D26UMv}p(Pd_p#*#p~g_R(XSn>1j6!z>ZpHe$~aOyE}5xQHG>bSS+p zEGWIMTDm2ntMrPNp1n_rcxZXBo`dim4X0V;&P_4lTFOKNLti*I51`4$1nSKjw59{@!$7Jgg{0ER$f zJPv`taAgrhW)G{S4)fCbD}Q6YzD2+%={#ty>J~DU_BX0R;1Eu_6CSYyL{b%GlX9lL zs7P9|{5>rsNd)OBcn=R|f^p>fjGnxITlzXhB}&qRNjI86uQA+1I65 zD_F=%wxt!$@&_+f2o^!Hi*zO=;Q_dGT59m+I1rp&ID7fX$R$NY$ebYgKhq1g zT?TTLs|WZo>PkcL<%jmVwpPs}r*{sR{BY;pydk-Uw0-~SI?JPSq*6dyXa;sf0zxVg z5z^+7PKpc8D!}4!lakG+N?oa~s{F)ew%t}yHmss$h?0H9?18?I;>5WAIay7{WmupMe-k98%SwKz!+1({uzy{C2zLV_cJIEZ#8S_tnz0Xi2G zdIqTT*O83F&CZ*)eHrd=ez3`SrSCjH>q(3JWX3axEN#YV*O(mqD5=zU!*W`|p{EyQ z=htriAg7R~z0qiK{hHt9Wfs|MN&6|tBqrUmXd52xw|M*NozMP|kln@IUpE}Ie3zuw ztr}QfQr1vsha51#*VlK2=YST@sKmjdIU%>l>lSQo4BF1y{=UB3EZujX(2gMi0l=#u z)9n*UPC_&W;DKMks@d44AU{^Xl24l+Ky=_^{=vDD6}oiylkxsK;AD4E=AUtACc%6p z2D`QIx$^$3HNs>E> z&_VS}ql*nNK7|7>AJoG)RL`SRg+~)9O;UjQlz_q{zqNgQejX_mQf}Jcf-~GzJN*&S zNIX>Y;>C+;4YpxCLSFtfR5`c-$x_I|D2ja*GJA<-nj?c`diUpmMpibdvFaL11_>#N@6Nsz%7Gq=ETKC$ztc}Sk9^~OvHEyy*F zUC7*OY|QZ)HQM?`jyumPw8n>3&0AJHUYCHk`I;YZRkr~0FWFTSB{+=Q-QZIS!Qh2H zrT_%DfKKc;(rCg62Oz5DECGM{9+*M);uz4soe(@MRC8;)Pz;p%*BKVBMz%1{^oKPg zXu*a6++96r5(r^BLHfpv3ng6ik6}Zm;i%T{xshyLXK~mdc-Mss7xGDx1YOX6`ER5s zBSgnmvNwSbe5^DoiPTt*!yNvY#==`d*-Ik>sUv=XL<@n%lDfp}+wrhY){pF-I zK+qS5xS7YZyazk`A4v_LeViyIuoHeQu$2Bp&8b-KyZy8U>{n6J!b_xEfDR&3xN2X4uRsa*Lf)FI}L32#u$L%+yQQ^^1v)p4*{OWn$UQgL6e!&golg(+R;} zyivqri)_}(DN>QVEkw?KzU)a_CJ0z;h6lew?1As}N8yOLnzD%wsJHf)v;NeW1-lAJ zo&z<4I3#+8!L?>^sruon3T*%Al)SJ*?hnRV@0^Ebl?H6^x; z4`|Qj)i+KY`?ADs+nINRQ6qzPOd|&HI0xmZ3@-!}Gy}l;R`sn_ND;3o>5hDJJ6;vD zTQ|Gz+{qn*qJ@BlLrd*C`_?*(S_iT&)#Xgl9Q+-3hS2TZeO;#i>JR6@gO&8d@jIMV zj6pT6>_G{x$*2=98^72NN}&Y_F|_#Tjvxl*&)%5Xy?aUOC==)?|&I zip%Qm2brTwSHg~ez{)vH-00|Zzt{K!Vl&7c@r*;Tg|p~mI{rM_?(0EtMm*IVdyXAc z0cqgzp@KXHVGg@5C;sYvL@yzVpGlU85F)~K^F&DX{Qej{juXDj1u!B`HX@e1_gLWU zTRIWT4+mtFsmaP`zC2EYy|k_2JwV<4w~of*!s&8m7dT_;)cB`swpFWSg(2p`z9~CX zN^je?ZH24GNs1D)E-$-q;psVRPVTCGS|DZ@eojmi><99lb3(tea9w#%z>0zQq}ss# z-Mm3ViAGx#gw0KZ=kDMrPT3!7gn1bg!ca z+fu_881^x}*ali|Zf^UJ<%{U%!}MM<-E6->qj!rr7)}Zz&1(@Pt9F+tDz>*tYiw~R zAB7x}{@Cv!etX&W=iu3_VH3)e7T!YQBx|TS)Kijomt@v}E_T;GJ*9a6p#TTIas`2o zBA51+qWlGlZehU0NYN_+$#>ShC~Ym*5A_OUvvt1peN@!kECto3H&OE{kw_sILs*s} z05wC;pH!>fj%;_3csA$)R3LJXk~`e}fVcoJ>@Pd7_!W2HYU`2hxp0@{4K9TgDx-wC zC-pbMR*-7exJ(3D&&TH~idH|-n@c$7izt9lcU?4hF6kQo95=;~>j9;y!CnZmD2vq5 z%7>V{1&JM-coYjNgTfz!)n>}iaP$?qs{v{ULN=^P+5@_eK%RyBJjVq#AfmIJaaNKr zT_H*}0Zsxj&yHb;1PXgvt6jK}8b@^s10)q4yLyQa#0KrTuN_0KmZ)(!sF}+jq${D3xFl`1{<^Hm2+3>L= zwlP>@4&JD$e;f(-*!Hik-?&koXh$O3mHRE2^NOwVqNu6#^21i- zk$l_o8(T_qg(XA?toa+Z@6Xzej7Ww(q3m`j=Owux(Cx7b?$5vnQaykHcRs0qIuTVQ zD7cd}C8I$aR^pDvrXN8^ntlMp=3u^n{pLQ;>QiQpF&HQ}{6@SdYyWvbC8F@Mdzp1I z_eYxz{NXjn9En@nfmaV%Wu`etod5DZ{2ppe-rSJfLD6&{XsDRK`qsWHi>Q7-E*X%9 z!;iOiBt#rCgA7-i?R^$SFJE)Nc;XzjK=!l2rt4Ovj(7n;j!T^1x|;G>lj+!=nW-?B z{kR${B6Uj2>j+at4uyy4~Lh zLfro8^{uuBxg<7COiYB#hD1)_Q7A8`!wdad7DJe35#;&un+h+BMwX5~f45&LCZ zc1&Z&yn1v>R(#s3ju-d2ggkS`!_D`T90#W?fkI4RXdKxZoj+V;m3`Rw5H6bMHB@@eSx5F zOGDyM%19MJRh;b@j{D@-8LruxKh^Iy?VFI8DTgWE2a41nt$h>3`|@f>j(UeFHeC2z zJ&`16a7*9ncYuSui8YRJt94Me^H_4f=RAIhbxdvuZ^gPfVpWrF*P2Z_WVv}Si66H$ z$Y`{iiP?FGh@|EY?CJT?pvZ3Dhctpp9p3CWzr3RC*`6YVN##9eLL{MXhSjliVkmWa z8{#~t=53hbo{V^T<@z0en(V%~^&q#$SrE~0J{Rex6s&k3chW`%evpf=#J?N~xFo0( z^f|7V_q65Sn26P_R5Y*~)b#v2z_D0m+u?0KjU)sLIGIqto+QWJ;jP+obu~{9m-kqY z3B34hp&mbhNlb+hK%3OV*RL;HBr6*ORekIEoCu^)&Ok@voy)MzByjjQaC6)`UT7Gb z?!HJR28fO01%+4@za`<2r4>xyu7&-Iq=a+*MoOss z9Cys{+p1fG}*9I+yM0%0OT ze#)SXw7V!8ImDb%L-iexPE84f!*y+R3aP&Y|gv8Jh+ z7#9~IL;zJ<5!QK1@{kFoT^0h-4eO@Wa940=b<{A6LZr(qhfScdIRsx(El%~QfdP?V$GC-HB&S$&~<^D!$(L>iRkY@vS4!v#%&)WSX{xseL#Kajkf=p z%1K5#rAE$iUS9*wgcV(>0iBiHApm*sF94_e$PIUOO!rHC1ssR7&53@@QNf(i;`p#C~Rek#ODLqMA z!M@@O)zvWTijJx?_Bg^CoIx6@$PSyA8VEOE4H@jO6rnTks=g@yfx)sQKYWI%w21Ba zT4NUDHYyUg7eFIeooU)N@DqD|JDyTtdhswGZ)DB)yH1 zzc7JMmMPcLXOI#dfPtlQ#ZV^OXqLLnpD zOhWKpms|*$N5pi2bKBU$B0@)Sw^2hq37TwD7&|8~tLA>YWym*nf_b>I`=45cf6U|m z+w=N==;Mt;LD*<*-MUp!!F=<)utfc4l|Cq}$*M0IC!~3k?xQ2DZuhy^25T)uO6`9W zzPm}QXaIkGnB#=omN`cF^@|($s3^lnXU!}Ao>+bR3ly~cz5qMk2v_uqk&ys|HE|c- z+TK-oYvak^Z#_?V>yv^l3TqZ8K$9zOe*bEX@T<%Kp`m6+3Lw^%kAyY!SM)Xto+`6K z_=M1j!Y8zRADo_Wa5A&LUncSWvVY%glkjfp-!EG%yiAy2F|O!s7G5Si5DaEAqA68W zmWOhRzd!5Dd4aBk;3}$RVx`De^xv;tFvid%_Q@Px|HG+JdaV5>vShWqJEVbL=yH6k_x$eqOxqO(ytyS@x zj08V37PZpj`_h%yDFdz4o`E8Fa?WQYmMvxfp}tsFq8EVhqD70UTF>Ba=cILYs9uq; zNU=X8pY{4YD|#$!4Vzc}xSb`K>^-i?W*3S-1&JkkO0d?8J4ncNBPDwg``RDrm0iMc zj=?$vI2B?UgM>>NNe8xU-FnfGKfJU58ALj zn5=Qoj~ehCiGOr+5c2UE;i< zfK5_Zl08X?%@LfiR>2lgLZ5j3x*w=ZEj>Lw(i+=?8jQ9f@8(CPemw^;{+z&6l^$}t+TEu5I6o6GOUk+!DF0L<>S z0J25S>595z4ye_$c)_7pQ@nkt5CRD&VL6DR@is{hh)m;=y$$NB6z(j5>Q^Y3D83#jPY?GxjsiPc}8+MUpP8{1DObQu<$g;2MGZ~&C{E*ZU8(4 zaPSCx)YS|EqY3~FYFpOZsFm4ie@SqhLhk^f<{&BOVhaTTA2`-AC*O}`@0}=rEW{GH zm{OKWkiP`VGf2~3;&J7Tz<&8WJOZ4O$V{pQ0NC2v^CcA3Dbxo6KxsrVQa-LK@;qvt z;ipt;qc)&QJIlR?6(dsa5@|~U(wR_)5}ijS-1&r{$p0A*_;fkj zM33f=wdg0o=}U~FiuTb{)PKR!bRx8mt?umucEBq$Bq=N+U=~$WQ2BQDnXwhtPk5z@ zOrt;Xx;58Ke=2SA3fmv0Q}go8h8OH*6D)KYS2pHIUAw2UBI;MGvTv_6nLjd^r%>0H z2@;UTN{F1R$FinuH-EPBGZ{*huuo~K3HKw7--U&nNt)jpsHK&U3Ot&i{YWb7K@QO0 zX;xgtI}^2LEkxT>^8>t{HR5N3U?VNL=)JC}CMv`nMsaF(P}+i~hks`&%vE#VRl=iU3i|lcb;@6-d?B ze0^y=giDhKpdMwF(eP?%WoqrQ#RtKuO{E4CX8>Oj2MhT8^pf2Exf$`WIE1+4plqeI zhX)uF;4-OVsSHjH(KY7K)8pB|gJbG<1sPP$G>i2g=AP{@omB{@(;wSXT>oCjd-Ev9 zi35Ebyl2&Y>@8-+k5zoTHQy{xb1uXpI&Xmz22z~@o=qc_0sc&42C8#!%zA+;uFLYp z*I>9Hnb!egNW&zJLjUWaH%`7wQ3%uz@RJGfz?n3;L=w6FtX(lzz+XYe25h*&p1J{%g z<>f)2I@1CH|B4D3XEs)F5KPkODBrHL6i11J1FT$JbsDNPd19M{@Pq3pr^jPR<0N^g zeh$f_eMjz@zEmt%pGq1M91%q$1nS%G9qDX=L|YbCFp^iTPt`0PgF!MUYx(Y(QP2lM zy#VJ>yw2RE^q_VOO%|$+#H73joq;>W8fwQ(bAXIO0)%QO()a?@nNFkBJ^MF8C*K3J zAZ=f(XvJzo0&c*SBg}|G^_#qv=b)}+U0&v5%PX9RDO&O+q@T*zaW1@xpzOS1HFTZ# z261Q3OvcT0%YNNA7dH^be*M9*^M%Ct|li=ya z&F;z%>efTV@MM~wa>K5ml18eXB^Fr!V z2`$x0h97*gFeImf0DKdms8mMt0(dpCLQCV~30=hOCm;Ax?y|sj%QdA(Qv-&jUul+{ zayoU)A$uY1eu!)=;Waces@np2-e2nEH5D3);v})9yL=xSi3q%Y#cbm(ENFtZ5`^1{ z^4S6%@qHIet?X&idCDE^F0$l=2@&T_9TbS9Do;kFE0`JkYq_cRuC=Ci+BhTt&=&;F zcm|eP0*(?khXOQ`brBPd6XccEt#u-%MM$*2kKYiL`!L!Fg+1nwQBOBL9*N^b|lS}X4%Xb<4Ia;Uw`-?ayyV4g|LsA#%o8k>{_#KK^tDm=jeaMRo`+b=+q zF?C7K=hg8Cs4}KtVM6$M({Z;J3;Gk>`jLJ{dnib0OQphoR-q3;B3V~-4wIEflKi!>r6KWtHLZphF7GmxS~BN z!?$B(C+QqMZHz{^Qap6GW*2fPi%%QhAog-OhO-eytXRhA~ec~c?)w#&Om;z|IyNyfPVX>HXRy2d8M&xOjYcei$ zxa~qTOnQ^o9O`L8D$I;{lgZ0opQW~IF$gorG*JOE*)0p>7{VH<&k^00A1?tq=CLio zwa-xKx-oU+(f~1l%%Lk}6NU%s^5PY4{(xi+9j*eQ_H|XWF@0r^7GI=rbj_}O29E)@ zy3Sfxpm(4!iU+LjKmXxe z3sf^I(RSsLlpGLQ==%e?yU@~*NJvD8;?G!CouTW;RE{jp}-%w%TC&Vv}D`FSypGC{6cD zAJ%3m^{r4dws3o@Z#zPGG-k`jgsK)n-(Co3Ijy3E) zwJLxdtRK8qx-5|>1#1Yu5y@eVBL7MuBYV`IeU$A%{1>nA8ccQ3tXJb2q*vye>n1)% z_$&VLT@q_@-%m9!NIvv+dnn1!AzeEMZNrom{X3wA(#Q(?2ozoFD02XIcLPC(%ZQ-D`Uc* ztAbtY&X)ZK0#~tlGRbi`sObtZ9evCE??sM{6jT zZuq*>WEi>?d!M4_glxzDK@wpBZ%}k(2xn#;vqj$t51_t9g|N_5mw&jq20lrg4qM|f z*g!5kS^1#8=WWn_!_8<4UggDXJ`*UFMZ9mO6{>kcCr#4l4 zk)@-mRW(UOYW|e=)|%L`U9Z2Wx_2$^)Dnh3S-W!TQm76ZN0uO6fuGv-wj0IoIn-CH z1;Gj%P(*As1x}=ex4|}8o6uGoV)^Pq?5eb07&!z>!5q!^_YTJ-u}PIdG70cHSS=6A z6=0FbULQXmicp+%uE$6>yf$R=QqCY++3<&h{+0g-A;R+Doojr zHzQEtF3|icu*@Jl(i+V1&d^^TlEkYSo5nTd)Rv&QnM4JcOB|BYJ%O14qLwbtq&EhE zcByT@{T3#L4V2(52g$~w{&zLR*yVut#`|KfDD|pRUDDd{`tXFUZsa>i(ur5JDDP>@ z&dp`!?Cn8H6=%doVvl#Wa4A)y#zfF?P?b3K99he~`0y{SokwQnHB*H^u=znfC^tw& z4(nT$`Q9(Bt{Cl^Afmx4u|Tw4#DeYwvcU&x-Kq5o)n>rJ7i8|=s91iq7RJ)_v*y`( z*2Ke6*C4h~S|Cp58MmiGTB4XBsrUqmw+yx^YaZ*RbO%%&NlD;GZMdK_;xFixkRB5s+Tq(ZtBPv9L!w{>f5PV zrv$pfVDX{bytfIuLyAVITNaj$Vm`)~`ur&~MzTvcTe>4#hMEJ~@o}?SfQ8sl? zpQu**Pg9>Bb+0Z^XnTWZ=@U(%D36Fjbq;$eNx`BUJwM(HoaY(NXx8OZMn0VRe6~|StNf} zsxwz4p}Aq@S|N$Baa&qcrAmqC6@ zsuLTsQMkv~2JfN5usEZPUS2%_@=4q+%6r(Ixys*ds97p7E$V(SAXiR~6MYRbtQJHc zXqNjK|4T5+aO>_j>g42UuC>|o`;CM9nWN4oOgB;<@0~b)<>=35YYaY!F#Jj#p{Zn9 z`sv)}eqqkGdNVToJA3vc$4N?Qx<1F;HCG$t)NY(wC&FOqh{}IL~(3}SyGUp+CrYue7n4@o7oU<=}1*QJXKy$0`^qA z$Vz`V6175*bD1NjK|HC&Qz=2t`3r2}qgEdU_dyK`fK2IA|Kwr4mlX zGbK+>j~ZDdKIYYiBHLKUogQOy^!~Ds=cuJ&Ck|4)v!!2ej>^0jfsEIwrj~kO2byv4HHl#zh(4Cc7iRz>MDa;>gfI)*MvJ%=ei&&Y2Po? z7v9;7cW1iWhwqn-5ng63fQ%T7(v5D&8{nM4roB0p8QejdpExt~utMZEw zKIHpbyo?eqWkJ$n98vsvnGrR#m*2zq*)^az4nMvY)8?DX@dc<~OKyF$l3ZNkd%;5A zJS_z7S^LvYo;=C=q3Ea|Usoe~p0vRf`(zd*wRW!h_fXh^p*$G*u5?HwRlneij1l2% zt*rEbzq3IA^ZiE~FA0=D1$$8uOPv%G6t+L6!Z<1o;wA~FxBh})dROu~n&%rYMHEN1 z#>~56!pFb87|-XP8Lqa%2S_E&&TUA9pn=Uec>U;?Pw4hT!d#@dsMUR7%ad#t9Y^`0 zE_FbksWva~=sV(HsIxEphUhQaF^y^bo+pfmKLz@2D4m2;%}T}n`8$>IEatX$3;~hU z&)kB)@)42Wzav~phW#?3yHb-AtcFkR!u6wh-|#8>1e7fRK!6gvVf-uvki?=@smcoW z9>Ywig^^LCHgU|fizHTFuv=Pqt2+w~__t!nAc^J=W8Zg`OTtxqe$8aXiYI~}x{eoK z_VN2=e+jl7qv*S4W_+k%qF43_&BDf;!cnEK7tDgs@mRqF&IY!^XA0lowUY1w0Ybs#$`_jiC-c3@ZUL#p z_(}z`4!2B&H*I(&(48@4?7x5Z{SJQ#?@%OcV#^qR{`(vVE$GGr!Z|p&=KCB(3+G_@ zZilmh%1Il7eyBYQ8Z99qvii>%HzllsC8ToQy4rTBHFO)!YA~6Rw%;K1j?t_pMR(Ul z?uV8xtM$veV{QLR_Wa{J9-+xzE6){mx;^fEwS7UVVf^m&zEHiB*={0APO+`FuPZfz zbQ8|oEeKk(EYdDuO7pId_Z(I$C#ABF*tz|BsAkITir4+wulqk|ZLL_)JU%(xPWIG{ zl*!@m58aFX*>$p?&et28hxXkc9hI6P#~)s%gk_k-tn6M4uS@sO_O8FW-amU?dF^$> zAwb;;XU!8};qWa&Ed+?CN$iC>I2ijE%p1pG@I4_sK~R?pOukwkUEGu9l<#C};TO z#0f7;`+nK_@0b1iZZU$(Zn|BF;PF|Gwy;NtEjZuZ&VP-W5vx#& zj$U`Jj4nmdgfJG^^;aDrM5;XCyC5E(Jws_X-%T*?Fz50A<}M2F|_S!@se+*Q{ZR25OYdL_&qM^uu5RFiE z1!SruPy$RsAk>9R1C4S%$9lq=8>QYwc<*PvJN1KQ^|unc$pH&hUR>Z*EFAjuWeO+j z-H?IPyc7no+TzHvmyM`LTM(XWBDlRj7d*l3b6-uBOr*b zXX9S&i1fYGTsj{>cNq41TVAT6v`;h`JSR^2ZcE4Xk5BXRLa{kk2IO>qdfqvBu){HZ zU;Wuv4qD3rnawARhuYwjL}_YTdfwjMA&!Y_>S?C(5@G`Sd}95wjUp@A1O3 z!@|*H+3yElLPH)=dsL~Tz@^qP{gd=Puix0?jZ2Sqm{u465uus0o;gZ1S;=vabwf9X zk!;m0S@n}zvQkHCnq|;vNXz#zr!D@nc0b^a88}> zjT%B|QAYtA$`q)$pM)c{q-x=lYZn&tx4vi!p(^wX9H=ub{hk87!*`#ADmk`*U}vLf zg+;&ip}+CniWx%CQBqK4cB=yXGywt5$T!g(;o~>!AaKh{p5j$NrzO!c)31|TSa?o% zmY7AhtKO;VQNoDq&PmF^N!Mi~_00tG38jzt1sP~2I}@dsP9&J14(@c~YwGF}9`TQl z&y>&9P8`*n;)MMZy^nA0E29RLst{7xynOISCp7jlK*fV6&nfh431fQ=R7Y`mjRRR+ z^c>^;k`VT&`ZLrSpVy)+X2DZ^5aEsTcG62xKOEXU8s;QPqUV#s zgF1nd(BJhZhU5oAWq3+E2kgUQYm{#~Ow@L0`NQf=v5u!4+kxZnlp63yT|_u1q6(<7 z6dLuq!zxl!4qg&Dc86lw@aq{ZZIALm2yr_cUjz(q^IXQhD&rZ`<(uhMqEdC)HfQVh zsh+9o^6cet#OzT2R$PnZkxfN}Y==1Xjm<};1rrRWAO6mJVHB?-t!=y&xozv#X&_<( zPe@`IoHa$~qGiM{ zUbsLKNGQMRCSG}yQ+tc;2>bo@(YMe$&ZW;fuyIaPZXJnUQ?A>zwD8*)Mma-RQ7|L- z^9jO(v+wCq<6N|$B{>}ZHWbnX&Yj!V-p-|-9rTM(yuKD&=~!4;aJWP@P+>ataDn1# zvF2u<*dq8DObuzq@Pbbt6ca=vCp`^95{VKF0Pu8zaq?=y zpdin|0Dj$1TANx{`KyVn=CPTCzk?Bts1C?f;gp-1NCIlO8s{~Ha3t%;u@WCzX zLjgYG$4Vq@uWG*AMp%966)c!hrG>O$o0EZ=PdK14;g;=H5}@vf7mJht_g93133MX!WZS&0zi zVacj9vMqkFP>>5h)uCX5_VVv23UQ7nwjeJlZVu7zB;s}Jh6Lcc96fPmM4|(5! zGntyt&KX6wPSPz3=TOGU!3)22z3dz-?QJOnGR=dRru-VrABxWlpr?W&5Mk3tpPVzN z;sfFC_-Xq?Wi1%>B%mrOW^NI;Y3|H?2+2WP=UdVkt2l>HPU88z2gUIJG(v%t`Bq4R z{`U&tdijYUYJYBqDy@^kIf&XDE{-zZ%1V%}PJ(_x{6Rx~T5?GCKtG*)z-Z!-c?k3? z(4xp}$~X~3xHK)C3O{$ije{AL^jOv>iyx!uH<$W$uhWww@%QVkzo2-8?3o-A<3MqfR$)TD)1Ubq`pJXlwQ|IK2t?BcxS`WC;`gUrn zglF2_sp;z5nl1U!OCcEz!qCFpM@c37n!Akm%(X4v8tuE-z08vzF2Wy& zHd&h_k-(<)yYX&H^kE#(7rT$o*n_5)W>%I;{$44B!qKk^Zq+7z)2Y(R0cCNE9=BF4GKf|@+ZC# zc8yJq+TGn!EBkQbVjC2}kB$}js3b)V|KVPU@9c)sBdZ7Mgi1qItt0nDDM~DPqnz~C zLKqs_4<~ZkV%rahsl|?I;y#7cGG3Wf59qiU7|?g>S(WsiJ^UY2lrUMzV~Zb1Y$v@m z&SM)V02O&rok#vGXqqt9~a6F?BBVQwpl2b>OnNO{pC{4!M>{* z+7+GUk%epKKG1sqF|iCk6xFa;4F8fTfRH0@O50w`_IH)ry{jFX+_73Z%_z)qO{jA> zbacr$gHLl6s%%X!QP4KbCaQM9Yu(K)ufn5!;v~di3^f zq^A8|7&E1r9H31e@t-L7l1@H`-24gxY7V-gtNgSf(DXr&J9gytcb1(WM(w?wKo2}3 z@ns;>mkVQmwdXoEA@!*Zr?aHwbxqIz@v*P)!P|FX4lDk=kl9yIxOsBv@YihV{lnSW zT=JO!VqTt$&+Z+5WE0iKA@_>gBI~qr4<88-**-i7=ewe zZ)%ml^Qiz()Nokh>SfX%bb=1Y>3;T~vqr1A?Vm)ctEpB0Y!H#EEyavOBW#0%gQRcb z(G~XH*7QEm*=XNUn=AlQ7kZ$9zVKY%94D><^qW?ciXq@3T&nUPxV>j`4FM+;69b@V zoUhaOA3C&%ywWI&Dj!4fxw%O6^_222q~^p0*B!Gu7tnqQ87o}AqjPp4IYJ!a3_#w> zuZchhGVB_?eW|g!*>XhP2V$yoh&*i-v-(S+_wFTED_ZUJ zW#VK(GQoq&nXxlr6Ij*G{&iI6iP|%0M`VyDA`IN77ZLH05eN#yZn?hek{x#=L=qwL zajoR~4OXe_CsTCkXX`sXe~GcfjpUkBug;WQh?vxnOU&NAx=0Wd^fYJ7w7(1@1AKuO zh_&PU6C|q8lLqm;rF`hxBONM+fi1Fd1van-8`A;>(kj7jv$=JnR9i4xpL9%sh zq*pa=4=O>0x?`s%-uNh*1oH;W-6g$8M|%iG(aS-u(i>dP?(*s$UOANGige?N*xu4o z&C$^G*6N^>eM@deZT@h!s4SP!vez}35tQcN^J~VDRW*@S6=s8TuI}`T-;0uNdqc0T z=vy~mVI`c%dV0*lvbAOD#PyZlr{Bm(`^#(%;3?>pv343+V>{j9^+>;buF1Zwye{wC z-mbmbbc+);VDUni!OpGCZ}*m}Qqk&w-rEj7<-N`O=313b3_IKA4!hXtaBUHqyx=^> zK56!-m(eo)d?yz6>hDzAqr)Tn&F&pw=UXvtpHplSyy&%yfO2XK?8HpITAV;ij96vM z?c6n&qk9bPH3BP68 zSz7VPJhe}@|4q+|%e_XRS|(Rag>i9+T4aiPZm|$*nq&W9Pu$)I(X}1yi?7U-&MU^7 zgQu^EGQ#}uVL3;2MyXM~FC(ZRf?LvCWp$~_8aFGMQk2;9!&W#-X32Fwz}Y^G_Nu-J z5$!4bertzYpaF_u#=&Er!jUM3ndN`7f6(0@wB~E zCzB~~*W8uYZN0PYdUK~w^Yb(nosfMmQbTuJ-BvHvN$A{o%wa`s!Eh1w*f;5Ss_Xe< zAF*p}PX4$gUtd$USWP~B&rJP3)>nOPg@}%+6#`voLSe}UyV(2)$2I@F-*d0gXQsb> z*Di16u-(#hpRdi^R^(s2+E-l9e-C$;YSG-Ehn*2-oII>fu%WInUWAQ~C(P#}ErZa( z=z>62p8ST{*SE+0@Zo{W+H&vKH%HG z%F0RG%4wuJ|ADVbfQz&39{$8|$F%O^=@9Y0&d~gbL-|R*`M>j&iUMXRk8koK1n+fy z|DN5G`;%~0+}clUUJtBLT#_f-|A)KzlikuMl`XJ6F-g8ceJqfD@L`x!0b^IT%OsH< zplgfqYK$+N?a`(+r*~yXsj~{(FV$!zVGOy!Sr`G9=~$r5gb3>*v8s>ubJ zAS!^9#UoY0$;{&0cZuA5{P;2KE3_Fd8h<%*979ZIoI^-woRgq!mxg&%we*veOu{9KULj?-{VSqjofxoN=gdt*@(VlJG0B#ww?SLsF6w8 z)PXE;+>&3@?hd?MG7P1vP%wDE3D|l?Sw0B?m4?hRch8i5srFg%bMko>E_)2jpIc;T z#AQ^4o`Gic(mFe}@72AE0%+X29!Qi>MT0tyJbG(IP?ce!bLW4vruqt#ym2grGFa+~ z0(I>q^7n^us2297ln+8sew*bqty0vEnz6RF0+Q$k?M2fOv$8VU*O~yap%*s$)h1@S z0N5-$HUBX4bX#a0WFP}4)hBO^04OP4MwN?+`~KcCtCjKXL8NWO(<8~V?ino}w!Rl= zY-H+_arx%XR#|5b%O;@mpF}zQfkFiZ4&;UO){Xa|GCI=i?p_W=`IXWdSu3NMrbj=c zF6kRD7e*E3mV5cGkGDFU6H?U+?0x(C0SRQhQaXK0UP!Leaa=5l(;_w&9v*dywO@zN zRm&LHaDtC5nL`LH?}>428mEqVY1tlUz!<-@InQSs4HuhX3b5|x{M*k_lbt({ak2fd zdFfq^On^IbCY_xkPpfQ?61nj*q!u;>E#|5 zx>p}B7^Pa+=h!6is(d`}mx14>_*8%<{j^(7?(8G+Oo_U3vGKu%vFWKr;V*&qm@yun zpt_J;D1$fd#NO=r7^Y^=R?K0~!GDpK*ncw~ zMk9s3?w}KQ2}F)C2B@2o#s$8vEh5`QSiMC8<-2!JG2%80G2fO%wOP^(oHd-uTLdz8 zqPT40?f>WjG2cEN{prh}9T@@9A--5|bKSc9StotDW~-~6I-r-2e=hvsqp)kXZArQ7 ziR}^kk1I`U2bb9~f}C#$2+)z(*wQ7=40|&Snz98wHRJqE)nj>dUR^zv7$i8$TbTJ+ zxa5B`0Qi6Q+y0-MpBV=9|Nm;}_dj^^2N3e;>nY!gDQzwJ!L^h<>e}pg8V`cV2=hm5 z$r^*Y%W{TYMm~r|h0N=g6Nt+g7!%tl$XX4|pwFt7(;;QPphrK4C6q_c8bFo%j$Rx`y@6hKdtiUYZq; z4%KpHGrHuC9}jlu<23m`q};kN)H5JW6}cG)E1N_9<8kyB{1 zkHVJ%fpj3ap}~v;rmj~38c_@8*qJ`0X1m(2texUf*LF4lxE~#A^%!F!`K7PwhRf3# zB|ZGL=Oz+#k4W4$ULWTo7?=L6e@`lJzeTPP_ZKYz{zB>u^jWVn07W6K9qJMJnQhw&O;ozXGkGKju04m1N%%!5;2SCnvnzB>n;7t4Ww;A(NQ=5T z=g9bnc(bpr8Ie{wb&6LcM-2m{*=25SE^U@{4t#k+dvOy4Ry6~5@B+8>>~dZfG4p%| zY1Wa{ax*m`d2(-wdZMXM$serf9znnao~vLFxKqguKvM+JOJ0_aU-BQ6{Q)I$Ck;V@ zvAa)SN3&uMaCT-l)8)(5XuTz?*Hg0njxW_z+RsSuVa?E|)ekXusMb$LWCZ#>LS|d1 zB~}+qf-GcQO?fzhDP(!MU}mXiOASX2ryB*{AQzLXzrhuBU(MOof%2OqJ?rgqJ-TOUzn5%xt4jV8ITzym8sxm zzzNjkGHjb=c~5Nkn6K~y2Mni=PoQYBPfw6M9hhxUbJ)Zmf+mnlP2P;dZwX$Zo#AG& zJ-`+nsUWL@PlJ3(QY973&s#htTn;-LEwsl?D=suhHmel@EXD=?lqcxf3dpC)W`rsy zfT}j5LzomD={eyAW)8gL;2=XC(%~ar0BR4)pTep2-9Dql(}K$WATd2zX?a8xg)!ngM)mK z!=?tJshdZE+GWV7bGKS2z%O^wO@|^62i5yYcF5X^{069r99<`T!~r3`t~C$aUCoJx zH1c}?$#z2KplE@@M^_o|N)Pz3Y_ULdoF)1ea_J;=n+}rj?`4*$QMhGNSTJhbfBWsX zvu6HT=oY5ie+vckEA*@)x2)A7+#4*CUTU3&ci~%XBy`?Mjvly$jRn3QN>Bqax-*gs zZXZCLoZ0&Ulc3Vu3lQOTVsE3*761m1{8XPz)IKvEbWC%|0a?^ z$%T#qADR+vCqBB#@5_CQCf}=M%7daeFC>gq7W(S3R_YiVbbojft%#J#_GJMP%0;*J zax$cuAZaFQZne&c3WR4c>3vdZkhH@F&d_iH)ggvT-b6W(o#``Sn_mKA3pf7J8~EsI z-p5VtDo4HVqC(TgBqQWhc2TL(!5%oP;DsV|&5B?mT1v36rmHAr!h z06Jol`SMXy1H5f1&WoL{m$Y85PVya0%o-1Y=Fl#T4Ut^>AnAd##Mju2Uv}ftMn+3r zv&yq-A&|3_?6QJws*jbSvRss)H3|+;^Nd{wV8WPzCURw_fO<%>V3u!J9oTofY`X6F zh52tu(Fw$eumoWJMqaJu;E5p`3?XYFV?u(usbPl14g#buV&g|&T#5K~l%0eUv8R8r zL|u!6m`_Ya6KfL$aw;=J(}?IxD0Cbl?24EkM(^MZwCiGo3~Q5hJoe}jre()f;LA)? zwEX_xsSJ+gf!d%*@(Z{o_yfceCkeBFV}D)3?ITM(Ng#*pz20ug9#vkv^j+GeK9Yn* zo9GYJZ9CB2uyy6iRJ0sYCmt2D^NIv{T2)=LXM9b6;6QuVM?pA`$WNY4MiYl`+jBI8 zub{R+u~U@-Wc?sj4apQ*Ce)5eN<%a^<+9rblYYJ1r)nc10o6B zP&hzGrlHr88CNHD{4T0ABAh9+`#BwF>Mw?3iUB=J)V6~1`%eH}p)g6+?6+Xid!q;> z$9o0J-tmcN#K0FNbAi9kZ%VpOD0gcbl-&g>KA_gg4v=Uwiu9fsKf9ovtrzAzq`3Qb zc=&PuixK2_MI5$$3LjV&!3A&^1&y1GMJGWjsA0D``6CY-VjHh{dul&(TfbG3_Ieq=kXyCp@fg;Md^lt9zlAxc?oNajk^SD19c$Z>?_ zLq^ck3kW6$dc~@t86pA|&j4b~6|k%b!n2-`J_Taq-J@IJ?nD)`b-gWxq*F&k5GM?w z16o=s41$AbEi3(1jf|9wop~&w>tjL zgOgCAD9cQ-$q#Aemw9fDhT&hD#WNI~G#Ui$k5<3ob~)1+JY~preGXson5xXw&Lv^H z?_174tmo%&yRNC?RMSt>jZU3|Vk_C@LS=#?9$tsW zqYc{j&BZ1rI~Np9wKUtEG+PpPUE^rOaI((b8e2KsAR+sV* zwgd(Y8GeYnP6mv?+eE<7dVUg*qC|i6BiYSiwd6#00}$}=;l-Hnr=`{ILE3^TVb1hC zAs!k9A}Z_h#wMm)%io*e%D=w!NRQgCiQ$GO@&*%|$8{IKyOGvlF`bBx?)J>F0wG){ zlrZXT3{`vl)pb?)t=?4FTYqS8z2#;wKkHBSwpR7%I~-DI`|Iy&Kd`!LDpYNJ-sqNA z|9tvIx#=YQVyU4s5RI^#`Akb@LU%4+f1OLnjU>-i{Qqs2ofAzB?Tnj(Kig3@HKx2p$I$)6gr z&%At@mbrR-kV?hT5l4nv)xQ(WRUdOMyS2zo- zupjtc?9#VbKK4L=j2|k}2C81pGNC-hW^0jkYpA(A;(ns;H{EQ(95Da2Z z0`?Hm5&k4dMaEHx*IL&}N{Mt9i?kr6FwrwoTV~VGWrCb612h(s@5S~*wCUu&pm)j( zIwJCgm9JiKIk-jF^e%VQKKpeGSy^v-NcTz@Plx?ichk2t1~1KYeP{o#D#!lV zn&xPEThE6M7TNuVJP!Xd#m|QuU2{VlU6qjvW7XN8&`5SIP%$hhYT1G20wVK~-oxd~ z6u3y=hx(e&CLe^{sV55M8;Edx)ePQVDT3V2AOCz}b51oLzS%c6#=d*vTD5ITzJ^I9 zK0j}*GkY@eXJOU0rZ9!ZFjQE6fMVR;yg)INA1R|UjFW~t%nuhYP7gmAprr^k!=Qkf zP0aZ*W1J+whFXY`En^^%rx{fnmk6ot+_@9JDMS};KkCm5d;?q~_p5_QUb#sV-|$k$ zEaNAd>A43Uf>1TwCoa28ju{yC{YhQ1v?n17BL_!u&=zm%HAb=(=%rSRwT&C3@0g>) zpk|RHRS_%2s@y^(O2FPY&KTgS*h_(3j?siX*6_TPHuCiM9PLbtXfDIz7 zXr~r9TdK?~iV}THANAfV3LG3LFX(95R2@My9oM}u44Rlmsu{Dl;PPeiqoXBGIZ#Y- z_sshV*Ey=`=s?OIw7OBGA<0Y8xzX4;kAND;&2651;GKjx;W!GkwgVNP*>#Z`*vxk0 z-fwk1i8FF>)3iU!$zBFyS$tSD*ZNQF$24h&c@txwGeq;-i;Jv)Ib*sIk`yPqK-CU#M^7E8s zPgD7$gQm^AFUdR&DTr$Gw=k`B$94z;=~OI8ifd==bmO)4itv_{^X$J}t6-972-?*N zt}o`l0^M&J`at$Ji{I}KZEU%@CI>WjA4X-l*VeAZYeUaian9%uR(;&`|uwlC({mWfyEwG(&N3M_;^X0+t!3qd*W!_8cG8OD<}+f-8PqK|#xZqYqWO1VeXsyb<3Y@Y`=+;zY(xr^h9GA05%+zbAdRIHo%ePNzcLt=pfZzRtOl z9rK6y!S5c7hgN?#I98&rouZmlx8*K(pu~m)5(O8`vl=$4yw}a|--9(i@TOS&f!g=z zL@0=<(0$+b2kK=N0wf+wEdf-}bhyhXFRz4tmuTnxv7xk7&t~t~7Gy1+sY;8^-`|Q| zN%`G_RSgwSnoG(G6zm@kRyS!F4GnZZ9*0AW%&W)6XvJ2uB8l_)JFi_2w1AZQLI-$ItK!?sLo(ywBw{7O}!bAu^62h|hpduJ+fI_4^M zERH%hOm@y^t;zd)g6-c0km)ZuL}#EBnec2L_s%dmXUgBa;b?l6#YR3_NQxv(jV)^Q zfV38g>XL2~Wqstktl3tiKFbA=R^gqsXvwU^axzk=JB2zt^J^O~lR;0dSYlCL{X;A# z0@e>_-|oz}Z2MI{gJ@=3nprAizBz3YJuPV6a^iCEaH7soTufQsgNtzhX<)1TyJuCG@;4 zu|tmD%=T2{FV+TrAT#iC2RXVhf5W#Yn(A%+YR}i^5s9ZeLE{aFmt!Y zw?2c?plqyi!RFb}YjZv@w|m6mxY1@gHBz!M1X>2qPNkWTOOAv~k7yk7)-_tW^4z4# zO|dVHAJ&~tGUqwFEmYUEW3*F2`D}ar22VDw7z*tRy8PQfm%jf%Sg+x+ldvb-`6@Vv zN(>G39k0=z3|$glzf{xAL{)g9v`xJf{Ze(1`DuKc+H@Kce#Q?a8tx$8$QX}*IA`+J zs_J~&cgTA-X1WG4Y<6fnGh%*oaH{#js{8!p!mD$J#Pj$^Ywd`q|&!VS&4&i^F0x`b>$GfKYr*t?$SpVNO1pepdS+5a){HNdiY?e^bWG^};?qY@n zyXjPggiEq|De=AVb^g@2-O%pdml4B}*l8rTMp@>4;TCOqfwc@iRa&FsAm?J;_!RSH z!TZ|3Skb|DZ4H#TZI50M!tGRhchf%^Vwe7%qVSfrVLMC`#jt--1VRXS0yJXoS&Bj* zG09c<1xZ;m2YJLb#{5}+fIwcnGnd(()>(nV|El7_7X}gjOJ-$Vn776D za?|H4?0;|M`mY|g^yapGaF!Ww2HrGWE;(ILe!QXlewAT@`RjAkCoQ&(+_s^QCIjCG zs`OG-6$x1a?EP{8N%CI2*l3Cr@4Ps&z|yy|?G|?|r(&BO9e~$uKl|#Q9vL#te+fi~ zT$L$vBu8D;Bq%=uh|N3(UZ-tgsl#z+_M@rC2k1g#nn@>Z z(OMPi;X5)x$otutU$7Y@aHR|Y>U$_x(FU?E&4Lew@pdA3&3`rGIxRFd@B!P{@^0B7 zkK7eJpf9jJl|GG1=n_Z!R!2wD>dh4tGp`dP!2jxG2CC9IXp378YH7Pb6C0~>ts|J4 zHXyghLAead^HFX!#%K=S3{BGI@-9xhQsFxIf@Hs`E|+||L0Xhmp*h^t*ILNzK1Hg> z015!ytb?!hG4k_UXbpo->hCLGQ@M>G4=Rm8W=pg`M*AWw_ipkdj}21sCR+%i?N)8% ziY-CI{$lEnFhh-y1hN_ZrSf63+2WCpB)Cf$5Vi-N1hx{Werk!QS{pv*4Q|115^jAu zXCWSmY?6hAhD5kkNsRbvQPV$y^W8n(?bP>mlW4k2MxG*&vpNvs_O ztCO!Do*>@$z!|C)k_jSC{)8%~^sZ=MKqCo-uJvSwOcf`GBp69x5ueQ+bC7%gfEtx~ z7aAwpm)q0&_;4w8NkQrQ76=7&lT>*Cjq0HnxePatG<$oK&Lm;sP!6ypZAl^!pm667 zbKBi0G?piPOV9}#diVhvE~XJlAP43{?Ai5%*wJV4kmXB&oeFFm60*kZxYUKc$yIVz zFxj`7ZkJvq^LB4Rj_YSHsdu-IbU)d(Q_P}K#$l+7lK@*lv&5%4d11Z;1}GX2bC7}0 z&VU^9v4AV+LFuLBB!amow;8%|pf0@R8vZ7qck7HOpc6keksAeDD%7I^viqqYv#y9qdx@DsO|?Kq~uJZST0CWAh|xti9m77|KbR5Moc=FXTBxecb?m|8&jz zaVGwWnUMz%BwjXA_i&M%W;$9qbKvO19L!K--6Wf#(HiDdiL(()jDKp}@K?gPsjN#y z%gvf_{Gfjz{Rwi_kso=saH>t{`oh`aKRSdKFG~5$=BCN#AW5C9R0>4rb(Gu8m4KDgbG(9PVtxXU2Y!%ZWr9yN2C4DP8+alU1Z;v63t44*5d=u` z+EO=!Vl`5(a`2-Kbtme5qPbKkrK=;8>j2iak&A5WUQjbBVCmu(syLH@1*95yL5;r( z8bndAmT_&O0VzkIzYRN3Bd=Hpe{2LMKY|{=oB8=0SOJO&g;P(KJ-`e-6evlj)u2yn zD|iVjSH6V+fHw^_GX16+zM&yRG-lh)#g4Y_ilAO(UqB+=q#OSN@38Nnh@dU;JMfs6 zlkBYwJX|(gwd7$|?lOD_ZO{FmAn{j$V`C(}g&^-`^ndNd`YY0(eh%G-FE9}nX__VM zqSjm{C>3I>L-Nq1En5`x$4uuI+x)VQs|v2@`FxAmWGJcMUpHtdx&~$MDMpb?Dj~_ZdP)MWV5?57!9Z>dT z04aaL&=1gq#)nr^qqHjmB%>U1ycSqrWHGlDWeD<;QaEwq1er2WDaNu(vuR8X5)|iv zNE1fjd%$sYaz?54VV2Op9v^r8$|Jh|#6 zB>Mx_(Pm!=S;}kTUeFLMLxp#W{y4b;T4~C!dnj*d5F-h9q$W#hsZkw9(M3fEtXb(; zOAf8Uq*Z~{>bP!KUV{ zSqhbgi~-r?i~+H{N)0KZtj+ph1HM~E`r2!_H=o=|>^I-m=cHF~ZO4LpcKv@ynAg1k zj{vB8H8FUpeKp5{crLIV(>J_3+j!DP@jqaY_(=d;i-9ZSujI_!jI0j!5JZ*%zEzPR zE{H4+Rn*n}aV7*`5eXw;rcamcZfUt}Cc#{&&V}hGI+3{#d91Tw#Kw$KrQt{sWNM@- zv>UHkD3Rh5j_nr^F?O}$rzQfLnErb4u*nJB_5q4VGM;(Aa$7u>Q)sX{#5G53kB(_y zbB}F3mu=(ZFfax!{!vS87;@zq_175>Rr+Ln`1HE7MY~-;hKkKIzD8t7g(?w~@;gKY z5~?Oxfn-wx0-PvsAZ;KLXx}|CT;WH$P6(j9qnia)0x?APF z*(z;t>3S2^r7y;UVz}eQvihjekIH2( zmKwooq@|XKVZbXR!T9KfC-#fJ*6Hc#Uu*G7-;zu{@P5)ard*Uf9Ck?{{+(%Cy+OeP{K!B{o&?eNQ-oE*}AzN2^K99SEN{V>(Z76&dYIz&Da zRX<`gnqo+8a9@cX$HPmBX79ZFc%uJnw$6F+;)hFsRNrXhIIqP?0ooS#<8+2NGNQf< zKP80#j|~*pG;vLkCYur%aVh&v4r?b6ot0|8dcMjMin|}g#AQ|ch3RF@Zqq6m0F*I0 z?2U3Bhll?}d0#-j8+F!7Lz)as-XH*khFliA)?*-R`@udrslh1T(D90jQ=X=)^$%p`j;Okz>d!?POU zQsM|WG#zpttHW5$`hipr|fX=P#nvAu>lYbjBn# zs!nH$qS5VP+aY@rJDDZ+^t&WA0!-E5ohj4Z3)As%%vxl%;7kRuC}Ve3F|!f3HYSxs zE|eSjiG-q=2f^~P#2yGdwJ9=}=lCl+nGR$>DOgRu;Ixet-BHEbGG9A{+_@;mk<3Wi z{(wFaFU2Ez^hDRl1xrFC*WKNngprE%#Zzd*3D2;D38C_?F7US4`uF8jGeR5d)2*As zFD$r9BcDV(NbzpHW@^k^JFpMmBBLp)kBS01O9)3HX^#}d+>>UdPFC;0`OI5vnKc+| zk+UYq%qQSpED5I5(VC}ujounL`(4I-Uq`&r^B9lij~)h8UW4Cs;l z5Knw8N$-IgzXVU{IH`uXMclnBKs+q$$dngW0g9?$r*gsRHO3o-Rh4FOjf9oTN84g1 z>aVMV@VPx>Jk)kYaSAA(BIjPY}AGJ|9twCRUh;3(V2nRuOpFM9FkqJ+EYlKeL5V> z)OtJfIw3%?<`17;O6at;n%){=gL?Xyd81Jn16&ssy;CNWOFMJpLY_o#Zk4gv@AinN zzo&mREayRdrXRzf1b>^cS$J@iyiw?d7VR_lgkUWQe>WIQi1L~}-q2J2NKGvzT76Nc zxCMu{wCfgt(BKQ@Hw)z@XN!Fb5cvtkYbLz)z+3^89 zjG^2)T7FL(ZP3*}~M`}vh~U8;{>kREsisI^}5 zlwELdkS_ttlkAQ;#rz730-kNVL+z5KjwbVxlWEWZFw}UoaAr#IeaNe z>?rsrMyqdW8H{TibdT?fd(z{f%hRwH$oIx4=iJ%(>`=fq+@L#W@M2R^>~>xUvyPYA z_w;Pnl-{?Dt6E+hz`i0wc%~Y2FxuHBL#bwI~)BR@z$vZNk~ygp{6=ZRiq z+p#0Bot|jdZhgGjQ$R z`2q!!WsnQ-Lh)~4e{2J|9KHB419AQ>a(WL?cUSTL{_S7Xr29yOiB<|O1?DG%axcne z2$&&qJnccDq_dWsRmgI(Jg8-7R@O#VlCDh5Why^NfNwLfzl2D$4xDuP;Gz){j)p>np5d{Bi}MA|=+=p3>~4zLE>Sxs>t=L;e)hdUH)mAl%j zM6(VtPhM#%v3lkz!cQkft7ng#o_R_$|MqX~gV-^hpRQ?aV6WA#8UE6>XUDnzZ6`OW zJ^A94z=h;r&n`Yy;8VV){k1{;R(IZO?<-@4ugO;)ieM>Tgnz-X8x` z_0UT5lyhd5ir;>C`EBAI!JW0cR=RHvQvSx|cv#6~^N`t-rfdIN-Dalps>XDUXz*~G zb;(4@3G0$ILBmd;T;BP=#O!CT_U>n}pU4?=({%2ssVR{!**egT zHRYbI&mP|BRDEVsmcscRt$-MIyCp6|0wyR*v(IFmyKXgB?80b_iRvmGCP)tG0hOOtQIh7AT^Z8AW^ z;%Lmh3+h!yp7GZo+Z}QCe7b!k=AO4<4?o*}TV;Qx$b*+W4ecK8^Ey6%`c#juws2#8|iuJc3@7X#Qd}C=AYYaBk^mS^siO? zO^fXl7r6v3%6h)|KwC{@$wK+f^KCYJJ|E^{f4MDQd5*Ty1?_#jRipORqkndGUd|f1 zY4L}u^&hskR(4E0uB3naI(=koPvb3j;pry5G)TnOk-A;;Imt&GG*k64kMz`5aUthcR&uFPXx9;PxanbIW__(NoKI{~4$u@tWPV8l**sGk%10i8X zA$(a`UhmyqN7qb%Vvz#3{t$!fz8ct<F;Sv&O_Bu7zLuzNdeX*$(nm_zmjmZ06g~~dXS5zEg z@Z3gavjxmFf#!9)K6_R^|8_y2foSMrn|)36=YE!j`s}~0`V3?9|L4cAeTI7<`RwB? z%yIT;hyPDLd6mYz3@d0K8HlyooIUHu!E<09-Wy)jn%T?8pBWmGpFQEv#`gVc5w;;{ zu^(3Oy?yYWAIGNri78g62^}Wt$F(#5NwdfN{Q2W5o@NR9D{+2t=wD6Kv!4QtcKEG6 z|KHz&-t?cIWVd7@A|hz8vB=fTqrcqb=NVq2uzR;P8NbEGZh(YpXGK$!ZrrCQ7yHV9 z|85eQwb8nvprDWlP{Zkisjd)+SATzT{bI_=mXd^B80o7uCz9=Az4@DuW6bpruHbmssH-5adr3E-eNzY_sPb>bSCc~0*p#!Xe+f8LYcyB>;Uk1UA zjg2B-E{GtU?ZE>fIC3fZd_RA_!SUnaT8@g!%E|$#KnDf|6_$OGiRPVA@97b5krEPx zCG!C8EvJh>7VjhZT*#KLulf7V**c=`9lUqA;F@|=e0;n|REC$Amq_4`=Xx4LP+>L% z?AR)RI$R-miUqgki9hU_{$pLwd%ePzDkJFY5I$xNrc4{E^BZ#&eS$2qq##$P;^^oo z<#6m=cYQ#2cQJ9eIIVe$Ab69};NC+~o(RW+2k1>v+cK-OulfscD+&nx*@Ky9j zlhsCymR8B^iNfq)bRx8(z`JhuCpRo!r8V#A@1tq1<7q@kH;_?LRaNEuV!q+ovtqO_ z=Ul7UI9g(RqwHrBQ`17cul_dIskT-D#XfN1-y!kK#|tg|Bp7W|UdO$CzNd$WK3X+| z?M3pZD__6XRM>W56e-b7WS9PyKKj6G3=S_Mav}!LA%>z4VOxBodAkdi|9x%YQ5e&g zD6uBJMnxYK)QVf}JbXRFd(qkMf57KXW~OXNNQi-!D8aWC)zxY^5~?J!^3Y}e$C1!k z6|NBK&~eYH<4~BAPYeW3T_iNt}p_pXH=N1>#mh>T1y z)L$b!KFNqqK`QDL8O9YLkoN`FWUPS|skN8<)QFV<8hFK0%gV~k8Z**8d{?0swjm|K?QqIf@0k}NG%pRUHt zt&@|J2H%Tap7f`dJ#voovn-w*h?d_Fv3cB4_md;itx0}0-6uTl14aI|iVy(wZoyz# zu?5elIk#ad%)!B-;A>+x49waLduxm^bRuXd*z|_75on6s`cuLAoYrH!2!mz9RmHuPoHjMJ~OTrD;j(9l@zU@kM95J&@2|Jk|2v0E)9gY)ae3J*#MM}7vMi^q^;+V}XaDqo3zfSKB z3HS;|tWre4lis?u@R1>gwnd9`kE1Syk)hPIR#V+^4Gm4re*}!;b==RsB5BoPiqO<7 z4taCo+;L+B90=%R9`*sMY5~Bq0jGG3Izyp=V&Y#9_bsr8LTDJ5bTvFl<7vf2IX>0h zGqn+gg?~gk8<1y&E956DW=QQFLks+r?!EiJshDm^;~V z&SPg!f@1e!LI3p-0O6Z_zq`XA=)t zSXgj=;ijmruFknyadz@A5|Na=Me!fBojicezS9$>(>zZW#P@r(;2b53q$p%MvB1gA~wCb&# z_5*Ykh}c}9@NzjOeG>F?Fi6Qpa}*i@T8#KtK=KoCfuyYkg(4y%KJX$jva@@{6Pc1CPH=;UhDHI${FBEu1I`R2 z7+AGDfzP8A@GE~yi~|wOJv_r35#MlgaTP#YydefMx+Il=2KyY#et^ntxH%;wqqavZ z$^>22aS`#GUwoXN%nzGT1g+^hxeH^S2;~ZELe3T1?~$)L5m9SXm4oIkNQ;Y$6H%Ia zz;@XE_5mMKb*3Ies(Z>ze0(ki9Ro%&AACqiHG%k4kl$q#(^*(wYupn#GX8~wV4uUQ z=tJ7A^zPKxw19~q9I+YMp21i9ZYxFl0QbH5*YXdnz6j)nYg;ngm7DwUQy@YcfFGzJ z-ID$1kjL^(jk|`-6^`;` zIBP1=Ak>e3Ls|^TmPKy7w)Dm)18$o(uY>!SI=e`a`yE7U_WA^)Kv)Ysk<`--8ga_6 z0J;gb}6| zuM_g@*|Syo*;Ad_?__)IRnygg-Jcmjh%u{6zK07#o0w3@X9M1ipW|tke)4xA{zYYa{m%Z$RpnbW~tVN1?jFG?Uh9^`r6M=e)tguEG$IVZd z&<1Rze8^k9G;FFpY>grT#?)QXTJSUWB=((}O@Y_1U$^qZ*}q?~ASyOCmgftb>Z+aC5qyfr zi!oFH#u2K;NepS5%{mu6thdugo@i3`HBNb+DLr=_)-TR3WRelp}L zQAR&>F!Er2N7VyS#C1I{sWntsPCtkN_fisr5iE(r$hFa%?0=wPU>L>HuyHL;?{pNo ziFW#r>;~^N>JG%PT7X;c^Pv^fx6gaj-!t5jvat4^9^qzvpF#z66+2TW8)YJY&bP?( zSJyfAk69aO_QJ0p8^d>GljPGvm?t`#3;Z8TB2s~~au63p!Y#n0RXOL_l+TPgqF2z2 z!QkknZD9JJm$(b;iU?g;w`~qR&F-_dD!+9Gf)%ap}>x^gi+c zahfX2CVy&WZm(MDR)>U1@J=zquwgEd%_I?@A39CAj zXn#v(On3-f#N~4u1v8^hF!m9&;VPhwJM9?s{yxKb#R`piA5USk-AAi5Eh|INaJk{_ z;o>b@V$?=NJJB4&_6)vO@W+6wtd{$+TJ;+AgJ@4hq{S>^My7c%8vFP1IYkh`(8Qj)3 zkONmgoVR8TX_>cdynLqAogwmfrRsq8;X)ZQL?Dei8OW#EqmW;a;!F*7l+R$(7CeG9L8i=qR~#fNElr_XW_qH(y}dmjLkqc8sb8lap?4q;2qOm;+RZMGvyse& zW~x~}iK^fw-w@J6UYUdjOcF?v`tx6l3O-p1Dfc?Oqd;LiFeb5##E&PYdZt}CRrA2v z3;~g1U}?@;x!x;8@-%STlQmWq{|+=wTTan$Q0=J7Gl&2MbmiKRvj;i(&f(sra8>y^={rm5~|Blj-=j1S~ zkdjdDqQ@&Pq_6?G3~2Gic#%*-zK)>LmJ;u54wUamT-3pP`gV49VY>YM{G2>I`;g0# z2@L&atM;!qH$ec6R`>Sq?h<`llc2!B^6KgvLqkJYsR%0=P0<}sA+;%xo=@Rn>Nc_{ z5Hu9R|CB^sC)g}GUSo;fn=_V)Wm#OK|0oeIm<2IeljYhflZ~GQXXJLLKEs^;zpcFg u&&gRY=6@bL>p}cCLp}dD4LF|(`3 Date: Tue, 14 Jan 2025 14:44:47 -0500 Subject: [PATCH 13/17] Add pages to notebook testing --- scripts/config/notebook-testing.toml | 2 ++ 1 file changed, 2 insertions(+) diff --git a/scripts/config/notebook-testing.toml b/scripts/config/notebook-testing.toml index 7c28adf1e24..6b084d61c80 100644 --- a/scripts/config/notebook-testing.toml +++ b/scripts/config/notebook-testing.toml @@ -46,6 +46,8 @@ notebooks = [ "docs/guides/transpiler-stages.ipynb", "docs/guides/visualize-circuits.ipynb", "docs/guides/visualize-results.ipynb", + "docs/guides/qiskit-addons-cutting-wires.ipynb", + "docs/guides/qiskit-addons-cutting-gates.ipynb" ] # Mock the following notebooks using a 6-qubit local simulator From b6c647ea4da8e76a3c4defea398ce2f12a6355bd Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Tue, 14 Jan 2025 15:28:11 -0500 Subject: [PATCH 14/17] Apply suggestions from @abbycross Co-authored-by: abbycross --- docs/guides/qiskit-addons-cutting.mdx | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/docs/guides/qiskit-addons-cutting.mdx b/docs/guides/qiskit-addons-cutting.mdx index 1a993d3da9c..382957dfb70 100644 --- a/docs/guides/qiskit-addons-cutting.mdx +++ b/docs/guides/qiskit-addons-cutting.mdx @@ -9,9 +9,9 @@ Circuit cutting is a technique to increase the size of circuits that can run on ### Important terms -- **subcircuits**: The set of circuits resulting from cutting gates in a `QuantumCircuit` and then separating the disconnected qubit subsets into smaller circuits. These circuits contain [`SingleQubitQPDGate`s](/api/qiskit-addon-cutting/qpd-single-qubit-qpd-gate) and are used to instantiate each subexperiment. +- **Subcircuits**: The set of circuits resulting from cutting gates in a `QuantumCircuit` and then separating the disconnected qubit subsets into smaller circuits. These circuits contain [`SingleQubitQPDGate`s](/api/qiskit-addon-cutting/qpd-single-qubit-qpd-gate) and are used to instantiate each subexperiment. -- **subexperiment**: A term used to describe the unique circuit samples associated with a subcircuit, which are sent to a QPU for execution. +- **Subexperiment**: A term used to describe the unique circuit samples associated with a subcircuit, which are sent to a QPU for execution. ## Install the circuit cutting package @@ -45,7 +45,7 @@ pip install tox notebook -e '.[notebook-dependencies,dev]' ### Use within Docker -The dockerfile included in the addon repository can be used to build a Docker image. There is also a `compose.yaml` file that allows you to use the Docker image with the following commands. +The dockerfile included in the addon repository can be used to build a Docker image. The included `compose.yaml` file allows you to use the Docker image with the following commands.
@@ -89,9 +89,9 @@ In the circuit cutting process, there are two types of cuts: a **gate** or "spac ![Diagram of circuit cutting by taking one larger circuit and cutting it into two smaller ones](/images/guides/qiskit-addons/circuit-cutting-diagram.avif) -There are also three scenarios to consider when preparing a circuit cutting workflow; which center around the availability of classical communication between the circuit executions. The first is where only local operations (LO) are available while the other two introduce classical communication between executions known as local operations and classical communication (LOCC). The LOCC scenarios are then grouped into either near-time, one-directional communication between circuit executions or real-time, bi-directional communication (which you might see in a multi-QPU environment). +There are three scenarios to consider when preparing a circuit cutting workflow, which center around the availability of classical communication between the circuit executions. The first is where only local operations (LO) are available, while the other two introduce classical communication between executions known as local operations and classical communication (LOCC). The LOCC scenarios are then grouped into either near-time, one-directional communication between circuit executions, or real-time, bi-directional communication (which you might see in a multi-QPU environment). -While circuit cutting can be used to execute quantum circuits larger than what is possible on currently available hardware, it does come at a cost. Because the technique can be framed as a quasiprobability decomposition (QPD) problem, there is an exponential sampling overhead required in order to reconstruct the results. This overhead is the factor by which the overall number of shots must increase in order for the quasiprobability decomposition to result in the same amount of error, $\epsilon$, as you would get by executing the original circuit. Each cut gate contributes to this overhead and the amount of overhead added is dependent on the type of gate that was cut (more details on the overhead sampling can be found in final appendix of [[1]](#references)). +While circuit cutting can be used to execute quantum circuits larger than what is possible on currently available hardware, it does come at a cost. Because the technique can be framed as a quasi-probability decomposition (QPD) problem, there is an exponential sampling overhead required in order to reconstruct the results. This overhead is the factor by which the overall number of shots must increase in order for the quasi-probability decomposition to result in the same amount of error, $\epsilon$, as you would get by executing the original circuit. Each cut gate contributes to this overhead, and the amount of overhead added depends on the type of gate that was cut (more details on the overhead sampling can be found in final appendix of [[1]](#references)). For example, a single cut CNOT gate incurs a sampling overhead of 9 [[2,6]](#references) and a circuit with $n$ wire cuts incurs a sampling overhead of $\mathcal{O}(16^n)$ when classical communication is not available (the LO scenario). This is reduced to $\mathcal{O}(4^n)$ when classical communication becomes available (LOCC scenario) [[4]](#references). However, wire cutting with classical communication (LOCC) is not yet supported by this package. @@ -105,7 +105,7 @@ The results equivalent to the desired channel $\mathcal{U}$ are obtained by firs ### A short example: cutting a RZZGate -As a basic explicit example, let's consider the decomposition of a cut RZZGate (all the details can be found in [[2]](#references)). A quantum circuit which contains an RZZGate can be simulated by performing six subexperiments where the RZZGate has been replaced with only single-qubit operations (these are the $\mathcal{F}_i$'s from the equation above). The results of this circuit are reconstructed by combining the results of each subexperiment alongside a set of coefficients (the $a_i$'s from the equation above) which can be either positive or negative. +As a basic explicit example, consider the decomposition of a cut RZZGate (details can be found in [[2]](#references)). A quantum circuit that contains an RZZGate can be simulated by performing six subexperiments where the RZZGate has been replaced with only single-qubit operations (these are the $\mathcal{F}_i$'s from the equation above). The results of this circuit are reconstructed by combining the results of each subexperiment alongside a set of coefficients (the $a_i$'s from the equation above), which can be either positive or negative. For some chosen $\theta$ parameter for the RZZGate, the six subexperiments are as follows: 1. With coefficient $a_1 = \cos^2(\theta/2)$, do nothing ($I\otimes I$) @@ -117,7 +117,7 @@ For some chosen $\theta$ parameter for the RZZGate, the six subexperiments are a ### Sampling overhead reference table -The below table provides the sampling overhead factor for a variety of two-qubit instructions, provided that only a single instruction is cut. +The following table provides the sampling overhead factor for a variety of two-qubit instructions, provided that only a single instruction is cut. | Instructions | KAK decomposition angles | Sampling overhead factor | | --- | --- | --- | | CSGate, CSdgGate, CSXGate | $\left(\pi/8, 0, 0\right)$ | $3+2\sqrt(2) \approx 2.828$ | @@ -132,7 +132,7 @@ The below table provides the sampling overhead factor for a variety of two-qubit ## Next steps - - Read through the page on [getting started with circuit cutting using wire cuts](/guides/qiskit-addons-cutting-wires) + - Read the [Get started with circuit cutting using wire cuts](/guides/qiskit-addons-cutting-wires) guide. From 7bf0d1d9580b09a6844275e9b14af7189c6dc388 Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Tue, 14 Jan 2025 16:59:35 -0500 Subject: [PATCH 15/17] Add package reqs and extra link in intro --- docs/guides/qiskit-addons-cutting.mdx | 1 + scripts/nb-tester/requirements.txt | 1 + 2 files changed, 2 insertions(+) diff --git a/docs/guides/qiskit-addons-cutting.mdx b/docs/guides/qiskit-addons-cutting.mdx index 382957dfb70..2c90a366562 100644 --- a/docs/guides/qiskit-addons-cutting.mdx +++ b/docs/guides/qiskit-addons-cutting.mdx @@ -133,6 +133,7 @@ The following table provides the sampling overhead factor for a variety of two-q - Read the [Get started with circuit cutting using wire cuts](/guides/qiskit-addons-cutting-wires) guide. + - Read through the page on [getting started with circuit cutting using gate cuts](/guides/qiskit-addons-cutting-gates) diff --git a/scripts/nb-tester/requirements.txt b/scripts/nb-tester/requirements.txt index 7b8761425f9..0c88924a9de 100644 --- a/scripts/nb-tester/requirements.txt +++ b/scripts/nb-tester/requirements.txt @@ -11,5 +11,6 @@ qiskit-addon-utils~=0.1.0 qiskit-addon-mpf~=0.2.0 qiskit-addon-aqc-tensor~=0.1.2 qiskit-addon-obp~=0.1.0 +qiskit-addon-cutting~=0.9.0 scipy~=1.15.0 pyscf~=2.8.0 From e73b270acf09a732953e3508f8a429917e6307e1 Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Wed, 22 Jan 2025 17:09:20 -0500 Subject: [PATCH 16/17] Reorg cutting wires, small edits to cutting gates --- docs/guides/qiskit-addons-cutting-gates.ipynb | 18 +- docs/guides/qiskit-addons-cutting-wires.ipynb | 340 ++++++++++++++---- 2 files changed, 294 insertions(+), 64 deletions(-) diff --git a/docs/guides/qiskit-addons-cutting-gates.ipynb b/docs/guides/qiskit-addons-cutting-gates.ipynb index 228e9b963cd..ef29de597b1 100644 --- a/docs/guides/qiskit-addons-cutting-gates.ipynb +++ b/docs/guides/qiskit-addons-cutting-gates.ipynb @@ -72,7 +72,7 @@ "First, partition the circuit and observable into *subcircuits* and *subobservables* using the [`partition_problem`](/api/qiskit-addon-cutting/qiskit-addon-cutting#partition_problem) method. This function ingests a partitioning scheme according to a label string of the form `\"AABB\"` where each label in this string corresponds to the `circuit` qubit in the same index. Qubits sharing a common partition label are grouped together, and any non-local gates that span more than one partition will be cut.\n", "\n", "\n", - " The `observables` kwarg to `partition_problem` is of type PauliList. Observable term coefficients and phases are ignored during decomposition of the problem and execution of the subexperiments. They may be re-applied during reconstruction of the expectation value.\n", + " The `observables` kwarg to `partition_problem` is of type [`PauliList`](/api/qiskit/qiskit.quantum_info.PauliList). Observable term coefficients and phases are ignored during decomposition of the problem and execution of the subexperiments. They may be re-applied during reconstruction of the expectation value.\n", "" ] }, @@ -389,7 +389,8 @@ " coefficients,\n", " observable.paulis,\n", ")\n", - "# Reconstruct final expectation value\n", + "\n", + "# Apply the coefficients of the original observable\n", "reconstructed_expval = np.dot(reconstructed_expval_terms, observable.coeffs)\n", "\n", "estimator = EstimatorV2()\n", @@ -405,6 +406,19 @@ " f\"Relative error in estimation: {np.real(np.round((reconstructed_expval-exact_expval) / exact_expval, 8))}\"\n", ")" ] + }, + { + "cell_type": "markdown", + "id": "faf4620d-6782-4fce-a99b-9e1d01f29951", + "metadata": {}, + "source": [ + "## Next steps\n", + "\n", + "\n", + " - Read the [Get started with circuit cutting using wire cuts](/guides/qiskit-addons-cutting-wires) guide.\n", + " - Read the arXiv paper on [circuit knitting with classical communication](https://arxiv.org/abs/2205.00016)\n", + "" + ] } ], "metadata": { diff --git a/docs/guides/qiskit-addons-cutting-wires.ipynb b/docs/guides/qiskit-addons-cutting-wires.ipynb index 71e5dca18f3..0cd13fcd872 100644 --- a/docs/guides/qiskit-addons-cutting-wires.ipynb +++ b/docs/guides/qiskit-addons-cutting-wires.ipynb @@ -7,9 +7,9 @@ "source": [ "# Get started with circuit cutting using wire cuts\n", "\n", - "This guide demonstrates a working example of wire cuts with the `qiskit-addon-cutting` package. It covers reconstructing expectation values of a seven-qubit circuit using wire cutting and reducing circuit depth and width using gate cutting.\n", + "This guide demonstrates a working example of wire cuts with the `qiskit-addon-cutting` package. It covers reconstructing expectation values of a seven-qubit circuit using wire cutting.\n", "\n", - "A wire cut is represented in this package as a two-qubit [`Move`](../api/qiskit-addon-cutting/instructions-move) instruction, which is defined as a reset of the second qubit the instruction acts on followed by a swap of both qubits. This operation is equivalent to transferring the state of the first qubit to the second qubit, while simultaneously discarding the state of the second qubit (as in, the first qubit ends up in the state $|0\\rangle$).\n", + "A wire cut is represented in this package as a two-qubit [`Move`](/api/qiskit-addon-cutting/instructions-move) or a [`CutWire`](/api/qiskit-addon-cutting/instructions-cut-wire) instruction, which is defined as a reset of the second qubit the instruction acts on followed by a swap of both qubits. This operation is equivalent to transferring the state of the first qubit to the second qubit, while simultaneously discarding the incoming state of the second qubit.\n", "\n", "The package is designed to be consistent with the way you must treat wire cuts when acting on physical qubits. For example, a wire cut might take the state of physical qubit $n$ and continue it as a physical qubit $m$ after the cut. You can think of \"instruction cutting\" as a unified framework for considering both wire and gate cuts within the same formalism (since a wire cut is just a cut [`Move`](/api/qiskit-addon-cutting/instructions-move) instruction).\n", "\n", @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "b481ef2d-3912-4eac-9755-335e8f5db886", "metadata": {}, "outputs": [ @@ -43,12 +43,14 @@ "from qiskit_ibm_runtime import SamplerV2, Batch\n", "from qiskit_aer.primitives import EstimatorV2\n", "\n", - "from qiskit_addon_cutting.instructions import Move\n", + "from qiskit_addon_cutting.instructions import Move, CutWire\n", "from qiskit_addon_cutting import (\n", " partition_problem,\n", " generate_cutting_experiments,\n", + " cut_wires,\n", + " expand_observables,\n", + " reconstruct_expectation_values,\n", ")\n", - "from qiskit_addon_cutting import reconstruct_expectation_values\n", "\n", "\n", "qc_0 = QuantumCircuit(7)\n", @@ -64,7 +66,7 @@ "qc_0.cx(1, 3)\n", "qc_0.cx(2, 3)\n", "\n", - "# Define observables\n", + "# Define observable\n", "observable = SparsePauliOp([\"ZIIIIII\", \"IIIZIII\", \"IIIIIIZ\"])\n", "\n", "# Draw circuit\n", @@ -73,25 +75,25 @@ }, { "cell_type": "markdown", - "id": "34609068-25a7-4aae-b786-836984d305d2", + "id": "d332ed5a-63e9-4862-9498-f86b0147607b", "metadata": {}, "source": [ - "Make the wire cut at qubit $q_3$ by manually placing `Move` instructions in a new circuit with one extra qubit - but for this to work properly, the second (destination) qubit must share no entanglement with the remainder of the system; otherwise, the reset operation will cause the state of the remainder to partially collapse. In this example, you can avoid this by including a second `Move` instruction, which is reversed.\n", + "## Cut wires automatically\n", "\n", - "When adding in the `Move` instructions, a new observable should be created to account for the added qubit wire. Do this by including an extra $I$ at index $4$." + "We'll next make wire cuts using the single-qubit [`CutWire`](/api/qiskit-addon-cutting/instructions-cut-wire) instruction on qubit $q_3$. Once the subexperiments are prepared to be executed, use the [`cut_wires()`](/api/qiskit-addon-cutting/qiskit-addon-cutting#cut_wires) function to transform `CutWire` to [`Move`](/api/qiskit-addon-cutting/instructions-move) instructions on newly allocated qubits." ] }, { "cell_type": "code", "execution_count": 2, - "id": "15461a2c-85a9-4cb2-a632-b9597ccbc4bd", + "id": "9bac1915-316b-49d0-a1a1-145047679530", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAIwCAYAAADH6UtKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAaklEQVR4nOzdd3hUVf7H8c+kFxIgBQKEEkroTbqIAoKCCKKIoEHBdV0LLLqysOr+dhFdC4qLhUWxsiqyKKAgKM2IhGpo0kILBEjIAKGll8nM7w/WrJEEMmFmbmbyfj2Pz8q999zzncje3M/cc8412Ww2mwAAAAAAgNvxMroAAAAAAABQOYR6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwUz5GF4Cy2Ww2WfIKjC6jwnwC/WUymYwuAwAAAACqFUJ9FWXJK9C8ZmOMLqPC4pI/k29QgNFlAAAAAEC1wvB7AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE3xnnoPEtWrrQYtnlZqW1FOnjKPpCt54TolffitbMVWw+oDAAAAADgWod4DHVmcoNT47ZLJpMDIWmo+8iZ1nzZONVs00KbJc4wuDwAAAADgIIR6D3R291EdWZRQ8ucDc1fqzoQ3FXvfzdr+ynwVnM00tD4AAAAAgGMwp74asOQV6Mz2QzJ5eSm0cV2jywEAAAAAOAihvpoIaXIpzBdcyDa6FAAAAACAgzD83gP5BPrJPyykZE59ywduUXj7pjqz/ZAyj6QbXR4AAAAAwEGqRajPyMjQq6++qsWLFys1NVWRkZG666679NJLL2nixIn66KOP9Pbbb2vChAlGl+oQnaeMVucpo0ttS1m+WVue+cCwmox2MOWi5n+XLHNGnry9TWreMFRjbm+uiNoBRpcGAAAAJ7PZbNr082ktXXtc5zMLFOjvo06twjTq1qYKDKgWkQgezOP/Bu/cuVODBw+W2WxWcHCw2rRpo5MnT+qtt95ScnKyzp07J0nq1KmT0aU6zIFPVynlm03y8vVR7VaN1G78cAXXC1dxQWHJMV5+Phq66jUd/SpBu95cXLL9hjfGKyCyltbEvWhQ9Y61de8ZPfPmVq3ZfPKyfU+/uVWjbo3Rq091V93wQEPqAwAAgHN9HZ+iae/u0M795y7b99RrW/TwiJaa9vh1CvD3+GgED+XRc+ozMjI0dOhQmc1mTZo0Senp6dq+fbvMZrOmT5+u5cuXKzExUSaTSR06dDC6XIfJPGJWesJupcXv0J7ZS/T92FcU0amZek1/pOQYa6FF6ye+rfYT71LtNo0lSY0GdVP0wK7a8NRsA6t3nJUbUnXjuOVlBnpJKigs1iffHFbPuKVKSctyeX0AAABwrjc/26M7n/y+zEAvSeczC/Xqx7t1yyMrlJNb5PL6AEfw6FA/ceJEpaamasKECZoxY4ZCQkJK9k2ZMkUdO3aUxWJRkyZNFBoaamitznRm6wElL1ynmOG9Fdm1Zcn2s7uOaO87S9XnrT8qqF6Yer32qLY8+4HyTp03tF5H2Hv4vEY89b3yCoqvemzKyWwNfnylcvMsLqkNAAAAzrd4TYqefHVLhY5N2H5KY5790ek1Ac7gsaE+KSlJCxYsUEREhF5++eUyj+nSpYskqWPHjqW2Hz16VMOGDVNISIhq166tBx54QGfPnnVJ3c7y88yFslqK1XnyqNLb31gka3Gxhq1+TeYNe3R0yQbDanSkVz/epRw7Qvr+o5fm3AMAAMD92Ww2TZ293a42X8cf0/Z9GU6rCXAWjw318+fPl9VqVVxcnGrUqFHmMYGBl+ZR/zrUZ2VlqV+/fkpNTdX8+fP13nvvKSEhQbfffrusVqvL6ne0rBSzji7ZoPo3dlCdHq1LttssxTqTeEAB4TV1eMEPhtboKBnn87Vg5VG72/3rP0my2WxOqQkAAACus377Ke05bP/o03e+SHJKPYAzeWyoj4+PlyT169ev3GNSU1Ol34T69957T2lpafr66691++23a+TIkfr888+1efNmLV261AWVO8+uNy89lf/10/o6PVqr+ah+SvrwW3V//kF5B/gZWqMjrNqYpoLCqw+7/60d+88q9VSOU2oCAACA6yz54Vil2n0VX7l2gJFMNg99NNmwYUOlpqZqx44dZa5sb7FYVK9ePWVkZCg5OVlNmzaVfvUlwA8/lH5q3axZM/Xt21cffvih3bV07dpVZrPZrja+Ni9NtXa3uy97+AQFaNj3M7RvzjLt//dKDf7qeWX8nKzEqXPtPtc0r59UZKoaIxmy/XvoYvBtlWpb5+Js+RafcnhNAAAAcJ3zwXco1/86+xvarKp/fppMzigKuIqoqCht3brV7nYe+96GnJxLT1zz8vLK3L9gwQJlZGQoJCREMTExJdv37dunkSNHXnZ827ZttW/fvkrVYjablZaWZlcbP5O3VLdS3VVYt+ceUPbx09o/d4Ukaf0TszRszQwd/26LTm22b+jRyfSTKrTZ/3TcKWqfkYIr1/S0OU0qJNQDAAC4tfoXJf9KtLMV6aSd9+2A0Tw21EdFRen8+fPavn27evXqVWpfenq6Jk+eLEnq0KGDTKb/fRd3/vx51apV67LzhYWF6cCBA5WuxV6+Ni/JiQ++G/TvrJhhvbXk5kkl27KOndK2F+ep98zxWtp/kix5BRU+X/169avMk/pC73ydkSSbTTJV/HtWkzVP9SIDZFIDZ5YHAAAAJ8vxz9aFSrTzKz6lyAbcC8IYlcmN8uRQP2DAACUlJWn69OkaOHCgYmNjJUmJiYm6//77lZFxaWXLsobmO1plhlAU5eZrXrMxTqlHktLid+jzVmMv275/7oqSJ/f2OHjooHyDAhxU3bWx2WzqOnqJtifZ98aCJx7oqplTUpxWFwAAAFwjK6dQ9W+er+xc+15Z/MGrY3T/0GlOqwtwBo9dKG/KlCkKDw/XiRMn1LZtW7Vv314tWrRQ9+7d1bRpU/Xv318q43V2tWvX1oULl3+vd+7cOYWFhbmsflSeyWTSH+9rY1cbb2+THh3Zymk1AQAAwHVCgv304PBYu9rUCQvQyFtiKnAkULV4bKiPjo5WQkKChgwZooCAAKWkpCgsLExz5szR8uXLdfDgQamMUN+6desy587v27dPrVu3vmw7qqaxw1rogaHNK3z8O3+9Xi1jLp92AQAAAPf08sSu6t4uskLH+vt5adE/b1aAv8cOZIYH89hQr/8G9GXLlikrK0tZWVnasmWL/vCHPygnJ0cpKSny8vJSu3btSrW5/fbbtX79+pLX3UnSli1blJycrKFDhxrwKVAZJpNJHz3fRxPuvfITe38/b338Qh89fDdP6QEAADxJcJCvVs0ZpFuuv/Ic+cjaAVrz3mDdcF3l5jMDRvPYV9pdyZYtW9SzZ0+1bNlS+/fvL7UvMzNT7du3V0REhKZNm6b8/HxNmTJFkZGR2rRpk7y8XPM9iLPn1DtaXPJnVWZO/W8dTLmod79M0rzlyTp9Ll/673D7lyd21YPDYxVRu2rWDQAAgGtns9m0eddpzV6QpKVrjyszu0iS5Ovjpfem9taoW5sqMIAn9HBfHv2kvjy7d++Wyhh6L0mhoaGKj49XvXr1NHr0aP3+97/X9ddfr2XLlrks0MOxYpvU1D8n99SptXGqHxkoSYoKD9TkBzsQ6AEAADycyWRSr4519elLfXVx4wMl94N1wgI07o5YAj3cXrX8G3ylUC9JzZo107Jly1xcFVzBZMcr7gAAAOB5uB+Ep6mWj56vFuo9WeMhPdXzlYdLbWs+qp/GpS9Uo0HdDKsLAAAAAGC/avmkPj4+3ugSDNPoth5K/nJtyZ9rREcqNm6ATm89YGhdAAAAAAD7VctQ78n8QoN0xw8z5R3gp9yTGfLy91VIo7pKXvijNj39vup2a6n1T8y6dLDJpOtff0xb/u9DdZs61ujSAQAAAAB2ItR7mMLMXB35KkFFOfnaNXOh6vftqA4T79LGP7+r+jd11OnEA7JZiiVJbR8ZqtOJ+3V21xGjywYAAAAAVEK1nFPv6cLaxejc7qOSpPAOzXRuz6V/bzSom45995MkqVbLhmo8pId+fmORobUCAAAAACqPJ/UeKKxtk5IgH96hqU6sTJQk1e/bSVtf+EySVLdHa9VoWEcjNr4tSQqMrKVerz2qwDq1deCTVQZWDwAAAACoKEK9hwmKCpNsNuWaz0mSwlo31q43FymicwtdPJQmS26+JOnAJ6tKhfdBi6Zp3/vLdHxFomG1AwAAAADsQ6j3MGHtYkqe0ktSYWaOWo29VQXnsnR8xU+G1gYAAAAAcCxCvYdJXbNNqWu2lfx52eCnJUl3rJ2plSOmlttuxRX2AQAAAACqJkJ9NbGk75+MLgEAAAAA4GCsfg8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuCnm1FdRPoH+ikv+zOgyKswn0N/oEgAAAACg2iHUV1Emk0m+QQFGlwEAAAAAqMIYfg8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAm/IxugCUzWazyZJXYHQZFeYT6C+TyWR0GQAAAABQrRDqqyhLXoHmNRtjdBkVFpf8mXyDAowuAwAAAACqFYbfAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJvyMboAOE5Ur7YatHhaqW1FOXnKPJKu5IXrlPTht7IVWw2rDwAAAADgWIR6D3RkcYJS47dLJpMCI2up+cib1H3aONVs0UCbJs8xujwAAAAAgIMQ6j3Q2d1HdWRRQsmfD8xdqTsT3lTsfTdr+yvzVXA209D6AAAAAACOwZz6asCSV6Az2w/J5OWl0MZ1jS4HAAAAAOAghPpqIqTJpTBfcCHb6FIAAAAAAA5SLUJ9RkaGpkyZoubNmysgIEANGzbUE088oZycHD300EMymUyaNWuW0WU6jE+gn/zDQuQfHqparRqpx0u/V3j7pjqz/ZAyj6QbXR4MkpldqJ8PnNXmn0/r8PFM2Ww2o0sCAACAC50+m6dt+zKUuOeM0k7lGF0OHMTj59Tv3LlTgwcPltlsVnBwsNq0aaOTJ0/qrbfeUnJyss6dOydJ6tSpk9GlOkznKaPVecroUttSlm/Wlmc+MKwmGGdHUoZmL0jSvG+TlZdfXLK9fYvaenxUa425vblqBPkaWiMAAACcw2azafWmNM1ekKRvfjwhq/V/D3b6daunx0e11vD+jeXjUy2e93okjw71GRkZGjp0qMxmsyZNmqSpU6cqJCREkvTqq6/qL3/5i3x8fGQymdShQwejy3WYA5+uUso3m+Tl66ParRqp3fjhCq4XruKCwpJjvPx8NHTVazr6VYJ2vbm4ZPsNb4xXQGQtrYl70aDq4Ugz5u7W5H/+VOa+3YfO67F/bNQbn+3Vd7NvVUx0iMvrAwAAgPMUFVn18LT1+vfSQ2Xu/yExXT8kpmtgr/pa+PrNCq3h5/Iace08+uuYiRMnKjU1VRMmTNCMGTNKAr0kTZkyRR07dpTFYlGTJk0UGhpqaK2OlHnErPSE3UqL36E9s5fo+7GvKKJTM/Wa/kjJMdZCi9ZPfFvtJ96l2m0aS5IaDeqm6IFdteGp2QZWD0d587M95Qb6XzuQclE3P/ydTp3Nc0ldAAAAcD6bzabfP5dQbqD/tdWbTurOJ9eosKj4qsei6vHYUJ+UlKQFCxYoIiJCL7/8cpnHdOnSRZLUsWPHkm2/fAnQvXt3+fv7y2QyuaxmZzmz9YCSF65TzPDeiuzasmT72V1HtPedperz1h8VVC9MvV57VFue/UB5p84bWi+uXao5R5Nev3qg/8XRtCz99a2tTq0JAAAArrNifao++eZwhY+P/yld7y864NSa4BweG+rnz58vq9WquLg41ahRo8xjAgMDpd+E+sOHD2vRokWKiopSt27dXFavs/08c6GslmJ1njyq9PY3FslaXKxhq1+TecMeHV2ywbAa4TjvLzqg4mL7FsL7/Ltknc8scFpNAAAAcJ3ZC5LsbvPOgiQWU3ZDHhvq4+PjJUn9+vUr95jU1FTpN6H+xhtvVHp6upYuXaoBAwa4oFLXyEox6+iSDap/YwfV6dG6ZLvNUqwziQcUEF5Thxf8YGiNcJwPv7L/W9a8/GLN/zbZKfUAAADAddLP5Gp5wgm72+1NvqAtu844pSY4j8culHfs2DFJUuPGjcvcb7FYtGHDpafSvw71Xl6O/56ja9euMpvNdrXxtXlpqro7tI5dby5SzPDe6jx5lFbe/ZwkqU6P1mo+qp+SPvxW3Z9/UEsHTlZxfuFVz/VbsS1iVWSyOrReZ0iv9ZTkVVPp5nRFR0cbXY5T2OStk2F/r1Tbv/xthl768yqH1wQAAFBVVIf7wULvaNlqPlyptrfd+YCCCvc4vCZcXVRUlLZutX9KrMeG+pycS+9dzMsre/GvBQsWKCMjQyEhIYqJiXFqLWazWWlpaXa18TN5S3Xt7GfTXs2td3e5+y8eStMn0f8bfu8TFKAb3hivbS/O0/5/r9Tgr57Xdc/cp8Spc+3rWNLJ9JMqtLnBwhohxZKXZC0utvu/idsw+UphlWuanZOj7HQP/bkAAAComtwPBgVKNSvX9Pz5izp/wUN/Lh7KY0N9VFSUzp8/r+3bt6tXr16l9qWnp2vy5MmSpA4dOjh9MbyoqCi72/javCQnP/ju9twDyj5+WvvnrpAkrX9iloatmaHj323Rqc32zcGpX6++ezyp9/aWVZKXt7fqNWhgdDlOc9KaJ5tXoN3tQoOkEA/+uQAAAFSH+0GLV4BOSZLNJtmZdcJr+igg2DN/LlVdZXKjPDnUDxgwQElJSZo+fboGDhyo2NhYSVJiYqLuv/9+ZWRkSJI6derk9FoqM4SiKDdf85qNcUo9ktSgf2fFDOutJTdPKtmWdeyUtr04T71njtfS/pNkyav4omkHDx2Ub1CAk6p1nOgB85V2Olf1ouopdU+q0eU4zYSXNupf/7HvixkvL5P2rP9QDaPKXlgSAADAE1SX+8Hr7/9Gm34+bVebBnWClLL9R/n4eOzSax7JY/9rTZkyReHh4Tpx4oTatm2r9u3bq0WLFurevbuaNm2q/v37S7+ZT1+dpMXv0OetxionLaPU9v1zV2hxrwl2BXpUPY/d07oCR5U2rG8jAj0AAICHeHyU/feDj4xsRaB3Qx77Xyw6OloJCQkaMmSIAgIClJKSorCwMM2ZM0fLly/XwYMHpWoc6uHZ2javbdeFvGYNP734xy5OrQkAAACuc8+tMbqxS8WHc7dsUlMT7m3j1JrgHB47/F6SWrdurWXLll22PTs7WykpKfLy8lK7du0MqQ1wtjf/0lM5eRb9e+mhKx5XO9RP37x9i9o0q+2y2gAAAOBcfr7e+vrNAbp9wipt3HnlYfgtm9TUyndvVe1Qf5fVB8fx6FBfnr1798pmsyk2NlZBQUGX7V+4cKEkad++faX+3KRJE3Xt2tXF1QKV4+PjpY9f6KOBverr7c/3acvu0u8crRHkoweGttCkse3UNDrUsDoBAADgHLVD/bXmvcGavSBJ7365X4ePZ5baXy8ySH8Y0VIT49oqrCaB3l1Vy1C/e/du6QpD70eOHFnmn8eOHau5c+1/3RtgFJPJpLghzRU3pLl27j+r/r//VuczCxVW008pK0YpJNjP6BIBAADgRIEBPpo0tr3+dH87JWw3a/gTa3Qhq1DhNf11bMUo+fp67IzsaoNQXwabzebiigDn69QqXEEBPjqfWahAfx8CPQAAQDXi5WXSTV3rKTjQRxeyChXg702g9xDV8r/i1UK9J2s8pKd6vvJwqW3NR/XTuPSFajSom2F1AQAAAADsVy2f1MfHxxtdgmEa3dZDyV+uLflzjehIxcYN0OmtBwytCwAAAABgv2oZ6j2ZX2iQ7vhhprwD/JR7MkNe/r4KaVRXyQt/1Kan31fdbi21/olZlw42mXT9649py/99qG5TxxpdOgAAAADAToR6D1OYmasjXyWoKCdfu2YuVP2+HdVh4l3a+Od3Vf+mjjqdeEA2S7Ekqe0jQ3U6cb/O7jpidNkAAAAAgEqolnPqPV1Yuxid231UkhTeoZnO7bn0740GddOx736SJNVq2VCNh/TQz28sMrRWAAAAAEDl8aTeA4W1bVIS5MM7NNWJlYmSpPp9O2nrC59Jkur2aK0aDetoxMa3JUmBkbXU67VHFVintg58ssrA6gEAAAAAFUWo9zBBUWGSzaZc8zlJUljrxtr15iJFdG6hi4fSZMnNlyQd+GRVqfA+aNE07Xt/mY6vSDSsdgAAAACAfQj1HiasXUzJU3pJKszMUauxt6rgXJaOr/jJ0NoAAAAAAI5FqPcwqWu2KXXNtpI/Lxv8tCTpjrUztXLE1HLbrbjCPgAAAABA1USoryaW9P2T0SUAAAAAAByM1e8BAAAAAHBThHoAAAAAANwUoR4AAAAAADfFnPoqyifQX3HJnxldRoX5BPobXQIAAAAAVDuE+irKZDLJNyjA6DIAAAAAAFUYw+8BAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3JSP0QWgbDabTZa8AqPLqDCfQH+ZTCajywAAAACAaoVQX0VZ8go0r9kYo8uosLjkz+QbFGB0GQAAAABQrTD8HgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBTvKfeg0T1aqtBi6eV2laUk6fMI+lKXrhOSR9+K1ux1bD6AAAAAACORaj3QEcWJyg1frtkMikwspaaj7xJ3aeNU80WDbRp8hyjywMAAAAAOAih3gOd3X1URxYllPz5wNyVujPhTcXed7O2vzJfBWczDa0PAAAAAOAYzKmvBix5BTqz/ZBMXl4KbVzX6HIAAAAAAA5CqK8mQppcCvMFF7KNLgUAAAAA4CAMv/dAPoF+8g8LKZlT3/KBWxTevqnObD+kzCPpRpcHAAAAAHCQahHqMzIy9Oqrr2rx4sVKTU1VZGSk7rrrLr300kuaOHGiPvroI7399tuaMGGC0aU6ROcpo9V5yuhS21KWb9aWZz4wrCbASKfO5umDRQe0POGELmQVKijAR13ahOvxUa3VsWW40eUBAADAyQ4cvaB3vtivDTtPKSfPopAgXw3oWV+PjGylRvVqGF3eNfH4UL9z504NHjxYZrNZwcHBatOmjU6ePKm33npLycnJOnfunCSpU6dORpfqMAc+XaWUbzbJy9dHtVs1UrvxwxVcL1zFBYUlx3j5+Wjoqtd09KsE7Xpzccn2G94Yr4DIWloT96JB1QOOU1Rk1VMztmjOl/tVZCn9Osdt+zL03sIDuqlrlOa93FcN6gYbVicAAACc49zFAo39649atu7EZft+2nNGr3y0S3G3NdO7f+utoED3jMcePac+IyNDQ4cOldls1qRJk5Senq7t27fLbDZr+vTpWr58uRITE2UymdShQwejy3WYzCNmpSfsVlr8Du2ZvUTfj31FEZ2aqdf0R0qOsRZatH7i22o/8S7VbtNYktRoUDdFD+yqDU/NNrB6wDEsFqtGPPW9Zs3fd1mg/7Uft5rV6/5vdMLMehMAAACe5OyFfPUZt6zMQP8Lq9WmT5cd1q2PrlBevsWl9TmKR4f6iRMnKjU1VRMmTNCMGTMUEhJSsm/KlCnq2LGjLBaLmjRpotDQUENrdaYzWw8oeeE6xQzvrciuLUu2n911RHvfWao+b/1RQfXC1Ou1R7Xl2Q+Ud+q8ofUCjjDt3R365sfjFTr2hDlHdz75vWw2m9PrAgAAgGs88NcftS/5QoWOXb/jlJ6YvtnpNTmDx4b6pKQkLViwQBEREXr55ZfLPKZLly6SpI4dO5ZsW7hwoUaMGKHGjRsrKChIrVq10l//+ldlZ7v3U7yfZy6U1VKszpNHld7+xiJZi4s1bPVrMm/Yo6NLNhhWI+AouXkW/es/++xqs21fhtZtMzutJgAAALjOvuTz+jYh1a42/156SGfO5TmtJmfx2FA/f/58Wa1WxcXFqUaNshc+CAwMlH4T6mfMmCFvb2+99NJL+u677/TYY4/pnXfe0aBBg2S1lj+Et6rLSjHr6JINqn9jB9Xp0bpku81SrDOJBxQQXlOHF/xgaI2Ao/xnxRGdzyyswJGl/es/SU6pBwAAAK71zhf77W5TWGTVh18ddEo9zuSeKwFUQHx8vCSpX79+5R6Tmnrpm5tfh/pvvvlGkZGRJX++6aabFBkZqbi4OK1fv1433nij3bV07dpVZrN9TwB9bV6aqu5293Ulu95cpJjhvdV58iitvPs5SVKdHq3VfFQ/JX34rbo//6CWDpys4nz7w1Bsi1gVmar+lx7ptZ6SvGoq3Zyu6Ohoo8txuery+c8HD5f8O9vdbtGKnxX9nwecUhMAAKgaqsv9UHmqy+c/Hfqo5FPP7nbPvfa5Zk0d4pSariYqKkpbt261u53Hhvpjx45Jkho3blzmfovFog0bLg01/3Wo/3Wg/0XXrl0lSWlpaZWqxWw2293Wz+Qt1bWzn017Nbfe3eXuv3goTZ9E/2/4vU9QgG54Y7y2vThP+/+9UoO/el7XPXOfEqfOta9jSSfTT6rQVmx3O5cLKZa8JGtxcaX/e7q16vL5GxVL/vY3s9r8PPvnAgAAqs/9UHmqy+cP9q5U2i0otLndz8VjQ31OTo4kKS+v7DkRCxYsUEZGhkJCQhQTE3PFc/3ww6Vh6a1bt77iceWJioqyu42vzUty8oPvbs89oOzjp7V/7gpJ0vonZmnYmhk6/t0Wndps3zDk+vXqu8eTem9vWSV5eXurXoMGRpfjctXl858P8FJuJdp5mQo9+ucCAACqz/1QearL5z/tbVFRJdr5+0kRBv1cKpMb5cmhPioqSufPn9f27dvVq1evUvvS09M1efJkSVKHDh1kMpnKPU9aWpr+9re/adCgQZV+l31lhlAU5eZrXrMxleqvIhr076yYYb215OZJJduyjp3SthfnqffM8Vraf5IseQUVPt/BQwflGxTgpGodJ3rAfKWdzlW9qHpK3WPfwhmeoLp8/nnLD2vMMz/a3S5u2HX65CXP/bkAAIDqcz9Unury+f88Y4te/2SP3e1e/usD+tP9rzqlJmfx2IXyBgwYIEmaPn26Dh7832IHiYmJ6tevnzIyMiTpikE9Oztbd9xxh/z8/PTRRx+5oGrXSYvfoc9bjVVOWkap7fvnrtDiXhPsCvRAVXP3wBhF1Lb/S6bHR1VuNA4AAACqlkfvsf++LjDAW+PuaOGUepzJY0P9lClTFB4erhMnTqht27Zq3769WrRooe7du6tp06bq37+/9Jv59L+Wl5enoUOH6ujRo1q1apXq1bN/kQUAxvD389afxrS1q02f6+qqR4fL19QAAACA+2neKFR3D2xiV5s/jGil2qGVWJjJYB4b6qOjo5WQkKAhQ4YoICBAKSkpCgsL05w5c7R8+fKSp/dlhfqioiLdfffd2rp1q7777ju1adPGgE8A4Fo8/VBHxQ1pVqFjYxvX1MLXb77iVBwAAAC4l4+e76OubSMqdOyg3tF69aluTq/JGTx2Tr3+u7DdsmXLLtuenZ2tlJQUeXl5qV27dqX2/fJu+++//17ffvutund37GvlALiGl5dJn7x4k2IahOiNz/YoO9dy2TEmkzSsbyN9OK2PwmtV/TUhAAAAUHEhwX764cPb9Ng/Nmj+d0dUXGy77Bh/P2/94e6WmjGpu/x8vQ2p81p5dKgvz969e2Wz2RQbG6ugoKBS+8aPH68vv/xSTz/9tIKCgrR58+aSfc2aNSvzlXcAqiYvL5NemNBFk8e116fLDmv5uhP6fvNJFVqsqhHko10L71JMdIjRZQIAAMBJagT56tOX+mr6k9303sIDeuXDn1VQZJW/n5f+MaGrHhzewu0f7njs8Psr2b17t1TO0PvvvvtOkvTKK6+oV69epf5Zvny5y2sFcO1Ca/hp/Og2+nb2rYoMu3TRrlnDj0APAABQTdSvE6znHr+uZDHliFoB+vO49m4f6EWovzzUp6SkyGazlfnPuHHjDKjWsRoP6amerzxcalvzUf00Ln2hGg1yzzkkAAAAAFBdEeqrmUa39dDxFT+V/LlGdKRi4wbo9NYDhtYFAAAAALBftZxTHx8fb3QJTuMXGqQ7fpgp7wA/5Z7MkJe/r0Ia1VXywh+16en3VbdbS61/Ytalg00mXf/6Y9ryfx+q29SxRpcOAAAAALBTtQz1nqwwM1dHvkpQUU6+ds1cqPp9O6rDxLu08c/vqv5NHXU68YBslmJJUttHhup04n6d3XXE6LIBAAAAAJVQLYffe7qwdjE6t/uoJCm8QzOd23Pp3xsN6qZj310ael+rZUM1HtJDP7+xyNBaAQAAAACVx5N6DxTWtklJkA/v0FQnViZKkur37aStL3wmSarbo7VqNKyjERvfliQFRtZSr9ceVWCd2jrwySoDqwcAAAAAVBSh3sMERYVJNptyzeckSWGtG2vXm4sU0bmFLh5KkyU3X5J04JNVpcL7oEXTtO/9ZTq+ItGw2gEAAAAA9iHUe5iwdjElT+klqTAzR63G3qqCc1mlVr0HAAAAALg/Qr2HSV2zTalrtpX8edngpyVJd6ydqZUjppbbbsUV9gEAAAAAqiZCfTWxpO+fjC4BAAAAAOBgrH4PAAAAAICbItQDAAAAAOCmCPUAAAAAALgp5tRXUT6B/opL/szoMirMJ9Df6BIAAAAAoNoh1FdRJpNJvkEBRpcBAAAAAKjCGH4PAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KZ8jC4AZbPZbLLkFRhdRoX5BPrLZDIZXQaAK3C364qzcd0CqheugZfjOgh4BkJ9FWXJK9C8ZmOMLqPC4pI/k29QgNFlALgCd7uuOBvXLaB64Rp4Oa6DgGdg+D0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuCkWykO1UFRk1XFztoosVkmSpdgqm81WbVZ8tdlsMmfklXz+IotV+QUWBfhXn0tATm6RUk/llPwMiq02o0sCAAAulJtn0Ylf3Q9Wt3sBq9VW6vNbiq2yWKzy8ak+z3nPXSwodT+cmV2o0Bp+Rpd1zarPHT2qFZvNpo07T2v+d8naujdDPx88p/yC4pL9p87mK7zPZ7qudYR6dayjcXe0ULOGoYbW7GjmjFzNXXJICdvN2rbvrE6dzSvZd/pcvkJ6faJ2zWurS+sI3TWgiW69voG8vT3nol5UZNWSH47pmx+Pa9u+DCUdvSjrr355mzPy1HDgf9SlTbj6dq2nB4a1UFhNf0NrBgAAjmOxWLU84YS+jj+mbfsytO/IBRUXl74XaDBgvrq0jtBNXaP0wNDmigwLNLRmR9t/9IL+vfSQNu86o+1JGcrMLirZd+psvkKv/0SdW4WrW9tIxQ1ppm7tIg2t19Gycgo1b3myvt9yUtv2ndXRtKySfafP5avm9Z8qtnFNdWkTrsE3RGvkLTFu+dDLZLPZqtdXVG6iKDffrV67UlVeiVJcbNXHXx/S2/P3adfBc3a1vfX6BvrzuPYa0LOB0+pzhW37MvTqx7u0+PsUWSwV/793TIMQPXZPK024t40CA9zvYvaLi1mFmvnpHr236IDSz+RWuF2Av7fuHdxUUx7soFYxtZxao1Hc7bribFXlugXANbgGXs5Tr4PZuUV647M9mvPlAaWeyqlwOz9fL91za4ymjOug9rFhTq3R2ZavO65/frJH8T+l29Wua9sITbyvjeKGNJeXl/uOaD12Mkuvfrxbn3xzWNm5RRVocUl4LX/9bnis/jy2veqEu88XPIT6Kqoyv3iierXVoMXTSp8nJ0+ZR9KVvHCdkj78VrZiq4MrvaQq/FI4cPSCHvx7gjb9fPqazjPujhaaObmHaoW611Pb/AKLnntnh16bu7vUE2l7tWxSUx+/0Ee9OtZ1aH2usHJDqn7/3Hq7foH/lr+ft6Y93lmTHmjvccPRuKEtrSpctwC4DtfAy3nidfCHn07qoanrSz2RtZePj0l/+0NnPfNQR/n6ute9wJlzeZrw8iZ9sfLoNZ2nX7d6+nBaH8VEhzisNlew2Wya8+V+Tf5nol1h/rciagdo9l+v18hbYhxan7O4199SVMiRxQlaN+FNrfvjW9r5+pfy8vFW92nj1POVh40uzWk++uqgOt3z9TUHekmau+SQ2t61WFt2Xfu5XCX5RKa6jF6i6R/tuqZAL0kHUi7qhrHL9dzs7XKX7/yKi62a8NJGDXps5TUFekkqKCzW029s1Q1jl5WasgAAAKouq9Wmya//pP6//+6aAr0kWSw2TZ29XT3ilirVfG33Fa60NjFdbe9cfM2BXpJ+SExX+xGL9Z/vkh1SmytczCrUoMdW6rF/bLymQC9JGefzdc+f43XfX35QQWFxBVoYi1Dvgc7uPqojixJ0ZOE67X1nqZYPeVY5aRmKve9m+Yd71rxxSXrj0z16aGpCqTnz1+rk6Vzd/PB3WrfVviFLRth/9IL6jFuufckXHHZOq9Wmae/u0MRXNlf5YG+xWHXf02v1r/8kOfS8W3afUZ9xy5R2jV8SAAAA57JabXpoaoJm/Hu3Q8+7Y/9Z3TBumY6mXtuXBK7wXcIJDXpspc6cz3fYOXPyLLrv6bX6YNEBh53TWc5nFqj/77/Vqo1pDj3v/O+OaOgfVykv3+LQ8zoaob4asOQV6Mz2QzJ5eSm0sfsNqb6Sj78+qD+9tsUp587Js+j2P67WjqQMp5zfEVLNORr4hxV2zR23x6z5+/S3Wduccm5HsNlseuSFDQ75Rrosh45l6pZHV+hCZoFTzg8AAK7dk69u1twlh5xy7mMnszXwke905lzVHb23cecp3fXU9055omyzSX94fr2+XOWcey1HyC+w6LbHV2p70lmnnH/1ppMaNfmHax4N60yE+moipMmlMF9wIdvoUhzm0LGLGv/SRrvaJM4fphOrRytx/rAKHZ+VU6S4Z35UfkHV+3bOZrPpoecS7Bpubu/nl6QX3/9ZaxOr5oiFBSuO6KOvDtrVxt6fwb7kC3ryVed8cQQAAK7NN2uP6+3P99nVxt57geQTWXr8RfvuOV0lK6dQ9z291q4Rq/Z+fptN+v1zCVV2KsLf/7Vdm3edqfDxlbkf/ubH45o1376/Z65EqPdAPoF+8g8LkX94qGq1aqQeL/1e4e2b6sz2Q8o8UjXDmb2Ki6168O8Jysu37xvJqIggRdcNVlREUIXbJB25oOfe2VGJKp3rw8UH7R5iVJnPL0m/+3vCNc9NcrRTZy8tBGOvyvwM/r30kJavO253XwAAwHnOZxbokRc22N2uMvcCC1en6IuVR+zuy9n+MjNRx07a99CuMp8/M7tID09bX+WmZW7++bRe/2SPXW0qez/89JuJOnw8084KXaNahPqMjAxNmTJFzZs3V0BAgBo2bKgnnnhCOTk5euihh2QymTRr1iyjy3SYzlNG6969H+vePR9p+A//VOsHByll+WbFj5tudGkO8+myw9qw45TL+ntt7m4dTLnosv6uJjO7UJNed93T46NpWZr+0S6X9VcRz761VWcvuG5Y/GP/2CiLxTlvjwAAAPZ7bvZ2p01BLMsfX95UpUZv7kjK0Dtf7HdZfys2pOrr+GMu6+9qbDabHntxg8uGxeflF+tPr252SV/2ct+XUVfQzp07NXjwYJnNZgUHB6tNmzY6efKk3nrrLSUnJ+vcuUvvMu/UqZPRpTrMgU9XKeWbTfLy9VHtVo3UbvxwBdcLV3FBYckxXn4+GrrqNR39KkG73lxcsv2GN8YrILKW1sS9aFD1V2ez2eweZnWtrFab3v0ySf+c3NOl/Zbn02WHlZnt2ifnc77cr//7Qyf5+3m7tN+ynL2Qr8+/de1qrCfMOfrmx+O68+YmLu3XpUwmtXl4iFreP1A1oiOVfzZTR7/ZqJ2vLpAlj3UFAHi+9n+8U+Htmyq8Q1OFNK6r7BOntbD740aXhTJk5RTqYyfNoy/P6XP5+nLVUd0/tIVL+y3PLAcvElwRb3++r8rcC23ceVo7959zaZ/LE07oSGqmmkZXrcXHPfpJfUZGhoYOHSqz2axJkyYpPT1d27dvl9ls1vTp07V8+XIlJibKZDKpQ4cORpfrMJlHzEpP2K20+B3aM3uJvh/7iiI6NVOv6Y+UHGMttGj9xLfVfuJdqt2msSSp0aBuih7YVRuemm1g9VeXuCfDaQthXMnHXx9Sbp7x387abDbNXuD6i/iZ8/latDrF5f2W5eOvDzn0bQcVZcTP3ZW6Pz9O3aeN04WDqdr8fx8pZdkmtXnoNt38ydOSyWR0eQDgdF2ejVNU73bKSjGr4HzVX/G8Opu3PFlZOa6fGlhV7gXOZxa4/AGH/vuqu6Qjjnvj0rUw4r+FzSa968LRERXl0aF+4sSJSk1N1YQJEzRjxgyFhISU7JsyZYo6duwoi8WiJk2aKDS0an3b4khnth5Q8sJ1ihneW5FdW5ZsP7vriPa+s1R93vqjguqFqddrj2rLsx8o79R5Q+u9mv+sMOZ9mReyCrVqU6ohff/ankPnHfr6Onv8Z0XVmEu2wKA5bWs2n1SGA18VU5XUio1W698NVsryzfrhodd0aN4aJT73b/303L9V74b2ihne2+gSAcDpFvZ4XP9p+6BWjX5BuVX8fqi6M+qeZPOuMzp20vgvfL5Ze9yQBxz670LFRissKtaiNcY8bKoq98O/5rGhPikpSQsWLFBERIRefvnlMo/p0qWLJKljx44l2xISEjRgwADVq1dP/v7+io6O1qhRo5SUVDW+lausn2culNVSrM6TR5Xe/sYiWYuLNWz1azJv2KOjS+xfbMTVtu417hVzRvZdUsM+Az+/gX3/orCoWLsOunao1a9tqwI/A2eIufMGmby8tO/95aW2H5q3RkW5+Wo24kbDagMAV8k+ftroElABVqvNkFGbv9i2z7i+f1Hd7wf3Hj7vlFf4VcQJc06Ve8Whx4b6+fPny2q1Ki4uTjVq1CjzmMDAQOk3of78+fNq37693nrrLa1atUrTp0/X3r171atXL6WmGv+UtrKyUsw6umSD6t/YQXV6tC7ZbrMU60ziAQWE19ThBT8YWmNFWK027XDx3JlfqwoXcSNDZfqZXJcuSFOWPYfOq7DIuAXrPDXUR3RqLmtxsTJ2lJ6fWFxQpHN7UhTRqZlhtQEA8GuHjl00ZOj9L6rCvYCRNVSNz2/sPbnR/f+Wx4b6+Ph4SVK/fv3KPeaXkP7rUD9s2DDNnDlTI0eO1E033aS4uDgtXrxYFy9e1KJFi1xQufPsevPSU/lfP62v06O1mo/qp6QPv1X35x+Ud4CfoTVezcnTuYa+Wu1AFVgB3+ga6N/4vwPOEFS3tgrOZclaePm6EbnmcwoIrykvX49fWxUA4AaM/l1sdP9G12DOyFNmdmEFjnQeo/8bHEipGusK/MJkq2ovG3SQhg0bKjU1VTt27ChzZXuLxaJ69eopIyNDycnJatq0abnnOnv2rCIiIjRr1iyNHz/e7lq6du0qs9lsVxtfm5emWrvb3Zc9fIICNOz7Gdo3Z5n2/3ulBn/1vDJ+Tlbi1Ll2n2ua108qMjn/6anFK0ynaj1R7v7E+cOu+M7JqIhA+Xh7yVJslTmj/GEz5oxcdbt36WXbvaxZqndhRiUqd5wzIb9ToW/jMvc56vPrCj+D8KxPFVB0uBKVO0aOX2ddqDG8zH1X+/xywN+BgMK9Cs/+ohKVG+9K15W7Ns2Sl6+3FnZ97LJ9N7z1RzUfeZM+b/mACjONHanhSK66bgGoGuy9t7rjh3/KNzjAo1e/d9frYK5fW52vcU+Z+1xxL+BfeFAR2fMqUbnjnKz9V9lMZT+Mc/b9sCRFnX9V3racSlTuGBeCblNOQI8y97nifjg0d41C8hMqUfmVRUVFaevWrXa389jHLjk5l/6S5eWV/R9qwYIFysjIUEhIiGJiYi7bX1xcLKvVqmPHjumZZ55RVFSU7rmn7IvH1ZjNZqWlpdnVxs/kLdWtVHcV1u25B5R9/LT2z10hSVr/xCwNWzNDx7/bolOb7VtD4GT6SRXaXDCvxa9QqlX+7qiIIEXXDb7qaXy8vSp03G9Ziy12/7d0uJh8ybfsXc7+/JJ0NuOMlG3gz6BWY6nsGTUV/vy6hp9Bfm6O8X8HKulK15XivAL5Btcsc5+3/6W/cJY8Y7+VdzSXXbcAVAmuuLdyN257HQyNMvReoCA/z/h7gZpWqZy3DLviftCcflIqzq5UW4eoly0FlL3LFZ8/8+IFZWZUnftBjw31UVFROn/+vLZv365evXqV2peenq7JkydLkjp06CBTGa9quummm7Rhw6VF45o3b674+HhFRkZWuhZ7+dq8JCd+cdqgf2fFDOutJTdPKtmWdeyUtr04T71njtfS/pPsei91/Xr1XfJNb7EpSFca82DOuPJTRHu+mSyLj5dFdRs0qHC9znDWTypv/XVHff4rnSsiPET+NY37GeT5Bqq8VRWu9vnlgL8DQQFeqm3w34HKutJ1JffUedWMjZaXn89lQ/CDosKUf/airEXGv9LRkVx13QJQNTj73soduet1MN8nWOXNaHbFvUCgv0lhBt8LpJsKZC0n1Tr7flg2q+pHhcuksh8GuEJmoI/KeweBK+6Ha4X6K9jf8X8HKpMb5cnD7ydOnKi3335bDRs21Jo1axQbGytJSkxM1P33368jR46oqKhI48eP16xZsy5rf+DAAV24cEFHjx7Va6+9ptOnT2vDhg1q1KiRS+ovys3XvGZjXNKXI8QlfybfoHK+LnOw+jfPr/RibSdWj1Z03WClnspRw4H/sbv9qEEx+s+r/SvVt6P89a2teumDnyvV9lo/v8kkZW56QDWCyhkq4ALJJzLVfMiXlW5/rT+DWc/20vjRbSrdv5GudF3p/JfR6vjk3fp2+N90esv/Rup4+/tq9L6PdWpzktbEvejCap3PldctAMaz996qOgy/d9froDkjV/X6z690+2u9F5j+ZDdN+V2HSvfvCLc9vlLfra/cIt7X+vlbNqmp/UvvrlTfjvLlqqO658/xlWp7rZ9fkjZ+ert6daw6Q388dqG8KVOmKDw8XCdOnFDbtm3Vvn17tWjRQt27d1fTpk3Vv/+lYPbrRfJ+rWXLlurRo4dGjx6t77//XllZWXr11Vdd/ClQlq5tIgzsu3KjNRxaQ1vjPn+rmFqGBnpJahodolohxi3oaOTfP2c6umSjbFar2jw8pNT2FnED5BsUoCOL1xlWGwAAvxYVEaQGda48b96ZulSBewEjazDyXrSkBgM/v5eXSR1jww3rvyweG+qjo6OVkJCgIUOGKCAgQCkpKQoLC9OcOXO0fPlyHTx4ULpCqP+1WrVqqXnz5jp82LjFwfA/vTrWqZZ9/6JH+0iVMWPEJarC5zeZTOrZwZg6AgO81SE2zJC+ne3C/uPa//EKNRnSU/0+nKwW992srlMfUPfnxsq8ca+OLF5vdIkA4HRN775RHZ4coQ5PjlBAeKh8Q4JK/tz07huNLg+/YtQ9ia+Pl7q0MT7QVff74SYNaigqItCQvju1DFNQYNWaxV61qnGw1q1ba9myZZdtz87OVkpKiry8vNSuXburnuf06dM6cOCAevQoe4VFuNYDQ5vrb//apuJi184cadmkpq7vZPxFrH6dYA2+IVrfJlRuyNW1eOjOWJf3WZaH7ozVig2u//xxtzVTYIDnXjZ/+vtcZZ84o9gxAxR983XKP5eppI++045XF0ieOVMLAEqJvfdmRV3fttS26/5yryRd+oJzIaOWqoqH7myphatTXN7viAFNVCvU3+X9/tYtvRqoQZ0gpZ127VtpAvy9de/gZi7tsywmk0m/Gx5b6Smp16Kq3A//mufenV7B3r17ZbPZFBsbq6Cg0kN3xowZo+bNm6tTp06qVauWDh06pJkzZ8rHx0d/+tOfDKsZ/9OgbrCG92usRWtceyF/fFTrMhdVNMLjo1q7PNR3bBlWJb6ZlaQ7+jVW/TpBOuniX2SP3dPapf25ms1q1d4532jvnG+MLgUADLFixFSjS0AF3XJ9AzVrGKLkE+Utl+Ycj4+qGvcCPj5eemRkK/39X9td2u+9g5sqrKbxX2pI0h/ubqlXPtolq9V1Dx5qBPlqzO3NXdZfRXns8Psr2b17t1TO0PuePXvq22+/1YMPPqjBgwfrtddeU58+fbRz5041b171/gNWV5PGXn2EhSNF1A7QA0Orzn//Qb2j1bbZFd7t5wSTx7WvMl9q+Pp66cm4thU40nH6d6+n66rAHDoAAHBpXvOkB9q7tM8e7SN1w3VVZ3G0P9zdSqE1XLfWkbe3SU+Oce09+JU0rh+iUbde/mpyZ3p0ZCuF1jBubafyEOp/Y8KECfrpp590/vx55eXl6eDBg5ozZ44aN25sQKUoT6+OdfXH+1y3Avnsv15fJYZa/cLb20sfv3CjvL1dE7Jv6xOt+24zfqjVr/3p/nYuWyQmKMBH7z93g0v6AgAAFfPIyFbq46KQ7efrpY+e71NlHnBIUt3wQP3zz66bHvz07zpUubWF3pjSUxG1XfMGh2YNQ/TcY51d0pe9CPXVTOMhPdXzlYdLbWs+qp/GpS9Uo0HdDKurMl6e2FVNo0PsamPOyFXqqZwKvcP0FyNvidHIW1z7LWBFdGsXqSnj7HudSmU+f80QP7339xuq1C8x/XfY2dwX+sjP177LWGV+BtP/1E1No0MrUSUAAHAWLy+TPnr+RgUGeNvVrjL3AtMev05tmtWuRJXO9bs7YzWod7RdbSrz+ds1r62/PVL1Am2d8ED969ledrWpzOc3maSPn79RwQa/Bao8HvueenfnrPfU9/nXE0r+cq1Orr20qESN6EjdOPtJySTt+dfXOr4isVLnNeo9p7sPntNNv1uu85mFTjl/p1Zh+uGD26rUU/pfKyqy6s4/rdHydSeccn4/Xy998/ZA3XK9fb8sXOnz5cka8+xap63jNu6OFvpwWh95eVWtLzUqw1nXFXflru9nBlA5XAMv5ynXwa/jU3T3pHinLaJ8z60x+vyVvvL2rprPQ8+cy9ONDy7X/qMXnXL+uuGBSpg7RC0a13TK+a+VzWbT028k6tWPdzutjzem9NATVWjqwW9Vzb+ZqDS/0CCN3DZHo/d+rGGrX9PwdW/o/pT5un7GozL5eKtut5ZKX7/n0sEmk65//TFt+b8PZS20GF16pbSPDdOqOYMUXsvxobtzq3CtendQlQ30+u/c8i9n9NfgGxwfuv39vLXw9ZurdKCXpPuGNNNHzzsndN9/e3O9P/UGjwj0AAB4quH9m2jey33l4+P439d3D2yiT1+6qcoGekmKDAvUmvcGq3VTx6+3FBURqDXvDaqygV7/XQn/lSe76U/3O2e9pdee6l6lA70I9Z6nMDNXR75K0L4PlmvpwMn66e8f68z2g9r453dVr3c7nU48IJulWJLU9pGhOp24X2d3HTG67GvStW2kNvz7dofOrx49qKl++PA2RYYZ8/5LewQG+OjrNwfoT/e3ddj765tGhyj+g8Ea2reRY07oZOPuiNWytwc67H2lPj4mPT/+Os39x43y8eEyCQBAVTdqUFOtfGeQousGO+R83t4mPfv7jvrPq/3k52vf8H4jNKgbrHUfD9Ed/Rx373Z9pzra+MlQtWtRtebRl8VkMun1P/fQ28/0sns6Rnlqhfjp81f66s/jXLsgY2Vwt+qBwtrF6Nzuo5Kk8A7NdG7PpX9vNKibjn33kySpVsuGajykh35+Y5GhtTpKy5ha2vTpUP1jQhf5XkMIqxMWoEX/vFnzX+2nmiFVb2XL8vj5euufk3tq3cdD1LzRtc39/uN9bbRr4Z26vlPVWd21Igb3aai9X43QmNuvbUG/Tq3CtHX+HfrbI515Qg8AgBvp36O+9iy+65rfI962WS1t/myoXpzYtUo/of+tiNoB+uqNAfrs5ZtUO7Ty97EB/t765+QeWvfxEMXYuX6VkUwmkybc20Y/f3mnbuh8bfexQ29qpH1fj9C9VWyh6PIwp76KupZ5X6N2f6hvBk5Wrvmc+n7wZ51YmajkL3/UXZtmaenNf5YlN18tH7hFHZ8aKWthkSQpMLKWCrPztPO1BTrwySq7+6xKc7JOmLP13sIDen/RAZ06m1ehNm2b1dLjo1przO3Nq+RrKuxRUFishauPavaCJG3cebpCbUJr+GrssBZ6dGSrKrkIjL227cvQOwuS9Pl3ycrLL65Qm4G96uvxUa11+42NPPbpPPNJS6tK1y0Azsc18HKefB3cdfCc3lmQpE+XHVZOXsWmmfbtVk+Pj2qt4f0ay9fOhXirmguZBfr30kOavWC/Dh6r2Fz7BnWC9MjIVvr9XS1VLzLI6TU6k9Vq0+pNaZq9IEnL1p2o0LvsfX28dPfAJnp8VGv17ly3yi0SfSWE+iqqsr94gqLCNHTVq1rQ4feSpLs2vK21j/5TXj4+6vinu/X9Ay+X2W7Qomna9/4yt1so70oKi4q1NjFdW/dmaNu+s0o6ekG5+RZ5e5kUEuyrjrFh6tImQj071FG3dhFu9X/citp7+LzW7zilbfsytGP/WZ3PLFCRxapAfx81axiirm0i1aVNuPr3qK8aVXQ1z2txPrNA8VtOatu+s9q674yOncxRfqFFfr7eiqjlr+taR6hLmwjd2CXqmkc4uANuaEuritctAM7DNfBy1eE6mJldqO+3nNS2fZfuB4+kZim/0CJfHy+F1wzQda3D1aVNhPpcV1ctYxw/J91oNptNm34+rS27z2jbvgztPnReWTlFstlsCg70UeumtdS1bYS6tY3UjV2iPPLBxglzttYmpv/3fjBDp87mqbCoWP5+3oquE6wubSIu3Q93r6864VV/6m1ZfIwuAI4V1i6mZLi9JBVm5qjV2FtVcC5Lx1f8ZGhtrubn661bro+u8gu9OVPb5rXVtrn7P3mvrNqh/hoxMEYjBla9VxICAADnC63hpztvbqI7b25idCmGMJlMur5TXbebVulIDaNq6P6hLXT/0BZGl+I0hHoPk7pmm1LXbCv587LBT0uS7lg7UytHTC233Yor7AMAAAAAVE2E+mpiSd8/GV0CAAAAAMDBPG/SBAAAAAAA1QShHgAAAAAAN0WoBwAAAADATTGnvoryCfRXXPJnRpdRYT6B/kaXAAAAAADVDqG+ijKZTB7/3lAAAAAAwLVh+D0AAAAAAG6KUA8AsFtUr7Yal75Q49IXqseLD5V5TEB4qO4/Nl/j0hdq0KJpLq8RAJyJ6yCAqoJQDwCoNEtegZreeYO8/C6fzdXs7ptkMplkLbIYUhsAuALXQQBGI9QDACrt+Hc/yb92iBrd2u2yfc1H91Pq9ztUXFhkSG0A4ApcBwEYjVAPAKi0s7uP6tzeFDUf3b/U9ohOzVW7VSMdXhBfZrtGg7pp8JJ/KC75M8Ud/lSDl/xDDX9zQzxk+csatesDmbwv/1VVv29HjUtfqDYPDym1veUDt+j2ldM15sg8xR3+VLcufE5R17d1yGcFgLJwHQRgNEI9AOCaHPpPvOrf1EFBUWEl21rc2195Zy7oxOptlx3fcuyt6v/xX+Rfu4Z+/udC/Txzkfxr19DNc/+i2DEDSo47/MVaBUbWUoN+nS87R7ORfWUtsujI4oSSbX1mTVSPlx5S1lGztr7wqXa+9oX8QoN0y4K/q+EtXZ3y2QFAXAcBGIxQDwC4JkcWrZPNYlWze/pKkrwD/BRzR28lL1wnW7G11LF+NYPV9W9jlHk0Xctve0Z7/vW19vzray2/7RllppjVbepY+YUGSZKOLtmg4oIiNRt5U6lz+AQHqNGgbkqN36H8s5mSpEaDu6vZiBu1+en39eOjM7X/4xXaO+cbLRv8tM7tTVH3Fx502c8DQPXDdRCAkQj1AIBrUnA+WydWbVXz/97MNr6th/xqBuvQfy4fclr/xg7yDQ5U0offqSg7r2R7UXaekj78Vr41AlWvTwdJUuGFbJ1YvVUNB3YpucGVpCa395JvUICSv1xbsq3piBtVmJV7aW5rWEjJP341g3Vi1VaFNKqr0Kb1nPyTAFBdcR0EYKTLl+kEAMBOh/4Tr4Hz/qo63Vup+ej+OrP9kC4eTL3suBqN6kqSLhw4cdm+X7aFNK5bsu3wF2vV5PZeajLseh38bI0kqdnIm1RwPksnVv1vSGutFg3kFxKk0Xs+KrfGgMhayjySfo2fFADKxnUQgFEI9QCAa3Zy7c/KOXlWnZ4aqXq922rT0+875Lxp8TuUl3FRzUbepIOfrVFwgwhF9WqjA5+sKv2KKJNJeRkXte7xN8o914X9xx1SEwCUhesgAKMQ6gEA18xmtSp54Y/qMPEuWfIKdPSr9WUel3XslCSpVsuGSl+/u9S+WrENSx0jSbZiq45+laA2D9+uGo3qqOmdN8jk5aXDX/xYqm3mkXRFD6inM9sOyZKb74RPCABXxnUQgFGYUw8AcIgDn6zSzhlfaNNf3is1T/TX0tf9rKKcPLX+3WD5BAeUbPcJDlDr3w1WUXaeTq7bVarNLzeuzUf2VbO7b9LFw2nK2HGo1DHJX/4oL29vdXn2vjL7DYio6YBPCABXxnUQgBF4Ug8AcIictAztfP2LKx5TmJmrrS98pl6vPKzbv31ZhxdcWuSp+ai+Cm1aTxsnv6uirNxSbc7tOapz+46pzR+GyC80WNtemnfZeY8t36xD8+PV+qHbFNa+qVLXbFP+uSwF1wtTZNeWCm0SpUU9xzv4EwNAaVwHARiBUA8AcKkD/16pvNPn1e6xO9Rx0khJ0vm9xxT/4HQdX5FYZpvkL9aq23NjZS0uVvKidWUes+Gp2UrfuEctxwxU+z/eKW9fH+WduaCzu4+WeQMMAEbhOgjAkUw2m81mdBEAAOcrys3XvGZjjC6jyohL/ky+QQEVOBKAJ+AaeDmug4BnYE49AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AQDVRXGzVuYsFys4tks1mM7ocl7PZbMrKKdT5zAIVF1uNLscQhUXFOnshX/kFFqNLAQA4iI/RBThbRkaGXn31VS1evFipqamKjIzUXXfdpZdeekkTJ07URx99pLffflsTJkwwulQAMFT7P96p8PZNFd6hqUIa11X2idNa2P1xo8vCNbLZbFq3zazZC5K0+PsUWSyXwnzDqGA9cncr/X5ES9UNDzS6TKdKO5Wj9xYe0PuLDyj9TK4kyc/XSyNvidH40a3Vs0MdmUwmo8t0msKiYi1ek6LZC5KUsP1UyfYubSL0+KjWGj2oqYICPf6WsGJMJrV5eIha3j9QNaIjlX82U0e/2aidry6QJa/A6OoAoEwmmwd/Vb9z504NHjxYZrNZwcHBio2N1cmTJ3Xq1CkNGTJE586d06ZNm5SQkKAbbrjB6HIBwKmKcvM1r9mYcvePS1+o/HNZOrf7iMI7NFVRdp5Hh/q45M/kGxRgdBlOlZVTqFGTf9B361PLPcbP10sfP3+j7hvSzKW1ucp7C/dr/IsbZSku/3ZnxIAm+vSlmxQY4HnB9tCxi7pt/CodPp5Z7jH16wRp2dsD1bl1hEtrc7WrXQMlqfsLD6rN74fo2LdblBq/Q7VaNFDr3w3WqS1JWnnP85KH3TZXh+sgUB143m+v/8rIyNDQoUNlNps1adIkTZ06VSEhIZKkV199VX/5y1/k4+Mjk8mkDh06GF0uABhuYY/HlX38tCTpjh/+Kd9gbvTcWX6BRUPGryr1ZLYshUVWxT2zVlabTWNub+6y+lzh3S+S9Ng/Nl71uEVrUpSTZ9HStwbK19dzZiampGXpxgeXy5yRd8XjTp7OVd+HvtX6uberfWyYy+qramrFRqv17wYrZflmrf39jJLtWcdPq+eLDylmeG8d/Wq9oTUCQFk85zfXb0ycOFGpqamaMGGCZsyYURLoJWnKlCnq2LGjLBaLmjRpotDQUENrBYCq4JdAD8/w8ge7rhrof+2hqQklQ9M9QfKJTI1/aVOFj1+xIVVvfb7XqTW52u/+nnDVQP+LzOwi3fuXH6rlWgu/iLnzBpm8vLTv/eWlth+at0ZFuflqNuJGw2oDgCvxyFCflJSkBQsWKCIiQi+//HKZx3Tp0kWS1LFjx3LPM3jwYJlMJj333HNOqxUAAEcrLCrWe4v229nGqg8WH3BaTa727hf7ZbXaF1BnL0iyu01VtS/5vH5ITLerzd7kC1q3zey0mqq6iE7NZS0uVsaOQ6W2FxcU6dyeFEV08swpKgDcn0eG+vnz58tqtSouLk41atQo85jAwEuLApUX6r/44gvt3LnTqXUCAOAM36w9XuEntL8250v7g3BVVFhUrI++Pmh3uyOpWVqzOc0pNbnaewsr9wXNu1/Y92WQJwmqW1sF57JkLbz8zQC55nMKCK8pL1+PnbkKwI155JUpPj5ektSvX79yj0lNvbRoUFmhPjMzU08++aRmzJihMWOuvKBKRXTt2lVmc/X95htA1eBr89JUdTe6jCojtkWsikye+VqzzICbpKD+drdLO52r6MbN5WVz71W+LV6hOldrUqXa3nP/k6pRsNnhNblaRsgDkq/9T5YXLtuohM/vd0pNRrvaNdA70F/FhUVl7isuuLTdJ9BPhUWe8zpAT74OAu4oKipKW7dutbudR4b6Y8eOSZIaN25c5n6LxaINGzZI5YT6v/71r4qNjVVcXJxDQr3ZbFZammd88w/AffmZvKW6RldRdZxMP6lCW7HRZThH3TwpqHJN09PPSMVZjq7ItfyKpFqVa3oxM0cXMzzgd3bTYsnX/maWYnnsPcvVroHFeQXyDa5Z5j5v/0s/TEteobPKM4RHXweBasQjQ31OTo4kKS+v7KGHCxYsUEZGhkJCQhQTE1Nq39atW/X+++9r27ZtDqsnKirKYecCgMrytXlJPJApUb9efY99QpXt762LlWlos6p+VG2Z5N4LyFpNAbJvNvn/1ArxVbB/AwdX5HpnfS3Kr0Q7P68CRTZw/89flqtdA3NPnVfN2Gh5+flcNgQ/KCpM+WcvyupBT+nl4ddBwB1VNjd6ZKiPiorS+fPntX37dvXq1avUvvT0dE2ePFmS1KFDB5lMppJ9xcXFeuSRRzRhwgS1bdvWYfVUZggFADhaRd7RXJ0cPHTQY9/PnJKWpaa3fWH3K7XvHBCjxTOPOasslxrw8Hf6fstJu9r4+njpQOIC1QkPdFpdrvL58mTFPbPW7nbTn71HT97/vFNqMtrVroEZOw+rQd9OiujcQqe3JJVs9/b3VVi7Jjq1Oanctu7Kk6+DQHXikQvlDRgwQJI0ffp0HTz4v4VyEhMT1a9fP2VkZEiSOnXqVKrdrFmzdOrUKVa7BwC4tSYNQjSkT0O72z0+qrVT6jHC+NH2f5aRt8R4RKCXpBEDmyiytn1hLTDAW2PvaOG0mqq6o0s2yma1qs3DQ0ptbxE3QL5BATqyeJ1htQHAlXjkk/opU6bo888/14kTJ9S2bVu1atVK+fn5Onz4sAYPHqwmTZpo5cqVpebTZ2Rk6G9/+5tmzJghi8WiCxculOzLz8/XhQsXFBoaKi8vj/weBADU9O4bVSM6UpIUEB4qL18fdXhyhCQpO/WMjizkhtadTH2ss9ZsOan8gorNlx3Qs75u7lHf6XW5ytCbGqlXxzra9PPpCh1fI8hHz/6+/Nfcuht/P289P/46PfaPjRVu85cHO6h2qL9T66rKLuw/rv0fr1Drh25Tvw8nK/X77arZooHaPHSbzBv36sji9UaXCABlMtls9g7Ocw9JSUmaPHmyfvzxR0lSmzZt9NBDD+nhhx9Ws2bNdPToUW3ZskXdu19aBXXnzp3q3LnzFc959OhRNWnSxCX1A4CjXW3o6aBF0xR1fdlTj8wb92rFiKlOrM714pI/8/hhp9+sPa57JsdfNdj37BCpFe8MUs0QP5fV5goZ5/M18JHvtHP/uSseFxzooyVvDtTNPT3nS41f/P1f2/TCnKu/ovfRka00+/+uLzUt0dNUZAqSyctLbR4eotgxA1SjYR3ln8tUytKN2vHqAllyK7NKQdVWHa6DQHXgsaG+PNnZ2QoNDZXJZFJWVpaCgoJKtpc1971fv34aO3asxo0bp549eyoggAsfAPfEnPrSqsvNbOKeM5r27g59m3Disjn2kbUD9PCIlvq/P3RSYIBHDt5TVk6hpr2zQx99fVDnM0uvXO7lZdId/Rpp6qOd1bFluGE1OtuCFUc0/aNd2rH/7GX7WsXU1KQH2uuhu2I9OtCLa2CZqst1EPB0nvkb/Ar27t0rm82m2NjYkkAvSTVq1FDfvn3LbNOkSZNy9wEAUJV1axepZbNu0dHULC3+PkXPvbNd2bkW1Q7104nVo+Xv5210iU4VEuynGX/uoRcmdNGiNSl6/B8blJVrUc0avtq9+C41jKphdIlON2pQU91za4x+2n1Gazaf1Csf/azsXIsiavlr39cjPD7MA4Cnq3YTxHfv3i2V8356AAA8VUx0iCaNba+aNS4NsQ8K8PH4QP9rgQE+GnN7c4X+9/PXCPKtFoH+FyaTST061NFf/9Cp5O+Av583gR4APEC1e1Jvb6ivZrMTAAAAAABuhCf1AAAAAAC4qWr3pD4+Pt7oEgAAAAAAcIhq96QeAAAAAABPQagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATfkYXQAAwDV8Av0Vl/yZ0WVUGT6B/kaXAMCFuAZejusg4BkI9QBQTZhMJvkGBRhdBgAYgmsgAE/F8HsAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN+VjdAEom81mkyWvwOgyKswn0F8mk8noMgAAAACgWiHUV1GWvALNazbG6DIqLC75M/kGBRhdBgAAAABUKwy/BwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3xUJ5AAB4uKycQu1IOqvDJ7KUnVskScrNt2j/0QuKbVxTXl68vQQAAHdFqAcAwAOdMGfrvYUHtHD1UR1IuSibrfT+85mFan3HItUI8lWvjpF6eEQrDe/XWL6+DOIDAMCdEOoBAPAgR1IzNfn1RH39wzFZrbarHp+dW6TVm05q9aaTqhcZpEkPtNMTcW3l40O4BwDAHRDqPUhUr7YatHhaqW1FOXnKPJKu5IXrlPTht7IVWw2rDwDgPFarTbMXJOkvMxOVm2+p1DnSz+Tqz6//pC9WHtXcf9yo1k1rObxOAADgWIR6D3RkcYJS47dLJpMCI2up+cib1H3aONVs0UCbJs8xujwAgIPl5Vs0avIP+ubH4w453097zqjzPV/rs5du0t23xDjknAAAwDkYW+eBzu4+qiOLEnRk4TrtfWeplg95VjlpGYq972b5h4caXR4AwIHyCyy6fcIqhwX6XxQUFmvUlB80/9tkh54XAAA4FqG+GrDkFejM9kMyeXkptHFdo8sBADiIzWbT/c/+qPif0p1yfqvVpgf+70f98NNJp5wfAABcO0J9NRHS5FKYL7iQbXQpAAAH+WzZYS1cnWJXm8T5w3Ri9Wglzh9WoeMtFpse/HuCsnIKK1klAABwJkK9B/IJ9JN/WIj8w0NVq1Uj9Xjp9wpv31Rnth9S5hHnPM0BALhW+plcTXxls93toiKCFF03WFERQRVuc+xktib/M9HuvgAAgPNVi1CfkZGhKVOmqHnz5goICFDDhg31xBNPKCcnRw899JBMJpNmzZpldJkO03nKaN2792Pdu+cjDf/hn2r94CClLN+s+HHTjS4NAOAgL76/UxeyXPf0fM6X+3Xg6AWX9QcAACrG41e/37lzpwYPHiyz2azg4GC1adNGJ0+e1FtvvaXk5GSdO3dOktSpUyejS3WYA5+uUso3m+Tl66ParRqp3fjhCq4XruKC/938efn5aOiq13T0qwTtenNxyfYb3hivgMhaWhP3okHVAwCuJiunUJ98c9jl/b775X7NnNLT5f0CAIDyefST+oyMDA0dOlRms1mTJk1Senq6tm/fLrPZrOnTp2v58uVKTEyUyWRShw4djC7XYTKPmJWesFtp8Tu0Z/YSfT/2FUV0aqZe0x8pOcZaaNH6iW+r/cS7VLtNY0lSo0HdFD2wqzY8NdvA6gEAVzNvebKycopc3u/HSw4pJ9f1/QIAgPJ5dKifOHGiUlNTNWHCBM2YMUMhISEl+6ZMmaKOHTvKYrGoSZMmCg313Fe9ndl6QMkL1ylmeG9Fdm1Zsv3sriPa+85S9XnrjwqqF6Zerz2qLc9+oLxT5w2tFwBwZcvWnTCk34tZhdr482lD+gYAAGXz2FCflJSkBQsWKCIiQi+//HKZx3Tp0kWS1LFjx5Jta9eulclkuuwfdx+e//PMhbJaitV58qjS299YJGtxsYatfk3mDXt0dMkGw2oEAFTMtn0Z1bJvAABwOY+dUz9//nxZrVbFxcWpRo0aZR4TGBgo/SbU/+Jf//qXrrvuupI/BwcHO7Fa58tKMevokg1qNuJG1enRWqe3JEmSbJZinUk8oIgOzXR4wQ9GlwkAuIqTp3NkzsgzrH9CPQAAVYvHPqmPj4+XJPXr16/cY1JTU6VyQn2bNm3Us2fPkn/at2/vxGpdY9ebl57K//ppfZ0erdV8VD8lffituj//oLwD/AytEQBwZcfTcwzt/4TZ2P4BAEBpHvuk/tixY5Kkxo0bl7nfYrFow4ZLQ83LCvWO1LVrV5nNZrva+Nq8NFXd7Wpj3rRXc+vdXe7+i4fS9En0/wK9T1CAbnhjvLa9OE/7/71Sg796Xtc9c58Sp861q19Jim0RqyKT1e52AAD7FPg0lkJ/V+a+xPnDrvr++aiIwJL/PbF6dLnHmTNy1e3epZdt375jl6KjH7e77qoivdZTkldNpZvTFR0dbXQ5huBnAABVU1RUlLZu3Wp3O48N9Tk5l54k5OWVPURxwYIFysjIUEhIiGJiYi7bP2rUKGVkZCg8PFzDhg3TK6+8ooiIiErVYjablZaWZlcbP5O3VLdS3VVYt+ceUPbx09o/d4Ukaf0TszRszQwd/26LTm1OsutcJ9NPqtBW7KRKAQAlggKkctZ2jYoIUnTdik0X8/H2qvCxv1ZUmG/377QqJaRY8pKsxcXu/TmuBT8DAPAoHhvqo6KidP78eW3fvl29evUqtS89PV2TJ0+WJHXo0EEmk6lkX82aNTV58mTdeOONqlGjhjZt2qSXX35Zmzdv1tatWxUQEFCpWuzla/OSnPjgu0H/zooZ1ltLbp5Usi3r2Clte3Gees8cr6X9J8mSV1Dh89WvV58n9QDgAhavIJ0qZ585I/eq7aMiAuXj7SVLsfWKc/PLO5e/T5EiGjSocL1VTbq3t6ySvLy9Vc+NP8e14GcAAFVTZXKjJJlsNpvN4dVUARMnTtTbb7+thg0bas2aNYqNjZUkJSYm6v7779eRI0dUVFSk8ePHa9asWVc81zfffKNhw4bpo48+0oMPPuiS+oty8zWv2RiX9OUIccmfyTfI/i88AAD2sVptqn3Dp8rMrtz74k+sHq3ousFKPZWjhgP/Y3f7//tDJ70woUul+q4KogfMV9rpXDWoE6TUNfcaXY4h+BkAgGfx2IXypkyZovDwcJ04cUJt27ZV+/bt1aJFC3Xv3l1NmzZV//79pQrOp7/99tsVHBxcqfkNAAA4kpeXSde1rtx0MEfo0ibcsL4BAMDlPDbUR0dHKyEhQUOGDFFAQIBSUlIUFhamOXPmaPny5Tp48KBk5yJ5vx6mDwCAUfp1q2dIv74+XurdyckLvgAAALt47Jx6SWrdurWWLVt22fbs7GylpKTIy8tL7dq1u+p5li5dqpycHHXvbt9q9AAAOMNDd8bq+Tk7VFzs2hl0IwY0UWRYoEv7BAAAV+bRob48e/fulc1mU2xsrIKCSr/6Z8yYMWratKmuu+66koXyXn31VXXq1EmjR5f/6h8AAFylQd1gDe/XWIvWpLi03/GjW7u0PwAAcHUeO/z+Snbv3i2VM/S+bdu2+uqrr/TAAw9o8ODB+uijj/Twww9r7dq18vPzM6BaAAAu99eHO8rb23XTwvp3r6fenRl6DwBAVUOo/41nnnlGu3fvVmZmpoqKinT06FH985//VM2aNQ2o1PEaD+mpnq88XGpb81H9NC59oRoN6mZYXQAA+3RuHaFnHqr4ujDXokaQrz6c1oe1ZQAAqIII9dVMo9t66PiKn0r+XCM6UrFxA3R66wFD6wIA2O9vj3RSx5ZhdrUxZ+Qq9VROhd5p/4sZk7qrSYOQSlQIAACcrVrOqY+Pjze6BKfxCw3SHT/MlHeAn3JPZsjL31chjeoqeeGP2vT0+6rbraXWPzHr0sEmk65//TFt+b8P1W3qWKNLBwDYyc/XW8tn3aIbxi5TysnsCrXpdu9Su/qY9EA7/eHulpWsEAAAOFu1fFLvyQozc3XkqwTt+2C5lg6crJ/+/rHObD+ojX9+V/V6t9PpxAOyWYolSW0fGarTift1dtcRo8sGAFRSg7rBWvvRbWrRONTh5/7L7zrotUndGXYPAEAVRqj3QGHtYnRu91FJUniHZjq359K/NxrUTce+uzT0vlbLhmo8pId+fmORobUCAK5d4/oh2vzZMI25vZlDzhdW01+fv9JXrzzZjUAPAEAVR6j3QGFtm5QE+fAOTXX2vwG/ft9OSovfIUmq26O1ajSsoxEb39bdP81W5HUt1Ou1R9XygVsMrR0AUDlhNf316Ut99fWbA9QwKrjS57l7YBPt/eou3XubY74gAAAAzlUt59R7sqCoMMlmU675nCQprHVj7XpzkSI6t9DFQ2my5OZLkg58skoHPllV0m7Qomna9/4yHV+RaFjtAIBrd0e/xhrSp6GWrTuu2QuStHrTyau2qR3qp98Nj9Wj97RW80aOH8YPAACch1DvYcLaxZQ8pZekwswctRp7qwrOZZVa9R4A4Ll8fLw0vH8TDe/fRBcyC7Q96ay27s3QoeMXlVdQLB9vL9UO9VOnluHq0iZcrWJqyceHwXsAALgjQr2HSV2zTalrtpX8edngpyVJd6ydqZUjppbbbsUV9gEA3FetUH/171Ff/XvUN7oUAADgBIT6amJJ3z8ZXQIAAAAAwMEYawcAAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAboqF8qoon0B/xSV/ZnQZFeYT6G90CQAAAABQ7RDqqyiTySTfoACjywAAAAAAVGEMvwcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATfkYXQDKZrPZZMkrMLqMCvMJ9JfJZDK6DAAAAACoVgj1VZQlr0Dzmo0xuowKi0v+TL5BAUaXAQAAAADVCsPvAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAEC1YLPZZLPZSv4dAABPwOr3AADAI+XmWbT4+xRt3HlK2/ad1a5D55RfUCxJOnkmT7FDv1TXNhHq2jZCdw+MUaN6NYwuGQAAuxHqAQCARzmSmqm3P9+nuUsO6UJWYbnHHTqWqUPHMjX/uyOa/M9EDenTUBPuba2BvRrIZDK5tGYAACqLUA8AADxCcbFVMz/dq/+btU0FhcV2tbVabfrmx+P65sfjGjGgiWb/9XrVCQ90Wq0AADgKod6DRPVqq0GLp5XaVpSTp8wj6UpeuE5JH34rW7HVsPoAAHCWVHOO7pkcr00/n77mcy1ak6Ift5n173/cqNv6NHRIfQAAOAuh3gMdWZyg1PjtksmkwMhaaj7yJnWfNk41WzTQpslzjC4PAACHSj6RqZsf/k7HTmY77JwZ5/M1bOJqffKPm3TfkGYOOy8AAI7G6vce6OzuozqyKEFHFq7T3neWavmQZ5WTlqHY+26Wf3io0eUBAOAwJ0/naICDA/0viottuv+vP+rr+BSHnxsAAEch1FcDlrwCndl+SCYvL4U2rmt0OQAAOITNZtO4v61TihMC/S+sVpvG/t86nTA7rw8AAK4Fob6aCGlyKcwXXOCmBADgGT5YdECrN520q03i/GE6sXq0EucPq3CbzOwiPfzcet5tDwCokjw+1GdkZGjKlClq3ry5AgIC1LBhQz3xxBPKycnRQw89JJPJpFmzZhldpkP5BPrJPyxE/uGhqtWqkXq89HuFt2+qM9sPKfNIutHlAQBwzc5eyNek13+yu11URJCi6wYrKiLIrnYrN6ZpwYojdvcHAICzefRCeTt37tTgwYNlNpsVHBysNm3a6OTJk3rrrbeUnJysc+fOSZI6depkdKkO1XnKaHWeMrrUtpTlm7XlmQ8MqwkAAEf6+OtDysopcmmfb87bq9GDWTQPAFC1eOyT+oyMDA0dOlRms1mTJk1Senq6tm/fLrPZrOnTp2v58uVKTEyUyWRShw4djC7XoQ58ukor75mm1XEvausLnyr/XJaC64WruKCw5BgvPx/dsXamOjxxV6m2N7wxXgPm/dWAqgEAqBir1aZ3vkhyeb+bd53R9n0ZLu8XAIAr8dhQP3HiRKWmpmrChAmaMWOGQkJCSvZNmTJFHTt2lMViUZMmTRQa6lkrwmceMSs9YbfS4ndoz+wl+n7sK4ro1Ey9pj9Scoy10KL1E99W+4l3qXabxpKkRoO6KXpgV214araB1QMAcGUbd57SkdQsQ/r+5JvDhvQLAEB5PDLUJyUlacGCBYqIiNDLL79c5jFdunSRJHXs2PGyfV999ZWuv/56BQcHq2bNmurdu7f27t3r9Lqd5czWA0peuE4xw3srsmvLku1ndx3R3neWqs9bf1RQvTD1eu1RbXn2A+WdOm9ovQAAXMlPe84Y1nfiXuP6BgCgLB4Z6ufPny+r1aq4uDjVqFGjzGMCAwOlMkL9W2+9pXvuuUc33HCDli5dqvnz52vAgAHKy8tzSe3O8vPMhbJaitV58qjS299YJGtxsYatfk3mDXt0dMkGw2oEAKAitu07a1jfO/aflcViNax/AAB+yyMXyouPj5ck9evXr9xjUlNTpd+E+uTkZE2ePFkzZ87UhAkTSrbfdtttTq3XFbJSzDq6ZIOajbhRdXq01uktl+Yi2izFOpN4QBEdmunwgh+MLhMAgKvam2zciLK8/GKlnMxW80aeNXUPAOC+PDLUHzt2TJLUuHHjMvdbLBZt2HDpifSvQ/1HH30kX19fPfzwww6tp2vXrjKbzXa18bV5aaq6O7SOXW8uUszw3uo8eZRW3v2cJKlOj9ZqPqqfkj78Vt2ff1BLB05WcX7hVc/1W7EtYlVk4skFAMD5zDUnSt7hZe5LnD/siq+ri4oILPnfE6tHl3ucJJkzctXt3qWXbb++T3/5Fdv3e70qSa/1lORVU+nmdEVHRxtdDgDgv6KiorR161a723lkqM/JyZGkcofML1iwQBkZGQoJCVFMTEzJ9o0bN6ply5b67LPP9I9//EMnTpxQixYt9Pe//1333ntvpesxm81KS0uzq42fyVuqa2c/m/Zqbr27y91/8VCaPon+3/B7n6AA3fDGeG17cZ72/3ulBn/1vK575j4lTp1rX8eSTqafVKGt2O52AADYLdgieZe965f30F+Nj7dXhY4ry5nTp6R8+36vVykhxZKXZC0utvv+BABQ9XhkqI+KitL58+e1fft29erVq9S+9PR0TZ48WZLUoUMHmUymUvvS0tL0zDPPaPr06WrYsKE+/PBD3XfffYqMjNSAAQMqXY+9fG1ekpMffHd77gFlHz+t/XNXSJLWPzFLw9bM0PHvtujUZvteFVS/Xn2e1AMAXOK0t1XlvaHenJF7xbZREYHy8faSpdgqc8aV18sp71x1I2vLx2qrcL1VTbq3t6ySvLy9Va9BA6PLAQD8V2Vyozw11A8YMEBJSUmaPn26Bg4cqNjYWElSYmKi7r//fmVkXHrHbKdOnUq1s1qtys7O1qeffqrhw4dLkm6++Wbt27dPL7zwQqVDfWWGUBTl5mteszGV6q8iGvTvrJhhvbXk5kkl27KOndK2F+ep98zxWtp/kix5BRU+38FDB+UbFOCkagEA+J8xz6zVvOXJZe4ra7j8r51YPVrRdYNlzshTw4H/sbvvoAAfpR3dKW9v911rOHrAfKWdzlW9qHpK3ZNqdDkAgGvkvr+RrmDKlCkKDw/XiRMn1LZtW7Vv314tWrRQ9+7d1bRpU/Xv318qY+X7sLAw6b9fCvzCZDJpwIAB2rNnj4s/hXOlxe/Q563GKicto9T2/XNXaHGvCXYFegAAXKlLmwjD+u7UKsytAz0AwPN45G+l6OhoJSQkaMiQIQoICFBKSorCwsI0Z84cLV++XAcPHpTKCPVt27Yt95z5+flOrxsAAFxd93aR1bJvAADK4pGhXpJat26tZcuWKSsrS1lZWdqyZYv+8Ic/KCcnRykpKfLy8lK7du1KtbnjjjskSatWrSrZZrVatXr1anXr1s3lnwEAAFyuV8c6atYwxJC+xw5rYUi/AACUxyPn1F/J3r17ZbPZFBsbq6Cg0q+8GTp0qPr06aM//OEPOnv2rBo1aqQPPvhAe/fu1erVqw2rGQAA/I+Xl0mP3dNaf379J5f226tjHXVqVfar9AAAMIrHPqkvz+7du6Uyht7rv/Pnly5dqhEjRujZZ5/VsGHDdOzYMX377bcl8/ABAIDxHhweq9Aavi7t88kx5U/TAwDAKIT636hVq5bmzJmjM2fOqKCgQD/99JNuvfVWF1cJAACuJKymv2ZO7umy/obc2FAjb4lxWX8AAFQUob6aaTykp3q+8nCpbc1H9dO49IVqNIh1AwAA7uPB4S00+IZou9qYM3KVeirnqu+z/7WaIX6a87feMplMlagSAADnqnZz6uPj440uwVCNbuuh5C/Xlvy5RnSkYuMG6PTWA4bWBQCAvUwmkz56vo9uGLtMySeyKtTmau+x/y1vb5M+e+kmNagbXMkqAQBwrmr3pN7T+YUGaeS2ORq992MNW/2ahq97Q/enzNf1Mx6Vycdbdbu1VPr6PZcONpl0/euPacv/fShrocXo0gEAsFtURJDWvDdYMQ0cvxq+j49Jn7/SV7ff1Mjh5wYAwFEI9R6mMDNXR75K0L4PlmvpwMn66e8f68z2g9r453dVr3c7nU48IJulWJLU9pGhOp24X2d3HTG6bAAAKq1JgxCt//cQ9bmursPOWScsQMvevkX33NrUYecEAMAZCPUeKKxdjM7tPipJCu/QTOf2XPr3RoO66dh3l17/U6tlQzUe0kM/v7HI0FoBAHCE+nWCtfajIXpjSg8FBnhf07nuHdxU+74eoVt72zdfHwAAI1S7OfXVQVjbJiVBPrxDU51YmShJqt+3k7a+8JkkqW6P1qrRsI5GbHxbkhQYWUu9XntUgXVq68AnqwysHgCAyvHyMumJMe00vH9jzV6QpA+/OqizFwoq1Nbb26Th/Rprwr1t1LdbPafXCgCAoxDqPUxQVJhksynXfE6SFNa6sXa9uUgRnVvo4qE0WXLzJUkHPllVKrwPWjRN+95fpuMrEg2rHQAAR2hcP0TT/9Rd0x6/Tkt+OK5NP5/Wtn0Z+vngOWXlFEmSfH28FNs4VF3aRKhLmwiNGNCExfAAAG6JUO9hwtrFlDyll6TCzBy1GnurCs5l6fiKnwytDQAAVwrw99GoQU01atD/5sVbrTZZrTb5+DADEQDgGQj1HiZ1zTalrtlW8udlg5+WJN2xdqZWjphabrsVV9gHAICn8PIyycuL980DADwHob6aWNL3T0aXAAAAAABwMMaeAQAAAADgpgj1AAAAAAC4KUI9AAAAAABuijn1VZRPoL/ikj8zuowK8wn0N7oEAAAAAKh2CPVVlMlkkm9QgNFlAAAAAACqMIbfAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmfIwuAGWz2Wyy5BUYXUaF+QT6y2QyGV0GAAAAAFQrhPoqypJXoHnNxhhdRoXFJX8m36AAo8sAAAAAgGqF4fcAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClWvwcAAPBQNptNKWnZ2rYvQ9uSMpR2KlfnLl56Ze7F7ELN/zZZXdpEqHmjUHl58WpaAHBHhHoAAAAPcyGzQP9eekjvfLFfB1IulnlMdq5F9z29VpLUuH4NPXJ3Kz10Z6zqhAe6uFoAwLUw2Ww2m9FF4HJFufm8px4AANilqMiq6R//rJc++Fl5+cV2t/fz9dITcW017fHrFBjAsx8AcAdcrT1IVK+2GrR4WqltRTl5yjySruSF65T04beyFVsNqw8AADjP7oPnNO5v67Q96Wylz1FYZNVrc3dr6drj+viFPurVsa5DawQAOB6h3gMdWZyg1PjtksmkwMhaaj7yJnWfNk41WzTQpslzjC4PAAA42KqNqbrzye+Vm29xyPkOpFzUjQ8u12cv9dWoQU0dck4AgHMQ6j3Q2d1HdWRRQsmfD8xdqTsT3lTsfTdr+yvzVXA209D6AACA46zZnKahf1ytwiLHjsazWGy69y8/yMvLpJG3xDj03AAAx+GVdtWAJa9AZ7YfksnLS6GNGUYHAICnSD6RqTuf/N7hgf4XNpsU9/Rabd+X4ZTzAwCuHaG+mghpcinMF1zINroUAADgAFarTb/7e4Kyc4vsapc4f5hOrB6txPnDKnR8kcWqcX9bp8Ii+xfeAwA4H6HeA/kE+sk/LET+4aGq1aqRerz0e4W3b6oz2w8p80i60eUBAAAHmL0gSeu2me1uFxURpOi6wYqKCKpwm92Hzusf7+20uy8AgPNVi1CfkZGhKVOmqHnz5goICFDDhg31xBNPKCcnRw899JBMJpNmzZpldJkO03nKaN2792Pdu+cjDf/hn2r94CClLN+s+HHTjS4NAAA4QFGRVS++79qQ/c9P9igzu9ClfQIArs7jF8rbuXOnBg8eLLPZrODgYLVp00YnT57UW2+9peTkZJ07d06S1KlTJ6NLdZgDn65Syjeb5OXro9qtGqnd+OEKrheu4oL//SL28vPR0FWv6ehXCdr15uKS7Te8MV4BkbW0Ju5Fg6oHAABX8/UPx2TOyHNpnzl5Fn267LDGj27j0n4BAFfm0U/qMzIyNHToUJnNZk2aNEnp6enavn27zGazpk+fruXLlysxMVEmk0kdOnQwulyHyTxiVnrCbqXF79Ce2Uv0/dhXFNGpmXpNf6TkGGuhResnvq32E+9S7TaNJUmNBnVT9MCu2vDUbAOrBwAAVzPny/2G9PvuF8b0CwAon0eH+okTJyo1NVUTJkzQjBkzFBISUrJvypQp6tixoywWi5o0aaLQ0FBDa3WmM1sPKHnhOsUM763Iri1Ltp/ddUR731mqPm/9UUH1wtTrtUe15dkPlHfqvKH1AgCA8hUVWbV+xylD+t5z+LzOXsg3pG8AQNk8NtQnJSVpwYIFioiI0Msvv1zmMV26dJEkdezYsWRb3759ZTKZyvzn0UcfdVn9jvbzzIWyWorVefKo0tvfWCRrcbGGrX5N5g17dHTJBsNqBAAAV7c3+bwKCo1biX4br7cDgCrFY+fUz58/X1arVXFxcapRo0aZxwQGBkq/CfWzZ89WZmZmqeOWL1+uf/zjH7r99tudXLXzZKWYdXTJBjUbcaPq9Git01uSJEk2S7HOJB5QRIdmOrzgB6PLBAAAV7E96ayh/W/bd1a3XB9taA0AgP/x2FAfHx8vSerXr1+5x6Smpkq/CfVt2ly++MuLL76oyMhIDRo0qFK1dO3aVWazfa+c8bV5aaq6V6q/8ux6c5FihvdW58mjtPLu5yRJdXq0VvNR/ZT04bfq/vyDWjpwsorz7V/ZNrZFrIpMVofWCwAALpcVcIMUNLDMfYnzh131VXVREYEl/3ti9ehyjzNn5KrbvUsv2/7S9Lf0r+dW2l03AODKoqKitHXrVrvbeWyoP3bsmCSpcePGZe63WCzasOHSUPNfh/rfOnPmjFasWKHHH39cPj6V+3GZzWalpaXZ1cbP5C3VtbOfTXs1t97d5e6/eChNn0T/b/i9T1CAbnhjvLa9OE/7/71Sg796Xtc9c58Sp861r2NJJ9NPqtBm3FBAAACqjchsqZzc/ss76CvCx9urwsf+WnZOnrLT7buvAQA4j8eG+pycHElSXl7Zr3tZsGCBMjIyFBISopiYmHLPM3/+fFksFt1///2VriUqKsruNr42L8nJD767PfeAso+f1v65KyRJ65+YpWFrZuj4d1t0anOSXeeqX68+T+oBAHCBrIBgZZazz5yRe9X2URGB8vH2kqXYesXX4pV3rhrBAarZoEGF6wUAVExlcqMkmWw2m83h1VQBbdq0UVJSkmbNmqXx48eX2peenq4uXbooPT1dvXv31vr168s9T7du3ZSTk6N9+/a5oOr/KcrN17xmY5x2/gb9O+um2U9qyc2TlJP2vwVvWo0bpDaP3K6l/SfJkldQ4fPFJX8m36AAJ1ULAAB+8cXKIxo1ufLr4JxYPVrRdYOVeipHDQf+x+72bz/TSxPu5V31AFBVeOzq9wMGDJAkTZ8+XQcPHizZnpiYqH79+ikj41KQ7dSpU7nn2L9/v7Zu3XpNT+mrqrT4Hfq81dhSgV6S9s9docW9JtgV6AEAgOt0aRNhcP/hhvYPACjNY0P9lClTFB4erhMnTqht27Zq3769WrRooe7du6tp06bq37+/dJX59J9++qlMJpPi4uJcWDkAAED5mkaHqFaInyF9e3mZ1DGWUA8AVYnHhvro6GglJCRoyJAhCggIUEpKisLCwjRnzhwtX7685Ol9eaHeZrNp3rx56tu3rxo1auTi6gEAAMpmMpl0+00NDen75h71FBTosUsyAYBb8uircuvWrbVs2bLLtmdnZyslJUVeXl5q165dmW3XrVunY8eOaerUqS6oFAAAoOIeu6e1PluW7PJ+Hx/V2uV9AgCuzGOf1F/J3r17ZbPZ1KJFCwUFlf1OmE8//VSBgYG6++7yXxEHAABghF4d66hjyzCX9hldN1i338joRQCoaqplqN+9e7d0haH3+fn5WrhwoYYPH66QkBAXVwcAAHBlJpNJr0/q4dI+X3uqm3x8quWtIwBUadXyyny1UB8QEKALFy7o888/d3Flztd4SE/1fOXhUtuaj+qncekL1WhQN8PqAgAA9rm5Z309OrKVS/q66+YmGjWoqUv6AgDYh1BfzTS6rYeOr/ip5M81oiMVGzdAp7ceMLQuAABgv1ef6qaWTWra1cackavUUzkyZ+RW6Pj6dYI0+/+ul8lkqmSVAABn8uiF8soTHx9vdAlO4xcapDt+mCnvAD/lnsyQl7+vQhrVVfLCH7Xp6fdVt1tLrX9i1qWDTSZd//pj2vJ/H6rb1LFGlw4AAOwUEuyn1e8NUp9xy3XsZHaF2nS7d2mFzx9ZO0Br3husuuGB11AlAMCZquWTek9WmJmrI18laN8Hy7V04GT99PePdWb7QW3887uq17udTicekM1SLElq+8hQnU7cr7O7jhhdNgAAqKSGUTWUMHeIWjet5dDzNqoXrHVOOC8AwLEI9R4orF2Mzu0+KkkK79BM5/Zc+vdGg7rp2HeXht7XatlQjYf00M9vLDK0VgAAcO0aRtXQ1vl36MkxbeWIUfK/uzNWP395p1rFEOgBoKoj1HugsLZNSoJ8eIemOvvfgF+/byelxe+QJNXt0Vo1GtbRiI1v6+6fZivyuhbq9dqjavnALYbWDgAAKico0Eczp/TUuo+HqM91dSt1ji5tIvTtv27Rh9P6qFaov8NrBAA4XrWcU+/JgqLCJJtNueZzkqSw1o21681FiujcQhcPpcmSmy9JOvDJKh34ZFVJu0GLpmnf+8t0fEWiYbUDAIBrd8N1UVo393btPnhO73yRpBUb0nQ0Lavc46PrBmtAz/p6fFRrdWsX6dJaAQDXjlDvYcLaxZQ8pZekwswctRp7qwrOZZVa9R4AAHi29rFhmv1/vSVJZy/ka3vSWZ08nauComL5+XqpbligurSJUB0WwQMAt2ay2Ww2o4vA5Ypy8/X/7dy7CQJREIbRu6D4aMNG7MDAUJuwgi3BJrQAQzMbsQQTExWENTUwMFhZf/acAoZJP+5l9rN1a/MWp205Lutyv1xbm/ludd6V4XT8k9kAAAB85qW+Jw7zTdcrAAAA0DKH8gAAACCUqAcAAIBQoh4AAABCOZT3p5qmKc/bo+s1vjaYjEpVVV2vAQAA0CuiHgAAAEL5fg8AAAChRD0AAACEEvUAAAAQStQDAABAKFEPAAAAoUQ9AAAAhBL1AAAAEErUAwAAQChRDwAAAKFEPQAAAIQS9QAAABBK1AMAAEAoUQ8AAAChRD0AAACEEvUAAAAQStQDAABAKFEPAAAAoUQ9AAAAhBL1AAAAEErUAwAAQChRDwAAAKFEPQAAAIQS9QAAABBK1AMAAEAoUQ8AAAChXqEH1uRmep3XAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAHwCAYAAADn6U9jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5TElEQVR4nO3dd3wUdf7H8fduekIoKZBA6BAIJYB0sQCCgggWVFBU8DwrCHdy5NTzJ+KdBUGxcHqoeJyiHEoRBKUZlICUQOiEgAkBErJAaAnpZX9/cEaRBLJhdye7eT0fDx+SmfnOfDaEybxnvvP9mqxWq1UAAAAAAMDlmI0uAAAAAAAAVA2hHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXJSn0QWgfFarVcV5BUaXUWmefj4ymUxGlwEAAAAANQqhvpoqzivQ5y0fMLqMShuVPFde/r5GlwEAAAAANQrd7wEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXxTz1biSsd3sNWjTlomVFOXnKSslQ8oJ1Spz9rawlpYbVBwAAAACwL0K9G0pZFKe02ATJZJJfaF21uudG9ZgyRnVaN9LGSbOMLg8AAAAAYCeEejd0avchpSyMK/s6ac5K3Rn3jiLvv0kJr89TwaksQ+sDAAAAANgH79TXAMV5BTqZcFAms1m1mzYwuhwAAAAAgJ0Q6muIwGYXwnzB2fNGlwIAAAAAsBO637shTz9v+QQFlr1T3+ahmxXcsYVOJhxUVkqG0eUBAAAAAOykRjypz8zMVExMjFq1aiVfX181btxYEyZMUE5Ojh555BGZTCbNnDnT6DLtpkvMSN2399+6b88numPtW4p6eJBSl29S7JipRpdmqCMZ57Vl90kl7MtU5pl8o8sBAACAE1mtVh1IPadNO09o14HTOp9bZHRJgF24/ZP6HTt2aPDgwbJYLAoICFC7du107Ngxvfvuu0pOTtbp06clSZ07dza6VLtJ+myVUr/ZKLOXp+q1baIOY+9QQHiwSgoKy7Yxe3tq6KppOrQ4TrveWVS2/Lq3x8o3tK7WjHrFoOrtq7CoRAtWpeqDLxO1fvvxsuWeHibdeVMzPTUiSjd2C5PJZDK0TgAAADjGuexC/WfpQX3wZaL2HzpXtryWv6ceGtpaT42IUvtW9QytEbgabv2kPjMzU0OHDpXFYtHEiROVkZGhhIQEWSwWTZ06VcuXL1d8fLxMJpOio6ONLtduslIsyojbrfTY7drz/hJ9P/p1hXRuqd5THy/bprSwWOvHv6eO4+9SvXZNJUlNBnVXxMBu2vDM+wZWbz+nzxXopj9+p1HP/XBRoJek4hKrvlp1SP0e+VbjXt2okpJSw+oEAACAY+w/dFad71msCVM3XRToJel8brHen5+o6LsX64P5iYbVCFwttw7148ePV1pamsaNG6fp06crMDCwbF1MTIw6deqk4uJiNWvWTLVr1za0Vkc6uTVJyQvWqfkdfRTarU3Z8lO7UrT3g6W6/t2n5R8epN7TntDm5z9W3vEzhtZrD7l5xbr1qZWXhPnyvD8/UX96Y7OsVqtTagMAAIDjHck4r/5//E6pxy4/UHRpqVVPvfKTPll8wGm1AfbktqE+MTFR8+fPV0hIiF577bVyt+nataskqVOnThctP3TokIYNG6bAwEDVq1dPDz30kE6dOuWUuh1l54wFKi0uUZdJIy5e/vZClZaUaNjqabJs2KNDSzYYVqM9vfP5Xm3efbLS28+ct08/7Tjh0JoAAADgPBOnb1bGydxKbz/21Z906izjLsH1uG2onzdvnkpLSzVq1CjVqlWr3G38/Pyk34X67Oxs9evXT2lpaZo3b54+/PBDxcXF6bbbblNpqet20c5OtejQkg1qeEO06veMKltuLS7Ryfgk+QbX0c/z1xpao72UlJRq1oL9Nrf74Eu6XQEAALiDYydy9HXsYZva5BeUaM6Sgw6rCXAUtw31sbGxkqR+/fpVuE1aWpr0u1D/4YcfKj09XV9//bVuu+023XPPPfriiy+0adMmLV261AmVO86udy48lf/t0/r6PaPUakQ/Jc7+Vj1eflgevt6G1mgPsVsydPgK3azK89WqQzqXXViJLQEAAFCdfbbsZxWX2P5q5ceLkhxSD+BIJqubvkjcuHFjpaWlafv27eWObF9cXKzw8HBlZmYqOTlZLVq0kH5zE2Dt2oufWrds2VJ9+/bV7Nmzba6lW7duslgsNrXxspo1ubSHzceyhae/r4Z9P137Zi3T/v+s1ODFLytzZ7LiJ8+xeV9TzFtUZKoePRlyfLrpbMDQKrWtf/Y9eZVm2r0mAAAAOM8Z/6HK9e1me0NrkRqd+YcjSgKuKCwsTFu3brW5ndtOaZeTkyNJysvLK3f9/PnzlZmZqcDAQDVv3rxs+b59+3TPPfdcsn379u21b9++KtVisViUnp5uUxtvk4fUoEqHq7TuLz2k80dOaP+cFZKk9RNmatia6Try3WYd32RbV/RjGcdUaC1xUKU2CoqUAqrW9MSJTKnAtr8rAAAAVDON8iTfqjQ02XzdDhjNbUN9WFiYzpw5o4SEBPXu3fuidRkZGZo0aZIkKTo6+qI5ys+cOaO6detesr+goCAlJVWtO05YWJjNbbysZsmBD74b9e+i5sP6aMlNE8uWZR8+rm2vfK4+M8Zqaf+JKs4rqPT+GoY3rDZP6vO8zDpdxbZhof7ysDayc0UAAABwpiy/UmVXoZ1H6XmFNeJaEMaoSm6UO4f6AQMGKDExUVOnTtXAgQMVGRkpSYqPj9eDDz6ozMwLXazL65pvb1XpQlGUm6/PWz7gkHokKT12u75oO/qS5fvnrCh7cm+LAwcPyMu/SrdD7S4vv1gRA/+r0+cqf1NCkgb1idB3HzCVCQAAgKvbf+isom5faHO7mMdu1KsTJlZiS6D6cNuB8mJiYhQcHKyjR4+qffv26tixo1q3bq0ePXqoRYsW6t+/v1TOdHb16tXT2bNnL9nf6dOnFRQU5LT6UXV+vp76wx2RNrd7akRUJbYCAABAdde2eV317xFuUxuz2aTH72njsJoAR3HbUB8REaG4uDgNGTJEvr6+Sk1NVVBQkGbNmqXly5frwIELT2R/H+qjoqLKfXd+3759iooi9LmKv4zpqKYNy5/KsDyD+kTo1usjHFoTAAAAnOeNZ3rI37fyHZNjHu6opg0DHVoT4AhuG+r1v4C+bNkyZWdnKzs7W5s3b9Zjjz2mnJwcpaamymw2q0OHDhe1ue2227R+/fqy6e4kafPmzUpOTtbQoVUbUR3O1yDYT6v+NUjNKhHsb+rZUF9O7ycPD7f+5wAAAFCjdG0XoiXvDlAt/ysH+6dGROmVp6swWj5QDbjtlHaXs3nzZvXq1Utt2rTR/v37L1qXlZWljh07KiQkRFOmTFF+fr5iYmIUGhqqjRs3ymx2TvBz9Dv19jYqeW61eaf+t06cytPbc/fq40VJOnkm/6J1US3q6sl72+rxe9rK28vDsBoBAADgOPsPndVbn+7R58uTlZtffNG6669poKfvb6+7Bza7aPBswJXUyEeTu3fvlsrpei9JtWvXVmxsrMLDwzVy5Ej98Y9/1LXXXqtly5Y5LdDDfuoH++nVCd10dPVILZs5UHUDvSVJIXV9tHfxXXr6/vYEegAAADfWtnldfTj5OqWvGakFb/Yvux6sH+SrdXNu0z03NyfQw6W57ej3l3O5UC9JLVu21LJly5xcFRzJx9tDQ25oogA/T53NLpSPtwcnbwAAgBqkbm0fDR/YXBOmbtLZ7EJ5efLADu6hRv4kXynUu7OmQ3qp1+uPXrSs1Yh+GpOxQE0GdTesLgAAAACA7Wrkk/rY2FijSzBMk1t7KvmrH8q+rhURqshRA3Ria5KhdQEAAAAAbFcjQ707867tr9vXzpCHr7dyj2XK7OOlwCYNlLzgR2189iM16N5G6yfMvLCxyaRr33xSm1+Yre6TRxtdOgAAAADARoR6N1OYlauUxXEqysnXrhkL1LBvJ0WPv0s//eVfanhjJ52IT5K1uESS1P7xoToRv1+ndqUYXTYAAAAAoApq5Dv17i6oQ3Od3n1IkhQc3VKn91z4c5NB3XX4uy2SpLptGqvpkJ7a+fZCQ2sFAAAAAFQdT+rdUFD7ZmVBPji6hY6ujJckNezbWVv/PleS1KBnlGo1rq/hP70nSfILrave056QX/16Svp0lYHVAwAAAAAqi1DvZvzDgiSrVbmW05KkoKim2vXOQoV0aa1zB9NVnJsvSUr6dNVF4X3Qwina99EyHVkRb1jtAAAAAADbEOrdTFCH5mVP6SWpMCtHbUffooLT2TqyYouhtQEAAAAA7ItQ72bS1mxT2pptZV8vG/ysJOn2H2Zo5fDJFbZbcZl1AAAAAIDqiVBfQyzp+2ejSwAAAAAA2Bmj3wMAAAAA4KII9QAAAAAAuChCPQAAAAAALop36qspTz8fjUqea3QZlebp52N0CQAAAABQ4xDqqymTySQvf1+jywAAAAAAVGN0vwcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUZ5GF4DyWa1WFecVGF1GpXn6+chkMhldBgAAAADUKIT6aqo4r0Cft3zA6DIqbVTyXHn5+xpdBgAAAADUKHS/BwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwU89S7kbDe7TVo0ZSLlhXl5CkrJUPJC9Ypcfa3spaUGlYfAAAAAMC+CPVuKGVRnNJiEySTSX6hddXqnhvVY8oY1WndSBsnzTK6PAAAAACAnRDq3dCp3YeUsjCu7OukOSt1Z9w7irz/JiW8Pk8Fp7IMrQ8AAAAAYB+8U18DFOcV6GTCQZnMZtVu2sDocgAAAAAAdkKoryECm10I8wVnzxtdCgAAAADATmpEqM/MzFRMTIxatWolX19fNW7cWBMmTFBOTo4eeeQRmUwmzZw50+gy7cbTz1s+QYHyCa6tum2bqOerf1RwxxY6mXBQWSkZRpcHAAAAALATt3+nfseOHRo8eLAsFosCAgLUrl07HTt2TO+++66Sk5N1+vRpSVLnzp2NLtVuusSMVJeYkRctS12+SZuf+9iwmmAcq9WqTbtO6IP5+7Xn5zPKLyxRcB0f3TWgmcbc3lr1avsYXSIAAAAcqKSkVMvXHdXsxQeUeuy8SkutaljfXw/e1kp3D2wmXx+3j4Vuza3/9jIzMzV06FBZLBZNnDhRkydPVmBgoCTpjTfe0F//+ld5enrKZDIpOjra6HLtJumzVUr9ZqPMXp6q17aJOoy9QwHhwSopKCzbxuztqaGrpunQ4jjtemdR2fLr3h4r39C6WjPqFYOqhz0dSD2n+/66VgmJpy5Zt377cf3tva2aNDpak5/sIrPZZEiNAAAAcJw1m9L1yOQ4HcnIuWj5np/PaNVP6frztM2aMamnHritlWE14uq4dff78ePHKy0tTePGjdP06dPLAr0kxcTEqFOnTiouLlazZs1Uu3ZtQ2u1p6wUizLidis9drv2vL9E349+XSGdW6r31MfLtiktLNb68e+p4/i7VK9dU0lSk0HdFTGwmzY8876B1cNe9iWfUe8Hvyk30P8iL79EL8/arsemrJfVanVqfQAAAHCspWsPa/CTKy8J9L+VeSZfDz7/o/75331OrQ3247ahPjExUfPnz1dISIhee+21crfp2rWrJKlTp05ly365CdCjRw/5+PjIZHL9p5cntyYpecE6Nb+jj0K7tSlbfmpXivZ+sFTXv/u0/MOD1HvaE9r8/MfKO37G0Hpx9QqLSjRk7CqdPldQqe1nLz6gD+YnOrwuAAAAOMehtGyNjFmr4pLKPbh5+rWNWp9gcXhdsD+3DfXz5s1TaWmpRo0apVq1apW7jZ+fn/S7UP/zzz9r4cKFCgsLU/fu3Z1Wr6PtnLFApcUl6jJpxMXL316o0pISDVs9TZYNe3RoyQbDaoT9LFqTqtRjts108NZne1RaytN6AAAAd/DBl4nKKyip9PZWq/T23L0OrQmO4bahPjY2VpLUr1+/CrdJS0uTfhfqb7jhBmVkZGjp0qUaMGCAEyp1juxUiw4t2aCGN0Srfs+osuXW4hKdjE+Sb3Ad/Tx/raE1wn7++V/bn7onH83Wqp/SHVIPAAAAnCcvv1izFx+wud3Xaw8r/XjFXfVRPbntQHmHDx+WJDVt2rTc9cXFxdqw4cJT6d+GerPZ/vc5unXrJovFtq4sXlazJquHXevY9c5CNb+jj7pMGqGVd78kSarfM0qtRvRT4uxv1ePlh7V04CSV5BdecV+/F9k6UkWmUrvW6wgZdZ+RzHWUYclQRESE0eU4hFUmHav3omSy/Wf5nof/pjp53zukLgAAgOqgJlwPFnqE63SdJ2xuV1JiVXSvO+RXxGuZRggLC9PWrVttbue2oT4n58Idpry8vHLXz58/X5mZmQoMDFTz5s0dWovFYlF6um1PQL1NHlIDG4+zca/mhN9d4fpzB9P1acSv3e89/X113dtjte2Vz7X/Pys1ePHLuua5+xU/eY5tB5Z0LOOYCq2V795jmMASySyVlpTY/HfiMsw+UlDVbk6dzynU+Qw3/b4AAACohlwP+vtLdarW9PTZXOmsm35f3JTbhvqwsDCdOXNGCQkJ6t2790XrMjIyNGnSJElSdHS0wwfDCwsLs7mNl9UsOfjBd/eXHtL5Iye0f84KSdL6CTM1bM10Hflus45vsu3uXMPwhq7xpN7DQ6WSzB4eCm/UyOhyHMIqk45ZS6v0pD4wwEu13fT7AgAAoBpyPVjoUVsnq9g2qK6//ALc8/tS3VUlN8qdQ/2AAQOUmJioqVOnauDAgYqMjJQkxcfH68EHH1RmZqYkqXPnzg6vpSpdKIpy8/V5ywccUo8kNerfRc2H9dGSmyaWLcs+fFzbXvlcfWaM1dL+E1WcV7mR0yXpwMED8vL3dVC19hMxYJ7ST+QqPCxcaXvSjC7HYQY8+p2+33zM5nZLPn9d/Xo0dEhNAAAA1UFNuB4sLCpR44H/1YnT+Ta18/I0K3HrUtUP9nNYbbA/tx0oLyYmRsHBwTp69Kjat2+vjh07qnXr1urRo4datGih/v37S797n74mSY/dri/ajlZOeuZFy/fPWaFFvcfZFOhR/Tw1IqoSW12sbfM66ts93CH1AAAAwHm8vTz06PA2ldjyYvfc3JxA74LcNtRHREQoLi5OQ4YMka+vr1JTUxUUFKRZs2Zp+fLlOnDgwmiQNTXUw70N69tEbZvb9iLVX//g+FdRAAAA4BxP3BOl2rW8Kr29p4dJf36wvUNrgmO4bfd7SYqKitKyZcsuWX7+/HmlpqbKbDarQ4cOhtQGOJKnp1nL/3mzrh+zXMdO5F5x+4kPddCY2yOdUhsAAAAcLyIsQIveGqDbnl6l/CvMV282m/TJy9erW/tQp9UH+3HbJ/WXs3fvXlmtVrVu3Vr+/v6XrF+wYIEWLFigffv2XfR1Vd6NB4zSIqK2Ns0dqpt6VvyOfFAdH701qaemTbTv9IkAAAAw3k29Gmrtx7eqfcu6FW7TrGEtLZ5xkx4c2tqptcF+3PpJfUV2794tXabr/T333FPu16NHj9acObZP9wYYpXFYLa35aLD2JZ/RrK/2a9ZX+1VQVCpfbw998H/XasQtLeTnWyNPAwAAADVCr071tXvRXVqfcFyzFx/QvO+SVVhUKj8fD331Zn8N6hMhD48a+azXbdTIq/krhXqr1erkigDHateynt55trcWrklV+olcBdf1obs9AABADWEymXR91zBd3zVMazalK/1EroLq+GjIDU2MLg12UCNvyVwp1LuzpkN6qdfrj160rNWIfhqTsUBNBnU3rC4AAAAAgO1q5JP62NhYo0swTJNbeyr5qx/Kvq4VEarIUQN0YmuSoXUBAAAAAGxXI0O9O/Ou7a/b186Qh6+3co9lyuzjpcAmDZS84EdtfPYjNejeRusnzLywscmka998UptfmK3uk0cbXToAAAAAwEaEejdTmJWrlMVxKsrJ164ZC9SwbydFj79LP/3lX2p4YyediE+StfjClBbtHx+qE/H7dWpXitFlAwAAAACqoEa+U+/ugjo01+ndhyRJwdEtdXrPhT83GdRdh7/bIkmq26axmg7pqZ1vLzS0VgAAAABA1fGk3g0FtW9WFuSDo1vo6Mp4SVLDvp219e9zJUkNekapVuP6Gv7Te5Ikv9C66j3tCfnVr6ekT1cZWD0AAAAAoLII9W7GPyxIslqVazktSQqKaqpd7yxUSJfWOncwXcW5+ZKkpE9XXRTeBy2con0fLdORFfGG1Q4AAAAAsA2h3s0EdWhe9pRekgqzctR29C0qOJ2tIyu2GFobAAAAAMC+CPVuJm3NNqWt2Vb29bLBz0qSbv9hhlYOn1xhuxWXWQcAAAAAqJ4I9TXEkr5/NroEAAAAAICdMfo9AAAAAAAuilAPAAAAAICLItQDAAAAAOCieKe+mvL089Go5LlGl1Fpnn4+RpcAAAAAADUOob6aMplM8vL3NboMAAAAAEA1Rvd7AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABflaXQBKJ/ValVxXoHRZVSap5+PTCaT0WUAAAAAQI1CqK+mivMK9HnLB4wuo9JGJc+Vl7+v0WUAAAAAQI1C93sAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARTFPvRsJ691egxZNuWhZUU6eslIylLxgnRJnfytrSalh9QEAAAAA7ItQ74ZSFsUpLTZBMpnkF1pXre65UT2mjFGd1o20cdIso8sDAAAAANgJod4Nndp9SCkL48q+TpqzUnfGvaPI+29SwuvzVHAqy9D6AAAAAAD2wTv1NUBxXoFOJhyUyWxW7aYNjC4HAAAAAGAnhPoaIrDZhTBfcPa80aUAAAAAAOyE7vduyNPPWz5BgWXv1Ld56GYFd2yhkwkHlZWSYXR5AAAAAAA7qRGhPjMzU2+88YYWLVqktLQ0hYaG6q677tKrr76q8ePH65NPPtF7772ncePGGV2qXXSJGakuMSMvWpa6fJM2P/exYTUBRjuScV4rN6TpbHah/P081a1diHp0DJXJZDK6NAAAADjBrgOntWH7cZ3PLVLtWt7q3yNcrZvWMbqsq+b2oX7Hjh0aPHiwLBaLAgIC1K5dOx07dkzvvvuukpOTdfr0aUlS586djS7VbpI+W6XUbzbK7OWpem2bqMPYOxQQHqySgsKybczenhq6apoOLY7TrncWlS2/7u2x8g2tqzWjXjGoesC+Nu08odc/2alvfjyq0lLrReu6tA3WhFHt9dCwVoR7AAAAN7VoTare+myPNmw/fsm6m69tpJgx0bqpV0NDarMHt36nPjMzU0OHDpXFYtHEiROVkZGhhIQEWSwWTZ06VcuXL1d8fLxMJpOio6ONLtduslIsyojbrfTY7drz/hJ9P/p1hXRuqd5THy/bprSwWOvHv6eO4+9SvXZNJUlNBnVXxMBu2vDM+wZWD9jPF8uTdf2YZVqy9sglgV6Stu8/pTH/t06PTVlf7noAAAC4LqvVquff2arhz3xfbqCXpFU/pWvg49/pvS/2Or0+e3HrUD9+/HilpaVp3Lhxmj59ugIDA8vWxcTEqFOnTiouLlazZs1Uu3ZtQ2t1pJNbk5S8YJ2a39FHod3alC0/tStFez9YquvffVr+4UHqPe0JbX7+Y+UdP2NovYA9rN6Yrode+FHFJVcO6x8vOqDn3ol3Sl0AAABwjhmf7dFrs3decTurVRr/+ib997tkp9Rlb24b6hMTEzV//nyFhITotddeK3ebrl27SpI6depUtmzBggUaPny4mjZtKn9/f7Vt21Z/+9vfdP68a48av3PGApUWl6jLpBEXL397oUpLSjRs9TRZNuzRoSUbDKsRsBer1aqYGVtUUolA/4s3P92jNEuOQ+sCAACAc2SdL9SL/0ywqU3MjHgVF5c6rCZHcdtQP2/ePJWWlmrUqFGqVatWudv4+flJvwv106dPl4eHh1599VV99913evLJJ/XBBx9o0KBBKi11vb/gX2SnWnRoyQY1vCFa9XtGlS23FpfoZHySfIPr6Of5aw2tEbCXTbtOaMf+0za1KSmx6qOFSQ6rCQAAAM7z2bKflZNXbFObo5YcLY876rCaHMVtQ31sbKwkqV+/fhVuk5aWJv0u1H/zzTf68ssvNWrUKN14442aMGGCZs6cqQ0bNmj9+vVOqNxxdr1z4an8b5/W1+8ZpVYj+ilx9rfq8fLD8vD1NrRGwB7mfZdStXYrXLPLFQAAAC7236peD7pgF3yT1Wp1y9GhGjdurLS0NG3fvr3cke2Li4sVHh6uzMxMJScnq0WLFhXu68CBA2rTpo2++OIL3XfffTbX0q1bN1ksFpvaeFnNmlzaw+Zj2cLT31fDvp+ufbOWaf9/Vmrw4peVuTNZ8ZPn2LyvKeYtKjJV/54MGXWfUam5jsyl5xR+9i2jy3G6mvL5TwfcrTyfjja3M5Xmq+HZ8l/XAQAA7qGmXA9VpKZ8fkudp1XiEWJzO++iQwrNtj0P2UNYWJi2bt1qczu3ndIuJ+fCu7F5eXnlrp8/f74yMzMVGBio5s2bX3Zfa9de6JYeFRV12e0qYrFYlJ6eblMbb5OH1KBKh6u07i89pPNHTmj/nBWSpPUTZmrYmuk68t1mHd+UaNO+jmUcU6G1xEGV2lFgiWSWSktKbP47cQs15fNH5Eg+tjezlha59/cFAADUnOuhitSUz+9fIHnY3qwwP9flvi9uG+rDwsJ05swZJSQkqHfv3hety8jI0KRJkyRJ0dHRl52fOj09Xf/3f/+nQYMGVXku+7CwMJvbeFnNkgMffDfq30XNh/XRkpsmli3LPnxc2175XH1mjNXS/hNVnFdQ6f01DG/oGk/qPTxUKsns4aHwRo2MLsfpasrnz/LJU3YV2nlbzyjUjb8vAACg5lwPVaSmfP5T5izly/bPF+CVo7oGfV+qkhvlzt3vx48fr/fee0+NGzfWmjVrFBkZKUmKj4/Xgw8+qJSUFBUVFWns2LGaOXNmufs4f/68+vbtK4vFovj4eIWHhzut/qLcfH3e8gGnHe9qjUqeKy9/X6PLuKKIAfOUfiJXjer7K22N7a9SuLqa8vmPWs6r2aAvbZ57/pOXr9fDd0Q6rC4AAGC8mnI9VJGa8vmXrzui28attrnd9i/vUOe2wQ6pyVHcdqC8mJgYBQcH6+jRo2rfvr06duyo1q1bq0ePHmrRooX69+8v/W6QvN/Ky8vT0KFDdejQIa1atcqpgR7A1WkcVkvD+jaxqU292t4acUvFY2sAAADAdQzqE6HmjQJtanNt5/ouF+jlzqE+IiJCcXFxGjJkiHx9fZWamqqgoCDNmjVLy5cv14EDB6QKQn1RUZHuvvtubd26Vd99953atWtnwCcAcDXee7a3GtX3r9S2ZrNJn75yo/z93PaNJAAAgBrFw8Osua/dKB/vykXeerW9NXvK9Q6vyxHc+go2KipKy5Ytu2T5+fPnlZqaKrPZrA4dOly07pe57b///nt9++236tHDsSPQA3CMiLAA/fDJEA1+aqV+PpJV4Xa+Ph764vW+uu1G257sAwAAoHq7tnMDfff+LbrzT9/r3PnCCrcLD/XXt/+8WW2b13Vqffbi1qG+Inv37pXValVkZKT8/S9+kjd27Fh99dVXevbZZ+Xv769NmzaVrWvZsqVCQ0MNqBhAVbRqUls7v7pT/12Ron/+d58SEk+VrTObTfq/xzrr0eFt1KhBgKF1AgAAwDH69Wiog8vu1r+/PqgPvkxU6rHzZevatayrp0ZE6cHbWql2LW9D67wabtv9/nJ2794tVdD1/rvvvpMkvf766+rdu/dF/y1fvtzptQK4Ov5+nvrDnZHa+t/bZVl7v+oHXRjQMSzYVy89dQ2BHgAAwM2FBvkp5g/R+nn5PQoL/vVacM+iuzR2ZDuXDvQi1F8a6lNTU2W1Wsv9b8yYMQZUa19Nh/RSr9cfvWhZqxH9NCZjgZoM6m5YXYCjmUwmNQj2k5enuexrAAAA1BweHmZ5eJjL/uwu14OE+hqmya09dWTFlrKva0WEKnLUAJ3YmmRoXQAAAAAA29XId+pjY2ONLsFhvGv76/a1M+Th663cY5ky+3gpsEkDJS/4URuf/UgNurfR+gkzL2xsMunaN5/U5hdmq/vk0UaXDgAAAACwUY0M9e6sMCtXKYvjVJSTr10zFqhh306KHn+XfvrLv9Twxk46EZ8ka3GJJKn940N1In6/Tu1KMbpsAAAAAEAV1Mju9+4uqENznd59SJIUHN1Sp/dc+HOTQd11+LsLXe/rtmmspkN6aufbCw2tFQAAAABQdTypd0NB7ZuVBfng6BY6ujJektSwb2dt/ftcSVKDnlGq1bi+hv/0niTJL7Suek97Qn716ynp01UGVg8AAAAAqCxCvZvxDwuSrFblWk5LkoKimmrXOwsV0qW1zh1MV3FuviQp6dNVF4X3QQunaN9Hy3RkRbxhtQMAAAAAbEOodzNBHZqXPaWXpMKsHLUdfYsKTmdfNOo9AAAAAMD1EerdTNqabUpbs63s62WDn5Uk3f7DDK0cPrnCdisusw4AAAAAUD0R6muIJX3/bHQJAAAAAAA7Y/R7AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRDJRXTXn6+WhU8lyjy6g0Tz8fo0sAAAAAgBqHUF9NmUwmefn7Gl0GAAAAAKAao/s9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiCPUAAAAAALgoQj0AAAAAAC6KUA8AAAAAgIsi1AMAAAAA4KII9QAAAAAAuChCPQAAAAAALopQDwAAAACAiyLUAwAAAADgogj1AAAAAAC4KEI9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiCPUAAAAAALgoQj0AAAAAAC7K0+gCUD6r1arivAKjy6g0Tz8fmUwmo8sAaiRXO1+4Es5tgGvgPOg4nAeB6o9QX00V5xXo85YPGF1GpY1Knisvf1+jywBqJFc7X7gSzm2Aa+A86DicB4Hqj+73AAAAAAC4KEI9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiCPUAAAAAALgoRr+H27JarUpIPKWtezO1bV+m9h86qxOn8yVJmWfy9cy0TeraLkS9ouurZePaRpfrEMdO5OinHSe0LTFTO/afLvv8J8/k66Hnf1S39iHq2i5EPTuGytPT/e7x5RcUa9Ouk9q2L1Nb92bqiOW8TpzOkyRlns3Xi//cpq7tQnRtp/oKDfIzulwAAGBnhUUl2rTzhLYlntK2fZk6lJ796/Xg2Xy98N7WC9cCnRuoQbB7XgscSD2nTbtOaNu+TO0+eOai68En/r5B3dqFqHuHEEVHBrnl9IVnswr0084Ln3/bvsxfP//pfN0z8Xt1bRdSdj0Y4O9ldLlVYrJarVaji8ClinLzXWpqluo03cnZrAL9Z+lBvT9/vw4cPlepNjd2C9NTI6J0Z/9m8vJy7XBbWmrV6o3pen9+opatO6rS0iv/E29U31+P3d1Wjw5vo/BQf6fU6UiH0rL1r68SNXvxAZ06e+V5i708zRo+oJnGjoxSny4NXO4XmqudL1xJdTq3AagY50HHcdXz4JGM8/pwwX59tDCpLMRdjoeHSXf2b6qnRkSpb/dwl7sW+L2CwhItWH1I//xvojbuPFGpNh1a1dNTI6L0wG0tFRjg7fAaHW3bvky9Pz9RX3ybrPyCkituX7uWl0YPa60n741SVIu6TqnRXgj11VRVfjmF9W6vQYumXLyfnDxlpWQoecE6Jc7+VtaSUjtXekF1OOFbrVZ9uCBJk97aouycoirto0VEoD55+Xrd2C3c7vU5w+4Dp/Xwi3Hati+zSu29PM3626Od9PwfO7vkzY3cvGL97b2teufzvarqma1f93DNnnK9mkcE2rs8h+Fi1nGqw7kNwJVxHnQcVzsP5hcU66UPtmv6f3arpKRqFwN9ujTQJ1OuV2SzOnavzxlWbkjTo1PW66glp0rt6wZ6652/9tKDQ1u55M2NjJO5evIfG7Rk7ZEq7+PhO1rrrb/0VN3aPnatzVFc76odV5SyKE7rxr2jdU+/qx1vfiWzp4d6TBmjXq8/anRpDnPUcl43P75CT/x9Q5UDvSSlpGWr7x++1dOvbVRefrFda3Sk0lKrXv1oh7qOXFLlQC9JRcWleumD7eoxaon2HDxt1xod7acdx9XpnsV6e27VA70krY3PUMfhi/TB/ERxzxMAANexde9JXTNiiaZ+sqvKgV6SNmy/cE0x47M9LnUtcD63SH+cHKdBT66scqCXpLPZhRr9wjoNe3q1LJm5dq3R0eZ9m6z2dy68qkAvSf/++qA63LVIKzek2a02RyLUu6FTuw8pZWGcUhas094Plmr5kOeVk56pyPtvkk+w+707vv/QWV374DKt2XTMbvucOW+fBj+1UlnnC+22T0cpKirVg8//qL+9t01FxfbpibFj/2ld+9AyrduaYZf9OdrXsanq98i3+vlIll32l5NXrKde+UnPTNvsUr/MAQCoqVZuSNMNDy9XYspZu+wvv6BEz0zbrMdf3qASB/V0tadTZ/N10x+/0+zFB+y2z2XrjqrPQ8t0KC3bbvt0pFc/2qH7n/1BZ7Lsc/2efiJXt45dpU/s+D11FEJ9DVCcV6CTCQdlMptVu2kDo8uxq+SjWer/x++UdrzqdyMr8uNWi24bt0q5edX3iX1JSalGv/Cjvvg22e77zs4p0q1jV2njzuN237c9LV93RPf8JVaFRfb/hfv23L2aOJ1gDwBAdfb9pmMaNn618vKv/N60rT5amKSnXvmpWl8LZJ0v1C1PrNSWPSftvu+UtGz1++O3SruKJ//O8Prsnfrbe9vsvt/SUqsemRynT5cetPu+7YlQX0MENrsQ5gvOnje6FLspKCzRHRPWKOOk47oFxSUc19Ovb3TY/q/WG//erXnfpThs/zl5xbp9/Bqd/N+I8dVN8tEs3fuXtSoudtwv2hmf7dWnS3922P4BAEDVpVlyNHzi9w65uf+LDxck6f35iQ7b/9V6ZHLVx1OqjMPHzmv4M9+r2E49Qu3t27ijeu6drQ49xh8c/D2+WoR6N+Tp5y2foED5BNdW3bZN1PPVPyq4YwudTDiorBTX6E5dGS//a7v2/HzGpjbx84bp6OqRip83rNJtPll8QCvWV7/3afb+fEYvfZBgU5uqfP6TZ/Kr5Y2N0lKr/vBinHJtHPugKt+DCW9sUroDeoMAAICqs1qteuzl9TqXbVt366pcC/x1RrxS0uzzmp89fbXqkBasTrWpTVU+/5Y9J/XWp3uqUKFjnc0q0KNT1tvUpiqfv6TEqjEvrFNhkf17g9hDjQj1mZmZiomJUatWreTr66vGjRtrwoQJysnJ0SOPPCKTyaSZM2caXabddIkZqfv2/lv37flEd6x9S1EPD1Lq8k2KHTPV6NLsZsf+U5r67102twsL8VdEgwCFhdg2bdujU9brfG7VB+CzN6v1QqC19a50VT///BWH9HWsbb8wHG3WV/u1bpvF5nZV+R6cyy7Uk//4yeZjwXE6T7xXYzIWqFZEqNGluJSSklKdPleg87lF1borqaNYrVZl5xTqTFaBS7wj6wiFRSU6dTZf+QXV99UyVA7nQWnusp/1XRUevFTlWiAnr1iPvmRbeHS00+cK9NQrtl+fVPV68MX3E3QgtXLTRTvLpLe26NgJ23rtVvXz7/n5jF79aKeNFTqHp9EFONqOHTs0ePBgWSwWBQQEqF27djp27JjeffddJScn6/TpCyN8d+7c2ehS7Sbps1VK/WajzF6eqte2iTqMvUMB4cEqKfj1LqbZ21NDV03TocVx2vXOorLl1709Vr6hdbVm1CsGVV85VzNNSVWkHc/RF98m67G72zrtmJezdkuGQ96bupypn+zSHf2bOfWYFSkpKdUbVbipczW++fGI9iWfUbuW9Zx6XHvw8PNWmwcGqumQXqobGSGvWn4qOHtep3alKHXpT0peuK5K012G9W6vsGvba99Hy1SY5Vqj49YkVqtV67ZZ9P78RC36PrXsdZXGYQF6/O62+uPwNmoQ7Gd0mQ6VfjxHHy5I0keLkspe2fL2Muuem5tr7Mgo9Yqu75LTNlVWYVGJFq1J1fvzExWX8Os4KV3bheipEVEaOaiF/P3c+5KQ86D7sVqtev0T514LxG7JUPyek+reoXrcSPlk8QFlnsl32vEKCkv0zud79c+/Xeu0Y15OxslczXHyu+7vfrFXMQ9HV7tzpls/qc/MzNTQoUNlsVg0ceJEZWRkKCEhQRaLRVOnTtXy5csVHx8vk8mk6Ohoo8u1m6wUizLidis9drv2vL9E349+XSGdW6r31MfLtiktLNb68e+p4/i7VK9dU0lSk0HdFTGwmzY8876B1V/ZydN5+mrVIacf9/1qNMWZEe91bdp1UgnV5F2iFRvSlHrM+eNDfPDlfqcf82oFNgvTsFXT1OPlh1WSX6hd7y3WT5Nmae+sZTJ7eui6d8bpmufur9K+w65tr85/uVfetQPsXveV7Hx7gT5rdp/Opzn35paryc4p1JCxq9T3D9/qy5WHLhp/4qglRy/M3KYmN/9XXyy3/2Cb1cWHC/ar2aD5ennW9ovGYCksKtXny5N17YPLdM/EWJeaxtQWBw+fU/s7F+m+v/5wUaCXpG37MvXI5Di1HvqVtidWj/O7I3AedE/rtlm0L9k+I93b4oMvq8e79aWlVkNq+fSbn5WdUz1mh/p4UZJDx1Uqz5msQs1f6bjxrKrKrUP9+PHjlZaWpnHjxmn69OkKDAwsWxcTE6NOnTqpuLhYzZo1U+3a7jfV2y9Obk1S8oJ1an5HH4V2a1O2/NSuFO39YKmuf/dp+YcHqfe0J7T5+Y+Vd9y299Sd7bNlPzt0MJSK7Ew6ra17jb/oOXEqT1+vPWzIsT9amGTIcX/PqDo+/eagCgqr57tU5fHw9daAz55TYNMGin1kmlaN/Lv2frBUP89fqz3//FqrRv5d3wz6q84fdb0LQmtJqUoKrvxKjMnTQx4+Xk6pqbrJLyjWkLGrrtg1tbCoVKOe+0Fzl7nfgJD/+jJRj7+8QcVX6Nm1cE2q7vrz9yoy4HeLI6WmZ+uGh5dfcbrPYydy1feRb7X7wGmn1eYsnAfd9zxo1LXAvO9SqkWoXbslQykGTDV3PrdI/3XgIM2VZbVa9fEiY34GPlxQ/R7yuG2oT0xM1Pz58xUSEqLXXnut3G26du0qSerUqVPZsri4OA0YMEDh4eHy8fFRRESERowYocTE6nFXrqp2zlig0uISdZk04uLlby9UaUmJhq2eJsuGPTq0ZINhNVbW+u3GTbG2wcBj/2Lz7pNOffXgtzbsMP7zW61Ww34Gss4X2Tw4o5Fa33+T6rRqpL3/+kZHvt1c7jandiYr6T8ry74ek7FA17099pLtWt3bV2MyFiisd3vpf6/qdP7LvZKku+M/0JiMBRqTsUCdJ95bqdoCIkIubP+Xi7cfOO8FjclYoHaP3XbR8iHLX9Md694u+7q8d0l/WVY3MkLdXxqte7bN0oOpXyj0mkjpf68ddRx/l27/YYYePPSF7t//H930n2cV1KF5pWp2Na99vOuSJ7OX88jkOIfOJuJsyUezNPbVyg/yuWJDmt79Yq9Da3K2P7wYJ0tm5WYvyTpfpPv+urba9EizF86D7nseNOpaIL+gRAmJpww59m+t3277uEL2smHHCcOO/Yu04zk6kmHMIMZb92VWu3FJ3DbUz5s3T6WlpRo1apRq1apV7jZ+fhfeIfxtqD9z5ow6duyod999V6tWrdLUqVO1d+9e9e7dW2lp1W8E9MrKTrXo0JINanhDtOr3jCpbbi0u0cn4JPkG19HP89caWmNlGTmdxLZq0D3RyM+/L+WscvOMPYkdyTivU2cLDDt+dZ7O5Pea3dZLkpQ0d7Xd95302Wod/t8F8pYX/611497RunHvlC27kpy0TGWlWhR+XceyZWYvT9Xv0ValJSUK79OhbLlXLT8FR7dQxvrKjbp7wz8nKLRrpPbO+kZbp3yq3BNnZPL00MAvXlDnZ+7Rya1J2jJ5jnbPXKw6kRG6dek/FNyppc3fg+qssKhEHy607UlCYVGpYU89HOFfX+5XaaltAfX9+Yk2t6mu9iWf0dp422a82Zt8tkoDkFZnnAfd8zyYeSZfhw14De8X1eFaYNs+424sVI/Pb1wNxcVW7T5YvR7yVK83/O0oNjZWktSvX78Kt/klpP821A8bNkzDhl08vUH37t3Vpk0bLVy4UBMmTHBYzY62652Fan5HH3WZNEIr735JklS/Z5RajeinxNnfqsfLD2vpwEkqyTe+S1FFTp8rMOyunCRtrwZ3ZrfvN66GkhKr9vx8Rj06GjdAzI4kY7uHVoefgcqq26aJCrNydP6I/e+on9x2QGf2HVbTW3vqyHdbqvROp2XDHrW850Z5+HmrJK9QoV1by8vfV8kLflTjW7rL5GGWtaRUDXq3k9nTQ5YNuyu138KsXK28d8pFg161e+w2hffpoFX3/V3Hfvh15Nr9c1bq9h/eUvcXH9KK4ZNt/gzV1Tc/HKn0E9rfmvXVfv3t0c4ym1170LjCohJ98vUBm9ulpGVrzaZ03XxthEPqcqYPF1TtBs2/vtyvG7uF270eo3AedM/z4I4kY38X79hv/KsqRn4P9qWcVX5BsXx9jIuS2xON/TvYsf9UtRkwUe4c6g8fvvDOcdOmTctdX1xcrA0bLnQ1/22oL09wcLAkydOzat+ubt26yWKx7c63l9WsyephUxvLxr2aE353hevPHUzXpxG/dr/39PfVdW+P1bZXPtf+/6zU4MUv65rn7lf85Dk2HVeSIltHqsjk+HcRi831pLp/qnB9/Lxhl52eIizEr+z/R1ePrHA7S2auut+39JLliQePKCLC2Iu9k4EPS17lj0Jvr8+vy3wPbh16t3yLjRtUK8e7k1TrrnLXXenzyw4/A/+Z+5W+mTWi3DZGqeh84R3op7yT1Wvqmd/KWL9bkaMGqEHPKB37YafC+3RU3smz2vfxt2p5940K6dxKJ7cdUHifDrKWlipjQ+W6Ru/7aNklo1i3GH69zh5M06ldKfIJCrxo3bEfd6nVvX3l4et9yU1NZ53b7C3L90bJv7/N7dJP5CqiaSuZrcb1hrGHYnNtna47sUpt733wT6pVsMnuNTlbZuBDkpftT14XLPtJcV886JCaHInz4MXc/TyY59VOCiz/d7EzrgW+WrRcsZ+OsrluezpW7znJ5FvuOkdfD5eWWtW8VTt5WI17Zeus/2DJt1e565xxPfyXZydryp/s/9pyWFiYtm7danM7tw31OTkXnubm5ZX/pGL+/PnKzMxUYGCgmje/9D2ikpISlZaW6vDhw3ruuecUFhame++t3DtSv2exWJSenm5TG2+Th9SgSoertO4vPaTzR05o/5wVkqT1E2Zq2JrpOvLdZh3fZNsYAscyjqnQ6oQBxLyLpboVr/5l3skr8fQwV2q73ystkc1/l3bXokiqYLwbR39+STp1+oyUbeD3oF5zqfw3air9+XUV34O8/ALjfwZ+p6LzRWF2nrxqlf8Lvzr4pRtpeJ+OOvbDToVd10GWDXt1aleKCs5kK/y6DmUXs6f3Hlbh2cp1tTyXcmmX47qtI+Tp56P79v67wnY+QYHKPXbxkw+nndvsrUGeZNv0u2UyMk5KJc4ffMmuvIsu+7vics5l5ehcZvX6N14lLUoq/F1xOcXV4fdcFXAevJjbnwfrNJQCy1/ljGuB/IJC4/+d1DVJFXSqcsb1oMVyXCq+/CCcDtUwV6rgn7YzPn9W1nllnaw+50q3DfVhYWE6c+aMEhIS1Lt374vWZWRkaNKkSZKk6OjocuemvfHGG8ue5Ldq1UqxsbEKDa1aF4uwsDCb23hZzZIDb4o26t9FzYf10ZKbfn2SkX34uLa98rn6zBirpf0nqjiv8k9qGoY3dNKT+tq63LAolszL3zEMC/GTp4dZxSWll+2aWtF+PMwlCmvUqNL1OkKmt1kV/c3Y6/Nfbl8hQbXlU9u470Gudy1V9BbTlT6/7PAz4OfrpSCDfwZ+r6LzxdmkIwrr3V61mtS/6q6nJk+Pq2pfnvzMczqTdFTh13WQh5+3Qru01uYXZktWqyyb9in8uo5K+nSV6rVrqr0fLqv0fktyy/8XcnrfYcW/VHFPpIJTl16cOOvcZm/nfTxUpWeT1lI1DKsnk1x7RphSk69se5v8V3UDvRTgU73+jVfFKa9iVWX2am9zgUKr2TmuMjgPXszdz4N5XoGqqPO1M64FfH08FGzwv5NjKlFFI4A4+npYksLDQmS2VnBnxQnO+fmooltczrgerhPor1re9v8ZqEpulDuH+gEDBigxMVFTp07VwIEDFRl5YdTP+Ph4Pfjgg8rMvDC4QufOncttP3v2bJ09e1aHDh3StGnTdPPNN2vDhg1q0qSJzbVUpQtFUW6+Pm/5gM3tKis9dru+aDv6kuX756woe3JviwMHD8jL3/F3wouLS1X72k+Vl1/+HePyusf81tHVIxXRIECWzDw1Hvhfm4/fr097rf7Q2AETn/j7Bs36qvwBsBz9+SUpYdMKNQ6r4FG5E2zedUK9Hvim3HVX+vyyw/fg2T8/rBefeNfmdo5U0fni8PLNCuvdXpGjBijhtS8qta/809nyrnvp329g00sfgdljlGzL+t1qM+YWNR7YTR4+XsqIu/C+aEbcbnV/8SE16t9FJrNZlkoODlWRrEMW+QbXvvBUzIa6nXVus7fU9Gy1uPVLWz6qJOnOAc21aIYxU2ba24BHv9P3m4/Z1MbL06yk+PmqH+znsLqc5YvlyRr13A82t5v6/L3604MvO6QmR+I8eGXudB7c+/MZdbhrUbnrnHEt8PRjI/TGM2/a3M6eety/RPF7yh8sztHXgyH1fJW+8+dyH4w6y7++TNST//ip3HXOuB7+bPabGtrX9lzoKG47+n1MTIyCg4N19OhRtW/fXh07dlTr1q3Vo0cPtWjRQv37X3jXsKL36du0aaOePXtq5MiR+v7775Wdna033njDyZ8Cv+fpaVbnNsGGHb9ruxDDjl1WQ5Rxnz+0nm+VuynZS3RkkDw8jPsl0rWdcd9/Wx34Yo3O/Zyu9k8MVeNbupe7TXB0C7UZfUvZ11kpx1S/W6Q8/LzLlnnXCVCrEZcOOlqcc+E5oHe9qt/kydiwR2YPD3WeeI/Op51U9uHjZcs9fL3V8em7VFpULMumfVU+hiQlf/Wj/BvUU/vHh5a73jekzlXtv7pp1ihQQ65vbHO7p0ZEVWIr1zB2pO2f5Z6bm7tFoJek4QObKbSebUHMz9dDo29v7bCajMB58FfudB5s27yO/H2NezZZPa4Hjauha1SwoYFe1eDvoLpdD7rtk/qIiAjFxcVp0qRJ+vHHH5Wamqp27dpp1qxZevTRR9Wy5YXBY640SJ4k1a1bV61atdLPP//shMpxJd3ah2jjTmPmxzT6BKL/fX6jdG0XYvhJ3M/XUx1a1dNOg0bBrw4/A5VVkleoNQ++pgGfPaeb5vxV6T/s0LEfd6ngTLZ8g2srrE8HNerbSXv+uaSszf5/r9AN/5ygQV+9pOQF6+Rdx1+RowYoJ+2k/BvUu2j/JxMujC7e7W8PKGVRnEoKinRm/xGdTTpa6RotP+1VaUmJ6kY21sH/xpYtP3cgTbnHz6hem8Y6sTWp7MK5qvZ9vFwNb4xW98kPKfy6DspYv0dF53MV0ChE4dd1VElBUdmsIO5i8pNdtGbzMeUXVO5d2AG9Guqmng0dXpezDL2xiXp3ql/p3xe1/D31/B+vfE3gKny8PfTy2GsqfJJVnr8+HK16tX0cWpezcR78lTudBz08zOoSFawNBs1VXx2uBbq1D5G+MubY1eHzR0cGycvTrKJi578aEhbip4b1jX3I9XtuG+olKSoqSsuWXfr+0fnz55Wamiqz2awOHTqU2/a3Tpw4oaSkJPXs2dNBlcIWdw9opve+uLq71VVRy99Lt1xr/HuGndoEq2XjQCUfdf5AVvfcfOmgkka4e2AzQ0L9dV0aXHFE3eomO9WipTdPUpsHb1bTIT0VPeEueQX4quDseWXuTFbchJk6tGh92fYpi+Lk16Ceov4wWN1fGq3sI8e1460FUmmpQrtGXrTvE/FJ2vr3z9TmoZt17fQnZPby1I7pX2qHDRezhedydHpvqkKiWypjw8VdSzM27FHLu66/ZHlVWItLtOaBV9V2zCC1vPsGdZ50YeDTPMsZndzxs5K/tL2bcnXXrX2ovpzWX/dOir1isO8VHaoFb95k+E07e/L0NGvpuwM18PHvrjj9VICfp75+e6Dat6p32e1czRP3RunYyVz9fdaOK297T1u9+EQXp9TlbJwHL3C38+DdA5oZEuo7tw1Sy8bGvUv+i6E3NjEs1FaH60Efbw8NvbGJFn2f6vRjV4fP/3smqz1eBnIxmzdvVq9evdSmTRvt33/xu8kPPPCAWrVqpc6dO6tu3bo6ePCgZsyYoYyMDMXHx6tVq1ZOqdHR79Tb26jkuU5738pqtarjXYu0N/mszW1/eYcm7XiOze/QPHlvW73/Qh+bj+kIb/5nt/7y5hab213N568b6K30NffJ38/4e4GWzFw1vvm/Ki62/fR1Nd+DL17vq/tutX2KKEdztfOFK3Hmuc1R4vec1JR/bde3cUcveY02tJ6vHh3eRi881ll+BnZldaTsnEJN+WC7Pvn6gM5kXTxVl9ls0u39mmjyE13UycBXuxxt/ooUTf1kl7bvv3Re67bN62jiQx31yF2RLn1Th/Og41TX8+CZrAI1GjCvwnGWLudqrgU+fLGPHr27rc3HdIRRz/6gL761fZrhq/n8vTvV10+flf8Kh7N9v+mYBjz2nc3trubzS9K+r4crqkUVp1hxELd9p/5ydu++MABJeV3ve/XqpW+//VYPP/ywBg8erGnTpun666/Xjh07nBbocXkmk0ljR7Zz+nGfvLf6vGv68B2R8vO1/yi8l/OHOyOrRaDX/6YquXuAc++SNgj2010Dmjn1mIA9dO8QqmUzb1by8ns1fWIP1fK/8O+4Xm1vHV09Uq+M7+a2gV6SAgO8Nf0vPZW+5j599uqNCvzf569Ty0upK+7VohkD3DrQS9KIQS20bf7t2jR3qP4xrmvZz0BIXR/t+3q4/ji8jUsHetRM9Wr7aJSTb7TXDfTW/dXo5n5Vxg5xxWNWpH/PcLVt7tyxIPr3CK92gV6E+ktD/bhx47RlyxadOXNGeXl5OnDggGbNmqWmTZsaUCkq8se72qhLW+ddhD01IkodI4OcdrwrCarjo1ee7ua044WH+uuFx8qfKcIoU//cXYEBVZiEuYrejukpH2/n3khxRWYvT/mF1r3ifyZzjfz1Y6jmEYGaOLqj6tS6MPiXv69njfqZ9vP11AO3tVLt/33+Wv5ehs7k4Wwmk0k9o+vrb491LvsZ8PH2IMw7AOdB5/n7uK4KquO8cSCmT+yhAH/nXXtcybWdG+iB25x3k+H6axrovsHV56aGyWTSzOeuddrxvDzNejuml9OOZwv3vTV/GZcL9e6u6ZBeCr++ozY9+1HZslYj+um6t8cq9uGpOrIi3tD6KsvLy6w5/7hB3UYucfi7RM0a1tLUP5c/Yq6Rxt/fTgvXpDrlfbIPX+xT7QZPahJeS9Mn9tDjL29w+LHuuqmZRgxq4fDjuIP63dpo0KIpV9xuQfcndT7tpFNqAgBn4jzoPGEh/nrv2d5Vmr7RVrdc20h/uDOyEls61zt/7a01m45dcb71q+Xn66FPXr5BZnP1uhF4U6+GeuKetvpXBdM929OLT3SuVg/5fqtGhvrY2NhKbOWemtzaU8lf/XriqxURqshRA3Ria5KhdVVFdGSQ3vhzd/152uZKt7Fk5l70/yvx8fbQZ6/eqFrV6K7sLzw8zJrz9xvU64GlOnW2oFJtbP38+l8vhdturD7zcP7Wo8PbaOWGdJsGSbH1e9C0YS198MK1PM2qpNP7UrXy3itfzOadtH1MDABwBZwHneu+W1toxYY0fbas8rNU2XotEB7qr49euq5aXgsE1fHRf/5xg4aMW1XpsYaqcj343rO91apJ7SrX6UhvPNNd67cf156fz1Rq+6p8/hu7hemvD1ffB8I1MtS7M+/a/rp97Qx5+Hor91imzD5eCmzSQMkLftTGZz9Sg+5ttH7CzAsbm0y69s0ntfmF2eo+ebTRpVfJnx7soFPnCvSPD688sq8kdb9vaaX37e1l1lfT++u6a8KuokLHatWktlZ8cIsGPrZCZ7MLr7i9LZ9fku6/taXefbZ6djPS/7pdff76jbp9QpFW/ZReqTa2fA8a1vfXmg8Hu8281c5QeC5HGXG7jS4DAAzDedC5TCaTZk+5XufOF2rpD0cq1caWa4HQer5aPWtQtX5d5+ZrI/TZKzfqged/VEnJlYO9rdeDU//UXY/c1eYqKnSswABvrZo1SDf+YbkOHs664va2fv4eHUK19N2B8vKqvq/MVN/KUCWFWblKWRynfR8v19KBk7TlxX/rZMIB/fSXfym8TwediE+StfjCKKHtHx+qE/H7dWpXitFlX5W/j+uqN/7c3a7dgeoGeuub9wZqaN/q+YT6t7q1D9WP/x6ixmH2nS9z7MgoffrKDfLwqN6nCV8fTy19d6BGDLLvwHltm9fR+jm3Vdu70gAA4AIvL7MWvHmTxtze2q77bdk4UHFzhrjEdJcjB7fUgjf727V3qaenSf98vrdi/hBtt306Sniov+Lm3KbuHULsut9brm2kNR8NKhuPpbqq3lfrqJKgDs11evchSVJwdEud3nPhz00Gddfh7y5Mg1a3TWM1HdJTO99eaGit9jLp4WhtmjtU7Vpe/WiUt93QWHsX36Wbr42wS23OEB0ZpN0L79If77r6d70a1vfX8n/erJnPX1vtA/0vfLw9NG9qP33+Wt+rHjDHbDZp0piOSph/h5pHGD8PLQAAuDIvL7P+/fcbtODN/gqtd/VT8I2/v512fnWn2jSvfiOdV+SO/s20Z9GdGtCr4VXvq0vbYG377x16yoAZp6qqQbCfNvznwiwfXp5Xdw0b4Oep9/92rb59/xYFBlTvQC9CvXsKat+sLMgHR7fQqf8F/IZ9Oys9drskqUHPKNVqXF/Df3pPd295X6HXtFbvaU+ozUM3G1r71ejeIVTb/nu7XpvQrUpPrbu2C9G8qX219L2Baljfvk+9naFOoLc+eul6rf5wkG7qafvJPLiuj2Ie7qi9i+7Srdc3dkiNjmQymXT/kJbau/gujR0ZZfPI+CaTNPTGJvrp09v0xjM93HqKLwAA3NXwgc217+vh+tMD7VUn0LYwZjJJg6+LUNycIXrn2d7VaqT7ymraMFCrZg3SnL/foOgqDOrWIiJQb03qqc2fD6tSe6N5eZn1t8c6K2H+7RoxqLk8PW3ryevr46E/3Bmp3Qvv0pMjoqrdwIAV4arVzfiHBUlWq3ItpyVJQVFNteudhQrp0lrnDqarODdfkpT06SolfbqqrN2ghVO076NlLjP6fUV8fTz17COd9JfRHbU87qjmfZesrXszlXw0+5JtPT1Nat+ynnpF19cjd0aqe4dQQ2q2twG9GmlAr0baf+isPl6YpPXbj2tH0mkVFJZcsm1EgwB1bRes4QOa6Z6bm8vXx/VPCWEh/pr5/LV6bUI3zV2WrGXrjmjbvlM6furSUWED/DzVuW2w+nYL0x/vaqNmjXgyDwCAqwup56sZMb30j3Fd9d8VKfo69rC2JZ5SxslLB0bz8/VQ5zbBuqFrmB4d3kYtG7v+a3cmk0mjb2+th4a10k87TmjOkgPavPuk9qWcLfed+8imddS9Q4hG3dpSt/SJcJkgezkdWgfpv2/0V8bJXM1enKTvN2coITFTWeeLLtk2qI6PurYL1qA+ERpze6RTp0m0F9e/gsdFgjo0L3tKL0mFWTlqO/oWFZzO1pEVWwytzZk8Pc26vV9T3d6vqSTpbFaBklLPKTe/WB5mkwIDvBTVoq5bhNiKtG1eV9P/0lOSVFRUqqTUszqTVaii4lL5+XqoZURttx4ALjDAW0+OiNKTI6JktVp17ESuDmecV35Biby9zAqp56vWTWq7zCsGAADANgH+XnrkrjZlg7xlnMzVofRs5ReUyMvTrOC6PopsWkeeV9lVu7oymUzq06WB+nRpIEnKzSvW/kNnlZ1bJKv1wsONNs3qVPv3xa9GeKi/Xnisi154rItKS61KPpql46fyVFhUKh9vD0U08FeT8FrVcmYDW7hvoqmh0tZsU9qabWVfLxv8rCTp9h9maOXwyRW2W3GZde6gbm0f9Yyub3QZhvHyMqtDa9frQmUvJpNJjRoEqFED13utAgAA2Ed4qL/CQ/2NLsMw/n6euqadfQeScyVms0mtm9ZR66Z1jC7F7gj1NcSSvn82ugQAAAAAgJ25Z18TAAAAAABqAEI9AAAAAAAuilAPAAAAAICL4p36asrTz0ejkucaXUalefq53tQPgLtwtfOFK+HcBrgGzoOOw3kQqP4I9dWUyWSSl7+v0WUAcAGcLwDUdJwHAdRkdL8HAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGeRheA8lmtVhXnFRhdRqV5+vnIZDIZXQYAAAAA1CiE+mqqOK9An7d8wOgyKm1U8lx5+fsaXQYAAAAA1Ch0vwcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF8VAeQAAuLnsnEJtTzyln49m63xukSQpN79Y+w+dVWTTOjKbmb0EAABXRagHAMANHbWc14cLkrRg9SElpZ6T1Xrx+jNZhYq6faFq+Xupd6dQPTq8re7o11ReXnTiAwDAlRDqAQBwIylpWZr0Zry+XntYpaXWK25/PrdIqzce0+qNxxQe6q+JD3XQhFHt5elJuAcAwBUQ6t1IWO/2GrRoykXLinLylJWSoeQF65Q4+1tZS0oNqw8A4DilpVa9Pz9Rf50Rr9z84irtI+Nkrv7y5hZ9ufKQ5vzjBkW1qGv3OgEAgH0R6t1QyqI4pcUmSCaT/ELrqtU9N6rHlDGq07qRNk6aZXR5AAA7y8sv1ohJa/XNj0fssr8te06qy71fa+6rN+rum5vbZZ8AAMAx6Fvnhk7tPqSUhXFKWbBOez9YquVDnldOeqYi779JPsG1jS4PAGBH+QXFum3cKrsF+l8UFJZoRMxazfs22a77BQAA9kWorwGK8wp0MuGgTGazajdtYHQ5AAA7sVqtevD5HxW7JcMh+y8tteqhF37U2i3HHLJ/AABw9Qj1NURgswthvuDseaNLAQDYydxlP2vB6lSb2sTPG6ajq0cqft6wSm1fXGzVwy/GKTunsIpVAgAARyLUuyFPP2/5BAXKJ7i26rZtop6v/lHBHVvoZMJBZaU45mkOAMC5Mk7mavzrm2xuFxbir4gGAQoL8a90m8PHzmvSW/E2HwsAADie24f6zMxMxcTEqFWrVvL19VXjxo01YcIE5eTk6JFHHpHJZNLMmTONLtOuusSM1H17/6379nyiO9a+paiHByl1+SbFjplqdGkAADt55aMdOpvtvKfns77ar6RDZ512PAAAUDluPfr9jh07NHjwYFksFgUEBKhdu3Y6duyY3n33XSUnJ+v06dOSpM6dOxtdql0lfbZKqd9slNnLU/XaNlGHsXcoIDxYJQW/XvyZvT01dNU0HVocp13vLCpbft3bY+UbWldrRr1iUPUAgCvJzinUp9/87PTj/uur/ZoR08vpxwUAABVz2yf1mZmZGjp0qCwWiyZOnKiMjAwlJCTIYrFo6tSpWr58ueLj42UymRQdHW10uXaVlWJRRtxupcdu1573l+j70a8rpHNL9Z76eNk2pYXFWj/+PXUcf5fqtWsqSWoyqLsiBnbThmfeN7B6AMCVfL48Wdk5RU4/7r+XHFROrvOPCwAAKua2oX78+PFKS0vTuHHjNH36dAUGBpati4mJUadOnVRcXKxmzZqpdm33nubt5NYkJS9Yp+Z39FFotzZly0/tStHeD5bq+nefln94kHpPe0Kbn/9YecfPGFovAODylq07ashxz2UX6qedJww5NgAAKJ9bhvrExETNnz9fISEheu2118rdpmvXrpKkTp06VbifwYMHy2Qy6aWXXnJYrc6yc8YClRaXqMukERcvf3uhSktKNGz1NFk27NGhJRsMqxEAUDnb9mXWyGMDAIBLuWWonzdvnkpLSzVq1CjVqlWr3G38/Pyky4T6L7/8Ujt27HBonc6UnWrRoSUb1PCGaNXvGVW23FpcopPxSfINrqOf5681tEYAwJUdO5EjS2aeYccn1AMAUL24ZaiPjY2VJPXr16/CbdLS0qQKQn1WVpb+9Kc/afr06Q6s0vl2vXPhqfxvn9bX7xmlViP6KXH2t+rx8sPy8PU2tEYAwOUdycgx9PhHLcYeHwAAXMxktVqtRhdhb40bN1ZaWpq2b99e7sj2xcXFCg8PV2ZmppKTk9WiRYuL1j/99NPavXu3fvjhB5lMJk2ePPmquuB369ZNFovFpjZeVrMml/ao8jErw9PfV8O+n659s5Zp/39WavDil5W5M1nxk+fYvK8p5i0qMpU6pE4AwK8KPJsqs/Yfyl0XP2/YFeefDwvxk6eHWcUlpZd94m/JzFX3+5ZestyrOEP1s/5Vhcqrh4y6z6jUXEfm0nMKP/uW0eUYgu8BAFRPYWFh2rp1q83t3HJKu5ycC08R8vLKv1iZP3++MjMzFRgYqObNm1+0buvWrfroo4+0bds2u9VjsViUnp5uUxtvk4fUwG4llKv7Sw/p/JET2j9nhSRp/YSZGrZmuo58t1nHNyXatK9jGcdUaC1xUKUAgDL+vlIF47uGhfgrokFApXbj6WGu9La/VVSYb/PvtGolsEQyS6UlJa79Oa4G3wMAcCtuGerDwsJ05swZJSQkqHfv3hety8jI0KRJkyRJ0dHRMplMZetKSkr0+OOPa9y4cWrfvr1d67GVl9UsOfDBd6P+XdR8WB8tuWli2bLsw8e17ZXP1WfGWC3tP1HFeQWV3l/D8IY8qQcAJyg2++t4BessmblXbG/Lk/ry+HgWKaRRo0rXW91keHioVJLZw0PhLvw5rgbfAwConqqSG+WuoX7AgAFKTEzU1KlTNXDgQEVGRkqS4uPj9eCDDyoz88IgP7/vmj9z5kwdP37c7qPdV6ULRVFuvj5v+YBd6/it9Njt+qLt6EuW75+zouzJvS0OHDwgL39fO1UHAKhIaalV9a77TFnnL50vvrzu8r93dPVIRTQIkCUzT40H/tfm408ad6/+Pm6qze2qi4gB85R+IlfhYeFK25NmdDmG4HsAAO7FLQfKi4mJUXBwsI4ePar27durY8eOat26tXr06KEWLVqof//+0u8GycvMzNT//d//6cUXX1RxcbHOnj2rs2fPSpLy8/N19uxZlZbyJBoAYCyz2aRrokIMO37XdsGGHRsAAFzKLUN9RESE4uLiNGTIEPn6+io1NVVBQUGaNWuWli9frgMHDki/C/VpaWnKzs7W448/rnr16pX9J0lTp05VvXr1dOTIEcM+EwAAv+jXPdyQ43p5mtWns4MHfAEAADZxy+73khQVFaVly5Zdsvz8+fNKTU2V2WxWhw4dypa3atVKa9deOk97v379NHr0aI0ZM6bK7zgAAGBPj9wZqZdnbVdJiXMnsBk+oJlCg/ycekwAAHB5bhvqK7J3715ZrVZFRkbK3//XaX9q1aqlvn37ltumWbNmFa4DAMDZGjUI0B39mmrhmlSnHnfsyCinHg8AAFyZW3a/v5zdu3dLv+t6DwCAq/nbo53k4WGqxJb20b9HuPp0oes9AADVDaH+CqxWq91HwzdS0yG91Ov1Ry9a1mpEP43JWKAmg7obVhcAwDZdokL03CPOuUFdy99Ls6dcf9E0sAAAoHog1NcwTW7tqSMrtpR9XSsiVJGjBujE1iRD6wIA2O7/Hu+sTm2CbGpjycxV2vGcSs1p/4vpE3uoWaPAKlQIAAAcrca9Ux8bG2t0CQ7lXdtft6+dIQ9fb+Uey5TZx0uBTRooecGP2vjsR2rQvY3WT5h5YWOTSde++aQ2vzBb3SdfOmc9AKB68/by0PKZN+u60cuUeux8pdpUZi7735r4UAc9dnebKlYIAAAcrcY9qXd3hVm5Slkcp30fL9fSgZO05cV/62TCAf30l38pvE8HnYhPkrW4RJLU/vGhOhG/X6d2pRhdNgCgiho1CNAPn9yq1k1r233ff/1DtKZN7EG3ewAAqjFCvRsK6tBcp3cfkiQFR7fU6T0X/txkUHcd/u5C1/u6bRqr6ZCe2vn2QkNrBQBcvaYNA7Vp7jA9cFtLu+wvqI6Pvni9r17/U3cCPQAA1Ryh3g0FtW9WFuSDo1vo1P8CfsO+nZUeu12S1KBnlGo1rq/hP72nu7e8r9BrWqv3tCfU5qGbDa0dAFA1QXV89NmrffX1OwPUOCygyvu5e2Az7V18l+671T43CAAAgGPVuHfq3Z1/WJBktSrXclqSFBTVVLveWaiQLq117mC6inPzJUlJn65S0qerytoNWjhF+z5apiMr4g2rHQBw9W7v11RDrm+sZeuO6P35iVq98dgV29Sr7a0/3BGpJ+6NUqsm9u/GDwAAHIdQ72aCOjQve0ovSYVZOWo7+hYVnM6+aNR7AID78vQ0647+zXRH/2Y6m1WghMRT2ro3UwePnFNeQYk8PcyqV9tbndsEq2u7YLVtXleennTeAwDAFRHq3Uzamm1KW7Ot7Otlg5+VJN3+wwytHD65wnYrLrMOAOC66tb2Uf+eDdW/Z0OjSwEAAA5AqK8hlvT9s9ElAAAAAADsjL52AAAAAAC4KEI9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiGCivmvL089Go5LlGl1Fpnn4+RpcAAAAAADUOob6aMplM8vL3NboMAAAAAEA1Rvd7AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFyUp9EFoHxWq1XFeQVGl1Fpnn4+MplMRpcBAAAAADUKob6aKs4r0OctHzC6jEoblTxXXv6+RpcBAAAAADUK3e8BAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAQI1gtVpltVrL/gwAgDtg9HsAAOCWcvOKtej7VP2047i27TulXQdPK7+gRJJ07GSeIod+pW7tQtStfYjuHthcTcJrGV0yAAA2I9QDAAC3kpKWpfe+2Kc5Sw7qbHZhhdsdPJylg4ezNO+7FE16K15Drm+scfdFaWDvRjKZTE6tGQCAqiLUu5Gw3u01aNGUi5YV5eQpKyVDyQvWKXH2t7KWlBpWHwAAjlRSUqoZn+3VCzO3qaCwxKa2paVWffPjEX3z4xENH9BM7//tWtUP9nNYrQAA2Auh3g2lLIpTWmyCZDLJL7SuWt1zo3pMGaM6rRtp46RZRpcHAIDdpVlydO+kWG3ceeKq97VwTap+3GbRf/5xg269vrFd6gMAwFEYKM8Nndp9SCkL45SyYJ32frBUy4c8r5z0TEXef5N8gmsbXR4AAHaVfDRL141ZZpdA/4vMM/kaNn61vliebLd9AgDgCIT6GqA4r0AnEw7KZDardtMGRpcDAIDdHDuRowGPfqfDx87bfd8lJVY9+Lcf9XVsqt33DQCAvRDqa4jAZhfCfMFZ+1/0AABgBKvVqjH/t06pDgj0vygttWr0C+t01MLvTwBA9USod0Oeft7yCQqUT3Bt1W3bRD1f/aOCO7bQyYSDykrJMLo8AADs4uOFSVq98ZhNbeLnDdPR1SMVP29YpdtknS/Soy+tZ257AEC1VCNCfWZmpmJiYtSqVSv5+vqqcePGmjBhgnJycvTII4/IZDJp5syZRpdpN11iRuq+vf/WfXs+0R1r31LUw4OUunyTYsdMNbo0AADs4tTZfE18c4vN7cJC/BXRIEBhIf42tVv5U7rmr0ix+XgAADia249+v2PHDg0ePFgWi0UBAQFq166djh07pnfffVfJyck6ffq0JKlz585Gl2o3SZ+tUuo3G2X28lS9tk3UYewdCggPVknBr3P1mr09NXTVNB1aHKdd7ywqW37d22PlG1pXa0a9YlD1AABc2b+/PqjsnCKnHvOdz/dq5OCWTj0mAABX4tZP6jMzMzV06FBZLBZNnDhRGRkZSkhIkMVi0dSpU7V8+XLFx8fLZDIpOjra6HLtJivFooy43UqP3a497y/R96NfV0jnluo99fGybUoLi7V+/HvqOP4u1WvXVJLUZFB3RQzspg3PvG9g9QAAXF5pqVUffJno9ONu2nVSCfsynX5cAAAux61D/fjx45WWlqZx48Zp+vTpCgwMLFsXExOjTp06qbi4WM2aNVPt2u471dvJrUlKXrBOze/oo9BubcqWn9qVor0fLNX17z4t//Ag9Z72hDY//7Hyjp8xtF4AAC7npx3HlZKWbcixP/3mZ0OOCwBARdw21CcmJmr+/PkKCQnRa6+9Vu42Xbt2lSR16tSpbNkPP/wgk8l0yX+u3j1/54wFKi0uUZdJIy5e/vZClZaUaNjqabJs2KNDSzYYViMAAJWxZc9Jw44dv9e4YwMAUB63fad+3rx5Ki0t1ahRo1SrVq1yt/Hz85N+F+p/8c9//lPXXHNN2dcBAQEOrNbxslMtOrRkg1oOv0H1e0bpxOYL3RatxSU6GZ+kkOiW+nn+WqPLBADgirbtO2XYsbfvP6Xi4lJ5errtcxEAgItx299IsbGxkqR+/fpVuE1aWppUQahv166devXqVfZfx44dHVitc+x658JT+d8+ra/fM0qtRvRT4uxv1ePlh+Xh621ojQAAXMneZONeE8vLL1HqMeasBwBUH277pP7w4cOSpKZNm5a7vri4WBs2XOhqXl6ot6du3brJYrHY1MbLatZk9bCpjWXjXs0Jv7vC9ecOpuvTiF8Dvae/r657e6y2vfK59v9npQYvflnXPHe/4ifPsem4khTZOlJFplKb2wEAYCtLnfGSR3C56+LnDbvsdHVhIX5l/z+6euTlj5OZq+73Lb1k+bXX95d3iW2/16uTjLrPSOY6yrBkKCIiwuhyAAD/ExYWpq1bt9rczm1DfU5OjiQpLy+v3PXz589XZmamAgMD1bx580vWjxgxQpmZmQoODtawYcP0+uuvKyQkpEq1WCwWpaen29TG2+QhNajS4Sqt+0sP6fyRE9o/Z4Ukaf2EmRq2ZrqOfLdZxzfZNqrwsYxjKrSWOKhSAAB+I6BY8ih/1S/z0F+Jp4e5UtuV5+SJ41K+bb/Xq5XAEskslZaU2Hx9AgCoftw21IeFhenMmTNKSEhQ7969L1qXkZGhSZMmSZKio6NlMpnK1tWpU0eTJk3SDTfcoFq1amnjxo167bXXtGnTJm3dulW+vr5VqsVWXlaz5MAH3436d1HzYX205KaJZcuyDx/Xtlc+V58ZY7W0/0QV5xVUen8NwxvypB4A4BQnPEpV0Qz1lszcy7YNC/GTp4dZxSWlsmSWf+P/SvtqEFpPnqXWStdb3WR4eKhUktnDQ+GNGhldDgDgf6qSGyXJZLVaXfe30mWMHz9e7733nho3bqw1a9YoMjJSkhQfH68HH3xQKSkpKioq0tixYzVz5szL7uubb77RsGHD9Mknn+jhhx92Sv1Fufn6vOUDTjmWPYxKnisvf9tveAAAYKsHnvtBny9PrlLbo6tHKqJBgNKO56jxwP/a3N7f11NZGx+Uh4frDksUMWCe0k/kqlF9f6Wtuc/ocgAAV8l1fyNdQUxMjIKDg3X06FG1b99eHTt2VOvWrdWjRw+1aNFC/fv3lyr5Pv1tt92mgICAKr3fAAAA7Ktru6q9DmcPndsGuXSgBwC4H7f9rRQREaG4uDgNGTJEvr6+Sk1NVVBQkGbNmqXly5frwIEDko2D5P22mz4AADBGjw6hNfLYAACUx23fqZekqKgoLVu27JLl58+fV2pqqsxmszp06HDF/SxdulQ5OTnq0cO20egBAID99e5UXy0bByr5aLbTjz16WGunHxMAgMtx61Bfkb1798pqtSoyMlL+/hdPe/PAAw+oRYsWuuaaa8oGynvjjTfUuXNnjRx5+alvAACA45nNJj15b5T+8uYWpx63d6f66ty2/Kn0AAAwitt2v7+c3bt3SxV0vW/fvr0WL16shx56SIMHD9Ynn3yiRx99VD/88IO8vb0NqBYAAPzew3dEqnYtL6ce808PtHfq8QAAqAxC/e8899xz2r17t7KyslRUVKRDhw7prbfeUp06dQyo1P6aDumlXq8/etGyViP6aUzGAjUZ1N2wugAAsEVQHR/NmNTLaccbckNj3XNzc6cdDwCAyiLU1zBNbu2pIyt+7a5YKyJUkaMG6MTWJEPrAgDAVg/f0VqDr4uwqY0lM1dpx3OuOJ/9b9UJ9Nas/+vDgLkAgGqpRr5THxsba3QJDuNd21+3r50hD19v5R7LlNnHS4FNGih5wY/a+OxHatC9jdZPmHlhY5NJ1775pDa/MFvdJ482unQAAGxiMpn0ycvX67rRyyo9aF73+5badAwPD5PmvnqjGjUIqGKVAAA4Vo18Uu/OCrNylbI4Tvs+Xq6lAydpy4v/1smEA/rpL/9SeJ8OOhGfJGtxiSSp/eNDdSJ+v07tSjG6bAAAqiQsxF9rPhys5o0C7b5vT0+Tvni9r267sYnd9w0AgL0Q6t1QUIfmOr37kCQpOLqlTu+58Ocmg7rr8HcXut7XbdNYTYf01M63FxpaKwAAV6tZo0Ct/88QXX9NA7vts36Qr5a9d7PuvaWF3fYJAIAjEOrdUFD7ZmVBPji6hU79L+A37NtZ6bHbJUkNekapVuP6Gv7Te7p7y/sKvaa1ek97Qm0eutnQ2gEAqIqG9QP0wydD9HZMT/n5elzVvu4b3EL7vh6uW/rY9r4+AABGqJHv1Lsz/7AgyWpVruW0JCkoqql2vbNQIV1a69zBdBXn5kuSkj5dpaRPV5W1G7RwivZ9tExHVsQbVjsAAFfDbDZpwgMddEf/pnp/fqJmLz6gU2cLKtXWw8OkO/o11bj72qlv93CH1woAgL0Q6t1MUIfmZU/pJakwK0dtR9+igtPZF416DwCAu2raMFBT/9xDU566RkvWHtHGnSe0bV+mdh44reycIkmSl6dZkU1rq2u7EHVtF6LhA5oxGB4AwCWZrFar1egicKmi3Hx93vIBu+3v9h9maOXwyco/lWW3ff7WqOS58vL3dci+AQCwl9JSq0pLrfL0rLlvIEYMmKf0E7lqVN9faWvuM7ocAMBV4kl9DbGk75+NLgEAAMOZzSaZzcw3DwBwHzX3NjUAAAAAAC6OUA8AAAAAgIsi1AMAAAAA4KII9QAAAAAAuCgGyqumPP18NCp5rtFlVJqnn4/RJQAAAABAjUOor6ZMJhNTxAEAAAAALovu9wAAAAAAuChCPQAAAAAALopQDwAAAACAiyLUAwAAAADgogj1AAAAAAC4KEI9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiCPUAAAAAALgoQj0AAAAAAC6KUA8AAAAAgIsi1AMAAAAA4KII9QAAAAAAuChCPQAAAAAALopQDwAAAACAiyLUAwAAAADgogj1AAAAAAC4KE+jC0D5rFarivMKjC6j0jz9fGQymYwuAwAAAABqFEJ9NVWcV6DPWz5gdBmVNip5rrz8fY0uAwAAAABqFLrfAwAAAADgogj1AAAAAAC4KEI9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiGP0eAADATVmtVqWmn9e2fZnalpip9OO5On3uwpS5584Xat63yeraLkStmtSW2czUtADgigj1AAAAbuZsVoH+s/SgPvhyv5JSz5W7zfncYt3/7A+SpKYNa+nxu9vqkTsjVT/Yz8nVAgCuhslqtVqNLgKXKsrNZ556AABgk6KiUk399069+vFO5eWX2Nze28usCaPaa8pT18jPl2c/AOAKOFu7kbDe7TVo0ZSLlhXl5CkrJUPJC9Ypcfa3spaUGlYfAABwnN0HTmvM/61TQuKpKu+jsKhU0+bs1tIfjujff79evTs1sGuNAAD7I9S7oZRFcUqLTZBMJvmF1lWre25UjyljVKd1I22cNMvo8gAAgJ2t+ilNd/7pe+XmF9tlf0mp53TDw8s199W+GjGohV32CQBwDEK9Gzq1+5BSFsaVfZ00Z6XujHtHkfffpITX56ngVJah9QEAAPtZsyldQ59ercIi+/bGKy626r6/rpXZbNI9Nze3674BAPbDlHY1QHFegU4mHJTJbFbtpnSjAwDAXSQfzdKdf/re7oH+F1arNOrZH5SwL9Mh+wcAXD1CfQ0R2OxCmC84e97oUgAAgB2Ullr1hxfjdD63yKZ28fOG6ejqkYqfN6xS2xcVl2rM/61TYZHtA+8BABzP7UN9ZmamYmJi1KpVK/n6+qpx48aaMGGCcnJy9Mgjj8hkMmnmzJlGl2lXnn7e8gkKlE9wbdVt20Q9X/2jgju20MmEg8pKyTC6PAAAYAfvz0/Uum0Wm9uFhfgrokGAwkL8K91m98Ez+seHO2w+FgDA8dz6nfodO3Zo8ODBslgsCggIULt27XTs2DG9++67Sk5O1unTpyVJnTt3NrpUu+oSM1JdYkZetCx1+SZtfu5jw2oCAAD2U1RUqlc+cm7IfuvTPfrL6I6qXcvbqccFAFye2z6pz8zM1NChQ2WxWDRx4kRlZGQoISFBFotFU6dO1fLlyxUfHy+TyaTo6Gijy7WrpM9WaeW9U7R61Cva+vfPlH86WwHhwSopKCzbxuztqdt/mKHoCXdd1Pa6t8dqwOd/M6BqAABQWV+vPSxLZp5Tj5mTV6zPlv3s1GMCAK7MbUP9+PHjlZaWpnHjxmn69OkKDAwsWxcTE6NOnTqpuLhYzZo1U+3atQ2t1d6yUizKiNut9Njt2vP+En0/+nWFdG6p3lMfL9umtLBY68e/p47j71K9dk0lSU0GdVfEwG7a8Mz7BlYPAACuZNZX+w057r++NOa4AICKuWWoT0xM1Pz58xUSEqLXXnut3G26du0qSerUqdMl6xYvXqxrr71WAQEBqlOnjvr06aO9e/c6vG5HObk1SckL1qn5HX0U2q1N2fJTu1K094Oluv7dp+UfHqTe057Q5uc/Vt7xM4bWCwAAKlZUVKr1248bcuw9P5/RqbP5hhwbAFA+twz18+bNU2lpqUaNGqVatWqVu42fn59UTqh/9913de+99+q6667T0qVLNW/ePA0YMEB5ec7t4mZvO2csUGlxibpMGnHx8rcXqrSkRMNWT5Nlwx4dWrLBsBoBAMCV7U0+o4JC40ai38b0dgBQrbjlQHmxsbGSpH79+lW4TVpamvS7UJ+cnKxJkyZpxowZGjduXNnyW2+91aH1OkN2qkWHlmxQy+E3qH7PKJ3YnChJshaX6GR8kkKiW+rn+WuNLhMAAFxBQuIpQ4+/bd8p3XxthKE1AAB+5Zah/vDhw5Kkpk2blru+uLhYGzZceCL921D/ySefyMvLS48++qhd6+nWrZssFtumnPGymjVZPexax653Fqr5HX3UZdIIrbz7JUlS/Z5RajWinxJnf6seLz+spQMnqSS/8Ir7+r3I1pEqMpXatV4AAHCpbN/rJP+B5a6LnzfsilPVhYX4lf3/6OqRFW5nycxV9/uWXrL81anv6p8vrbS5bgDA5YWFhWnr1q02t3PLUJ+TkyNJFXaZnz9/vjIzMxUYGKjmzZuXLf/pp5/Upk0bzZ07V//4xz909OhRtW7dWi+++KLuu+++KtdjsViUnp5uUxtvk4fUwMbjbNyrOeF3V7j+3MF0fRrxa/d7T39fXff2WG175XPt/89KDV78sq557n7FT55j24ElHcs4pkKrcV0BAQCoMULPSxXk9l/moK8MTw9zpbf9rfM5eTqfYdt1DQDAcdwy1IeFhenMmTNKSEhQ7969L1qXkZGhSZMmSZKio6NlMpkuWpeenq7nnntOU6dOVePGjTV79mzdf//9Cg0N1YABA6pcj628rGbJwQ++u7/0kM4fOaH9c1ZIktZPmKlha6bryHebdXxTok37ahjekCf1AAA4QbZvgLIqWGfJzL1i+7AQP3l6mFVcUnrZafEq2letAF/VadSo0vUCACqnKrlRkkxWq9Vq92oMNn78eL333ntq3Lix1qxZo8jISElSfHy8HnzwQaWkpKioqEhjx47VzJkzy9pFRkbq4MGDWrx4se644w5JktVqVefOnVW3bl39+OOPTvsMRbn5+rzlAw7bf6P+XXTj+3/SkpsmKif91wFv2o4ZpHaP36al/SeqOK+g0vsblTxXXv6+DqoWAAD84suVKRoxqerj4BxdPVIRDQKUdjxHjQf+1+b27z3XW+Pua1fl4wMA7MstR7+PiYlRcHCwjh49qvbt26tjx45q3bq1evTooRYtWqh///5SOSPfBwUFSdJFT+RNJpMGDBigPXv2OPlTOFZ67HZ90Xb0RYFekvbPWaFFvcfZFOgBAIDzdG0XYvDxgw09PgDgYm4Z6iMiIhQXF6chQ4bI19dXqampCgoK0qxZs7R8+XIdOHBAKifUt2/fvsJ95uczJysAADBei4hA1Q30NuTYZrNJnSIJ9QBQnbhlqJekqKgoLVu2TNnZ2crOztbmzZv12GOPKScnR6mpqTKbzerQocNFbW6//XZJ0qpVq8qWlZaWavXq1erevbvTPwMAAMDvmUwm3XZjY0OOfVPPcPn7ueWQTADgsmrcWXnv3r2yWq2KjIyUv//FQ8cOHTpU119/vR577DGdOnVKTZo00ccff6y9e/dq9erVhtUMAADwW0/eG6W5y5KdftynRkQ5/ZgAgMtz2yf1Fdm9e7dUTtd7/e/O99KlSzV8+HA9//zzGjZsmA4fPqxvv/227D18AAAAo/XuVF+d2gQ59ZgRDQJ02w1NnHpMAMCVEep/p27dupo1a5ZOnjypgoICbdmyRbfccouTqwQAAKiYyWTSmxN7OvWY057pLk/PGnfpCADVXo07M18p1Lu7pkN6qdfrj160rNWIfhqTsUBNBjFuAAAAruKmXg31xD1tnXKsu25qphGDWjjlWAAA29S4d+pjY2ONLsFQTW7tqeSvfij7ulZEqCJHDdCJrUmG1gUAAGz3xjPdtTY+Q0mp5yrdxpKZe9H/r6RhfX+9/8K1MplMVa4TAOA4NS7Uuzvv2v66fe0Mefh6K/dYpsw+Xgps0kDJC37Uxmc/UoPubbR+wswLG5tMuvbNJ7X5hdnqPnm00aUDAAAbBQZ4a/WHg3T9mOU6fOx8pdp0v29ppfcfWs9Xaz4crAbBfldRJQDAkWpc93t3V5iVq5TFcdr38XItHThJW178t04mHNBPf/mXwvt00In4JFmLSyRJ7R8fqhPx+3VqV4rRZQMAgCpqHFZLcXOGKKpFXbvut0l4gNY5YL8AAPsi1LuhoA7NdXr3IUlScHRLnd5z4c9NBnXX4e+2SJLqtmmspkN6aufbCw2tFQAAXL3GYbW0dd7t+tMD7WWPXvJ/uDNSO7+6U22bE+gBoLoj1LuhoPbNyoJ8cHQLnfpfwG/Yt7PSY7dLkhr0jFKtxvU1/Kf3dPeW9xV6TWv1nvaE2jx0s6G1AwCAqvH389SMmF5a9+8huv6aBlXaR9d2Ifr2nzdr9pTrVbe2j91rBADYH+/Uuxn/sCDJalWu5bQkKSiqqXa9s1AhXVrr3MF0FefmS5KSPl2lpE9XlbUbtHCK9n20TEdWxBtWOwAAuHrXXROmdXNu0+4Dp/XBl4lasSFdh9KzK9w+okGABvRqqKdGRKl7h1Cn1goAuHqEejcT1KF52VN6SSrMylHb0beo4HS2jqzYYmhtAADAeTpGBun9F/pIkk6dzVdC4ikdO5GrgqISeXuZ1SDIT13bhag+g+ABgEszWa1Wq9FF4FJFufn6vOUDdtvf7T/M0Mrhk5V/Kstu+/ytUclz5eXv65B9AwAAAADKx5P6GmJJ3z8bXQIAAAAAwM4YKA8AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFEMlFdNWa1WFecVGF1GpXn6+chkMhldBgAAAADUKIR6AAAAAABcFN3vAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUf8PDLNz1Cl6EpgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "execution_count": 2, @@ -100,46 +102,87 @@ } ], "source": [ - "qc_1 = QuantumCircuit(8)\n", - "for i in [*range(4), *range(5, 8)]:\n", + "qc_1 = QuantumCircuit(7)\n", + "for i in range(7):\n", " qc_1.rx(np.pi / 4, i)\n", "qc_1.cx(0, 3)\n", "qc_1.cx(1, 3)\n", "qc_1.cx(2, 3)\n", - "qc_1.append(Move(), [3, 4])\n", - "qc_1.cx(4, 5)\n", - "qc_1.cx(4, 6)\n", - "qc_1.cx(4, 7)\n", - "qc_1.append(Move(), [4, 3])\n", + "qc_1.append(CutWire(), [3])\n", + "qc_1.cx(3, 4)\n", + "qc_1.cx(3, 5)\n", + "qc_1.cx(3, 6)\n", + "qc_1.append(CutWire(), [3])\n", "qc_1.cx(0, 3)\n", "qc_1.cx(1, 3)\n", "qc_1.cx(2, 3)\n", "\n", - "observable_expanded = SparsePauliOp([\"ZIIIIIII\", \"IIIIZIII\", \"IIIIIIIZ\"])\n", - "\n", "qc_1.draw(\"mpl\")" ] }, { "cell_type": "markdown", - "id": "a57a7ad9-0de4-4df7-9367-918e64c5355c", + "id": "bcddcde7-9ed3-4718-a17f-1b555c4c2662", "metadata": {}, "source": [ - "\n", - " As an alternative to working directly with [`Move`](/api/qiskit-addon-cutting/instructions-move) instructions, you can choose to make wire cuts using a single-qubit [`CutWire`](/api/qiskit-addon-cutting/instructions-cut-wire) instruction. Once the subexperiments are prepared to be executed, use the [`cut_wires`](/api/qiskit-addon-cutting/qiskit-addon-cutting#cut_wires) method to transform `CutWire` to `Move` instructions on newly allocated qubits. However, in contrast to the manual method, this automatic method does not allow for re-use of qubit wires.\n", - "\n", + "\n", + " When a circuit is expanded through one or more wire cuts, the observable needs to be updated to account for the extra qubits that are introduced. The `qiskit-addon-cutting` package has a convenience function [`expand_observables()`](/api/qiskit-addon-cutting/qiskit-addon-cutting#expand_observables) which takes `PauliList`s and the original and expanded circuits as arguments and returns a new `PauliList`.\n", "\n", - "### Separate the circuit and observable\n", + " This returned `PauliList` will not contain any information about the original observable's coefficients, but these can be ignored until reconstruction of the final expectation value.\n", + "" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "d398b397-0167-4db9-97ae-6ea502dc43e3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Expanded Observable: ['ZIIIIIIII', 'IIIZIIIII', 'IIIIIIIIZ']\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAJxCAYAAAAD7ZKDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOnElEQVR4nOzdeVzUdeLH8fcMNwgqoILirSiemFdm5ZG1mmmHmZZWVttp6e6abm3tlvWrdLMscysrq20zs9TSPPJILTRTvC+8QFSUURGV+xhmfn+4sZGoDM7Mlxlez8fDR/I9398JYd7z/X4/X5PdbrcLAAAAAAB4HLPRAQAAAAAAQOVQ6gEAAAAA8FCUegAAAAAAPBSlHgAAAAAAD0WpBwAAAADAQ1HqAQAAAADwUJR6AAAAAAA8FKUeAAAAAAAPRakHAAAAAMBDUeoBAAAAAPBQlHoAAAAAADwUpR4AAAAAAA9FqQcAAAAAwENR6gEAAAAA8FCUegAAAAAAPBSlHgAAAAAAD0WpBwAAAADAQ1HqAQAAAADwUJR6AAAAAAA8FKUeAAAAAAAPRakHAAAAAMBDUeoBAAAAAPBQlHoAAAAAADwUpR4AAAAAAA9FqQcAAAAAwENR6gEAAAAA8FCUegAAAAAAPBSlHgAAAAAAD0WpBwAAAADAQ1HqAQAAAADwUJR6AAAAAAA8FKUeAAAAAAAPRakHAAAAAMBDUeoBAAAAAPBQlHoAAAAAADwUpR4AAAAAAA9FqQcAAAAAwEP5Gh0A5bPb7bLmFxodo8J8gwJkMpmMjgEAAAAA1Qqlvoqy5hdqVvORRseosBHJn8svONDoGAAAAABQrXD5PQAAAAAAHopSDwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KEo9AAAAAAAeilIPAAAAAICHotQDAAAAAOCheE69F4nq0Vb9508sM604N19ZKelKnvuTkmYukb3EZlg+AAAAAIBzUeq9UMr8BKWt2iKZTAqqU0sthvZSt4mjVLNlA60fP8PoeAAAAAAAJ6HUe6HTOw8pZV5C6df7Pl2m2xPeVuw9N2jLpNkqPJ1laD4AAAAAgHNwT301YM0v1KktB2QymxXWuJ7RcQAAAAAATkKpryZCm5wv84Vnc4yOAgAAAABwEi6/90K+Qf4KCA8tvae+1X03KaJ9M53ackBZKelGxwMAAAAAOEm1OFOfkZGhCRMmqEWLFgoMDFTDhg01duxY5ebm6qGHHpLJZNL06dONjuk0nSYM1927P9Hduz7WbavfVNwD/ZW6+BetGjXZ6GgAAAAAACfy+jP127Zt04ABA2SxWBQSEqI2bdro+PHjmjZtmpKTk5WZmSlJio+PNzqq0+z7z3KlfrdeZj9f1W7dSO1G36aQ6AiVFBaVLmP299Wg5a/r0DcJ2vH2/NLp1741WoF1amnliFcMSu98qcey9cHcffpiabIsGfnyMZvUolGY/nhHrO4b1FI1Q/2NjggAAAAX2rInQ+99laSFa47oTFaRggJ9FN8qQo/f1Vp39Gsifz8foyMClebVZ+ozMjI0aNAgWSwWjRs3Tunp6dqyZYssFosmT56sxYsXKzExUSaTSR06dDA6rtNkpViUnrBTx1Zt1a53F+iH+ycpMr65ekx+tHQZW5FVa8e8o/Zj7lDtNo0lSY36d1XMjV207i/vGpjeeWw2u8a/sVHNbv5Kr83crsPHc1RYVKK8Aqt27M/UmEm/qEG/2fpyabLRUQEAAOACOXnFum3sCnUevkAfzd+vk5kFKrbalJVTrJ82W3T3X9eo6YCvtHHnKaOjApXm1aV+zJgxSktL05NPPqkpU6YoNDS0dN6ECRPUsWNHWa1WNWnSRGFhYYZmdaVTm/Ypee5PanpbT9Xp0qp0+ukdKdr93kJdN+0pBUeHq8frj2nD3z5S/okzhuZ1BrvdrsdeXqcp/94pu/3iy+XmW3X3X9fos4UH3BkPAAAALpZfYNWAx5dpweojl1zu+Mk89XloCcUeHstrS31SUpLmzJmjyMhIvfbaa+Uu07lzZ0lSx44dy0w/dOiQBg8erNDQUNWuXVv33XefTp8+7ZbcrrJ96lzZrCXqNH5Y2elvzZOtpESDV7wuy7pdOrRgnWEZnemLJcn6cN6+Ci//0AsJOngky6WZAAAA4D7PT9+stVtPVGjZvAKrbvvTShUWlbg8F+BsXlvqZ8+eLZvNphEjRqhGjRrlLhMUFCT9rtRnZ2erT58+SktL0+zZs/XBBx8oISFBt9xyi2w2m9vyO1t2qkWHFqxT/es7qG73uNLpdmuJTiXuU2BETR2cs9rQjM40bdYeh5a3ltg14+u9LssDAAAA98nNK9ZH8yt+gkeS0k/lad6KVJdlAlzFa0v9qlWrJEl9+vS56DJpaWnS70r9Bx98oGPHjunbb7/VLbfcoqFDh+qLL77QL7/8ooULF7ohuevsePv8Wfnfnq2v2z1OLYb1UdLMJer20gPyCfT8QeO27MnQxl2OXz718bf7VVBodUkmAAAAuM/spSnKyil2eL13v0pySR7AlUx2+6XuOPZcDRs2VFpamrZu3VruyPZWq1XR0dHKyMhQcnKymjVrJv3mQ4DVq8uetW7evLl69+6tmTNnOpylS5cuslgsDq3jZzfrBVs3h/flCN/gQA3+YYr2zFikvf9epgHfvKSM7clKfOFTh7c10bxRxaaqcSVDrv9VOlvj1kqtW+/s2/K1ZTo9EwAAANznbPBA5QY6/l7aZC9U/TOvuiQTcDlRUVHatGmTw+t57SPtcnNzJUn5+fnlzp8zZ44yMjIUGhqqpk2blk7fs2ePhg4desHybdu21Z49jl3S/SuLxaJjx445tI6/yUeqV6ndVVjXF+9TzpGT2vvp95KktWOna/DKKTqydINO/OLYp5TH04+ryF5F7kGKaCWVf8fFZZ04dUYqcOz/FQAAAKqYBkVSoOOr2eXn8Pt2wGheW+qjoqJ05swZbdmyRT169CgzLz09XePHj5ckdejQQSaTqXTemTNnVKtWrQu2Fx4ern37HLsv57dZHOVnN0suPPHdoG8nNR3cUwtuGFc6LfvwCW1+ZZZ6Th2thX3HyZpfWOHt1Y+uX2XO1Of5B8jh8fvtdslkUr06YfK1NXBNMAAAALjFuSCzciqxnsleoPoNeC8IY1SmN8qbS32/fv2UlJSkyZMn68Ybb1RsbKwkKTExUffee68yMjIkqdxL852tMpdQFOcVaFbzkS7JI0nHVm3VF63vv2D63k+/Lz1z74j9B/bLL7gSH4e6wMnT+Wp405cqKnbgQwaTSR1bhWvrV7vKfMgDAAAAz7MmMV19Hlri8Hr3395Rn7yc5pJMgKt47UB5EyZMUEREhI4ePaq2bduqffv2atmypbp166ZmzZqpb9++UjmPs6tdu7bOnj17wfYyMzMVHh7utvyovLoRQRp6U9MKLFnWE8PiKPQAAABeoFeXKMU1u/Dq28t5YlhcBZYCqhavLfUxMTFKSEjQwIEDFRgYqNTUVIWHh2vGjBlavHix9u/fL5VT6uPi4sq9d37Pnj2Ki+MfuaeY8EAHBQX4VHj5Fo3CdM/NzV2aCQAAAO5hMpn0wmOdHFrn5uti1LVdHZdlAlzFa0u9/lvQFy1apOzsbGVnZ2vDhg165JFHlJubq9TUVJnNZrVr167MOrfccovWrl1b+rg7SdqwYYOSk5M1aNAgA44CldEhNlxzXu+rAP/Lf4vH1AvRkn/dpBrBfm7JBgAAANcb1r+ZJv2pS4WW7d6+jmZPvvijsIGqzKtL/cXs3r1bdrtdLVu2VHBwcJl5jzzyiKKjo3Xrrbdq0aJFmjt3ru6++25169ZNt95aucekwRiDejfSqo9u1rWdyn+MgK+PSUNvaqpfPh+klo1ruj0fAAAAXOuvD3bU7Mm91bpp+e/1agT76ql72mjVRzcrrIa/2/MBzuC1A+Vdys6dO6VyLr2XpLCwMK1atUpjx47V8OHD5evrq1tuuUVTp06V2VwtPwPxaNfE11PCv2/Rjv2Z+mJJst75YrfyCkoUFuKnpAVDVL9uiNERAQAA4ELDBzTXsP7NtHpjuhauOaIP5u1VfkGJatbw09EVwxUaQpmHZ6PUl6N58+ZatGiRm1PBlTrEhqtDbLg+X3RQeQV5Cg3xo9ADAABUEyaTSX2711ff7vU1d8UhHSvIU41gPwo9vEK1PPV8uVLvzRoPvFpXT3q4zLQWw/poVPpcNerf1bBcAAAAAADHVcsz9atWrTI6gmEa3dxdyV+vKf26RkwdxY7op5Ob9hmaCwAAAADguGpZ6r2Zf1iwbl09VT6B/so7niFzgJ9CG9VT8twftf6ZD1WvayutHTv9/MImk65543FteH6mur5wv9HRAQAAAAAOotR7maKsPKV8k6Di3ALtmDpX9Xt3VIcxd+jnp99X/V4ddTJxn+zWEklS20cH6WTiXp3ekWJ0bAAAAABAJVTLe+q9XXi7psrceUiSFNGhuTJ3nf97o/5ddXjpRklSrVYN1Xhgd21/a56hWQEAAAAAlceZei8U3rZJaZGP6NBMR5clSpLq947Xppc/lyTV6x6nGg3rasjP70iSgurUUo/XH1NQ3dra99lyA9MDAAAAACqKUu9lgqPCJbtdeZZMSVJ4XGPteHueIju11LkDx2TNK5Ak7ftseZny3n/eRO35cJGOfJ9oWHYAAAAAgGMo9V4mvF3T0rP0klSUlavW9/9BhZnZOvL9RkOzAQAAAACci1LvZdJWblbays2lXy8a8Iwk6dY1U7VsyAsXXe/7S8wDAAAAAFRNlPpqYkHvPxsdAQAAAADgZIx+DwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KO6pr6J8gwI0Ivlzo2NUmG9QgNERAAAAAKDaodRXUSaTSX7BgUbHAAAAAABUYVx+DwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KEo9AAAAAAAeilIPAAAAAICHotQDAAAAAOChKPUAAAAAAHgoSj0AAAAAAB6KUg8AAAAAgIei1AMAAAAA4KEo9QAAAAAAeChKPQAAAAAAHopSDwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KEo9AAAAAAAeilIPAAAAAICHotQDAAAAAOChfI0OgPLZ7XZZ8wuNjlFhvkEBMplMRscAAAAAgGqFUl9FWfMLNav5SKNjVNiI5M/lFxxodAwAAAAAqFa4/B4AAAAAAA9FqQcAAAAAwENR6gEAAAAA8FCUegAAAAAAPBSlHgAAAAAAD0WpBwAAAADAQ1HqAQAAAADwUDyn3otE9Wir/vMnlplWnJuvrJR0Jc/9SUkzl8heYjMsHwAAAADAuSj1XihlfoLSVm2RTCYF1amlFkN7qdvEUarZsoHWj59hdDwAAAAAgJNQ6r3Q6Z2HlDIvofTrfZ8u0+0Jbyv2nhu0ZdJsFZ7OMjQfAAAAAMA5uKe+GrDmF+rUlgMymc0Ka1zP6DgAAAAAACeh1FcToU3Ol/nCszlGRwEAAAAAOEm1KPUZGRmaMGGCWrRoocDAQDVs2FBjx45Vbm6uHnroIZlMJk2fPt3omE7jG+SvgPBQBUSEqVbrRur+6h8V0b6ZTm05oKyUdKPjAQAAAACcxOvvqd+2bZsGDBggi8WikJAQtWnTRsePH9e0adOUnJyszMxMSVJ8fLzRUZ2m04Th6jRheJlpqYt/0YZnPzIsE4yVk1es2UuStevgGRUUlSiiZqDu6NdYXdrWMToaAAAA3ODE6Xz957uDSj2eLZvNrvp1g3XPzc3VLCbM6Gi4Ql5d6jMyMjRo0CBZLBaNGzdOL7zwgkJDQyVJ//znP/XXv/5Vvr6+MplM6tChg9FxnWbff5Yr9bv1Mvv5qnbrRmo3+jaFREeopLCodBmzv68GLX9dh75J0I6355dOv/at0QqsU0srR7xiUHo4U25esZ57Z7M+WbBfWTnFZea9NnO7urWro5dGX6U/9IwxLCMAAABc56glRxPeTNS8lakqtpZ9vPU//rVFA66N0aSxXdU+NtywjLgyXn35/ZgxY5SWlqYnn3xSU6ZMKS30kjRhwgR17NhRVqtVTZo0UViY93xClZViUXrCTh1btVW73l2gH+6fpMj45uox+dHSZWxFVq0d847aj7lDtds0liQ16t9VMTd20bq/vGtgejjL2axC9X5oid6etfuCQv+rjbtO6ebRyzVz/j635wMAAIBr7T10VleP/E5ffp9yQaGXJLtdWpKQpp73L1LCZoshGXHlvLbUJyUlac6cOYqMjNRrr71W7jKdO3eWJHXs2LF02q8fAnTr1k0BAQEymUxuy+wqpzbtU/Lcn9T0tp6q06VV6fTTO1K0+72Fum7aUwqODleP1x/Thr99pPwTZwzNiytnt9t157hV2rQ747LL2mx2PfLSOq1Yf8wt2QAAAOB6Z7MKNeDxZTp+Mu+yy2bnFmvwmBVKSePR157Ia0v97NmzZbPZNGLECNWoUaPcZYKCgqTflfqDBw9q3rx5ioqKUteuXd2W19W2T50rm7VEncYPKzv9rXmylZRo8IrXZVm3S4cWrDMsI5znp80W/bDheIWXt9nsmvj+VpdmAgAAgPt8suCAUo9X/MlXZ7OLNPU/u12aCa7htaV+1apVkqQ+ffpcdJm0tDTpd6X++uuvV3p6uhYuXKh+/fq5Ial7ZKdadGjBOtW/voPqdo8rnW63luhU4j4FRtTUwTmrDc0I53l3TpLD66zbekLb9512SR4AAAC4j81m13tfOf5+8N8LDygnr/zbNlF1eW2pP3z4sCSpcePG5c63Wq1at+78Wenflnqz2WtfEu14+/xZ+d+era/bPU4thvVR0swl6vbSA/IJ9Dc0I66c3W7Xt6sOV2rdyq4HAACAqiMp5awOHHb8Uvrs3GKt3sgjsD2N145+n5ubK0nKz88vd/6cOXOUkZGh0NBQNW3a1KVZunTpIovFsYEn/OxmvaBuDq1jWb9bn0bfedH55w4c02cx/yv0vsGBuvat0dr8yizt/fcyDfjmJV317D1KfOFTh/YrSbEtY1VsunDwjaomvdZfJHNNpVvSFRPjnSO+2+SnovDnK7Xu61Pf04evLHV6JgAAgKqiOrwfLPRtJIU9VKl173vwcYUUbXd6JlxeVFSUNm3a5PB6Xlvqo6KidObMGW3ZskU9evQoMy89PV3jx4+XJHXo0MHlg+FZLBYdO+bYIGT+Jh+pnssiSZK6vnifco6c1N5Pv5ckrR07XYNXTtGRpRt04hfHLtc5nn5cRfYSFyV1otASySzZSkoc/n/iOcxSJZ9Ikpt1RrknvPV1AQAAqCbvB4P8pEo+3Ots5kmdPeelr4uX8tpS369fPyUlJWny5Mm68cYbFRsbK0lKTEzUvffeq4yM86OCx8fHuzxLVFSUw+v42c2SC098N+jbSU0H99SCG8aVTss+fEKbX5mlnlNHa2HfcbLmF1Z4e/Wj63vGmXofH9kkmX18FN2ggdFxXOaE9YSsvo5/KlQ7OEfBXvy6AAAAVIf3gzaTjyz2YtlNfhVfyW6XTCbVDSuWXw3vfF2qusr0Rkky2e12u9PTVAFpaWmKj4/X6dOn5evrq9atW6ugoEAHDx7UgAEDZLPZtGzZMn3wwQd6+OGHy93Giy++qIkTJ8qIl6g4r0Czmo90+34ra0Ty5/ILDjQ6xmXF9JutYyfz1KBusNJW3m10HJf515d79OSr6x1ap07tQB1dMVwB/j4uywUAAGC06vJ+8KEXEvTxN/sdWqd312itnnmzyzLBNbx2VLiYmBglJCRo4MCBCgwMVGpqqsLDwzVjxgwtXrxY+/ef/wb/7SB5gLe495YWqlnDsUEPH7mzFYUeAADAS4weFleBpcp6crjj68B4Xnv5vSTFxcVp0aJFF0zPyclRamqqzGaz2rVrZ0g2wJXCavjrqyl9NHD0cllLLn+lSe+u0fr7o53ckg0AAACud1WbSL3xdDeNm7KxQsuPHh6nO/o1cXkuOJ9Xl/qL2b17t+x2u2JjYxUcHHzB/Llz50qS9uzZU+brJk2aqEuXLm5OC1TOTdfEaMm7f9BdT6/S2eyiiy53+w2N9Z9XenGWHgAAwMv85b72CvD30Z//uUHF1vLHvzKZpAkPdNCrY7q4fABxuEa1LPU7d+6ULnHp/dChQ8v9+v7779ennzr+uDfAKDf2aKCjK4briyXJev+rvdq697T03x/eD9wWq8fvaq0ubesYHRMAAAAuMnp4Gw3p10Qz5+/XzG/269CxbEmS2WzS0/e306NDW6tZTCWHykeVQKkvh5eOHYhqqkawnx65s7UeubO1GtzwhY6fylf9OsGaOfE6o6MBAADADaIig/XcI/F67pH40veD0ZFBmvznbkZHgxN47UB5l3K5Uu/NGg+8WldPKjvaf4thfTQqfa4a9e9qWC64B5dUAQAAVG+8H/Q+1fJM/apVq4yOYJhGN3dX8tdrSr+uEVNHsSP66eSmfYbmAgAAAAA4rlqWem/mHxasW1dPlU+gv/KOZ8gc4KfQRvWUPPdHrX/mQ9Xr2kprx04/v7DJpGveeFwbnp+pri/cb3R0AAAAAICDKPVepigrTynfJKg4t0A7ps5V/d4d1WHMHfr56fdVv1dHnUzcJ7u1RJLU9tFBOpm4V6d3pBgdGwAAAABQCdXynnpvF96uqTJ3HpIkRXRorsxd5//eqH9XHV56/jmVtVo1VOOB3bX9rXmGZgUAAAAAVB5n6r1QeNsmpUU+okMzHV2WKEmq3ztem17+XJJUr3ucajSsqyE/vyNJCqpTSz1ef0xBdWtr32fLDUwPAAAAAKgoSr2XCY4Kl+x25VkyJUnhcY214+15iuzUUucOHJM1r0CStO+z5WXKe/95E7Xnw0U68n2iYdkBAAAAAI6h1HuZ8HZNS8/SS1JRVq5a3/8HFWZm68j3Gw3NBgAAAABwLkq9l0lbuVlpKzeXfr1owDOSpFvXTNWyIS9cdL3vLzEPAAAAAFA1UeqriQW9/2x0BAAAAACAkzH6PQAAAAAAHopSDwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KAbKq6J8gwI0Ivlzo2NUmG9QgNERAAAAAKDaodRXUSaTSX7BgUbHAAAAAABUYVx+DwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KEo9AAAAAAAeilIPAAAAAICHotQDAAAAAOChKPUAAAAAAHgoSj0AAAAAAB6KUg8AAAAAgIei1AMAAAAA4KEo9QAAAAAAeChKPQAAAAAAHopSDwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KEo9AAAAAAAeilIPAAAAAICH8jU6AMpnt9tlzS80OkaF+QYFyGQyGR0DAAAAAKoVSn0VZc0v1KzmI42OUWEjkj+XX3Cg0TEAAAAAoFrh8nsAAAAAADwUpR4AAAAAAA9FqQcAAAAAwENR6gEAAAAA8FCUegAAAAAAPBSlHgAAAAAAD0WpBwAAAADAQ/Gcei8S1aOt+s+fWGZacW6+slLSlTz3JyXNXCJ7ic2wfAAAAAAA56LUe6GU+QlKW7VFMpkUVKeWWgztpW4TR6lmywZaP36G0fEAAAAAAE5CqfdCp3ceUsq8hNKv9326TLcnvK3Ye27QlkmzVXg6y9B8AAAAAADn4J76asCaX6hTWw7IZDYrrHE9o+MAAAAAAJyEUl9NhDY5X+YLz+YYHQUAAAAA4CRcfu+FfIP8FRAeWnpPfav7blJE+2Y6teWAslLSjY4HAAAAAHCSanGmPiMjQxMmTFCLFi0UGBiohg0bauzYscrNzdVDDz0kk8mk6dOnGx3TaTpNGK67d3+iu3d9rNtWv6m4B/ordfEvWjVqstHRAMPYbHbtPXRWv2w/qR37M5WXbzU6EgAAANyosKhEuw5k6pftJ7Un+YysVu94MpjXn6nftm2bBgwYIIvFopCQELVp00bHjx/XtGnTlJycrMzMTElSfHy80VGdZt9/liv1u/Uy+/mqdutGajf6NoVER6iksKh0GbO/rwYtf12HvknQjrfnl06/9q3RCqxTSytHvGJQesC5Ms8V6pNv9+u9r5KUfDS7dHrNUH/dP6iFnhgWp1ZNaxmaEQAAAK6TeixbM+bu1Ufz9yvjTEHp9Jh6IXp0aCs9PKS16kUEGZrxSnj1mfqMjAwNGjRIFotF48aNU3p6urZs2SKLxaLJkydr8eLFSkxMlMlkUocOHYyO6zRZKRalJ+zUsVVbtevdBfrh/kmKjG+uHpMfLV3GVmTV2jHvqP2YO1S7TWNJUqP+XRVzYxet+8u7BqYHnGfH/kx1GDJfT7+xsUyhl6Rz2UWa9sUetbtjvj5dsN+wjAAAAHCdhasPq81t8zRp5o4yhV6S0k7k6u/Tt6jNbfO0dovFsIxXyqtL/ZgxY5SWlqYnn3xSU6ZMUWhoaOm8CRMmqGPHjrJarWrSpInCwsIMzepKpzbtU/Lcn9T0tp6q06VV6fTTO1K0+72Fum7aUwqODleP1x/Thr99pPwTZwzNCzjDwSNZuuHhpTp2Mu+Sy1lL7Hrg7wn6cmmy27IBAADA9VasP6Yhf/lB+YUll1wu81yh+j++TFuTMtyWzZm8ttQnJSVpzpw5ioyM1GuvvVbuMp07d5YkdezYsXTa3LlzNWTIEDVu3FjBwcFq3bq1nnvuOeXkePao8dunzpXNWqJO44eVnf7WPNlKSjR4xeuyrNulQwvWGZYRcKYxk9Zf8GnspTzy0jpl5xZVYEkAAABUdVarTQ/8/SdZS+wVWj4336o/vrhWdnvFlq9KvLbUz549WzabTSNGjFCNGjXKXSYo6Px9E78t9VOmTJGPj49effVVLV26VI8//rjee+899e/fXzab5w6kkJ1q0aEF61T/+g6q2z2udLrdWqJTifsUGFFTB+esNjQj4CzJR7P0/bo0h9bJzi3WF0tSXJYJAAAA7vPdj0cue8Xm721JOq3EXZ53tt5rS/2qVaskSX369LnoMmlp59/0/7bUf/fdd/rqq680YsQI9erVS2PHjtX06dO1bt06rV271g3JXWfH2+fPyv/2bH3d7nFqMayPkmYuUbeXHpBPoL+hGQFn+HTBAVXmQ9aP5u9zRRwAAAC42cxvKjdmkie+HzTZPfH6ggpo2LCh0tLStHXr1nJHtrdarYqOjlZGRoaSk5PVrFmzi25r//79atWqlb744gvdfffdDmfp0qWLLBbHBl7ws5v1gq2bw/tyhG9woAb/MEV7ZizS3n8v04BvXlLG9mQlvvCpw9uaaN6oYlPVv5IhvdZfZDPXlNl2TtFn3zQ6jttVl+PPDBmi/ADHB78023IVffafLskEAACqhuryfuhiqsvxn6g5Wlafug6vF1CcrMjsz1yS6XKioqK0adMmh9fz2kfa5ebmSpLy8/PLnT9nzhxlZGQoNDRUTZs2veS2Vq8+f1l6XFzcJZe7GIvFomPHjjm0jr/JR6pXqd1VWNcX71POkZPa++n3kqS1Y6dr8MopOrJ0g078kuTQto6nH1eR/dIDUFQJoSWSWbKVlDj8/8QrVJfjb1ggBTi+ms1u8u7XBQAAVJ/3QxdTXY4/xCb5OL5aYWGRx70uXlvqo6KidObMGW3ZskU9evQoMy89PV3jx4+XJHXo0EEmk+mi2zl27Jj+/ve/q3///pV+ln1UVJTD6/jZzZILT3w36NtJTQf31IIbxpVOyz58QptfmaWeU0drYd9xsuYXVnh79aPre8aZeh8f2SSZfXwU3aCB0XHcrroc/9nAEuVWYj1f5aieF78uAACg+rwfupjqcvynzPmqzBDIQX7FCjfodalMb5Q3X34/ZswYvfPOO2rYsKFWrlyp2NhYSVJiYqLuvfdepaSkqLi4WKNHj9b06dPL3UZOTo569+4ti8WixMRERUdHuy1/cV6BZjUf6bb9XakRyZ/LLzjQ6BiXFdNvto6dzFODusFKW+n4rRSerroc/+Y9GeoyfIHD673yVGf97eHKfXgHAAA8Q3V5P3Qx1eX4P5q3Tw9PdHxMtCX/ukkDrmvokkyu4rUD5U2YMEERERE6evSo2rZtq/bt26tly5bq1q2bmjVrpr59+0q/GyTvt/Lz8zVo0CAdOnRIy5cvd2uhB3BlOreJVLd2dRxax8/XrIfuaOWyTAAAAHCfuwc0U81QxwYBbxYTqj/0jHFZJlfx2lIfExOjhIQEDRw4UIGBgUpNTVV4eLhmzJihxYsXa//+86Mhllfqi4uLdeedd2rTpk1aunSp2rRpY8ARALgSbzzdTf5+Ff8R94/H4lUvIsilmQAAAOAeIcF++uefu1Z4ebPZpLcmXC2z+eK3ZldVXntPvf47sN2iRYsumJ6Tk6PU1FSZzWa1a9euzLxfn23/ww8/aMmSJerWzbUj0ANwjWuvitLcN27QsPGrlF946UEcx49qr+e47B4AAMCrPHJna53NKtJf30q85HK+PibNnHidBvVu5LZszuTVpf5idu/eLbvdrtjYWAUHB5eZN3r0aH399dd65plnFBwcrF9++aV0XvPmzVWnjmOX9AIwzqDejbTxi8F647Ndmr00RYVFZct9327RGjOirW7t09iwjAAAAHCdCQ92UOc2kZr6+S4tSTiq344o5+tj0h39mmjcfe3Vrb3n9rxqWep37twpXeTS+6VLl0qSJk2apEmTJpWZ98knn2jUqFFuSgnAGdq1DNcnL1+vKeO6adXGdD0yca3OZhepbnigfvjoZqPjAQAAwMVuuLq+bri6vg6lZavz8G91JqtItcP8tfubIYquE1yBLVRtXntP/aVcqtSnpqbKbreX+8cbCn3jgVfr6kkPl5nWYlgfjUqfq0b9K37PCeBpImoFauhNTRUSdP6zTD/favnjDwAAoNpqGhOq4MDz7wWDA329otCLUl/+yPferNHN3XXk+42lX9eIqaPYEf10ctM+Q3MBAAAAABxXLS+/X7VqldERXMY/LFi3rp4qn0B/5R3PkDnAT6GN6il57o9a/8yHqte1ldaOnX5+YZNJ17zxuDY8P1NdX7jf6OgAAAAAAAdVy1LvzYqy8pTyTYKKcwu0Y+pc1e/dUR3G3KGfn35f9Xt11MnEfbJbzw8W1vbRQTqZuFend6QYHRsAAAAAUAnV8vJ7bxferqkydx6SJEV0aK7MXef/3qh/Vx1eev7S+1qtGqrxwO7a/tY8Q7MCAAAAACqPM/VeKLxtk9IiH9GhmY4uO/9cxvq947Xp5c8lSfW6x6lGw7oa8vM7kqSgOrXU4/XHFFS3tvZ9ttzA9AAAAACAiqLUe5ngqHDJbleeJVOSFB7XWDvenqfITi117sAxWfMKJEn7Plteprz3nzdRez5cpCPfJxqWHQAAAADgGEq9lwlv17T0LL0kFWXlqvX9f1BhZnaZUe8BAAAAAJ6PUu9l0lZuVtrKzaVfLxrwjCTp1jVTtWzICxdd7/tLzAMAAAAAVE2U+mpiQe8/Gx0BAAAAAOBkjH4PAAAAAICHotQDAAAAAOChKPUAAAAAAHgoSj0AAAAAAB6KgfKqKN+gAI1I/tzoGBXmGxRgdAQAAAAAqHYo9VWUyWSSX3Cg0TEAAAAAAFUYl98DAAAAAOChKPUAAAAAAHgoSj0AAAAAAB6KUg8AAAAAgIei1AMAAAAA4KEo9QAAAAAAeChKPQAAAAAAHopSDwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KEo9AAAAAAAeilIPAAAAAICHotQDAAAAAOChKPUAAAAAAHgoSj0AAAAAAB6KUg8AAAAAgIei1AMAAAAA4KEo9QAAAAAAeChfowOgfHa7Xdb8QqNjVJhvUIBMJpPRMQCv4Gn//vE//CwEAADuRqmvoqz5hZrVfKTRMSpsRPLn8gsONDoG4BU87d8//oefhQAAwN24/B4AAAAAAA9FqQcAAAAAwENR6gEAAAAA8FCUegAAAAAAPBQD5cGrlZTYtC/1nDbvydDeQ+d0NrtIkpSVW6xvfkhV5zaRahgV4tWjVZ84na/NezK0be9pncs5f/zncor04dy96tI2Um1b1Ja/n4/RMV2moNCqHfvPaNPuUzpiyS39HsjOLdaK9cfUuU2kwmsGGB0TAAAAqBRKPbzSlj0Z+tecJH217JBy8oovmJ+dW6w7/vyDJKl+3WA9eFusHrmzlRpG1TAgrfOdPlugT749oA/m7dWBw1kXzM/Js+qRl9ZJkvz9zBrcu5GeGBan3l2jveIDjpISm5auTdO7c5K04pdjslrtFyyTlVusmx79XpLUvmVtPTa0te4d1EKhIf4GJAYAAAAqh1LvRaJ6tFX/+RPLTCvOzVdWSrqS5/6kpJlLZC+xGZbPHbbtPa3Rr/6sn7edrPA6x0/m6f8+2KZXP9qu4f2baer47qobEeTSnK6Sk1es56Zt0oy5+1RYVFKhdYqKbZq7IlVzV6QqrlktvfNMD91wdX2XZ3WV+StTNW7KBqUez6nwOjsPnNHoV9frr29t0l/ubafnHuno1VcvAAAAwHtwT70XSpmfoJ+efFs/PTVN2974WmZfH3WbOEpXT3rY6GguU1RcoonvbVHXexY4VOh/y2az64slyWp7x3x9tSzF6RldbU1iujoM+UbTvthT4UL/e0kpZ9XvkaV6/OV1ys4tcnpGV8o4U6DhE1ZpyF9+cKjQ/1ZOXrFemrFVXYYv0JY9GU7PCAAAADgbpd4Lnd55SCnzEpQy9yftfm+hFg/8m3KPZSj2nhsUEBFmdDyny84tUv/HlunF97aWe5m1ozLOFGjY+NV6esoG2e1Xvj13ePfLPer7xyU6dCzbKdt7/+u96jHyOx0/meuU7bna/tRz6jz8W835/pBTtrfzwBldPfI7j/xwBwAAANULpb4asOYX6tSWAzKZzQprXM/oOE6Vm1esAU8s1+rEdKdv+43PdulPk3+p8sV+2qzdGv3qejk75u7ks+r14BJZMvKcu2EnO3gkS9c/sFhH0p37AUSx1aa7/7pGc76n2AMAAKDqotRLWrhwoR5//HF169ZNDRo0UEBAgEJDQxUfH6+//e1vysjw/MtwQ5ucL/OFZyt3WXJVZLfbdd9zP2nd1hMu28e0L/borc93u2z7V2rh6sMaO/kXl23/4JEsDRy9XEXFlbuc39Wycop006Pf68TpfJds32aza+Tf1mj9dtd9jwEAAABXglIv6c0339T777+v7du3y9/fXx06dFB4eLh27Nih1157TW3atNG2bduMjllhvkH+CggPVUBEmGq1bqTur/5REe2b6dSWA8pKcf4ZbaPMWpys+T+kOrRO4uzBOrpiuBJnD67wOs++vUl7D52tRELXOn22oHQE+4qqzPFvSTqt1z7aXomErjf+zY0O33Lg6Gtgtdo16vkE5RdYK5kSAAAAcB1KvaQHH3xQP/zwg7Kzs3Xo0CElJibq8OHD2r59u9q1a6dTp07pnnvuMTpmhXWaMFx37/5Ed+/6WLetflNxD/RX6uJftGrUZKOjOU36qTyNmbTe4fWiIoMVUy9EUZHBFV6nsKhED/z9J5VUsScHjJn0i8NnqCtz/JL0fx9u07a9px1M6For1h/TB3P3ObxeZV6D/YfP6e/TNzu8LwAAAMDVKPWS7rvvPvXt21f+/mWfT92+fXvNnDlTkpSUlKSkpCSDEjpm33+Wa9ldE7VixCva9PJ/VJCZrZDoCJUU/m80c7O/r25dM1Udxt5RZt1r3xqtfrOeMyC1Y978bJfOZLlvdPZfdpzSkoQ0t+3vcvYkn9EXS5Ldtj+r1a6XZmx12/4qwt0le9oXe1x2mX+lmExq88gtuj3hbd176AsN3fS+urxwn3yDAoxOBgAAADei1F9GXFxc6d/z8qr2gGG/ykqxKD1hp46t2qpd7y7QD/dPUmR8c/WY/GjpMrYiq9aOeUftx9yh2m0aS5Ia9e+qmBu7aN1f3jUw/eXlF1j18bf73b7fd+dUnQ913vtqr9v3uWD1EaVZqsZo+Jv3ZGjDzlNu3Wex1aaZ8x2/MsBVur00St0mjtLZ/Wn65fmPlbpovdo8dLNu+OwZyWQyOh4AAADchFJ/GevWnb9nOSQkRK1atTI6TqWc2rRPyXN/UtPbeqpOl/8dw+kdKdr93kJdN+0pBUeHq8frj2nD3z5S/okzhua9nLkrDinzXKHb97vs5zSlpGW5fb+/l5tXrH8vPOD2/dpsdn0wz/0fJpTn/a+M+YBlxty9stmMfxpCrdgYxT04QKmLf9Hqh17XgVkrlfjiv7XxxX8r+tr2anpbT6MjAgAAwE0o9eWw2WxKT0/XZ599plGjRkmSXn31VdWoUcPoaJW2fepc2awl6jR+WNnpb82TraREg1e8Lsu6XTq0wLGB14ywYv1xQ/Zrt0urNhg/0ODGXaeUnVtsyL5X/mLMa/97KwzKcSQ9VwcOnzNk37/V9PZrZTKbtefDxWWmH5i1UsV5BWo+5HrDsgEAAMC9KPW/8f7778tkMsnHx0f169fX/fffr5iYGH333XcaM2aM0fGuSHaqRYcWrFP96zuobvf/3VJgt5boVOI+BUbU1ME5qw3NWFGbk4x7xODmPcY/3nDzHuMGrNu277SsVmMHDDx9tkCHjxv3aEYjX/9fRca3kK2kRBlby16xUVJYrMxdqYqMb25YNgAAALgXpf43oqOj1bNnT3Xv3l3169eXyWTSjh079MUXX+jcOePPzl2pHW+fPyv/27P1dbvHqcWwPkqauUTdXnpAPoH+l9yG0XLzipWUYtzj5TZViVJvXIb8ghJDX3/99xF7Rtq0x7338pcnuF5tFWZmy1Z04WP28iyZCoyoKbOfryHZAAAA4F4mu91u/A2iVdTOnTs1evRoJSQkqGfPnlq7dm2lttOlSxdZLBaH1vGzm/WCrVul9ldRvsGBGvzDFO2ZsUh7/71MA755SRnbk5X4wqcOb2uieaOKTa4/g2s119KJWn++6PzE2YMv+aiyqMgg+fqYZS2xyZJx8ZHMLRl56nr3wgum+5ScVdS5qZVI7jynQkepyK9pufOcdfy6xGsQkfVvBVpTKpHcOfL8O+hMjSHlzrvc8csJ3wNBhTsUnjuvEskr7nL//u9YP11mPx/N7fL4BfOunfaUWgztpS9a3aeiLM8Y3NObuOtnIQCg8tJr/UU2c02ZbecUffZNo+O4HcdfdY8/KipKmzZtcng9TuVcQvv27bV48WI1a9ZM69at08qVK9WvXz+Ht2OxWHTs2DGH1vE3+Uj1HN6VQ7q+eJ9yjpzU3k+/lyStHTtdg1dO0ZGlG3TiF8cGIjueflxF9hIXJf0Nf6tU6+Kzf30G+eX4+pgrtNzvldjMDv+/dLpmJZJf+bNcffySdDrzrJRt4GtQu6l0keEtKnr8uoLXIL+gyOXfA5f791+SXyi/kJrlzvMJOP/NYc133yMf8T9u+1kIAKi80BLJLNlKSox/X2cEjt/rjp9SfxmhoaHq1auX5s2bp+3bt1eq1EdFRTm8jp/dLLnwZE+Dvp3UdHBPLbhhXOm07MMntPmVWeo5dbQW9h0na37FR5ivH13ffWfqLzHfknHpM5OOnKUtj4/ZpqgGDSqc1xVO+Zt1sbrmrOO/1LYiwmsqMMy41yDPP1QXez7D5Y5fTvgeCAr0V7iLvwcu9+8/78QZ1YyNkdnf94JL8IOjwlVw+pxsxRdemg/Xc9fPQgBA5aX7+Mgmyezjo2iD39cZgeOvusdfmd4oSn3FWK3n3xyXlFTu7EtlLqEozivQrOYjK7W/iji2aqu+aH3/BdP3fvp96Zl7R+w/sF9+wYFOSndx+QVWhfb4TCUl5d81Ut7l0r91dMVwxdQLkSUjXw1v/NLh/Xft1FLrP09zeD1nGvnsGs1anFzuPFcfvyQlrPpOcc0ucbmEi63acFw3PLy03HmXO3454TV48tER+udf3nZ4PUdc7t9/xraDatA7XpGdWurkhv9dVeMT4Kfwdk0cvtIGzuOun4UAgMqL6Tdbx07mKToqWmm7jH1fZwSO3/uOn4HyLiMzM1M//vijJCk+Pt7oONVeUKCv2hhYKDu3iTRs31UhQ0iQr2Ibhxm2f0nqFBdh6P6rwvfAoQU/y26zqc3DA8tMbzmin/yCA5Uy/yfDsgEAAMC9qn2p37Rpk/7xj3/o4MGDF8zbunWrBgwYoLNnz6p9+/a64YYbDMmIsowsVVWh0HU2sNR2ah0hHx9jf2zUDgtQs5hQw/ZfFb4Hzu49or2ffK8mA69Wn5nj1fKeG9TlhfvU7cX7Zfl5t1LmV25QTwAAAHiean/5fU5Ojl5++WW9/PLLqlu3rho2bCgfHx+lpaXp+PHjkqTY2Fh9++238vHxMTouJPXvGaNPFxyowJLOZTab1O/q+m7f7+91bVdHtcP8dSbL/QOh9e8Z4/Z9lqd/zxi9O8f9l5g3bxiq5g2N+0Dhtzb+41PlHD2l2JH9FHPDVSrIzFLSx0u19Z9zJB5qAgAAUG1U+1LfsWNHvf3221q9erV27dql/fv3q6CgQOHh4erXr59uv/12PfjggwoM5B7JquL2GxqrbnigTmYWuHW/g3o1VMOoiwy77kZBgb568LZYvfHZLrfu18/XrIfuiHXrPi/m8btaG1LqH78rTiaTye37LY/dZtPuGd9p94zvjI4CAAAAA1X7Ul+7dm2NGTNGY8aMMToKKsjfz0cPD2mlVz7c7tb9PjEszq37u5TH7opze6kf0q/JZZ8B7y7tWobr+s5R+mmzxW37DAzw0ahbW7ptfwAAAEBFVPt76uGZ/jSyneqGu+/qiT5do9Xv6qrzyIsWjcL08JBWbttfgL+PXni8k9v2VxGvPNVZ7jxpPmFUB0XU4oodAAAAVC2U+mqm8cCrdfWkh8tMazGsj0alz1Wj/l0Ny+WoyNqBev/vPd2yr5AgX82ceJ3M5qpx2fWvpozrpoZRIW7Z18ujr1LrpsY9daA8114VpbEj2rplXx1bheu5Rzq6ZV8AAACAIyj11Uyjm7vryPcbS7+uEVNHsSP66eSmfYbmqozbb2ii+wa1cGgdS0ae0k7kypKRV+F13ppwtZoaONr6xYTV8NfHLzn2YUNljv/aTvX0l/vaVTKla73yVBe1ae7Yhw2OvgaBAT769OXr5e/HQJkAAACoeqr9PfXexj8sWLeuniqfQH/lHc+QOcBPoY3qKXnuj1r/zIeq17WV1o6dfn5hk0nXvPG4Njw/U11fuN/o6JXywQvX6sTpfC37+ViFlu9690KHtv+PRzvpj268zN1R/a5uoJkTr9UDf0+o0PKOHn/7lrW1YNqNhj/G7mKCg3y17L3+unbUIh0+nlOhdRx5Dfx8zZr35g2Kb23cYwQBAACAS6ma79RRaUVZeUr5JkF7PlqshTeO18Z/fKJTW/br56ffV3TPdjqZuE92a4kkqe2jg3Qyca9O70gxOnalBfj76Nu3++nWPo2cvu3/e7KzXnyiat1HXp5Rt8bq89d6ydfXubcHdGtXR6tn3qzwmgFO3a6zxUSFKOHTgWrVpKZTtxsU6KOF027Uzdc1dOp2AQAAAGei1Huh8HZNlbnzkCQpokNzZe46//dG/bvq8NLzl97XatVQjQd21/a35hma1RkCA3w1f2o/vTWhu4ICr/wS6YZRIVr2/h/03CPxVebxZZczYmALbfh8sNq3rH3F2zKbTXr2oY766dOBHjMwXMOoGkqcPViPDW3tlO1dE19XW+fcpv7XxjhlewAAAICrUOq9UHjbJqVFPqJDM53+b8Gv3ztex1ZtlSTV6x6nGg3rasjP7+jOje+qzlUt1eP1x9TqvpsMzV5ZZrNJY0e20465d+jm6ypXxAIDfPTEsDjtnHeHbrrG88rcVW0itenLW/XCY51UM9S/Utvo0bGufvl8kF4d20UB/p51D3loiL/e+3tPrfxggDrEhldqG3XDA/Xm+O766ZOBalXFBgYEAAAAysM99V4mOCpcstuVZ8mUJIXHNdaOt+cpslNLnTtwTNa8AknSvs+Wa99ny0vX6z9vovZ8uEhHvk80LLsztGgUpsX/+oMOHsnS+18lafb3KTp+8tIDorVpXksP3R6rUbfGVvlLzS/H389HLz5xlcaPaq8vv0/RB3P3adOeDNls9ouuE14zQEP6NdHjd7VWp7hIt+Z1hRuurq9tX9+mn7ed1L++3KPFCUeVlVN80eX9fM3q0bGuHhvaWnf0a+JxH2YAAACgeqPUe5nwdk1Lz9JLUlFWrlrf/wcVZmaXGfXe27VoFKYpT3fXlKe76/jJXG3ec1r7Us8pr8Aqs1kKC/FXh9hwdWodUemz2lVZSLCfHrqjlR66o5Xy8q3avv+0tiad1tnsIhVbbQoM8FHzmDB1aRupxvVreMxtBhVlMpnUs1M99exUTzabXQePZGnzngwdTs9RYVGJ/HzNiqwdqKviItS+ZThFHgAAAB6LUu9l0lZuVtrKzaVfLxrwjCTp1jVTtWzICxdd7/tLzPN09euGqH7dEA0yOohBgoN81aNjPfXoWM/oKIYwm02KbVJTsU4eSA8AAACoCij11cSC3n82OgIAAAAAwMkYKA8AAAAAAA9FqQcAAAAAwENR6gEAAAAA8FDcU19F+QYFaETy50bHqDDfIM9+FBwAAAAAeCJKfRVlMpnkFxxodAwAAAAAQBXG5fcAAAAAAHgoSj0AwGH+YcGKH3eXonq0NToKAABAtUapBwA4zD8sRPFP36Woayj1AAAARqLUAwAAAADgoRgoDwCqAbOfr9o8PFDNbr9WYc3ry1ZsVdYhiw7OWa29n3wvSbr2rdFqMayPPo2+84L1R6XP1cE5q7X2T/9SVI+26j9/oiQp/um7FP/0XZKknKMnNbfbExXO9Os2D379o6565m6Ft22iwjM5Svp4qXb961v51wxRl3/cp4Y3dZFfSKDS1+7Sz+PfV/6JM2W2UyOmjjr9dbjq9+oo/7AQ5aafVurCn7X9rbkqyS+SJLW67yb1mPyIfrh/ko4u31Q2iMmkoZveV2FmlhbeOL50ckTH5uow9g7V6x4nv5Ag5Rw9qeS5P2rn9G9lL7E58vIDAAC4DKUeALyc2c9XN85+XtE92+nYmm1KnpegksIi1Y5rpMY3dy8t9RV19kCaNv7jE3V76QEdXrJBh5f8Ikmy5hY4nC28XVP1vrGL9s9aoeSvf1STwdeoy/MjVVJYpBZ39VbO0VPaNuUrhTWNUtxDN+u6aU9p+bCXStcPiYnUwKWT5B8arL3/XqaslHRFXdNWHcbcobpdW2nZ0Imyl9h0aME6dZs4Ss2H9rqg1Edf114h9SO0e8Z3pdNibrhKfWaOV1aqRbvf/06FZ3NUt3Os4scPU3jbplrzyBsOHysAAIArUOoBwMu1eXigonu2045p87XltS/KzjSZHN5eQcY5HVm6Ud1eekBn9hxWyryESmerHddIi295ThlbD0iSDsxepTsT31O3iaOU9PH32vj3j8ss3/bRQQprXl9ZycclSVc9O0JBkTW1YsQrOrZqqyRp37+XKTftlNo9cata3NVbB2avUtG5XB1dsVkNb+ws/5ohKjqXW7rNFkN7yVZsVcq8nyRJPgF+6vnm4zq19YCW3fli6Vn5/f9Zocw9h9Vt4ihF9Wgry/rdlT5uAAAAZ+GeegDwcs3uuE6FZ7K1/c2vL5xptxsRqdTJTftLC70k2Yqtyth6UCazWUkzl5RZ9sSGJElSWNPo8xNMJjW6qYtO70wpLfS/2vHON7KVlKjRgO6l0w5+tUY+gf5qemvP0mm+wYFqNKCbjq3epoLTWZKk6Os7KKhubR38crX8a4YoIDy09E/aD1skSfV7d3TFywEAAOAwztQDgJcLaxatzF2pKiksNjrKBXKOnLhgWtG5nP/OO1l2+tnzZ9cDateQJAVGhMmvRpDO7jt64TbO5ij/xFmFNq5bOu3Y6q3KP3VWze/spX2fLZckNR7YXX4hQTr49Y+ly9VqGSP9d4yBiwmMrOnwsQIAALgCpR4AIEmyX+SsvcnHdRd1XWrAObut/HmmStwy8Ou+Ur5Zq7aP3KLQJlHKTrWo+dDeKjyTraPLE3+7A0lS4sTPlLn7ULnbyvvdYH0AAABGodQDgJfLSj6umi3qy+zvK1uR9aLLFZ49f4bcv1YNFf3375IU2rjeBcvaZexl+5JUcDpLRdl5qtWq4QXz/GuGKKheLWXuTi0zPfmrNWr7yC1qPrSX9s9aqahr2mj/5yvLvC5Zh9IlSda8AqUn7HTDkQAAAFQe99QDgJdLnp+ggNqh6vinCx9V91tZKefLbP3r2peZ3vaxQRcs++tI9/61ajg1q0Psdh1dsVkR7ZupQZ/4MrPaP3m7zD4+OrJ0Q5npmbtTlbk7Vc2HXK/md/aS2cdHyV+tKbPM8dXblH/qrNo/dXu5x+cT6C/fkEAXHRQAAIBjOFMPAF4u6aMlanhTF3X8852KjG+uYz9uV0lBsWq1aqiazeuXPiLu0DdrddUz9+ia1x9TzRYNVHg2Rw36dFJgeOgF2yw8k6OslHQ1va2nsg9bVHDqnIrzCpS2YrNbj23La7NU//oO6vvxhPOPtDtkUdTVbdT0tp6yrN+tg78r7JJ08Os16vbiKLUffavOHTymU1sOlJlvzS9Uwph31PfjCbpj7ds6MHu1slIt8g8LVs0WDdT45u5a/eDrjH4PAACqBEo9AHg5W7FVK4a/rLaPDVLT269T52fuUUlhsbIOpevAl6tLlyvOydfKka+q64v3q8OYO1ScV6DDSzYo4cm3dc++zy7Y7k+j31bXiaN01bP3yC84UDlHT2qum0t9blqGFt/8rDpNGKZmQ66Xf1iw8tIztWPafG1/a2659+ynzEtQl+dGyj8sRLveXVDudo+v2a5FA55R+6duV7Mh1ykwIkxF53KVnXpCuz9YpMykw244OgAAgMsz2S82MhIAwBDFeQWa1Xyk0TFQCSOSP5dfMJfmA0BVFtNvto6dzFODusFKW3m30XHcjuP3vuPnnnoAAAAAADwUl98DAJwmICJMZvOlPy8uzi2QNa/AbZkAAAC8GaUeAOA0g5ZOUo2GdS+5zLYpX2nbG1+5LRMAAIA3o9QDAJzmp9FvyyfQ/5LLZB8+4bY8ADyT3W6XNb/Q6BioBN+gAJlMJqNjANUKpR4A4DQnE/cZHQGAF7DmFzJgqIdiwFDA/RgoDwAAAAAAD0WpBwAAAADAQ1HqAQAAAADwUJR6AAAAAAA8FKUeAAAAAAAPRakHAAAAAMBDUeoBAAAAAPBQlHoAAAAAADwUpR4AAAAAAA9FqQcAAAAAwENR6gEAAAAA8FCU+ov48MMPZTKZZDKZ1Lt3b6PjAAAAAABwAUp9OSwWiyZMmGB0DAAAAAAALsnX6ABV0VNPPaWsrCzdcsstWrRokdFxAOAC7Z+6XRHtmymiQzOFNq6nnKMnNbfbE0bHQhV2+myBFv14VKfOFCjA36y4ZrXUt1t9mc0mo6O5RUmJTSvWH9f+w+dUbLWpbnigBvVqpFphAUZHc5v9qee0OjFdWTlFqhHsp2s71VP72HCjY1WeyaQ2Dw9Uq3tvVI2YOio4naVD3/2sbf+cI2t+odHpAMBtKPW/s3DhQs2dO1dPPfWUwsPDKfUAqqTOfxuhgsxsZe5MkX9YsNFxUIXtPXRWr320XXOWHVJhUUmZec0bhuqJYXF66u628vPzzov3CotKNPU/u/T+13t1+HhOmXlBgT4acXNzPfvHjmoWE2ZYRldbsf6YXv90h1asP37BvJ6d6mncfe10+w1NDMl2Jbq9NEpt/jhQh5ds0K73v1Otlg3U5qGbFdGuqZbd9ZJktxsdEQDcglL/G9nZ2Ro9erTq16+v//u//9Obb75pdCQAKNfc7k8o58hJSdKtq9+UX0ig0ZFQBf24KV2Dx6xQVk5xufOTj2Zr3JSNWrH+uOZPvUFBgd71tiArp0iDnlqhnzZbyp2fX1Cij+bv1zerDmvJv/6gbu3ruD2jq739+S796Z8bLjp/3dYTWrf1hJ57uKNefrKzTCbPuHKjVmyM4h4coNTFv2jNH6eUTs8+clJXv/KQmt7WU4e+WWtoRgBwF+/8WL6Snn32WaWlpemtt95SWJj3fmIPwPP9WuiBi9l98IwGPXXxQv9b369L08hnf5Tdi85s2mx2DX161UUL/W+dPluom0cvU/LRLLdkc5dZiw9estD/1isfbtfbn+92eSZnaXr7tTKZzdrz4eIy0w/MWqnivAI1H3K9YdkAwN0o9f+1fv16vffeexowYICGDh1qdBwAAK7Ii+9tUXbu5Qv9r+b/kKqft3nPh0XL1qVp+c/HKrz86bOFeu2j7S7N5E7FxTZNmJro0Dr/eHeLsnOLXJbJmSLjW8hWUqKMrQfKTC8pLFbmrlRFxjc3LBsAuBulXlJxcbEefvhhBQQEaPr06UbHAQDgihw/matvVh12eL135yS5JI8RKnMsXyxN1pks7xhg7bsfj+j4yTyH1snOLdasxckuy+RMwfVqqzAzW7Yi6wXz8iyZCoyoKbOfd91OAgAXQ6mXNGnSJO3evVvPP/+8mjVrZnQcAACuyLyVqSopcfxS+q+XH1Jxsc0lmdzpXHaRFiccdXi9/IISLVx9xCWZ3O3L71Mqtd7spZVbz918ggJUUlT+lSglheen+wb5uzkVABij2n+EuW/fPr3yyiuKi4vT+PHjXbKPLl26yGK5/D19ACBJfnazXlA3o2OgEmJbxqrYZHwpzgrqKwX1cni9YqtNjZq1lo/dsTO8VY3VXFv2Wn+q1Lpjxj2v50avc3omdzsV+oDk5/iI9j9v3KmYmEddkskRl/s5WJJfKL+QmuXO8wnwkyRZ8z3jVgJvU1V+Dl5Keq2/SOaaSrekKyYmxug4bsfxV93jj4qK0qZNmxxer9qX+scff1yFhYV6//335efn55J9WCwWHTtW8fv6AFRv/iYfqZ7RKVAZx9OPq8heUoElXazuWSmocqtajqdJtnxnJ3Ivv3ypVuVWzTp7RlmnveB3dtM8qRJva6xFhVXiPcvlfg7mnTijmrExMvv7XnAJfnBUuApOn5Ot+MJL8+F6Vebn4KWElkhmyVZSUiW+392O4/e646/2pX7Lli0ym8266667LpiXk3P+ebY///yzoqKiJEn79+93eGT8X9cFgIrws5ulqn2SAxdRP7p+lThDledfrDOVWM9sy1FUdIRM8uxR8O3yUbq9QHaT4496DA+1KiiwgUtyudNZ31zlVmK9QJ8sRTQw/vgv93MwY9tBNegdr8hOLXVyw//GT/AJ8FN4uyY68Yv3jA/haarKz8FLSffxkU2S2cdH0VXg+93dOP6qe/yV7Y3VvtRLks1m04kTJy46v7i4uHS+zeb4D6nKXEIBoPoqzivQrOYjjY6BSth/YL/8gh0vks5WUGhVg35fKvOcY4O+PfNIT70yZqzLcrnTU6+t1/TZexxaJ6ZeiA5tWSlfX88fcmjLngx1Hr7A4fW++ejP6n/tGy7J5IjL/Rw8tOBndRhzh9o8PLBMqW85op/8ggOVMv8nNyXF71WVn4OXEtNvto6dzFN0VLTSdqUZHcftOH7vO37P/611hc6ePSu73V7unxdeeEGS1KtXr9JptWpV8no+AHCiZnderw5/GqIOfxqiwIgw+YUGl37d7E6ez1zdBQb46sHbYh1ax2w26ZE7W7ksk7s9fldrh9d5dGgrryj0knRVm0h1b1/HoXWaxYTqpmuq1lmrizm794j2fvK9mgy8Wn1mjlfLe25QlxfuU7cX75fl591Kmb/W6IgA4DacqQcADxR79w2KuqZtmWlX/fVuSTr/hnYuZ6mqu388Fq+VG45p297MCi3/9l+vVuP6oS7P5S5tmtfWK0911nPvbK7Q8tfE19XT97d3eS53+vil63TNvYt0LufyA8YFBvho1mu9ZTab3JLNGTb+41PlHD2l2JH9FHPDVSrIzFLSx0u19Z9zJLtn30ICAI6g1AOAB/p+yAtGR0AVFxrir+Xv99fgMSv0y45TF13OZJLemnC1nry7jVvzucOzf+woSZct9n26Rmv+1BsUGOBdb4vaNK+tVR8N0MAnl8uScfHBD2uF+uubt/rp6o513ZrvStltNu2e8Z12z/jO6CgAYCjvuMYMAABcoE54kH765BbNfaOv+naLLjPPZJL+NLKtkr4dojEj2l50G57MZDLpbw/Ha9f8OzR6eJxCQ8oOB9+/Z4wWTrtRKz7or1phAYbldKWr2kRq74I79c6zPRTXrOwthD5mk/755646sGioeneNvug2AABVG6X+El588UXZ7XatWbPG6CgAAFSKn59ZQ25sqh8+ulkZP41Q3fDzA1hFRwZp6oSr1aqp948V07ZFbU3/2zU6sfoe1Yv43/Evfe8PGtS7kXx8vPvtUM1Qfz15dxvt/uYOHVs5vPR7oF5EoMY/0EGRtav2oGYAgEvz7t9iAACgVEStQPn9dyA4k8lz7p12lqBAX/n+t8B70r3jzmIymVS/bki1/h4AAG9EqQcAAAAAwENR6gEAAAAA8FCUegAAAAAAPBSlHgAAAAAAD0WpBwAAAADAQ1HqAQAAAADwUJR6AAAAAAA8FKUeAAAAAAAPRakHAAAAAMBDUeoBAAAAAPBQlHoAAAAAADwUpR4AAAAAAA9FqQcAAAAAwEP5Gh0AAFCWb1CARiR/bnQMVIJvUIDREQAAQDVDqQeAKsZkMskvONDoGAAAAPAAXH4PAAAAOMg/LFjx4+5SVI+2RkcBUM1R6gEAAAAH+YeFKP7puxR1DaUegLEo9QAAAAAAeCjuqQcAAIDXM/v5qs3DA9Xs9msV1ry+bMVWZR2y6OCc1dr7yfeSpGvfGq0Ww/ro0+g7L1h/VPpcHZyzWmv/9C9F9Wir/vMnSpLin75L8U/fJUnKOXpSc7s9UeFMv27z4Nc/6qpn7lZ42yYqPJOjpI+Xate/vpV/zRB1+cd9anhTF/mFBCp97S79PP595Z84U2Y7NWLqqNNfh6t+r47yDwtRbvpppS78WdvfmquS/CJJUqv7blKPyY/oh/sn6ejyTWWDmEwauul9FWZmaeGN40snR3Rsrg5j71C97nHyCwlSztGTSp77o3ZO/1b2EpsjLz8AF6LUAwAAwKuZ/Xx14+znFd2znY6t2abkeQkqKSxS7bhGanxz99JSX1FnD6Rp4z8+UbeXHtDhJRt0eMkvkiRrboHD2cLbNVXvG7to/6wVSv76RzUZfI26PD9SJYVFanFXb+UcPaVtU75SWNMoxT10s66b9pSWD3updP2QmEgNXDpJ/qHB2vvvZcpKSVfUNW3VYcwdqtu1lZYNnSh7iU2HFqxTt4mj1HxorwtKffR17RVSP0K7Z3xXOi3mhqvUZ+Z4ZaVatPv971R4Nkd1O8cqfvwwhbdtqjWPvOHwsQJwDUo9AAAAvFqbhwcqumc77Zg2X1te+6LsTJPJ4e0VZJzTkaUb1e2lB3Rmz2GlzEuodLbacY20+JbnlLH1gCTpwOxVujPxPXWbOEpJH3+vjX//uMzybR8dpLDm9ZWVfFySdNWzIxQUWVMrRryiY6u2SpL2/XuZctNOqd0Tt6rFXb11YPYqFZ3L1dEVm9Xwxs7yrxmionO5pdtsMbSXbMVWpcz7SZLkE+Cnnm8+rlNbD2jZnS+WnpXf/58VytxzWN0mjlJUj7ayrN9d6eMG4DzcUw8AAACv1uyO61R4Jlvb3/z6wpl2uxGRSp3ctL+00EuSrdiqjK0HZTKblTRzSZllT2xIkiSFNY0+P8FkUqObuuj0zpTSQv+rHe98I1tJiRoN6F467eBXa+QT6K+mt/YsneYbHKhGA7rp2OptKjidJUmKvr6DgurW1sEvV8u/ZogCwkNL/6T9sEWSVL93R1e8HAAqgTP1AAAA8GphzaKVuStVJYXFRke5QM6RExdMKzqX8995J8tOP3v+7HpA7RqSpMCIMPnVCNLZfUcv3MbZHOWfOKvQxnVLpx1bvVX5p86q+Z29tO+z5ZKkxgO7yy8kSAe//rF0uVotY6T/jjFwMYGRNR0+VgCuQakHAAAAJNkvctbe5OO6i1svNeCc3Vb+PFMlbhn4dV8p36xV20duUWiTKGWnWtR8aG8VnsnW0eWJv92BJClx4mfK3H2o3G3l/W6wPgDGodQDAADAq2UlH1fNFvVl9veVrch60eUKz54/Q+5fq4aK/vt3SQptXO+CZe0y9rJ9SSo4naWi7DzVatXwgnn+NUMUVK+WMnenlpme/NUatX3kFjUf2kv7Z61U1DVttP/zlWVel6xD6ZIka16B0hN2uuFIAFwJ7qkHAACAV0uen6CA2qHq+KcLH1X3W1kp58ts/eval5ne9rFBFyz760j3/rVqODWrQ+x2HV2xWRHtm6lBn/gys9o/ebvMPj46snRDmemZu1OVuTtVzYdcr+Z39pLZx0fJX60ps8zx1duUf+qs2j91e7nH5xPoL9+QQBcdFABHcaYeAAAAXi3poyVqeFMXdfzznYqMb65jP25XSUGxarVqqJrN65c+Iu7QN2t11TP36JrXH1PNFg1UeDZHDfp0UmB46AXbLDyTo6yUdDW9raeyD1tUcOqcivMKlLZis1uPbctrs1T/+g7q+/GE84+0O2RR1NVt1PS2nrKs362DvyvsknTw6zXq9uIotR99q84dPKZTWw6UmW/NL1TCmHfU9+MJumPt2zowe7WyUi3yDwtWzRYN1Pjm7lr94OuMfg9UEZR6AAAAeDVbsVUrhr+sto8NUtPbr1PnZ+5RSWGxsg6l68CXq0uXK87J18qRr6rri/erw5g7VJxXoMNLNijhybd1z77PLtjuT6PfVteJo3TVs/fILzhQOUdPaq6bS31uWoYW3/ysOk0YpmZDrpd/WLDy0jO1Y9p8bX9rbrn37KfMS1CX50bKPyxEu95dUO52j6/ZrkUDnlH7p25XsyHXKTAiTEXncpWdekK7P1ikzKTDbjg6ABVhsl9sRBAAAOB1YvrN1rGTeWpQN1hpK+82Oo7bVffjl4e8BsV5BZrVfKTRMVAJI5I/l19w1b403xP+DbgSx+99x8899QAAAAAAeCguvwcAAACcJCAiTGbzpc+bFecWyJpX4LZMALwbpR4AAABwkkFLJ6lGw7qXXGbblK+07Y2v3JYJgHej1AMAAABO8tPot+UT6H/JZbIPn3BbHgDej1IPAAAAOMnJxH1GRwBQzTBQHgAAAAAAHopSDwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KEo9AAAAAAAeitHvAQAAAHilouIS/bL9pDYnndbmPRk6dCxbJzMLJEkZZwv0/Dub1LlNpK6Jr6d6EUFGx3WJ/ann9MuOk9q8J0M7D5wpPf5TZwr02Mvr1KVNpLq2i1SH2HCZTCaj4zrd2axC/bz9/PFv3pPxv+PPLNDQcT+oc5vI898DHesqJNjP6LiVQqkHAAAA4FWOpOfog7l79eG8faUl7vcKi2x65cPtkiQfH5Nu79tYTwyLU++u0R5fbguLSjR3xSH968skrd9+stxlioptmvH1Xs3479ftWtTWE8PiNPKW5goN8XdrXlfYvCdD785J0hdLklVQWHLB/CKrTXNXpGruilRJUlgNP90/uKUevytOcc1qGZC48rj8HgAAAIBXKCi06pm3EtXs5q/0yofbL1rof6+kxK65K1LV949Ldd2oxdqfes7lWV1l2bo0tbzla4189seLFvry7Dp4Rk+88rMa3TRHny08ILvd7tKcrpJ+Kk+3jV2hLsMX6ONv9pdb6MuTlVOsd77Yoza3zdOD//hJZ7MKXZ7VWSj1AAAAADzept2ndNWwBZr88Q6VlFS+kK7bekIdh36jqf/Z5VHFNievWH98IUH9H1+mo5bcSm/nbHaR7n/+Jw1+aoUsGXlOzehqs5ckq+3t87Rg9ZEr2s4n3x5Quzvma9m6NKdlcyVKPQAAAACPtmxdmq5/YLGSUs46ZXsFhSX6y+sb9OhL61RSYnPKNl3p9NkC3fDHpZr5zX6nbXPRT0fV875FOpSW7bRtutKrH27TPc+s0ZmsIqds79jJPN08erk+duJr6iqUegAAAAAe64dfjmvwmBXKL6jYZdaO+HDePj3xys9V+ox9Vk6R/vDYMm3cdcrp205Jy1afPy5R2hWc+XeHSTO367l3Njt9uzabXQ+9kKDPFh5w+radiVIPAAAAwCOlWXI1ZNwPKip23dn0D+bu07tzkly2/Sv10AsJ2rwnw2XbP3w8R0P+8oOs1qp5xcKShKN69u1NLt3Hgy5+ja8UpR4AAACAx7Hb7XrkpbU6l+3Y5daJswfr6IrhSpw9uMLr/HVqolLSsiqR0rW+Xn6odPT2iqrM8W/cdUpvfrarEgld62xWoR6euNahdSpz/CUldo16/icVFTv/ahBnqBalPiMjQxMmTFCLFi0UGBiohg0bauzYscrNzdVDDz0kk8mk6dOnGx0TAAAAFdT+qdvV+4NxGvLLvzQqfa7u3Piu0ZHgZp8vOqilax0fyCwqMlgx9UIUFRlc4XVy8616+EXHyqOrZZ4r1BOv/OzwepU5fkn6x7tbqtxTAca/uVHHTzo2mF9lj3/XwTN69b+PQKxqvL7Ub9u2Te3bt9frr78ui8WiNm3aqLi4WNOmTdOwYcOUlHT+Upr4+HijowIAAKCCOv9thKJ6tlN2qkWFZzxjIC84j91u16SPd7h1n6s2pivRBfetV9bH3+xXxpmKPbLPGQqLSvT2rN1u29/lpJ/K06duvtd92he7lZdvdes+K8KrS31GRoYGDRoki8WicePGKT09XVu2bJHFYtHkyZO1ePFiJSYmymQyqUOHDkbHBQAAQAXN7f6Evmz7gJYPf1l5J84YHQdu9tNmi/YkO2eke0e891XVuLfeZrMbkuWz7w4qO9c5o8tfqY/m75PV6t4BDM9kFWnOshS37rMivLrUjxkzRmlpaXryySc1ZcoUhYaGls6bMGGCOnbsKKvVqiZNmigsLMzQrAAAAKi4nCMnjY4AA304b58h+529NKVKlNrVG9OVYsCj5nLyivXlUuNLrd1u10fzjfke+GDuXkP2eyleW+qTkpI0Z84cRUZG6rXXXit3mc6dO0uSOnbsWDotISFB/fr1U3R0tAICAhQTE1PmMn0AAAAAxlq79YQh+y0oLNGWpNOG7Pu31m61GLbvdduM/0At7USujqQb85i9TXsyVFBYtS7B99pSP3v2bNlsNo0YMUI1atQod5mgoCDpd6X+zJkzat++vaZNm6bly5dr8uTJ2r17t3r06KG0NMcH4gAAAADgPBlnCnT4eI5h+68KjzbbvMe4DxaqxvEbl8FqtWvngap1y4+v0QFcZdWqVZKkPn36XHSZX0v6b0v94MGDNXhw2ccbdO3aVa1atdK8efM0duxYl2UGAAAAcGnb9hl7pnzb3kxD9y+DX4M9KWdVUGhVYIBxVXJrkrH/D7btPa2u7eoYmuG3vLbUHz58WJLUuHHjcudbrVatW7dO+l2pL09ERIQkyde3ci9Xly5dZLEYd4kMAAC/Sq/1F8lcU+mWdMXExBgdx+2q+/HLQ14DP7tZL6ib0TFQCbEtY1Vssrl0H/l+baTQYeXOS5w9+LKPKouKDCr979EVwy+6nCUjT13vXnjB9K/nL9aqz0Y4nNuZjtd+VjIFljvvcq/BlR6/zWZX0xZt5GN37FFyznQ2eIAUeHW585x1/LrEa/D0My9o4p/WOZz7cqKiorRp0yaH1/PaUp+be/4ei/z8/HLnz5kzRxkZGQoNDVXTpk0vmF9SUiKbzabDhw/r2WefVVRUlO66665KZbFYLDp27Fil1gUAwKlCSySzZCspqZ6/m6r78cszXgN/k49Uz+gUqIzj6cdVZC9x7U5q1pdCy5/16zPIK8LXx1zhZX+roLDI+H87tUySqfxZFX0NKnv8kmSxnJCsWZVa1ynq50nlf6bhluPPyspR1qmq8/PTa0t9VFSUzpw5oy1btqhHjx5l5qWnp2v8+PGSpA4dOshkuvBfRK9evUrP5Ldo0UKrVq1SnTqVu8QiKiqqUusBAOBs6T4+skky+/goukEDo+O4XXU/fnnIa+BnN0uuPdkLF6kfXd8NZ+pDdbGLry0Zlz97HBUZJF8fs6wlNlkyyj8BeKltBQb4KMLgfzvHVaKLPcztcq/BlR6/JEVHRcpsv8gnK25wLihAFxtVwVnHf6lt1QwNVg1/538PVLY3em2p79evn5KSkjR58mTdeOONio2NlSQlJibq3nvvVUbG+cEV4uPjy11/5syZOnv2rA4dOqTXX39dN910k9atW6dGjRo5nKUyl1AAAOAKMf1m69jJPEVHRSttV/UbALa6H7885DUozivQrOYjjY6BSth/YL/8gi9yCtVJdh88o3Z3zC93XnmXSv/e0RXDFVMvRJaMfDW88UuH9//UI8P0z7+84fB6ztTtngVK3FX+YHGXew2u9Pgjawfq2PaD5Z4YdZf3v0rS4//3c7nzXH38kvSfmW9oUG/He6GreG2pnzBhgr744gsdPXpUbdu2VevWrVVQUKCDBw9qwIABatKkiZYtW3bR++lbtWolSerevbv69++vJk2a6J///KemT5/u5iMBAADA7zW783rViDl/FWVgRJjMfr7q8KchkqSctFNKmfuTwQnhKq2b1lRwoK/yCox5rFjnNpGG7LdMhrjIi5Z61+87wtBCryrw/6BzmwhD9/97XvtIu5iYGCUkJGjgwIEKDAxUamqqwsPDNWPGDC1evFj79++XKjBIniTVqlVLLVq00MGDB92QHAAAAJcTe/cNuuqvd+uqv96toDq1FFCrRunXsXffYHQ8uJCPj1md4owrVUYXSknq0ta4DFXh+DvEhsvP15gqGxUZpPp1K3cvvqt47Zl6SYqLi9OiRYsumJ6Tk6PU1FSZzWa1a9fusts5efKk9u3bp+7du7soKQAAABzx/ZAXjI4AA93Zr4nWbT3h9v3Gtw5X84bG3Uv+q0G9GsnP16xiq/sHnxh604WDjLtbgL+PBvVqpPk/pLp931Xh+H/Pa8/UX8ru3btlt9vVsmVLBQeXfdzByJEj9eKLL+rbb7/VmjVr9OGHH6p3797y9fXVn//8Z8MyAwAAADjv/ltbKijQx+37feKuOMMvPZekuhFBhpTLHh3rKr511bj0/IlhcYbs9/G7jNnvpVTLUr9z507pIpfeX3311VqyZIkeeOABDRgwQK+//rquu+46bdu2TS1atDAgLQAAAIDfqh0WoBE3N3frPmuF+useN+/zUkYPd3+5NGKfF9O3e7RaN63p3n12i1Zcs1pu3WdFUOp/58knn9TGjRt15swZ5efna//+/ZoxY4YaN25sQFIAAAAA5Xn5yc4Krxngtv1NGddNIcF+btvf5VwTX08jb3HfhwzXXVVPdw+oOh9qmEwmTX/2Grftz8/XrLcmXO22/TmCUg8AAADA40RFBuudZ3q4ZV9/uKaBHrw91i37csTbf+2hqMggl+8nKNBHH790vcxm4289+K0brq6vx4a2dsu+/vFYvNrHhrtlX46qlqV+1apVstvtGjhwoNFRAAAAAFTS3Tc30723OHaLrCUjT2kncmXJyKvQ8tF1gvXhi9dWiXvpfy+8ZoD+/X/Xy9e34tkcPX5JeueZHmrRKKySKV3rn3/pqnYtald4+cocf68uUfrrA1X3hLBXj34PAAAAwHuZTCbNnHidzuUUaeGaIxVap+vdCyu8/Tq1A7ViRn81jKpxBSld66ZrYvSfV3pp5N9+VEmJ/bLLO3L8kjT5T1310B2triCha4WG+Gv5jP7q9eBiHTicddnlHT3+bu3qaOG0G+XnV3XPh1fdZAAAAABwGX5+Zs194waNurWlU7fbvGGoEj4dqLYOnAU2yvABzTX3jb6q4cR7/n19TfrX33powoMdnLZNV4muE6yET29R13aRTt3uH65poJUf9ldYDX+nbtfZKPUAAAAAPJqfn1mfvHy95r7RV3VqB17x9sbc00bbv75drZpWvZHOL+a2vk20a/7t6nd1/SveVqfWEdr85W16Yngbp2Rzh3oRQVr370H6vyc7y8/3ympuSJCv3n3uGi159w8KDanahV6UegAAAADeYsiNTbXn2yH608i2qhnqWBkzmaQB18Yo4dOBevuZHlVqpPuKalw/VMtn9NenL1+vDpUY1K1ZTKjeHN9dG2YNrtT6RvPzM+u5R+K1Zc6tGta/qUNjDUhSYICPHrw9Vjvn3aHHh8VVuYEBL4Z76gEAAAB4jcjagZo64Wr935Od9eX3Kfp21WFtTjqt9FMXDowWFOij+FYRur5zlB4e0krNG1bNweAcYTKZdP+tLXXf4Bb6edtJfbpgvzbsPKU9KWfLvec+tnFNdW0XqRE3N9cfesZ4TJG9lHYtw/XlP/sq/VSeZn6zTz9sSNeWpAxl5RRfsGx4zQB1bhOh/j1jNOrWWLc+JtFZKPUAAAAAvE5IsJ8euqNV6SBv6afydOhYtgoKS+Tna1ZErQDFNq4p3yu8VLuqMplM6tmpnnp2qidJysu3au+hs8rOK5bdfv4S81ZNalb5+8WvRHSdYD3/SCc9/0gn2Wx2JR/N0onT+SoqtinA30cx9YLVKLpGlXyygSMo9QAAAAC8XnSdYEXXCTY6hmGCg3x1VRvnDiTnScxmk1o2rqmWjWsaHcXpvPNjKQAAAAAAqgFKPQAAAAAAHopSDwAAAACAh6LUAwAAAADgoRgoDwAAAFWKb1CARiR/bnQMVIJvkOc9DgzwdJR6AAAAVCkmk0l+wYFGxwAAj8Dl9wAAAAAAeChKPQAAAAAAHopSDwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KEo9AAAAAAAeilIPAAAAAICHotQDAAAAAOChKPUAAAAAAHgoSj0AAAAAAB6KUg8AAAAAgIei1AMAAAAA4KEo9QAAAAAAeChKPQAAAAAAHopSDwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KEo9AAAAAAAeytfoACif3W6XNb/Q6BgV5hsUIJPJZHQMAAAAAKhWKPVVlDW/ULOajzQ6RoWNSP5cfsGBRscAAAAAgGqFy+8BAAAAAPBQlHoAAAAAADwUpR4AAAAAAA9FqQcAAAAAwEMxUB4AAF4uO7dIW5NO6+DRbOXkFUuS8gqs2nvorGIb15TZzNNLAADwVJR6AAC80FFLjj6Yu09zVxzSvtRzstvLzj+TVaS4W+epRrCfenSso4eHtNZtfRrLz4+L+AAA8CSUegAAvEhKWpbGv5Gob1cfls1mv+zyOXnFWrH+uFasP67oOsEad187jR3RVr6+lHsAADwBpd6LRPVoq/7zJ5aZVpybr6yUdCXP/UlJM5fIXmIzLB8AwHVsNrvenZOkv05NVF6BtVLbSD+Vp6ff2Kivlh3Sp/93veKa1XJ6TgAA4FyUei+UMj9Baau2SCaTgurUUouhvdRt4ijVbNlA68fPMDoeAMDJ8gusGjZ+tb778YhTtrdx1yl1uutbff5qL915U1OnbBMAALgG19Z5odM7DyllXoJS5v6k3e8t1OKBf1PusQzF3nODAiLCjI4HAHCigkKrbnlyudMK/a8Ki0o0bMJqzV6S7NTtAgAA56LUVwPW/EKd2nJAJrNZYY3rGR0HAOAkdrtd9/7tR63amO6S7dtsdt33/I9avfG4S7YPAACuHKW+mghtcr7MF57NMToKAMBJPl90UHNXpDq0TuLswTq6YrgSZw+u0PJWq10P/CNB2blFlUwJAABcyetLfUZGhiZMmKAWLVooMDBQDRs21NixY5Wbm6uHHnpIJpNJ06dPNzqmU/kG+SsgPFQBEWGq1bqRur/6R0W0b6ZTWw4oK8U1Z3MAAO6VfipPYyb94vB6UZHBiqkXoqjI4Aqvc/h4jsa/mejwvgAAgOt59UB527Zt04ABA2SxWBQSEqI2bdro+PHjmjZtmpKTk5WZmSlJio+PNzqqU3WaMFydJgwvMy118S/a8OxHhmUCADjXKx9u09ls9509n/H1Xv15ZFu1asqI+AAAVCVee6Y+IyNDgwYNksVi0bhx45Senq4tW7bIYrFo8uTJWrx4sRITE2UymdShQwej4zrVvv8s17K7JmrFiFe06eX/qCAzWyHRESop/N+bP7O/r25dM1Udxt5RZt1r3xqtfrOeMyA1AKCisnOL9Nl3B92+3/e/3uv2fQIAgEvz2lI/ZswYpaWl6cknn9SUKVMUGhpaOm/ChAnq2LGjrFarmjRporAw7xoRPivFovSEnTq2aqt2vbtAP9w/SZHxzdVj8qOly9iKrFo75h21H3OHardpLElq1L+rYm7sonV/edfA9ACAy5m1OFnZucVu3+8nCw4oN8/9+wUAABfnlaU+KSlJc+bMUWRkpF577bVyl+ncubMkqWPHjhfdzoABA2QymfTiiy+6LKs7nNq0T8lzf1LT23qqTpdWpdNP70jR7vcW6rppTyk4Olw9Xn9MG/72kfJPnDE0LwDg0hb9dNSQ/Z7LLtLP208asm8AAFA+ryz1s2fPls1m04gRI1SjRo1ylwkKCpIuUeq/+uorbdu2zaU53Wn71LmyWUvUafywstPfmidbSYkGr3hdlnW7dGjBOsMyAgAqZvOejGq5bwAAcCGvLPWrVq2SJPXp0+eiy6SlpUkXKfVZWVn605/+pClTprgwpXtlp1p0aME61b++g+p2jyudbreW6FTiPgVG1NTBOasNzQgAuLzjJ3Nlycg3bP+UegAAqhavLPWHDx+WJDVu3Ljc+VarVevWnT8jXV6pf+655xQbG6sRI0a4OKl77Xj7/Fn5356tr9s9Ti2G9VHSzCXq9tID8gn0NzQjAODSjqTnGrr/oxZj9w8AAMryykfa5eaef8ORn1/+mYw5c+YoIyNDoaGhatq0aZl5mzZt0ocffqjNmzc7LU+XLl1ksVgcWsfPbtYL6ubQOpb1u/Vp9J0XnX/uwDF9FvO/Qu8bHKhr3xqtza/M0t5/L9OAb17SVc/eo8QXPnVov5IU2zJWxSabw+sBABxT6NtYCnuw3HmJswdf9vnzUZFBpf89umL4RZezZOSp690LL5i+ZesOxcQ84XDuqiK91l8kc02lW9IVExNjdBxD8BoAQNUUFRWlTZs2ObyeV5b6qKgonTlzRlu2bFGPHj3KzEtPT9f48eMlSR06dJDJZCqdV1JSokcffVRPPvmk2rZt67Q8FotFx44dc2gdf5OPVM9pEcrV9cX7lHPkpPZ++r0kae3Y6Rq8coqOLN2gE78kObSt4+nHVWQvcVFSAECp4EDpIg9tiYoMVky9kAptxtfHXOFlf6u4qMDh32lVSmiJZJZsJSWefRxXgtcAALyKV5b6fv36KSkpSZMnT9aNN96o2NhYSVJiYqLuvfdeZWScvx8wPj6+zHrTp0/XiRMnnD7afVRUlMPr+NnNkgtPfDfo20lNB/fUghvGlU7LPnxCm1+ZpZ5TR2th33Gy5hdWeHv1o+tzph4A3MBqDtaJi8yzZORddv2oyCD5+phlLbFd8t78i20rwLdYkQ0aVDhvVZPu4yObJLOPj6I9+DiuBK8BAFRNlemNkmSy2+12p6cxWFpamuLj43X69Gn5+vqqdevWKigo0MGDBzVgwADZbDYtW7ZMH3zwgR5++GFJUkZGhpo1a6YpU6borrvuKt1W7dq19de//lXPPPOMwsLCZDa7ZxiC4rwCzWo+0i37coYRyZ/LLzjQ6BgA4PVsNrtqX/sfZeVU7nnxR1cMV0y9EKWdyFXDG790eP3nH4nXy092rtS+q4KYfrN17GSeGtQNVtrKu42OYwheAwDwLl45UF5MTIwSEhI0cOBABQYGKjU1VeHh4ZoxY4YWL16s/fv3S78bJC8tLU3Z2dl69NFHVbt27dI/kjR58mTVrl1bR44cMeyYAACQJLPZpKviIg3bf+c2EYbtGwAAXMgrL7+XpLi4OC1atOiC6Tk5OUpNTZXZbFa7du1Kp7do0UKrV1/4SLc+ffro/vvv16hRoyp9OQQAAM7Up2u01iSmu32/fr5m9Yx38YAvAADAIV5b6i9m9+7dstvtio2NVXDw/0YIrlGjhnr37l3uOk2aNLnoPAAA3O2h22P10oytKilx7x10Q/o1UZ3wILfuEwAAXJpXXn5/KTt37pQu8nx6AAA8QYN6IbqtT2O373f08Di37xMAAFxatTtT72ip98JxBAEAXuC5hzvq29WH3Xa2vm+3aPXsxKX3AABUNZypr2YaD7xaV096uMy0FsP6aFT6XDXq39WwXAAAx3SKi9SzD7nnd1mNYD/NnHidTCaTW/YHAAAqrtqdqV+1apXREQzV6ObuSv56TenXNWLqKHZEP53ctM/QXAAAx/390Xh99+MRbd+XWeF1fn3+fEWeaf+rKeO6qUmD0EplBAAArlXtSr238w8L1q2rp8on0F95xzNkDvBTaKN6Sp77o9Y/86HqdW2ltWOnn1/YZNI1bzyuDc/PVNcX7jc6OgDAQf5+Plo8/SZde/8ipR7PqdA6Xe9e6NA+xt3XTo/c2aqSCQEAgKtVu8vvvV1RVp5SvknQno8Wa+GN47XxH5/o1Jb9+vnp9xXds51OJu6T3VoiSWr76CCdTNyr0ztSjI4NAKikBvVCtObjm9WycZjTt/3XBzvo9XHduOweAIAqjFLvhcLbNVXmzkOSpIgOzZW56/zfG/XvqsNLN0qSarVqqMYDu2v7W/MMzQoAuHKN64fql88Ha+QtzZ2yvfCaAfpiUm9N+lNXCj0AAFUcpd4LhbdtUlrkIzo00+n/Fvz6veN1bNVWSVK97nGq0bCuhvz8ju7c+K7qXNVSPV5/TK3uu8nQ7ACAygmvGaD/vNpb377dTw2jQiq9nTtvbKLd39yhu292zgcEAADAtbin3ssER4VLdrvyLOcHTQqPa6wdb89TZKeWOnfgmKx5BZKkfZ8t177Plpeu13/eRO35cJGOfJ9oWHYAwJW7tU9jDbyuoRb9dETvzknSivXHL7tO7TB/PXhbrB67K04tGjn/Mn4AAOA6lHovE96uaelZekkqyspV6/v/oMLMbB35fqOh2QAA7uHra9ZtfZvotr5NdDarUFuSTmvT7gwdOHJO+YUl8vUxq3aYv+JbRahzmwi1blpLvr5cvAcAgCei1HuZtJWblbZyc+nXiwY8I0m6dc1ULRvywkXX+/4S8wAAnqtWWID6dq+vvt3rGx0FAAC4AKW+mljQ+89GRwAAAAAAOBnX2gEAAAAA4KEo9QAAAAAAeChKPQAAAAAAHopSDwAAAACAh2KgvCrKNyhAI5I/NzpGhfkGBRgdAQAAAACqHUp9FWUymeQXHGh0DAAAAABAFcbl9wAAAAAAeChKPQAAAAAAHopSDwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KEo9AAAAAAAeilIPAAAAAICHotQDAAAAAOChKPUAAAAAAHgoSj0AAAAAAB6KUg8AAAAAgIei1AMAAAAA4KEo9QAAAAAAeChKPQAAAAAAHopSDwAAAACAh6LUAwAAAADgoSj1AAAAAAB4KF+jA6B8drtd1vxCo2NUmG9QgEwmk9ExAAAAAKBaodRXUdb8Qs1qPtLoGBU2Ivlz+QUHGh0DAAAAAKoVLr8HAAAAAMBDUeoBAAAAAPBQlHoAAAAAADwUpR4AAAAAAA9FqQcAANWC3W6X3W4v/TsAAN6A0e8BAIBXysu3av4Pqfp52wlt3nNaOw5kqqCwRJJ0/FS+Ygd9rS5tItWlbaTuvLGpGkXXMDoyAAAOo9QDAACvkpKWpXe+2KNPFxzQ2eyiiy534HCWDhzO0uylKRr/ZqIGXtdQT94dpxt7NJDJZHJrZgAAKotS70WierRV//kTy0wrzs1XVkq6kuf+pKSZS2QvsRmWDwAAVyopsWnqf3br+embVVhU4tC6Nptd3/14RN/9eERD+jXRu89do7oRQS7LCgCAs1DqvVDK/ASlrdoimUwKqlNLLYb2UreJo1SzZQOtHz/D6HgAADhdmiVXd41fpfXbT17xtuatTNWPmy369/9dr5uva+iUfAAAuAoD5Xmh0zsPKWVeglLm/qTd7y3U4oF/U+6xDMXec4MCIsKMjgcAgFMlH83StaMWOaXQ/yrjTIEGj1mhLxYnO22bAAC4AqW+GrDmF+rUlgMymc0Ka1zP6DgAADjN8ZO56vfwUh0+nuP0bZeU2HXvcz/q21WpTt82AADOQqmvJkKbnC/zhWed/6YHAAAj2O12jfr7T0p1QaH/lc1m1/3P/6SjFn5/AgCqJkq9F/IN8ldAeKgCIsJUq3UjdX/1j4po30ynthxQVkq60fEAAHCKj+bt04r1xx1aJ3H2YB1dMVyJswdXeJ2snGI9/OJanm0PAKiSqkWpz8jI0IQJE9SiRQsFBgaqYcOGGjt2rHJzc/XQQw/JZDJp+vTpRsd0mk4Thuvu3Z/o7l0f67bVbyrugf5KXfyLVo2abHQ0AACc4vTZAo17Y6PD60VFBiumXoiiIoMdWm/Zz8c05/sUh/cHAICref3o99u2bdOAAQNksVgUEhKiNm3a6Pjx45o2bZqSk5OVmZkpSYqPjzc6qtPs+89ypX63XmY/X9Vu3UjtRt+mkOgIlRT+71m9Zn9fDVr+ug59k6Adb88vnX7tW6MVWKeWVo54xaD0AABc3iffHlB2brFb9/n2rN0aPqC5W/cJAMDlePWZ+oyMDA0aNEgWi0Xjxo1Tenq6tmzZIovFosmTJ2vx4sVKTEyUyWRShw4djI7rNFkpFqUn7NSxVVu1690F+uH+SYqMb64ekx8tXcZWZNXaMe+o/Zg7VLtNY0lSo/5dFXNjF637y7sGpgcA4NJsNrve+yrJ7fv9ZccpbdmT4fb9AgBwKV5d6seMGaO0tDQ9+eSTmjJlikJDQ0vnTZgwQR07dpTValWTJk0UFua9j3o7tWmfkuf+pKa39VSdLq1Kp5/ekaLd7y3UddOeUnB0uHq8/pg2/O0j5Z84Y2heAAAu5edtJ5SSlm3Ivj/77qAh+wUA4GK8ttQnJSVpzpw5ioyM1GuvvVbuMp07d5YkdezYsXTamjVrZDKZLvjj6Zfnb586VzZriTqNH1Z2+lvzZCsp0eAVr8uybpcOLVhnWEYAACpi465Thu07cbdx+wYAoDxee0/97NmzZbPZNGLECNWoUaPcZYKCgqTflfpf/etf/9JVV11V+nVISIgL07pedqpFhxasU/Mh16tu9zid3HD+skW7tUSnEvcpskNzHZyz2uiYAABc1uY9pw3b99a9p2W12uTr67XnRQAAHsZrfyOtWrVKktSnT5+LLpOWliZdpNS3adNGV199demf9u3buzCte+x4+/xZ+d+era/bPU4thvVR0swl6vbSA/IJ9Dc0IwAAl7M72bjbxPILSpR6nGfWAwCqDq89U3/48GFJUuPGjcudb7VatW7d+UvNyyv1ztSlSxdZLBaH1vGzm/WCujm0jmX9bn0afedF5587cEyfxfyv0PsGB+rat0Zr8yuztPffyzTgm5d01bP3KPGFTx3aryTFtoxVscnm8HoAADjKUnOM5BNR7rzE2YMv+bi6qMig0v8eXTH80vvJyFPXuxdeMP2a6/rKv8Sx3+tVSXqtv0jmmkq3pCsmJsboOACA/4qKitKmTZscXs9rS31ubq4kKT8/v9z5c+bMUUZGhkJDQ9W0adML5g8bNkwZGRmKiIjQ4MGDNWnSJEVGRlYqi8Vi0bFjxxxax9/kI9Wr1O4qrOuL9ynnyEnt/fR7SdLasdM1eOUUHVm6QSd+cWxU4ePpx1VkL3FRUgAAfiPEKvmUP+vX59Bfjq+PuULLlefUyRNSgWO/16uU0BLJLNlKShx+fwIAqHq8ttRHRUXpzJkz2rJli3r06FFmXnp6usaPHy9J6tChg0wmU+m8mjVravz48br++utVo0YNrV+/Xq+99pp++eUXbdq0SYGBgZXK4ig/u1ly4YnvBn07qengnlpww7jSadmHT2jzK7PUc+poLew7Ttb8wgpvr350fc7UAwDc4qSPTRd7Qr0lI++S60ZFBsnXxyxriU2WjPI/+L/cturVqS1fm73CeauadB8f2SSZfXwU3aCB0XEAAP9Vmd4oSSa73e65v5UuYcyYMXrnnXfUsGFDrVy5UrGxsZKkxMRE3XvvvUpJSVFxcbFGjx6t6dOnX3Jb3333nQYPHqyPP/5YDzzwgFvyF+cVaFbzkW7ZlzOMSP5cfsGOf+ABAICjRj67RrMWJ1dq3aMrhiumXojSTuSq4Y1fOrx+cKCvstbfKx8fzx2WKKbfbB07macGdYOVtvJuo+MAAK6Q5/5GuowJEyYoIiJCR48eVdu2bdW+fXu1bNlS3bp1U7NmzdS3b1+pgvfT33LLLQoJCanU/Q0AAMC5Orep3O1wzhDfOtyjCz0AwPt47W+lmJgYJSQkaODAgQoMDFRqaqrCw8M1Y8YMLV68WPv375ccHCTvt5fpAwAAY3RrV6da7hsAgPJ47T31khQXF6dFixZdMD0nJ0epqakym81q167dZbezcOFC5ebmqls3x0ajBwAAztejY101bxiq5KPZbt/3/YNbun2fAABcileX+ovZvXu37Ha7YmNjFRxc9rE3I0eOVLNmzXTVVVeVDpT3z3/+U/Hx8Ro+/NKPvgEAAK5nNpv0+F1xevqNjW7db4+OdRXfuvxH6QEAYBSvvfz+Unbu3Cld5NL7tm3b6ptvvtF9992nAQMG6OOPP9bDDz+sNWvWyN/f34C0AADg9x64LVZhNfzcus8/jWzr1v0BAFARlPrfefbZZ7Vz505lZWWpuLhYhw4d0ptvvqmaNWsakNT5Gg+8WldPerjMtBbD+mhU+lw16t/VsFwAADgivGaApo6/2m37G3h9Qw29qanb9gcAQEVR6quZRjd315Hv/3e5Yo2YOood0U8nN+0zNBcAAI564LaWGnBtjEPrWDLylHYi97LPs/+tmqH+mvH3ngyYCwCokqrlPfWrVq0yOoLL+IcF69bVU+UT6K+84xkyB/gptFE9Jc/9Ueuf+VD1urbS2rHTzy9sMumaNx7XhudnqusL9xsdHQAAh5hMJn380nW69v5FFR40r+vdCx3ah4+PSZ+/2ksN6oVUMiUAAK5VLc/Ue7OirDylfJOgPR8t1sIbx2vjPz7RqS379fPT7yu6ZzudTNwnu7VEktT20UE6mbhXp3ekGB0bAIBKiYoM1soPBqhpg1Cnb9vX16QvJvXWLb0aOX3bAAA4C6XeC4W3a6rMnYckSREdmitz1/m/N+rfVYf/v717j6uqTNQ4/uwtKFclLoIXQFFRwFsqXjJnUik189LY5BBWNn2ONdnolKOn29RxTp3GbMa8HBtLp8vYx7E0R0bN1NS0LEUxL0hoICoIKmCC3GS79/nDhiOFymXDcm1+33+Utdd634d/+PDwrvWuT67ceu/XNVThowfowBurDc0KAEB9dWjnqy/eG60hfYKdNmZrfw+tW3iX7h8R4bQxAQBoCJR6F+Qf06GyyAf0jFD+DwW/7R29lb11vyQpeECUfEJba8Kuhbpvz2IF9emiQXMfV9eH7jI0OwAAddG2tbe2/2203pg1QJ4ezeo1VvyoCB355wSNGFy75/UBADBCk3ym3pV5hfhLDodKcgskSf5R4To4f7UCb+2iC8eyZSspkySlvb9Jae9vqrxu5OrZOvL2Op3cmGRYdgAA6sNqtWj6pO4aPyxci1ematmao8r/vrxG1zZrZtH4oeF6Mj5ad8S2afCsAAA4C6Xexfh371i5Si9JlwqL1e3hESovKKqy6z0AAK4qvK2v5jzVX7Of6KO1207qqwNnte9Ing4cLVBRcYUkyd3NqsjwluobHai+0YGaENeBzfAAAKZkcTgcDqND4KcqSsr0QadJThtv3PZ5+nTCSyrLL3TamFdLSF8udy+PBhkbAABnsdsdstsdcnNruk8gto9boeyzJWrX2ktZW+KNjgMAqCdW6puItXc8ZXQEAAAMZ7VaZLXyvnkAgOtoun+mBgAAAADA5Cj1AAAAAACYFKUeAAAAAACTotQDAAAAAGBSbJR3k3LzbKGE9OVGx6gxN88WRkcAAAAAgCaHUn+TslgsvCIOAAAAAHBd3H4PAAAAAIBJUeoBAAAAADApSj0AAAAAACZFqQcAAAAAwKQo9QAAAAAAmBSlHgAAAAAAk6LUAwAAAABgUpR6AAAAAABMilIPAAAAAIBJUeoBAAAAADApSj0AAAAAACZFqQcAAAAAwKQo9QAAAAAAmBSlHgAAAAAAk6LUAwAAAABgUpR6AAAAAABMilIPAAAAAIBJuRkdANVzOByylZYbHaPG3DxbyGKxGB0DAAAAAJoUSv1NylZarg86TTI6Ro0lpC+Xu5eH0TEAAAAAoEnh9nsAAAAAAEyKUg8AAAAAgElR6gEAAAAAMClKPQAAAAAAJkWpBwAAAADApNj9HgAAwEU5HA5lZl/UviN52peap+wzJSq4cOWVuRcuXtKKDenqGx2ozmEtZbXyaloAMCNKPQAAgIv5vrBc7yUe05sffqu0zAvVnnOxxKYHntkuSQpv66PH7uumR++NVOsAz0ZOCwCoD4vD4XAYHQI/VVFSVuv31IcMitHIj2dXHae4VIUZOUpftUOpyzbIcdnu5KRX8J56AACMV1Fh15x3Duh/lh5QadnlWl/f3N2q6Qkxmv1EH3l6sPYDAGbAT2sXlPHxTmVtTZYsFnkG+anzL3+u/rMnq1WXdvpq5hKj4wEAgAZw6GiBJv9hh5JT8+s8xqUKu+a+e0iJ20/qnf8eokG9gp2aEQDgfGyU54LyDx1Xxuqdyli1QylvJmr96OdUnJ2nyAeGq0VAS6PjAQAAJ9u0K0sDJ/2rXoX+ammZF/SzR9Zr5cYMp4wHAGg4lPomwFZarnPJx2SxWtUynL+4AwDgSrZ8na0xv92skjKbU8e12RyK/89t+mjTcaeOCwBwLkp9E+Hb4UqZL//+otFRAACAk6SfKtS9v/tMlyoaZs8ch0NKeGa7ko/kNcj4AID645l6F+Tm2Vwt/H0rn6nv+tBdCugRoXPJx1SYkWN0PAAA4AR2u0O/fnGnLpZU1Oq6pBVjFRLopdy8EsXGJ97w/AqbXZP/sEN7/zFOzd2b1SMxAKAhuPxKfV5enmbNmqXOnTvLw8NDoaGhmj59uoqLi/Xoo4/KYrFo0aJFRsd0qltn/UrxKe8o/vDfNH7bXxT1yEhlrv9aWyfPMToaAABwksUrU7VjX26trwsJ9FL7YG+FBHrV+JpDx87r5be+qfVcAICG59Ir9d98841GjRql3NxceXt7Kzo6WqdPn9aCBQuUnp6ugoICSVLv3r2NjupUaX/fpMx/fSWru5tu6Ram7lPHy7tNgC6XX6o8x9rcTWM2zdXxNTt1cP7Hlcdvf2OqPIL8tCXhFYPSAwCAG6mosOuVtxu3ZP/l/cP6/cM91NKneaPOCwC4Ppddqc/Ly9OYMWOUm5urGTNmKCcnR8nJycrNzdWcOXO0fv16JSUlyWKxqGfPnkbHdarCjFzl7Dyk7K37dXjxWn328J8U2LuTBs15rPIc+yWbvpi2UD2m/UK3RIdLksJGxqr9nf305dOLDUwPAABu5J/bTig3r7RR5ywutenv675r1DkBADfmsqV+2rRpysrK0pNPPqnXX39dvr6+lZ/NmjVLvXr1ks1mU4cOHdSypWu/5u3c3jSlr9qhjuMHK6hf18rj+QczlPJmooYs+K282vhr0NzHtfu5pSo9c97QvAAA4PqWfPStIfP+9UNj5gUAXJtLlvrU1FStXLlSgYGBevXVV6s9p2/fvpKkXr16/eSzNWvW6LbbbpO3t7datWqlwYMHKyUlpcFzN6QD81bJbrusW2dOrHr8jdWyX76ssZvnKvfLwzq+9kvDMgIAgBurqLDri/1nDJn78Hfnlf99mSFzAwCq55KlfsWKFbLb7UpISJCPj0+153h6ekrVlPoFCxbo/vvv1+23367ExEStWLFCcXFxKi1t3FvcnK0oM1fH136ptj/rqdYDoiqPO2yXdS4pTR4BrfTdym2GZgQAADeWkn5e5ZcuGzb/Pl5vBwA3FZcs9Vu3bpUkDR069JrnZGVlST8q9enp6Zo5c6bmzZun1157TcOHD9fdd9+t2bNnq1+/fo2QvGEdnH9lVf7q1frWA6LUeeJQpS7boP5/fETNPNj8BgCAm1lyar6h8+87Yuz8AICqLA6Hw2F0CGcLDQ1VVlaW9u/fX+3O9jabTW3atFFeXp7S09MVEREhSXr++ec1f/585efnq0WLFk7L069fP+Xm1u6VM+4Oq16y93dahuq4eXlo7Gev68iSdfr2vU81as0flXcgXUkvvVvrsWZb96jCYm+QnAAA4P8VedyuQq87q/3s3++gv56QQE+5NbPKdtl+3c32rvUee5/SXWpV+mkdkgMArickJER79+6t9XUu+Uq74uJiSbrmLfMrV65UXl6efH191bFjx8rju3btUteuXbV8+XK9/PLLOnXqlLp06aIXX3xR8fHxdc6Tm5ur7OzsWl3T3NJMCq7zlDUS+18P6eLJs/r23Y2SpC+mL9LYLa/r5Ce7debr1FqNdTrntC45jLsVEACAJiPoonSN3v7vd9DXhFsza43PvdrF4lJdzKnd7zUAgIbjkqU+JCRE58+fV3JysgYNGlTls5ycHM2cOVOS1LNnT1ksliqfZWdn69lnn9WcOXMUGhqqZcuW6YEHHlBQUJDi4uLqnKe23B1WqQEXvtsNu1Udxw7W2uEzKo8VnTijfa98oMHzpipx2AzZSstrPF7bNm1ZqQcAoBEUeXir8Bqf5eaV3PD62qzUV8fH20Ot2rWrcV4AQM3UpTfKVW+/nzZtmhYuXKjQ0FBt2bJFkZGRkqSkpCQ9+OCDysjIUEVFhaZOnapFixZVXhcZGaljx45pzZo1Gj9+vCTJ4XCod+/e8vPz0+eff95o30NFSZk+6DSp0earr4T05XL38jA6BgAALu/DTzM0cWbdN7c9tflXah/srawzxQq98x+1vn7hs4P0ZHx0necHADiXS26UN2vWLAUEBOjUqVOKiYlRjx491KVLF/Xv318REREaNmyYVM3O9/7+/pJUZUXeYrEoLi5Ohw8fbuTvAgAA4Kf6RgcaPH+AofMDAKpyyVLfvn177dy5U6NHj5aHh4cyMzPl7++vJUuWaP369Tp69KhUTamPiYm55phlZbyTFQAAGC+iva/8fI15W43ValGvSEo9ANxMXLLUS1JUVJTWrVunoqIiFRUVaffu3ZoyZYqKi4uVmZkpq9Wq7t27V7lm3LhxkqRNmzZVHrPb7dq8ebNiY2Mb/XsAAAD4MYvFont+HmrI3MMHtJGXp0tuyQQAptXkfiqnpKTI4XAoMjJSXl5Vt44dM2aMhgwZoilTpig/P19hYWFaunSpUlJStHnzZsMyAwAAXO0390dp+br0Rp/3iYlRjT4nAOD6XHal/loOHTokVXPrvX74y3diYqImTJig5557TmPHjtWJEye0YcOGyufwAQAAjDaoV2v16urfqHO2D/bWPT8La9Q5AQA3Rqn/ET8/Py1ZskTnzp1TeXm59uzZoxEjRjRySgAAgGuzWCz684wBjTrn3Kdj5ebW5H51BICbXpP7yXyjUu/qwkcP1MA//UeVY50nDtXknFUKG8m+AQAAmMXwgW31+C+7NcpcvxjeQRNHRjTKXACA2mlyz9Rv3brV6AiGCrt7gNI/2l75tU/7IEUmxOns3jRDcwEAgNp77elYbUvKUVrmhRpfk5tXUuXfG2nb2kuLX7hNFoulzjkBAA2nyZV6V9e8pZfGbZunZh7NVXI6T9YW7vINC1b6qs/11TNvKzi2q76YvujKyRaLbvvzb7T7hWWKfelho6MDAIBa8vVurs1vjdSQyet14vTFGl0TG59Y4/GDbvHQlrdGKTjAsx4pAQANqcndfu/qLhWWKGPNTh1Zul6Jd87Unhff0bnko9r1+7+qzeDuOpuUJoftsiQp5rExOpv0rfIPZhgdGwAA1FFoiI92vjtaURF+Th03rI23djTAuAAA56LUuyD/7h1VcOi4JCmgZycVHL7y/7CRsTrxyR5Jkl/XUIWPHqADb6w2NCsAAKi/0BAf7V0xTr+bFCNn3CX/63sjdeCje9WtI4UeAG52lHoX5B/TobLIB/SMUP4PBb/tHb2VvXW/JCl4QJR8Qltrwq6Fum/PYgX16aJBcx9X14fuMjQ7AACoGy9PN82bNVA73hmtIX2C6zRG3+hAbfjfu7Rs9hD5tWzh9IwAAOfjmXoX4xXiLzkcKsktkCT5R4Xr4PzVCry1iy4cy5atpEySlPb+JqW9v6nyupGrZ+vI2+t0cmOSYdkBAED93d4nRDvevUeHjhbozQ9TtfHLbB3PLrrm+e2DvRU3sK2emBil2O5BjZoVAFB/lHoX49+9Y+UqvSRdKixWt4dHqLygSCc37jE0GwAAaDw9Iv21+IXBkqT878uUnJqv02dLVF5xWc3drQr291Tf6EC1ZhM8ADA1i8PhcBgdAj9VUVKmDzpNctp447bP06cTXlJZfqHTxrxaQvpyuXt5NMjYAAAAAIDqsVLfRKy94ymjIwAAAAAAnIyN8gAAAAAAMClKPQAAAAAAJkWpBwAAAADApNgo7yblcDhkKy03OkaNuXm2kMViMToGAAAAADQplHoAAAAAAEyK2+8BAAAAADApSj0AAAAAACZFqQcAAAAAwKQo9QAAAAAAmBSlHgAAAAAAk6LUAwAAAABgUpR6AAAAAABMilIPAAAAAIBJUeoBAAAAADApSj0AAAAAACZFqQcAAAAAwKQo9QAAAAAAmBSlHgAAAAAAk6LUAwAAAABgUpR6AAAAAABMilIPAAAAAIBJUeoBAAAAADApSj0AAAAAACZFqQcAAAAAwKQo9QAAAAAAmBSlHgAAAAAAk6LUAwAAAABgUpR6AAAAAABMilIPAAAAAIBJUeoBAAAAADCp/wMj91IqZMUAuAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Transform CutWire instructions to Move instructions\n", + "qc_2 = cut_wires(qc_1)\n", + "\n", + "# Expand the observable to match the new circuit size\n", + "expanded_observable = expand_observables(observable.paulis, qc_0, qc_2)\n", + "print(f\"Expanded Observable: {expanded_observable}\")\n", + "qc_2.draw(\"mpl\")" + ] + }, + { + "cell_type": "markdown", + "id": "fcdcb972-beb7-4126-9720-861359aa6ae7", + "metadata": {}, + "source": [ + "### Partition the circuit and observable\n", "\n", - "Now that the circuit includes `Move` instructions to represent wire cuts, the problem can be separated into partitions. This is accomplished using the [`partition_problem`](/api/qiskit-addon-cutting/qiskit-addon-cutting#partition_problem) method with a set of partition labels to specify how the circuit is separated. Qubits sharing a common partition label are grouped together, and any non-local gates spanning more than one partition are cut.\n", + "Now the problem can be separated into partitions. This is accomplished using the [`partition_problem()`](/api/qiskit-addon-cutting/qiskit-addon-cutting#partition_problem) function with an optional set of partition labels to specify how to separate the circuit. Qubits sharing a common partition label are grouped together, and any non-local gates spanning more than one partition are cut.\n", "\n", - "In this partitioning scheme, you have cut two wires, resulting in a sampling overhead of $4^4$." + "If no partition labels are provided, then the partitioning will be automatically determined based on the connectivity of the circuit. Read the next section on [cutting wires manually](#cut-wires-manually) for more information on including partition labels." ] }, { "cell_type": "code", - "execution_count": 3, - "id": "2139745a-bdc3-40bd-bd6f-d26d2a5b5b14", + "execution_count": 4, + "id": "5fb034f2-da8a-4f4d-ab9b-c990593e04fc", "metadata": {}, "outputs": [ { @@ -147,28 +190,27 @@ "output_type": "stream", "text": [ "Subobservables to measure: \n", - "{'A': PauliList(['IIII', 'ZIII', 'IIIZ']), 'B': PauliList(['ZIII', 'IIII', 'IIII'])}\n", + "{0: PauliList(['IIIII', 'ZIIII', 'IIIIZ']), 1: PauliList(['ZIII', 'IIII', 'IIII'])}\n", "\n", "Sampling overhead: 256.0\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAEvCAYAAABoq3HZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABPdElEQVR4nO3dd1gU59oG8HuXtlSlCSiKhSIWsABKrBhjLMGWeNSQY4mxRI3GeOQzxsSSxBJNrEdjEhNjNGpsx4I9aERsKHYRC6KCLEqTKm33+8OwkQiGXWZ3lt37d11cCbNTnlnG3bln3nlfiVKpVIKIiIiIiMiISMUugIiIiIiISNcYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGh0GIiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGx1TsAkhYSqUSJQWFYpdRZaaWFpBIJGKXQURERERGhkHIwJQUFGJjk3fELqPKwu5sgJmVTOwyiIiIiMjIsGkcEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERofjCBFcg5uj54455aYV5xUgOyEFd7YdR9zafVCWKkSrj4iIiIhIaAxCpJKwIwpJkbGARAJL59rwHNQFQXNGoJZXPZyatkbs8oiIiIiIBMMgRCrpV+4iYXuU6vf4dQcxIGoZvN9+FbELNqEwPVvU+oiIiIiIhMJnhKhSJQWFeBx7CxKpFHYeLmKXQ0REREQkGAahv0lMTMTatWsxbtw4tG3bFubm5pBIJBgxYoTYpYnCtuGzAFSYlSt2KUREREREgmHTuL9ZunQpli1bJnYZojC1NIeFg63qGSGfYT3g2LIxHsfeQnZCitjlEREREREJhkHob5ycnNC7d28EBgYiICAA+/fvx6pVq8QuSydahw9B6/Ah5aYlRpzGmY9/EK0mfaBQKPEktwgmUglsrc0gkUjELomIiEiniopLkZNXDGtLU8gsePpIhoFH8t/MnDmz3O+nT58WrRZdi//lEBL3nILUzBT2TRugxYT+sHZzRGlhkWoeqbkpQg8twt2dUbi8bIdqeselEyBzro0jYV+KVL3wLsSlYdWWOPy6LwH5T0sAAI61LfBuf2+M+1dTNHa3E7tEIiIirSkuVmDX0Xv475Y4HIv5q2WIv48Dxg/2xdu9m8DGykzUGomqw+CfEUpLS0N4eDg8PT0hk8lQv359TJ48GXl5eRg1ahQkEglWrlwpdpl6ITtBjpSoK0iOvICrq3bh9+EL4NSqCYIXjlXNoygqwYlJK9By0kDYN/MAADToGQj31wIQ/ZFh3DkrLlZg9OwotBm8Cz/suKkKQQCQnlWIReuuwLPPVixYewlKpVLUWomIiLQhMTkH/oN2YtB/IsuFIAC4FJ+BsXOj0aT3bzhz+ZFoNRJVl0EHoYsXL6Jly5ZYtGgR5HI5mjVrhuLiYixfvhyDBw9GXFwcAKBVq1Zil6qXHp+Lx51tx9Gofwc4B/iopqdfTsC11bvRafkHsHJzQPCicTgz4wcUpGaKWq8QFAolhs/8Az/suPnS+ZRK4ONl5/DFdxd1VhsREZEuJKfmofPICMQlZL10vkcZT/Hq6P04fz1NZ7URCclgg1BaWhpCQ0Mhl8sxdepUpKSkIDY2FnK5HAsXLkRERARiYmIgkUjg5+cndrl669KSbVCUlKL1tMHlpy/dDkVpKfoeXgR59FXc3RUtWo1C2rD3NjbtT6jy/J/9NxYxVx9rtSYiIiJdGvt5NB7I86o0b15BCQZPi4RCwRYSVPMYbBCaNGkSkpKSMHHiRCxevBi2traq18LDw+Hv74+SkhI0bNgQdnZ81qMyOYly3N0Vjbqd/VCnna9qurKkFI9j4iFzrIXbW46KWqOQVm6+rvYyq7bEaaUWIiIiXbvzIBv7oh6ouUwODkYnaa0mIm0xyCAUFxeHLVu2wMnJCfPnz69wnrZt2wIA/P39Bdnm3bt30bdvX9ja2sLe3h7Dhg1Denq6IOsW2+Vlz+7+PH9XqE47X3gODkHc2n0ImjsSJjJzUWsUQuz1NMRcVf/2/uYDCcjKLtRKTURERLr0w454aPL467dbb2ijHCKtMshe4zZt2gSFQoGwsDDY2NhUOI+lpSUgUBDKyclBSEgIHBwcsGnTJhQUFCA8PBxvvPEGoqOjIZVqljcDAgIgl8vVWsZMKcUsBKm1jPzUNaxze6vS15/cSsZ6979CkKmVDB2XTsD5Lzfixs8H0WvnXLT5+G3EzFqn1nYBwNvLG8UShdrLaUO+uR9g86bayz0tLIV3yw4wL1Xvb0VERKRv0m2GAuZN1V4u4vcLcHcfqZWaiF7G1dUV586d02hZgwxCkZGRAICQkJBK50lKenYLV4gg9N133yE5ORnHjx9HgwYNAADu7u545ZVXsHv3bvTv31+j9crlciQnJ6u1jLnEBHDRaHNVFjh7GHLvP8KNdQcAACcmr0TfI4txf/8ZpJ5Wr5nYw5SHKFKWaqlSNdk3AirOzf/o8eNMoEC9vxUREZHeaVgCaNDIo7QUap+zEInNIIPQvXv3AAAeHh4Vvl5SUoLo6GcP9wsRhPbu3YuOHTuqQhAABAcHo3HjxtizZ4/GQcjV1VXtZcyUUkCLN1jqdWuNRn07YNerU1XTcu6l4vyXG9FhyQTs7jYVJQVVbyZW162u3twRKjAzR4a6CymVgEQCFydrmCrqaacwIiIiHckwV6BAg+XMpIWoU4/fg6R7mpwvlzHIIJSX96ynk4KCiv8pb9myBWlpabC1tUWjRo2qvb3r169j0KBBL0xv3rw5rl9X/+H7Mprc5ivOf4qNTd7ReJv/JDnyAn5tOvyF6TfWHVDdIVLHzVs3YWYlE6i66snLL0a91zbjSU5RFeb+k0QCfx8HXPjtEiQSiTbLIyIi0rqdvydi4JTf1V5u9pRQzBj9qVZqItIWg+wsoSwZxsbGvvBaSkoKpk2bBgDw8/MT5OQ1MzMTtWvXfmG6g4MDMjLUvsdAIrG2MsOIvl5qLzd+sC9DEBERGYTQLg3g7mKt1jJmplKMGuhThTmJ9ItBBqHu3bsDABYuXIibN/8aGDMmJgYhISFIS3vWMxgHUqW/+2hYCzjbV/0OVfMmtRHWu4lWayIiItIVU1MpvpjYVq1lPhrWAi6OllqriUhbDDIIhYeHw9HREQ8ePEDz5s3RsmVLeHl5ISgoCI0bN0a3bt2ASp4Pio6OhpOTk+rnm2++AQBs3ry53PSyZ4wAwN7eHllZL46+nJGRAQcHB63uKwmrgZsNIv7bAw61LP5xXi8PO+xb9Tqsrcx0UhsREZEuDO/nhfmTA6o074h+Xpg3qWrzEukbgwxC7u7uiIqKQp8+fSCTyZCYmAgHBwesWbMGERERqrtEFQWh4uJipKenq37KnjMqLCwsN724uFi1jK+vb4XPAl2/fh2+vr4vTCf9FtjCGac3hGJor8YwM33xn4ittRnGD/bFyfWhaOCmYTdzREREemz6KH/sWPIqAls4Vfi6l4cd/jsjGD/O7QSplM3DqWaSKJWaDJtVc+Xm5sLOzg4SiQQ5OTmwsrKq9joXL16MGTNmICEhAe7u7gCAM2fOoH379tixYwcGDBggQOVVo+3OEoQWdmeD3nSWUJHU9AL8djABM5afQ25+CWrbmuP+ocGwta75A8gSERFVRczVxzh0MhkLfryE3PwSONaywKM/whiAqMYzyDtCL3Pt2jUolUp4eXkJEoIAYMyYMXBzc0O/fv2wd+9ebNu2DUOHDkVQUBD69esnyDZIHC6Olvjg7eaoZfMs+FhbmjIEERGRUQls4YxPxrRSfRfKLEwYgsggGF0QunLlCiDQ+EFl7OzsEBkZCTc3NwwZMgTvvfceXnnlFezduxdSqWG8xR592qP9gtHlpnkODsGIlG1o0DNQtLqIiIiIiDRhkOMIvYw2ghAANGnSBHv37hV0nfqkQe92uLP1mOp3G3dneId1x6Nz8aLWRURERESkCQYhAgCY21mh39ElMJGZI/9hGqQWZrBt4II72/7AqenfwyXQBycmr3w2s0SCV75+H2dmrkXgrBcHVyUiIiIi0ndGF4QiIyPFLkEvFWXnI2FnFIrznuLykm2o29UffpMG4uR/vkXdLv54FBMPZUkpAKD52FA8irmB9MsJYpdNRERERKQRw3iAhQTh0KIRMq7cBQA4+jVBxtVn/9+gZyDu7T8LAKjtUx8efdrh0tLtotZKRERERFQdRndHiCrn0LyhKvw4+jXGg4MxAIC6XVvh3OcbAAAu7XxhU78O3jy5AgBg6VwbwYvGwbKOPeLXHxKxeiIiIiKiqmMQIgCAlasDoFQiX54BAHDw9cDlZdvh1NoLT24loyT/KQAgfv2hcoGn5/Y5uP79Xtw/ECNa7URERERE6mIQIqCsWdyfd4MAoCg7D02Hv47CjBzcP3BW1NqIiIiIiITGIEQAgKQj55F05Lzq9729pgMA+h1bgoNvzqp0uQMveY2IiIiISF8xCNFL7eo6RewSiIiIiIgEx17jiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8NnhAyMqaUFwu5sELuMKjO1tBC7BCIiIiIyQgxCBkYikcDMSiZ2GUREREREeo1N44iIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGh0GIiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0TEVuwASllKpRElBodhlVJmppQUkEonYZRARERGRkWEQMjAlBYXY2OQdscuosrA7G2BmJRO7DCIiIiIyMmwaR0RERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdHhOEIE1+Dm6LljTrlpxXkFyE5IwZ1txxG3dh+UpQrR6iMiIiIiEhqDEKkk7IhCUmQsIJHA0rk2PAd1QdCcEajlVQ+npq0RuzwiIiIiIsEwCJFK+pW7SNgepfo9ft1BDIhaBu+3X0Xsgk0oTM8WtT4iIiIiIqHwGaG/SUxMxNq1azFu3Di0bdsW5ubmkEgkGDFihNil6VxJQSEex96CRCqFnYeL2OUQEREREQmGd4T+ZunSpVi2bJnYZegN24bPAlBhVq7YpRARERERCYZB6G+cnJzQu3dvBAYGIiAgAPv378eqVavELksnTC3NYeFgq3pGyGdYDzi2bIzHsbeQnZAidnlERERERIJhEPqbmTNnlvv99OnTotWia63Dh6B1+JBy0xIjTuPMxz+IVhOJS56Wj7U7buLyrQwUPC2FQy0L9AtpgNAuDWBqypa1RERk+GKuPsb6PbeRlJoHiQTwcLPBu/290dLbQezSqJoMPgilpaXhq6++wo4dO5CUlARnZ2cMHDgQ8+bNw6RJk/Djjz9ixYoVmDhxotilii7+l0NI3HMKUjNT2DdtgBYT+sPazRGlhUWqeaTmpgg9tAh3d0bh8rIdqukdl06AzLk2joR9KVL1JKTM7EJ8MP8Ufjt4F8Ul5btO/3n3LdSrY4VZ41pj9FtNRauRiIhIm05eTMXkhadx7lraC68t3XANHVu7YOWMYPj7OIpSH1WfQQehixcvolevXpDL5bC2tkazZs3w8OFDLF++HHfu3EFGRgYAoFWrVmKXqheyE+RIiboCAEiOvIDUszfQe9fnCF44Fn+8vwQAoCgqwYlJK9Bz51w8OHwemdfvoUHPQLi/FoBd3T4SeQ9ICI8zCtDl3X2IS8iqdJ7kR/kYMzca9+V5+HxiW53WR0REpG37ox5gwJQjKCyqfBzFExdS0WlEBPaveh0dWrNTqZrIYNu2pKWlITQ0FHK5HFOnTkVKSgpiY2Mhl8uxcOFCREREICYmBhKJBH5+fmKXq5cen4vHnW3H0ah/BzgH+Kimp19OwLXVu9Fp+QewcnNA8KJxODPjBxSkZopaL1WfUqnEgCm/vzQEPe+L7y7ilz23tF4XERGRrsTfzcKg/0S+NASVyckrRt9Jh5GcmqeT2khYBhuEJk2ahKSkJEycOBGLFy+Gra2t6rXw8HD4+/ujpKQEDRs2hJ2dnai16rNLS7ZBUVKK1tMGl5++dDsUpaXoe3gR5NFXcXdXtGg1knD+OCdH9IVUtZb58vtLUCqVWquJiIhIl5ZtvIa8gpIqz5/xpBBrtt3Qak2kHQYZhOLi4rBlyxY4OTlh/vz5Fc7Ttu2z5jz+/v7V3l5Z4AoKCoKFhQUkEkm116kvchLluLsrGnU7+6FOO1/VdGVJKR7HxEPmWAu3txwVtUYSzqotcWovE5/4BJFn2KsgERHVfNm5Rfhl7221l/t+ezyKiku1UhNpj0EGoU2bNkGhUCAsLAw2NjYVzmNpaQkIFIRu376N7du3w9XVFYGBgdVen765vOzZ3Z/n7wrVaecLz8EhiFu7D0FzR8JEZi5qjSSM/SeSNFzugeC1EBER6Vr0hVTk5lf9blAZeVoBLsVnaKUm0h6D7CwhMjISABASElLpPElJz074hAhCnTt3RkrKsyvis2fPRnS0MM3EAgICIJfL1VrGTCnFLASptYz81DWsc3ur0tef3ErGeve/QpCplQwdl07A+S834sbPB9Fr51y0+fhtxMxap9Z2AcDbyxvFkn9ugyu2lNofAdJaSJGnwN3dXexytEIJCXIdZmu07OrvfsbmpW8KXhMREekPY/guzDdvAdgM0mjZXm+8CVlJguA10cu5urri3LlzGi1rkEHo3r17AAAPD48KXy8pKVGFFSGCkFSqnRtrcrkcycnJai1jLjEBtNxxSeDsYci9/wg31h0AAJyYvBJ9jyzG/f1nkHpavaZVD1MeokhZA24l25YCUkBRWqr236RGqV0ESNW/u5efm4H8FAN+X4iIyDi+C22dgIobE/2j9MfJQL6Bvi8GyiCDUF7es547CgoKKnx9y5YtSEtLg62tLRo1aqTj6qrO1dVV7WXMlFJAizdY6nVrjUZ9O2DXq1NV03LupeL8lxvRYckE7O42FSUFhVVeX123ujXjjpCJCRQApCYmcKtXT+xytOZx6UMUSRuqvZy97AmsDPh9ISIi4/guLJUUQq5UABL1LnJLlEVwdQCk9ob5vugzTc6XyxhkEHJ1dUVmZiZiY2MRHBxc7rWUlBRMmzYNAODn56fXHRtocpuvOP8pNjZ5Ryv14M/xhX5tOvyF6TfWHVDdIVLHzVs3YWYlE6g67XHvvgnJj/Lh5uqGpKuaPUdTE2zefwdD/++YWss428vw4NxeWJibaK0uIiISn7F8Fw6ccgQ7f7+n1jLvvdUS3826o7WaSDsMsrOE7t27AwAWLlyImzdvqqbHxMQgJCQEaWnPRgjmQKpE5Q3s3hD1Xa3VWmb8YF+GICIiMhiTw5qrNb+JiQQThzbTWj2kPQYZhMLDw+Ho6IgHDx6gefPmaNmyJby8vBAUFITGjRujW7duQCXPB0VHR8PJyUn188033wAANm/eXG66UB0iEOkTczMT7F7+GuxszKo0f+9O7pg5hhcUiIjIcHQJcMOCDwOqPP/qT16Bn7eDVmsi7TDIIOTu7o6oqCj06dMHMpkMiYmJcHBwwJo1axAREaG6S1RRECouLkZ6errqp+w5o8LCwnLTi4uLdb5fRLrQqqkjota9Ac8GlQ80LJEA7w7wxo4l3WFqapAfI0REZMT+711//HdGMKxklT9FYmdjhg3zu2D0W011WhsJxyCfEQIAX19f7N2794Xpubm5SExMhFQqRYsWLV54vWvXrlAqlTqqkkg/+Xk7IH73WzgYnYTVv93AvqgHKFUoYWoiwdThLTH2raZo5G4rdplERERaM35IM4T18cT6Pbewfs9txMalQaEAzE2l+O8nr2Bor8awtqpaCwrSTwYbhCpz7do1KJVKeHt7w8rKSrD1btu2DQBw/fr1cr83bNgQAQFVv71KpC+kUgl6daqPXp3qqx6QdXG0xIIPDW/QYCIioorUsjXHB283xwdvN1d9Fzo7yPDemz5il0YCMLogdOXKFUCg8YOeN2jQoAp/Hz58ONatU3+gUX3j0ac93Dq1xOnp36umeQ4OQcelExA5ciHuH4gRtT4iIiIiInUwCAnE0JvTNejdDne2/tWtso27M7zDuuPRuXhR6yIiIiIi0gSDEAEAzO2s0O/oEpjIzJH/MA1SCzPYNnDBnW1/4NT07+ES6IMTk1c+m1kiwStfv48zM9cicNaLYwoREREREek7owtCkZGRYpegl4qy85GwMwrFeU9xeck21O3qD79JA3HyP9+ibhd/PIqJh7KkFADQfGwoHsXcQPrlBLHLJiIiIiLSCPu9JRWHFo2QceUuAMDRrwkyrj77/wY9A3Fv/1kAQG2f+vDo0w6Xlm4XtVYiIiIiouowujtCVDmH5g1V4cfRrzEeHHzWAULdrq1w7vMNAACXdr6wqV8Hb55cAQCwdK6N4EXjYFnHHvHrD4lYPRERERFR1TEIEQDAytUBUCqRL88AADj4euDysu1wau2FJ7eSUZL/FAAQv/5QucDTc/scXP9+L3uNIyIiIqIahUGIgLJmcX/eDQKAouw8NB3+OgozcnD/wFlRayMiIiIiEhqDEAEAko6cR9KR86rf9/aaDgDod2wJDr45q9LlDrzkNSIiIiIifcUgRC+1q+sUsUsgIiIiIhIce40jIiIiIiKjwyBERERERERGh0GIiIiIiIiMDoMQEREREREZHXaWYGBMLS0QdmeD2GVUmamlhdglEBEREZERYhAyMBKJBGZWMrHLICIiIiLSa2waR0RERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGx1TsAkhYSqUSJQWFYpdRZaaWFpBIJGKXQURERERGhkHIwJQUFGJjk3fELqPKwu5sgJmVTOwyiIiIiMjIsGkcEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERofjCBFcg5uj54455aYV5xUgOyEFd7YdR9zafVCWKkSrj4iIiIhIaAxCpJKwIwpJkbGARAJL59rwHNQFQXNGoJZXPZyatkbs8oiIiIiIBMMgRCrpV+4iYXuU6vf4dQcxIGoZvN9+FbELNqEwPVvU+oiIiIiIhMJnhCqQmJiItWvXYty4cWjbti3Mzc0hkUgwYsQIsUvTqZKCQjyOvQWJVAo7DxexyyEiIiIiEgzvCFVg6dKlWLZsmdhl6AXbhs8CUGFWrtilEBEREREJhkGoAk5OTujduzcCAwMREBCA/fv3Y9WqVWKXpXWmluawcLBVPSPkM6wHHFs2xuPYW8hOSBG7PCIiIiIiwTAIVWDmzJnlfj99+rRotehS6/AhaB0+pNy0xIjTOPPxD6LVRCS2wqJSnL78CJnZhbC0MEULT3vUc7EWuywiIiKdSXmcj8s3M1BQWILathZo7+cMmUXNjxE1fw+qIC0tDV999RV27NiBpKQkODs7Y+DAgZg3bx4mTZqEH3/8EStWrMDEiRPFLlVU8b8cQuKeU5CamcK+aQO0mNAf1m6OKC0sUs0jNTdF6KFFuLszCpeX7VBN77h0AmTOtXEk7EuRqicSVpI8Dys3X8fanTeRlvlUNd3ERIK+XRvgg6HNEBJUV9QaiYiItOn4uRSs2HQdOyPvobRUqZruWNsC7/b3xsShzdDAzUbUGqvD4IPQxYsX0atXL8jlclhbW6NZs2Z4+PAhli9fjjt37iAjIwMA0KpVK7FLFV12ghwpUVcAAMmRF5B69gZ67/ocwQvH4o/3lwAAFEUlODFpBXrunIsHh88j8/o9NOgZCPfXArCr20ci7wGRME5feoQ3PjiE9KzCF14rLVVi5+/3sPP3e5g1rjVmvd8aEolElDqJiIi0Zd73F/HJivMVvpaeVYhF667ghx3x2L38NXRs46rz+oRg0L3GpaWlITQ0FHK5HFOnTkVKSgpiY2Mhl8uxcOFCREREICYmBhKJBH5+fmKXq3cen4vHnW3H0ah/BzgH+Kimp19OwLXVu9Fp+QewcnNA8KJxODPjBxSkZopaL5EQrt/JRM/3D1YYgv5uzrcXsHjdFZ3URUREpCvLNlytNAQ9LzO7CL0nHMLlmxk6qUtoBh2EJk2ahKSkJEycOBGLFy+Gra2t6rXw8HD4+/ujpKQEDRs2hJ2dnai16qtLS7ZBUVKK1tMGl5++dDsUpaXoe3gR5NFXcXdXtGg1EgnpP1+fxZPcoirM+cwnK85Dnpav1ZqIiIh0JS3zKcKXxFR5/py8YkxdfEarNWmLwQahuLg4bNmyBU5OTpg/f36F87Rt2xYA4O/vX+3tbdu2DW+++SY8PDxgZWWFpk2b4pNPPkFubs3udjonUY67u6JRt7Mf6rTzVU1XlpTicUw8ZI61cHvLUVFrJBLKnQfZOBCdpNYyxSUKrN1xU2s1ERER6dKPO2+iqFih1jJHTj9E/N0srdWkLQYbhDZt2gSFQoGwsDDY2FT8EJelpSUgUBBavHgxTExMMG/ePOzfvx/vv/8+Vq9ejZ49e0KhUO9g0jeXlz27+/P8XaE67XzhOTgEcWv3IWjuSJjIzEWtkUgIv+y5DaWyCjP+zbrdt7RRDhERkc5p+p22fs9twWvRNoPtLCEyMhIAEBISUuk8SUnPrvwKEYT27NkDZ2dn1e9dunSBs7MzwsLCcOLECXTu3FntdQYEBEAul6u1jJlSilkIUmsZ+alrWOf2VqWvP7mVjPXuf4UgUysZOi6dgPNfbsSNnw+i1865aPPx24iZtU6t7QKAt5c3iiX6HxRTan8ESGshRZ4Cd3d3scvROWPZ/0zrfoBFG7WXu30v3aDfFyIiGNF3QWWMZf8f2s8AJBZqL7fkvz/j56/6a6Wml3F1dcW5c+c0WtZgg9C9e/cAAB4eHhW+XlJSgujoZ8+1CBGEng9BZQICAgAAycnJGq1TLpervay5xARw0WhzVRY4exhy7z/CjXUHAAAnJq9E3yOLcX//GaSejlNrXQ9THqJIWaqlSgVkWwpIAUVpqcZ/zxrNWPa/Xh6g/mc/oFQa9vtCRAQj+i6ojLHsfy0FYKL+YgX5+TXufTHYIJSXlwcAKCgoqPD1LVu2IC0tDba2tmjUqJFWajh69NmzM76+vv84b0VcXdXvitBMKQW0eIOlXrfWaNS3A3a9OlU1LedeKs5/uREdlkzA7m5TUVLwz71tlanrVrdm3BEyMYECgNTEBG716oldjs4Zy/5ny0qQo8FyJspsuBrw+0JEBCP6LqiMsex/qjIHJbBUezlbWTHsRHhfNDlfLmOwQcjV1RWZmZmIjY1FcHBwuddSUlIwbdo0AICfn59WxgBJTk7Gp59+ip49e2o8RpEmt/mK859iY5N3NNpeVSRHXsCvTYe/MP3GugOqO0TquHnrJsysZAJVpz3u3Tch+VE+3FzdkHRVvYfpDYGx7P/dpBw06fOb2s8JfT6lJz5+7/+0VRYRkV4wlu+CyhjL/i9edwXTvjmr9nLnj6yAl0ctrdSkLQbbWUL37t0BAAsXLsTNm3/16BQTE4OQkBCkpaUBWhpINTc3F/369YO5uTl+/PFHwddPRNrRyN0WvTvVV2sZM1MpRg3w1lpNREREujSyvxcszNVrG9fjlXo1LgTBkINQeHg4HB0d8eDBAzRv3hwtW7aEl5cXgoKC0LhxY3Tr1g2o5Pmg6OhoODk5qX6++eYbAMDmzZvLTS97xuh5BQUFCA0Nxd27d3Ho0CG4ubnpYG+JSChfTw2CvV3Ve0FcOCUQdRzVb0JARESkjxxry/D1f6re8VYtG3N88592Wq1JWww2CLm7uyMqKgp9+vSBTCZDYmIiHBwcsGbNGkRERKjuElUUhIqLi5Genq76KXvOqLCwsNz04uLiF5Z76623cO7cOezfvx/NmjXT0d4SkVB8GtXGwW97oo7DPzfZ/PKDtpjy7xY6qYuIiEhXJgxphq+mBP7jfE72MhxY/Tqae9rrpC6hGewzQvizk4K9e/e+MD03NxeJiYmQSqVo0eLFk5iuXbtCqeZDAmVjFv3+++/Yt28fgoLU68KaiPRHYAtnXNw6AKt/i8N32+KRml6+05XBPRth4pBm6NhG8wc0iYiI9Nm0kX7o2MYFK369jm2HE1Fc8lfnVnUcZBj9pg/e/5cv6rlYi1pndRh0EKrMtWvXoFQq4e3tDSsrK0HWOWHCBGzduhXTp0+HlZUVTp8+rXqtSZMmFXavTUT6y83ZCnMntMXMMa0QczUN/SYdRvqTQrg6WmLzV93ELo+IiEjrgv1dEOzvgqXhBWg+YDvSsgrhVNsC9w8NUfs5In1ksE3jXubKlSuAQOMHldm/fz8AYMGCBQgODi73ExERIdh2xOLRpz3aLxhdbprn4BCMSNmGBj3/+dYpUU1lbmaCDq1dILN49oFvYiJ8L5NERET6rI6jpSr4WJibGEQIgrHeEdJGEEpMTBRsXfqoQe92uLP1mOp3G3dneId1x6Nz8aLWRURERESkCQYhAgCY21mh39ElMJGZI/9hGqQWZrBt4II72/7AqenfwyXQBycmr3w2s0SCV75+H2dmrkXgrBfHFCIiIiIi0ndGGYQiIyPFLkHvFGXnI2FnFIrznuLykm2o29UffpMG4uR/vkXdLv54FBMPZUkpAKD52FA8irmB9MsJYpdNRERERKQRo3xGiCrm0KIRMq7cBQA4+jVBxtVn/9+gZyDu7X82wnBtn/rw6NMOl5ZuF7VWIiIiIqLqMMo7QlQxh+YNVeHH0a8xHhyMAQDU7doK5z7fAABwaecLm/p18ObJFQAAS+faCF40DpZ17BG//pCI1RMRERERVR2DEAEArFwdAKUS+fIMAICDrwcuL9sOp9ZeeHIrGSX5TwEA8esPlQs8PbfPwfXv9+L+gRjRaiciIiIiUheDEAFlzeL+vBsEAEXZeWg6/HUUZuTg/oGzotZGRERERCQ0BiECACQdOY+kI+dVv+/tNR0A0O/YEhx8c1alyx14yWtERERERPqKQYhealfXKWKXQEREREQkOPYaR0RERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjrsLMHAmFpaIOzOBrHLqDJTSwuxSyAiIiIiI8QgZGAkEgnMrGRil0FEREREpNfYNI6IiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGh0GIiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiKiKsnKysLs2bNx7NgxsUupMZ48eYIPPvgA9erVg0wmQ/PmzbF69WoolUqxS9MIjwH1pKSk4JNPPkHPnj3h7OwMiUSCESNGiF0WEf2JQYiIiKokKysLc+bM4UlwFRUVFeG1117Dt99+i8GDB2PFihXw8fHB+PHjMWfOHLHL0wiPAfXEx8dj3rx5uH79OgIDA8Uuh4j+xlTsAoiIiAzRDz/8gJiYGCxfvhwffPABAGD06NF48803MW/ePIwcORIeHh5il0la1LZtWzx69AjOzs5IS0uDs7Oz2CUR0XN4R8jAKJVKFOc/rTE/NbV5CFFNUFRUhK+++gqtWrWClZUVatWqhYCAAKxcuVI1z4gRIyCRSCpc/vlmPMeOHUOjRo0AAHPmzIFEIoFEIkHDhg3VqqlsnZGRkQgODoaVlRXc3d2xcOFCAEBmZiZGjRqFOnXqwMrKCm+88QYePnz4wnoSExPx73//Gy4uLrCwsECTJk0wY8YM5Ofnq+ZZvXo1JBIJdu/e/cLyCoUC7u7uaNWqVbnp586dw4ABA+Dk5AQLCwv4+Pjgyy+/RElJiVr7CQC//vorrKysMHr06HLTP/zwQxQXF2PLli1qr1NdPAbEPQZsbW0Zfoj0GO8IGZiSgkJsbPKO2GVUWdidDTCzkoldBpHBKSoqwuuvv45jx46hR48eeOeddyCTyXDlyhXs2LEDEydOVGt9vr6+WLJkCaZMmYIBAwZg4MCBAAAbGxu1a7tw4QL27NmDMWPGYNiwYfjtt98wffp0yGQy/Pzzz2jYsCFmz56N27dvY/ny5Rg2bBiOHDmiWv7evXsICgrCkydPMH78eHh5eeHYsWOYP38+oqOj8fvvv8PU1BRDhgzBlClTsH79evTt27dcDb///juSk5MxdepU1bSIiAgMHDgQnp6emDp1KhwcHHDq1Cl89tlnuHjxIrZu3VrlfVQoFIiNjUWbNm0gk5X/jAsKCoJEIkFMTIza7506eAyIewwQkf5jECIiMkBLly7FsWPH8PHHH2PevHnlXlMoFGqvz8XFBf3798eUKVPg5+eHd97R/ILLlStXcOrUKbRr1w4AMGrUKHh4eGDKlCmYOHEili9fXm7+JUuWID4+Hj4+PgCAGTNm4PHjx4iIiEDv3r0BAOPHj8e0adOwePFi/Pzzzxg1ahTs7e0RGhqKPXv2IDMzE/b29qp1rl+/HqampggLCwMAPH36FKNGjUK7du0QGRkJU9NnX49jx46Fv78/PvroIxw7dgxdu3at0j5mZmaioKAA9erVe+E1CwsLODk5ITk5WeP3sCp4DIh7DBCR/mPTOCIiA7Rx40bY29vjs88+e+E1qVTcj/7g4GDVCTAAmJubIygoCEqlEpMmTSo3b6dOnQAAt27dAv48gd+9ezdat26tOgEu8/HHH0MqlWLnzp2qacOHD0dhYWG5Zmi5ubnYuXMnevbsiTp16gAADh8+jNTUVIwcORJZWVlIS0tT/ZRt59ChQ1Xex7LmWRYWFhW+LpPJyjXh0gYeA8+IdQwQkf7jHSEiIgN069YttGrV6oVmWfqgcePGL0wru1Jf9gzK36enp6cDAB4/fozc3Fw0b978hXU4ODjAzc0NCQkJqmllJ7rr16/HuHHjAADbt29HXl4ehg0bppovLi4OAPDuu+9WWndqamqV99HKygoAUFhYWOHrT58+Vc2jLTwGnhHrGCAi/ccgRERkxCp7SF6TB8OrysTERO3XNO1YxdTUFG+//TaWLl2K27dvw9PTE+vXr4e9vX25Z0bK1r9o0aIXHp4vU7du3Spv197eHpaWlhU2fyssLERaWhq6dOmi0T4JjcdA+fULdQwQkf5jECIiMkDe3t64ceMGCgsLK22ehT+voANARkaG6v8BlLuiXqayE2ZdcnZ2hq2tLa5du/bCa5mZmUhJSXnhJHb48OFYunQp1q9fj9GjR+PYsWMYM2ZMuffFy8sLAGBtbY3u3btXu06pVIo2bdrgwoULL/wNzp49C6VSiYCAgGpv52V4DPxFjGOAiPQfnxEiqsCTnCIcPfsQi9ddwahZUch48qx5S2Z2EVZuuo5Tl1KRX6C9q6ViKylR4PLNDKzbdROTF5x6bv8LMWd1LPb+cR8pj7X7fIPYHj7Kw55j9zF7VSyGf/KH6j3IyinCz7tu4eqtDJSUqP/Aua6EhYUhMzMTX3zxxQuvPX9l3dvbGwDK9cgFAF9//fULy5X1DpaRkaGFiqtGKpUiNDQUFy5cwIEDB8q9tmDBAigUCgwYMKDc9FatWsHPzw8bNmzAL7/8AoVCgeHDh5eb5/XXX0edOnWwYMGCCvevoKAAOTk5atU6dOhQ5Ofn47vvvis3fenSpTA1NcXgwYPVWp+6eAz8RaxjoCZTKpW49zAHO44k4pPl58p9Dj7JKcKvEXcQfzcLCoXhDoORnVuEP86l4Jv1VzB6dvlzgeUbryH6Qiry8ovFLlNrSksVuHY7E+t338KUr06r9j8juxCz/huL3UfvITk1r0YPhcI7QkR/UiiUOHwqGau2xGHv8QcVfrjnPy3BB/NPAQAszE0wpGdjjB/si6CWhjFOREJSNtZsvYG1O28iPevFZxvyn5Zi9uoLqt+DWjhjwhBf/Ov1RpBZ1PyPk4KnJdh8IAGrtsTh3LW0CufJKyjBiE+PAwCc7WUYNdAb4wY1hUddWx1X+3KTJ0/Gnj178MUXXyAmJgY9evSATCbDtWvXEB8frzrpHTp0KGbMmIExY8bgxo0bcHBwwIEDB5CW9uL+Ozo6wtPTE5s3b0aTJk3g4uICa2trhIaG6nTf5s2bh8OHD6N///4YP348PD09cfz4cWzZsgWdO3d+4QQXf94RmDp1KhYuXAhvb2+0b9++3OvW1tZYv349+vfvDx8fH7z77rvw9PREVlYWbty4gR07dmDnzp1q9Rg2evRo/PTTT/joo4+QmJgIX19f7Nu3Dzt37sTMmTPVHn9HXTwGyhPjGACgCqJlnWNcvnxZNa1z587o3LlzNd4J4WXnFuGXvbexakscrt/JqnCe3IIShH18DADg7mKNsYN88N5AH7g6afe5N11QKpWIPJOCVVvisOvYPZSWVnwuMHnhaQCAmakUg3o0wvjBvnilVR29uGtaXfdTcvHdthv4fns8HmU8feH1gqelmLvmr3OBNr6OGD/YF0N7NYGVZc06F5Aoa3KMoxcU5z9Vexwh1+Dm6LljTvn15BUgOyEFd7YdR9zafVCWaufKt76MI3T8XArGzI1GfOITjZbv2NoF38/uiKaNagtemy6kZz3Fh1+dxsaIO9DkE8GxtgUWfRSEEf28auSXgFKpxA/b4zF92TnVFS91SCTAsFAvfDOtHRxqVd4ESdeePn2Kr7/+Gr/++ivu3LkDmUwGLy8vjBw5EuPHj1fNd+bMGXz00Uc4f/48bGxsMHDgQHz11Vewt7fH8OHDsW7dOtW8Z8+exZQpU3Dx4kXk5+fDw8MDiYmJVa5JIpG8sE78Oajnzz///MKVxWPHjiEkJAQ//fSTamBPALh79y4+++wzHDx4EFlZWXB3d8eQIUMwc+bMCjshSE1Nhbu7O0pKSvDFF1/gk08+qbC+q1evYsGCBTh69CgeP34Me3t7NGnSBL169cKECRPKNR2riqysLMycORM7duxAeno6mjRpgvHjx2PChAk6+bfCY+AvYh0DL/s7z5o1C7Nnz1ZrfdpSWqrAN+uvYu6ai8jV4C6HqakE4//li3mTAmBtZaaVGrXt9KVHGD3nBK7eztRo+aAWzvh+dkf4eat3jOiLrOxCTP36LNbtuqXRnb7atuaYNykAYwc1hVRaM84FGIQMTHWCUMKOKCRFxgISCSyda8NzUBfY+3ogfsNhnJq2Riv1ih2E8vKLMWP5OSz/9Xq112VhboK549tg6vAWMDGpOa1Od/6eiHGfR1d41UddvTq647vPOsLd1VqQ2nThfkou3psdhcOnXhy5Xl1uzlZY82kHhHZtIEhtRES6cONuFkbMPI4zVx5Xe11N6tvixzmd0DnATZDadOFpYQk++28svl5/tdpN/cxMpfh0bCtMf9cfZmY151xgf9QDjJ5zAsmPqt/svVuQG9bO6YSG9fSrpURFGIQMTHWCUMyc9bj27W7VdFNLCwyIWgYrNwds9nsPhenZgtcrZhBKz3qK3uMP4ezV6n/wP++t1xpiw/yusDCvvFckfaBUKjH/h0v4ZMV5Qdfr6mSJw2t6ooWX/l8Ru3gjHa+POyBICHzeV1MCMW2kn6DrJCLShmMxKeg76TBy8oR71kUqleDHOZ0wvJ+XYOvUlic5RQj94BCiYoXtGr1P5/rYurgbLGX631Rs6S9XMWXRGUHX6WQvw4HVr6NtMydB1ys0/f/rkGhKCgrxOPYWGoYGw87DBY+1EITE8iSnCK+NOYALN9IFX/e2w4koKT2KrYu7wdRUf68Gzfv+EmauFDYEAYA8rQAh7+3H8Z/6wLex/jYVvHorA93e24fM7CLB1x2+JAYAjCYMPX78GKWlpS+dx8bGRvWgfU2Wm5uL3Nzcl85jYmICZ2fDeG6wqngMlFdTjoGo83L0nnAQBU9f/rdTl0KhxIhPjz9rNtxXf8NQXn4xeo0/iFOXHgm+7ojjDzDgwyPYveI1mJvp74VRbYQgAEjLfIpXR+/HsbW90aqpo+DrF4r+nqWJJDExEWvXrsW4cePQtm1bmJubQyKRlGuXbExsG7oAAAqzXv6hX5MolUoM/b+jWglBZf4XeQ/Tl8Zobf3VtfXQXa2EoDJpmU/Ra/xBZOcKHzKEkJldiJ7vH9RKCCoTviQG/4us+nMTNVlgYCDc3Nxe+rN48WKxyxTE4sWL/3FfAwMDxS5T53gM1Lxj4IE8F6GTDgsegp737qwonLyon4PQKpXPwpo2QlCZgyeTMXnBaa2tv7oijt/XSggq8ySnCL3GH0R6lrCtLoTEO0J/s3TpUixbtkzsMkRhamkOCwdb1TNCPsN6wLFlYzyOvYXshBSxyxPMjztvYv+JJLWWidnUF65OVpCn5SNw6O4qLAF888tVDHi1ITq0dtGwUu14lF6A8V+eVGsZTfb/3sNc/Ofrs/huVkcNK9WeKV+dUbsdtCbvwbjPT6JTG1c41ha/QxBt2rhxIwoKCl46T+PGjV+YFhNT9YsFaWlp2LFjBwYOHAgnp6o3tRD6hHTYsGHo2PHlx7SlpaWg26wJNDkG1Pn7g8eAoJRKJUbPPoEnOepdDFL3c7C0VImRn0bh4tb+etdE7LeDd7HtsHoXqzT5Hvh26w28+VpDdG9fT8NKtSMzuxCj50SrtYwm+y9PK8CkBaexcYF6vS3qin4dlXrAyckJvXv3RmBgIAICArB//36sWrVK7LJ0onX4ELQOH1JuWmLEaZz5+AfRahJakjwPHy1W/+qHq5MV3F3U6wBAqQRGfnYcl7cN0KuupSfMO4m0TPWuzmiy/wDw/fZ4DOrRCK8F688XwL6oB/h59y21l9PkPUhN1+8vAKF06NBB69tIS0vDDz/8gM6dO6t1Eiy0xo0bVxjqjB2PgZrlp//dwsGTyWovp8nn4M17T/DpyvNY/J92am9PWx5nFGDCPPUuCKIa34WjZkXh6o6BsLU2V3tZbflo0Rm1xwPUdP9/3XcH/3q9EfqFeKi9rLaxadzfzJw5ExEREZg9ezbeeOMN2Nvbi12SzsT/cggH/zUHh8O+xLnPf8HTjBxYuzmitPCvK0ZSc1P0O7YEfpMHllu249IJ6L6x4q5I9cmyjdeQnau7wc9u3cvG5gMvjs4ulmu3M9W+AlZdnz831oA+mPutbuv5dd8d3LqnWbfsRERCKy1V6PxzeeXmOL1qHvXfzXEVjpWnLfdT8vDz7ts6294/uZuUo9EFweqYs/qCXg68avBBKC0tDeHh4fD09IRMJkP9+vUxefJk5OXlYdSoUZBIJFi5cqXYZeqF7AQ5UqKuIDnyAq6u2oXfhy+AU6smCF44VjWPoqgEJyatQMtJA2Hf7Fmyb9AzEO6vBSD6I/2+c1bwtAQ//u+mzre7akuczrdZmdW/6b6WqNhUXLkp3ij0zzt/PU2Q7mHV9e3WGzrfJhFRRQ5EJyHxoW6f+y0sKsVP/9PtiXdliosV+G57vM63u2pLnN4EgTXbbmg0ZmB1XLiRjrMifP/+E4MOQhcvXkTLli2xaNEiyOVyNGvWDMXFxVi+fDkGDx6MuLhnJ4WtWrUSu1S99PhcPO5sO45G/TvAOcBHNT39cgKurd6NTss/gJWbA4IXjcOZGT+gIFWzAch0ZdvhuxoNllldMVfTcP76iyO061p+QQnW7xHnipS+BIE1ItXx486bKCzS3gPJRERV9e1v4nwOfrtVP4LA3uP31W4SJoS4hCxEnZfrfLt/V1yswNqdur8oDACrRTr2XsZgg1BaWhpCQ0Mhl8sxdepUpKSkIDY2FnK5HAsXLkRERARiYmIgkUjg52ccXdxq4tKSbVCUlKL1tMHlpy/dDkVpKfoeXgR59FXc3aXeA3diOBojXocPx0TcdpnYuDRBx4lQx7Fz4u8/RDwGsnKKcCleP+6K1VS2trbo2bMnbG31f4A+0g4eA9WnUCjxh0gn43ce5CApNU+UbT9P1HOBc+IHoau3M9R+Tlgo+nIu8DyDDUKTJk1CUlISJk6ciMWLF5f74AwPD4e/vz9KSkrQsGFD2NnZiVqrPstJlOPurmjU7eyHOu18VdOVJaV4HBMPmWMt3N5yVNQaq+r8de11l/3P2xb/jpCYNdy4+wR5+eKEsDJZ2YW4fV+8sbD04RioyerVq4e5c+eiXj396XiDdIvHQPXduvdEtAti0JPPQTFr0I/9F+9c6N7DXNFCWGUMMgjFxcVhy5YtcHJywvz58yucp23btgAAf3//am8vKioK3bt3h5ubGywsLODu7l6u6V1Nd3nZs7s/z98VqtPOF56DQxC3dh+C5o6EiUx/ekKpSGFRKa7dEa/pnpgfPGVi48SrQaFQ4pLIzwldFPmOjD58AdZkhYWFePDgAQoLdd+8lfQDj4Hq0+b4eVUh9nehQqEU9T3Qh++B2DhxaxB7+3+nP336CmjTpk1QKBQICwurdBTrsj7+hQhCmZmZaNmyJcaOHYs6deogKSkJ8+fPR3BwMK5evQp3d3eN1hsQEAC5XL3bqGZKKWYhSK1l5KeuYZ3bW5W+/uRWMta7/xWCTK1k6Lh0As5/uRE3fj6IXjvnos3HbyNm1jq1tgsA3l7eKJYo1F5OXaUSa5Tah1f6elnf+JVxdbJU/ffB4SGVzldZ3/q37qZofBwIJc0mDDD3rvA1ofYfL3kPQge8Dcti3T+gWqbArBlgO7jC1/5p/yHAMbBxyy4cWDtU7boN2VtvVf6583ePHj3Cpk2bMHToUNSpU6fKyw0YMEDD6kjb1Pn7g8eAIHIt2gHWvSt8TRefg0uWf4+fFvRTu26hKGCOAofKe7jV9rlAcuoT0c8F0m3+BZg3r/A1XZwLDHlnNKyKrqhd98u4urri3LlzGi1rkEEoMjISABASElLpPElJzwbUFCII9e3bF3379i03LTAwED4+Pti+fTsmT56s0XrlcjmSk9Xr599cYgJoefzOwNnDkHv/EW6sOwAAODF5JfoeWYz7+88g9bR6d8EepjxEkVIHD5Gb2gMv6Qm9qn3jm5pINepDX6mUqP23FFzDEqCSG3fa3n8AyMh4AmSL+B7UqgdU8miBOmMjaPoePH1aLP4xoGfy8qr+vEDZYJ0FBQVqLcf3XH+p83cEjwFhOOUAlXx86eJzMC//KfLE/HtIrQCHyl/W/nehifjHY4MiUc8FMjOzkZmlP/8mDTII3bt3DwDg4VHxwE0lJSWIjn72cL8QQagijo6OAABTU83fYldXV7WXMVNKAS3eYKnXrTUa9e2AXa9OVU3LuZeK819uRIclE7C721SUFFS92UJdt7o6uiNkhZfdW5OnvbwHGVcnS5iaSFFSqoA8rfLR0ytbj1SigJvI7drTLExQ2V9GqP1/2bocHOxgaSvee1BgZofKGsf90/5DgGNAJjOFI59tKMfauupfpGUnvpaWlmotx+dJ9Jc6f0fwGBBEroUNKhvVTBefg9ZWFqgt4t9DATO87HF9bZ8LSFCCuiIfjxkyU1RWuS7OBeztbWFlLex7oMn5chmJUh/6MhSYg4MDMjMzcfLkSQQHB7/w+saNG/HOO+/A1tYWT548gUQiqXRdM2fOxJdffonhw4dj3bqXN/0qLS2FQqHAvXv38PHHH+PEiRO4fPkynJ2dBdmvqijOf4qNTd7R2faqK+zOBphZybS+ndJSBWq98gvyCko0Wv7B4SFwd7FGUmoe6r+2We3l2zZzwrnN4jUHAIAJX57UeEyj6u4/AFzaNgB+3i+5FKdl5649rvA2fVVV9z348J3mWBLeXuPtG6KYmJgqz3vjxg0MGzYM69evR9OmTau8XGBgoIbVkbap8/cHjwFB7Dl2H30nHdZ4+ep+Di78MBDh74rXU69SqUSdrr9q/MB+dfe/aaNaiNulXpNQoYV/cxaL1mnWNE2Ic4GTv7yBYH8tN11Sg0F2llCWDGNjY194LSUlBdOmTQMA+Pn5vTQEqatLly4wNzeHl5cXLl68iMjISJ2GIKqciYkUrZo6irb9ts3E2/ZfNTiJtm2ZhQmaNa4t2vYBoKWXA8xMxfvIE/P9JyKCHnwXif05KJFI0NZXzHMB8b8HxKxBKpXA31v886HnGWQQ6t69OwBg4cKFuHnzr0GjYmJiEBISgrS0Zz1WCD2Q6tq1a3H69Gls2rQJdnZ26NGjB+7fvy/oNkhz/PATb//9vR1gKmIIAQALcxO08HzJg2Japg/HQE3WtGlTnD17Vq07AWRYeAxUX9061qoH3sXQxsgvCurD94CYNTRrXBtWlvr1VI5BBqHw8HA4OjriwYMHaN68OVq2bAkvLy8EBQWhcePG6NatG1DJ80HR0dFwcnJS/XzzzTcAgM2bN5ebXvaM0fN8fHzQrl07DBkyBL///jtycnLw1Vdf6WCPqSpCuzYQZbtSqQS9OorbSwwAtPC0h0fdintR1LY3utQXZbt/F9pFnGPAs4EdfBrWEmXbRETPE+tzsENrF9jbWYiy7eeJtf8A0KeT+N+FTerbwlekFhr6ci7wPIMMQu7u7oiKikKfPn0gk8mQmJgIBwcHrFmzBhEREaq7RBUFoeLiYqSnp6t+ynqpKSwsLDe9uPjlA5LVrl0bnp6euH37tpb2ktTVLaguvD10fzLat2sD1HcVJ4A8z8REirFv6f5KqpmpFO8N9NH5disy+k0fmJgI1xy2qt7/V1NIpbrfriG5d+8e3n33XVVnOGR8eAwIY/xg3yrMJbwJIm3379r5OaNVU90/r9q9fV1468EFMYlEgvf/pftzAYkEGDdI/+7mGmQQAgBfX1/s3bsXOTk5yMnJwZkzZzBmzBjk5eUhMTERUqkULVq0eGG5rl27QqlU/uNP165dX7r9R48eIT4+Hk2aNNHiXpI6pFJx/vGLsc3KjBrgDXMz3f6zH9jd4x/HptAVd1dr9OtacW+S2iKzMMGIfhWP30RVV1BQgKtXr6ouTpHx4TEgjFZNHRHsX/VxmIRQx0GGgd0b6nSblZFIJBj/L92HsvdF2GZlhoV6wVrHTdT6dKoPj7qVjGEhIoMNQpW5du0alEolvLy8YGUlzMnZO++8g9mzZ+N///sfjh07hu+//x5du3aFqakppkyZIsg2SBhjBzXV6V2hXh3d8Vqw/nTdWsfREtPf1U6X8RWxlJngi4kBOtteVXw5qS0szE10tr1Px7SCQy3xm4MQEZVZ9FEQBOwr6h8t+DBQp5+7/2R4Py+d9mLaua0r+nfT7UW4l6lla45Z41rrbHvmZlIs+FA/e280uiB05cqzLgOFHD+offv22LdvH0aOHIlevXph0aJF6NSpEy5evAhPT0/BtiMmjz7t0X7B6HLTPAeHYETKNjToqZ8Hd0UsZab46fNOOvkCsLMxw3efdRS0Z0IhfDLGH/4+uvkCWDA5EJ4N7HSyrapq2qg2vpjYVifbatvMCeEjxesqloioIh1au2DKv19sFaMNvTq6Y0Q/L51sq6rMzUyw7vNOMDXV/vezlcwUP87tpHfNoz8a1gLt/XTTs/Hs99uguYidFb0Mg5AAJk6ciLNnzyIzMxMFBQW4efMm1qxZU+mArjVRg97tcP/AWdXvNu7O8A7rjkfn4kWtSxOvtHLBx6PU+/vL0/KRlJpXpQHnyvx3xitwd9Vs5GVtMjczwc9fdIaVrOq3xTXZ/+7t62Li0GYaVqldU/7dHF0C1BuATd33wMbKDD9/0Vn03vKIiCry+YS2aOml3smpup+DdRxkenlBEABa+zph7nj1Lopp8l24JLwdmtTXrwuC+PO54Z8+7ww7G7MqL6PJ/ndo7YJpI1pqWKX2GeSAqi/TrVs3HD16FHv37kWfPn3ELkdwmg6oam5nhX5Hl8BEZo78h2mQWpjBtoEL7mz7A6emf483T67A9lc+gLKkFJBI0GPzpzj/5QYEzhqO69/vxf0D6g2MV0ZXA6r+nUKhxOg5J/DjzptVmFt9iz4Kwn/0+B8+ABw+lYzQDw6jsKhU8HW3a+mMw9/1hK21ueDrFsqTnCK8Ono/zl9PE3zdljITRKzsgZCguoKv25CoM6DmkydPcPLkSbzyyiuoVavqzVs5mKb+UndAVR4Dwkt5nI/OIyNw+3624Ou2tzPH0bW94e8jfpfZlVEqlZi88DRW/HpdK+ufM74NPtNhEzRNnIiV4/VxB5H/VLMB51/G38cBR9f21oveAitjdJcqIyMjoVQqDTIEVUdRdj4Sdkbh+g8R2P3aNJz97Cc8jr2Jk//5Fm4dWuBRTPyzEASg+dhQPIq5gfTLCWKXrTGpVILvZ3XEpLeFvWMhlUqw4uNgvQ9BAPBacD3sX9VDratBVdEtyE3vQxD+bCP9+/e91L4z9E9q25rj0Lc9GYIEVqtWLfTq1UutE2AyLDwGhOfmbIXjP/URvLl03TpW+OPHPnodgvBnxwnL/q89po8StgmzRAIs/DBQ70MQAHRs44oj3/cU/FnWDq1d9D4EwRiDEFXOoUUjZFy5CwBw9GuCjKvP/r9Bz0Dc2/+sWVxtn/rw6NMOl5ZuF7VWIUilEiybHoz/LesOF8fqDzDn27g2Tq5/Q2+bg1UkJKguru4YiNdfqX6HDjILEyyeGoRDa/Q/BJWpZWuOI9/1wvzJAYL0pte7kzuu7hiIjm2EDVcEZGZmYuvWrcjMzBS7FBIJjwHtcHO2wukNofi/d/0EeY4lrE8TXNk+EC112BlBdUgkEsyfHIj9q16Hu0v1m7N7NrDDHz/2Qfi7Nef50GB/F1zdMVCQMZbMTKX4YmJbHP1B/0MQGIToeQ7NG6rCj6NfY6T/GYrqdm2F5MgLAACXdr6wqV8Hb55cgbfOroJzGy8ELxoHn2E9RK29OvqFeOD6/97EuEFN1XpupoxjbQt8NrY1Yrf0Qzs/3XZJKoT6rjbYv/p1/Di3k0YdG0ilEvTt2gAXf+uPqcNbwsSkZn2smJpKMX2UPy781h99OtfXqCMNb49a+PmLzti7sgfqCfBFSi9KTU3FokWLkJqaKnYpJBIeA9ojszDFgg8DceqXUIQEumm0Dn8fB/xvWXdsmN+1RvaU2bPjswtZk95uBhsr9VtK1LY1x/RRfri0dQA6ta15F8PcnK2wa3l3bJzfFU0bqX/XVSJ51jHG+c398MmYVjDT8VAdmtJtJ+Kkt6xcHQClEvnyDACAg68HLi/bDqfWXnhyKxkl+U8BAPHrDyF+/SHVcj23z6nWM0L6wqGWBVZ/2gHzJwdg/Z7b2BBxG5fiM1BUrKhwfmtLUwS1cMbI/l4Y1KMRZBY1+5+SRCLByP7eGN7XC0dOJ2PN1ngcj5UjLfNpJfM/632tf4gHxg7y0cuxAdTVrIk99q7sgbtJOViz7QZ2Hb2H+MQnqOwpSmd7GboEuGLsoKZ4tV1dvXwYmIhIHUEtnRG5tjfiErKwaksc9p94gDsPciqdv24dK7waVBfvD26K9n51avznYC1bcyybHozPJ7bFhr238cve27hwI6PSZ2mtZKZo28wRI/p5Y0jPxrDS8dg8QpNIJHi7TxMM7d0Yx2JS8O3WGzgWk4JHGRWfCwCAT8NaCO3SAOP+1VQvO4X4JzX7L0aCcWjRSHU3CACKsvPQdPjrKMzIKddbnKGrbWeBSWHNMSmsOYqKS3H1Vibi7mYhv6AEUqkENlZm8PN2gLeHXY2781EVUqkEPV5xR49X3KFUKvFAnocLN9KR8aQQxSUKyMxN0KieLVr7Omp0xawmaORuiwUfBmLBh4HIySvChbh03E3ORWFxKcxMpXCoZYE2vo5wd7Gu8V/6REQV8W1cGys+DgYQjMzsQsReT0dSah4Ki0thbiaFs70MbZs56c1g2UKzszHH+CHNMH5IMxQXK3A9IRPXbmchr6AYUqkE1pamaOnlgKaNahnkuYBEIkFIUF2EBNWFUqlEcmo+YuPSkP7nuYCFmQka1rNB66aOsLOpGU3hK8MgRACApCPnkXTkvOr3vb2mAwD6HVuCg2/OqnS5Ay95raYzNzNBm2ZOaNPMSexSRCGRSNDAzQYN3GzELkU0ttbm6Bzghs76NSYsEZHO2NtZ4NX2xtv5i5mZFP4+jnrf8YO2SCQSuLta6+VwIEJgEKKX2tV1itglEBHBysoK7dq1g5WVYV6Bpn/GY4CIhMYgREREeq9BgwZYsWKF2GWQiHgMEJHQDK9hIxERGZzS0lLk5uaitFT4AYCpZuAxQERCYxAiIiK9d+vWLXTr1g23bt0SuxQSCY8BIhIam8YZGFNLC4Td2SB2GVVmalnzxhogIiIiopqPQcjASCQSmFnJxC6DiIiIiEivsWkcEREREREZHQYhIiIiIiIyOmwaR0REes/T0xMHDx6Era2t2KWQSHgMEJHQGISIiEjvmZqawt7eXuwySEQ8BohIaGwaR0REei8pKQlTp05FUlKS2KWQSHgMEJHQGISIiEjv5ebmIioqCrm5uWKXQiLhMUBEQmMQIiIiIiIio8MgRERERERERodBiIiIiIiIjI5EqVQqxS6CiIjoZVJTU7Fx40aEhYXBxcVF7HJIBDwGiEhoDEJERERERGR02DSOiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdH5f0BzrJ9ubnsaAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwIAAAFvCAYAAAD5SXwVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABc8klEQVR4nO3deVgT1/4G8DdhD4uyg6KoLIoLYgWs+1KrqHXtoi3WpV6tVatX/cmtS6u2data0Xrt6q2lbtTtVsVdypVSFxStiogrKkiQIIgsAiH5/WFNSwElmGRC5v08D0/LzJyZb2IS5s2cc0aiVqvVICIiIiIiUZEKXQARERERERkegwARERERkQgxCBARERERiRCDABERERGRCDEIEBERERGJEIMAEREREZEIMQgQEREREYkQgwARERERkQgxCBARERERiRCDABERERGRCDEIEBERERGJEIMAEREREZEIMQgQEREREYkQgwARERERkQgxCBARERERiRCDABERERGRCDEIEBERERGJEIMAEREREZEIMQgQEREREYkQgwARERERkQgxCBARERERiRCDABERERGRCDEIEBERERGJEIMAEREREZEIMQgQEREREYkQgwARERERkQgxCBARERERiRCDABERERGRCDEIEBERERGJEIMAEREREZEIMQgQEREREYkQgwARERERkQgxCBARERERiRCDABERERGRCDEIEBERERGJEIMAEREREZEIMQgQEREREYmQudAFkGlRq9VQFpcIXYZWzG2sIJFIhC6DiIiIyKAYBEinlMUl2OQzUugytBJ+fSMsZNZCl0FERERkUOwaREREREQkQgwCREREREQixCBARERERCRCDAJERERERCLEIEBEREREJEIMAkREREREIsQgQEREREQkQryPAAnOo2MrhO1cWGFZWWEx8m9k4vr2Y0hZvw/qcpVg9RERERGZIgYBMho3dsYjPTYJkEhg41ofvq93R+jCMajn1xDHZ30tdHlEREREJoVBgIxGzoWbuLEjXvN76oaDGBq/Gv5vvYSkpVtQkpMvaH1EREREpoRjBMhoKYtLkJ10FRKpFA7e7kKXQ0RERGRSGAT+Ji0tDevXr8fEiRPRvn17WFpaQiKRYMyYMUKXJkr2TR4HgJK8AqFLISIiIjIp7Br0N5GRkVi9erXQZYiSuY0lrJzsNWMEmo/qA+c2zZCddBX5NzKFLo+IiIjIpDAI/I2Liwv69++PkJAQBAcHY//+/Vi3bp3QZYlCu4gRaBcxosKytJgTODn7O8FqEju1Wo1fk7Lw+5X7KH6khHN9a/Tr4gVPV5nQpZGBlJaVY1/8HaRlFEClVqOhmy1e6dYItjILoUsjIqLnxCDwN/Pmzavw+4kTJwSrRWxSfzyEtD3HIbUwh2OLxmg9eQhsPZ1RXlKq2UZqaY6Bh5bj5q54nF+9U7O8S+RkWLvWx5HwRQJVb1pUKjW+3ZGKLzYnI/l6XoV15mYSDOvdBB+8E4h2AS6C1Uj6lV9QiuUbLuDbHanIyimusK6evSXGDPLDB+MC4eHCUEhEVFeZ/BgBhUKBiIgI+Pr6wtraGo0aNcK0adNQWFiIcePGQSKRYO3atUKXSQDyb8iRGX8BGbFncXHdzzg6eilcgnzQcdm7mm1UpUr8OvULtJk6DI4tvQEAjcNC4PVyMBJm8MqNLpSVqfDWB79g4icJlUIAACjL1fjp4E10GrUXu3+5JUiNpF9yRRG6jonBp9+cqxQCAODBw1Ks3pSMDuG7kXqz8muEiIjqBpMOAufOnUObNm2wfPlyyOVytGzZEmVlZVizZg2GDx+OlJQUAEBQUJDQpVIVsk+n4vr2Y2g6pDNcg5trluecv4HkL3ej65r3IfN0QsflE3FyzncozsoVtF5T8f7S44g+cPOZ2z0qKccbs2Jx/Pcsg9RFhlH8SIkBkw/h/JX7z9z2dmYhwt47iOz7lcMCEREZP5MNAgqFAgMHDoRcLsfMmTORmZmJpKQkyOVyLFu2DDExMUhMTIREIkFgYKDQ5VI1fl+1HSplOdrNGl5xeeQOqMrLMejwcsgTLuLmzwmC1WhKUm7k4ettl2u8fUmpCnPWnNFrTWRYm2KuIyklp8bbp90twBdbLum1JiIi0g+TDQJTp05Feno6pkyZghUrVsDe3l6zLiIiAm3btoVSqUSTJk3g4OAgaK1UvYdpctz8OQENugXCrUOAZrlaWY7sxFRYO9fDtehfBK3RlHz1U4rWbeISM3HpOq/GmAK1Wo1/R2t/Uv/tjlSUlpXrpSYiItIfkwwCKSkpiI6OhouLC5YsWVLlNu3btwcAtG3bVifHvHnzJgYNGgR7e3s4Ojpi1KhRyMmp+bdqVL3zqx9/+//XqwJuHQLgO7wnUtbvQ+jHY2FmbSlojaZi64EbBm1HxuVK2gOcu/zsLkF/J1cU43+n5XqpiYiI9MckZw3asmULVCoVwsPDYWdnV+U2NjY2gI6CwMOHD9GzZ084OTlhy5YtKC4uRkREBF555RUkJCRAKq1d3goODoZcXrf+uFqopZiPUK3ayI8nY4Pna9Wuf3A1A1Fef4YAc5k1ukROxplFm3D5h4Pot+tjvDD7LSTO31Crmv39/FEmUdWqrSlRQ4J7Tgtq1Xbl6u/wnyWDdV4TGVaJeWPAYVyt2g4PHw9Z6Xmd10RERE/n4eGB06dP16qtSQaB2NhYAEDPnj2r3SY9PR3QURD45ptvkJGRgWPHjqFx48YAAC8vL3Tq1Am7d+/GkCFDarVfuVyOjIyM567PkCwlZoC7fo8RsmAUCm7fw+UNBwAAv05bi0FHVuD2/pPIOqF915a7mXdRqma3BgCAoxKQaP+xUFSYj6K7deu1SlWQWQG17CmZez8buQ/4GiAiqktMMgjcuvV4SkNvb+8q1yuVSiQkPB5cqosgsHfvXnTp0kUTAgCgY8eOaNasGfbs2VPrIODh4fHctRmahVoK6PHL9Ya92qHpoM74+aWZmmUPb2XhzKJN6LxqMnb3mgllcYlW+2zg2YBXBP6QpboPpZmb1u3qWZfArmFDvdREhlMusYBcrQIkWlzFVKsBiQSu9dSwtONrgIjI0J7nfNEkg0BhYSEAoLi46intoqOjoVAoYG9vj6ZNmz738S5duoTXX3+90vJWrVrh0qXaz6ZR28s8QioreoRNPiP1tv+M2LPY3GJ0peWXNxzQXCHQ1pWrV2Ahs9ZBdXXfqh8vYsbyk1q1sbYyw/VjG+Fcn8+hKRg2/Qh2HdXi/hASCdq3dMHprXXv84qISOxMcrDwk2SUlJRUaV1mZiZmzZoFAAgMDIREInnu4+Xm5qJ+/fqVljs5OeH+fe0H3hEJZcxgP9hYm2nVZkRYM4YAEzJpeEANtnr+NkREJDyTDAK9e/cGACxbtgxXrlzRLE9MTETPnj2hUCgA3kiMqBJHByusX9C1xtv7NLLHZ9ND9FoTGdZLHRpodWI/uGdjjB7kq9eaiIhIP0wyCERERMDZ2Rl37txBq1at0KZNG/j5+SE0NBTNmjVDr169gGrGByQkJMDFxUXz8/nnnwMAtm7dWmH5kzEGAODo6Ii8vLxK+7p//z6cnJz0+liJdO3N/j6IWtQN5mZPv1rW2tcRv6zvD1cnG4PVRvonkUiw5oMX8f5bLZ+57WsvN8GWZT1hZmaSf0qIiEyeSX56e3l5IT4+HgMGDIC1tTXS0tLg5OSEr7/+GjExMZqrBFUFgbKyMuTk5Gh+nowzKCkpqbC8rKxM0yYgIKDKsQCXLl1CQAAvmVPd8/ZAP1zd+zpmj2sLV8eK3X46Bbnhx8XdkbhlEBp5VD09L9VtZmZSrP7Xizi5aRDGDPaDlWXF7mKv9m6Co9/2w08resHG2iSHmhERiYJErVarhS7CkAoKCuDg4ACJRIKHDx9CJpM99z5XrFiBOXPm4MaNG/Dy8gIAnDx5Ei+++CJ27tyJoUOH6qDyukHfg4X1Ifz6Rg4WforSsnI07rMVWTmP4OFig8zYt4QuiQyssKgMPgN+QlbOI3i62OAuXwNERCbBJK8IPE1ycjLUajX8/Px0EgIAYMKECfD09MTgwYOxd+9ebN++HW+++SZCQ0MxeDBvskR1m6WFGcz/6PphJn3+wfVU99jKLDSvASlfA0REJkN0QeDChQuAju4f8ISDgwNiY2Ph6emJESNG4B//+Ac6deqEvXv31vquwlSR94AX8eLS8RWW+Q7viTGZ29E4jINViYiIiLQlus6d+ggCAODj44O9e/fqdJ/0p8b9O+D6tjjN73ZervAP7417p1MFrYuIiIiormIQIKNg6SDD4F9WwczaEkV3FZBaWcC+sTuub/8fjn/wLdxDmuPXaWsfbyyRoNPK93By3nqEzK98czEiIiIiejbRBYHY2FihS6AqlOYX4caueJQVPsL5VdvRoEdbBE4dht/+7ys06N4W9xJToVaWAwBavTsQ9xIvI+f8DaHLJiIiIqqz2IGdjIZT66a4f+EmAMA50Af3Lz7+/8ZhIbi1/xQAoH7zRvAe0AG/R+4QtFYiIiKiuk50VwTIeDm1aqI5+XcObIY7BxMBAA16BOH0JxsBAO4dAmDXyA2v/vYFAMDGtT46Lp8IGzdHpEYdErB6IiIiorqFQYCMgszDCVCrUSS/DwBwCvDG+dU74NLODw+uZkBZ9AgAkBp1qMIJf9iOhbj07V7cPpAoWO1EREREdRGDABkFp9ZNNVcDAKA0vxAtRvdFyf2HuH3glKC1EREREZkiBgEyCulHziD9yBnN73v7fQAAGBy3CgdfnV9tuwNPWUdERERE1WMQIKP2c4/pQpdAREREZJI4axARERERkQgxCBARERERiRCDABERERGRCHGMAOmUuY0Vwq9vFLoMrZjbWAldAhEREZHBMQiQTkkkEljIrIUug4iIiIiegV2DiIiIiIhEiEGAiIiIiEiEGASIiIiIiESIQYCIiIiISIQYBIiIiIiIRIhBgIiIiIhIhBgEiIiIiIhEiEGAiIiIiEiEGASIiIiIiESIQYCIiIiISIQYBIiIiIiIRIhBgIiIiIhIhBgEiIiIiIhEiEGAiIiIiEiEGASIiIiIiESIQYCIiIiISIQYBIiIiIiIRMhc6ALItKjVaiiLS4QuQyvmNlaQSCRCl0FERERkUAwCpFPK4hJs8hkpdBlaCb++ERYya6HLICIiIjIodg0iIiIiIhIhBgEiIiIiIhFiECAiIiIiEiEGASIiIiIiEWIQICIiIiISIQYBIiIiIiIRYhAgIiIiIhIhBgEiIiIiIhHiDcVIcB4dWyFs58IKy8oKi5F/IxPXtx9Dyvp9UJerBKuPiIiIyBQxCJDRuLEzHumxSYBEAhvX+vB9vTtCF45BPb+GOD7ra6HLIyIiIjIpDAJkNHIu3MSNHfGa31M3HMTQ+NXwf+slJC3dgpKcfEHrIyIiIjIlHCPwN2lpaVi/fj0mTpyI9u3bw9LSEhKJBGPGjBG6NNFRFpcgO+kqJFIpHLzdhS6HiIiIyKTwisDfREZGYvXq1UKXQX+wb/I4AJTkFQhdChEREZFJYRD4GxcXF/Tv3x8hISEIDg7G/v37sW7dOqHLEgVzG0tYOdlrxgg0H9UHzm2aITvpKvJvZApdHolYWZkK+YWlsLEyh421GSQSidAlERlUebkKDwrKYGkhha2NOd8DRCaCQeBv5s2bV+H3EydOCFaL2LSLGIF2ESMqLEuLOYGTs78TrCYSr/JyFQ7+loF10SnYF38HavXj5f7e9fDeGy0werAfHB2shC6TSG/UajV+O3cP66JTsO3QTZQpH8/e1sBNhgmvNsf4V5ujgZut0GUS0XMw+TECCoUCERER8PX1hbW1NRo1aoRp06ahsLAQ48aNg0Qiwdq1a4UukwCk/ngIB99YiMPhi3D6kx/x6P5D2Ho6o7ykVLON1NIcg+NWIXDasAptu0RORu9NcwWomkzRvZxidBm9FwMmH0LMsT9DAABcufUA05efhHffaBxMSBeyTCK9KSpWYtj0o+gyei8277uuCQEAcPdeERZ8eRbefaOxfmeqoHUS0fMx6SBw7tw5tGnTBsuXL4dcLkfLli1RVlaGNWvWYPjw4UhJSQEABAUFCV0qAci/IUdm/AVkxJ7FxXU/4+jopXAJ8kHHZe9qtlGVKvHr1C/QZuowOLb0BgA0DguB18vBSJjBLlz0/PLyS9DrH/tw4nz2U7d7WFiGV6YcwuHjGQarjcgQSsvKMXjaYfw39tZTt1OWq/GPBb/i2+2XDVYbEemWyQYBhUKBgQMHQi6XY+bMmcjMzERSUhLkcjmWLVuGmJgYJCYmQiKRIDAwUOhyqQrZp1NxffsxNB3SGa7BzTXLc87fQPKXu9F1zfuQeTqh4/KJODnnOxRn5QpaL5mGWZ+fQvL1vBptqyxXY0TELygqVuq9LiJDWfXjRRw5cbfG27+36DekZTzUa01EpB8mGwSmTp2K9PR0TJkyBStWrIC9vb1mXUREBNq2bQulUokmTZrAwcFB0Fqper+v2g6VshztZg2vuDxyB1Tl5Rh0eDnkCRdx8+cEwWok05GbX4KNMde1anP/QQm2Hriht5qIDKm8XIV10SlatlHjm+3sIkRUF5lkEEhJSUF0dDRcXFywZMmSKrdp3749AKBt27bPfbwngSM0NBRWVlacTUGHHqbJcfPnBDToFgi3DgGa5WplObITU2HtXA/Xon8RtEYyHT/uuYZHJeVat/tqm3YnTkTG6uBvGbidWah1u+92pkL5l3EERFQ3mOSsQVu2bIFKpUJ4eDjs7Oyq3MbGxgbQURC4du0aduzYgZCQEFhaWiIhQTffTgcHB0Mul+tkX4ZioZZiPkJ1us/zq3eg6ZDOaDdrOA6+tgAA4NYhAL7DeyJl/T6EfjwWu1+ehfJHpc/cV1X8/fxRJuEfsKfJrD8DkNZDpjwTXl5eQpejN7mygYB1sNbtTl/IMOnnBSJ6DYjdQ+vOgKyP1u2ycx+hUdOWMFPzni9Ehubh4YHTp0/Xqq1JBoHY2FgAQM+ePavdJj398WwfuggC3bp1Q2bm43nuFyxYoLMgIJfLkZFRtwYiWkrMAC1vAiw/nowNnq9Vu/7B1QxEef3ZNchcZo0ukZNxZtEmXP7hIPrt+hgvzH4LifM31Krmu5l3UarW/ltgUbEvB6SAqry8zr0mteJVAlhr30wNM9N+XiCi14DYuRYCsto1lWdlA2X3dV0REemRSQaBW7cez3Tg7e1d5XqlUqk5WddFEJBK9dPDysPDQy/71ScLtRTQ85frIQtGoeD2PVzecAAA8Ou0tRh0ZAVu7z+JrBPad9Fo4NmAVwSeIdPMDCoAUjMzeDZsKHQ5evPAGqjN95lSdbFJPy8Q0WtA7AqtzFGzofKVebrVgxQ2Oq6IiJ7lec4XTTIIFBY+7t9YXFxc5fro6GgoFArY29ujadOmBq6u5mp7mUdIZUWPsMlnpN7237BXOzQd1Bk/vzRTs+zhrSycWbQJnVdNxu5eM6EsLtFqn1euXoGFrBZfA4uIV+8tyLhXBE8PT6RfNN2580/8fg8d396jdbtJ4R3wxWzTfV4goteA2GVmF6Fxn61QlqtrsPWfwjp7Yf+XHDRPVNeY5GDhJ8koKSmp0rrMzEzMmjULABAYGMiBvXVMRuxZbG4xGoUZigrLL284gJ0dp2gdAoj+qkOgK14IcNa63XtvtNBLPUSG5ukqw7DeTbRuN2l4QA22IiJjY5JBoHfv3gCAZcuW4cqVK5rliYmJ6NmzJxSKxyeRvJEYEf2VRCLBp1PaQyqt+RcEowb6oqWPo17rIjKkueODYGtT8w4DXdq5o39XDiAnqotMMghERETA2dkZd+7cQatWrdCmTRv4+fkhNDQUzZo1Q69evYBqxgckJCTAxcVF8/P5558DALZu3Vphua4GBBORcenXtRG+nd+lRmFgQLdG+GZ+F4PURWQogf5O2LnqJcisnx0GXghwxn9X94aZmUmeThCZPJN853p5eSE+Ph4DBgyAtbU10tLS4OTkhK+//hoxMTGaqwRVBYGysjLk5ORofp6MMygpKamwvKyszOCPi4gM452h/jj0VRh6hHhWub6Rhy2WTAvGfyN7w8rSzOD1Eelbn05eSIh6BYN7Nq4yFDvVs8KsMW3wv+8HwLk+x1gR1VUmOVgYAAICArB3795KywsKCpCWlgapVIrWrVtXWt+jRw+o1doNkiIi0/PSiw3w0osNkHwtF3v+dxuLvj2HgiIlnOpZ4sa+N2BubpLfoxBpBLVwxn9Xv4zbmQXYfvgm5q9LQkGREo4Olkg/PAI2NbhiQETGTXTv4uTkZKjVavj7+0Mmq+VkyVXYvn07AODSpUsVfm/SpAmCg7W/QRERGYdWvo5o5euItVsuoaBICRsrc4YAEpXGnnaYMaoNPo+6iIIiJWTW5gwBRCZCdO/kCxcuADq6f8Bfvf7661X+Pnr0aGzYULsbXdGfvAe8CM+ubXDig281y3yH90SXyMmIHbsMtw8kClofERERUV3DIKAj7E6kX437d8D1bXGa3+28XOEf3hv3TqcKWhcRERFRXcUgQEbB0kGGwb+sgpm1JYruKiC1soB9Y3dc3/4/HP/gW7iHNMev09Y+3lgiQaeV7+HkvPUImT9a6NKJiIiI6iTRBYHY2FihS6AqlOYX4caueJQVPsL5VdvRoEdbBE4dht/+7ys06N4W9xJToVaWAwBavTsQ9xIvI+c872JJREREVFsc8UZGw6l1U9y/cBMA4Bzog/sXH/9/47AQ3Np/CgBQv3kjeA/ogN8jdwhaKxEREVFdJ7orAmS8nFo10Zz8Owc2w52DjwcAN+gRhNOfbAQAuHcIgF0jN7z62xcAABvX+ui4fCJs3ByRGnVIwOqJiIiI6hYGATIKMg8nQK1Gkfw+AMApwBvnV++ASzs/PLiaAWXRIwBAatShCif8YTsW4tK3ezlrEBEREZGWGATIKDi1bqq5GgAApfmFaDG6L0ruP8TtA6cErY2IiIjIFDEIkFFIP3IG6UfOaH7f2+8DAMDguFU4+Or8atsdeMo6IiIiIqoegwAZtZ97TBe6BCIiIiKTxFmDiIiIiIhEiEGAiIiIiEiEGASIiIiIiESIYwRIp8xtrBB+faPQZWjF3MZK6BKIiIiIDI5BgHRKIpHAQmYtdBlERERE9AzsGkREREREJEIMAkREREREIsQgQEREREQkQgwCREREREQixCBARERERCRCDAJERERERCLEIEBEREREJEIMAkREREREIsQgQEREREQkQgwCREREREQixCBARERERCRCDAJERERERCLEIEBEREREJEIMAkREREREIsQgQEREREQkQgwCREREREQixCBARERERCRCDAJERERERCJkLnQBZFrUajWUxSVCl6EVcxsrSCQSocsgIiIiMigGAdIpZXEJNvmMFLoMrYRf3wgLmbXQZRAREREZFLsGERERERGJEIMAEREREZEIMQgQEREREYkQgwARERERkQgxCBARERERiRCDABERERGRCDEIEBERERGJEO8jQILz6NgKYTsXVlhWVliM/BuZuL79GFLW74O6XCVYfURERESmiEGAjMaNnfFIj00CJBLYuNaH7+vdEbpwDOr5NcTxWV8LXR4RERGRSWEQIKORc+EmbuyI1/yeuuEghsavhv9bLyFp6RaU5OQLWh8RERGRKeEYgSqkpaVh/fr1mDhxItq3bw9LS0tIJBKMGTNG6NJERVlcguykq5BIpXDwdhe6HCIiIiKTwisCVYiMjMTq1auFLoMA2Dd5HABK8gqELoWIiIjIpDAIVMHFxQX9+/dHSEgIgoODsX//fqxbt07oskyeuY0lrJzsNWMEmo/qA+c2zZCddBX5NzKFLo+IiIjIpDAIVGHevHkVfj9x4oRgtYhJu4gRaBcxosKytJgTODn7O8FqIiJxe/CwFFF7ruK3c/dQWKyEva0FXu7YAMP7NoONNf+EEolB4sVsRO25hvSsQkgkgLenHd4Z4o82/k5Cl/bcRPEpplAo8Nlnn2Hnzp1IT0+Hq6srhg0bhsWLF2Pq1Kn4z3/+gy+++AJTpkwRulRRS/3xENL2HIfUwhyOLRqj9eQhsPV0RnlJqWYbqaU5Bh5ajpu74nF+9U7N8i6Rk2HtWh9HwhcJVD0RmZKS0nL8a1UivtuZisJiZYV1m/ddx4zlJzH97daYOz4IUqlEsDqJSH9+O5eFactO4HSyotK6yI3J6NLOHWvndETb5s6C1KcLJh8Ezp07h379+kEul8PW1hYtW7bE3bt3sWbNGly/fh33798HAAQFBQldqujl35AjM/4CACAj9iyyTl1G/58/Qcdl7+J/760CAKhKlfh16hcI2/Ux7hw+g9xLt9A4LAReLwfj514zBH4ERGQKHpUoMWDyIcSeqr5LYm5+KT76dxIu33yAHxd3ZxggMjH74+9g6PQjKCmt/j5Gv57NQtcxMdi/ri86t6ubk5qY9KxBCoUCAwcOhFwux8yZM5GZmYmkpCTI5XIsW7YMMTExSExMhEQiQWBgoNDl0t9kn07F9e3H0HRIZ7gGN9cszzl/A8lf7kbXNe9D5umEjssn4uSc71CclStovURkGiZ+8ttTQ8Bfbd53HQu/PKv3mojIcFJv5uH1/4t9agh44mFhGQZNPYyMrEKD1KZrJh0Epk6divT0dEyZMgUrVqyAvb29Zl1ERATatm0LpVKJJk2awMHBQdBaqWq/r9oOlbIc7WYNr7g8cgdU5eUYdHg55AkXcfPnBMFqJCLTkZbxEFF7rmrVJnLTRRQUlemtJiIyrNWbkit1CXya+w9K8PX2y3qtSV9MNgikpKQgOjoaLi4uWLJkSZXbtG/fHgDQtm3b5z7e9u3b8eqrr8Lb2xsymQwtWrTA3LlzUVDAaS+fx8M0OW7+nIAG3QLh1iFAs1ytLEd2YiqsnevhWvQvgtZIRKbjm+2pUKu1a5NfUIZNMdf1VRIRGVB+QSl+3HtN63bf7khFaVm5XmrSJ5MNAlu2bIFKpUJ4eDjs7Oyq3MbGxgbQURBYsWIFzMzMsHjxYuzfvx/vvfcevvzyS4SFhUGlevalJare+dWPv/3/61UBtw4B8B3eEynr9yH047Ews7YUtEYiMg0HEtJr1W7/r3d0XgsRGV7C2SwUFNX8asATckUxfk+9r5ea9MlkBwvHxsYCAHr27FntNunpjz/wdREE9uzZA1dXV83v3bt3h6urK8LDw/Hrr7+iW7duWu8zODgYcrn8uWszJAu1FPMRqlUb+fFkbPB8rdr1D65mIMrrzxBgLrNGl8jJOLNoEy7/cBD9dn2MF2a/hcT5G2pVs7+fP8okDGtPk1l/BiCth0x5Jry8vIQuRxBifw7E8vjl9aYBZtpPCbj/0P/g5TVWLzUZC7G8BkjciixbA3av16ptv1dehbXyhs5rehYPDw+cPn26Vm1NNgjcunULAODt7V3leqVSiYSEx/3KdREE/hoCnggODgYAZGRk1Gqfcrm81m2FYikxA/Q8cD5kwSgU3L6HyxsOAAB+nbYWg46swO39J5F1IkXr/d3NvItSdd27nGdQ9uWAFFCVl9e516TOiP05EMvjlxXVKgiUFueb9vMCEb0GSNzsXYCqO5I8U052BlBUt94bJhsECgsfj94uLi6ucn10dDQUCgXs7e3RtGlTvdTwyy+P+64HBAQ8c9uqeHh46Lgi/bNQSwE9frnesFc7NB3UGT+/NFOz7OGtLJxZtAmdV03G7l4zoSwu0WqfDTwb8IrAM2SamUEFQGpmBs+GDYUuRxBifw7E8vhzJfdQBO2/7bY3z4GDCT8vENFrgMStXFICuVoFSLTrPS9Rl8LDCZA6Gv698TzniyYbBDw8PJCbm4ukpCR07NixwrrMzEzMmjULABAYGAiJRPfzP2dkZODDDz9EWFhYre9RUNvLPEIqK3qETT4j9bb/jNiz2NxidKXllzcc0Fwh0NaVq1dgIbPWQXWmy6v3FmTcK4KnhyfSL9auD3VdJ/bnQCyP/3RyNkLe3K1VG3MzCS7/9g0auNnqrS5jIJbXANGw6Uew6+gtrdr847U2+GZ+3Zs0wGQHC/fu3RsAsGzZMly5ckWzPDExET179oRC8fgucfq4kVhBQQEGDx4MS0tL/Oc//9H5/omISD+CW7lqfWOg4WHNTD4EEInJtPBWWm1vZibBlDdb6q0efTLZIBAREQFnZ2fcuXMHrVq1Qps2beDn54fQ0FA0a9YMvXr1AqoZH5CQkAAXFxfNz+effw4A2Lp1a4XlT8YY/FVxcTEGDhyImzdv4tChQ/D09DTAoyUiIl2J/qwnGnvW7MS+bXMnrJvbSe81EZHhdA/2xNJ/Btd4+y/ndkKgv/Zji4yByQYBLy8vxMfHY8CAAbC2tkZaWhqcnJzw9ddfIyYmRnOVoKogUFZWhpycHM3Pk3EGJSUlFZaXlZVVavfaa6/h9OnT2L9/P1q2rJvpkIhIzBq62yLhh4EIbV15Eoi/6t/VC3Hr+8PBjtMXE5maf73TFv+e0xEy6+p70TvYWWDjku4Y/1oLg9amSyY7RgB/DNLdu3dvpeUFBQVIS0uDVCpF69atK63v0aMH1FreUebJPQuOHj2Kffv2ITRUuyk0iYjIeHh52OLEpoE4/vs9rItOwdb9N1CuUsNMKsH4V5vjveEBdfYbQCKqmUkjWiJ8gC+i9lxF1J5rSEpRQKUCLM2l+PfcTnizXzPYyiyELvO5mHQQqE5ycjLUajX8/f0hk8l0ss/Jkydj27Zt+OCDDyCTyXDixAnNOh8fnyqnFyUiIuMlkUjQKcgdnYLcEZeYiYx7RfBwscGXH3YWujQiMpB69pZ4/61WeP+tVpoB865O1vjHq82FLk0nTLZr0NNcuHAB0NH9A57Yv38/AGDp0qXo2LFjhZ+YmBidHUesvAe8iBeXjq+wzHd4T4zJ3I7GYSGC1UVERERUV4nyioA+gkBaWprO9kWVNe7fAde3xWl+t/NyhX94b9w7nSpoXURERER1FYMAGQVLBxkG/7IKZtaWKLqrgNTKAvaN3XF9+/9w/INv4R7SHL9OW/t4Y4kEnVa+h5Pz1iNkfuV7ChARERHRs4kyCMTGxgpdAv1NaX4RbuyKR1nhI5xftR0NerRF4NRh+O3/vkKD7m1xLzEVamU5AKDVuwNxL/Eycs7fELpsIiIiojpLlGMEyDg5tW6K+xduAgCcA31w/+Lj/28cFoJb+08BAOo3bwTvAR3we+QOQWslIiIiqutEeUWAjJNTqyaak3/nwGa4czARANCgRxBOf7IRAODeIQB2jdzw6m9fAABsXOuj4/KJsHFzRGrUIQGrJyIiIqpbGATIKMg8nAC1GkXy+wAApwBvnF+9Ay7t/PDgagaURY8AAKlRhyqc8IftWIhL3+7F7QOJgtVOREREVBcxCJBRcGrdVHM1AABK8wvRYnRflNx/iNsHTglaGxEREZEpYhAgo5B+5AzSj5zR/L633wcAgMFxq3Dw1fnVtjvwlHVEREREVD0GATJqP/eYLnQJRERERCaJswYREREREYkQgwARERERkQgxCBARERERiRCDABERERGRCHGwMOmUuY0Vwq9vFLoMrZjbWAldAhEREZHBMQiQTkkkEljIrIUug4iIiIiegV2DiIiIiIhEiEGAiIiIiEiEGASIiIiIiESIQYCIiIiISIQYBIiIiIiIRIhBgIiIiIhIhBgEiIiIiIhEiEGAiIiIiEiEGASIiIiIiESIQYCIiIiISIQYBIiIiIiIRIhBgIiIiIhIhBgEiIiIiIhEiEGAiIiIiEiEGASIiIiIaiAvLw8LFixAXFyc0KXUGQ8ePMD777+Phg0bwtraGq1atcKXX34JtVotdGkEwFzoAoiIiIjqgry8PCxcuBAA0KNHD6HLMXqlpaV4+eWXcfbsWbz//vsICAjA/v37MWnSJGRlZWHBggVClyh6vCJARERERDr33XffITExEZ9//jk+//xzjB8/Hjt37sSwYcOwePFi3Lp1S+gSRY9BgHRKrVajrOhRnfrh5UkiItNUWlqKzz77DEFBQZDJZKhXrx6Cg4Oxdu1azTZjxoyBRCKpsr1EIsGYMWMAAHFxcWjatCkAYOHChZBIJJBIJGjSpIlWNT3ZZ2xsLDp27AiZTAYvLy8sW7YMAJCbm4tx48bBzc0NMpkMr7zyCu7evVtpP2lpaXj77bfh7u4OKysr+Pj4YM6cOSgqKtJs8+WXX0IikWD37t2V2qtUKnh5eSEoKKjC8tOnT2Po0KFwcXGBlZUVmjdvjkWLFkGpVGr1OAFg8+bNkMlkGD9+fIXl//znP1FWVobo6Git90m6xa5BpFPK4hJs8hkpdBlaCb++ERYya6HLICIiHSotLUXfvn0RFxeHPn36YOTIkbC2tsaFCxewc+dOTJkyRav9BQQEYNWqVZg+fTqGDh2KYcOGAQDs7Oy0ru3s2bPYs2cPJkyYgFGjRuGnn37CBx98AGtra/zwww9o0qQJFixYgGvXrmHNmjUYNWoUjhw5oml/69YthIaG4sGDB5g0aRL8/PwQFxeHJUuWICEhAUePHoW5uTlGjBiB6dOnIyoqCoMGDapQw9GjR5GRkYGZM2dqlsXExGDYsGHw9fXFzJkz4eTkhOPHj+Ojjz7CuXPnsG3btho/RpVKhaSkJLzwwguwtq74NzY0NBQSiQSJiYlaP3ekWwwCREREZHIiIyMRFxeH2bNnY/HixRXWqVQqrffn7u6OIUOGYPr06QgMDMTIkbX/0uvChQs4fvw4OnToAAAYN24cvL29MX36dEyZMgVr1qypsP2qVauQmpqK5s2bAwDmzJmD7OxsxMTEoH///gCASZMmYdasWVixYgV++OEHjBs3Do6Ojhg4cCD27NmD3NxcODo6avYZFRUFc3NzhIeHAwAePXqEcePGoUOHDoiNjYW5+eNTxHfffRdt27bFjBkzEBcXV+OxEbm5uSguLkbDhg0rrbOysoKLiwsyMjJq/RySbrBrEBEREZmcTZs2wdHRER999FGldVKpsKc/HTt21IQAALC0tERoaCjUajWmTp1aYduuXbsCAK5evQr8EWJ2796Ndu3aaULAE7Nnz4ZUKsWuXbs0y0aPHo2SkpIK3XAKCgqwa9cuhIWFwc3NDQBw+PBhZGVlYezYscjLy4NCodD8PDnOoUOHavwYn3RRsrKyqnK9tbV1hW5MJAxeESAiIiKTc/XqVQQFBVXqlmIMmjVrVmnZk2/rn4xD+PvynJwcAEB2djYKCgrQqlWrSvtwcnKCp6cnbty4oVn25GQ/KioKEydOBADs2LEDhYWFGDVqlGa7lJQUAMA777xTbd1ZWVk1fowymQwAUFJSUuX6R48eabYh4TAIEBERkWhVN1C4NoNja8rMzEzrdbWd2MLc3BxvvfUWIiMjce3aNfj6+iIqKgqOjo4Vxg082f/y5csrDSB+okGDBjU+rqOjI2xsbKrs/lNSUgKFQoHu3bvX6jGR7jAIENFTqdVqzR8Isc6wVF6ugkrkz4HYif09UBf5+/vj8uXLKCkpqbZ7Cv74Fh0A7t+/r/l/ABW+VX+iutBgSK6urrC3t0dycnKldbm5ucjMzKx0Ij969GhERkYiKioK48ePR1xcHCZMmFDhefHz8wMA2Nraonfv3s9dp1QqxQsvvICzZ89W+jc4deoU1Go1goODn/s49Hw4RoCIKigrU2HX0TRM/+wEuo3ZC4eOP+JudjEA4G52Mbz7bsWr049i8bfnkHwtV+hy9eLClftY9M05DJt+BI37bIV5u++R+cdzkKkoRvexMZix/AR+/uUWlErtBx2ScVOp1DhyIgOzVyfi5Qn74dx1Y4X3gEfPzRgw+SDm/zsJJ36/x3BgpMLDw5Gbm4tPP/200rq//pv5+/sDQIVZeQBg5cqVldo9mSHo/v37eqi4ZqRSKQYOHIizZ8/iwIEDFdYtXboUKpUKQ4cOrbA8KCgIgYGB2LhxI3788UeoVCqMHj26wjZ9+/aFm5sbli5dWuXjKy4uxsOHD7Wq9c0330RRURG++eabCssjIyNhbm6O4cOHa7U/0j1eESAiAEBWTjHWbU3BtztTkZld/QCu25mFuJ1ZiJ1H0zD3izPoHuyBScMD8NrLTSGVCv9tWW2Vl6uw7dBNrItOQXxS9f1g1Wrg2Bk5jp2RY9WPyWjoJsOE11pg4ust4OZsY9CaSbfyC0rx3c5UfLXtMq7eyq92u6ycYuyLT8e++HR8/PVZBLVwwqQ3AjBqkB+sLKvv8kGGNW3aNOzZsweffvopEhMT0adPH1hbWyM5ORmpqamaE/8333wTc+bMwYQJE3D58mU4OTnhwIEDUCgUlfbp7OwMX19fbN26FT4+PnB3d4etrS0GDhxo0Me2ePFiHD58GEOGDMGkSZPg6+uLY8eOITo6Gt26dat0ko8/rgrMnDkTy5Ytg7+/P1588cUK621tbREVFYUhQ4agefPmeOedd+Dr64u8vDxcvnwZO3fuxK5du7S6o/L48ePx/fffY8aMGUhLS0NAQAD27duHXbt2Yd68eVrfg4F0j0GABOfRsRXCdi6ssKyssBj5NzJxffsxpKzfB3U5v3XVF7VajY17r2Hq0hPIe1iqdfv/nZbjf6fl6NY+Bf/5uCt8GjnopU59upL2AGM/Oobfzt3Tum3GvSLMX5eE1ZuSsXZ2R4zo18woug+Qdg79lo5/LPgVd+SFWrc9d/k+JnycgNWbkrHh024IbuWqlxpJO5aWljh06BBWrlyJzZs3Y86cObC2toafnx/Gjh2r2c7BwQH79u3DjBkzsHjxYtjZ2WHYsGHYuHFjhek2n9i0aROmT5+uuXmXt7e3wYOAt7c3Tp48iY8++ggbN25EXl4evLy8MHv2bMybN08z9edfhYeH41//+hfy8/MRERFR5X779u2LxMRELF26FBs3bkR2djYcHR3h4+ODGTNmIDAwUKs6LS0tceTIEcybNw9btmxBTk4OfHx88MUXX2Dy5Mm1fvykOxI1r2mSDpUVPdL6hmJPgsCNnfFIj00CJBLYuNaH7+vd4RjgjdSNh3F81td6q1nMNxR78LAUo+b+D7vjbutkfzJrc6z54EWMG9ZcJ/szhK9+SsH05SfxqKRcJ/sb9lITbPi0K+xtLXWyP2Ph1XsLMu4VoaGbDOlH3hS6HJ0pK1Nh6tLj+GrbZZ3sz8xMgnnjgzD/vXYmFwhN9TVAVFOm+B7gGAEyGjkXbuLGjnjc2H4MyV/uRsyAOSjMUMD/rZdg5Vz3vmU2djl5j9DrH/t0FgIAoOiREv9Y8CuWrv9dZ/vUp4+/Oov3Pv1NZyEAAHYeTUPv8QeQm1/1lHlkPB6VKDF0+hGdhQAAKC9XY+FXZzFh4a9Qqfg9GxEZN3YNIqOlLC5BdtJVNBnYEQ7e7sjOqb7PLmmnoKgM/SYdRFJKjl72P3v1adhYmWHayNZ62b8urNhwAfPXJell36cuZmPA5EM48k0/yGz4MWuMystVePNfcYg5dkcv+/9u5xVYW5nji9kd9bJ/Mi7Z2dkoL3/6Fwp2dnaawcZ1WUFBAQoKCp66jZmZGVxd2UWuLuBfqL9JS0vD0aNHkZiYiMTERFy4cAFlZWUYPXo0NmzYIHR5omPfxB0AUJL39A8d0s7/rTyFxIuVB8Lp0owVp9ApyB0hrY3vj8Fv57IQseqUXo9x/Pd7mL06Eas/4ImgMYrcmIz/xt7S6zHWbrmEbu098HqfpjXYmuqykJAQ3Lr19NfT/PnzsWDBggrLEhMTa3wMhUKBnTt3YtiwYXBxcdGqNl1asWIFFi5c+NRtvL29kZaWptPjkn4wCPxNZGQkVq9eLXQZomRuYwkrJ3vNGIHmo/rAuU0zZCddRf6NTKHLMxlHTmTgay27QiRuGQQPFxnkiiKEvLm7Rm1UKjXGfngMZ6KHGNVMKsWPlBj7YTy0HR1Vm+dgzeZLeLV3E3QL9qxdsaQXqTfzMG/tGa3a1ObfHwAmL/oNPYI94OrEGaVM2aZNm1BcXPzUbaq6m7A2FAoFvvvuO3Tr1k2rIKBro0aNQpcuXZ66jY0NX+91BYPA37i4uKB///4ICQlBcHAw9u/fj3Xr1gldlii0ixiBdhEjKixLizmBk7O/E6wmU6NUqjB+wa9at/NwkcHL3VbrdsnX87BiwwXMnVD1XSqFsHT9eVy59UDrdrV9Dv6x8Fek/PdVmJlxSJaxqM24kNr++2fnPkLEqkR8/0k3rdtS3dG5c2ehSzCYZs2aPXeoIePBIPA38+bNq/D7iRMnBKtFbFJ/PIS0PcchtTCHY4vGaD15CGw9nVFe8ueUllJLcww8tBw3d8Xj/OqdmuVdIifD2rU+joQvEqj6umF33G2k3TVsN6t/R6cgYmwgLCyEPxEuKS3Hlz+lGPSYV2/l40BCOgZ0a2zQ41LVzl+5j18SDXuFcfO+61j2zxDeZ4KIjI7wf5n1TKFQICIiAr6+vrC2tkajRo0wbdo0FBYWYty4cZBIJFi7dq3QZRKA/BtyZMZfQEbsWVxc9zOOjl4KlyAfdFz2rmYbVakSv079Am2mDoNjS28AQOOwEHi9HIyEGbxy8yzrog17EgwAmdlF+O8v+u2LXVPbD99Edu4jgx/331sN/7xT1YR4D5SWqbB+1xWDH5eI6FlMOgicO3cObdq0wfLlyyGXy9GyZUuUlZVhzZo1GD58OFJSHv9BCAoynm4L9Kfs06m4vv0Ymg7pDNfgP+elzzl/A8lf7kbXNe9D5umEjssn4uSc71CclStovcbu7r1CHD15V5BjR+2+Kshx/+7HPdcEOe6BhHTcy3l6/2HSv/JyFTbvuy7IsaP2GMd7gOoue3t7hIWFwd7eXuhSyISYbBBQKBQYOHAg5HI5Zs6ciczMTCQlJUEul2PZsmWIiYlBYmIiJBKJ1nfKI8P5fdV2qJTlaDdreMXlkTugKi/HoMPLIU+4iJs/JwhWY12RmKzfWYKedWyh712oVqtx6mK2QMcGzlwS7vmnxy7ffICHhWWCHTu/QPs7dxM90bBhQ3z88cdo2LCh0KWQCTHZIDB16lSkp6djypQpWLFiRYUEHRERgbZt20KpVKJJkyZwcODNqozVwzQ5bv6cgAbdAuHWIUCzXK0sR3ZiKqyd6+Fa9C+C1lhXnBYwCGTlFOPuvSLBjg8ANzMeIjdfuBOx0wwCghPyPQAAZy/r574dJA4lJSW4c+cOSkp4s0LSHZMMAikpKYiOjoaLiwuWLFlS5Tbt27cHALRt2/a5jxcfH4/evXvD09MTVlZW8PLyqtD1iJ7P+dWPv/3/61UBtw4B8B3eEynr9yH047Ews7YUtMa6IPm6sF2nBD/+tTxhjy/w4yfh/w2Sr/E1QLV38+ZNvPrqq7h586bQpZAJMclZg7Zs2QKVSoXw8PBq7+L3ZI5bXQSB3NxctGnTBu+++y7c3NyQnp6OJUuWoGPHjrh48SK8vLxqtd/g4GDI5fLnrs+QLNRSzEeoVm3kx5OxwfO1atc/uJqBKK8/Q4C5zBpdIifjzKJNuPzDQfTb9TFemP0WEufX7oZv/n7+KJOoatW2LlHYvw1Y+Fa57skc6dXxcLHR/PfO4RHVbgeg2nnW3wwfC5sy4cJxkWVrwO71Ktc96/FDi+egusf/390H4LV5lNZ1G4vM+jMAaT1kyjNr/ZkmtDzZAMC66s8nQ7wHZs9biMX/V3e7MZrCa8DYvPZa9X/7/u7evXsAgP379+PMmZrfB2Po0KG1qo0qM9b3gIeHB06fPl2rtiYZBGJjYwEAPXv2rHab9PR0QEdBYNCgQRg0aFCFZSEhIWjevDl27NiBadOm1Wq/crkcGRkZz12fIVlKzAB3/R4jZMEoFNy+h8sbDgAAfp22FoOOrMDt/SeRdUL7E827mXdRqtZuTvE6qckjwKLqVTWdI93cTFqrudQB4P79HCBfwNdzvQZA1d8LaDVHfG2fg5JHxXXu/VyBfTkgBVTl5XX3cTQoAKyrXmWI90D+gwfIV9TR5w4m8howMoWFhTXe9skNy4qLi7Vqx38rHTLB94BJBoEnt/n29vaucr1SqURCwuNvZXQRBKri7OwMADA3r/1T7OHhocOKDMNCLQX0+OV6w17t0HRQZ/z80kzNsoe3snBm0SZ0XjUZu3vNhLJYu/6TDTwbiOKKQI6VFNVNnClXPL3/voeLDczNpFCWqyBXPH32m+r25exoD2t74Qa5FVvY4X416571+KHFc1DdvmyszOBUhwf5ZZqZQQVAamYGzzr6OB7YWKK6u2gY4j1Qz8EGdlZ187mDibwGjI2tbc1D5ZOTfxsbG63acXCx7hjre+B5zhdNMgg8ebNUd7vv6OhoKBQK2Nvbo2nTpjo7bnl5OVQqFW7duoXZs2fDw8MDb7zxRq33V9vLPEIqK3qETT4j9bb/jNiz2NxidKXllzcc0Fwh0NaVq1dgIavma0IT8tG/z+CTr89Vua6qbgx/defwCHi520KuKEajl7fW6vjnT+1DA7fafZOqCzfTH6JZ/5+qXPesxw8dPAdzZo7GvAmRWrczFl69tyDjXhE8PTyRfjFd6HJqJWr3VYyed6zKdYZ4D+yOXoduwZ61amsMTOE1YGwSExNrvO3ly5exZcsW9OvXDy1atKhxu8jIuvu5Y2xM8T1gkoOFnySjpKSkSusyMzMxa9YsAEBgYCAkEonOjtu9e3dYWlrCz88P586dQ2xsLFxdXXW2f6Ln0b6li2DH9nCxETQEAECThnZwdBBuUHn7AOGef3pMyPeARAK0C3AW7PhU97Vo0QKnTp3SKgQQPYtJBoHevXsDAJYtW4YrV/68m2NiYiJ69uwJheLxFHK6vpHY+vXrceLECWzZsgUODg7o06cPbt++rdNjENVWSCvhToJCWwsfiCUSCTq0cRPo2ECwgM8/PdaiaT042FUzUEbPAprVh70tZzcjIuNikkEgIiICzs7OuHPnDlq1aoU2bdrAz88PoaGhaNasGXr16gVUMz4gISEBLi4ump/PP/8cALB169YKy5+MMfir5s2bo0OHDhgxYgSOHj2Khw8f4rPPPjPAIyZ6tgZutni5YwNBjj1qYNWzFRmaUHX079oIrk42ghyb/mRmJkV4fx9Bjm0s7wGqu27duoV33nlHMw6SSBdMMgh4eXkhPj4eAwYMgLW1NdLS0uDk5ISvv/4aMTExmqsEVQWBsrIy5OTkaH6ejDMoKSmpsLys7Ol3p6xfvz58fX1x7do1PT1KIu1NGh5Qg610q4GbDIN6VD1w39CG9W4CNyfDjwcR4nmnqgnxb2FpIcU7Q/wNflwyLcXFxbh48WK14x+JasMkBwsDQEBAAPbu3VtpeUFBAdLS0iCVStG6detK63v06AG1Wv3cx7937x5SU1PRoUOH594Xka680q0xfBrZ4/qdhwY75pQRLWFhYRzfOVhZmmHyiJaYv67y+CF9ad6kHsI6G89802LX2s8JvV9sgCMn7hrsmCNf8eUVISIySsbx19mAkpOToVar4efnB5ns6TcQqqmRI0diwYIF+O9//4u4uDh8++236NGjB8zNzTF9+nSdHINIF8zNpfhuQVeDHa+NnyNmjq4cuIUUMbYNAprVN8ixJBJg/cKukEp1NykBPb91czvBxtrMIMdyc7LGsn+GGORYRETaEl0QuHDhAqDj+we8+OKL2LdvH8aOHYt+/fph+fLl6Nq1K86dOwdfX/YL1QXvAS/ixaXjKyzzHd4TYzK3o3EY/8hqo0eIJyaP0K57hFxRhPSswhrNt/+EmZkEGz7pBksLw5xw1ZS1lTk2fNJN65Pz2jwH/xzZCp3b6fkOe6Q1P+96WPx+sFZtavPvDwBffdgZLo6mPz0xEdVNJts1qDr6CAJTpkzBlClTdLY/qqxx/w64vi1O87udlyv8w3vj3ulUQeuqq5b9MwRJKTk4/vu9Gm1fk3n2/27Nv17ECwJO1/g0oW1csXJmKKYvP1njNto+B13auWORliebZDhTw1sh4VwWth9Oq9H2tXkPTH+7FYa+1KQW1RFV5unpiYULF8LTs+7ei4KMD68IkFGwdJDh9TNfY0Ty9xh0eDmGHIvE22lb0GnFREjMzeAe0hyZv158vLFEgk4r38PJeeuhKlUKXXqdZCuzQMy/+yCktX5O1JfPCMWkES31sm9d+efbrbHo/fZ62XfHtm7Yu7YPbKxF911LnSGVSrBxSQ8M6tFYL/uf+HoLrJjJMWKkO/Xq1UO/fv1Qr149oUshEyK6IBAbGwu1Wo0BAwYIXQr9RWl+EW7sisel72Kw++VZOPXR98hOuoLf/u8reHZujXuJqVArywEArd4diHuJl5Fz/obQZddpjg5WOPptPwzT4TeWdjILbPikG/5vTBud7VOf5owPwncLukCmwxP24WFNcfjrMNSz55zxxs7K0gzbV76EKW/qLrSam0vw6ZT2WDevE8eGkE7l5uZi27ZtyM3NFboUMiGiCwJkvJxaN8X9CzcBAM6BPrh/8fH/Nw4Lwa39pwAA9Zs3gveADvg9coegtZoKe1tLbP+8F7Ys6wHn+lbPta9eoZ64sGMoRg/201l9hjBuWHOc3zEU3YM9nms/ro7W2LaiF7Z+1gu2MmFuWkXas7CQ4ovZHXH0235o0sDuufbVtrkTEjcPxtwJQTq9az0RAGRlZWH58uXIysoSuhQyIbxuTUbDqVUTzcm/c2Az3DmYCABo0CMIpz/ZCABw7xAAu0ZuePW3LwAANq710XH5RNi4OSI16pCA1dddEokEI/r54KUODfDN9lR8te0y0rMKa9z+5Y4NMGl4AAb39K6zJz8+jRwQ+11/7DqahnXRKYg9lVnjto09bTHx9QBMeK05nOtzUGhd1atDA1zYOQwbfr6KddEpSLmRV+O2oa1dMWl4AN7s38zoBscTET0NgwAZBZmHE6BWo0h+HwDgFOCN86t3wKWdHx5czYCy6BEAIDXqUIUT/rAdC3Hp2724fSBRsNpNhauTDeZOCMK/3gnEgYR0HDsjR1JKDs5ezsH9ByXAH/2qm3nZo31LZ7QPcMGgHo3RvKlhpuLUN6lUgldfbopXX26KlBt52BN3G2dSFDhzSYGbGQVQqR7fX8SpnhVeCHBG+5Yu6NbeA307NYSZGS+umgI7mQWmvNkSk0cE4NgZOY6evIszlxQ4cykHWTmPb+IkkQBe7rZo39IF7Vs6I6yzF4JbuQpdOhFRrTAIkFFwat1UczUAAErzC9FidF+U3H+I2wdOCVqb2JibS/FK98Z4pfufgyhVKjXKy9VGc2MwfQtoVr/CvQbUajWUSjXMzSV19qoH1ZxEIkH3YE90D/5zdha+BojIFDEIkFFIP3IG6UfOaH7f2+8DAMDguFU4+Or8atsdeMo60h2pVCLqgY8SiQQWFuJ9/MTXAAlPJpOhQ4cOOrsZKhEYBMjY/dyDd2YmIiJq3LgxvvjiC6HLIBMjjuv8RERERHVYeXk5CgoKUF5eLnQpZEIYBIiIiIiM3NWrV9GrVy9cvXpV6FLIhDAIEBERERGJEMcIkE6Z21gh/PpGocvQirnN891Ii4iIiKguYhAgnZJIJLCQ8aZKRERERMaOXYOIiIiIiESIVwSIiIiIjJyvry8OHjwIe3t7oUshE8IgQERERGTkzM3N4ejoKHQZZGLYNYiIiIjIyKWnp2PmzJlIT08XuhQyIQwCREREREauoKAA8fHxKCgoELoUMiEMAkREREREIsQgQEREREQkQgwCREREREQixFmDiIiIiAQQEhJS420bN26MlStXok+fPnB3d9drXSQeDAJERERERs7d3R0zZswQugwyMewaREREREQkQgwCREREREQixCBARERERCRCDAJERERERCLEIEBEREREJEIMAlRjeXl5WLBgAeLi4oQupU7IzMzE3LlzERYWBldXV0gkEowZM0bosoiIiIgABgHSRl5eHhYuXMggUEOpqalYvHgxLl26pNVc0URERESGwPsIEOlJ+/btce/ePbi6ukKhUMDV1VXokoiIiIg0eEXAhJWWluKzzz5DUFAQZDIZ6tWrh+DgYKxdu1azzZgxYyCRSKps/9euLHFxcWjatCkAYOHChZBIJJBIJGjSpIlWNT3ZZ2xsLDp27AiZTAYvLy8sW7YMAJCbm4tx48bBzc0NMpkMr7zyCu7evVtpP2lpaXj77bfh7u4OKysr+Pj4YM6cOSgqKtJs8+WXX0IikWD37t2V2qtUKnh5eSEoKKjC8tOnT2Po0KFwcXGBlZUVmjdvjkWLFkGpVGr1OAHA3t6eJ/9ERERktBgETFRpaSn69u2Lf/3rX3B3d8fHH3+MRYsWoX379ti5c6fW+wsICMCqVasAAEOHDsWPP/6IH3/8EZGRkVrv6+zZs3j99dfRo0cPrFy5En5+fvjggw+wevVqvPTSS8jNzcWCBQswceJEHDhwAKNGjarQ/tatWwgNDcVPP/2Et956C6tWrUL79u2xZMkS9OvXT3PSPmLECFhZWSEqKqpSDUePHkVGRgZGjx6tWRYTE4POnTvjypUrmDlzJtasWYOOHTvio48+wptvvqn14yQiIiIyZuwaZKIiIyMRFxeH2bNnY/HixRXWqVQqrffn7u6OIUOGYPr06QgMDMTIkSNrXduFCxdw/PhxdOjQAQAwbtw4eHt7Y/r06ZgyZQrWrFlTYftVq1YhNTUVzZs3BwDMmTMH2dnZiImJQf/+/QEAkyZNwqxZs7BixQr88MMPGDduHBwdHTFw4EDs2bMHubm5cHR01OwzKioK5ubmCA8PBwA8evQI48aNQ4cOHRAbGwtz88dvjXfffRdt27bFjBkzEBcXhx49etT6cRMREREZE14RMFGbNm2Co6MjPvroo0rrpFJh/9k7duyoCQEAYGlpidDQUKjVakydOrXCtl27dgUAXL16FfgjxOzevRvt2rXThIAnZs+eDalUil27dmmWjR49GiUlJYiOjtYsKygowK5duxAWFgY3NzcAwOHDh5GVlYWxY8ciLy8PCoVC8/PkOIcOHdLL80FEREQkBF4RMFFXr15FUFAQrK2thS6lkmbNmlVa9uTb+ifjEP6+PCcnBwCQnZ2NgoICtGrVqtI+nJyc4OnpiRs3bmiWPTnZj4qKwsSJEwEAO3bsQGFhYYUuRykpKQCAd955p9q6s7KytH6sRERERMaKQUDkqhsoXJvBsTVlZmam9Tq1Wl2rY5mbm+Ott95CZGQkrl27Bl9fX0RFRcHR0RGDBg2qtP/ly5dXGkD8RIMGDWpVAxEREZExYhAwUf7+/rh8+TJKSkpgZWVV7XZOTk4AgPv372v+H0CFb9WfqC40GJKrqyvs7e2RnJxcaV1ubi4yMzMrnciPHj0akZGRiIqKwvjx4xEXF4cJEyZUeF78/PwAALa2tujdu7cBHgmRcSsqVuJcag7OXFLg4rVc3H9QAgDIzS/Byh8uoH1LF7wQ4AwHO0uhSyU9ycl7hDOXFDhzKQdXbz/QvAbyHpbi622X0b6lM9r4OcHKsvovd4jqsvyCUpy9/PhzMOVG3l8+B0uxZlMy2rd0QVBzJ9jKLIQutdYYBExUeHg4IiIi8Omnn+KTTz6psE6tVmtO6v39/QEAR44cwRtvvKHZZuXKlZX2aWdnB/wRGoQilUoxcOBAbN68GQcOHEBYWJhm3dKlS6FSqTB06NAKbYKCghAYGIiNGzfC2toaKpWqwmxBANC3b1+4ublh6dKlGD58eIVQBADFxcVQKpWwt7fX8yMkEo5arcbJ89lYF52C6IM3UFpWeWKBokfl+L+VpwAAUqkEg3o0xqThAXipQwNIpcJ/WUDPR6lUYXfcbayLTsHRk5WnbgaAwmIlJn6SAACwk1ng7Vd8MGl4AFr7OVW5PVFdolarEXsyE+uiU/Bz3C2Ul1fukVD0SIlpy04AACzMpXi9T1NMGh6ATkFuRvGlqTYk6tr2uSCjVlpait69eyM+Ph59+/ZFnz59YG1tjeTkZKSmpuLIkSMAgPz8fDRt2hTl5eWYMWMGnJyccODAASgUCpw8eRKjR4/Ghg0bNPv18/PDgwcPMHfuXLi7u8PW1hYDBw6scV0SiaTSPvHH/Qx++OGHSl2A4uLi0LNnT3z//feaexrcunULISEhyM/Px6RJk+Dr64tjx44hOjoa3bp1w9GjRzWz/jzx+eefY+bMmXBwcICHhwdSU1Mr1Xbw4EEMGTIEdnZ2eOedd+Dr64u8vDxcvnwZO3fuxK5du7SeNejTTz8FABQVFWHJkiVo164dhg0bBgDo1q0bunXrptX+iPQl+Vouxi/8Fcd/v1er9i196uObj7qgczt3nddGhrEn7jYmL/4Nd+SFtWrfr4sXvvqwMxp72um8NiJDOPH7PYxf+CsuXsutVfvQ1q74dkEXBPrXnVDMIGDCHj16hJUrV2Lz5s24fv06rK2t4efnh7Fjx2LSpEma7U6ePIkZM2bgzJkzsLOzw7Bhw/DZZ5/B0dGx0kn7qVOnMH36dJw7dw5FRUXw9vZGWlpajWvSRRAAgJs3b+Kjjz7CwYMHkZeXBy8vL4wYMQLz5s2DTCardNysrCx4eXlBqVTi008/xdy5c6us7+LFi1i6dCl++eUXZGdnw9HRET4+PujXrx8mT55c6UpBTR5vdebPn48FCxZotT8iXVMqVVi+4QIWfJlU5RUAbUgkwD9HtsKi94NhY80LznVFbn4Jpi09gR/3XnvufdnbWmDlzFD849Xmde6bURKvRyVKfPTvJKyMugiV6vlOiy3Mpfjw3SB88E5bWFgY/+ScDAJERCL1qESJERG/4Odfbut0v52C3BCztg/qO1Q/PomMwx15AV6ecACpaQ90ut+Jr7fAv+d2YncxMnoPHpZi4PuHEJ+k25kBB3RrhG0rehn9lyIMAkREIlRWpsLQ6UcQc+yOXvYf0toFR7/tB3tbDiY2VpnZRegyei9upD/Uy/4nvNYcX33YmVcGyGgVFpXh5XcP1LpL5LP07dQQu794GZYWxjugnkHgb9LS0nD06FEkJiYiMTERFy5cQFlZWZXdWeix7OxslJeXP3UbOzs7zWDjuqygoAAFBQVP3cbMzAyurq4Gq4moNqYuPY4vNl/S6zEG92yMXZG9eSJohMrKVOg0ag9OJyv0epwVM0Mxc3QbvR6DqDbUajXe+L9YbD9c8+7NtTHx9Rb48sPOej3G8zDu6xUCiIyMxOrVq4Uuo04JCQnBrVu3nrrN3/vDJyYmanUMhUKBnTt3YtiwYXBxcalxXbq2YsUKLFy48KnbaDtugsjQfjl1V+sQkLhlEDxcZJArihDy5u4atfn5l9vYFHMdI1/xrWWlpC/Lvv9d6xBQm9fA3C/OYEC3RmjRtH4tKyXSj58O3tQ6BNTmPfDVtst49eUm6P1iw1pWql8MAn/j4uKC/v37IyQkBMHBwdi/fz/WrVsndFlGbdOmTSguLn7qNlXdTVgbCoUC3333Hbp161bjIKAPo0aNQpcuXZ66jY2NjcHqIdJWYVEZxs3/Vet2Hi4yeLnbat1u6tLj6P1iA3i4VB7ET8K4ePU+Pv7qnNbtavMaKCktx9gPjyEhaiDHC5DRyL5fjMmLf9O6XW0/B8fNj8fFncOMsqskg8DfzJs3r8LvJ06cEKyWuqJzZ+O95KVrzZo1e+5QQySkjTHXcTNDP33Cq5KbX4ovNl/CoqnBBjsmPd3S/5xHmfL5ZojSxonz2Tj0WwbCungZ7JhET/PvrSnIySsx2PFuZxbih93XMOXNlgY7Zk0Z/7xGz0mhUCAiIgK+vr6wtrZGo0aNMG3aNBQWFmLcuHGQSCRYu3at0GUSEemdWq3GuugUgx/3u52pKC17+jgiMox7OcXYduimwY8rxOuOqCplZSp8s6PyvYT0bV10SqUp0o2BSQeBc+fOoU2bNli+fDnkcjlatmyJsrIyrFmzBsOHD0dKyuMPpqCgIKFLJSLSuxPn7+H8FcPfGfze/UfYdfTp44jIMDb8fPW57xdRGzHxd3BH/vSJFogMYe+x28jMLjL4cVNu5CH+jNzgx30Wkw0CCoUCAwcOhFwux8yZM5GZmYmkpCTI5XIsW7YMMTExSExMhEQiQWBgoNDl0jPY29sjLCwM9vb2QpdCVGf9cipTsGPHJQp3bPrTLwL9O6hUasSf0e087US1IdR7AADiTjMIGMzUqVORnp6OKVOmYMWKFRVOICMiItC2bVsolUo0adIEDg4OgtZKz9awYUN8/PHHaNjQOEfdE9UFZy7lCHfsFP1OU0nPplarceaScP8OfA2QMRD0PSDgsatjkkEgJSUF0dHRcHFxwZIlS6rcpn379gCAtm3b6vz4/fr1g0QiqTBdJj2fkpIS3LlzByUlhhvcQ2Rqzl4WLgj8nnofZQJ0SaE/3b1XhOzcR4Id3xhPgkhcVCq1oJ+DxvgeMMlZg7Zs2QKVSoXw8PBqb2L1ZIpHXQeBn376CefOaT8tW1WCg4MhlxvfZSRdeO2117Ta/t69e9iyZQvefPNNuLm51ajN0KFDa1kdkWm66zgHkFhVue7J/NjV8XCx0fz3zuER1W5X3fzapWUqeDfzh1Qt3Imo2JWaeQD13qty3bP+/aGD10DCid/h5fWu1nUT6YoKlih2mlvten1/DmZkPYCXl+5nz/Lw8MDp06dr1dYkg0BsbCwAoGfPntVuk56eDug4COTn5+Of//wnVqxYgZEjRz73/uRyOTIyMnRSm7EpLCzUavsn9ykoLi6ucVtTfe6Iaq2+FKhmKveazo9tbiat1TzaAJApzwaU+bVqSzpgYwHUq3qVNvOj1/Y1oCxX83OZhCWVAU7Vr9b/56CZ0b0HTDIIPLnLrbe3d5XrlUolEhISAB0Hgblz58Lf3x/h4eE6CQIeHh46qcsY2dpq9wZ6cvJvY2NT47YcT0BU0V2UQw2LKtfJFU+fRcPDxQbmZlIoy1WQK6q/geDT9uPp4QKpmgP+hVJm5oR71ax71r8/dPAaMDcD3Pm5TAJSwQJPGyqs789BCZRooIf3wPOcL5pkEHhy0ljd3W6jo6OhUChgb2+Ppk2b6uSYp0+fxrfffoszZ87oZH9P9mmqEhMTtdr+8uXL2LJlC/r164cWLVrUqE1kZGQtqyMyTW2G7cTFa7lVrqvqMvZf3Tk8Al7utpAritHo5a1aH7uevSUyfr8GiYR3lxVKbn4JnLpsrHLds/79oYPXQFivEOxZW323DCJ9U6vVcOuxGYpqxsro+3OweTNXpPycrnU7fTLJwcJPklFSUlKldZmZmZg1axYAIDAwUCd/lMrLy/Huu+9iypQpaNWq1XPvj4hIH9q3dBHu2AHODAECc3SwQjMv4a7ICPn6IwIAiUSC9gHOgh3fGN8DJhkEevfuDQBYtmwZrly5olmemJiInj17QqF4PGpbVzcSW7t2LbKysjhLkB61aNECp06dqvHVACKqrH1L/gEUO0HDIF8DZAT4HqjIJINAREQEnJ2dcefOHbRq1Qpt2rSBn58fQkND0axZM/Tq1QuoZnxAQkICXFxcND+ff/45AGDr1q0Vlj8ZY6BQKPDhhx/io48+glKpRF5eHvLy8gAAjx49Ql5eHlQqTplHRMIb0K0RhPpS/pVujYQ5MFUwsLsw/w52Mgt0DzbdcW9Udwzs3liwYw/oanyfgyYZBLy8vBAfH48BAwbA2toaaWlpcHJywtdff42YmBjNVYKqgkBZWRlycnI0P0/GGZSUlFRYXlZWBvwx+9DDhw/x7rvvwtHRUfODP65IODo64vbt2wZ9/Kbo1q1beOeddzQDwYlIe828HBDWWfdT1z1LK5/66NqeJ4HG4PU+TeFcv+opZPVp5AAfONhZGvy4RH/XIdAVQS2eMnWQnvR+sQH8m1QzbZeATHKwMAAEBARg7969lZYXFBQgLS0NUqkUrVu3rrS+R48eUKvVNT6Or68vfvnll0rLe/bsidGjR2PMmDEmPfuPoRQXF+PixYvVDgAnopqZNDwA+3817GC194YHcHyAkbC2Mse4of747PsLBj3ue8MDDHo8oupIJBJMeiMAEz5OMOhx33vDON8DJhsEqpOcnAy1Wg1/f3/IZE+/eUpN2NnZoUePHlWua9KkSbXriIiE0L9rI/QK9UTsqadNoqc7LX3q4x/DmhvkWFQzEWMD8cPua8jKMcwXK2MG+yHQ3/DfwBJVZ/RgP6zdmoLzV+4b5Hjd2ntgSK+qp7QXmkl2DXqaCxcefwui6zsKExHVBVKpBOsXdoWtjf6/BzIzk2DDJ91gZWmm92NRzTnXt8ZXH3YyyLEausmwalYHgxyLqKYsLcyw4ZOuMDfX/5VKmbU5/vNxV0ilxnlVlEFAT9RqNWcRIiKj1KShPdZ80FGrNnJFEdKzCmt046knPpwQhJDWrrWokPRtSK8mGDvET6s22r4GzMwk+M/HXVHfwfBjEoiepV2ACz6e1F6rNrX5HFwV0QE+jRxqUaFhiK5rEK8I1E2enp5YuHAhPD09hS6FyCS8M9QfWTnFmLOmZjcurMkNp/5q4ust8NHEdrWsjgzh6w+7QJFbgj3/q9mEFtq8BiQS4PuPu6JPJ8MPTieqqQ/GBSJTUYQvNl+q0fbafg4unPQCJrxm3NOeS9TajIwl0hFt7yxcGyEhIXo/BlFdt+rHi5i54iR0+Zdg5qjWWD4zlAOE64DSsnKMmXcMW/bf0Nk+LS2kiFrUHcPDmulsn0T6olarMWfNaSxdf15n+5RIgKXTQhDxTqDO9qkvousaRHVTbm4utm3bhtzcXKFLITIp099ujV9/eAX+3s8/rV0DNxn2rn0ZK/6vA0NAHWFpYYZNS3tgwyfdUM/++af3DGntgrM/DWEIoDpDIpFgybQQ7F/XF17uts+9P9/GDvjffwbUiRAABgGqK7KysrB8+XJkZWUJXQqRyekU5I5z24Zg7vi2cKqnfX9uWxtzTB4RgIs7h2FAN+Fu1kO1I5FIMHqwH5J3DsPIV3xgaaH9qUEDNxlWzAzFb1ED0dLHUS91EulTWBcvXNw5DFPfagk7mYXW7evbW+KDcYH4fdvQOnXfFHYNIkFo2zXo8uXLGDVqFKKiotCiRc3627FrEJH2ih8p8dPBm/j+5ytIvKhA0SNlldtZWZohqLkTRr7ii7df8dXJt8lkHO7lFGP9riuIPngDF6/lory86tOEevaW6Bjohn8M88egHt6wqEWAIDJG+QWl2Lj3Gn7cew1nL99HSWl5ldvJrM3RvqUzxgz2x4iwZpAZYDY2XWMQIEEwCBAZv/JyFVLTHuDC1VwUFJVBpVLD1sYCLX3qo5WPI0/8RKD4kRLnr9zHlVsP8KikHGZmUjjYWiCohTOaedkb7ZSIRLpSVqbCpRu5SL6Wh8LiMkilEtjamKONnxNaNK0HM7O6/TlY96ILEREZhJmZFC19HNnVQ8RsrM3RIdANHQLdhC6FSBAWFlK0be6Mts2dhS5FL+p2jCHRkMlk6NChg07uBk1ERERE7BpEAuH0oURERETC4hUBqhPKy8tRUFCA8vKqB+wQERERkXYYBKhOuHr1Knr16oWrV68KXQoRERGRSWAQICIiIiISIQYBIiIiIiIRYhAgIiIiIhIhBgEiIiIiIhHiDcWoTvD19cXBgwdhb28vdClEREREJoFBgOoEc3NzODry7qZEREREusKuQVQnpKenY+bMmUhPTxe6FCIiIiKTwCBAdUJBQQHi4+NRUFAgdClEREREJoFBgIiIiIhIhBgEiIiIiIhEiEGAiIiIiEiEJGq1Wi10EUTPkpWVhU2bNiE8PBzu7u5Cl0NERERU5zEIEBERERGJELsGERERERGJEIMAEREREZEIMQgQEREREYkQgwARERERkQgxCBARERERiRCDABERERGRCDEIEBERERGJEIMAEREREZEIMQgQEREREYkQgwARERERkQgxCBARERERiRCDABERERGRCDEIEBERERGJEIMAEREREZEI/T+t1ZtbH5MruAAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "execution_count": 3, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "partitioned_problem = partition_problem(\n", - " circuit=qc_1,\n", - " partition_labels=\"AAAABBBB\",\n", - " observables=observable_expanded.paulis,\n", + " circuit=qc_2,\n", + " observables=expanded_observable,\n", ")\n", "subcircuits = partitioned_problem.subcircuits\n", "subobservables = partitioned_problem.subobservables\n", @@ -176,13 +218,13 @@ "\n", "print(f\"Subobservables to measure: \\n{subobservables}\\n\")\n", "print(f\"Sampling overhead: {np.prod([basis.overhead for basis in bases])}\")\n", - "subcircuits[\"A\"].draw(\"mpl\")" + "subcircuits[0].draw(\"mpl\")" ] }, { "cell_type": "code", - "execution_count": 4, - "id": "4aeb3f1f-a55e-49c4-a7bd-837132429ee1", + "execution_count": 5, + "id": "d0e86f81-7c7e-4ccf-951c-9cd039135dc9", "metadata": {}, "outputs": [ { @@ -192,31 +234,41 @@ "
" ] }, - "execution_count": 4, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "subcircuits[\"B\"].draw(\"mpl\")" + "subcircuits[1].draw(\"mpl\")" ] }, { "cell_type": "markdown", - "id": "529493ef-f14e-4a97-ba11-f337ffc4381b", + "id": "97c6c48c-30e5-4f43-b44c-23384ca0beff", + "metadata": {}, + "source": [ + "In this partitioning scheme, you have cut two wires, resulting in a sampling overhead of $4^4$." + ] + }, + { + "cell_type": "markdown", + "id": "5495f3ad-f4fe-4051-b5fe-67341179a58e", "metadata": {}, "source": [ "### Generate subexperiments to execute and post-process results\n", "\n", "To estimate the expectation value of the full-sized circuit, several subexperiments are generated from the decomposed gates' joint quasi-probability distribution and then executed on one (or more) QPUs. The [`generate_cutting_experiments`](/api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) method does this by ingesting arguments for the `subcircuits` and `subobservables` dictionaries you created above, as well as for the number of samples to take from the distribution.\n", "\n", - "The following code block generates the subexperiments and executes them using a local simulator. (To run these on a QPU, change the `backend` to your chosen QPU resource.)" + "\n", + " The `num_samples` argument specifies how many samples to draw from the quasiprobability distribution and determines the accuracy of the coefficients used for the reconstruction. Passing infinity (`np.inf`) will ensure all coefficients are calculated exactly. Read the API docs on [generating weights](/api/qiskit-addon-cutting/qpd#generate_qpd_weights) and [generating cutting experiments](/api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) for more information.\n", + "" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "f395ca92-f7d5-4e2b-a989-782f8d439a63", + "execution_count": 6, + "id": "30257a7a-ad41-46d7-b4d6-c4bfa354ab28", "metadata": {}, "outputs": [], "source": [ @@ -243,36 +295,35 @@ " label: sampler.run(subsystem_subexpts, shots=2**12)\n", " for label, subsystem_subexpts in isa_subexperiments.items()\n", " }\n", - "\n", - "\n", - "# Retrieve results\n", - "results = {label: job.result() for label, job in jobs.items()}" + " # Retrieve results\n", + " results = {label: job.result() for label, job in jobs.items()}" ] }, { "cell_type": "markdown", - "id": "adbf1366-7f9d-47b0-967c-d26feb4bf7b1", + "id": "890ce542-0a74-451e-a3b2-ced3b35d62b3", "metadata": {}, "source": [ - "Lastly, the expectation value of the full circuit can be reconstructed using the [`reconstruct_expectation_values`](/api/qiskit-addon-cutting/qiskit-addon-cutting#reconstruct_expectation_values) method.\n", + "Lastly, the expectation value of the full circuit can be reconstructed using the [`reconstruct_expectation_values()`](/api/qiskit-addon-cutting/qiskit-addon-cutting#reconstruct_expectation_values) method.\n", + "\n", "\n", "The code block below reconstructs the results and compares them with the exact expectation value." ] }, { "cell_type": "code", - "execution_count": 6, - "id": "59a8a47c-4141-47c0-8eee-a73f95d5378b", + "execution_count": null, + "id": "55ac9aef-494a-4834-b277-9fc4028137cd", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Reconstructed expectation value: 1.44399792\n", + "Reconstructed expectation value: 1.45048183\n", "Exact expectation value: 1.59099026\n", - "Error in estimation: -0.14699234\n", - "Relative error in estimation: -0.09239047\n" + "Error in estimation: -0.14050843\n", + "Relative error in estimation: -0.08831508\n" ] } ], @@ -282,6 +333,7 @@ " coefficients,\n", " subobservables,\n", ")\n", + "# Apply the coefficients of the original observable\n", "reconstructed_expval = np.dot(reconstructed_expval_terms, observable.coeffs)\n", "\n", "\n", @@ -295,17 +347,181 @@ "print(\n", " f\"Error in estimation: {np.real(np.round(reconstructed_expval-exact_expval, 8))}\"\n", ")\n", - "print(\n", - " f\"Relative error in estimation: {np.real(np.round((reconstructed_expval-exact_expval) / exact_expval, 8))}\"\n", - ")" + "print(f\"Relative error in estimation: {\n", + " np.real(np.round((reconstructed_expval-exact_expval) / exact_expval, 8))}\")" + ] + }, + { + "cell_type": "markdown", + "id": "2a27ea20-4064-4864-8a92-cd6c6cb84fa2", + "metadata": {}, + "source": [ + "\n", + " To accurately reconstruct the expectation value, the coefficients of the original observable (which are different from the output of `generate_cutting_experiments()`) must be applied to the output of the reconstruction since this information was lost when the cutting experiments were generated or when the observable was expanded.\n", + "\n", + " Typically these coefficients can be applied through `numpy.dot()` as shown above.\n", + "" + ] + }, + { + "cell_type": "markdown", + "id": "34609068-25a7-4aae-b786-836984d305d2", + "metadata": {}, + "source": [ + "## Cut wires manually\n", + "\n", + "One limitation of automatic wire cutting is that it does not allow for qubit re-use. If this is desired for a cutting experiment, you can manually place [`Move`](/api/qiskit-addon-cutting/instructions-move) instructions. However, because the `Move` instruction discards the state of the destination qubit, it is important that this qubit does not share any entanglement with the remainder of the system. Otherwise, the reset operation will cause the state of the circuit to partially collapse after the wire cut.\n", + "\n", + "The code blocks below performs a wire cut on qubit $q_3$ for the same example circuit as above. The difference here is that we are able to reuse a qubit by reversing the `Move` operation where the second wire cut was made (however this is not always possible and depends on the circuit being cut)." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "0d3e4f65-3087-4dff-b6f1-24ba06f60678", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAIwCAYAAADH6UtKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAaklEQVR4nOzdd3hUVf7H8c+kFxIgBQKEEkroTbqIAoKCCKKIoEHBdV0LLLqysOr+dhFdC4qLhUWxsiqyKKAgKM2IhGpo0kILBEjIAKGll8nM7w/WrJEEMmFmbmbyfj2Pz8q999zzncje3M/cc8412Ww2mwAAAAAAgNvxMroAAAAAAABQOYR6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwUz5GF4Cy2Ww2WfIKjC6jwnwC/WUymYwuAwAAAACqFUJ9FWXJK9C8ZmOMLqPC4pI/k29QgNFlAAAAAEC1wvB7AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE3xnnoPEtWrrQYtnlZqW1FOnjKPpCt54TolffitbMVWw+oDAAAAADgWod4DHVmcoNT47ZLJpMDIWmo+8iZ1nzZONVs00KbJc4wuDwAAAADgIIR6D3R291EdWZRQ8ucDc1fqzoQ3FXvfzdr+ynwVnM00tD4AAAAAgGMwp74asOQV6Mz2QzJ5eSm0cV2jywEAAAAAOAihvpoIaXIpzBdcyDa6FAAAAACAgzD83gP5BPrJPyykZE59ywduUXj7pjqz/ZAyj6QbXR4AAAAAwEGqRajPyMjQq6++qsWLFys1NVWRkZG666679NJLL2nixIn66KOP9Pbbb2vChAlGl+oQnaeMVucpo0ttS1m+WVue+cCwmox2MOWi5n+XLHNGnry9TWreMFRjbm+uiNoBRpcGAAAAJ7PZbNr082ktXXtc5zMLFOjvo06twjTq1qYKDKgWkQgezOP/Bu/cuVODBw+W2WxWcHCw2rRpo5MnT+qtt95ScnKyzp07J0nq1KmT0aU6zIFPVynlm03y8vVR7VaN1G78cAXXC1dxQWHJMV5+Phq66jUd/SpBu95cXLL9hjfGKyCyltbEvWhQ9Y61de8ZPfPmVq3ZfPKyfU+/uVWjbo3Rq091V93wQEPqAwAAgHN9HZ+iae/u0M795y7b99RrW/TwiJaa9vh1CvD3+GgED+XRc+ozMjI0dOhQmc1mTZo0Senp6dq+fbvMZrOmT5+u5cuXKzExUSaTSR06dDC6XIfJPGJWesJupcXv0J7ZS/T92FcU0amZek1/pOQYa6FF6ye+rfYT71LtNo0lSY0GdVP0wK7a8NRsA6t3nJUbUnXjuOVlBnpJKigs1iffHFbPuKVKSctyeX0AAABwrjc/26M7n/y+zEAvSeczC/Xqx7t1yyMrlJNb5PL6AEfw6FA/ceJEpaamasKECZoxY4ZCQkJK9k2ZMkUdO3aUxWJRkyZNFBoaamitznRm6wElL1ynmOG9Fdm1Zcn2s7uOaO87S9XnrT8qqF6Yer32qLY8+4HyTp03tF5H2Hv4vEY89b3yCoqvemzKyWwNfnylcvMsLqkNAAAAzrd4TYqefHVLhY5N2H5KY5790ek1Ac7gsaE+KSlJCxYsUEREhF5++eUyj+nSpYskqWPHjqW2Hz16VMOGDVNISIhq166tBx54QGfPnnVJ3c7y88yFslqK1XnyqNLb31gka3Gxhq1+TeYNe3R0yQbDanSkVz/epRw7Qvr+o5fm3AMAAMD92Ww2TZ293a42X8cf0/Z9GU6rCXAWjw318+fPl9VqVVxcnGrUqFHmMYGBl+ZR/zrUZ2VlqV+/fkpNTdX8+fP13nvvKSEhQbfffrusVqvL6ne0rBSzji7ZoPo3dlCdHq1LttssxTqTeEAB4TV1eMEPhtboKBnn87Vg5VG72/3rP0my2WxOqQkAAACus377Ke05bP/o03e+SHJKPYAzeWyoj4+PlyT169ev3GNSU1Ol34T69957T2lpafr66691++23a+TIkfr888+1efNmLV261AWVO8+uNy89lf/10/o6PVqr+ah+SvrwW3V//kF5B/gZWqMjrNqYpoLCqw+7/60d+88q9VSOU2oCAACA6yz54Vil2n0VX7l2gJFMNg99NNmwYUOlpqZqx44dZa5sb7FYVK9ePWVkZCg5OVlNmzaVfvUlwA8/lH5q3axZM/Xt21cffvih3bV07dpVZrPZrja+Ni9NtXa3uy97+AQFaNj3M7RvzjLt//dKDf7qeWX8nKzEqXPtPtc0r59UZKoaIxmy/XvoYvBtlWpb5+Js+RafcnhNAAAAcJ3zwXco1/86+xvarKp/fppMzigKuIqoqCht3brV7nYe+96GnJxLT1zz8vLK3L9gwQJlZGQoJCREMTExJdv37dunkSNHXnZ827ZttW/fvkrVYjablZaWZlcbP5O3VLdS3VVYt+ceUPbx09o/d4Ukaf0TszRszQwd/26LTm22b+jRyfSTKrTZ/3TcKWqfkYIr1/S0OU0qJNQDAAC4tfoXJf9KtLMV6aSd9+2A0Tw21EdFRen8+fPavn27evXqVWpfenq6Jk+eLEnq0KGDTKb/fRd3/vx51apV67LzhYWF6cCBA5WuxV6+Ni/JiQ++G/TvrJhhvbXk5kkl27KOndK2F+ep98zxWtp/kix5BRU+X/169avMk/pC73ydkSSbTTJV/HtWkzVP9SIDZFIDZ5YHAAAAJ8vxz9aFSrTzKz6lyAbcC8IYlcmN8uRQP2DAACUlJWn69OkaOHCgYmNjJUmJiYm6//77lZFxaWXLsobmO1plhlAU5eZrXrMxTqlHktLid+jzVmMv275/7oqSJ/f2OHjooHyDAhxU3bWx2WzqOnqJtifZ98aCJx7oqplTUpxWFwAAAFwjK6dQ9W+er+xc+15Z/MGrY3T/0GlOqwtwBo9dKG/KlCkKDw/XiRMn1LZtW7Vv314tWrRQ9+7d1bRpU/Xv318q43V2tWvX1oULl3+vd+7cOYWFhbmsflSeyWTSH+9rY1cbb2+THh3Zymk1AQAAwHVCgv304PBYu9rUCQvQyFtiKnAkULV4bKiPjo5WQkKChgwZooCAAKWkpCgsLExz5szR8uXLdfDgQamMUN+6desy587v27dPrVu3vmw7qqaxw1rogaHNK3z8O3+9Xi1jLp92AQAAAPf08sSu6t4uskLH+vt5adE/b1aAv8cOZIYH89hQr/8G9GXLlikrK0tZWVnasmWL/vCHPygnJ0cpKSny8vJSu3btSrW5/fbbtX79+pLX3UnSli1blJycrKFDhxrwKVAZJpNJHz3fRxPuvfITe38/b338Qh89fDdP6QEAADxJcJCvVs0ZpFuuv/Ic+cjaAVrz3mDdcF3l5jMDRvPYV9pdyZYtW9SzZ0+1bNlS+/fvL7UvMzNT7du3V0REhKZNm6b8/HxNmTJFkZGR2rRpk7y8XPM9iLPn1DtaXPJnVWZO/W8dTLmod79M0rzlyTp9Ll/673D7lyd21YPDYxVRu2rWDQAAgGtns9m0eddpzV6QpKVrjyszu0iS5Ovjpfem9taoW5sqMIAn9HBfHv2kvjy7d++Wyhh6L0mhoaGKj49XvXr1NHr0aP3+97/X9ddfr2XLlrks0MOxYpvU1D8n99SptXGqHxkoSYoKD9TkBzsQ6AEAADycyWRSr4519elLfXVx4wMl94N1wgI07o5YAj3cXrX8G3ylUC9JzZo107Jly1xcFVzBZMcr7gAAAOB5uB+Ep6mWj56vFuo9WeMhPdXzlYdLbWs+qp/GpS9Uo0HdDKsLAAAAAGC/avmkPj4+3ugSDNPoth5K/nJtyZ9rREcqNm6ATm89YGhdAAAAAAD7VctQ78n8QoN0xw8z5R3gp9yTGfLy91VIo7pKXvijNj39vup2a6n1T8y6dLDJpOtff0xb/u9DdZs61ujSAQAAAAB2ItR7mMLMXB35KkFFOfnaNXOh6vftqA4T79LGP7+r+jd11OnEA7JZiiVJbR8ZqtOJ+3V21xGjywYAAAAAVEK1nFPv6cLaxejc7qOSpPAOzXRuz6V/bzSom45995MkqVbLhmo8pId+fmORobUCAAAAACqPJ/UeKKxtk5IgH96hqU6sTJQk1e/bSVtf+EySVLdHa9VoWEcjNr4tSQqMrKVerz2qwDq1deCTVQZWDwAAAACoKEK9hwmKCpNsNuWaz0mSwlo31q43FymicwtdPJQmS26+JOnAJ6tKhfdBi6Zp3/vLdHxFomG1AwAAAADsQ6j3MGHtYkqe0ktSYWaOWo29VQXnsnR8xU+G1gYAAAAAcCxCvYdJXbNNqWu2lfx52eCnJUl3rJ2plSOmlttuxRX2AQAAAACqJkJ9NbGk75+MLgEAAAAA4GCsfg8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuCnm1FdRPoH+ikv+zOgyKswn0N/oEgAAAACg2iHUV1Emk0m+QQFGlwEAAAAAqMIYfg8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAm/IxugCUzWazyZJXYHQZFeYT6C+TyWR0GQAAAABQrRDqqyhLXoHmNRtjdBkVFpf8mXyDAowuAwAAAACqFYbfAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJvyMboAOE5Ur7YatHhaqW1FOXnKPJKu5IXrlPTht7IVWw2rDwAAAADgWIR6D3RkcYJS47dLJpMCI2up+cib1H3aONVs0UCbJs8xujwAAAAAgIMQ6j3Q2d1HdWRRQsmfD8xdqTsT3lTsfTdr+yvzVXA209D6AAAAAACOwZz6asCSV6Az2w/J5OWl0MZ1jS4HAAAAAOAghPpqIqTJpTBfcCHb6FIAAAAAAA5SLUJ9RkaGpkyZoubNmysgIEANGzbUE088oZycHD300EMymUyaNWuW0WU6jE+gn/zDQuQfHqparRqpx0u/V3j7pjqz/ZAyj6QbXR4MkpldqJ8PnNXmn0/r8PFM2Ww2o0sCAACAC50+m6dt+zKUuOeM0k7lGF0OHMTj59Tv3LlTgwcPltlsVnBwsNq0aaOTJ0/qrbfeUnJyss6dOydJ6tSpk9GlOkznKaPVecroUttSlm/Wlmc+MKwmGGdHUoZmL0jSvG+TlZdfXLK9fYvaenxUa425vblqBPkaWiMAAACcw2azafWmNM1ekKRvfjwhq/V/D3b6daunx0e11vD+jeXjUy2e93okjw71GRkZGjp0qMxmsyZNmqSpU6cqJCREkvTqq6/qL3/5i3x8fGQymdShQwejy3WYA5+uUso3m+Tl66ParRqp3fjhCq4XruKCwpJjvPx8NHTVazr6VYJ2vbm4ZPsNb4xXQGQtrYl70aDq4Ugz5u7W5H/+VOa+3YfO67F/bNQbn+3Vd7NvVUx0iMvrAwAAgPMUFVn18LT1+vfSQ2Xu/yExXT8kpmtgr/pa+PrNCq3h5/Iace08+uuYiRMnKjU1VRMmTNCMGTNKAr0kTZkyRR07dpTFYlGTJk0UGhpqaK2OlHnErPSE3UqL36E9s5fo+7GvKKJTM/Wa/kjJMdZCi9ZPfFvtJ96l2m0aS5IaDeqm6IFdteGp2QZWD0d587M95Qb6XzuQclE3P/ydTp3Nc0ldAAAAcD6bzabfP5dQbqD/tdWbTurOJ9eosKj4qsei6vHYUJ+UlKQFCxYoIiJCL7/8cpnHdOnSRZLUsWPHkm2/fAnQvXt3+fv7y2QyuaxmZzmz9YCSF65TzPDeiuzasmT72V1HtPedperz1h8VVC9MvV57VFue/UB5p84bWi+uXao5R5Nev3qg/8XRtCz99a2tTq0JAAAArrNifao++eZwhY+P/yld7y864NSa4BweG+rnz58vq9WquLg41ahRo8xjAgMDpd+E+sOHD2vRokWKiopSt27dXFavs/08c6GslmJ1njyq9PY3FslaXKxhq1+TecMeHV2ywbAa4TjvLzqg4mL7FsL7/Ltknc8scFpNAAAAcJ3ZC5LsbvPOgiQWU3ZDHhvq4+PjJUn9+vUr95jU1FTpN6H+xhtvVHp6upYuXaoBAwa4oFLXyEox6+iSDap/YwfV6dG6ZLvNUqwziQcUEF5Thxf8YGiNcJwPv7L/W9a8/GLN/zbZKfUAAADAddLP5Gp5wgm72+1NvqAtu844pSY4j8culHfs2DFJUuPGjcvcb7FYtGHDpafSvw71Xl6O/56ja9euMpvNdrXxtXlpqro7tI5dby5SzPDe6jx5lFbe/ZwkqU6P1mo+qp+SPvxW3Z9/UEsHTlZxfuFVz/VbsS1iVWSyOrReZ0iv9ZTkVVPp5nRFR0cbXY5T2OStk2F/r1Tbv/xthl768yqH1wQAAFBVVIf7wULvaNlqPlyptrfd+YCCCvc4vCZcXVRUlLZutX9KrMeG+pycS+9dzMsre/GvBQsWKCMjQyEhIYqJiXFqLWazWWlpaXa18TN5S3Xt7GfTXs2td3e5+y8eStMn0f8bfu8TFKAb3hivbS/O0/5/r9Tgr57Xdc/cp8Spc+3rWNLJ9JMqtLnBwhohxZKXZC0utvu/idsw+UphlWuanZOj7HQP/bkAAAComtwPBgVKNSvX9Pz5izp/wUN/Lh7KY0N9VFSUzp8/r+3bt6tXr16l9qWnp2vy5MmSpA4dOjh9MbyoqCi72/javCQnP/ju9twDyj5+WvvnrpAkrX9iloatmaHj323Rqc32zcGpX6++ezyp9/aWVZKXt7fqNWhgdDlOc9KaJ5tXoN3tQoOkEA/+uQAAAFSH+0GLV4BOSZLNJtmZdcJr+igg2DN/LlVdZXKjPDnUDxgwQElJSZo+fboGDhyo2NhYSVJiYqLuv/9+ZWRkSJI6derk9FoqM4SiKDdf85qNcUo9ktSgf2fFDOutJTdPKtmWdeyUtr04T71njtfS/pNkyav4omkHDx2Ub1CAk6p1nOgB85V2Olf1ouopdU+q0eU4zYSXNupf/7HvixkvL5P2rP9QDaPKXlgSAADAE1SX+8Hr7/9Gm34+bVebBnWClLL9R/n4eOzSax7JY/9rTZkyReHh4Tpx4oTatm2r9u3bq0WLFurevbuaNm2q/v37S7+ZT1+dpMXv0OetxionLaPU9v1zV2hxrwl2BXpUPY/d07oCR5U2rG8jAj0AAICHeHyU/feDj4xsRaB3Qx77Xyw6OloJCQkaMmSIAgIClJKSorCwMM2ZM0fLly/XwYMHpWoc6uHZ2javbdeFvGYNP734xy5OrQkAAACuc8+tMbqxS8WHc7dsUlMT7m3j1JrgHB47/F6SWrdurWXLll22PTs7WykpKfLy8lK7du0MqQ1wtjf/0lM5eRb9e+mhKx5XO9RP37x9i9o0q+2y2gAAAOBcfr7e+vrNAbp9wipt3HnlYfgtm9TUyndvVe1Qf5fVB8fx6FBfnr1798pmsyk2NlZBQUGX7V+4cKEkad++faX+3KRJE3Xt2tXF1QKV4+PjpY9f6KOBverr7c/3acvu0u8crRHkoweGttCkse3UNDrUsDoBAADgHLVD/bXmvcGavSBJ7365X4ePZ5baXy8ySH8Y0VIT49oqrCaB3l1Vy1C/e/du6QpD70eOHFnmn8eOHau5c+1/3RtgFJPJpLghzRU3pLl27j+r/r//VuczCxVW008pK0YpJNjP6BIBAADgRIEBPpo0tr3+dH87JWw3a/gTa3Qhq1DhNf11bMUo+fp67IzsaoNQXwabzebiigDn69QqXEEBPjqfWahAfx8CPQAAQDXi5WXSTV3rKTjQRxeyChXg702g9xDV8r/i1UK9J2s8pKd6vvJwqW3NR/XTuPSFajSom2F1AQAAAADsVy2f1MfHxxtdgmEa3dZDyV+uLflzjehIxcYN0OmtBwytCwAAAABgv2oZ6j2ZX2iQ7vhhprwD/JR7MkNe/r4KaVRXyQt/1Kan31fdbi21/olZlw42mXT9649py/99qG5TxxpdOgAAAADAToR6D1OYmasjXyWoKCdfu2YuVP2+HdVh4l3a+Od3Vf+mjjqdeEA2S7Ekqe0jQ3U6cb/O7jpidNkAAAAAgEqolnPqPV1Yuxid231UkhTeoZnO7bn0740GddOx736SJNVq2VCNh/TQz28sMrRWAAAAAEDl8aTeA4W1bVIS5MM7NNWJlYmSpPp9O2nrC59Jkur2aK0aDetoxMa3JUmBkbXU67VHFVintg58ssrA6gEAAAAAFUWo9zBBUWGSzaZc8zlJUljrxtr15iJFdG6hi4fSZMnNlyQd+GRVqfA+aNE07Xt/mY6vSDSsdgAAAACAfQj1HiasXUzJU3pJKszMUauxt6rgXJaOr/jJ0NoAAAAAAI5FqPcwqWu2KXXNtpI/Lxv8tCTpjrUztXLE1HLbrbjCPgAAAABA1USoryaW9P2T0SUAAAAAAByM1e8BAAAAAHBThHoAAAAAANwUoR4AAAAAADfFnPoqyifQX3HJnxldRoX5BPobXQIAAAAAVDuE+irKZDLJNyjA6DIAAAAAAFUYw+8BAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3JSP0QWgbDabTZa8AqPLqDCfQH+ZTCajywAAAACAaoVQX0VZ8go0r9kYo8uosLjkz+QbFGB0GQAAAABQrTD8HgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBTvKfeg0T1aqtBi6eV2laUk6fMI+lKXrhOSR9+K1ux1bD6AAAAAACORaj3QEcWJyg1frtkMikwspaaj7xJ3aeNU80WDbRp8hyjywMAAAAAOAih3gOd3X1URxYllPz5wNyVujPhTcXed7O2vzJfBWczDa0PAAAAAOAYzKmvBix5BTqz/ZBMXl4KbVzX6HIAAAAAAA5CqK8mQppcCvMFF7KNLgUAAAAA4CAMv/dAPoF+8g8LKZlT3/KBWxTevqnObD+kzCPpRpcHAAAAAHCQahHqMzIy9Oqrr2rx4sVKTU1VZGSk7rrrLr300kuaOHGiPvroI7399tuaMGGC0aU6ROcpo9V5yuhS21KWb9aWZz4wrCbASKfO5umDRQe0POGELmQVKijAR13ahOvxUa3VsWW40eUBAADAyQ4cvaB3vtivDTtPKSfPopAgXw3oWV+PjGylRvVqGF3eNfH4UL9z504NHjxYZrNZwcHBatOmjU6ePKm33npLycnJOnfunCSpU6dORpfqMAc+XaWUbzbJy9dHtVs1UrvxwxVcL1zFBYUlx3j5+Wjoqtd09KsE7Xpzccn2G94Yr4DIWloT96JB1QOOU1Rk1VMztmjOl/tVZCn9Osdt+zL03sIDuqlrlOa93FcN6gYbVicAAACc49zFAo39649atu7EZft+2nNGr3y0S3G3NdO7f+utoED3jMcePac+IyNDQ4cOldls1qRJk5Senq7t27fLbDZr+vTpWr58uRITE2UymdShQwejy3WYzCNmpSfsVlr8Du2ZvUTfj31FEZ2aqdf0R0qOsRZatH7i22o/8S7VbtNYktRoUDdFD+yqDU/NNrB6wDEsFqtGPPW9Zs3fd1mg/7Uft5rV6/5vdMLMehMAAACe5OyFfPUZt6zMQP8Lq9WmT5cd1q2PrlBevsWl9TmKR4f6iRMnKjU1VRMmTNCMGTMUEhJSsm/KlCnq2LGjLBaLmjRpotDQUENrdaYzWw8oeeE6xQzvrciuLUu2n911RHvfWao+b/1RQfXC1Ou1R7Xl2Q+Ud+q8ofUCjjDt3R365sfjFTr2hDlHdz75vWw2m9PrAgAAgGs88NcftS/5QoWOXb/jlJ6YvtnpNTmDx4b6pKQkLViwQBEREXr55ZfLPKZLly6SpI4dO5ZsW7hwoUaMGKHGjRsrKChIrVq10l//+ldlZ7v3U7yfZy6U1VKszpNHld7+xiJZi4s1bPVrMm/Yo6NLNhhWI+AouXkW/es/++xqs21fhtZtMzutJgAAALjOvuTz+jYh1a42/156SGfO5TmtJmfx2FA/f/58Wa1WxcXFqUaNshc+CAwMlH4T6mfMmCFvb2+99NJL+u677/TYY4/pnXfe0aBBg2S1lj+Et6rLSjHr6JINqn9jB9Xp0bpku81SrDOJBxQQXlOHF/xgaI2Ao/xnxRGdzyyswJGl/es/SU6pBwAAAK71zhf77W5TWGTVh18ddEo9zuSeKwFUQHx8vCSpX79+5R6Tmnrpm5tfh/pvvvlGkZGRJX++6aabFBkZqbi4OK1fv1433nij3bV07dpVZrN9TwB9bV6aqu5293Ulu95cpJjhvdV58iitvPs5SVKdHq3VfFQ/JX34rbo//6CWDpys4nz7w1Bsi1gVmar+lx7ptZ6SvGoq3Zyu6Ohoo8txuery+c8HD5f8O9vdbtGKnxX9nwecUhMAAKgaqsv9UHmqy+c/Hfqo5FPP7nbPvfa5Zk0d4pSariYqKkpbt261u53Hhvpjx45Jkho3blzmfovFog0bLg01/3Wo/3Wg/0XXrl0lSWlpaZWqxWw2293Wz+Qt1bWzn017Nbfe3eXuv3goTZ9E/2/4vU9QgG54Y7y2vThP+/+9UoO/el7XPXOfEqfOta9jSSfTT6rQVmx3O5cLKZa8JGtxcaX/e7q16vL5GxVL/vY3s9r8PPvnAgAAqs/9UHmqy+cP9q5U2i0otLndz8VjQ31OTo4kKS+v7DkRCxYsUEZGhkJCQhQTE3PFc/3ww6Vh6a1bt77iceWJioqyu42vzUty8oPvbs89oOzjp7V/7gpJ0vonZmnYmhk6/t0Wndps3zDk+vXqu8eTem9vWSV5eXurXoMGRpfjctXl858P8FJuJdp5mQo9+ucCAACqz/1QearL5z/tbVFRJdr5+0kRBv1cKpMb5cmhPioqSufPn9f27dvVq1evUvvS09M1efJkSVKHDh1kMpnKPU9aWpr+9re/adCgQZV+l31lhlAU5eZrXrMxleqvIhr076yYYb215OZJJduyjp3SthfnqffM8Vraf5IseQUVPt/BQwflGxTgpGodJ3rAfKWdzlW9qHpK3WPfwhmeoLp8/nnLD2vMMz/a3S5u2HX65CXP/bkAAIDqcz9Unury+f88Y4te/2SP3e1e/usD+tP9rzqlJmfx2IXyBgwYIEmaPn26Dh7832IHiYmJ6tevnzIyMiTpikE9Oztbd9xxh/z8/PTRRx+5oGrXSYvfoc9bjVVOWkap7fvnrtDiXhPsCvRAVXP3wBhF1Lb/S6bHR1VuNA4AAACqlkfvsf++LjDAW+PuaOGUepzJY0P9lClTFB4erhMnTqht27Zq3769WrRooe7du6tp06bq37+/9Jv59L+Wl5enoUOH6ujRo1q1apXq1bN/kQUAxvD389afxrS1q02f6+qqR4fL19QAAACA+2neKFR3D2xiV5s/jGil2qGVWJjJYB4b6qOjo5WQkKAhQ4YoICBAKSkpCgsL05w5c7R8+fKSp/dlhfqioiLdfffd2rp1q7777ju1adPGgE8A4Fo8/VBHxQ1pVqFjYxvX1MLXb77iVBwAAAC4l4+e76OubSMqdOyg3tF69aluTq/JGTx2Tr3+u7DdsmXLLtuenZ2tlJQUeXl5qV27dqX2/fJu+++//17ffvutund37GvlALiGl5dJn7x4k2IahOiNz/YoO9dy2TEmkzSsbyN9OK2PwmtV/TUhAAAAUHEhwX764cPb9Ng/Nmj+d0dUXGy77Bh/P2/94e6WmjGpu/x8vQ2p81p5dKgvz969e2Wz2RQbG6ugoKBS+8aPH68vv/xSTz/9tIKCgrR58+aSfc2aNSvzlXcAqiYvL5NemNBFk8e116fLDmv5uhP6fvNJFVqsqhHko10L71JMdIjRZQIAAMBJagT56tOX+mr6k9303sIDeuXDn1VQZJW/n5f+MaGrHhzewu0f7njs8Psr2b17t1TO0PvvvvtOkvTKK6+oV69epf5Zvny5y2sFcO1Ca/hp/Og2+nb2rYoMu3TRrlnDj0APAABQTdSvE6znHr+uZDHliFoB+vO49m4f6EWovzzUp6SkyGazlfnPuHHjDKjWsRoP6amerzxcalvzUf00Ln2hGg1yzzkkAAAAAFBdEeqrmUa39dDxFT+V/LlGdKRi4wbo9NYDhtYFAAAAALBftZxTHx8fb3QJTuMXGqQ7fpgp7wA/5Z7MkJe/r0Ia1VXywh+16en3VbdbS61/Ytalg00mXf/6Y9ryfx+q29SxRpcOAAAAALBTtQz1nqwwM1dHvkpQUU6+ds1cqPp9O6rDxLu08c/vqv5NHXU68YBslmJJUttHhup04n6d3XXE6LIBAAAAAJVQLYffe7qwdjE6t/uoJCm8QzOd23Pp3xsN6qZj310ael+rZUM1HtJDP7+xyNBaAQAAAACVx5N6DxTWtklJkA/v0FQnViZKkur37aStL3wmSarbo7VqNKyjERvfliQFRtZSr9ceVWCd2jrwySoDqwcAAAAAVBSh3sMERYVJNptyzeckSWGtG2vXm4sU0bmFLh5KkyU3X5J04JNVpcL7oEXTtO/9ZTq+ItGw2gEAAAAA9iHUe5iwdjElT+klqTAzR63G3qqCc1mlVr0HAAAAALg/Qr2HSV2zTalrtpX8edngpyVJd6ydqZUjppbbbsUV9gEAAAAAqiZCfTWxpO+fjC4BAAAAAOBgrH4PAAAAAICbItQDAAAAAOCmCPUAAAAAALgp5tRXUT6B/opL/szoMirMJ9Df6BIAAAAAoNoh1FdRJpNJvkEBRpcBAAAAAKjCGH4PAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KZ8jC4AZbPZbLLkFRhdRoX5BPrLZDIZXQaAK3C364qzcd0CqheugZfjOgh4BkJ9FWXJK9C8ZmOMLqPC4pI/k29QgNFlALgCd7uuOBvXLaB64Rp4Oa6DgGdg+D0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuCkWykO1UFRk1XFztoosVkmSpdgqm81WbVZ8tdlsMmfklXz+IotV+QUWBfhXn0tATm6RUk/llPwMiq02o0sCAAAulJtn0Ylf3Q9Wt3sBq9VW6vNbiq2yWKzy8ak+z3nPXSwodT+cmV2o0Bp+Rpd1zarPHT2qFZvNpo07T2v+d8naujdDPx88p/yC4pL9p87mK7zPZ7qudYR6dayjcXe0ULOGoYbW7GjmjFzNXXJICdvN2rbvrE6dzSvZd/pcvkJ6faJ2zWurS+sI3TWgiW69voG8vT3nol5UZNWSH47pmx+Pa9u+DCUdvSjrr355mzPy1HDgf9SlTbj6dq2nB4a1UFhNf0NrBgAAjmOxWLU84YS+jj+mbfsytO/IBRUXl74XaDBgvrq0jtBNXaP0wNDmigwLNLRmR9t/9IL+vfSQNu86o+1JGcrMLirZd+psvkKv/0SdW4WrW9tIxQ1ppm7tIg2t19Gycgo1b3myvt9yUtv2ndXRtKySfafP5avm9Z8qtnFNdWkTrsE3RGvkLTFu+dDLZLPZqtdXVG6iKDffrV67UlVeiVJcbNXHXx/S2/P3adfBc3a1vfX6BvrzuPYa0LOB0+pzhW37MvTqx7u0+PsUWSwV/793TIMQPXZPK024t40CA9zvYvaLi1mFmvnpHr236IDSz+RWuF2Av7fuHdxUUx7soFYxtZxao1Hc7bribFXlugXANbgGXs5Tr4PZuUV647M9mvPlAaWeyqlwOz9fL91za4ymjOug9rFhTq3R2ZavO65/frJH8T+l29Wua9sITbyvjeKGNJeXl/uOaD12Mkuvfrxbn3xzWNm5RRVocUl4LX/9bnis/jy2veqEu88XPIT6Kqoyv3iierXVoMXTSp8nJ0+ZR9KVvHCdkj78VrZiq4MrvaQq/FI4cPSCHvx7gjb9fPqazjPujhaaObmHaoW611Pb/AKLnntnh16bu7vUE2l7tWxSUx+/0Ee9OtZ1aH2usHJDqn7/3Hq7foH/lr+ft6Y93lmTHmjvccPRuKEtrSpctwC4DtfAy3nidfCHn07qoanrSz2RtZePj0l/+0NnPfNQR/n6ute9wJlzeZrw8iZ9sfLoNZ2nX7d6+nBaH8VEhzisNlew2Wya8+V+Tf5nol1h/rciagdo9l+v18hbYhxan7O4199SVMiRxQlaN+FNrfvjW9r5+pfy8vFW92nj1POVh40uzWk++uqgOt3z9TUHekmau+SQ2t61WFt2Xfu5XCX5RKa6jF6i6R/tuqZAL0kHUi7qhrHL9dzs7XKX7/yKi62a8NJGDXps5TUFekkqKCzW029s1Q1jl5WasgAAAKouq9Wmya//pP6//+6aAr0kWSw2TZ29XT3ilirVfG33Fa60NjFdbe9cfM2BXpJ+SExX+xGL9Z/vkh1SmytczCrUoMdW6rF/bLymQC9JGefzdc+f43XfX35QQWFxBVoYi1Dvgc7uPqojixJ0ZOE67X1nqZYPeVY5aRmKve9m+Yd71rxxSXrj0z16aGpCqTnz1+rk6Vzd/PB3WrfVviFLRth/9IL6jFuufckXHHZOq9Wmae/u0MRXNlf5YG+xWHXf02v1r/8kOfS8W3afUZ9xy5R2jV8SAAAA57JabXpoaoJm/Hu3Q8+7Y/9Z3TBumY6mXtuXBK7wXcIJDXpspc6cz3fYOXPyLLrv6bX6YNEBh53TWc5nFqj/77/Vqo1pDj3v/O+OaOgfVykv3+LQ8zoaob4asOQV6Mz2QzJ5eSm0sfsNqb6Sj78+qD+9tsUp587Js+j2P67WjqQMp5zfEVLNORr4hxV2zR23x6z5+/S3Wduccm5HsNlseuSFDQ75Rrosh45l6pZHV+hCZoFTzg8AAK7dk69u1twlh5xy7mMnszXwke905lzVHb23cecp3fXU9055omyzSX94fr2+XOWcey1HyC+w6LbHV2p70lmnnH/1ppMaNfmHax4N60yE+moipMmlMF9wIdvoUhzm0LGLGv/SRrvaJM4fphOrRytx/rAKHZ+VU6S4Z35UfkHV+3bOZrPpoecS7Bpubu/nl6QX3/9ZaxOr5oiFBSuO6KOvDtrVxt6fwb7kC3ryVed8cQQAAK7NN2uP6+3P99nVxt57geQTWXr8RfvuOV0lK6dQ9z291q4Rq/Z+fptN+v1zCVV2KsLf/7Vdm3edqfDxlbkf/ubH45o1376/Z65EqPdAPoF+8g8LkX94qGq1aqQeL/1e4e2b6sz2Q8o8UjXDmb2Ki6168O8Jysu37xvJqIggRdcNVlREUIXbJB25oOfe2VGJKp3rw8UH7R5iVJnPL0m/+3vCNc9NcrRTZy8tBGOvyvwM/r30kJavO253XwAAwHnOZxbokRc22N2uMvcCC1en6IuVR+zuy9n+MjNRx07a99CuMp8/M7tID09bX+WmZW7++bRe/2SPXW0qez/89JuJOnw8084KXaNahPqMjAxNmTJFzZs3V0BAgBo2bKgnnnhCOTk5euihh2QymTRr1iyjy3SYzlNG6969H+vePR9p+A//VOsHByll+WbFj5tudGkO8+myw9qw45TL+ntt7m4dTLnosv6uJjO7UJNed93T46NpWZr+0S6X9VcRz761VWcvuG5Y/GP/2CiLxTlvjwAAAPZ7bvZ2p01BLMsfX95UpUZv7kjK0Dtf7HdZfys2pOrr+GMu6+9qbDabHntxg8uGxeflF+tPr252SV/2ct+XUVfQzp07NXjwYJnNZgUHB6tNmzY6efKk3nrrLSUnJ+vcuUvvMu/UqZPRpTrMgU9XKeWbTfLy9VHtVo3UbvxwBdcLV3FBYckxXn4+GrrqNR39KkG73lxcsv2GN8YrILKW1sS9aFD1V2ez2eweZnWtrFab3v0ySf+c3NOl/Zbn02WHlZnt2ifnc77cr//7Qyf5+3m7tN+ynL2Qr8+/de1qrCfMOfrmx+O68+YmLu3XpUwmtXl4iFreP1A1oiOVfzZTR7/ZqJ2vLpAlj3UFAHi+9n+8U+Htmyq8Q1OFNK6r7BOntbD740aXhTJk5RTqYyfNoy/P6XP5+nLVUd0/tIVL+y3PLAcvElwRb3++r8rcC23ceVo7959zaZ/LE07oSGqmmkZXrcXHPfpJfUZGhoYOHSqz2axJkyYpPT1d27dvl9ls1vTp07V8+XIlJibKZDKpQ4cORpfrMJlHzEpP2K20+B3aM3uJvh/7iiI6NVOv6Y+UHGMttGj9xLfVfuJdqt2msSSp0aBuih7YVRuemm1g9VeXuCfDaQthXMnHXx9Sbp7x387abDbNXuD6i/iZ8/latDrF5f2W5eOvDzn0bQcVZcTP3ZW6Pz9O3aeN04WDqdr8fx8pZdkmtXnoNt38ydOSyWR0eQDgdF2ejVNU73bKSjGr4HzVX/G8Opu3PFlZOa6fGlhV7gXOZxa4/AGH/vuqu6Qjjnvj0rUw4r+FzSa968LRERXl0aF+4sSJSk1N1YQJEzRjxgyFhISU7JsyZYo6duwoi8WiJk2aKDS0an3b4khnth5Q8sJ1ihneW5FdW5ZsP7vriPa+s1R93vqjguqFqddrj2rLsx8o79R5Q+u9mv+sMOZ9mReyCrVqU6ohff/ankPnHfr6Onv8Z0XVmEu2wKA5bWs2n1SGA18VU5XUio1W698NVsryzfrhodd0aN4aJT73b/303L9V74b2ihne2+gSAcDpFvZ4XP9p+6BWjX5BuVX8fqi6M+qeZPOuMzp20vgvfL5Ze9yQBxz670LFRissKtaiNcY8bKoq98O/5rGhPikpSQsWLFBERIRefvnlMo/p0qWLJKljx44l2xISEjRgwADVq1dP/v7+io6O1qhRo5SUVDW+lausn2culNVSrM6TR5Xe/sYiWYuLNWz1azJv2KOjS+xfbMTVtu417hVzRvZdUsM+Az+/gX3/orCoWLsOunao1a9tqwI/A2eIufMGmby8tO/95aW2H5q3RkW5+Wo24kbDagMAV8k+ftroElABVqvNkFGbv9i2z7i+f1Hd7wf3Hj7vlFf4VcQJc06Ve8Whx4b6+fPny2q1Ki4uTjVq1CjzmMDAQOk3of78+fNq37693nrrLa1atUrTp0/X3r171atXL6WmGv+UtrKyUsw6umSD6t/YQXV6tC7ZbrMU60ziAQWE19ThBT8YWmNFWK027XDx3JlfqwoXcSNDZfqZXJcuSFOWPYfOq7DIuAXrPDXUR3RqLmtxsTJ2lJ6fWFxQpHN7UhTRqZlhtQEA8GuHjl00ZOj9L6rCvYCRNVSNz2/sPbnR/f+Wx4b6+Ph4SVK/fv3KPeaXkP7rUD9s2DDNnDlTI0eO1E033aS4uDgtXrxYFy9e1KJFi1xQufPsevPSU/lfP62v06O1mo/qp6QPv1X35x+Ud4CfoTVezcnTuYa+Wu1AFVgB3+ga6N/4vwPOEFS3tgrOZclaePm6EbnmcwoIrykvX49fWxUA4AaM/l1sdP9G12DOyFNmdmEFjnQeo/8bHEipGusK/MJkq2ovG3SQhg0bKjU1VTt27ChzZXuLxaJ69eopIyNDycnJatq0abnnOnv2rCIiIjRr1iyNHz/e7lq6du0qs9lsVxtfm5emWrvb3Zc9fIICNOz7Gdo3Z5n2/3ulBn/1vDJ+Tlbi1Ll2n2ua108qMjn/6anFK0ynaj1R7v7E+cOu+M7JqIhA+Xh7yVJslTmj/GEz5oxcdbt36WXbvaxZqndhRiUqd5wzIb9ToW/jMvc56vPrCj+D8KxPFVB0uBKVO0aOX2ddqDG8zH1X+/xywN+BgMK9Cs/+ohKVG+9K15W7Ns2Sl6+3FnZ97LJ9N7z1RzUfeZM+b/mACjONHanhSK66bgGoGuy9t7rjh3/KNzjAo1e/d9frYK5fW52vcU+Z+1xxL+BfeFAR2fMqUbnjnKz9V9lMZT+Mc/b9sCRFnX9V3racSlTuGBeCblNOQI8y97nifjg0d41C8hMqUfmVRUVFaevWrXa389jHLjk5l/6S5eWV/R9qwYIFysjIUEhIiGJiYi7bX1xcLKvVqmPHjumZZ55RVFSU7rmn7IvH1ZjNZqWlpdnVxs/kLdWtVHcV1u25B5R9/LT2z10hSVr/xCwNWzNDx7/bolOb7VtD4GT6SRXaXDCvxa9QqlX+7qiIIEXXDb7qaXy8vSp03G9Ziy12/7d0uJh8ybfsXc7+/JJ0NuOMlG3gz6BWY6nsGTUV/vy6hp9Bfm6O8X8HKulK15XivAL5Btcsc5+3/6W/cJY8Y7+VdzSXXbcAVAmuuLdyN257HQyNMvReoCA/z/h7gZpWqZy3DLviftCcflIqzq5UW4eoly0FlL3LFZ8/8+IFZWZUnftBjw31UVFROn/+vLZv365evXqV2peenq7JkydLkjp06CBTGa9quummm7Rhw6VF45o3b674+HhFRkZWuhZ7+dq8JCd+cdqgf2fFDOutJTdPKtmWdeyUtr04T71njtfS/pPsei91/Xr1XfJNb7EpSFca82DOuPJTRHu+mSyLj5dFdRs0qHC9znDWTypv/XVHff4rnSsiPET+NY37GeT5Bqq8VRWu9vnlgL8DQQFeqm3w34HKutJ1JffUedWMjZaXn89lQ/CDosKUf/airEXGv9LRkVx13QJQNTj73soduet1MN8nWOXNaHbFvUCgv0lhBt8LpJsKZC0n1Tr7flg2q+pHhcuksh8GuEJmoI/KeweBK+6Ha4X6K9jf8X8HKpMb5cnD7ydOnKi3335bDRs21Jo1axQbGytJSkxM1P33368jR46oqKhI48eP16xZsy5rf+DAAV24cEFHjx7Va6+9ptOnT2vDhg1q1KiRS+ovys3XvGZjXNKXI8QlfybfoHK+LnOw+jfPr/RibSdWj1Z03WClnspRw4H/sbv9qEEx+s+r/SvVt6P89a2teumDnyvV9lo/v8kkZW56QDWCyhkq4ALJJzLVfMiXlW5/rT+DWc/20vjRbSrdv5GudF3p/JfR6vjk3fp2+N90esv/Rup4+/tq9L6PdWpzktbEvejCap3PldctAMaz996qOgy/d9froDkjV/X6z690+2u9F5j+ZDdN+V2HSvfvCLc9vlLfra/cIt7X+vlbNqmp/UvvrlTfjvLlqqO658/xlWp7rZ9fkjZ+ert6daw6Q388dqG8KVOmKDw8XCdOnFDbtm3Vvn17tWjRQt27d1fTpk3Vv/+lYPbrRfJ+rWXLlurRo4dGjx6t77//XllZWXr11Vdd/ClQlq5tIgzsu3KjNRxaQ1vjPn+rmFqGBnpJahodolohxi3oaOTfP2c6umSjbFar2jw8pNT2FnED5BsUoCOL1xlWGwAAvxYVEaQGda48b96ZulSBewEjazDyXrSkBgM/v5eXSR1jww3rvyweG+qjo6OVkJCgIUOGKCAgQCkpKQoLC9OcOXO0fPlyHTx4ULpCqP+1WrVqqXnz5jp82LjFwfA/vTrWqZZ9/6JH+0iVMWPEJarC5zeZTOrZwZg6AgO81SE2zJC+ne3C/uPa//EKNRnSU/0+nKwW992srlMfUPfnxsq8ca+OLF5vdIkA4HRN775RHZ4coQ5PjlBAeKh8Q4JK/tz07huNLg+/YtQ9ia+Pl7q0MT7QVff74SYNaigqItCQvju1DFNQYNWaxV61qnGw1q1ba9myZZdtz87OVkpKiry8vNSuXburnuf06dM6cOCAevQoe4VFuNYDQ5vrb//apuJi184cadmkpq7vZPxFrH6dYA2+IVrfJlRuyNW1eOjOWJf3WZaH7ozVig2u//xxtzVTYIDnXjZ/+vtcZZ84o9gxAxR983XKP5eppI++045XF0ieOVMLAEqJvfdmRV3fttS26/5yryRd+oJzIaOWqoqH7myphatTXN7viAFNVCvU3+X9/tYtvRqoQZ0gpZ127VtpAvy9de/gZi7tsywmk0m/Gx5b6Smp16Kq3A//mufenV7B3r17ZbPZFBsbq6Cg0kN3xowZo+bNm6tTp06qVauWDh06pJkzZ8rHx0d/+tOfDKsZ/9OgbrCG92usRWtceyF/fFTrMhdVNMLjo1q7PNR3bBlWJb6ZlaQ7+jVW/TpBOuniX2SP3dPapf25ms1q1d4532jvnG+MLgUADLFixFSjS0AF3XJ9AzVrGKLkE+Utl+Ycj4+qGvcCPj5eemRkK/39X9td2u+9g5sqrKbxX2pI0h/ubqlXPtolq9V1Dx5qBPlqzO3NXdZfRXns8Psr2b17t1TO0PuePXvq22+/1YMPPqjBgwfrtddeU58+fbRz5041b171/gNWV5PGXn2EhSNF1A7QA0Orzn//Qb2j1bbZFd7t5wSTx7WvMl9q+Pp66cm4thU40nH6d6+n66rAHDoAAHBpXvOkB9q7tM8e7SN1w3VVZ3G0P9zdSqE1XLfWkbe3SU+Oce09+JU0rh+iUbde/mpyZ3p0ZCuF1jBubafyEOp/Y8KECfrpp590/vx55eXl6eDBg5ozZ44aN25sQKUoT6+OdfXH+1y3Avnsv15fJYZa/cLb20sfv3CjvL1dE7Jv6xOt+24zfqjVr/3p/nYuWyQmKMBH7z93g0v6AgAAFfPIyFbq46KQ7efrpY+e71NlHnBIUt3wQP3zz66bHvz07zpUubWF3pjSUxG1XfMGh2YNQ/TcY51d0pe9CPXVTOMhPdXzlYdLbWs+qp/GpS9Uo0HdDKurMl6e2FVNo0PsamPOyFXqqZwKvcP0FyNvidHIW1z7LWBFdGsXqSnj7HudSmU+f80QP7339xuq1C8x/XfY2dwX+sjP177LWGV+BtP/1E1No0MrUSUAAHAWLy+TPnr+RgUGeNvVrjL3AtMev05tmtWuRJXO9bs7YzWod7RdbSrz+ds1r62/PVL1Am2d8ED969ledrWpzOc3maSPn79RwQa/Bao8HvueenfnrPfU9/nXE0r+cq1Orr20qESN6EjdOPtJySTt+dfXOr4isVLnNeo9p7sPntNNv1uu85mFTjl/p1Zh+uGD26rUU/pfKyqy6s4/rdHydSeccn4/Xy998/ZA3XK9fb8sXOnz5cka8+xap63jNu6OFvpwWh95eVWtLzUqw1nXFXflru9nBlA5XAMv5ynXwa/jU3T3pHinLaJ8z60x+vyVvvL2rprPQ8+cy9ONDy7X/qMXnXL+uuGBSpg7RC0a13TK+a+VzWbT028k6tWPdzutjzem9NATVWjqwW9Vzb+ZqDS/0CCN3DZHo/d+rGGrX9PwdW/o/pT5un7GozL5eKtut5ZKX7/n0sEmk65//TFt+b8PZS20GF16pbSPDdOqOYMUXsvxobtzq3CtendQlQ30+u/c8i9n9NfgGxwfuv39vLXw9ZurdKCXpPuGNNNHzzsndN9/e3O9P/UGjwj0AAB4quH9m2jey33l4+P439d3D2yiT1+6qcoGekmKDAvUmvcGq3VTx6+3FBURqDXvDaqygV7/XQn/lSe76U/3O2e9pdee6l6lA70I9Z6nMDNXR75K0L4PlmvpwMn66e8f68z2g9r453dVr3c7nU48IJulWJLU9pGhOp24X2d3HTG67GvStW2kNvz7dofOrx49qKl++PA2RYYZ8/5LewQG+OjrNwfoT/e3ddj765tGhyj+g8Ea2reRY07oZOPuiNWytwc67H2lPj4mPT/+Os39x43y8eEyCQBAVTdqUFOtfGeQousGO+R83t4mPfv7jvrPq/3k52vf8H4jNKgbrHUfD9Ed/Rx373Z9pzra+MlQtWtRtebRl8VkMun1P/fQ28/0sns6Rnlqhfjp81f66s/jXLsgY2Vwt+qBwtrF6Nzuo5Kk8A7NdG7PpX9vNKibjn33kySpVsuGajykh35+Y5GhtTpKy5ha2vTpUP1jQhf5XkMIqxMWoEX/vFnzX+2nmiFVb2XL8vj5euufk3tq3cdD1LzRtc39/uN9bbRr4Z26vlPVWd21Igb3aai9X43QmNuvbUG/Tq3CtHX+HfrbI515Qg8AgBvp36O+9iy+65rfI962WS1t/myoXpzYtUo/of+tiNoB+uqNAfrs5ZtUO7Ty97EB/t765+QeWvfxEMXYuX6VkUwmkybc20Y/f3mnbuh8bfexQ29qpH1fj9C9VWyh6PIwp76KupZ5X6N2f6hvBk5Wrvmc+n7wZ51YmajkL3/UXZtmaenNf5YlN18tH7hFHZ8aKWthkSQpMLKWCrPztPO1BTrwySq7+6xKc7JOmLP13sIDen/RAZ06m1ehNm2b1dLjo1przO3Nq+RrKuxRUFishauPavaCJG3cebpCbUJr+GrssBZ6dGSrKrkIjL227cvQOwuS9Pl3ycrLL65Qm4G96uvxUa11+42NPPbpPPNJS6tK1y0Azsc18HKefB3cdfCc3lmQpE+XHVZOXsWmmfbtVk+Pj2qt4f0ay9fOhXirmguZBfr30kOavWC/Dh6r2Fz7BnWC9MjIVvr9XS1VLzLI6TU6k9Vq0+pNaZq9IEnL1p2o0LvsfX28dPfAJnp8VGv17ly3yi0SfSWE+iqqsr94gqLCNHTVq1rQ4feSpLs2vK21j/5TXj4+6vinu/X9Ay+X2W7Qomna9/4yt1so70oKi4q1NjFdW/dmaNu+s0o6ekG5+RZ5e5kUEuyrjrFh6tImQj071FG3dhFu9X/citp7+LzW7zilbfsytGP/WZ3PLFCRxapAfx81axiirm0i1aVNuPr3qK8aVXQ1z2txPrNA8VtOatu+s9q674yOncxRfqFFfr7eiqjlr+taR6hLmwjd2CXqmkc4uANuaEuritctAM7DNfBy1eE6mJldqO+3nNS2fZfuB4+kZim/0CJfHy+F1wzQda3D1aVNhPpcV1ctYxw/J91oNptNm34+rS27z2jbvgztPnReWTlFstlsCg70UeumtdS1bYS6tY3UjV2iPPLBxglzttYmpv/3fjBDp87mqbCoWP5+3oquE6wubSIu3Q93r6864VV/6m1ZfIwuAI4V1i6mZLi9JBVm5qjV2FtVcC5Lx1f8ZGhtrubn661bro+u8gu9OVPb5rXVtrn7P3mvrNqh/hoxMEYjBla9VxICAADnC63hpztvbqI7b25idCmGMJlMur5TXbebVulIDaNq6P6hLXT/0BZGl+I0hHoPk7pmm1LXbCv587LBT0uS7lg7UytHTC233Yor7AMAAAAAVE2E+mpiSd8/GV0CAAAAAMDBPG/SBAAAAAAA1QShHgAAAAAAN0WoBwAAAADATTGnvoryCfRXXPJnRpdRYT6B/kaXAAAAAADVDqG+ijKZTB7/3lAAAAAAwLVh+D0AAAAAAG6KUA8AsFtUr7Yal75Q49IXqseLD5V5TEB4qO4/Nl/j0hdq0KJpLq8RAJyJ6yCAqoJQDwCoNEtegZreeYO8/C6fzdXs7ptkMplkLbIYUhsAuALXQQBGI9QDACrt+Hc/yb92iBrd2u2yfc1H91Pq9ztUXFhkSG0A4ApcBwEYjVAPAKi0s7uP6tzeFDUf3b/U9ohOzVW7VSMdXhBfZrtGg7pp8JJ/KC75M8Ud/lSDl/xDDX9zQzxk+csatesDmbwv/1VVv29HjUtfqDYPDym1veUDt+j2ldM15sg8xR3+VLcufE5R17d1yGcFgLJwHQRgNEI9AOCaHPpPvOrf1EFBUWEl21rc2195Zy7oxOptlx3fcuyt6v/xX+Rfu4Z+/udC/Txzkfxr19DNc/+i2DEDSo47/MVaBUbWUoN+nS87R7ORfWUtsujI4oSSbX1mTVSPlx5S1lGztr7wqXa+9oX8QoN0y4K/q+EtXZ3y2QFAXAcBGIxQDwC4JkcWrZPNYlWze/pKkrwD/BRzR28lL1wnW7G11LF+NYPV9W9jlHk0Xctve0Z7/vW19vzray2/7RllppjVbepY+YUGSZKOLtmg4oIiNRt5U6lz+AQHqNGgbkqN36H8s5mSpEaDu6vZiBu1+en39eOjM7X/4xXaO+cbLRv8tM7tTVH3Fx502c8DQPXDdRCAkQj1AIBrUnA+WydWbVXz/97MNr6th/xqBuvQfy4fclr/xg7yDQ5U0offqSg7r2R7UXaekj78Vr41AlWvTwdJUuGFbJ1YvVUNB3YpucGVpCa395JvUICSv1xbsq3piBtVmJV7aW5rWEjJP341g3Vi1VaFNKqr0Kb1nPyTAFBdcR0EYKTLl+kEAMBOh/4Tr4Hz/qo63Vup+ej+OrP9kC4eTL3suBqN6kqSLhw4cdm+X7aFNK5bsu3wF2vV5PZeajLseh38bI0kqdnIm1RwPksnVv1vSGutFg3kFxKk0Xs+KrfGgMhayjySfo2fFADKxnUQgFEI9QCAa3Zy7c/KOXlWnZ4aqXq922rT0+875Lxp8TuUl3FRzUbepIOfrVFwgwhF9WqjA5+sKv2KKJNJeRkXte7xN8o914X9xx1SEwCUhesgAKMQ6gEA18xmtSp54Y/qMPEuWfIKdPSr9WUel3XslCSpVsuGSl+/u9S+WrENSx0jSbZiq45+laA2D9+uGo3qqOmdN8jk5aXDX/xYqm3mkXRFD6inM9sOyZKb74RPCABXxnUQgFGYUw8AcIgDn6zSzhlfaNNf3is1T/TX0tf9rKKcPLX+3WD5BAeUbPcJDlDr3w1WUXaeTq7bVarNLzeuzUf2VbO7b9LFw2nK2HGo1DHJX/4oL29vdXn2vjL7DYio6YBPCABXxnUQgBF4Ug8AcIictAztfP2LKx5TmJmrrS98pl6vPKzbv31ZhxdcWuSp+ai+Cm1aTxsnv6uirNxSbc7tOapz+46pzR+GyC80WNtemnfZeY8t36xD8+PV+qHbFNa+qVLXbFP+uSwF1wtTZNeWCm0SpUU9xzv4EwNAaVwHARiBUA8AcKkD/16pvNPn1e6xO9Rx0khJ0vm9xxT/4HQdX5FYZpvkL9aq23NjZS0uVvKidWUes+Gp2UrfuEctxwxU+z/eKW9fH+WduaCzu4+WeQMMAEbhOgjAkUw2m81mdBEAAOcrys3XvGZjjC6jyohL/ky+QQEVOBKAJ+AaeDmug4BnYE49AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AQDVRXGzVuYsFys4tks1mM7ocl7PZbMrKKdT5zAIVF1uNLscQhUXFOnshX/kFFqNLAQA4iI/RBThbRkaGXn31VS1evFipqamKjIzUXXfdpZdeekkTJ07URx99pLffflsTJkwwulQAMFT7P96p8PZNFd6hqUIa11X2idNa2P1xo8vCNbLZbFq3zazZC5K0+PsUWSyXwnzDqGA9cncr/X5ES9UNDzS6TKdKO5Wj9xYe0PuLDyj9TK4kyc/XSyNvidH40a3Vs0MdmUwmo8t0msKiYi1ek6LZC5KUsP1UyfYubSL0+KjWGj2oqYICPf6WsGJMJrV5eIha3j9QNaIjlX82U0e/2aidry6QJa/A6OoAoEwmmwd/Vb9z504NHjxYZrNZwcHBio2N1cmTJ3Xq1CkNGTJE586d06ZNm5SQkKAbbrjB6HIBwKmKcvM1r9mYcvePS1+o/HNZOrf7iMI7NFVRdp5Hh/q45M/kGxRgdBlOlZVTqFGTf9B361PLPcbP10sfP3+j7hvSzKW1ucp7C/dr/IsbZSku/3ZnxIAm+vSlmxQY4HnB9tCxi7pt/CodPp5Z7jH16wRp2dsD1bl1hEtrc7WrXQMlqfsLD6rN74fo2LdblBq/Q7VaNFDr3w3WqS1JWnnP85KH3TZXh+sgUB143m+v/8rIyNDQoUNlNps1adIkTZ06VSEhIZKkV199VX/5y1/k4+Mjk8mkDh06GF0uABhuYY/HlX38tCTpjh/+Kd9gbvTcWX6BRUPGryr1ZLYshUVWxT2zVlabTWNub+6y+lzh3S+S9Ng/Nl71uEVrUpSTZ9HStwbK19dzZiampGXpxgeXy5yRd8XjTp7OVd+HvtX6uberfWyYy+qramrFRqv17wYrZflmrf39jJLtWcdPq+eLDylmeG8d/Wq9oTUCQFk85zfXb0ycOFGpqamaMGGCZsyYURLoJWnKlCnq2LGjLBaLmjRpotDQUENrBYCq4JdAD8/w8ge7rhrof+2hqQklQ9M9QfKJTI1/aVOFj1+xIVVvfb7XqTW52u/+nnDVQP+LzOwi3fuXH6rlWgu/iLnzBpm8vLTv/eWlth+at0ZFuflqNuJGw2oDgCvxyFCflJSkBQsWKCIiQi+//HKZx3Tp0kWS1LFjx3LPM3jwYJlMJj333HNOqxUAAEcrLCrWe4v229nGqg8WH3BaTa727hf7ZbXaF1BnL0iyu01VtS/5vH5ITLerzd7kC1q3zey0mqq6iE7NZS0uVsaOQ6W2FxcU6dyeFEV08swpKgDcn0eG+vnz58tqtSouLk41atQo85jAwEuLApUX6r/44gvt3LnTqXUCAOAM36w9XuEntL8250v7g3BVVFhUrI++Pmh3uyOpWVqzOc0pNbnaewsr9wXNu1/Y92WQJwmqW1sF57JkLbz8zQC55nMKCK8pL1+PnbkKwI155JUpPj5ektSvX79yj0lNvbRoUFmhPjMzU08++aRmzJihMWOuvKBKRXTt2lVmc/X95htA1eBr89JUdTe6jCojtkWsikye+VqzzICbpKD+drdLO52r6MbN5WVz71W+LV6hOldrUqXa3nP/k6pRsNnhNblaRsgDkq/9T5YXLtuohM/vd0pNRrvaNdA70F/FhUVl7isuuLTdJ9BPhUWe8zpAT74OAu4oKipKW7dutbudR4b6Y8eOSZIaN25c5n6LxaINGzZI5YT6v/71r4qNjVVcXJxDQr3ZbFZammd88w/AffmZvKW6RldRdZxMP6lCW7HRZThH3TwpqHJN09PPSMVZjq7ItfyKpFqVa3oxM0cXMzzgd3bTYsnX/maWYnnsPcvVroHFeQXyDa5Z5j5v/0s/TEteobPKM4RHXweBasQjQ31OTo4kKS+v7KGHCxYsUEZGhkJCQhQTE1Nq39atW/X+++9r27ZtDqsnKirKYecCgMrytXlJPJApUb9efY99QpXt762LlWlos6p+VG2Z5N4LyFpNAbJvNvn/1ArxVbB/AwdX5HpnfS3Kr0Q7P68CRTZw/89flqtdA3NPnVfN2Gh5+flcNgQ/KCpM+WcvyupBT+nl4ddBwB1VNjd6ZKiPiorS+fPntX37dvXq1avUvvT0dE2ePFmS1KFDB5lMppJ9xcXFeuSRRzRhwgS1bdvWYfVUZggFADhaRd7RXJ0cPHTQY9/PnJKWpaa3fWH3K7XvHBCjxTOPOasslxrw8Hf6fstJu9r4+njpQOIC1QkPdFpdrvL58mTFPbPW7nbTn71HT97/vFNqMtrVroEZOw+rQd9OiujcQqe3JJVs9/b3VVi7Jjq1Oanctu7Kk6+DQHXikQvlDRgwQJI0ffp0HTz4v4VyEhMT1a9fP2VkZEiSOnXqVKrdrFmzdOrUKVa7BwC4tSYNQjSkT0O72z0+qrVT6jHC+NH2f5aRt8R4RKCXpBEDmyiytn1hLTDAW2PvaOG0mqq6o0s2yma1qs3DQ0ptbxE3QL5BATqyeJ1htQHAlXjkk/opU6bo888/14kTJ9S2bVu1atVK+fn5Onz4sAYPHqwmTZpo5cqVpebTZ2Rk6G9/+5tmzJghi8WiCxculOzLz8/XhQsXFBoaKi8vj/weBADU9O4bVSM6UpIUEB4qL18fdXhyhCQpO/WMjizkhtadTH2ss9ZsOan8gorNlx3Qs75u7lHf6XW5ytCbGqlXxzra9PPpCh1fI8hHz/6+/Nfcuht/P289P/46PfaPjRVu85cHO6h2qL9T66rKLuw/rv0fr1Drh25Tvw8nK/X77arZooHaPHSbzBv36sji9UaXCABlMtls9g7Ocw9JSUmaPHmyfvzxR0lSmzZt9NBDD+nhhx9Ws2bNdPToUW3ZskXdu19aBXXnzp3q3LnzFc959OhRNWnSxCX1A4CjXW3o6aBF0xR1fdlTj8wb92rFiKlOrM714pI/8/hhp9+sPa57JsdfNdj37BCpFe8MUs0QP5fV5goZ5/M18JHvtHP/uSseFxzooyVvDtTNPT3nS41f/P1f2/TCnKu/ovfRka00+/+uLzUt0dNUZAqSyctLbR4eotgxA1SjYR3ln8tUytKN2vHqAllyK7NKQdVWHa6DQHXgsaG+PNnZ2QoNDZXJZFJWVpaCgoJKtpc1971fv34aO3asxo0bp549eyoggAsfAPfEnPrSqsvNbOKeM5r27g59m3Disjn2kbUD9PCIlvq/P3RSYIBHDt5TVk6hpr2zQx99fVDnM0uvXO7lZdId/Rpp6qOd1bFluGE1OtuCFUc0/aNd2rH/7GX7WsXU1KQH2uuhu2I9OtCLa2CZqst1EPB0nvkb/Ar27t0rm82m2NjYkkAvSTVq1FDfvn3LbNOkSZNy9wEAUJV1axepZbNu0dHULC3+PkXPvbNd2bkW1Q7104nVo+Xv5210iU4VEuynGX/uoRcmdNGiNSl6/B8blJVrUc0avtq9+C41jKphdIlON2pQU91za4x+2n1Gazaf1Csf/azsXIsiavlr39cjPD7MA4Cnq3YTxHfv3i2V8356AAA8VUx0iCaNba+aNS4NsQ8K8PH4QP9rgQE+GnN7c4X+9/PXCPKtFoH+FyaTST061NFf/9Cp5O+Av583gR4APEC1e1Jvb6ivZrMTAAAAAABuhCf1AAAAAAC4qWr3pD4+Pt7oEgAAAAAAcIhq96QeAAAAAABPQagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATfkYXQAAwDV8Av0Vl/yZ0WVUGT6B/kaXAMCFuAZejusg4BkI9QBQTZhMJvkGBRhdBgAYgmsgAE/F8HsAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN+VjdAEom81mkyWvwOgyKswn0F8mk8noMgAAAACgWiHUV1GWvALNazbG6DIqLC75M/kGBRhdBgAAAABUKwy/BwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3xUJ5AAB4uKycQu1IOqvDJ7KUnVskScrNt2j/0QuKbVxTXl68vQQAAHdFqAcAwAOdMGfrvYUHtHD1UR1IuSibrfT+85mFan3HItUI8lWvjpF6eEQrDe/XWL6+DOIDAMCdEOoBAPAgR1IzNfn1RH39wzFZrbarHp+dW6TVm05q9aaTqhcZpEkPtNMTcW3l40O4BwDAHRDqPUhUr7YatHhaqW1FOXnKPJKu5IXrlPTht7IVWw2rDwDgPFarTbMXJOkvMxOVm2+p1DnSz+Tqz6//pC9WHtXcf9yo1k1rObxOAADgWIR6D3RkcYJS47dLJpMCI2up+cib1H3aONVs0UCbJs8xujwAgIPl5Vs0avIP+ubH4w453097zqjzPV/rs5du0t23xDjknAAAwDkYW+eBzu4+qiOLEnRk4TrtfWeplg95VjlpGYq972b5h4caXR4AwIHyCyy6fcIqhwX6XxQUFmvUlB80/9tkh54XAAA4FqG+GrDkFejM9kMyeXkptHFdo8sBADiIzWbT/c/+qPif0p1yfqvVpgf+70f98NNJp5wfAABcO0J9NRHS5FKYL7iQbXQpAAAH+WzZYS1cnWJXm8T5w3Ri9Wglzh9WoeMtFpse/HuCsnIKK1klAABwJkK9B/IJ9JN/WIj8w0NVq1Uj9Xjp9wpv31Rnth9S5hHnPM0BALhW+plcTXxls93toiKCFF03WFERQRVuc+xktib/M9HuvgAAgPNVi1CfkZGhKVOmqHnz5goICFDDhg31xBNPKCcnRw899JBMJpNmzZpldJkO03nKaN2792Pdu+cjDf/hn2r94CClLN+s+HHTjS4NAOAgL76/UxeyXPf0fM6X+3Xg6AWX9QcAACrG41e/37lzpwYPHiyz2azg4GC1adNGJ0+e1FtvvaXk5GSdO3dOktSpUyejS3WYA5+uUso3m+Tl66ParRqp3fjhCq4XruKC/938efn5aOiq13T0qwTtenNxyfYb3hivgMhaWhP3okHVAwCuJiunUJ98c9jl/b775X7NnNLT5f0CAIDyefST+oyMDA0dOlRms1mTJk1Senq6tm/fLrPZrOnTp2v58uVKTEyUyWRShw4djC7XYTKPmJWesFtp8Tu0Z/YSfT/2FUV0aqZe0x8pOcZaaNH6iW+r/cS7VLtNY0lSo0HdFD2wqzY8NdvA6gEAVzNvebKycopc3u/HSw4pJ9f1/QIAgPJ5dKifOHGiUlNTNWHCBM2YMUMhISEl+6ZMmaKOHTvKYrGoSZMmCg313Fe9ndl6QMkL1ylmeG9Fdm1Zsv3sriPa+85S9XnrjwqqF6Zerz2qLc9+oLxT5w2tFwBwZcvWnTCk34tZhdr482lD+gYAAGXz2FCflJSkBQsWKCIiQi+//HKZx3Tp0kWS1LFjx5Jta9eulclkuuwfdx+e//PMhbJaitV58qjS299YJGtxsYatfk3mDXt0dMkGw2oEAFTMtn0Z1bJvAABwOY+dUz9//nxZrVbFxcWpRo0aZR4TGBgo/SbU/+Jf//qXrrvuupI/BwcHO7Fa58tKMevokg1qNuJG1enRWqe3JEmSbJZinUk8oIgOzXR4wQ9GlwkAuIqTp3NkzsgzrH9CPQAAVYvHPqmPj4+XJPXr16/cY1JTU6VyQn2bNm3Us2fPkn/at2/vxGpdY9ebl57K//ppfZ0erdV8VD8lffituj//oLwD/AytEQBwZcfTcwzt/4TZ2P4BAEBpHvuk/tixY5Kkxo0bl7nfYrFow4ZLQ83LCvWO1LVrV5nNZrva+Nq8NFXd7Wpj3rRXc+vdXe7+i4fS9En0/wK9T1CAbnhjvLa9OE/7/71Sg796Xtc9c58Sp861q19Jim0RqyKT1e52AAD7FPg0lkJ/V+a+xPnDrvr++aiIwJL/PbF6dLnHmTNy1e3epZdt375jl6KjH7e77qoivdZTkldNpZvTFR0dbXQ5huBnAABVU1RUlLZu3Wp3O48N9Tk5l54k5OWVPURxwYIFysjIUEhIiGJiYi7bP2rUKGVkZCg8PFzDhg3TK6+8ooiIiErVYjablZaWZlcbP5O3VLdS3VVYt+ceUPbx09o/d4Ukaf0TszRszQwd/26LTm1OsutcJ9NPqtBW7KRKAQAlggKkctZ2jYoIUnTdik0X8/H2qvCxv1ZUmG/377QqJaRY8pKsxcXu/TmuBT8DAPAoHhvqo6KidP78eW3fvl29evUqtS89PV2TJ0+WJHXo0EEmk6lkX82aNTV58mTdeOONqlGjhjZt2qSXX35Zmzdv1tatWxUQEFCpWuzla/OSnPjgu0H/zooZ1ltLbp5Usi3r2Clte3Gees8cr6X9J8mSV1Dh89WvV58n9QDgAhavIJ0qZ585I/eq7aMiAuXj7SVLsfWKc/PLO5e/T5EiGjSocL1VTbq3t6ySvLy9Vc+NP8e14GcAAFVTZXKjJJlsNpvN4dVUARMnTtTbb7+thg0bas2aNYqNjZUkJSYm6v7779eRI0dUVFSk8ePHa9asWVc81zfffKNhw4bpo48+0oMPPuiS+oty8zWv2RiX9OUIccmfyTfI/i88AAD2sVptqn3Dp8rMrtz74k+sHq3ousFKPZWjhgP/Y3f7//tDJ70woUul+q4KogfMV9rpXDWoE6TUNfcaXY4h+BkAgGfx2IXypkyZovDwcJ04cUJt27ZV+/bt1aJFC3Xv3l1NmzZV//79pQrOp7/99tsVHBxcqfkNAAA4kpeXSde1rtx0MEfo0ibcsL4BAMDlPDbUR0dHKyEhQUOGDFFAQIBSUlIUFhamOXPmaPny5Tp48KBk5yJ5vx6mDwCAUfp1q2dIv74+XurdyckLvgAAALt47Jx6SWrdurWWLVt22fbs7GylpKTIy8tL7dq1u+p5li5dqpycHHXvbt9q9AAAOMNDd8bq+Tk7VFzs2hl0IwY0UWRYoEv7BAAAV+bRob48e/fulc1mU2xsrIKCSr/6Z8yYMWratKmuu+66koXyXn31VXXq1EmjR5f/6h8AAFylQd1gDe/XWIvWpLi03/GjW7u0PwAAcHUeO/z+Snbv3i2VM/S+bdu2+uqrr/TAAw9o8ODB+uijj/Twww9r7dq18vPzM6BaAAAu99eHO8rb23XTwvp3r6fenRl6DwBAVUOo/41nnnlGu3fvVmZmpoqKinT06FH985//VM2aNQ2o1PEaD+mpnq88XGpb81H9NC59oRoN6mZYXQAA+3RuHaFnHqr4ujDXokaQrz6c1oe1ZQAAqIII9dVMo9t66PiKn0r+XCM6UrFxA3R66wFD6wIA2O9vj3RSx5ZhdrUxZ+Qq9VROhd5p/4sZk7qrSYOQSlQIAACcrVrOqY+Pjze6BKfxCw3SHT/MlHeAn3JPZsjL31chjeoqeeGP2vT0+6rbraXWPzHr0sEmk65//TFt+b8P1W3qWKNLBwDYyc/XW8tn3aIbxi5TysnsCrXpdu9Su/qY9EA7/eHulpWsEAAAOFu1fFLvyQozc3XkqwTt+2C5lg6crJ/+/rHObD+ojX9+V/V6t9PpxAOyWYolSW0fGarTift1dtcRo8sGAFRSg7rBWvvRbWrRONTh5/7L7zrotUndGXYPAEAVRqj3QGHtYnRu91FJUniHZjq359K/NxrUTce+uzT0vlbLhmo8pId+fmORobUCAK5d4/oh2vzZMI25vZlDzhdW01+fv9JXrzzZjUAPAEAVR6j3QGFtm5QE+fAOTXX2vwG/ft9OSovfIUmq26O1ajSsoxEb39bdP81W5HUt1Ou1R9XygVsMrR0AUDlhNf316Ut99fWbA9QwKrjS57l7YBPt/eou3XubY74gAAAAzlUt59R7sqCoMMlmU675nCQprHVj7XpzkSI6t9DFQ2my5OZLkg58skoHPllV0m7Qomna9/4yHV+RaFjtAIBrd0e/xhrSp6GWrTuu2QuStHrTyau2qR3qp98Nj9Wj97RW80aOH8YPAACch1DvYcLaxZQ8pZekwswctRp7qwrOZZVa9R4A4Ll8fLw0vH8TDe/fRBcyC7Q96ay27s3QoeMXlVdQLB9vL9UO9VOnluHq0iZcrWJqyceHwXsAALgjQr2HSV2zTalrtpX8edngpyVJd6ydqZUjppbbbsUV9gEA3FetUH/171Ff/XvUN7oUAADgBIT6amJJ3z8ZXQIAAAAAwMEYawcAAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAboqF8qoon0B/xSV/ZnQZFeYT6G90CQAAAABQ7RDqqyiTySTfoACjywAAAAAAVGEMvwcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATfkYXQDKZrPZZMkrMLqMCvMJ9JfJZDK6DAAAAACoVgj1VZQlr0Dzmo0xuowKi0v+TL5BAUaXAQAAAADVCsPvAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAEC1YLPZZLPZSv4dAABPwOr3AADAI+XmWbT4+xRt3HlK2/ad1a5D55RfUCxJOnkmT7FDv1TXNhHq2jZCdw+MUaN6NYwuGQAAuxHqAQCARzmSmqm3P9+nuUsO6UJWYbnHHTqWqUPHMjX/uyOa/M9EDenTUBPuba2BvRrIZDK5tGYAACqLUA8AADxCcbFVMz/dq/+btU0FhcV2tbVabfrmx+P65sfjGjGgiWb/9XrVCQ90Wq0AADgKod6DRPVqq0GLp5XaVpSTp8wj6UpeuE5JH34rW7HVsPoAAHCWVHOO7pkcr00/n77mcy1ak6Ift5n173/cqNv6NHRIfQAAOAuh3gMdWZyg1PjtksmkwMhaaj7yJnWfNk41WzTQpslzjC4PAACHSj6RqZsf/k7HTmY77JwZ5/M1bOJqffKPm3TfkGYOOy8AAI7G6vce6OzuozqyKEFHFq7T3neWavmQZ5WTlqHY+26Wf3io0eUBAOAwJ0/naICDA/0viottuv+vP+rr+BSHnxsAAEch1FcDlrwCndl+SCYvL4U2rmt0OQAAOITNZtO4v61TihMC/S+sVpvG/t86nTA7rw8AAK4Fob6aCGlyKcwXXOCmBADgGT5YdECrN520q03i/GE6sXq0EucPq3CbzOwiPfzcet5tDwCokjw+1GdkZGjKlClq3ry5AgIC1LBhQz3xxBPKycnRQw89JJPJpFmzZhldpkP5BPrJPyxE/uGhqtWqkXq89HuFt2+qM9sPKfNIutHlAQBwzc5eyNek13+yu11URJCi6wYrKiLIrnYrN6ZpwYojdvcHAICzefRCeTt37tTgwYNlNpsVHBysNm3a6OTJk3rrrbeUnJysc+fOSZI6depkdKkO1XnKaHWeMrrUtpTlm7XlmQ8MqwkAAEf6+OtDysopcmmfb87bq9GDWTQPAFC1eOyT+oyMDA0dOlRms1mTJk1Senq6tm/fLrPZrOnTp2v58uVKTEyUyWRShw4djC7XoQ58ukor75mm1XEvausLnyr/XJaC64WruKCw5BgvPx/dsXamOjxxV6m2N7wxXgPm/dWAqgEAqBir1aZ3vkhyeb+bd53R9n0ZLu8XAIAr8dhQP3HiRKWmpmrChAmaMWOGQkJCSvZNmTJFHTt2lMViUZMmTRQa6lkrwmceMSs9YbfS4ndoz+wl+n7sK4ro1Ey9pj9Scoy10KL1E99W+4l3qXabxpKkRoO6KXpgV214araB1QMAcGUbd57SkdQsQ/r+5JvDhvQLAEB5PDLUJyUlacGCBYqIiNDLL79c5jFdunSRJHXs2PGyfV999ZWuv/56BQcHq2bNmurdu7f27t3r9Lqd5czWA0peuE4xw3srsmvLku1ndx3R3neWqs9bf1RQvTD1eu1RbXn2A+WdOm9ovQAAXMlPe84Y1nfiXuP6BgCgLB4Z6ufPny+r1aq4uDjVqFGjzGMCAwOlMkL9W2+9pXvuuUc33HCDli5dqvnz52vAgAHKy8tzSe3O8vPMhbJaitV58qjS299YJGtxsYatfk3mDXt0dMkGw2oEAKAitu07a1jfO/aflcViNax/AAB+yyMXyouPj5ck9evXr9xjUlNTpd+E+uTkZE2ePFkzZ87UhAkTSrbfdtttTq3XFbJSzDq6ZIOajbhRdXq01uktl+Yi2izFOpN4QBEdmunwgh+MLhMAgKvam2zciLK8/GKlnMxW80aeNXUPAOC+PDLUHzt2TJLUuHHjMvdbLBZt2HDpifSvQ/1HH30kX19fPfzwww6tp2vXrjKbzXa18bV5aaq6O7SOXW8uUszw3uo8eZRW3v2cJKlOj9ZqPqqfkj78Vt2ff1BLB05WcX7hVc/1W7EtYlVk4skFAMD5zDUnSt7hZe5LnD/siq+ri4oILPnfE6tHl3ucJJkzctXt3qWXbb++T3/5Fdv3e70qSa/1lORVU+nmdEVHRxtdDgDgv6KiorR161a723lkqM/JyZGkcofML1iwQBkZGQoJCVFMTEzJ9o0bN6ply5b67LPP9I9//EMnTpxQixYt9Pe//1333ntvpesxm81KS0uzq42fyVuqa2c/m/Zqbr27y91/8VCaPon+3/B7n6AA3fDGeG17cZ72/3ulBn/1vK575j4lTp1rX8eSTqafVKGt2O52AADYLdgieZe965f30F+Nj7dXhY4ry5nTp6R8+36vVykhxZKXZC0utvv+BABQ9XhkqI+KitL58+e1fft29erVq9S+9PR0TZ48WZLUoUMHmUymUvvS0tL0zDPPaPr06WrYsKE+/PBD3XfffYqMjNSAAQMqXY+9fG1ekpMffHd77gFlHz+t/XNXSJLWPzFLw9bM0PHvtujUZvteFVS/Xn2e1AMAXOK0t1XlvaHenJF7xbZREYHy8faSpdgqc8aV18sp71x1I2vLx2qrcL1VTbq3t6ySvLy9Va9BA6PLAQD8V2Vyozw11A8YMEBJSUmaPn26Bg4cqNjYWElSYmKi7r//fmVkXHrHbKdOnUq1s1qtys7O1qeffqrhw4dLkm6++Wbt27dPL7zwQqVDfWWGUBTl5mteszGV6q8iGvTvrJhhvbXk5kkl27KOndK2F+ep98zxWtp/kix5BRU+38FDB+UbFOCkagEA+J8xz6zVvOXJZe4ra7j8r51YPVrRdYNlzshTw4H/sbvvoAAfpR3dKW9v911rOHrAfKWdzlW9qHpK3ZNqdDkAgGvkvr+RrmDKlCkKDw/XiRMn1LZtW7Vv314tWrRQ9+7d1bRpU/Xv318qY+X7sLAw6b9fCvzCZDJpwIAB2rNnj4s/hXOlxe/Q563GKicto9T2/XNXaHGvCXYFegAAXKlLmwjD+u7UKsytAz0AwPN45G+l6OhoJSQkaMiQIQoICFBKSorCwsI0Z84cLV++XAcPHpTKCPVt27Yt95z5+flOrxsAAFxd93aR1bJvAADK4pGhXpJat26tZcuWKSsrS1lZWdqyZYv+8Ic/KCcnRykpKfLy8lK7du1KtbnjjjskSatWrSrZZrVatXr1anXr1s3lnwEAAFyuV8c6atYwxJC+xw5rYUi/AACUxyPn1F/J3r17ZbPZFBsbq6Cg0q+8GTp0qPr06aM//OEPOnv2rBo1aqQPPvhAe/fu1erVqw2rGQAA/I+Xl0mP3dNaf379J5f226tjHXVqVfar9AAAMIrHPqkvz+7du6Uyht7rv/Pnly5dqhEjRujZZ5/VsGHDdOzYMX377bcl8/ABAIDxHhweq9Aavi7t88kx5U/TAwDAKIT636hVq5bmzJmjM2fOqKCgQD/99JNuvfVWF1cJAACuJKymv2ZO7umy/obc2FAjb4lxWX8AAFQUob6aaTykp3q+8nCpbc1H9dO49IVqNIh1AwAA7uPB4S00+IZou9qYM3KVeirnqu+z/7WaIX6a87feMplMlagSAADnqnZz6uPj440uwVCNbuuh5C/Xlvy5RnSkYuMG6PTWA4bWBQCAvUwmkz56vo9uGLtMySeyKtTmau+x/y1vb5M+e+kmNagbXMkqAQBwrmr3pN7T+YUGaeS2ORq992MNW/2ahq97Q/enzNf1Mx6Vycdbdbu1VPr6PZcONpl0/euPacv/fShrocXo0gEAsFtURJDWvDdYMQ0cvxq+j49Jn7/SV7ff1Mjh5wYAwFEI9R6mMDNXR75K0L4PlmvpwMn66e8f68z2g9r453dVr3c7nU48IJulWJLU9pGhOp24X2d3HTG6bAAAKq1JgxCt//cQ9bmursPOWScsQMvevkX33NrUYecEAMAZCPUeKKxdjM7tPipJCu/QTOf2XPr3RoO66dh3l17/U6tlQzUe0kM/v7HI0FoBAHCE+nWCtfajIXpjSg8FBnhf07nuHdxU+74eoVt72zdfHwAAI1S7OfXVQVjbJiVBPrxDU51YmShJqt+3k7a+8JkkqW6P1qrRsI5GbHxbkhQYWUu9XntUgXVq68AnqwysHgCAyvHyMumJMe00vH9jzV6QpA+/OqizFwoq1Nbb26Th/Rprwr1t1LdbPafXCgCAoxDqPUxQVJhksynXfE6SFNa6sXa9uUgRnVvo4qE0WXLzJUkHPllVKrwPWjRN+95fpuMrEg2rHQAAR2hcP0TT/9Rd0x6/Tkt+OK5NP5/Wtn0Z+vngOWXlFEmSfH28FNs4VF3aRKhLmwiNGNCExfAAAG6JUO9hwtrFlDyll6TCzBy1GnurCs5l6fiKnwytDQAAVwrw99GoQU01atD/5sVbrTZZrTb5+DADEQDgGQj1HiZ1zTalrtlW8udlg5+WJN2xdqZWjphabrsVV9gHAICn8PIyycuL980DADwHob6aWNL3T0aXAAAAAABwMMaeAQAAAADgpgj1AAAAAAC4KUI9AAAAAABuijn1VZRPoL/ikj8zuowK8wn0N7oEAAAAAKh2CPVVlMlkkm9QgNFlAAAAAACqMIbfAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmfIwuAGWz2Wyy5BUYXUaF+QT6y2QyGV0GAAAAAFQrhPoqypJXoHnNxhhdRoXFJX8m36AAo8sAAAAAgGqF4fcAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClWvwcAAPBQNptNKWnZ2rYvQ9uSMpR2KlfnLl56Ze7F7ELN/zZZXdpEqHmjUHl58WpaAHBHhHoAAAAPcyGzQP9eekjvfLFfB1IulnlMdq5F9z29VpLUuH4NPXJ3Kz10Z6zqhAe6uFoAwLUw2Ww2m9FF4HJFufm8px4AANilqMiq6R//rJc++Fl5+cV2t/fz9dITcW017fHrFBjAsx8AcAdcrT1IVK+2GrR4WqltRTl5yjySruSF65T04beyFVsNqw8AADjP7oPnNO5v67Q96Wylz1FYZNVrc3dr6drj+viFPurVsa5DawQAOB6h3gMdWZyg1PjtksmkwMhaaj7yJnWfNk41WzTQpslzjC4PAAA42KqNqbrzye+Vm29xyPkOpFzUjQ8u12cv9dWoQU0dck4AgHMQ6j3Q2d1HdWRRQsmfD8xdqTsT3lTsfTdr+yvzVXA209D6AACA46zZnKahf1ytwiLHjsazWGy69y8/yMvLpJG3xDj03AAAx+GVdtWAJa9AZ7YfksnLS6GNGUYHAICnSD6RqTuf/N7hgf4XNpsU9/Rabd+X4ZTzAwCuHaG+mghpcinMF1zINroUAADgAFarTb/7e4Kyc4vsapc4f5hOrB6txPnDKnR8kcWqcX9bp8Ii+xfeAwA4H6HeA/kE+sk/LET+4aGq1aqRerz0e4W3b6oz2w8p80i60eUBAAAHmL0gSeu2me1uFxURpOi6wYqKCKpwm92Hzusf7+20uy8AgPNVi1CfkZGhKVOmqHnz5goICFDDhg31xBNPKCcnRw899JBMJpNmzZpldJkO03nKaN2792Pdu+cjDf/hn2r94CClLN+s+HHTjS4NAAA4QFGRVS++79qQ/c9P9igzu9ClfQIArs7jF8rbuXOnBg8eLLPZrODgYLVp00YnT57UW2+9peTkZJ07d06S1KlTJ6NLdZgDn65Syjeb5OXro9qtGqnd+OEKrheu4oL//SL28vPR0FWv6ehXCdr15uKS7Te8MV4BkbW0Ju5Fg6oHAABX8/UPx2TOyHNpnzl5Fn267LDGj27j0n4BAFfm0U/qMzIyNHToUJnNZk2aNEnp6enavn27zGazpk+fruXLlysxMVEmk0kdOnQwulyHyTxiVnrCbqXF79Ce2Uv0/dhXFNGpmXpNf6TkGGuhResnvq32E+9S7TaNJUmNBnVT9MCu2vDUbAOrBwAAVzPny/2G9PvuF8b0CwAon0eH+okTJyo1NVUTJkzQjBkzFBISUrJvypQp6tixoywWi5o0aaLQ0FBDa3WmM1sPKHnhOsUM763Iri1Ltp/ddUR731mqPm/9UUH1wtTrtUe15dkPlHfqvKH1AgCA8hUVWbV+xylD+t5z+LzOXsg3pG8AQNk8NtQnJSVpwYIFioiI0Msvv1zmMV26dJEkdezYsWRb3759ZTKZyvzn0UcfdVn9jvbzzIWyWorVefKo0tvfWCRrcbGGrX5N5g17dHTJBsNqBAAAV7c3+bwKCo1biX4br7cDgCrFY+fUz58/X1arVXFxcapRo0aZxwQGBkq/CfWzZ89WZmZmqeOWL1+uf/zjH7r99tudXLXzZKWYdXTJBjUbcaPq9Git01uSJEk2S7HOJB5QRIdmOrzgB6PLBAAAV7E96ayh/W/bd1a3XB9taA0AgP/x2FAfHx8vSerXr1+5x6Smpkq/CfVt2ly++MuLL76oyMhIDRo0qFK1dO3aVWazfa+c8bV5aaq6V6q/8ux6c5FihvdW58mjtPLu5yRJdXq0VvNR/ZT04bfq/vyDWjpwsorz7V/ZNrZFrIpMVofWCwAALpcVcIMUNLDMfYnzh131VXVREYEl/3ti9ehyjzNn5KrbvUsv2/7S9Lf0r+dW2l03AODKoqKitHXrVrvbeWyoP3bsmCSpcePGZe63WCzasOHSUPNfh/rfOnPmjFasWKHHH39cPj6V+3GZzWalpaXZ1cbP5C3VtbOfTXs1t97d5e6/eChNn0T/b/i9T1CAbnhjvLa9OE/7/71Sg796Xtc9c58Sp861r2NJJ9NPqtBm3FBAAACqjchsqZzc/ss76CvCx9urwsf+WnZOnrLT7buvAQA4j8eG+pycHElSXl7Zr3tZsGCBMjIyFBISopiYmHLPM3/+fFksFt1///2VriUqKsruNr42L8nJD767PfeAso+f1v65KyRJ65+YpWFrZuj4d1t0anOSXeeqX68+T+oBAHCBrIBgZZazz5yRe9X2URGB8vH2kqXYesXX4pV3rhrBAarZoEGF6wUAVExlcqMkmWw2m83h1VQBbdq0UVJSkmbNmqXx48eX2peenq4uXbooPT1dvXv31vr168s9T7du3ZSTk6N9+/a5oOr/KcrN17xmY5x2/gb9O+um2U9qyc2TlJP2vwVvWo0bpDaP3K6l/SfJkldQ4fPFJX8m36AAJ1ULAAB+8cXKIxo1ufLr4JxYPVrRdYOVeipHDQf+x+72bz/TSxPu5V31AFBVeOzq9wMGDJAkTZ8+XQcPHizZnpiYqH79+ikj41KQ7dSpU7nn2L9/v7Zu3XpNT+mrqrT4Hfq81dhSgV6S9s9docW9JtgV6AEAgOt0aRNhcP/hhvYPACjNY0P9lClTFB4erhMnTqht27Zq3769WrRooe7du6tp06bq37+/dJX59J9++qlMJpPi4uJcWDkAAED5mkaHqFaInyF9e3mZ1DGWUA8AVYnHhvro6GglJCRoyJAhCggIUEpKisLCwjRnzhwtX7685Ol9eaHeZrNp3rx56tu3rxo1auTi6gEAAMpmMpl0+00NDen75h71FBTosUsyAYBb8uircuvWrbVs2bLLtmdnZyslJUVeXl5q165dmW3XrVunY8eOaerUqS6oFAAAoOIeu6e1PluW7PJ+Hx/V2uV9AgCuzGOf1F/J3r17ZbPZ1KJFCwUFlf1OmE8//VSBgYG6++7yXxEHAABghF4d66hjyzCX9hldN1i338joRQCoaqplqN+9e7d0haH3+fn5WrhwoYYPH66QkBAXVwcAAHBlJpNJr0/q4dI+X3uqm3x8quWtIwBUadXyyny1UB8QEKALFy7o888/d3Flztd4SE/1fOXhUtuaj+qncekL1WhQN8PqAgAA9rm5Z309OrKVS/q66+YmGjWoqUv6AgDYh1BfzTS6rYeOr/ip5M81oiMVGzdAp7ceMLQuAABgv1ef6qaWTWra1cackavUUzkyZ+RW6Pj6dYI0+/+ul8lkqmSVAABn8uiF8soTHx9vdAlO4xcapDt+mCnvAD/lnsyQl7+vQhrVVfLCH7Xp6fdVt1tLrX9i1qWDTSZd//pj2vJ/H6rb1LFGlw4AAOwUEuyn1e8NUp9xy3XsZHaF2nS7d2mFzx9ZO0Br3husuuGB11AlAMCZquWTek9WmJmrI18laN8Hy7V04GT99PePdWb7QW3887uq17udTicekM1SLElq+8hQnU7cr7O7jhhdNgAAqKSGUTWUMHeIWjet5dDzNqoXrHVOOC8AwLEI9R4orF2Mzu0+KkkK79BM5/Zc+vdGg7rp2HeXht7XatlQjYf00M9vLDK0VgAAcO0aRtXQ1vl36MkxbeWIUfK/uzNWP395p1rFEOgBoKoj1HugsLZNSoJ8eIemOvvfgF+/byelxe+QJNXt0Vo1GtbRiI1v6+6fZivyuhbq9dqjavnALYbWDgAAKico0Eczp/TUuo+HqM91dSt1ji5tIvTtv27Rh9P6qFaov8NrBAA4XrWcU+/JgqLCJJtNueZzkqSw1o21681FiujcQhcPpcmSmy9JOvDJKh34ZFVJu0GLpmnf+8t0fEWiYbUDAIBrd8N1UVo393btPnhO73yRpBUb0nQ0Lavc46PrBmtAz/p6fFRrdWsX6dJaAQDXjlDvYcLaxZQ8pZekwswctRp7qwrOZZVa9R4AAHi29rFhmv1/vSVJZy/ka3vSWZ08nauComL5+XqpbligurSJUB0WwQMAt2ay2Ww2o4vA5Ypy8/X/7dy7CQJREIbRu6D4aMNG7MDAUJuwgi3BJrQAQzMbsQQTExWENTUwMFhZf/acAoZJP+5l9rN1a/MWp205Lutyv1xbm/ludd6V4XT8k9kAAAB85qW+Jw7zTdcrAAAA0DKH8gAAACCUqAcAAIBQoh4AAABCOZT3p5qmKc/bo+s1vjaYjEpVVV2vAQAA0CuiHgAAAEL5fg8AAAChRD0AAACEEvUAAAAQStQDAABAKFEPAAAAoUQ9AAAAhBL1AAAAEErUAwAAQChRDwAAAKFEPQAAAIQS9QAAABBK1AMAAEAoUQ8AAAChRD0AAACEEvUAAAAQStQDAABAKFEPAAAAoUQ9AAAAhBL1AAAAEErUAwAAQChRDwAAAKFEPQAAAIQS9QAAABBK1AMAAEAoUQ8AAAChXqEH1uRmep3XAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc_1.draw(\"mpl\")" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "15461a2c-85a9-4cb2-a632-b9597ccbc4bd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAIwCAYAAADH6UtKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAaklEQVR4nOzdd3hUVf7H8c+kFxIgBQKEEkroTbqIAoKCCKKIoEHBdV0LLLqysOr+dhFdC4qLhUWxsiqyKKAgKM2IhGpo0kILBEjIAKGll8nM7w/WrJEEMmFmbmbyfj2Pz8q999zzncje3M/cc8412Ww2mwAAAAAAgNvxMroAAAAAAABQOYR6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwUz5GF4Cy2Ww2WfIKjC6jwnwC/WUymYwuAwAAAACqFUJ9FWXJK9C8ZmOMLqPC4pI/k29QgNFlAAAAAEC1wvB7AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE3xnnoPEtWrrQYtnlZqW1FOnjKPpCt54TolffitbMVWw+oDAAAAADgWod4DHVmcoNT47ZLJpMDIWmo+8iZ1nzZONVs00KbJc4wuDwAAAADgIIR6D3R291EdWZRQ8ucDc1fqzoQ3FXvfzdr+ynwVnM00tD4AAAAAgGMwp74asOQV6Mz2QzJ5eSm0cV2jywEAAAAAOAihvpoIaXIpzBdcyDa6FAAAAACAgzD83gP5BPrJPyykZE59ywduUXj7pjqz/ZAyj6QbXR4AAAAAwEGqRajPyMjQq6++qsWLFys1NVWRkZG666679NJLL2nixIn66KOP9Pbbb2vChAlGl+oQnaeMVucpo0ttS1m+WVue+cCwmox2MOWi5n+XLHNGnry9TWreMFRjbm+uiNoBRpcGAAAAJ7PZbNr082ktXXtc5zMLFOjvo06twjTq1qYKDKgWkQgezOP/Bu/cuVODBw+W2WxWcHCw2rRpo5MnT+qtt95ScnKyzp07J0nq1KmT0aU6zIFPVynlm03y8vVR7VaN1G78cAXXC1dxQWHJMV5+Phq66jUd/SpBu95cXLL9hjfGKyCyltbEvWhQ9Y61de8ZPfPmVq3ZfPKyfU+/uVWjbo3Rq091V93wQEPqAwAAgHN9HZ+iae/u0M795y7b99RrW/TwiJaa9vh1CvD3+GgED+XRc+ozMjI0dOhQmc1mTZo0Senp6dq+fbvMZrOmT5+u5cuXKzExUSaTSR06dDC6XIfJPGJWesJupcXv0J7ZS/T92FcU0amZek1/pOQYa6FF6ye+rfYT71LtNo0lSY0GdVP0wK7a8NRsA6t3nJUbUnXjuOVlBnpJKigs1iffHFbPuKVKSctyeX0AAABwrjc/26M7n/y+zEAvSeczC/Xqx7t1yyMrlJNb5PL6AEfw6FA/ceJEpaamasKECZoxY4ZCQkJK9k2ZMkUdO3aUxWJRkyZNFBoaamitznRm6wElL1ynmOG9Fdm1Zcn2s7uOaO87S9XnrT8qqF6Yer32qLY8+4HyTp03tF5H2Hv4vEY89b3yCoqvemzKyWwNfnylcvMsLqkNAAAAzrd4TYqefHVLhY5N2H5KY5790ek1Ac7gsaE+KSlJCxYsUEREhF5++eUyj+nSpYskqWPHjqW2Hz16VMOGDVNISIhq166tBx54QGfPnnVJ3c7y88yFslqK1XnyqNLb31gka3Gxhq1+TeYNe3R0yQbDanSkVz/epRw7Qvr+o5fm3AMAAMD92Ww2TZ293a42X8cf0/Z9GU6rCXAWjw318+fPl9VqVVxcnGrUqFHmMYGBl+ZR/zrUZ2VlqV+/fkpNTdX8+fP13nvvKSEhQbfffrusVqvL6ne0rBSzji7ZoPo3dlCdHq1LttssxTqTeEAB4TV1eMEPhtboKBnn87Vg5VG72/3rP0my2WxOqQkAAACus377Ke05bP/o03e+SHJKPYAzeWyoj4+PlyT169ev3GNSU1Ol34T69957T2lpafr66691++23a+TIkfr888+1efNmLV261AWVO8+uNy89lf/10/o6PVqr+ah+SvrwW3V//kF5B/gZWqMjrNqYpoLCqw+7/60d+88q9VSOU2oCAACA6yz54Vil2n0VX7l2gJFMNg99NNmwYUOlpqZqx44dZa5sb7FYVK9ePWVkZCg5OVlNmzaVfvUlwA8/lH5q3axZM/Xt21cffvih3bV07dpVZrPZrja+Ni9NtXa3uy97+AQFaNj3M7RvzjLt//dKDf7qeWX8nKzEqXPtPtc0r59UZKoaIxmy/XvoYvBtlWpb5+Js+RafcnhNAAAAcJ3zwXco1/86+xvarKp/fppMzigKuIqoqCht3brV7nYe+96GnJxLT1zz8vLK3L9gwQJlZGQoJCREMTExJdv37dunkSNHXnZ827ZttW/fvkrVYjablZaWZlcbP5O3VLdS3VVYt+ceUPbx09o/d4Ukaf0TszRszQwd/26LTm22b+jRyfSTKrTZ/3TcKWqfkYIr1/S0OU0qJNQDAAC4tfoXJf9KtLMV6aSd9+2A0Tw21EdFRen8+fPavn27evXqVWpfenq6Jk+eLEnq0KGDTKb/fRd3/vx51apV67LzhYWF6cCBA5WuxV6+Ni/JiQ++G/TvrJhhvbXk5kkl27KOndK2F+ep98zxWtp/kix5BRU+X/169avMk/pC73ydkSSbTTJV/HtWkzVP9SIDZFIDZ5YHAAAAJ8vxz9aFSrTzKz6lyAbcC8IYlcmN8uRQP2DAACUlJWn69OkaOHCgYmNjJUmJiYm6//77lZFxaWXLsobmO1plhlAU5eZrXrMxTqlHktLid+jzVmMv275/7oqSJ/f2OHjooHyDAhxU3bWx2WzqOnqJtifZ98aCJx7oqplTUpxWFwAAAFwjK6dQ9W+er+xc+15Z/MGrY3T/0GlOqwtwBo9dKG/KlCkKDw/XiRMn1LZtW7Vv314tWrRQ9+7d1bRpU/Xv318q43V2tWvX1oULl3+vd+7cOYWFhbmsflSeyWTSH+9rY1cbb2+THh3Zymk1AQAAwHVCgv304PBYu9rUCQvQyFtiKnAkULV4bKiPjo5WQkKChgwZooCAAKWkpCgsLExz5szR8uXLdfDgQamMUN+6desy587v27dPrVu3vmw7qqaxw1rogaHNK3z8O3+9Xi1jLp92AQAAAPf08sSu6t4uskLH+vt5adE/b1aAv8cOZIYH89hQr/8G9GXLlikrK0tZWVnasmWL/vCHPygnJ0cpKSny8vJSu3btSrW5/fbbtX79+pLX3UnSli1blJycrKFDhxrwKVAZJpNJHz3fRxPuvfITe38/b338Qh89fDdP6QEAADxJcJCvVs0ZpFuuv/Ic+cjaAVrz3mDdcF3l5jMDRvPYV9pdyZYtW9SzZ0+1bNlS+/fvL7UvMzNT7du3V0REhKZNm6b8/HxNmTJFkZGR2rRpk7y8XPM9iLPn1DtaXPJnVWZO/W8dTLmod79M0rzlyTp9Ll/673D7lyd21YPDYxVRu2rWDQAAgGtns9m0eddpzV6QpKVrjyszu0iS5Ovjpfem9taoW5sqMIAn9HBfHv2kvjy7d++Wyhh6L0mhoaGKj49XvXr1NHr0aP3+97/X9ddfr2XLlrks0MOxYpvU1D8n99SptXGqHxkoSYoKD9TkBzsQ6AEAADycyWRSr4519elLfXVx4wMl94N1wgI07o5YAj3cXrX8G3ylUC9JzZo107Jly1xcFVzBZMcr7gAAAOB5uB+Ep6mWj56vFuo9WeMhPdXzlYdLbWs+qp/GpS9Uo0HdDKsLAAAAAGC/avmkPj4+3ugSDNPoth5K/nJtyZ9rREcqNm6ATm89YGhdAAAAAAD7VctQ78n8QoN0xw8z5R3gp9yTGfLy91VIo7pKXvijNj39vup2a6n1T8y6dLDJpOtff0xb/u9DdZs61ujSAQAAAAB2ItR7mMLMXB35KkFFOfnaNXOh6vftqA4T79LGP7+r+jd11OnEA7JZiiVJbR8ZqtOJ+3V21xGjywYAAAAAVEK1nFPv6cLaxejc7qOSpPAOzXRuz6V/bzSom45995MkqVbLhmo8pId+fmORobUCAAAAACqPJ/UeKKxtk5IgH96hqU6sTJQk1e/bSVtf+EySVLdHa9VoWEcjNr4tSQqMrKVerz2qwDq1deCTVQZWDwAAAACoKEK9hwmKCpNsNuWaz0mSwlo31q43FymicwtdPJQmS26+JOnAJ6tKhfdBi6Zp3/vLdHxFomG1AwAAAADsQ6j3MGHtYkqe0ktSYWaOWo29VQXnsnR8xU+G1gYAAAAAcCxCvYdJXbNNqWu2lfx52eCnJUl3rJ2plSOmlttuxRX2AQAAAACqJkJ9NbGk75+MLgEAAAAA4GCsfg8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuCnm1FdRPoH+ikv+zOgyKswn0N/oEgAAAACg2iHUV1Emk0m+QQFGlwEAAAAAqMIYfg8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAm/IxugCUzWazyZJXYHQZFeYT6C+TyWR0GQAAAABQrRDqqyhLXoHmNRtjdBkVFpf8mXyDAowuAwAAAACqFYbfAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJvyMboAOE5Ur7YatHhaqW1FOXnKPJKu5IXrlPTht7IVWw2rDwAAAADgWIR6D3RkcYJS47dLJpMCI2up+cib1H3aONVs0UCbJs8xujwAAAAAgIMQ6j3Q2d1HdWRRQsmfD8xdqTsT3lTsfTdr+yvzVXA209D6AAAAAACOwZz6asCSV6Az2w/J5OWl0MZ1jS4HAAAAAOAghPpqIqTJpTBfcCHb6FIAAAAAAA5SLUJ9RkaGpkyZoubNmysgIEANGzbUE088oZycHD300EMymUyaNWuW0WU6jE+gn/zDQuQfHqparRqpx0u/V3j7pjqz/ZAyj6QbXR4MkpldqJ8PnNXmn0/r8PFM2Ww2o0sCAACAC50+m6dt+zKUuOeM0k7lGF0OHMTj59Tv3LlTgwcPltlsVnBwsNq0aaOTJ0/qrbfeUnJyss6dOydJ6tSpk9GlOkznKaPVecroUttSlm/Wlmc+MKwmGGdHUoZmL0jSvG+TlZdfXLK9fYvaenxUa425vblqBPkaWiMAAACcw2azafWmNM1ekKRvfjwhq/V/D3b6daunx0e11vD+jeXjUy2e93okjw71GRkZGjp0qMxmsyZNmqSpU6cqJCREkvTqq6/qL3/5i3x8fGQymdShQwejy3WYA5+uUso3m+Tl66ParRqp3fjhCq4XruKCwpJjvPx8NHTVazr6VYJ2vbm4ZPsNb4xXQGQtrYl70aDq4Ugz5u7W5H/+VOa+3YfO67F/bNQbn+3Vd7NvVUx0iMvrAwAAgPMUFVn18LT1+vfSQ2Xu/yExXT8kpmtgr/pa+PrNCq3h5/Iace08+uuYiRMnKjU1VRMmTNCMGTNKAr0kTZkyRR07dpTFYlGTJk0UGhpqaK2OlHnErPSE3UqL36E9s5fo+7GvKKJTM/Wa/kjJMdZCi9ZPfFvtJ96l2m0aS5IaDeqm6IFdteGp2QZWD0d587M95Qb6XzuQclE3P/ydTp3Nc0ldAAAAcD6bzabfP5dQbqD/tdWbTurOJ9eosKj4qsei6vHYUJ+UlKQFCxYoIiJCL7/8cpnHdOnSRZLUsWPHkm2/fAnQvXt3+fv7y2QyuaxmZzmz9YCSF65TzPDeiuzasmT72V1HtPedperz1h8VVC9MvV57VFue/UB5p84bWi+uXao5R5Nev3qg/8XRtCz99a2tTq0JAAAArrNifao++eZwhY+P/yld7y864NSa4BweG+rnz58vq9WquLg41ahRo8xjAgMDpd+E+sOHD2vRokWKiopSt27dXFavs/08c6GslmJ1njyq9PY3FslaXKxhq1+TecMeHV2ywbAa4TjvLzqg4mL7FsL7/Ltknc8scFpNAAAAcJ3ZC5LsbvPOgiQWU3ZDHhvq4+PjJUn9+vUr95jU1FTpN6H+xhtvVHp6upYuXaoBAwa4oFLXyEox6+iSDap/YwfV6dG6ZLvNUqwziQcUEF5Thxf8YGiNcJwPv7L/W9a8/GLN/zbZKfUAAADAddLP5Gp5wgm72+1NvqAtu844pSY4j8culHfs2DFJUuPGjcvcb7FYtGHDpafSvw71Xl6O/56ja9euMpvNdrXxtXlpqro7tI5dby5SzPDe6jx5lFbe/ZwkqU6P1mo+qp+SPvxW3Z9/UEsHTlZxfuFVz/VbsS1iVWSyOrReZ0iv9ZTkVVPp5nRFR0cbXY5T2OStk2F/r1Tbv/xthl768yqH1wQAAFBVVIf7wULvaNlqPlyptrfd+YCCCvc4vCZcXVRUlLZutX9KrMeG+pycS+9dzMsre/GvBQsWKCMjQyEhIYqJiXFqLWazWWlpaXa18TN5S3Xt7GfTXs2td3e5+y8eStMn0f8bfu8TFKAb3hivbS/O0/5/r9Tgr57Xdc/cp8Spc+3rWNLJ9JMqtLnBwhohxZKXZC0utvu/idsw+UphlWuanZOj7HQP/bkAAAComtwPBgVKNSvX9Pz5izp/wUN/Lh7KY0N9VFSUzp8/r+3bt6tXr16l9qWnp2vy5MmSpA4dOjh9MbyoqCi72/javCQnP/ju9twDyj5+WvvnrpAkrX9iloatmaHj323Rqc32zcGpX6++ezyp9/aWVZKXt7fqNWhgdDlOc9KaJ5tXoN3tQoOkEA/+uQAAAFSH+0GLV4BOSZLNJtmZdcJr+igg2DN/LlVdZXKjPDnUDxgwQElJSZo+fboGDhyo2NhYSVJiYqLuv/9+ZWRkSJI6derk9FoqM4SiKDdf85qNcUo9ktSgf2fFDOutJTdPKtmWdeyUtr04T71njtfS/pNkyav4omkHDx2Ub1CAk6p1nOgB85V2Olf1ouopdU+q0eU4zYSXNupf/7HvixkvL5P2rP9QDaPKXlgSAADAE1SX+8Hr7/9Gm34+bVebBnWClLL9R/n4eOzSax7JY/9rTZkyReHh4Tpx4oTatm2r9u3bq0WLFurevbuaNm2q/v37S7+ZT1+dpMXv0OetxionLaPU9v1zV2hxrwl2BXpUPY/d07oCR5U2rG8jAj0AAICHeHyU/feDj4xsRaB3Qx77Xyw6OloJCQkaMmSIAgIClJKSorCwMM2ZM0fLly/XwYMHpWoc6uHZ2javbdeFvGYNP734xy5OrQkAAACuc8+tMbqxS8WHc7dsUlMT7m3j1JrgHB47/F6SWrdurWXLll22PTs7WykpKfLy8lK7du0MqQ1wtjf/0lM5eRb9e+mhKx5XO9RP37x9i9o0q+2y2gAAAOBcfr7e+vrNAbp9wipt3HnlYfgtm9TUyndvVe1Qf5fVB8fx6FBfnr1798pmsyk2NlZBQUGX7V+4cKEkad++faX+3KRJE3Xt2tXF1QKV4+PjpY9f6KOBverr7c/3acvu0u8crRHkoweGttCkse3UNDrUsDoBAADgHLVD/bXmvcGavSBJ7365X4ePZ5baXy8ySH8Y0VIT49oqrCaB3l1Vy1C/e/du6QpD70eOHFnmn8eOHau5c+1/3RtgFJPJpLghzRU3pLl27j+r/r//VuczCxVW008pK0YpJNjP6BIBAADgRIEBPpo0tr3+dH87JWw3a/gTa3Qhq1DhNf11bMUo+fp67IzsaoNQXwabzebiigDn69QqXEEBPjqfWahAfx8CPQAAQDXi5WXSTV3rKTjQRxeyChXg702g9xDV8r/i1UK9J2s8pKd6vvJwqW3NR/XTuPSFajSom2F1AQAAAADsVy2f1MfHxxtdgmEa3dZDyV+uLflzjehIxcYN0OmtBwytCwAAAABgv2oZ6j2ZX2iQ7vhhprwD/JR7MkNe/r4KaVRXyQt/1Kan31fdbi21/olZlw42mXT9649py/99qG5TxxpdOgAAAADAToR6D1OYmasjXyWoKCdfu2YuVP2+HdVh4l3a+Od3Vf+mjjqdeEA2S7Ekqe0jQ3U6cb/O7jpidNkAAAAAgEqolnPqPV1Yuxid231UkhTeoZnO7bn0740GddOx736SJNVq2VCNh/TQz28sMrRWAAAAAEDl8aTeA4W1bVIS5MM7NNWJlYmSpPp9O2nrC59Jkur2aK0aDetoxMa3JUmBkbXU67VHFVintg58ssrA6gEAAAAAFUWo9zBBUWGSzaZc8zlJUljrxtr15iJFdG6hi4fSZMnNlyQd+GRVqfA+aNE07Xt/mY6vSDSsdgAAAACAfQj1HiasXUzJU3pJKszMUauxt6rgXJaOr/jJ0NoAAAAAAI5FqPcwqWu2KXXNtpI/Lxv8tCTpjrUztXLE1HLbrbjCPgAAAABA1USoryaW9P2T0SUAAAAAAByM1e8BAAAAAHBThHoAAAAAANwUoR4AAAAAADfFnPoqyifQX3HJnxldRoX5BPobXQIAAAAAVDuE+irKZDLJNyjA6DIAAAAAAFUYw+8BAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3JSP0QWgbDabTZa8AqPLqDCfQH+ZTCajywAAAACAaoVQX0VZ8go0r9kYo8uosLjkz+QbFGB0GQAAAABQrTD8HgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBTvKfeg0T1aqtBi6eV2laUk6fMI+lKXrhOSR9+K1ux1bD6AAAAAACORaj3QEcWJyg1frtkMikwspaaj7xJ3aeNU80WDbRp8hyjywMAAAAAOAih3gOd3X1URxYllPz5wNyVujPhTcXed7O2vzJfBWczDa0PAAAAAOAYzKmvBix5BTqz/ZBMXl4KbVzX6HIAAAAAAA5CqK8mQppcCvMFF7KNLgUAAAAA4CAMv/dAPoF+8g8LKZlT3/KBWxTevqnObD+kzCPpRpcHAAAAAHCQahHqMzIy9Oqrr2rx4sVKTU1VZGSk7rrrLr300kuaOHGiPvroI7399tuaMGGC0aU6ROcpo9V5yuhS21KWb9aWZz4wrCbASKfO5umDRQe0POGELmQVKijAR13ahOvxUa3VsWW40eUBAADAyQ4cvaB3vtivDTtPKSfPopAgXw3oWV+PjGylRvVqGF3eNfH4UL9z504NHjxYZrNZwcHBatOmjU6ePKm33npLycnJOnfunCSpU6dORpfqMAc+XaWUbzbJy9dHtVs1UrvxwxVcL1zFBYUlx3j5+Wjoqtd09KsE7Xpzccn2G94Yr4DIWloT96JB1QOOU1Rk1VMztmjOl/tVZCn9Osdt+zL03sIDuqlrlOa93FcN6gYbVicAAACc49zFAo39649atu7EZft+2nNGr3y0S3G3NdO7f+utoED3jMcePac+IyNDQ4cOldls1qRJk5Senq7t27fLbDZr+vTpWr58uRITE2UymdShQwejy3WYzCNmpSfsVlr8Du2ZvUTfj31FEZ2aqdf0R0qOsRZatH7i22o/8S7VbtNYktRoUDdFD+yqDU/NNrB6wDEsFqtGPPW9Zs3fd1mg/7Uft5rV6/5vdMLMehMAAACe5OyFfPUZt6zMQP8Lq9WmT5cd1q2PrlBevsWl9TmKR4f6iRMnKjU1VRMmTNCMGTMUEhJSsm/KlCnq2LGjLBaLmjRpotDQUENrdaYzWw8oeeE6xQzvrciuLUu2n911RHvfWao+b/1RQfXC1Ou1R7Xl2Q+Ud+q8ofUCjjDt3R365sfjFTr2hDlHdz75vWw2m9PrAgAAgGs88NcftS/5QoWOXb/jlJ6YvtnpNTmDx4b6pKQkLViwQBEREXr55ZfLPKZLly6SpI4dO5ZsW7hwoUaMGKHGjRsrKChIrVq10l//+ldlZ7v3U7yfZy6U1VKszpNHld7+xiJZi4s1bPVrMm/Yo6NLNhhWI+AouXkW/es/++xqs21fhtZtMzutJgAAALjOvuTz+jYh1a42/156SGfO5TmtJmfx2FA/f/58Wa1WxcXFqUaNshc+CAwMlH4T6mfMmCFvb2+99NJL+u677/TYY4/pnXfe0aBBg2S1lj+Et6rLSjHr6JINqn9jB9Xp0bpku81SrDOJBxQQXlOHF/xgaI2Ao/xnxRGdzyyswJGl/es/SU6pBwAAAK71zhf77W5TWGTVh18ddEo9zuSeKwFUQHx8vCSpX79+5R6Tmnrpm5tfh/pvvvlGkZGRJX++6aabFBkZqbi4OK1fv1433nij3bV07dpVZrN9TwB9bV6aqu5293Ulu95cpJjhvdV58iitvPs5SVKdHq3VfFQ/JX34rbo//6CWDpys4nz7w1Bsi1gVmar+lx7ptZ6SvGoq3Zyu6Ohoo8txuery+c8HD5f8O9vdbtGKnxX9nwecUhMAAKgaqsv9UHmqy+c/Hfqo5FPP7nbPvfa5Zk0d4pSariYqKkpbt261u53Hhvpjx45Jkho3blzmfovFog0bLg01/3Wo/3Wg/0XXrl0lSWlpaZWqxWw2293Wz+Qt1bWzn017Nbfe3eXuv3goTZ9E/2/4vU9QgG54Y7y2vThP+/+9UoO/el7XPXOfEqfOta9jSSfTT6rQVmx3O5cLKZa8JGtxcaX/e7q16vL5GxVL/vY3s9r8PPvnAgAAqs/9UHmqy+cP9q5U2i0otLndz8VjQ31OTo4kKS+v7DkRCxYsUEZGhkJCQhQTE3PFc/3ww6Vh6a1bt77iceWJioqyu42vzUty8oPvbs89oOzjp7V/7gpJ0vonZmnYmhk6/t0Wndps3zDk+vXqu8eTem9vWSV5eXurXoMGRpfjctXl858P8FJuJdp5mQo9+ucCAACqz/1QearL5z/tbVFRJdr5+0kRBv1cKpMb5cmhPioqSufPn9f27dvVq1evUvvS09M1efJkSVKHDh1kMpnKPU9aWpr+9re/adCgQZV+l31lhlAU5eZrXrMxleqvIhr076yYYb215OZJJduyjp3SthfnqffM8Vraf5IseQUVPt/BQwflGxTgpGodJ3rAfKWdzlW9qHpK3WPfwhmeoLp8/nnLD2vMMz/a3S5u2HX65CXP/bkAAIDqcz9Unury+f88Y4te/2SP3e1e/usD+tP9rzqlJmfx2IXyBgwYIEmaPn26Dh7832IHiYmJ6tevnzIyMiTpikE9Oztbd9xxh/z8/PTRRx+5oGrXSYvfoc9bjVVOWkap7fvnrtDiXhPsCvRAVXP3wBhF1Lb/S6bHR1VuNA4AAACqlkfvsf++LjDAW+PuaOGUepzJY0P9lClTFB4erhMnTqht27Zq3769WrRooe7du6tp06bq37+/9Jv59L+Wl5enoUOH6ujRo1q1apXq1bN/kQUAxvD389afxrS1q02f6+qqR4fL19QAAACA+2neKFR3D2xiV5s/jGil2qGVWJjJYB4b6qOjo5WQkKAhQ4YoICBAKSkpCgsL05w5c7R8+fKSp/dlhfqioiLdfffd2rp1q7777ju1adPGgE8A4Fo8/VBHxQ1pVqFjYxvX1MLXb77iVBwAAAC4l4+e76OubSMqdOyg3tF69aluTq/JGTx2Tr3+u7DdsmXLLtuenZ2tlJQUeXl5qV27dqX2/fJu+++//17ffvutund37GvlALiGl5dJn7x4k2IahOiNz/YoO9dy2TEmkzSsbyN9OK2PwmtV/TUhAAAAUHEhwX764cPb9Ng/Nmj+d0dUXGy77Bh/P2/94e6WmjGpu/x8vQ2p81p5dKgvz969e2Wz2RQbG6ugoKBS+8aPH68vv/xSTz/9tIKCgrR58+aSfc2aNSvzlXcAqiYvL5NemNBFk8e116fLDmv5uhP6fvNJFVqsqhHko10L71JMdIjRZQIAAMBJagT56tOX+mr6k9303sIDeuXDn1VQZJW/n5f+MaGrHhzewu0f7njs8Psr2b17t1TO0PvvvvtOkvTKK6+oV69epf5Zvny5y2sFcO1Ca/hp/Og2+nb2rYoMu3TRrlnDj0APAABQTdSvE6znHr+uZDHliFoB+vO49m4f6EWovzzUp6SkyGazlfnPuHHjDKjWsRoP6amerzxcalvzUf00Ln2hGg1yzzkkAAAAAFBdEeqrmUa39dDxFT+V/LlGdKRi4wbo9NYDhtYFAAAAALBftZxTHx8fb3QJTuMXGqQ7fpgp7wA/5Z7MkJe/r0Ia1VXywh+16en3VbdbS61/Ytalg00mXf/6Y9ryfx+q29SxRpcOAAAAALBTtQz1nqwwM1dHvkpQUU6+ds1cqPp9O6rDxLu08c/vqv5NHXU68YBslmJJUttHhup04n6d3XXE6LIBAAAAAJVQLYffe7qwdjE6t/uoJCm8QzOd23Pp3xsN6qZj310ael+rZUM1HtJDP7+xyNBaAQAAAACVx5N6DxTWtklJkA/v0FQnViZKkur37aStL3wmSarbo7VqNKyjERvfliQFRtZSr9ceVWCd2jrwySoDqwcAAAAAVBSh3sMERYVJNptyzeckSWGtG2vXm4sU0bmFLh5KkyU3X5J04JNVpcL7oEXTtO/9ZTq+ItGw2gEAAAAA9iHUe5iwdjElT+klqTAzR63G3qqCc1mlVr0HAAAAALg/Qr2HSV2zTalrtpX8edngpyVJd6ydqZUjppbbbsUV9gEAAAAAqiZCfTWxpO+fjC4BAAAAAOBgrH4PAAAAAICbItQDAAAAAOCmCPUAAAAAALgp5tRXUT6B/opL/szoMirMJ9Df6BIAAAAAoNoh1FdRJpNJvkEBRpcBAAAAAKjCGH4PAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KZ8jC4AZbPZbLLkFRhdRoX5BPrLZDIZXQaAK3C364qzcd0CqheugZfjOgh4BkJ9FWXJK9C8ZmOMLqPC4pI/k29QgNFlALgCd7uuOBvXLaB64Rp4Oa6DgGdg+D0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuCkWykO1UFRk1XFztoosVkmSpdgqm81WbVZ8tdlsMmfklXz+IotV+QUWBfhXn0tATm6RUk/llPwMiq02o0sCAAAulJtn0Ylf3Q9Wt3sBq9VW6vNbiq2yWKzy8ak+z3nPXSwodT+cmV2o0Bp+Rpd1zarPHT2qFZvNpo07T2v+d8naujdDPx88p/yC4pL9p87mK7zPZ7qudYR6dayjcXe0ULOGoYbW7GjmjFzNXXJICdvN2rbvrE6dzSvZd/pcvkJ6faJ2zWurS+sI3TWgiW69voG8vT3nol5UZNWSH47pmx+Pa9u+DCUdvSjrr355mzPy1HDgf9SlTbj6dq2nB4a1UFhNf0NrBgAAjmOxWLU84YS+jj+mbfsytO/IBRUXl74XaDBgvrq0jtBNXaP0wNDmigwLNLRmR9t/9IL+vfSQNu86o+1JGcrMLirZd+psvkKv/0SdW4WrW9tIxQ1ppm7tIg2t19Gycgo1b3myvt9yUtv2ndXRtKySfafP5avm9Z8qtnFNdWkTrsE3RGvkLTFu+dDLZLPZqtdXVG6iKDffrV67UlVeiVJcbNXHXx/S2/P3adfBc3a1vfX6BvrzuPYa0LOB0+pzhW37MvTqx7u0+PsUWSwV/793TIMQPXZPK024t40CA9zvYvaLi1mFmvnpHr236IDSz+RWuF2Av7fuHdxUUx7soFYxtZxao1Hc7bribFXlugXANbgGXs5Tr4PZuUV647M9mvPlAaWeyqlwOz9fL91za4ymjOug9rFhTq3R2ZavO65/frJH8T+l29Wua9sITbyvjeKGNJeXl/uOaD12Mkuvfrxbn3xzWNm5RRVocUl4LX/9bnis/jy2veqEu88XPIT6Kqoyv3iierXVoMXTSp8nJ0+ZR9KVvHCdkj78VrZiq4MrvaQq/FI4cPSCHvx7gjb9fPqazjPujhaaObmHaoW611Pb/AKLnntnh16bu7vUE2l7tWxSUx+/0Ee9OtZ1aH2usHJDqn7/3Hq7foH/lr+ft6Y93lmTHmjvccPRuKEtrSpctwC4DtfAy3nidfCHn07qoanrSz2RtZePj0l/+0NnPfNQR/n6ute9wJlzeZrw8iZ9sfLoNZ2nX7d6+nBaH8VEhzisNlew2Wya8+V+Tf5nol1h/rciagdo9l+v18hbYhxan7O4199SVMiRxQlaN+FNrfvjW9r5+pfy8vFW92nj1POVh40uzWk++uqgOt3z9TUHekmau+SQ2t61WFt2Xfu5XCX5RKa6jF6i6R/tuqZAL0kHUi7qhrHL9dzs7XKX7/yKi62a8NJGDXps5TUFekkqKCzW029s1Q1jl5WasgAAAKouq9Wmya//pP6//+6aAr0kWSw2TZ29XT3ilirVfG33Fa60NjFdbe9cfM2BXpJ+SExX+xGL9Z/vkh1SmytczCrUoMdW6rF/bLymQC9JGefzdc+f43XfX35QQWFxBVoYi1Dvgc7uPqojixJ0ZOE67X1nqZYPeVY5aRmKve9m+Yd71rxxSXrj0z16aGpCqTnz1+rk6Vzd/PB3WrfVviFLRth/9IL6jFuufckXHHZOq9Wmae/u0MRXNlf5YG+xWHXf02v1r/8kOfS8W3afUZ9xy5R2jV8SAAAA57JabXpoaoJm/Hu3Q8+7Y/9Z3TBumY6mXtuXBK7wXcIJDXpspc6cz3fYOXPyLLrv6bX6YNEBh53TWc5nFqj/77/Vqo1pDj3v/O+OaOgfVykv3+LQ8zoaob4asOQV6Mz2QzJ5eSm0sfsNqb6Sj78+qD+9tsUp587Js+j2P67WjqQMp5zfEVLNORr4hxV2zR23x6z5+/S3Wduccm5HsNlseuSFDQ75Rrosh45l6pZHV+hCZoFTzg8AAK7dk69u1twlh5xy7mMnszXwke905lzVHb23cecp3fXU9055omyzSX94fr2+XOWcey1HyC+w6LbHV2p70lmnnH/1ppMaNfmHax4N60yE+moipMmlMF9wIdvoUhzm0LGLGv/SRrvaJM4fphOrRytx/rAKHZ+VU6S4Z35UfkHV+3bOZrPpoecS7Bpubu/nl6QX3/9ZaxOr5oiFBSuO6KOvDtrVxt6fwb7kC3ryVed8cQQAAK7NN2uP6+3P99nVxt57geQTWXr8RfvuOV0lK6dQ9z291q4Rq/Z+fptN+v1zCVV2KsLf/7Vdm3edqfDxlbkf/ubH45o1376/Z65EqPdAPoF+8g8LkX94qGq1aqQeL/1e4e2b6sz2Q8o8UjXDmb2Ki6168O8Jysu37xvJqIggRdcNVlREUIXbJB25oOfe2VGJKp3rw8UH7R5iVJnPL0m/+3vCNc9NcrRTZy8tBGOvyvwM/r30kJavO253XwAAwHnOZxbokRc22N2uMvcCC1en6IuVR+zuy9n+MjNRx07a99CuMp8/M7tID09bX+WmZW7++bRe/2SPXW0qez/89JuJOnw8084KXaNahPqMjAxNmTJFzZs3V0BAgBo2bKgnnnhCOTk5euihh2QymTRr1iyjy3SYzlNG6969H+vePR9p+A//VOsHByll+WbFj5tudGkO8+myw9qw45TL+ntt7m4dTLnosv6uJjO7UJNed93T46NpWZr+0S6X9VcRz761VWcvuG5Y/GP/2CiLxTlvjwAAAPZ7bvZ2p01BLMsfX95UpUZv7kjK0Dtf7HdZfys2pOrr+GMu6+9qbDabHntxg8uGxeflF+tPr252SV/2ct+XUVfQzp07NXjwYJnNZgUHB6tNmzY6efKk3nrrLSUnJ+vcuUvvMu/UqZPRpTrMgU9XKeWbTfLy9VHtVo3UbvxwBdcLV3FBYckxXn4+GrrqNR39KkG73lxcsv2GN8YrILKW1sS9aFD1V2ez2eweZnWtrFab3v0ySf+c3NOl/Zbn02WHlZnt2ifnc77cr//7Qyf5+3m7tN+ynL2Qr8+/de1qrCfMOfrmx+O68+YmLu3XpUwmtXl4iFreP1A1oiOVfzZTR7/ZqJ2vLpAlj3UFAHi+9n+8U+Htmyq8Q1OFNK6r7BOntbD740aXhTJk5RTqYyfNoy/P6XP5+nLVUd0/tIVL+y3PLAcvElwRb3++r8rcC23ceVo7959zaZ/LE07oSGqmmkZXrcXHPfpJfUZGhoYOHSqz2axJkyYpPT1d27dvl9ls1vTp07V8+XIlJibKZDKpQ4cORpfrMJlHzEpP2K20+B3aM3uJvh/7iiI6NVOv6Y+UHGMttGj9xLfVfuJdqt2msSSp0aBuih7YVRuemm1g9VeXuCfDaQthXMnHXx9Sbp7x387abDbNXuD6i/iZ8/latDrF5f2W5eOvDzn0bQcVZcTP3ZW6Pz9O3aeN04WDqdr8fx8pZdkmtXnoNt38ydOSyWR0eQDgdF2ejVNU73bKSjGr4HzVX/G8Opu3PFlZOa6fGlhV7gXOZxa4/AGH/vuqu6Qjjnvj0rUw4r+FzSa968LRERXl0aF+4sSJSk1N1YQJEzRjxgyFhISU7JsyZYo6duwoi8WiJk2aKDS0an3b4khnth5Q8sJ1ihneW5FdW5ZsP7vriPa+s1R93vqjguqFqddrj2rLsx8o79R5Q+u9mv+sMOZ9mReyCrVqU6ohff/ankPnHfr6Onv8Z0XVmEu2wKA5bWs2n1SGA18VU5XUio1W698NVsryzfrhodd0aN4aJT73b/303L9V74b2ihne2+gSAcDpFvZ4XP9p+6BWjX5BuVX8fqi6M+qeZPOuMzp20vgvfL5Ze9yQBxz670LFRissKtaiNcY8bKoq98O/5rGhPikpSQsWLFBERIRefvnlMo/p0qWLJKljx44l2xISEjRgwADVq1dP/v7+io6O1qhRo5SUVDW+lausn2culNVSrM6TR5Xe/sYiWYuLNWz1azJv2KOjS+xfbMTVtu417hVzRvZdUsM+Az+/gX3/orCoWLsOunao1a9tqwI/A2eIufMGmby8tO/95aW2H5q3RkW5+Wo24kbDagMAV8k+ftroElABVqvNkFGbv9i2z7i+f1Hd7wf3Hj7vlFf4VcQJc06Ve8Whx4b6+fPny2q1Ki4uTjVq1CjzmMDAQOk3of78+fNq37693nrrLa1atUrTp0/X3r171atXL6WmGv+UtrKyUsw6umSD6t/YQXV6tC7ZbrMU60ziAQWE19ThBT8YWmNFWK027XDx3JlfqwoXcSNDZfqZXJcuSFOWPYfOq7DIuAXrPDXUR3RqLmtxsTJ2lJ6fWFxQpHN7UhTRqZlhtQEA8GuHjl00ZOj9L6rCvYCRNVSNz2/sPbnR/f+Wx4b6+Ph4SVK/fv3KPeaXkP7rUD9s2DDNnDlTI0eO1E033aS4uDgtXrxYFy9e1KJFi1xQufPsevPSU/lfP62v06O1mo/qp6QPv1X35x+Ud4CfoTVezcnTuYa+Wu1AFVgB3+ga6N/4vwPOEFS3tgrOZclaePm6EbnmcwoIrykvX49fWxUA4AaM/l1sdP9G12DOyFNmdmEFjnQeo/8bHEipGusK/MJkq2ovG3SQhg0bKjU1VTt27ChzZXuLxaJ69eopIyNDycnJatq0abnnOnv2rCIiIjRr1iyNHz/e7lq6du0qs9lsVxtfm5emWrvb3Zc9fIICNOz7Gdo3Z5n2/3ulBn/1vDJ+Tlbi1Ll2n2ua108qMjn/6anFK0ynaj1R7v7E+cOu+M7JqIhA+Xh7yVJslTmj/GEz5oxcdbt36WXbvaxZqndhRiUqd5wzIb9ToW/jMvc56vPrCj+D8KxPFVB0uBKVO0aOX2ddqDG8zH1X+/xywN+BgMK9Cs/+ohKVG+9K15W7Ns2Sl6+3FnZ97LJ9N7z1RzUfeZM+b/mACjONHanhSK66bgGoGuy9t7rjh3/KNzjAo1e/d9frYK5fW52vcU+Z+1xxL+BfeFAR2fMqUbnjnKz9V9lMZT+Mc/b9sCRFnX9V3racSlTuGBeCblNOQI8y97nifjg0d41C8hMqUfmVRUVFaevWrXa389jHLjk5l/6S5eWV/R9qwYIFysjIUEhIiGJiYi7bX1xcLKvVqmPHjumZZ55RVFSU7rmn7IvH1ZjNZqWlpdnVxs/kLdWtVHcV1u25B5R9/LT2z10hSVr/xCwNWzNDx7/bolOb7VtD4GT6SRXaXDCvxa9QqlX+7qiIIEXXDb7qaXy8vSp03G9Ziy12/7d0uJh8ybfsXc7+/JJ0NuOMlG3gz6BWY6nsGTUV/vy6hp9Bfm6O8X8HKulK15XivAL5Btcsc5+3/6W/cJY8Y7+VdzSXXbcAVAmuuLdyN257HQyNMvReoCA/z/h7gZpWqZy3DLviftCcflIqzq5UW4eoly0FlL3LFZ8/8+IFZWZUnftBjw31UVFROn/+vLZv365evXqV2peenq7JkydLkjp06CBTGa9quummm7Rhw6VF45o3b674+HhFRkZWuhZ7+dq8JCd+cdqgf2fFDOutJTdPKtmWdeyUtr04T71njtfS/pPsei91/Xr1XfJNb7EpSFca82DOuPJTRHu+mSyLj5dFdRs0qHC9znDWTypv/XVHff4rnSsiPET+NY37GeT5Bqq8VRWu9vnlgL8DQQFeqm3w34HKutJ1JffUedWMjZaXn89lQ/CDosKUf/airEXGv9LRkVx13QJQNTj73soduet1MN8nWOXNaHbFvUCgv0lhBt8LpJsKZC0n1Tr7flg2q+pHhcuksh8GuEJmoI/KeweBK+6Ha4X6K9jf8X8HKpMb5cnD7ydOnKi3335bDRs21Jo1axQbGytJSkxM1P33368jR46oqKhI48eP16xZsy5rf+DAAV24cEFHjx7Va6+9ptOnT2vDhg1q1KiRS+ovys3XvGZjXNKXI8QlfybfoHK+LnOw+jfPr/RibSdWj1Z03WClnspRw4H/sbv9qEEx+s+r/SvVt6P89a2teumDnyvV9lo/v8kkZW56QDWCyhkq4ALJJzLVfMiXlW5/rT+DWc/20vjRbSrdv5GudF3p/JfR6vjk3fp2+N90esv/Rup4+/tq9L6PdWpzktbEvejCap3PldctAMaz996qOgy/d9froDkjV/X6z690+2u9F5j+ZDdN+V2HSvfvCLc9vlLfra/cIt7X+vlbNqmp/UvvrlTfjvLlqqO658/xlWp7rZ9fkjZ+ert6daw6Q388dqG8KVOmKDw8XCdOnFDbtm3Vvn17tWjRQt27d1fTpk3Vv/+lYPbrRfJ+rWXLlurRo4dGjx6t77//XllZWXr11Vdd/ClQlq5tIgzsu3KjNRxaQ1vjPn+rmFqGBnpJahodolohxi3oaOTfP2c6umSjbFar2jw8pNT2FnED5BsUoCOL1xlWGwAAvxYVEaQGda48b96ZulSBewEjazDyXrSkBgM/v5eXSR1jww3rvyweG+qjo6OVkJCgIUOGKCAgQCkpKQoLC9OcOXO0fPlyHTx4ULpCqP+1WrVqqXnz5jp82LjFwfA/vTrWqZZ9/6JH+0iVMWPEJarC5zeZTOrZwZg6AgO81SE2zJC+ne3C/uPa//EKNRnSU/0+nKwW992srlMfUPfnxsq8ca+OLF5vdIkA4HRN775RHZ4coQ5PjlBAeKh8Q4JK/tz07huNLg+/YtQ9ia+Pl7q0MT7QVff74SYNaigqItCQvju1DFNQYNWaxV61qnGw1q1ba9myZZdtz87OVkpKiry8vNSuXburnuf06dM6cOCAevQoe4VFuNYDQ5vrb//apuJi184cadmkpq7vZPxFrH6dYA2+IVrfJlRuyNW1eOjOWJf3WZaH7ozVig2u//xxtzVTYIDnXjZ/+vtcZZ84o9gxAxR983XKP5eppI++045XF0ieOVMLAEqJvfdmRV3fttS26/5yryRd+oJzIaOWqoqH7myphatTXN7viAFNVCvU3+X9/tYtvRqoQZ0gpZ127VtpAvy9de/gZi7tsywmk0m/Gx5b6Smp16Kq3A//mufenV7B3r17ZbPZFBsbq6Cg0kN3xowZo+bNm6tTp06qVauWDh06pJkzZ8rHx0d/+tOfDKsZ/9OgbrCG92usRWtceyF/fFTrMhdVNMLjo1q7PNR3bBlWJb6ZlaQ7+jVW/TpBOuniX2SP3dPapf25ms1q1d4532jvnG+MLgUADLFixFSjS0AF3XJ9AzVrGKLkE+Utl+Ycj4+qGvcCPj5eemRkK/39X9td2u+9g5sqrKbxX2pI0h/ubqlXPtolq9V1Dx5qBPlqzO3NXdZfRXns8Psr2b17t1TO0PuePXvq22+/1YMPPqjBgwfrtddeU58+fbRz5041b171/gNWV5PGXn2EhSNF1A7QA0Orzn//Qb2j1bbZFd7t5wSTx7WvMl9q+Pp66cm4thU40nH6d6+n66rAHDoAAHBpXvOkB9q7tM8e7SN1w3VVZ3G0P9zdSqE1XLfWkbe3SU+Oce09+JU0rh+iUbde/mpyZ3p0ZCuF1jBubafyEOp/Y8KECfrpp590/vx55eXl6eDBg5ozZ44aN25sQKUoT6+OdfXH+1y3Avnsv15fJYZa/cLb20sfv3CjvL1dE7Jv6xOt+24zfqjVr/3p/nYuWyQmKMBH7z93g0v6AgAAFfPIyFbq46KQ7efrpY+e71NlHnBIUt3wQP3zz66bHvz07zpUubWF3pjSUxG1XfMGh2YNQ/TcY51d0pe9CPXVTOMhPdXzlYdLbWs+qp/GpS9Uo0HdDKurMl6e2FVNo0PsamPOyFXqqZwKvcP0FyNvidHIW1z7LWBFdGsXqSnj7HudSmU+f80QP7339xuq1C8x/XfY2dwX+sjP177LWGV+BtP/1E1No0MrUSUAAHAWLy+TPnr+RgUGeNvVrjL3AtMev05tmtWuRJXO9bs7YzWod7RdbSrz+ds1r62/PVL1Am2d8ED969ledrWpzOc3maSPn79RwQa/Bao8HvueenfnrPfU9/nXE0r+cq1Orr20qESN6EjdOPtJySTt+dfXOr4isVLnNeo9p7sPntNNv1uu85mFTjl/p1Zh+uGD26rUU/pfKyqy6s4/rdHydSeccn4/Xy998/ZA3XK9fb8sXOnz5cka8+xap63jNu6OFvpwWh95eVWtLzUqw1nXFXflru9nBlA5XAMv5ynXwa/jU3T3pHinLaJ8z60x+vyVvvL2rprPQ8+cy9ONDy7X/qMXnXL+uuGBSpg7RC0a13TK+a+VzWbT028k6tWPdzutjzem9NATVWjqwW9Vzb+ZqDS/0CCN3DZHo/d+rGGrX9PwdW/o/pT5un7GozL5eKtut5ZKX7/n0sEmk65//TFt+b8PZS20GF16pbSPDdOqOYMUXsvxobtzq3CtendQlQ30+u/c8i9n9NfgGxwfuv39vLXw9ZurdKCXpPuGNNNHzzsndN9/e3O9P/UGjwj0AAB4quH9m2jey33l4+P439d3D2yiT1+6qcoGekmKDAvUmvcGq3VTx6+3FBURqDXvDaqygV7/XQn/lSe76U/3O2e9pdee6l6lA70I9Z6nMDNXR75K0L4PlmvpwMn66e8f68z2g9r453dVr3c7nU48IJulWJLU9pGhOp24X2d3HTG67GvStW2kNvz7dofOrx49qKl++PA2RYYZ8/5LewQG+OjrNwfoT/e3ddj765tGhyj+g8Ea2reRY07oZOPuiNWytwc67H2lPj4mPT/+Os39x43y8eEyCQBAVTdqUFOtfGeQousGO+R83t4mPfv7jvrPq/3k52vf8H4jNKgbrHUfD9Ed/Rx373Z9pzra+MlQtWtRtebRl8VkMun1P/fQ28/0sns6Rnlqhfjp81f66s/jXLsgY2Vwt+qBwtrF6Nzuo5Kk8A7NdG7PpX9vNKibjn33kySpVsuGajykh35+Y5GhtTpKy5ha2vTpUP1jQhf5XkMIqxMWoEX/vFnzX+2nmiFVb2XL8vj5euufk3tq3cdD1LzRtc39/uN9bbRr4Z26vlPVWd21Igb3aai9X43QmNuvbUG/Tq3CtHX+HfrbI515Qg8AgBvp36O+9iy+65rfI962WS1t/myoXpzYtUo/of+tiNoB+uqNAfrs5ZtUO7Ty97EB/t765+QeWvfxEMXYuX6VkUwmkybc20Y/f3mnbuh8bfexQ29qpH1fj9C9VWyh6PIwp76KupZ5X6N2f6hvBk5Wrvmc+n7wZ51YmajkL3/UXZtmaenNf5YlN18tH7hFHZ8aKWthkSQpMLKWCrPztPO1BTrwySq7+6xKc7JOmLP13sIDen/RAZ06m1ehNm2b1dLjo1przO3Nq+RrKuxRUFishauPavaCJG3cebpCbUJr+GrssBZ6dGSrKrkIjL227cvQOwuS9Pl3ycrLL65Qm4G96uvxUa11+42NPPbpPPNJS6tK1y0Azsc18HKefB3cdfCc3lmQpE+XHVZOXsWmmfbtVk+Pj2qt4f0ay9fOhXirmguZBfr30kOavWC/Dh6r2Fz7BnWC9MjIVvr9XS1VLzLI6TU6k9Vq0+pNaZq9IEnL1p2o0LvsfX28dPfAJnp8VGv17ly3yi0SfSWE+iqqsr94gqLCNHTVq1rQ4feSpLs2vK21j/5TXj4+6vinu/X9Ay+X2W7Qomna9/4yt1so70oKi4q1NjFdW/dmaNu+s0o6ekG5+RZ5e5kUEuyrjrFh6tImQj071FG3dhFu9X/citp7+LzW7zilbfsytGP/WZ3PLFCRxapAfx81axiirm0i1aVNuPr3qK8aVXQ1z2txPrNA8VtOatu+s9q674yOncxRfqFFfr7eiqjlr+taR6hLmwjd2CXqmkc4uANuaEuritctAM7DNfBy1eE6mJldqO+3nNS2fZfuB4+kZim/0CJfHy+F1wzQda3D1aVNhPpcV1ctYxw/J91oNptNm34+rS27z2jbvgztPnReWTlFstlsCg70UeumtdS1bYS6tY3UjV2iPPLBxglzttYmpv/3fjBDp87mqbCoWP5+3oquE6wubSIu3Q93r6864VV/6m1ZfIwuAI4V1i6mZLi9JBVm5qjV2FtVcC5Lx1f8ZGhtrubn661bro+u8gu9OVPb5rXVtrn7P3mvrNqh/hoxMEYjBla9VxICAADnC63hpztvbqI7b25idCmGMJlMur5TXbebVulIDaNq6P6hLXT/0BZGl+I0hHoPk7pmm1LXbCv587LBT0uS7lg7UytHTC233Yor7AMAAAAAVE2E+mpiSd8/GV0CAAAAAMDBPG/SBAAAAAAA1QShHgAAAAAAN0WoBwAAAADATTGnvoryCfRXXPJnRpdRYT6B/kaXAAAAAADVDqG+ijKZTB7/3lAAAAAAwLVh+D0AAAAAAG6KUA8AsFtUr7Yal75Q49IXqseLD5V5TEB4qO4/Nl/j0hdq0KJpLq8RAJyJ6yCAqoJQDwCoNEtegZreeYO8/C6fzdXs7ptkMplkLbIYUhsAuALXQQBGI9QDACrt+Hc/yb92iBrd2u2yfc1H91Pq9ztUXFhkSG0A4ApcBwEYjVAPAKi0s7uP6tzeFDUf3b/U9ohOzVW7VSMdXhBfZrtGg7pp8JJ/KC75M8Ud/lSDl/xDDX9zQzxk+csatesDmbwv/1VVv29HjUtfqDYPDym1veUDt+j2ldM15sg8xR3+VLcufE5R17d1yGcFgLJwHQRgNEI9AOCaHPpPvOrf1EFBUWEl21rc2195Zy7oxOptlx3fcuyt6v/xX+Rfu4Z+/udC/Txzkfxr19DNc/+i2DEDSo47/MVaBUbWUoN+nS87R7ORfWUtsujI4oSSbX1mTVSPlx5S1lGztr7wqXa+9oX8QoN0y4K/q+EtXZ3y2QFAXAcBGIxQDwC4JkcWrZPNYlWze/pKkrwD/BRzR28lL1wnW7G11LF+NYPV9W9jlHk0Xctve0Z7/vW19vzray2/7RllppjVbepY+YUGSZKOLtmg4oIiNRt5U6lz+AQHqNGgbkqN36H8s5mSpEaDu6vZiBu1+en39eOjM7X/4xXaO+cbLRv8tM7tTVH3Fx502c8DQPXDdRCAkQj1AIBrUnA+WydWbVXz/97MNr6th/xqBuvQfy4fclr/xg7yDQ5U0offqSg7r2R7UXaekj78Vr41AlWvTwdJUuGFbJ1YvVUNB3YpucGVpCa395JvUICSv1xbsq3piBtVmJV7aW5rWEjJP341g3Vi1VaFNKqr0Kb1nPyTAFBdcR0EYKTLl+kEAMBOh/4Tr4Hz/qo63Vup+ej+OrP9kC4eTL3suBqN6kqSLhw4cdm+X7aFNK5bsu3wF2vV5PZeajLseh38bI0kqdnIm1RwPksnVv1vSGutFg3kFxKk0Xs+KrfGgMhayjySfo2fFADKxnUQgFEI9QCAa3Zy7c/KOXlWnZ4aqXq922rT0+875Lxp8TuUl3FRzUbepIOfrVFwgwhF9WqjA5+sKv2KKJNJeRkXte7xN8o914X9xx1SEwCUhesgAKMQ6gEA18xmtSp54Y/qMPEuWfIKdPSr9WUel3XslCSpVsuGSl+/u9S+WrENSx0jSbZiq45+laA2D9+uGo3qqOmdN8jk5aXDX/xYqm3mkXRFD6inM9sOyZKb74RPCABXxnUQgFGYUw8AcIgDn6zSzhlfaNNf3is1T/TX0tf9rKKcPLX+3WD5BAeUbPcJDlDr3w1WUXaeTq7bVarNLzeuzUf2VbO7b9LFw2nK2HGo1DHJX/4oL29vdXn2vjL7DYio6YBPCABXxnUQgBF4Ug8AcIictAztfP2LKx5TmJmrrS98pl6vPKzbv31ZhxdcWuSp+ai+Cm1aTxsnv6uirNxSbc7tOapz+46pzR+GyC80WNtemnfZeY8t36xD8+PV+qHbFNa+qVLXbFP+uSwF1wtTZNeWCm0SpUU9xzv4EwNAaVwHARiBUA8AcKkD/16pvNPn1e6xO9Rx0khJ0vm9xxT/4HQdX5FYZpvkL9aq23NjZS0uVvKidWUes+Gp2UrfuEctxwxU+z/eKW9fH+WduaCzu4+WeQMMAEbhOgjAkUw2m81mdBEAAOcrys3XvGZjjC6jyohL/ky+QQEVOBKAJ+AaeDmug4BnYE49AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AQDVRXGzVuYsFys4tks1mM7ocl7PZbMrKKdT5zAIVF1uNLscQhUXFOnshX/kFFqNLAQA4iI/RBThbRkaGXn31VS1evFipqamKjIzUXXfdpZdeekkTJ07URx99pLffflsTJkwwulQAMFT7P96p8PZNFd6hqUIa11X2idNa2P1xo8vCNbLZbFq3zazZC5K0+PsUWSyXwnzDqGA9cncr/X5ES9UNDzS6TKdKO5Wj9xYe0PuLDyj9TK4kyc/XSyNvidH40a3Vs0MdmUwmo8t0msKiYi1ek6LZC5KUsP1UyfYubSL0+KjWGj2oqYICPf6WsGJMJrV5eIha3j9QNaIjlX82U0e/2aidry6QJa/A6OoAoEwmmwd/Vb9z504NHjxYZrNZwcHBio2N1cmTJ3Xq1CkNGTJE586d06ZNm5SQkKAbbrjB6HIBwKmKcvM1r9mYcvePS1+o/HNZOrf7iMI7NFVRdp5Hh/q45M/kGxRgdBlOlZVTqFGTf9B361PLPcbP10sfP3+j7hvSzKW1ucp7C/dr/IsbZSku/3ZnxIAm+vSlmxQY4HnB9tCxi7pt/CodPp5Z7jH16wRp2dsD1bl1hEtrc7WrXQMlqfsLD6rN74fo2LdblBq/Q7VaNFDr3w3WqS1JWnnP85KH3TZXh+sgUB143m+v/8rIyNDQoUNlNps1adIkTZ06VSEhIZKkV199VX/5y1/k4+Mjk8mkDh06GF0uABhuYY/HlX38tCTpjh/+Kd9gbvTcWX6BRUPGryr1ZLYshUVWxT2zVlabTWNub+6y+lzh3S+S9Ng/Nl71uEVrUpSTZ9HStwbK19dzZiampGXpxgeXy5yRd8XjTp7OVd+HvtX6uberfWyYy+qramrFRqv17wYrZflmrf39jJLtWcdPq+eLDylmeG8d/Wq9oTUCQFk85zfXb0ycOFGpqamaMGGCZsyYURLoJWnKlCnq2LGjLBaLmjRpotDQUENrBYCq4JdAD8/w8ge7rhrof+2hqQklQ9M9QfKJTI1/aVOFj1+xIVVvfb7XqTW52u/+nnDVQP+LzOwi3fuXH6rlWgu/iLnzBpm8vLTv/eWlth+at0ZFuflqNuJGw2oDgCvxyFCflJSkBQsWKCIiQi+//HKZx3Tp0kWS1LFjx3LPM3jwYJlMJj333HNOqxUAAEcrLCrWe4v229nGqg8WH3BaTa727hf7ZbXaF1BnL0iyu01VtS/5vH5ITLerzd7kC1q3zey0mqq6iE7NZS0uVsaOQ6W2FxcU6dyeFEV08swpKgDcn0eG+vnz58tqtSouLk41atQo85jAwEuLApUX6r/44gvt3LnTqXUCAOAM36w9XuEntL8250v7g3BVVFhUrI++Pmh3uyOpWVqzOc0pNbnaewsr9wXNu1/Y92WQJwmqW1sF57JkLbz8zQC55nMKCK8pL1+PnbkKwI155JUpPj5ektSvX79yj0lNvbRoUFmhPjMzU08++aRmzJihMWOuvKBKRXTt2lVmc/X95htA1eBr89JUdTe6jCojtkWsikye+VqzzICbpKD+drdLO52r6MbN5WVz71W+LV6hOldrUqXa3nP/k6pRsNnhNblaRsgDkq/9T5YXLtuohM/vd0pNRrvaNdA70F/FhUVl7isuuLTdJ9BPhUWe8zpAT74OAu4oKipKW7dutbudR4b6Y8eOSZIaN25c5n6LxaINGzZI5YT6v/71r4qNjVVcXJxDQr3ZbFZammd88w/AffmZvKW6RldRdZxMP6lCW7HRZThH3TwpqHJN09PPSMVZjq7ItfyKpFqVa3oxM0cXMzzgd3bTYsnX/maWYnnsPcvVroHFeQXyDa5Z5j5v/0s/TEteobPKM4RHXweBasQjQ31OTo4kKS+v7KGHCxYsUEZGhkJCQhQTE1Nq39atW/X+++9r27ZtDqsnKirKYecCgMrytXlJPJApUb9efY99QpXt762LlWlos6p+VG2Z5N4LyFpNAbJvNvn/1ArxVbB/AwdX5HpnfS3Kr0Q7P68CRTZw/89flqtdA3NPnVfN2Gh5+flcNgQ/KCpM+WcvyupBT+nl4ddBwB1VNjd6ZKiPiorS+fPntX37dvXq1avUvvT0dE2ePFmS1KFDB5lMppJ9xcXFeuSRRzRhwgS1bdvWYfVUZggFADhaRd7RXJ0cPHTQY9/PnJKWpaa3fWH3K7XvHBCjxTOPOasslxrw8Hf6fstJu9r4+njpQOIC1QkPdFpdrvL58mTFPbPW7nbTn71HT97/vFNqMtrVroEZOw+rQd9OiujcQqe3JJVs9/b3VVi7Jjq1Oanctu7Kk6+DQHXikQvlDRgwQJI0ffp0HTz4v4VyEhMT1a9fP2VkZEiSOnXqVKrdrFmzdOrUKVa7BwC4tSYNQjSkT0O72z0+qrVT6jHC+NH2f5aRt8R4RKCXpBEDmyiytn1hLTDAW2PvaOG0mqq6o0s2yma1qs3DQ0ptbxE3QL5BATqyeJ1htQHAlXjkk/opU6bo888/14kTJ9S2bVu1atVK+fn5Onz4sAYPHqwmTZpo5cqVpebTZ2Rk6G9/+5tmzJghi8WiCxculOzLz8/XhQsXFBoaKi8vj/weBADU9O4bVSM6UpIUEB4qL18fdXhyhCQpO/WMjizkhtadTH2ss9ZsOan8gorNlx3Qs75u7lHf6XW5ytCbGqlXxzra9PPpCh1fI8hHz/6+/Nfcuht/P289P/46PfaPjRVu85cHO6h2qL9T66rKLuw/rv0fr1Drh25Tvw8nK/X77arZooHaPHSbzBv36sji9UaXCABlMtls9g7Ocw9JSUmaPHmyfvzxR0lSmzZt9NBDD+nhhx9Ws2bNdPToUW3ZskXdu19aBXXnzp3q3LnzFc959OhRNWnSxCX1A4CjXW3o6aBF0xR1fdlTj8wb92rFiKlOrM714pI/8/hhp9+sPa57JsdfNdj37BCpFe8MUs0QP5fV5goZ5/M18JHvtHP/uSseFxzooyVvDtTNPT3nS41f/P1f2/TCnKu/ovfRka00+/+uLzUt0dNUZAqSyctLbR4eotgxA1SjYR3ln8tUytKN2vHqAllyK7NKQdVWHa6DQHXgsaG+PNnZ2QoNDZXJZFJWVpaCgoJKtpc1971fv34aO3asxo0bp549eyoggAsfAPfEnPrSqsvNbOKeM5r27g59m3Disjn2kbUD9PCIlvq/P3RSYIBHDt5TVk6hpr2zQx99fVDnM0uvXO7lZdId/Rpp6qOd1bFluGE1OtuCFUc0/aNd2rH/7GX7WsXU1KQH2uuhu2I9OtCLa2CZqst1EPB0nvkb/Ar27t0rm82m2NjYkkAvSTVq1FDfvn3LbNOkSZNy9wEAUJV1axepZbNu0dHULC3+PkXPvbNd2bkW1Q7104nVo+Xv5210iU4VEuynGX/uoRcmdNGiNSl6/B8blJVrUc0avtq9+C41jKphdIlON2pQU91za4x+2n1Gazaf1Csf/azsXIsiavlr39cjPD7MA4Cnq3YTxHfv3i2V8356AAA8VUx0iCaNba+aNS4NsQ8K8PH4QP9rgQE+GnN7c4X+9/PXCPKtFoH+FyaTST061NFf/9Cp5O+Av583gR4APEC1e1Jvb6ivZrMTAAAAAABuhCf1AAAAAAC4qWr3pD4+Pt7oEgAAAAAAcIhq96QeAAAAAABPQagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATfkYXQAAwDV8Av0Vl/yZ0WVUGT6B/kaXAMCFuAZejusg4BkI9QBQTZhMJvkGBRhdBgAYgmsgAE/F8HsAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN+VjdAEom81mkyWvwOgyKswn0F8mk8noMgAAAACgWiHUV1GWvALNazbG6DIqLC75M/kGBRhdBgAAAABUKwy/BwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3xUJ5AAB4uKycQu1IOqvDJ7KUnVskScrNt2j/0QuKbVxTXl68vQQAAHdFqAcAwAOdMGfrvYUHtHD1UR1IuSibrfT+85mFan3HItUI8lWvjpF6eEQrDe/XWL6+DOIDAMCdEOoBAPAgR1IzNfn1RH39wzFZrbarHp+dW6TVm05q9aaTqhcZpEkPtNMTcW3l40O4BwDAHRDqPUhUr7YatHhaqW1FOXnKPJKu5IXrlPTht7IVWw2rDwDgPFarTbMXJOkvMxOVm2+p1DnSz+Tqz6//pC9WHtXcf9yo1k1rObxOAADgWIR6D3RkcYJS47dLJpMCI2up+cib1H3aONVs0UCbJs8xujwAgIPl5Vs0avIP+ubH4w453097zqjzPV/rs5du0t23xDjknAAAwDkYW+eBzu4+qiOLEnRk4TrtfWeplg95VjlpGYq972b5h4caXR4AwIHyCyy6fcIqhwX6XxQUFmvUlB80/9tkh54XAAA4FqG+GrDkFejM9kMyeXkptHFdo8sBADiIzWbT/c/+qPif0p1yfqvVpgf+70f98NNJp5wfAABcO0J9NRHS5FKYL7iQbXQpAAAH+WzZYS1cnWJXm8T5w3Ri9Wglzh9WoeMtFpse/HuCsnIKK1klAABwJkK9B/IJ9JN/WIj8w0NVq1Uj9Xjp9wpv31Rnth9S5hHnPM0BALhW+plcTXxls93toiKCFF03WFERQRVuc+xktib/M9HuvgAAgPNVi1CfkZGhKVOmqHnz5goICFDDhg31xBNPKCcnRw899JBMJpNmzZpldJkO03nKaN2792Pdu+cjDf/hn2r94CClLN+s+HHTjS4NAOAgL76/UxeyXPf0fM6X+3Xg6AWX9QcAACrG41e/37lzpwYPHiyz2azg4GC1adNGJ0+e1FtvvaXk5GSdO3dOktSpUyejS3WYA5+uUso3m+Tl66ParRqp3fjhCq4XruKC/938efn5aOiq13T0qwTtenNxyfYb3hivgMhaWhP3okHVAwCuJiunUJ98c9jl/b775X7NnNLT5f0CAIDyefST+oyMDA0dOlRms1mTJk1Senq6tm/fLrPZrOnTp2v58uVKTEyUyWRShw4djC7XYTKPmJWesFtp8Tu0Z/YSfT/2FUV0aqZe0x8pOcZaaNH6iW+r/cS7VLtNY0lSo0HdFD2wqzY8NdvA6gEAVzNvebKycopc3u/HSw4pJ9f1/QIAgPJ5dKifOHGiUlNTNWHCBM2YMUMhISEl+6ZMmaKOHTvKYrGoSZMmCg313Fe9ndl6QMkL1ylmeG9Fdm1Zsv3sriPa+85S9XnrjwqqF6Zerz2qLc9+oLxT5w2tFwBwZcvWnTCk34tZhdr482lD+gYAAGXz2FCflJSkBQsWKCIiQi+//HKZx3Tp0kWS1LFjx5Jta9eulclkuuwfdx+e//PMhbJaitV58qjS299YJGtxsYatfk3mDXt0dMkGw2oEAFTMtn0Z1bJvAABwOY+dUz9//nxZrVbFxcWpRo0aZR4TGBgo/SbU/+Jf//qXrrvuupI/BwcHO7Fa58tKMevokg1qNuJG1enRWqe3JEmSbJZinUk8oIgOzXR4wQ9GlwkAuIqTp3NkzsgzrH9CPQAAVYvHPqmPj4+XJPXr16/cY1JTU6VyQn2bNm3Us2fPkn/at2/vxGpdY9ebl57K//ppfZ0erdV8VD8lffituj//oLwD/AytEQBwZcfTcwzt/4TZ2P4BAEBpHvuk/tixY5Kkxo0bl7nfYrFow4ZLQ83LCvWO1LVrV5nNZrva+Nq8NFXd7Wpj3rRXc+vdXe7+i4fS9En0/wK9T1CAbnhjvLa9OE/7/71Sg796Xtc9c58Sp861q19Jim0RqyKT1e52AAD7FPg0lkJ/V+a+xPnDrvr++aiIwJL/PbF6dLnHmTNy1e3epZdt375jl6KjH7e77qoivdZTkldNpZvTFR0dbXQ5huBnAABVU1RUlLZu3Wp3O48N9Tk5l54k5OWVPURxwYIFysjIUEhIiGJiYi7bP2rUKGVkZCg8PFzDhg3TK6+8ooiIiErVYjablZaWZlcbP5O3VLdS3VVYt+ceUPbx09o/d4Ukaf0TszRszQwd/26LTm1OsutcJ9NPqtBW7KRKAQAlggKkctZ2jYoIUnTdik0X8/H2qvCxv1ZUmG/377QqJaRY8pKsxcXu/TmuBT8DAPAoHhvqo6KidP78eW3fvl29evUqtS89PV2TJ0+WJHXo0EEmk6lkX82aNTV58mTdeOONqlGjhjZt2qSXX35Zmzdv1tatWxUQEFCpWuzla/OSnPjgu0H/zooZ1ltLbp5Usi3r2Clte3Gees8cr6X9J8mSV1Dh89WvV58n9QDgAhavIJ0qZ585I/eq7aMiAuXj7SVLsfWKc/PLO5e/T5EiGjSocL1VTbq3t6ySvLy9Vc+NP8e14GcAAFVTZXKjJJlsNpvN4dVUARMnTtTbb7+thg0bas2aNYqNjZUkJSYm6v7779eRI0dUVFSk8ePHa9asWVc81zfffKNhw4bpo48+0oMPPuiS+oty8zWv2RiX9OUIccmfyTfI/i88AAD2sVptqn3Dp8rMrtz74k+sHq3ousFKPZWjhgP/Y3f7//tDJ70woUul+q4KogfMV9rpXDWoE6TUNfcaXY4h+BkAgGfx2IXypkyZovDwcJ04cUJt27ZV+/bt1aJFC3Xv3l1NmzZV//79pQrOp7/99tsVHBxcqfkNAAA4kpeXSde1rtx0MEfo0ibcsL4BAMDlPDbUR0dHKyEhQUOGDFFAQIBSUlIUFhamOXPmaPny5Tp48KBk5yJ5vx6mDwCAUfp1q2dIv74+XurdyckLvgAAALt47Jx6SWrdurWWLVt22fbs7GylpKTIy8tL7dq1u+p5li5dqpycHHXvbt9q9AAAOMNDd8bq+Tk7VFzs2hl0IwY0UWRYoEv7BAAAV+bRob48e/fulc1mU2xsrIKCSr/6Z8yYMWratKmuu+66koXyXn31VXXq1EmjR5f/6h8AAFylQd1gDe/XWIvWpLi03/GjW7u0PwAAcHUeO/z+Snbv3i2VM/S+bdu2+uqrr/TAAw9o8ODB+uijj/Twww9r7dq18vPzM6BaAAAu99eHO8rb23XTwvp3r6fenRl6DwBAVUOo/41nnnlGu3fvVmZmpoqKinT06FH985//VM2aNQ2o1PEaD+mpnq88XGpb81H9NC59oRoN6mZYXQAA+3RuHaFnHqr4ujDXokaQrz6c1oe1ZQAAqIII9dVMo9t66PiKn0r+XCM6UrFxA3R66wFD6wIA2O9vj3RSx5ZhdrUxZ+Qq9VROhd5p/4sZk7qrSYOQSlQIAACcrVrOqY+Pjze6BKfxCw3SHT/MlHeAn3JPZsjL31chjeoqeeGP2vT0+6rbraXWPzHr0sEmk65//TFt+b8P1W3qWKNLBwDYyc/XW8tn3aIbxi5TysnsCrXpdu9Su/qY9EA7/eHulpWsEAAAOFu1fFLvyQozc3XkqwTt+2C5lg6crJ/+/rHObD+ojX9+V/V6t9PpxAOyWYolSW0fGarTift1dtcRo8sGAFRSg7rBWvvRbWrRONTh5/7L7zrotUndGXYPAEAVRqj3QGHtYnRu91FJUniHZjq359K/NxrUTce+uzT0vlbLhmo8pId+fmORobUCAK5d4/oh2vzZMI25vZlDzhdW01+fv9JXrzzZjUAPAEAVR6j3QGFtm5QE+fAOTXX2vwG/ft9OSovfIUmq26O1ajSsoxEb39bdP81W5HUt1Ou1R9XygVsMrR0AUDlhNf316Ut99fWbA9QwKrjS57l7YBPt/eou3XubY74gAAAAzlUt59R7sqCoMMlmU675nCQprHVj7XpzkSI6t9DFQ2my5OZLkg58skoHPllV0m7Qomna9/4yHV+RaFjtAIBrd0e/xhrSp6GWrTuu2QuStHrTyau2qR3qp98Nj9Wj97RW80aOH8YPAACch1DvYcLaxZQ8pZekwswctRp7qwrOZZVa9R4A4Ll8fLw0vH8TDe/fRBcyC7Q96ay27s3QoeMXlVdQLB9vL9UO9VOnluHq0iZcrWJqyceHwXsAALgjQr2HSV2zTalrtpX8edngpyVJd6ydqZUjppbbbsUV9gEA3FetUH/171Ff/XvUN7oUAADgBIT6amJJ3z8ZXQIAAAAAwMEYawcAAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAboqF8qoon0B/xSV/ZnQZFeYT6G90CQAAAABQ7RDqqyiTySTfoACjywAAAAAAVGEMvwcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATfkYXQDKZrPZZMkrMLqMCvMJ9JfJZDK6DAAAAACoVgj1VZQlr0Dzmo0xuowKi0v+TL5BAUaXAQAAAADVCsPvAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAEC1YLPZZLPZSv4dAABPwOr3AADAI+XmWbT4+xRt3HlK2/ad1a5D55RfUCxJOnkmT7FDv1TXNhHq2jZCdw+MUaN6NYwuGQAAuxHqAQCARzmSmqm3P9+nuUsO6UJWYbnHHTqWqUPHMjX/uyOa/M9EDenTUBPuba2BvRrIZDK5tGYAACqLUA8AADxCcbFVMz/dq/+btU0FhcV2tbVabfrmx+P65sfjGjGgiWb/9XrVCQ90Wq0AADgKod6DRPVqq0GLp5XaVpSTp8wj6UpeuE5JH34rW7HVsPoAAHCWVHOO7pkcr00/n77mcy1ak6Ift5n173/cqNv6NHRIfQAAOAuh3gMdWZyg1PjtksmkwMhaaj7yJnWfNk41WzTQpslzjC4PAACHSj6RqZsf/k7HTmY77JwZ5/M1bOJqffKPm3TfkGYOOy8AAI7G6vce6OzuozqyKEFHFq7T3neWavmQZ5WTlqHY+26Wf3io0eUBAOAwJ0/naICDA/0viottuv+vP+rr+BSHnxsAAEch1FcDlrwCndl+SCYvL4U2rmt0OQAAOITNZtO4v61TihMC/S+sVpvG/t86nTA7rw8AAK4Fob6aCGlyKcwXXOCmBADgGT5YdECrN520q03i/GE6sXq0EucPq3CbzOwiPfzcet5tDwCokjw+1GdkZGjKlClq3ry5AgIC1LBhQz3xxBPKycnRQw89JJPJpFmzZhldpkP5BPrJPyxE/uGhqtWqkXq89HuFt2+qM9sPKfNIutHlAQBwzc5eyNek13+yu11URJCi6wYrKiLIrnYrN6ZpwYojdvcHAICzefRCeTt37tTgwYNlNpsVHBysNm3a6OTJk3rrrbeUnJysc+fOSZI6depkdKkO1XnKaHWeMrrUtpTlm7XlmQ8MqwkAAEf6+OtDysopcmmfb87bq9GDWTQPAFC1eOyT+oyMDA0dOlRms1mTJk1Senq6tm/fLrPZrOnTp2v58uVKTEyUyWRShw4djC7XoQ58ukor75mm1XEvausLnyr/XJaC64WruKCw5BgvPx/dsXamOjxxV6m2N7wxXgPm/dWAqgEAqBir1aZ3vkhyeb+bd53R9n0ZLu8XAIAr8dhQP3HiRKWmpmrChAmaMWOGQkJCSvZNmTJFHTt2lMViUZMmTRQa6lkrwmceMSs9YbfS4ndoz+wl+n7sK4ro1Ey9pj9Scoy10KL1E99W+4l3qXabxpKkRoO6KXpgV214araB1QMAcGUbd57SkdQsQ/r+5JvDhvQLAEB5PDLUJyUlacGCBYqIiNDLL79c5jFdunSRJHXs2PGyfV999ZWuv/56BQcHq2bNmurdu7f27t3r9Lqd5czWA0peuE4xw3srsmvLku1ndx3R3neWqs9bf1RQvTD1eu1RbXn2A+WdOm9ovQAAXMlPe84Y1nfiXuP6BgCgLB4Z6ufPny+r1aq4uDjVqFGjzGMCAwOlMkL9W2+9pXvuuUc33HCDli5dqvnz52vAgAHKy8tzSe3O8vPMhbJaitV58qjS299YJGtxsYatfk3mDXt0dMkGw2oEAKAitu07a1jfO/aflcViNax/AAB+yyMXyouPj5ck9evXr9xjUlNTpd+E+uTkZE2ePFkzZ87UhAkTSrbfdtttTq3XFbJSzDq6ZIOajbhRdXq01uktl+Yi2izFOpN4QBEdmunwgh+MLhMAgKvam2zciLK8/GKlnMxW80aeNXUPAOC+PDLUHzt2TJLUuHHjMvdbLBZt2HDpifSvQ/1HH30kX19fPfzwww6tp2vXrjKbzXa18bV5aaq6O7SOXW8uUszw3uo8eZRW3v2cJKlOj9ZqPqqfkj78Vt2ff1BLB05WcX7hVc/1W7EtYlVk4skFAMD5zDUnSt7hZe5LnD/siq+ri4oILPnfE6tHl3ucJJkzctXt3qWXbb++T3/5Fdv3e70qSa/1lORVU+nmdEVHRxtdDgDgv6KiorR161a723lkqM/JyZGkcofML1iwQBkZGQoJCVFMTEzJ9o0bN6ply5b67LPP9I9//EMnTpxQixYt9Pe//1333ntvpesxm81KS0uzq42fyVuqa2c/m/Zqbr27y91/8VCaPon+3/B7n6AA3fDGeG17cZ72/3ulBn/1vK575j4lTp1rX8eSTqafVKGt2O52AADYLdgieZe965f30F+Nj7dXhY4ry5nTp6R8+36vVykhxZKXZC0utvv+BABQ9XhkqI+KitL58+e1fft29erVq9S+9PR0TZ48WZLUoUMHmUymUvvS0tL0zDPPaPr06WrYsKE+/PBD3XfffYqMjNSAAQMqXY+9fG1ekpMffHd77gFlHz+t/XNXSJLWPzFLw9bM0PHvtujUZvteFVS/Xn2e1AMAXOK0t1XlvaHenJF7xbZREYHy8faSpdgqc8aV18sp71x1I2vLx2qrcL1VTbq3t6ySvLy9Va9BA6PLAQD8V2Vyozw11A8YMEBJSUmaPn26Bg4cqNjYWElSYmKi7r//fmVkXHrHbKdOnUq1s1qtys7O1qeffqrhw4dLkm6++Wbt27dPL7zwQqVDfWWGUBTl5mteszGV6q8iGvTvrJhhvbXk5kkl27KOndK2F+ep98zxWtp/kix5BRU+38FDB+UbFOCkagEA+J8xz6zVvOXJZe4ra7j8r51YPVrRdYNlzshTw4H/sbvvoAAfpR3dKW9v911rOHrAfKWdzlW9qHpK3ZNqdDkAgGvkvr+RrmDKlCkKDw/XiRMn1LZtW7Vv314tWrRQ9+7d1bRpU/Xv318qY+X7sLAw6b9fCvzCZDJpwIAB2rNnj4s/hXOlxe/Q563GKicto9T2/XNXaHGvCXYFegAAXKlLmwjD+u7UKsytAz0AwPN45G+l6OhoJSQkaMiQIQoICFBKSorCwsI0Z84cLV++XAcPHpTKCPVt27Yt95z5+flOrxsAAFxd93aR1bJvAADK4pGhXpJat26tZcuWKSsrS1lZWdqyZYv+8Ic/KCcnRykpKfLy8lK7du1KtbnjjjskSatWrSrZZrVatXr1anXr1s3lnwEAAFyuV8c6atYwxJC+xw5rYUi/AACUxyPn1F/J3r17ZbPZFBsbq6Cg0q+8GTp0qPr06aM//OEPOnv2rBo1aqQPPvhAe/fu1erVqw2rGQAA/I+Xl0mP3dNaf379J5f226tjHXVqVfar9AAAMIrHPqkvz+7du6Uyht7rv/Pnly5dqhEjRujZZ5/VsGHDdOzYMX377bcl8/ABAIDxHhweq9Aavi7t88kx5U/TAwDAKIT636hVq5bmzJmjM2fOqKCgQD/99JNuvfVWF1cJAACuJKymv2ZO7umy/obc2FAjb4lxWX8AAFQUob6aaTykp3q+8nCpbc1H9dO49IVqNIh1AwAA7uPB4S00+IZou9qYM3KVeirnqu+z/7WaIX6a87feMplMlagSAADnqnZz6uPj440uwVCNbuuh5C/Xlvy5RnSkYuMG6PTWA4bWBQCAvUwmkz56vo9uGLtMySeyKtTmau+x/y1vb5M+e+kmNagbXMkqAQBwrmr3pN7T+YUGaeS2ORq992MNW/2ahq97Q/enzNf1Mx6Vycdbdbu1VPr6PZcONpl0/euPacv/fShrocXo0gEAsFtURJDWvDdYMQ0cvxq+j49Jn7/SV7ff1Mjh5wYAwFEI9R6mMDNXR75K0L4PlmvpwMn66e8f68z2g9r453dVr3c7nU48IJulWJLU9pGhOp24X2d3HTG6bAAAKq1JgxCt//cQ9bmursPOWScsQMvevkX33NrUYecEAMAZCPUeKKxdjM7tPipJCu/QTOf2XPr3RoO66dh3l17/U6tlQzUe0kM/v7HI0FoBAHCE+nWCtfajIXpjSg8FBnhf07nuHdxU+74eoVt72zdfHwAAI1S7OfXVQVjbJiVBPrxDU51YmShJqt+3k7a+8JkkqW6P1qrRsI5GbHxbkhQYWUu9XntUgXVq68AnqwysHgCAyvHyMumJMe00vH9jzV6QpA+/OqizFwoq1Nbb26Th/Rprwr1t1LdbPafXCgCAoxDqPUxQVJhksynXfE6SFNa6sXa9uUgRnVvo4qE0WXLzJUkHPllVKrwPWjRN+95fpuMrEg2rHQAAR2hcP0TT/9Rd0x6/Tkt+OK5NP5/Wtn0Z+vngOWXlFEmSfH28FNs4VF3aRKhLmwiNGNCExfAAAG6JUO9hwtrFlDyll6TCzBy1GnurCs5l6fiKnwytDQAAVwrw99GoQU01atD/5sVbrTZZrTb5+DADEQDgGQj1HiZ1zTalrtlW8udlg5+WJN2xdqZWjphabrsVV9gHAICn8PIyycuL980DADwHob6aWNL3T0aXAAAAAABwMMaeAQAAAADgpgj1AAAAAAC4KUI9AAAAAABuijn1VZRPoL/ikj8zuowK8wn0N7oEAAAAAKh2CPVVlMlkkm9QgNFlAAAAAACqMIbfAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmfIwuAGWz2Wyy5BUYXUaF+QT6y2QyGV0GAAAAAFQrhPoqypJXoHnNxhhdRoXFJX8m36AAo8sAAAAAgGqF4fcAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClWvwcAAPBQNptNKWnZ2rYvQ9uSMpR2KlfnLl56Ze7F7ELN/zZZXdpEqHmjUHl58WpaAHBHhHoAAAAPcyGzQP9eekjvfLFfB1IulnlMdq5F9z29VpLUuH4NPXJ3Kz10Z6zqhAe6uFoAwLUw2Ww2m9FF4HJFufm8px4AANilqMiq6R//rJc++Fl5+cV2t/fz9dITcW017fHrFBjAsx8AcAdcrT1IVK+2GrR4WqltRTl5yjySruSF65T04beyFVsNqw8AADjP7oPnNO5v67Q96Wylz1FYZNVrc3dr6drj+viFPurVsa5DawQAOB6h3gMdWZyg1PjtksmkwMhaaj7yJnWfNk41WzTQpslzjC4PAAA42KqNqbrzye+Vm29xyPkOpFzUjQ8u12cv9dWoQU0dck4AgHMQ6j3Q2d1HdWRRQsmfD8xdqTsT3lTsfTdr+yvzVXA209D6AACA46zZnKahf1ytwiLHjsazWGy69y8/yMvLpJG3xDj03AAAx+GVdtWAJa9AZ7YfksnLS6GNGUYHAICnSD6RqTuf/N7hgf4XNpsU9/Rabd+X4ZTzAwCuHaG+mghpcinMF1zINroUAADgAFarTb/7e4Kyc4vsapc4f5hOrB6txPnDKnR8kcWqcX9bp8Ii+xfeAwA4H6HeA/kE+sk/LET+4aGq1aqRerz0e4W3b6oz2w8p80i60eUBAAAHmL0gSeu2me1uFxURpOi6wYqKCKpwm92Hzusf7+20uy8AgPNVi1CfkZGhKVOmqHnz5goICFDDhg31xBNPKCcnRw899JBMJpNmzZpldJkO03nKaN2792Pdu+cjDf/hn2r94CClLN+s+HHTjS4NAAA4QFGRVS++79qQ/c9P9igzu9ClfQIArs7jF8rbuXOnBg8eLLPZrODgYLVp00YnT57UW2+9peTkZJ07d06S1KlTJ6NLdZgDn65Syjeb5OXro9qtGqnd+OEKrheu4oL//SL28vPR0FWv6ehXCdr15uKS7Te8MV4BkbW0Ju5Fg6oHAABX8/UPx2TOyHNpnzl5Fn267LDGj27j0n4BAFfm0U/qMzIyNHToUJnNZk2aNEnp6enavn27zGazpk+fruXLlysxMVEmk0kdOnQwulyHyTxiVnrCbqXF79Ce2Uv0/dhXFNGpmXpNf6TkGGuhResnvq32E+9S7TaNJUmNBnVT9MCu2vDUbAOrBwAAVzPny/2G9PvuF8b0CwAon0eH+okTJyo1NVUTJkzQjBkzFBISUrJvypQp6tixoywWi5o0aaLQ0FBDa3WmM1sPKHnhOsUM763Iri1Ltp/ddUR731mqPm/9UUH1wtTrtUe15dkPlHfqvKH1AgCA8hUVWbV+xylD+t5z+LzOXsg3pG8AQNk8NtQnJSVpwYIFioiI0Msvv1zmMV26dJEkdezYsWRb3759ZTKZyvzn0UcfdVn9jvbzzIWyWorVefKo0tvfWCRrcbGGrX5N5g17dHTJBsNqBAAAV7c3+bwKCo1biX4br7cDgCrFY+fUz58/X1arVXFxcapRo0aZxwQGBkq/CfWzZ89WZmZmqeOWL1+uf/zjH7r99tudXLXzZKWYdXTJBjUbcaPq9Git01uSJEk2S7HOJB5QRIdmOrzgB6PLBAAAV7E96ayh/W/bd1a3XB9taA0AgP/x2FAfHx8vSerXr1+5x6Smpkq/CfVt2ly++MuLL76oyMhIDRo0qFK1dO3aVWazfa+c8bV5aaq6V6q/8ux6c5FihvdW58mjtPLu5yRJdXq0VvNR/ZT04bfq/vyDWjpwsorz7V/ZNrZFrIpMVofWCwAALpcVcIMUNLDMfYnzh131VXVREYEl/3ti9ehyjzNn5KrbvUsv2/7S9Lf0r+dW2l03AODKoqKitHXrVrvbeWyoP3bsmCSpcePGZe63WCzasOHSUPNfh/rfOnPmjFasWKHHH39cPj6V+3GZzWalpaXZ1cbP5C3VtbOfTXs1t97d5e6/eChNn0T/b/i9T1CAbnhjvLa9OE/7/71Sg796Xtc9c58Sp861r2NJJ9NPqtBm3FBAAACqjchsqZzc/ss76CvCx9urwsf+WnZOnrLT7buvAQA4j8eG+pycHElSXl7Zr3tZsGCBMjIyFBISopiYmHLPM3/+fFksFt1///2VriUqKsruNr42L8nJD767PfeAso+f1v65KyRJ65+YpWFrZuj4d1t0anOSXeeqX68+T+oBAHCBrIBgZZazz5yRe9X2URGB8vH2kqXYesXX4pV3rhrBAarZoEGF6wUAVExlcqMkmWw2m83h1VQBbdq0UVJSkmbNmqXx48eX2peenq4uXbooPT1dvXv31vr168s9T7du3ZSTk6N9+/a5oOr/KcrN17xmY5x2/gb9O+um2U9qyc2TlJP2vwVvWo0bpDaP3K6l/SfJkldQ4fPFJX8m36AAJ1ULAAB+8cXKIxo1ufLr4JxYPVrRdYOVeipHDQf+x+72bz/TSxPu5V31AFBVeOzq9wMGDJAkTZ8+XQcPHizZnpiYqH79+ikj41KQ7dSpU7nn2L9/v7Zu3XpNT+mrqrT4Hfq81dhSgV6S9s9docW9JtgV6AEAgOt0aRNhcP/hhvYPACjNY0P9lClTFB4erhMnTqht27Zq3769WrRooe7du6tp06bq37+/dJX59J9++qlMJpPi4uJcWDkAAED5mkaHqFaInyF9e3mZ1DGWUA8AVYnHhvro6GglJCRoyJAhCggIUEpKisLCwjRnzhwtX7685Ol9eaHeZrNp3rx56tu3rxo1auTi6gEAAMpmMpl0+00NDen75h71FBTosUsyAYBb8uircuvWrbVs2bLLtmdnZyslJUVeXl5q165dmW3XrVunY8eOaerUqS6oFAAAoOIeu6e1PluW7PJ+Hx/V2uV9AgCuzGOf1F/J3r17ZbPZ1KJFCwUFlf1OmE8//VSBgYG6++7yXxEHAABghF4d66hjyzCX9hldN1i338joRQCoaqplqN+9e7d0haH3+fn5WrhwoYYPH66QkBAXVwcAAHBlJpNJr0/q4dI+X3uqm3x8quWtIwBUadXyyny1UB8QEKALFy7o888/d3Flztd4SE/1fOXhUtuaj+qncekL1WhQN8PqAgAA9rm5Z309OrKVS/q66+YmGjWoqUv6AgDYh1BfzTS6rYeOr/ip5M81oiMVGzdAp7ceMLQuAABgv1ef6qaWTWra1cackavUUzkyZ+RW6Pj6dYI0+/+ul8lkqmSVAABn8uiF8soTHx9vdAlO4xcapDt+mCnvAD/lnsyQl7+vQhrVVfLCH7Xp6fdVt1tLrX9i1qWDTSZd//pj2vJ/H6rb1LFGlw4AAOwUEuyn1e8NUp9xy3XsZHaF2nS7d2mFzx9ZO0Br3husuuGB11AlAMCZquWTek9WmJmrI18laN8Hy7V04GT99PePdWb7QW3887uq17udTicekM1SLElq+8hQnU7cr7O7jhhdNgAAqKSGUTWUMHeIWjet5dDzNqoXrHVOOC8AwLEI9R4orF2Mzu0+KkkK79BM5/Zc+vdGg7rp2HeXht7XatlQjYf00M9vLDK0VgAAcO0aRtXQ1vl36MkxbeWIUfK/uzNWP395p1rFEOgBoKoj1HugsLZNSoJ8eIemOvvfgF+/byelxe+QJNXt0Vo1GtbRiI1v6+6fZivyuhbq9dqjavnALYbWDgAAKico0Eczp/TUuo+HqM91dSt1ji5tIvTtv27Rh9P6qFaov8NrBAA4XrWcU+/JgqLCJJtNueZzkqSw1o21681FiujcQhcPpcmSmy9JOvDJKh34ZFVJu0GLpmnf+8t0fEWiYbUDAIBrd8N1UVo393btPnhO73yRpBUb0nQ0Lavc46PrBmtAz/p6fFRrdWsX6dJaAQDXjlDvYcLaxZQ8pZekwswctRp7qwrOZZVa9R4AAHi29rFhmv1/vSVJZy/ka3vSWZ08nauComL5+XqpbligurSJUB0WwQMAt2ay2Ww2o4vA5Ypy8/X/7dy7CQJREIbRu6D4aMNG7MDAUJuwgi3BJrQAQzMbsQQTExWENTUwMFhZf/acAoZJP+5l9rN1a/MWp205Lutyv1xbm/ludd6V4XT8k9kAAAB85qW+Jw7zTdcrAAAA0DKH8gAAACCUqAcAAIBQoh4AAABCOZT3p5qmKc/bo+s1vjaYjEpVVV2vAQAA0CuiHgAAAEL5fg8AAAChRD0AAACEEvUAAAAQStQDAABAKFEPAAAAoUQ9AAAAhBL1AAAAEErUAwAAQChRDwAAAKFEPQAAAIQS9QAAABBK1AMAAEAoUQ8AAAChRD0AAACEEvUAAAAQStQDAABAKFEPAAAAoUQ9AAAAhBL1AAAAEErUAwAAQChRDwAAAKFEPQAAAIQS9QAAABBK1AMAAEAoUQ8AAAChXqEH1uRmep3XAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "qc_1 = QuantumCircuit(8)\n", + "for i in [*range(4), *range(5, 8)]:\n", + " qc_1.rx(np.pi / 4, i)\n", + "qc_1.cx(0, 3)\n", + "qc_1.cx(1, 3)\n", + "qc_1.cx(2, 3)\n", + "qc_1.append(Move(), [3, 4])\n", + "qc_1.cx(4, 5)\n", + "qc_1.cx(4, 6)\n", + "qc_1.cx(4, 7)\n", + "qc_1.append(Move(), [4, 3])\n", + "qc_1.cx(0, 3)\n", + "qc_1.cx(1, 3)\n", + "qc_1.cx(2, 3)\n", + "\n", + "# Expand observable\n", + "observable_expanded = SparsePauliOp([\"ZIIIIIII\", \"IIIIZIII\", \"IIIIIIIZ\"])\n", + "qc_1.draw(\"mpl\")" + ] + }, + { + "cell_type": "markdown", + "id": "7b4f8998-4f30-4e93-84fe-957c658df678", + "metadata": {}, + "source": [ + "The circuit above can now be partitioned and cutting experiments generated. To explicitly specify how the circuit should be partitioned, you can add partition labels to the `partition_problem()` function. Qubits which share a common partition label are grouped together, and any non-local gates spanning more than one partition are cut. The keys of the dictionary output by `partition_problem()` will match those specified in the label string." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "2139745a-bdc3-40bd-bd6f-d26d2a5b5b14", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Subobservables to measure: \n", + "{'A': PauliList(['IIII', 'ZIII', 'IIIZ']), 'B': PauliList(['ZIII', 'IIII', 'IIII'])}\n", + "\n", + "Sampling overhead: 256.0\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0IAAAEvCAYAAABoq3HZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU+klEQVR4nO3deVhUZf8G8HuGfRQUEFkVZRUVcAUV01xyydwrTX3dKssl+pmvVtbrkmW5lEtZWlpKLlnu+74huYAooCIqiIqCMLLvzPL7w6QQMGaYmTPM3J/r6rrirN8Dx5lzn+c5zxEplUoliIiIiIiIjIhY6AKIiIiIiIh0jUGIiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGh0GIiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHRMhS6ANEupVEJWVCJ0GSoxtbKASCQSugwiIiIiMiIMQgZGVlSCTZ5jhC5DJaMTN8JMYil0GURERERkRNg1joiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPD9wgRnDq3Qr8d8ytMKysoQm5SKhK3nUH8ugNQyhWC1UdEREREpGkMQlQuaUc4Uk5EAyIRrBwawuu17giaPx4NvF1xbuYaocsjIiIiItIYBiEq9zjuDpK2h5f/nLD+MIaGr4DPqF6I/moLSh7nClofEREREZGm8BkhqpasqAQZ0bcgEoth4+4odDlERERERBrDIPSMPXv2YPLkyQgKCoKrqyssLCxgbW2NNm3aYPbs2ZBKpUKXqFPWzZ4EoJLsfKFLISIiIiLSGHaNe8Y333yD06dPw9zcHC4uLggICEB6ejpiY2MRExODtWvX4siRI2jTpo3QpWqcqZU5LOysy58R8h3bB/b+HsiIvoXcpFShyyMiIiIi0hiRUqlUCl2EPgkLC4Obmxu6du0Kc3Pz8ulxcXEYNWoUrl69Cj8/P1y/fl3QOqtTVliMTZ5jVFqnqlHjnkrefx4XPl6LooxsDVVY2ejEjTCTWGpt+7WlVCqRV1AGuUKJBvXNIRaLhC6JiIhIp2QyBXLyS2FpbgKJlSlEIn4XUt3HFqFnjB07tsrp/v7+WLduHYKDgxEfH4/4+Hj4+fnpvD5tSvj1CJL3noPYzBS2LZqi9dQhqOdsD3lJafkyYnNTDDyyBHd2hiN2xY7y6V2XT4WlQ0McG/2FQNVrXlJKLlb/fgM/77qJx9klAACJpSlGD/DElBF+aNPCXugSiYiItEahUOLExYf4fms89py6B7n8yb3z5q7WePe1Fpg41AeNbPX3RibRvzH4Z4SkUilmzZoFLy8vWFpaokmTJnj//fdRUFCAN998EyKRCN99912NtvXP4FNYWKjFqoWRm5SG1PA4PDhxGVe/343j475Cozae6LzonfJlFKUynA39Fv6hw2Db0h0A0LRfR7i91AERH3wvYPWao1Qq8eXaGHgN+ANL1seVhyAAKCyW4aftCWj7+i6889lZyGR8vxIRERmerNwS9H77IF6adAg7j98tD0EAcOdBHj5cHommfX/DzuPJgtZJVBsGHYSuXLkCf39/LFmyBGlpaWjZsiXKysqwcuVKjBgxAvHx8QBQ4+d9IiIiAAD16tWDr6+vVmvXBxlRCUjcdgbNh4TAocPfx/s4NgnXftiDF1a+B4mzHToveRcXZq9F0aMsQevVlM9WX8bslVH4t06jP25LwIQ5Z8DepUREZEgKCsvQ991DOBn5/OeDi4rlGP7BcYYhqrMMNghJpVIMHDgQaWlpmDFjBlJTUxEdHY20tDQsWrQI+/fvR2RkJEQiEQICAqrdjkKhQGpqKsLCwjB+/HgAwMKFC1G/fn0dHo1wYpZtg0ImR9uZIypOX74dCrkcg44uQVrEVdzZHSFYjZp0ITYd8364XOPlN+5LxKb9iVqtiYiISJfmfh+NyKs1GyVXqQTGfHwamTklNViaSL8YbBAKDQ1FSkoKpk2bhqVLl8La2rp83qxZsxAYGAiZTIZmzZrBxsam0vqrV6+GSCSCiYkJXFxcMG7cOLi5uWHv3r0IDQ3V8dEIJy85DXd2R8ClWwAaB//dNVApkyMjMgGW9g1we+tJQWvUpFW/xauxjn4OnEFERKSqwiIZ1u28qdo6xTJs2HNLazURaYtBBqH4+Hhs3boVjRo1wpdfflnlMu3btwcABAYGVjnf2dkZISEhCA4OhouLC0QiEWJjY7F582bk5ORUWv7OnTsYNGgQrK2tYWtri7Fjx+Lx48caPjJhxK540vrzz1ahxsF+8BrRA/HrDiDoswkwsTR/7jbqgsycEmw9nKTyeudjMxCTYBh/ayIiMm5/HLmD7LzSGixZ0erfb2ilHiJtMshR47Zs2QKFQoHRo0dX24XNysoKeE4QGjx4MAYPHlz+c1xcHKZOnYotW7bg3r17OHv2bPm8vLw89OjRA3Z2dtiyZQuKioowa9YsvPLKK4iIiIBYrF7e7NChA9LS0lRax0wpxlwEqbRO2rlrWO/8arXzc249QJjb3yHIVGKJrsun4tIXm3Bjw2H03/kZ2n08CpFz16u036d8vH1QJhJ+0IFSExeUNninBktW1qP/aEhKr2q8JiIiIl3KsXoJsOqq8no37+bA1a0pRBD++5yMj5OTE6KiolRezyCD0IkTJwAAPXr0qHaZlJQU4DlB6Fn+/v7Yv38/PDw8EBERgWPHjqF3794AgB9//BEPHjzAmTNn0LRpUwCAm5sbunTpgj179mDIkCFqHUdaWhoePHig0jrmIhPAUa3d1VjHeWORfy8dN9YfAgCcff87DDq2FPcOXsCj86p3LXuY+hClSrkWKlWRxApooN6qWVl5yMpW7W9FRESkd5yLASv1Vn348BGgVL01iUgoBhmE7t69CwBwd3evcr5MJisfAa6mQQgArK2t0b17d2zfvh0xMTHlQWjfvn3o2rVreQgCgM6dO8PDwwN79+5VOwg5OTmpvI6ZUgxt3oxx7dkWzQeFYHevGeXT8u4+wqUvNiFk2VTs6TkDsiLVHph0cXbRixahMrEE6fjryU8VXxRn19ACVvVctVUaERGRTuRaipGnxnoiZSmcXRzA16ySENS5ZoahBqGCggIAQFFRUZXzt27dCqlUCmtrazRv3lylbctkMgCAXP53C8b169fx2muvVVq2VatWuH5d/Qfp1WniKyssxibPMWrv8988OHEZm1uMqzT9xvpD5S1Eqrp56ybMJMK/kE2pVCJg+E5cva3aMOANrc1x/8IRSKwM8p8TEREZkeuJWWg1dEcNlqxozMCWCFuYopWaiLTFIAdLeJoKo6OjK81LTU3FzJkzAQABAQEQqXDnPzMzE6dPnwaeefdQVlYWGjZsWGl5Ozs7ZGZmqnUMpHsikQhTR/rVYMmKJgzxZggiIiKD0NLTFj06Oqu83pQRqn9/EgnNIIPQ0y5rixYtws2bfw8BGRkZiR49ekAqfTI2/rMvUo2KisKcOXNw+/btStu8fPky+vfvj+zsbPj7+6NXr15aPw7SvTGveKGlZ+VQW53GdpaY/p/WWq2JiIhIl+ZPaQcz05pfIg7u0RTBAQ5arYlIGwwyCM2aNQv29va4f/8+WrVqBX9/f3h7eyMoKAgeHh7o2bMnUMXzQfn5+ViwYAG8vb3h6OiIDh06IDg4GK6urmjXrh0uXrwIHx8f7Nq1CyYmJuXr2draIjs7u1IdmZmZsLOz08ERk6bUl5jhwKo+8Gpa+d1Sz7JvaIH9q/qgiZNxvFyXiIiMwwvtnbDxy+41CkMvdnTGpi9fVKmHDZG+MMgg5ObmhvDwcAwYMACWlpZITk6GnZ0d1qxZg/3795e3Ej0bhAIDA7FixQoMGTIENjY2uHnzJi5fvgy5XI7evXtj1apViImJgYeHR4X1/Pz8qnwW6Pr16/DzY1NxXePuYo0/w17B5NdboL6kcpc3M1MxRr3sifMbB6FDK94BIyIiw/N6Xw+cXPcy+nSpeiAgp0ZWmDe5LQ790Bf1JGY6r49IE0RKpVIpdBG6lJ+fDxsbG4hEIuTl5UEikdR6m0uXLsXs2bORlJQENzc3AMCFCxfQqVMn7NixA0OHDtVA5TWj7cEStGF04ka9GCyhKrn5pfjjyB1MX3weeYUyNKhvhpt7X0NjezXHFiUiIqpjbt3Nwa4Td/HZmsvIL5TBzsYcaSdHw8zMIO+nkxExujP42rVrUCqV8Pb21kgIAoBJkybB2dkZgwcPxr59+7Bt2za88cYbCAoKqvBSVqp7bOqb481hvrCpbw781XWOIYiIiIyJt3sDzJwQgAZ/fRdaWZoyBJFBMLqzOC4uDlDx/UH/xsbGBidOnICzszNGjhyJt956C126dMG+ffsgFhvGr9h9QCd0+urtCtO8RvTA+NRtaNqvo2B1ERERERGpw+jG/NVGEAIAT09P7Nu3T6Pb1CdNXw5G4h+nyn+u7+YAn9G9kR6VIGhdRERERETqYBAiAIC5jQSDTy6DiaU5Ch9KIbYwg3VTRyRuO41zH/0Ex46+OPv+d08WFonQ5evJuPDpOnScW/nlqkRERERE+s7ogtCJEyeELkEvleYWImlnOMoKihG7bBtcXgxEQOgw/Pnf1XDpHoj0yAQoZXIAQKt3BiI98gYexyYJXTYRERERkVoM4wEW0gi71s2RGXcHAGAf4InMq0/+v2m/jrh78CIAoKFvE7gPCEbM8u2C1kpEREREVBtG1yJE1bNr1aw8/NgHeOD+4UgAgMuLbRC1YCMAwDHYD/WbNMbwP78FAFg5NETnJe/CqrEtEsKOCFg9EREREVHNMQgRAEDiZAcolShMywQA2Pm5I3bFdjRq642cWw8gKywGACSEHakQePptn4/rP+3DvUORgtVORERERKQqBiECnnaL+6s1CABKcwvQYlxflGTm4d6hi4LWRkRERESkaQxCBABIOXYJKcculf+8r/9HAIDBp5bh8PC51a536DnziIiIiIj0FYMQPdfuF6cLXQIRERERkcZx1DgiIiIiIjI6DEJERERERGR0GISIiIiIiMjo8BkhA2NqZYHRiRuFLkMlplYWQpdAREREREaGQcjAiEQimEkshS6DiIiIiEivsWscEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6pkIXQJqlVCohKyoRugyVmFpZQCQSCV0GERERERkRBiEDIysqwSbPMUKXoZLRiRthJrEUugwiIiIiMiLsGkdEREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHR4XuECE6dW6HfjvkVppUVFCE3KRWJ284gft0BKOUKweojIiIiItI0BiEql7QjHCknogGRCFYODeH1WncEzR+PBt6uODdzjdDlERERERFpDIMQlXscdwdJ28PLf05YfxhDw1fAZ1QvRH+1BSWPcwWtj4iIiIhIU/iM0DP27NmDyZMnIygoCK6urrCwsIC1tTXatGmD2bNnQyqVCl2izsiKSpARfQsisRg27o5Cl0NEREREpDFsEXrGN998g9OnT8Pc3BwuLi4ICAhAeno6YmNjERMTg7Vr1+LIkSNo06aN0KXqhHWzJwGoJDtf6FKIiIiIiDSGLULPmDhxIo4fP468vDzcuXMHkZGRuHv3LmJiYtC6dWtkZGRg1KhRQpepFaZW5rCws4aFvQ0atmiK4IVvwd7fAxnRt5CblCp0eUREREREGsMWoWeMHTu2yun+/v5Yt24dgoODER8fj/j4ePj5+em8Pm1qO2sk2s4aWWFa8v7zuPDxWsFqImHl5pfi1323cTb6EQqKZLCuZ4benVwwoq8HJFb8+CAiIsN3MzkH63Ym4Pa9PMgVCjg1kmBUfw+80N4JIpFI6PKoFgz+SkYqlWLx4sXYsWMHUlJS4ODggGHDhmHhwoUIDQ3Fzz//jG+//RbTpk371239M/gUFhZquXLdS/j1CJL3noPYzBS2LZqi9dQhqOdsD3lJafkyYnNTDDyyBHd2hiN2xY7y6V2XT4WlQ0McG/2FQNWTJpWWyfHR8kj8uC0BBUWyCvM2H0jEjKUXEDqqFf73ThuYmLBhmYiIDM/te7mY/HkEjp1/WGnemj9uoJVnQ3wzMxh9urgJUh/VnkEHoStXrqB///5IS0tDvXr10LJlSzx8+BArV65EYmIiMjMzAaDGz/tEREQAAOrVqwdfX1+t1i6E3KQ0pIbHAQAenLiMRxdv4OXdC9B50Ts4PXkZAEBRKsPZ0G/Rb+dnuH/0ErKu30XTfh3h9lIH7O75gcBHQJpQUirHK9OOVPnB/1RWbinmr76MG8nZ2PTliwxDRERkUOJuZqLn2wchzSqudplridl4eeoR/PpFd7zxsqdO6yPNMNirF6lUioEDByItLQ0zZsxAamoqoqOjkZaWhkWLFmH//v2IjIyESCRCQEBAtdtRKBRITU1FWFgYxo8fDwBYuHAh6tevr8OjEUZGVAISt51B8yEhcOjwd/B7HJuEaz/swQsr34PE2Q6dl7yLC7PXouhRlqD1kmZM/eLP54agf9p66A7mrIrWek1ERES6kp1bgv5TDj83BD0llysx7tMziLyaoZPaSLMMNgiFhoYiJSUF06ZNw9KlS2FtbV0+b9asWQgMDIRMJkOzZs1gY2NTaf3Vq1dDJBLBxMQELi4uGDduHNzc3LB3716Ehobq+GiEE7NsGxQyOdrOHFFx+vLtUMjlGHR0CdIiruLO7gjBaiTNuZ+Wj19231JpnZWbryE3v7QGSxIREem/DXtu4UF6zR+BKJMpsGR9nFZrIu0wyCAUHx+PrVu3olGjRvjyyy+rXKZ9+/YAgMDAwCrnOzs7IyQkBMHBwXBxcYFIJEJsbCw2b96MnJycCss+DVxBQUGwsLAwqAfn8pLTcGd3BFy6BaBx8N/PSCllcmREJsDSvgFubz0paI2kOT9uS4BCoVRpnfxCGTbuu621moiIiHRFqVTi+603VF5v5/FkPEwv0EpNpD0GGYS2bNkChUKB0aNHV9uFzcrKCnhOEBo8eDDOnj2L8+fP48GDB4iJiUGnTp2wZcsWDBgwoMKyt2/fxvbt2+Hk5ISOHTtq4YiEFbviSevPP1uFGgf7wWtED8SvO4CgzybAxNJc0BpJMw5FpKi13sGz6q1HRESkT5If5OPm3ZwaLFmRTK7E8Qs161ZO+kOkVCpVu/1bB3Tt2hURERHYtWsXBg8eXOUyQ4YMwe7du7Fjxw4MHTq0RtvNy8uDh4cHpFIpjh49it69ewN/PUckFj/JlPPmzcP8+fOhiV9rhw4dkJaWptI6Zkox5iqCar3v5zGVWGLQ8aW4vmYfbmw4jP47P4M0JhGRc9ertb354osoEyk0XqcmpTb8AApxA4gVOXDO/kbocrQmrcF7kJs0Unk987K7cMj7WSs1ERGRfjCG78JSEydkNJis1roNCg6gfskFjddE/87JyQlRUVEqr2eQo8bdvXsXAODu7l7lfJlMVj4CXHUtQlWxtrZG9+7dsX37dsTExJQHoachSNPS0tLw4MEDldYxF5kAjlopp1zHeWORfy8dN9YfAgCcff87DDq2FPcOXsCj8/Eqb+9h6kOUKuVaqFSDrOWAGFDI5Sr/TeoUq0LASvXVSotzDfv3QkRExvFdaC4DGqi3ak7WI+RkGejvxUAZZBAqKHjSR7OoqKjK+Vu3boVUKoW1tTWaN2+u0rZlsifvVJHLtX/h7uTkpPI6ZkoxoMXGFdeebdF8UAh295pRPi3v7iNc+mITQpZNxZ6eMyArKlFpmy7OLvrfImRiAgUAsYkJnF1dhS5Ha7JE6ShEU5XXszZ9DBsD/r0QEZFxfBcqYYI0RT4UYhVGB1YqAZEIja0LYSYxzN+LvlPnmhmGGoScnJyQlZWF6OhodO7cucK81NRUzJw5EwAQEBCg0sAGmZmZOH36NKDCu4dqQ50mvrLCYmzyHKOVevDX+4U2txhXafqN9YfKW4hUdfPWTZhJLDVQnfa49d6CB+mFcHZyRspVw30e5sqNx2j7+i6V1jExEeF6+Gq4OdXTWl1ERCQ8Y/kunL0iCl+ui6n5CiIRXmjniDPr+TqJusYgB0t42mVt0aJFuHnzZvn0yMhI9OjRA1KpFKgizERFRWHOnDm4fbvyCFiXL19G//79kZ2dDX9/f/Tq1Uvrx0Gka21a2KN7B9Xuqrz6UjOGICIiMhjvvOYLSwsTldb5vzGttVYPaY9BBqFZs2bB3t4e9+/fR6tWreDv7w9vb28EBQXBw8MDPXv2BKp4Pig/Px8LFiyAt7c3HB0d0aFDBwQHB8PV1RXt2rXDxYsX4ePjg127dsHERLV/IER1xZZFPeDuUrMuAf7etlj9aYjWayIiItIVdxdrbFzYHWJxzXoN/XecP4b1bqb1ukjzDDIIubm5ITw8HAMGDIClpSWSk5NhZ2eHNWvWYP/+/eWtRM8GocDAQKxYsQJDhgyBjY0Nbt68icuXL0Mul6N3795YtWoVYmJi4OHhIdCREWmfs4MEERteQefAxs9drm8XV5z+ZQAa2ljorDYiIiJdGP5Sc+xZ2Rv2Dav/jrMwN8Hn09pj8QeG9+oUY2GQzwgBgJ+fH/bt21dpen5+PpKTkyEWi9G6dcVmTFtbW4SGhiI0NFSHlRLpH1fHeogIewXnY9Px/dZ4bDmQBLlCCROxCG8O88Hk1/3QpoW90GUSERFpzYBuTZFydCS2HU3GT9sTcPbyIygUSpiZivDFex0wYYgPGtnq9zPO9HwGG4Sqc+3aNSiVSvj4+EAikWhsu9u2bQMAXL9+vcLPzZo1Q4cOHTS2HyJdEYlE6BzoiM6Bjjh5MRUP0gvh1MgKa+Z0Fbo0IiIinbC0MMWYV7ww5hWv8sEiGttZYeaEAKFLIw0wuiAUFxcHqPj+oJp47bXXqvx53LhxWL9evReN6hP3AZ3g/II/zn/0U/k0rxE90HX5VJyYsAj3DkUKWh8RERERkSoYhDREqVRqdHv6punLwUj841T5z/XdHOAzujfSoxIErYuIiIiISB0MQgQAMLeRYPDJZTCxNEfhQynEFmawbuqIxG2nce6jn+DY0Rdn3//uycIiEbp8PRkXPl2HjnMrv1OIiIiIiEjfGV0QOnHihNAl6KXS3EIk7QxHWUExYpdtg8uLgQgIHYY//7saLt0DkR6ZAKVMDgBo9c5ApEfewOPYJKHLJiIiIiJSi0EOn03qsWvdHJlxdwAA9gGeyLz65P+b9uuIuwcvAgAa+jaB+4BgxCzfLmitRERERES1YXQtQlQ9u1bNysOPfYAH7h9+MgCCy4ttELVgIwDAMdgP9Zs0xvA/vwUAWDk0ROcl78KqsS0Swo4IWD0RERERUc0xCBEAQOJkByiVKEzLBADY+bkjdsV2NGrrjZxbDyArLAYAJIQdqRB4+m2fj+s/7eOocURERERUpzAIEfC0W9xfrUEAUJpbgBbj+qIkMw/3Dl0UtDYiIiIiIk1jECIAQMqxS0g5dqn85339PwIADD61DIeHz612vUPPmUdEREREpK8YhOi5dr84XegSiIiIiIg0jqPGERERERGR0WEQIiIiIiIio8MgRERERERERodBiIiIiIiIjA4HSzAwplYWGJ24UegyVGJqZSF0CURERERkZBiEDIxIJIKZxFLoMoiIiIiI9Bq7xhERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKjwyBERERERERGh0GIiIiIiIiMDoMQEREREREZHQYhIiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0TEVugDSLKVSCVlRidBlqMTUygIikUjoMoiIiIjIiDAIGRhZUQk2eY4RugyVjE7cCDOJpdBlEBEREZERYdc4IiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERodBiIiIiIiIjA7fI0Rw6twK/XbMrzCtrKAIuUmpSNx2BvHrDkApVwhWHxERERGRpjEIUbmkHeFIORENiESwcmgIr9e6I2j+eDTwdsW5mWuELo+IiIiISGMYhKjc47g7SNoeXv5zwvrDGBq+Aj6jeiH6qy0oeZwraH1ERERERJrCZ4SqsGfPHkyePBlBQUFwdXWFhYUFrK2t0aZNG8yePRtSqVToEnVCVlSCjOhbEInFsHF3FLocIiIiIiKNYYtQFb755hucPn0a5ubmcHFxQUBAANLT0xEbG4uYmBisXbsWR44cQZs2bYQuVeusmz0JQCXZ+UKXQkRERESkMWwRqsLEiRNx/Phx5OXl4c6dO4iMjMTdu3cRExOD1q1bIyMjA6NGjRK6TI0ztTKHhZ01LOxt0LBFUwQvfAv2/h7IiL6F3KRUocsjIiIiItIYtghVYezYsVVO9/f3x7p16xAcHIz4+HjEx8fDz89P5/VpS9tZI9F21sgK05L3n8eFj9cKVhOR0ORyBSKvSpGeWQRTUzF83BvAq6mN0GURERHpTHZuCaKuS5FfWIb6EjN0aNkIDW0shC6r1owiCEmlUixevBg7duxASkoKHBwcMGzYMCxcuBChoaH4+eef8e2332LatGn/uq1/Bp/CwkItV65bCb8eQfLecxCbmcK2RVO0njoE9ZztIS8pLV9GbG6KgUeW4M7OcMSu2FE+vevyqbB0aIhjo78QqHoizcrKLcGP225g9e83kPywYtfQHh2dMWWEH4a/1AwikUiwGomIiLQp7mYmVm6+hs0HklBYLCufLrE0xaiXPRA6qhX8fewErbE2DD4IXblyBf3790daWhrq1auHli1b4uHDh1i5ciUSExORmZkJADV+3iciIgIAUK9ePfj6+mq1dl3LTUpDangcAODBict4dPEGXt69AJ0XvYPTk5cBABSlMpwN/Rb9dn6G+0cvIev6XTTt1xFuL3XA7p4fCHwERJqRlJKLfpMP49bdqkdKPBmZipORqfjPK15YN/8FmJmxlzERERmW3w4mYtynZ1BaVvldkoXFMqzdcRNhe29jw+fdMLK/pyA11pZBf3tLpVIMHDgQaWlpmDFjBlJTUxEdHY20tDQsWrQI+/fvR2RkJEQiEQICAqrdjkKhQGpqKsLCwjB+/HgAwMKFC1G/fn0dHo3uZUQlIHHbGTQfEgKHDn+HvsexSbj2wx68sPI9SJzt0HnJu7gwey2KHmUJWi+RJqQ/LsJLkw5VG4L+6dd9t/Hu5xFQKpU6qY2IiEgX9p2+h9Efn64yBP1TaZkCoz8+jf1n7umsNk0y6CAUGhqKlJQUTJs2DUuXLoW1tXX5vFmzZiEwMBAymQzNmjWDjU3lPv+rV6+GSCSCiYkJXFxcMG7cOLi5uWHv3r0IDQ3V8dEII2bZNihkcrSdOaLi9OXboZDLMejoEqRFXMWd3RGC1UikSV+ui0FSSl6Nl/95502cj03Xak1ERES6IpMpMOWLP6FQ1Owmn0KhxJQv/oRc/vzQpI8MNgjFx8dj69ataNSoEb788ssql2nfvj0AIDAwsMr5zs7OCAkJQXBwMFxcXCASiRAbG4vNmzcjJyenwrLbtm3D8OHD4e7uDolEghYtWuCTTz5Bfn7dHnY6LzkNd3ZHwKVbABoH//18lFImR0ZkAiztG+D21pOC1kikKYVFMqzffUvl9b7fGq+VeoiIiHRtf/h93E8rUGmde6kFOBCeorWatMVgg9CWLVugUCgwevToaruwWVlZAc8JQoMHD8bZs2dx/vx5PHjwADExMejUqRO2bNmCAQMGVFh26dKlMDExwcKFC3Hw4EFMnjwZP/zwA/r16weFou4l5H+KXfGk9eefrUKNg/3gNaIH4tcdQNBnE2BiaS5ojUSasOfUXWTnldZgyYp+P3wHBYVlWqmJiIhIlzbsUf2GIAC1biQKTaQ00M7tXbt2RUREBHbt2oXBgwdXucyQIUOwe/du7NixA0OHDq3RdvPy8uDh4QGpVIqjR4+id+/eAICMjAw4ODhUWHbz5s0YPXo0Tp8+jW7duql8DB06dEBaWppK65gpxZirCFJ5X6owlVhi0PGluL5mH25sOIz+Oz+DNCYRkXPXq7W9+eKLKBPpd1hMbfgBFOIGECty4Jz9jdDl6JyxHH+eZQhyJX3UWtcxexlMFdkar4mISF8Yy3dBdYzl+NNtJqHM1FXl9cxkKWic+5NWavo3Tk5OiIqKUnk9gx017u7duwAAd3f3KufLZLLyEeCqaxGqirW1Nbp3747t27cjJiamPAg9G4LwV5ABgAcPHqh1DGlpaSqvay4yARzV2l2NdZw3Fvn30nFj/SEAwNn3v8OgY0tx7+AFPDqvehehh6kPUaqUa6FSDbKWA2JAIZer/fes04zl+BtlAxL1Vn2UlgqUZWq6IiIi/WEs3wXVMZbjtyxVKyGUlZbWud+LwQahgoInfRuLioqqnL9161ZIpVJYW1ujefPmKm1bJnsyjrpc/vyL95Mnnzw7o+5LV52cnFRex0wpBrTYuOLasy2aDwrB7l4zyqfl3X2ES19sQsiyqdjTcwZkRSUqbdPF2UX/W4RMTKAAIDYxgbOr6ndJ6jpjOf5Cc0CtsQ+VMjg3toEYVpoviohITxjLd0F1jOX4H5sWoViN9SxNi2Av0O9FnWtmGHLXuJYtWyI+Ph7fffcdpk6dWmFeamoq2rdvj9TUVISEhODs2bM13m5mZiY8PT2RnZ2Nw4cPo0+fqrvRPHjwAG3btkX79u1x8ODBWh9PTZUVFmOT5xid7U8TRiduhJnEUugynsut9xY8SC+Ea2MJUo69IXQ5Omcsx19YJIPbS1uQlavac0JjB3phwxfdtVYXEZE+MJbvguoYy/HvPXUPg0KPqrzevu9ewoBuTbVSk7YY7GAJT7usLVq0CDdv3iyfHhkZiR49ekAqlQJVvEg1KioKc+bMwe3btytt8/Lly+jfvz+ys7Ph7++PXr16Vbnv/Px8DB48GObm5vj55581fGREpC0SK1NMGOKj8npTRqjX6ktERKRvXn7BDU2d66m0TjOX+ugX4qa1mrTFYIPQrFmzYG9vj/v376NVq1bw9/eHt7c3goKC4OHhgZ49ewJVPB+Un5+PBQsWwNvbG46OjujQoQOCg4Ph6uqKdu3a4eLFi/Dx8cGuXbtgYmJSab9FRUUYOHAg7ty5gyNHjsDZ2Vlnx0xEtffxm4Hwdq/8XrHqTHrVF0H+lZ8RJCIiqotMTMRY87+uMDER1XB5EVb/LwQmJnUvVtS9imvIzc0N4eHhGDBgACwtLZGcnAw7OzusWbMG+/fvL28lejYIBQYGYsWKFRgyZAhsbGxw8+ZNXL58GXK5HL1798aqVasQExMDDw+PSvssKyvDq6++iqioKBw8eBAtW7bU2fESkWY0srXE0TX90KJ5g39dduJQH6ya3QUiUc2+LIiIiOqCfl3d8NuiHrAwf35UsDAX47dFPdC3DrYGwZAHS8BfgxTs27ev0vT8/HwkJydDLBajdevWFebZ2toiNDQUoaGhKu3r6TuLjh8/jgMHDiAoSLtDWBOR9ri7WOP8xkFYtzMBP/x+A7fv5VaY36eLK6aO8MPAF5syBBERkUF6tU9ztPKyxXdbriNs7y3kF8rK59WXmGLsQG9Me6Ml/DwaClpnbRh0EKrOtWvXoFQq4ePjA4lEzbFynzF16lT88ccf+OijjyCRSHD+/PnyeZ6enlUOr01E+quBtTk+GOuP/xvTGtHxUvR79zAe55TA0d4Sh1f3E7o8IiIirfPzaIhVn3TBV//XAR79f4c0uwSNGlog6eDrsK5nLnR5tWawXeOeJy4uDlDx/UH/5unIcF999RU6d+5c4b/9+/drbD9CcR/QCZ2+ervCNK8RPTA+dRua9usoWF1E2iYWi9ChlQMsLZ48E2haB/tAExER1YZ1PXNYmD/5HrQwNzGIEARjbRHSRhBKTk7W2Lb0UdOXg5H4x6nyn+u7OcBndG+kRyUIWhcRERERkToYhAgAYG4jweCTy2BiaY7Ch1KILcxg3dQRidtO49xHP8Gxoy/Ovv/dk4VFInT5ejIufLoOHeeOE7p0IiIiIiKVGWUQOnHihNAl6J3S3EIk7QxHWUExYpdtg8uLgQgIHYY//7saLt0DkR6ZAKVMDgBo9c5ApEfewOPYJKHLJiIiIiJSCzu7Uzm71s2RGXcHAGAf4InMq0/+v2m/jrh78CIAoKFvE7gPCEbM8u2C1kpEREREVBtG2SJEVbNr1aw8/NgHeOD+4UgAgMuLbRC1YCMAwDHYD/WbNMbwP78FAFg5NETnJe/CqrEtEsKOCFg9EREREVHNMQgRAEDiZAcolShMywQA2Pm5I3bFdjRq642cWw8gKywGACSEHakQePptn4/rP+3DvUORgtVORERERKQqBiECnnaL+6s1CABKcwvQYlxflGTm4d6hi4LWRkRERESkaQxCBABIOXYJKcculf+8r/9HAIDBp5bh8PC51a536DnziIiIiIj0FYMQPdfuF6cLXQIRERERkcZx1DgiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHR4WAJBsbUygKjEzcKXYZKTK0shC6BiIiIiIwMg5CBEYlEMJNYCl0GEREREZFeY9c4IiIiIiIyOgxCRERERERkdBiEiIiIiIjI6DAIERERERGR0WEQIiIiIiIio8MgRERERERERodBiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiGokOzsb8+bNw6lTp4Qupc7IycnBe++9B1dXV1haWqJVq1b44YcfoFQqhS5NLTwHVJOamopPPvkE/fr1g4ODA0QiEcaPHy90WUT0FwYhIiKqkezsbMyfP58XwTVUWlqKl156CatXr8aIESPw7bffwtfXF1OmTMH8+fOFLk8tPAdUk5CQgIULF+L69evo2LGj0OUQ0TNMhS6AiIjIEK1duxaRkZFYuXIl3nvvPQDA22+/jeHDh2PhwoWYMGEC3N3dhS6TtKh9+/ZIT0+Hg4MDpFIpHBwchC6JiP6BLUIGRqlUoqywuE79V1e7iBDpu9LSUixevBht2rSBRCJBgwYN0KFDB3z33Xfly4wfPx4ikajK9f/ZjefUqVNo3rw5AGD+/PkQiUQQiURo1qyZSjU93eaJEyfQuXNnSCQSuLm5YdGiRQCArKwsvPnmm2jcuDEkEgleeeUVPHz4sNJ2kpOT8Z///AeOjo6wsLCAp6cnZs+ejcLCwvJlfvjhB4hEIuzZs6fS+gqFAm5ubmjTpk2F6VFRURg6dCgaNWoECwsL+Pr64osvvoBMJlPpOAFg8+bNkEgkePvttytM/7//+z+UlZVh69atKm9TVTwHhD0HrK2tGX6I9BhbhAyMrKgEmzzHCF2GSkYnboSZxFLoMogMSmlpKfr27YtTp06hT58+GDNmDCwtLREXF4cdO3Zg2rRpKm3Pz88Py5Ytw/Tp0zF06FAMGzYMAFC/fn2Va7t8+TL27t2LSZMmYezYsfj999/x0UcfwdLSEhs2bECzZs0wb9483L59GytXrsTYsWNx7Nix8vXv3r2LoKAg5OTkYMqUKfD29sapU6fw5ZdfIiIiAsePH4epqSlGjhyJ6dOnIywsDIMGDapQw/Hjx/HgwQPMmDGjfNr+/fsxbNgweHl5YcaMGbCzs8O5c+cwZ84cXLlyBX/88UeNj1GhUCA6Ohrt2rWDpWXFz7egoCCIRCJERkaq/LtTBc8BYc8BItJ/DEJERAZo+fLlOHXqFD7++GMsXLiwwjyFQqHy9hwdHTFkyBBMnz4dAQEBGDNG/RsucXFxOHfuHIKDgwEAb775Jtzd3TF9+nRMmzYNK1eurLD8smXLkJCQAF9fXwDA7NmzkZGRgf379+Pll18GAEyZMgUzZ87E0qVLsWHDBrz55puwtbXFwIEDsXfvXmRlZcHW1rZ8m2FhYTA1NcXo0aMBAMXFxXjzzTcRHByMEydOwNT0ydfjO++8g8DAQHzwwQc4deoUXnzxxRodY1ZWFoqKiuDq6lppnoWFBRo1aoQHDx6o/TusCZ4Dwp4DRKT/2DWOiMgAbdq0Cba2tpgzZ06leWKxsB/9nTt3Lr8ABgBzc3MEBQVBqVQiNDS0wrIvvPACAODWrVvAXxfwe/bsQdu2bcsvgJ/6+OOPIRaLsXPnzvJp48aNQ0lJSYVuaPn5+di5cyf69euHxo0bAwCOHj2KR48eYcKECcjOzoZUKi3/7+l+jhw5UuNjfNo9y8LCosr5lpaWFbpwaQPPgSeEOgeISP+xRYiIyADdunULbdq0qdQtSx94eHhUmvb0Tv3TZ1Cenf748WMAQEZGBvLz89GqVatK27Czs4OzszOSkpLKpz290A0LC8O7774LANi+fTsKCgowduzY8uXi4+MBABMnTqy27kePHtX4GCUSCQCgpKSkyvnFxcXly2gLz4EnhDoHiEj/MQgRERmx6h6SV+fB8JoyMTFReZ66g6qYmppi1KhRWL58OW7fvg0vLy+EhYXB1ta2wjMjT7e/ZMmSSg/PP+Xi4lLj/dra2sLKyqrK7m8lJSWQSqXo3r27WsekaTwHKm5fU+cAEek/BiEiIgPk4+ODGzduoKSkpNruWfjrDjoAZGZmlv8/gAp31J+q7oJZlxwcHGBtbY1r165VmpeVlYXU1NRKF7Hjxo3D8uXLERYWhrfffhunTp3CpEmTKvxevL29AQD16tVD7969a12nWCxGu3btcPny5Up/g4sXL0KpVKJDhw613s/z8Bz4mxDnABHpPz4jRFSFwiIZzsU8wndbruOdz84iM+dJ95as3BIsXR+HkxcfIievVOgytUahUOJmcg62HEjEzK8vlh9/Zm4JPl4RiW1H7uBOSp5BD32emVOCo+ce4Kt1MZg450z57yA7rxRr/riBqGsZKCmVC11mtUaPHo2srCx8/vnnleb98+/m4+MDABVG5AKAr7/+utJ6T0cHy8zM1ELFNSMWizFw4EBcvnwZhw4dqjDvq6++gkKhwNChQytMb9OmDQICArBx40b8+uuvUCgUGDduXIVl+vbti8aNG+Orr76q8viKioqQl5enUq1vvPEGCgsL8eOPP1aYvnz5cpiammLEiBEqbU9VPAf+JtQ5UNc9elyEA+H3sWDNZYz/tOLn4M87byIm4THKylQfeKOuKCqW4UJsOr7/7TomL4iocC2w+OdYHD//EFm5VXd/NQRKpRKJ93Px++EkfLjsIjJz/74W+HDZRfx+OAmJ93Pr9LUAW4SI/qJUKnExLgPfb43H1sN3qrzILSyWY+Y3FwEAYrEIr3Rrgqkj/dC7kyvEYuHvlNZW+uMirNt5E2u23cDdh/mV5hcVy/HVutjyn32bNcDk11tg3CBvNLSp/o5zXSGTKbDvzD18vzUeR89Vfm8JABQUyfDugggAQD0rU/znFS9MGeEHfx+7KpcXyvvvv4+9e/fi888/R2RkJPr06QNLS0tcu3YNCQkJ5Re9b7zxBmbPno1Jkybhxo0bsLOzw6FDhyCVSitt097eHl5eXvjtt9/g6ekJR0dH1KtXDwMHDtTpsS1cuBBHjx7FkCFDMGXKFHh5eeHMmTPYunUrunXrVukCF3+1CMyYMQOLFi2Cj48POnXqVGF+vXr1EBYWhiFDhsDX1xcTJ06El5cXsrOzcePGDezYsQM7d+5UacSwt99+G7/88gs++OADJCcnw8/PDwcOHMDOnTvx6aefqvz+HVXxHKhIiHMAQHkQfTo4RmxsbPm0bt26oVu3brX4TWheSakc248m4/vf4xFxuepnogqKZHhzbjgAwNbGHBOG+ODd11rA272BjqvVjujrUny/NR6bDyaiqLjqa4EPlz8Z/l4kAvqFuGHqSD/0C3GDiUndb2N4nF2MX3bdwuo/4pF4v3L4LyqWY/EvceU/ezaxxruv+WHCEG/YN9S/ZxKfR6SsyzGOKikrLFb5PUJOnVuh3475FbdTUITcpFQkbjuD+HUHoJRr746PPrxH6HpiFt6efxZ/XklXa/0WzRvgxzld8UJ7J43XpgtFxTLMWRWNlZuvoVSNu3sSS1N8/FYAPpwQCDOzuvklsP/MPUxdeK7KAFgT/ULcsPp/XeDuYq3x2tRVXFyMr7/+Gps3b0ZiYiIsLS3h7e2NCRMmYMqUKeXLXbhwAR988AEuXbqE+vXrY9iwYVi8eDFsbW0xbtw4rF+/vnzZixcvYvr06bhy5QoKCwvh7u6O5OTkGtckEokqbRN/vdRzw4YNle4snjp1Cj169MAvv/xS/mJPALhz5w7mzJmDw4cPIzs7G25ubhg5ciQ+/fTTKgchePToEdzc3CCTyfD555/jk08+qbK+q1ev4quvvsLJkyeRkZEBW1tbeHp6on///pg6dWqFrmM1kZ2djU8//RQ7duzA48eP4enpiSlTpmDq1Kk66WbGc+BvQp0Dz/s7z507F/PmzVNpe9qiVCqx+UAiPlhyAemZxWpt4/W+zfHtR53R2N5K4/Xpwu17uZg0/yxORqaqtb5nE2us+V9X9OpUN58lKymVY8Gay1i64apaPR4sLUzw33H++N87bWBuVv1zgPqEQcjA1CYIJe0IR8qJaEAkgpVDQ3i91h22fu5I2HgU52au0VrNQgYhuVyBpRviMGdVtFoB4J9EIiB0VCssDO0AiVXdaWw9F/MIE/4XjoTknFpvq52fPdYv6KZ3rSPPk51bgv9bfAEb9tyq9bbqS8ywdEYQJr3qqxfPUhAR1USatBDvfBaBPafu1XpbjWwtsWp2Z7zet/LIgPpKoVDi283X8PHKqCpbgFT1zmstsOSDjrCuZ66R+nTh0nUpxn96BldvZ9V6W/7etli/oBvatWykkdq0iUHIwNQmCEXOD8O11XvKp5taWWBo+ApInO3wW8BbKHmcq4WKhQtCJaVyjPrwFHYcr/mdzJroFOCA/av6wq6B/ncV++1gIv7zyWnIZJr7GJBYmmLXit54qXPlF0nqmwePCvDSO4cQn5St0e1OetUX33/SxSC6SBCRYbtxJxsvTTqElEcFGt3up5Pa4LOp7fT+plBZmQIT5pzBpv2JGt1umxZ2OPxDvzrROrb75F28/t8Ttb4h/E8W5ib4fUkPDOrhrrFtakPduW1NOicrKkFG9C00G9gZNu6OyNBSEBJCWZkCr//3hEbufj3rfGwGXpp0ECfXvQyb+vp7N2jroSSM+ugUNH0rpLBYhlemHcGBVX31untAmrQQL755ALfvaf68/nFbAmRyJdbO66r3FwGakJGRAbn8+XdR69evX/6gfV2Wn5+P/Pznd580MTGBg4ODzmrSBzwHKqor58Dte7no8eYBpEmLNL7tz3+8AqVSic/f0+7oiLUhlyvwn09OYeuhOxrf9pUbmej51gGcWf+KXt8Y3XvqHoZ/cBxyuWYvBkpK5Rj2wXHsWt4br3RvqtFtaxJvVz5jz549mDx5MoKCguDq6goLCwtYW1ujTZs2mD17dpUPjxoy62aOAICSbPWem9BXHy6/qJUQ9FR0/OO/QoZ+NrhGXcvAmNmaD0FPlZYpMOT/jiEpRT/Ds0ymwJD3j2klBD31886bWPxLbA2WrPs6duwIZ2fn5/63dOlSocvUiKVLl/7rsXbs2FHoMnWO50DdOwcKCsvw8tTDWglBT33xUwzCNNDtWFvm/XBZKyHoqWuJ2Xj1g+NQKPTzWuDa7Sy8PvOExkPQU3K5Eq/99wSuJ9a+u522sEXoGd988w1Onz4Nc3NzuLi4ICAgAOnp6YiNjUVMTAzWrl2LI0eOVPuytbrM1MocFnbW5c8I+Y7tA3t/D2RE30JuknoPDuqj8EtpWL6x8vsnnidyyyA4NZIgTVqIjm/sqcEawP4z97Fhzy2MH+yjZqXaUVIqx/hPz6jUHU6d488vLMPEOeE4sfZlvRtRb+mGOFyIy1BpHXV+B3NWReOVbk3RystWzUrrhk2bNqGo6PkXUx4elZ8XiIyMrPE+pFIpduzYgWHDhqFRo5r3O9f0BenYsWPRtWvX5y5jZaX/XWE0jedARXXhHJi9Mgq37qp2M0idz8HQRefRK9gFro711KxUO6KuZeDLdTEqraPO8Z+MTMUPv8dj6siWalaqHTKZAuP/dwbFJTV/Jkqd4y8ukWP8/87gz7CBMDXVv/YXBqFnTJw4EXPmzEHXrl1hbv53t6a4uDiMGjUKV69exahRo3D9+nVB69SGtrNGou2skRWmJe8/jwsfrxWsJk0rKpZhwpwzKreEODWSwE2ND/H/W3wBfTq7wqWx/nwBfP7jFVxLVO2ZGHWP/3RUmt59AcQnZWPu99Eqr6fO76D0r77n534daNDPC4WEhGh9H1KpFGvXrkW3bt1UugjWNA8Pjyov6I0dz4G65Wx0GlZuVv06Rp3PwZy8UryzIAL7vuuj8v60pbTsyQ1BVVtC1P0unPVNJF7u2gTN3fRnVNGlG+IQdU21Xk7qHn/kVSm+DovDhxMDVV5X2wz3m1lNY8eORc+ePSuEIADw9/fHunXrAADx8fGIj48XqELtSfj1CA6/Ph9HR3+BqAW/ojgzD/Wc7SEv+fvFoWJzUww+tQwB7w+rsG7X5VPRe1PVQ5Hqk80HEqscE19bcvJK1fqy0ZacvFIs+/WqTvf5xU8xevXCvUU/x2r0gdB/E3lVikMRKTrbHxHRv1nw4xWd7m//mfu4dF1/Hi3YcSxZ5RuCtVFYLMPXYXE1WFI3CotkOu+6vfiXOBQVy3S6z5ow+CAklUoxa9YseHl5wdLSEk2aNMH777+PgoICvPnmmxCJRPjuu+9qtC0/P7/y/3/6YjRDkpuUhtTwODw4cRlXv9+N4+O+QqM2nui86J3yZRSlMpwN/Rb+ocNg2/LJSCBN+3WE20sdEPHB9wJW/++USiVW/ab7ALtu500Ul+jHP/5f991GQZFua0nNKMTuk3d1us/qPM4uxm+HknS+3++3Gt6NEyKqm27dzcGRPx/ofL8/6NHnoBCfyWF7byO/sEzn+63K1sNJyMotrcGSmpOZU4LfD2vveSx1GXQQunLlCvz9/bFkyRKkpaWhZcuWKCsrw8qVKzFixIjyVp2aPu8TEfHX2+Tr1YOvr69Wa9cHGVEJSNx2Bs2HhMChw9/H+zg2Cdd+2IMXVr4HibMdOi95Fxdmr0XRI/19GA4Aoq5JcfnGY53vV5pVjO3HNDtEt7pW/y7MF9HqP24Ist9nbdhzS62XxNXWwbMpSH6gu5ZIIqLq/LgtQZD9bj6YiJw83V58V+Xa7SyERz/S+X7zCsqw+YBmh+hW1xqBvpN/EOga5HkMNghJpVIMHDgQaWlpmDFjBlJTUxEdHY20tDQsWrQI+/fvR2RkJEQiEQICAqrdjkKhQGpqKsLCwsrfaL1w4UKDGAK0JmKWbYNCJkfbmSMqTl++HQq5HIOOLkFaxFXc2R0hWI01dfKicAM+nFLzLdWalJFZpNOuAP909vIjvegeJ9Q5oFQCZy6lCbJvQ2FtbY1+/frB2lp/+tiTbvEc0IyTAn0fFRXLcfGqaoPUaMOpKOO+FsgvLBPs7xB5TYoCPWkVe8pgg1BoaChSUlIwbdo0LF26tMIH56xZsxAYGAiZTIZmzZrBxsam0vqrV6+GSCSCiYkJXFxcMG7cOLi5uWHv3r0IDQ3V8dEIJy85DXd2R8ClWwAaB//dNVApkyMjMgGW9g1we+tJQWusqUvxwvVPvnRd9y1R+lRDSakc15OEbzG8FC/c70Cf+sfXRa6urvjss8/g6qr/L+ol7eA5UHslpXLE3swUbP/68DkoZA36cC1w5cZjrb06498oFEpcSRDu/KuKQQah+Ph4bN26FY0aNcKXX35Z5TLt27cHAAQGVj2ChbOzM0JCQhAcHAwXFxeIRCLExsZi8+bNyMnJqbBseHg4evfuDWdnZ1hYWMDNza1C17u6LnbFk9aff7YKNQ72g9eIHohfdwBBn02AiaX+vjj0qWgBL4LjbmeitEz3XbL+SYhugf8k9BdAmrQQqRnCPdsn5PlnCEpKSnD//n2UlJQIXQoJhOdA7V1PzEKZTLjWeX34HBTyu/Dm3Rzk5gvbPVDov0G0gDelqyJS6usbH2thzpw5WLBgAd5//30sX768ymWmTZuGVatWYe7cuZg3b96/bjMuLg5Tp05FeHg4QkJCcPbs2fJ5e/bswcmTJ9GlSxc0btwYKSkp+PLLL5GSkoKrV6/Czc1NrePo0KED0tJU605jphRjriJIrf3VlKnEEoOOL8X1NftwY8Nh9N/5GaQxiYicu16t7c0XX0SZSPsfzA8bfgSluOp3OzwdG786To2sYGoihkyueO7L5543tr5T1iKYKIW7EM+W9EWBZZcq52nq+PGc34FN4RFYFwvXhbLMpDHSG0ytct6/HT80cA6YyjPgmFOzgVmMxauvvlrjZdPT07Flyxa88cYbaNy4cY3X27Ztm5rVkS7wHNCtYlNPPLYZW+U8XXwOmpclwSFvgxqVa05qww+gEDeocp4urgUcs5fBVCFMN3UAyLXqiTyr7lXO08W1gHXRKdgUab4nkZOTE6KiolRezyDfI3TixAkAQI8ePapdJiXlyXC21bUIPcvf3x/79++Hh4cHIiIicOzYMfTu3RsAMGjQIAwaNKjC8h07doSvry+2b9+O999/X63jSEtLw4MHqo3sYi4yARzV2l2NdZw3Fvn30nFj/SEAwNn3v8OgY0tx7+AFPDqveivYw9SHKFXqoLWkYfUNoDUdG9/URKzWGPoAkJaWDshyarCkljgXAZZVz9LF8efmFiA3Q/cjFZWzNAGq/u5T6d0I6v4OZDKlyv+eDV1BQUGNl336ss6ioiKV1uPvXL/xHNAxazug8tMAgI4+B0tL5cL/PaxF1faH0sV34aNHUqBU94M1lHMsBKp5368ujj8vrxB5j/Tn36RBBqG7d58M1evu7l7lfJlMVj4CXE2DEP56ULN79+7Yvn07YmJiyoNQVezt7QEApqbq/4qdnJxUXsdMKQa02Lji2rMtmg8Kwe5eM8qn5d19hEtfbELIsqnY03MGZEWqdVtwcXbRTYsQ5Kiu+TNN+vyWGlXuAlW7DScHmCiFG2Qjx8oS+dXM09TxP29bNjYSWJsL17e/TGyH9Grm/dvxQwPngKkJ4MhnGyqoV6/mX6RPL3ytrKxUWo/Pk+g3ngO6VWzaANV1jNLF56CFuRiNBP57pIkVqO7Wqy6uBRwd7WGqEO7yO9fKCtWNYaqLawHr+lawMdX8OaDONTMMtWucnZ0dsrKy8Oeff6Jz586V5m/atAljxoyBtbU1cnJyIBKJarztIUOGYPfu3Vi0aBFmzZpVYZ5cLodCocDdu3fx8ccf4+zZs4iNjYWDg4NGjqsmygqLsclzjM72pwmjEzfCTFJNU4UGtX19J67cUO8hvftHR8LNsR5SHhWgyUu/qbx+fYkZcv78D8Timp9rmrZy0zW8v+i8WuvW9vgB4PelPfFan+ZqrasJufmlaNDlV7XXr+3voF+IGw7+0Fft/RuiyMjIGi9748YNjB07FmFhYWjRokWN1+vYsaOa1ZEu8BzQrVt3c+AzUP2ugrX9HJwwxBs/f9ZN7f1rQtdx+xBxWb0Wmdoev7mZGLnnxsLC3ESt/WvCzztv4s254Wqtq4lrgZ8/ewEThviota42GORgCU9TYXR0dKV5qampmDlzJgAgICBApRCUmZmJ06dPA9W8e6h79+4wNzeHt7c3rly5ghMnTug0BNHztfdrJNi+2/nZCxqCAKB9S+GO/8n+7QXdv019c/i4V9M3TgeEPn4iIs8mNrCpbybY/oX+HgKA9n7CfRb7e9sJGoKgB99F+nAO/JNBBqGnXdYWLVqEmzdvlk+PjIxEjx49IJU+GbHi2TATFRWFOXPm4Pbt25W2efnyZfTv3x/Z2dnw9/dHr169Ki2zbt06nD9/Hlu2bIGNjQ369OmDe/fuaeEISR1C/uMT+oMHANr42gkWxmxtzNHcVfh3fwj5d9C3D/+6pkWLFrh48aJKLQFkWHgO1J5YLEI7AW8KCnlDsrwGI78WaOlhK1gYs7QwQUuPhoLsuzoGGYRmzZoFe3t73L9/H61atYK/vz+8vb0RFBQEDw8P9OzZE6ji+aD8/HwsWLAA3t7ecHR0RIcOHRAcHAxXV1e0a9cOFy9ehI+PD3bt2gUTk8onka+vL4KDgzFy5EgcP34ceXl5WLx4sc6Om57v5RfcoEIDoEa90q2pMDv+h3oSM/QMchZk3wO6NVGp9VVbBnYX5u8gsTRFj47C/O6JiP5pYPcmguzXqZGVXtwQ6hviBjNTYS5/9eFawMxMjP5d1RvNuLb6hbjBVKDffXX0qxoNcXNzQ3h4OAYMGABLS0skJyfDzs4Oa9aswf79+8tbiZ4NQoGBgVixYgWGDBkCGxsb3Lx5E5cvX4ZcLkfv3r2xatUqxMTEwMPD419raNiwIby8vKpsXSJhuLtYC/Ih1KJ5A/QQKIA8a8oIvxosZTj7fdaw3s3Q2E77z6M9a/QATzS0sdD5fg3J3bt3MXHixPLBcMj48BzQjPGDfWBpofsWgUnDW8DMTPjLTkd7Kwzv3Uzn+3V3qY+XXxAmgDxr8uvCtKpOHakf1wL/ZJCjxgGAn58f9u3bV2l6fn4+kpOTIRaL0bp16wrzbG1tERoaitDQ0FrvPz09HQkJCQgODq71tkhzpozww97Tuu2uOPl1P71oDcFfLSJPH3TUlTYt7NApoObv/NAmC3MTvDXMFwvXxuh0v0J96RiSoqIiXL16tXwIZTI+PAc0w66BBd7o74Ffdt3S2T5NTER4e7ivzvb3b6aM8MNvh5J0us9Jw31hYiJ8EASA3p1c4dXUBrfv5epsnz7uDdAzyEVn+6sp/fiL6NC1a9egVCrh7e0NieT5Lw6rqTFjxmDevHnYtWsXTp06hZ9++gkvvvgiTE1NMX36dI3sgzSjb4gr+nTR3dCdLZo3wKRX9efD39RUjMXTdTuC0tczgvUmCALAf8f7w9lBM//2a+I/r3ihrR70iyciemre5Hawrqe7QRNmjG0NNyf13jujDV3bOWJIz6pfsaINzVzqI3R0K53t79+IxSJ8PSNIp/v8+r9Bgg8aVRWjC0JxcXGAiu8P+jedOnXCgQMHMGHCBPTv3x9LlizBCy+8gCtXrsDLy0tj+xGS+4BO6PTV2xWmeY3ogfGp29C0X90ZmlQkEuGnuV118gUgFovwy2fdYGmhXw2vI/t7YGgv3XwBTH69BXoG69cdIFsbC6z5X4hO9uXsIMGKjzrpZF9ERDXV1Lm+zi6EWzRvgPlT2ulkXzUlEonww6ddYNdAN12Wf/7sBdSXCDdaX1UG9XDHmFc8dbKvsQO98IpAz+j+GwYhDZg2bRouXryIrKwsFBUV4ebNm1izZk21L3Sti5q+HIx7hy6W/1zfzQE+o3sjPSpB0LrU0dS5Pr77uPL7pZ4nTVqIlEcFNXrh3FOz3wpEp0D96BL2T0++AELg0rjmrSLqHL9vswZY/IFu7zjV1MAXm6rcTUPV34FYLMK6eV1hy2eDiEgPvTXcV+UBZFT9HLS0MMGGz7vr3Q1BAHBqJFH5ppg634XT/9MKPfSwSxgArPiwM5q51PxF7+ocfzOX+lj+of7eEDTIF6o+T8+ePXHy5Ens27cPAwYMELocjVP3harmNhIMPrkMJpbmKHwohdjCDNZNHZG47TTOffQThv/5LbZ3eQ9KmRwQidDnt//h0hcb0XHuOFz/aR/uHar5S/GepasXqj5r8c+x+HC5+nU/z9vDfbFmTohedQl71vXELHSfeADSrGKNb9vdpT7C1w9AE6eaf8DqmkymwGv/PYFdJzT/4LVIBKybr18vjdNHqrxMMycnB3/++Se6dOmCBg1q/j4ovkxTv/EcEFZhkQz9Jh9CeLR6Lxh9HjNTMXYs66W3LQFPfbflOt778pxWtj16gCfCvuiul13Cnrp9LxfdJuxHakbNw01NOTtIEL5+ADyb2Gh825pidC1CJ06cgFKpNMgQVBuluYVI2hmO62v3Y89LM3Fxzi/IiL6JP/+7Gs4hrZEemfAkBAFo9c5ApEfewONY3T5oqGmzJgZgxYedNP4B9X9jWmH1//Q7BAFAS09bhK8fgKbOmu237efRUO9DEP56Xur3JT013jXA3EyMjQtfZAjSsAYNGqB///4qXQCTYeE5oHkSK1Mc/L6vxodTrmdlir3fvqT3IQgApr3REj/N7QoTE81+Z0961RcbPu+m1yEIALya2uDshgHwbKLZd/39vV39DUEwxiBE1bNr3RyZcXcAAPYBnsi8+uT/m/briLsHn3SLa+jbBO4DghGzfLugtWpK6OhWiNjwCnyb1f6L1amRFXav6I1lszQfrrSlRfOGiPljKCYM8a71tkSiJ10AorYM1vsQ9JSZmRhhX3RH2Bfd0NDavNbb69CqES79NhijBuim37UxycrKwh9//IGsrCyhSyGB8BzQjnoSM+z7rg9WfNgJVpa1H1a7Z5Azru4Yhr4h+jFUdE28NdwXFzcNgr+3ba231cjWEr8v7Yk1c7rqzShx/8bDzQaXfx+Cd1/TzAinU0b44fLvQ+Dhpt8hCAxC9E92rZqVhx/7AA88/isUubzYBg9OXAYAOAb7oX6Txhj+57d49eL3cGjnjc5L3oXv2D6C1l4bnQIb4/LvQ/C/d9qo9eCkxNIUk19vgWs7h2NQj7r3XFhDGwv8/Fk3HFjVR+2X3b3QzhFnfhmAb2Z2gsRK//qCP49IJMJ/Bnrj2s5hGDvQC+ZqvOfC2UGCxdM74tyvA9Ha204rdRq7R48eYcmSJXj0SPNdeKhu4DmgPWKxCKGjWyF22zAM69VMrdaR5q7WWDMnBEd/7I9mrpptXdCFdi0bIeq3wVgwrR0cbFXvrm9pYYK3hvng+s5heK1Pc63UqE3W9czxw/9CcOzH/ugU4KDWNjoHNsbxn/pj1Sdd9G5wiOrUrSsW0hqJkx2gVKIwLRMAYOfnjtgV29GorTdybj2ArPDJcyQJYUeQEHakfL1+2+fX+hkhfWBlaYrPprbHx28G4o8jd/DL7luIvJqBgiJZlcubm4nRxtceowd4YtwgbzTQQGuC0Pq/0AT9X2iCi3EZ+OH3eBw7//C57xtq7mqNfiGumPy6H/x96v7Fv0vjetjwRXcsnRGEn3fdxG+HknD1dhZksqofo7Spb4bOAY3x1jBfDO7hrhcvCiQiqg2vpjbYvqwXUtIK8NP2BGw/dgfxd3KgUFT9OWjXwAIvtHPEpFdboF+IW53pDVEdczMTfDqpLWaOD8COY8lYt/MmLsRlIL+wrMrlzUzFCPCxw6iXPTB+sI/ORqHTpl6dXNCr0yBEX5fih9/jcfT8Q9x9mF/t8u4u9dGnsysmv96iTr4qgkGIgKfd4v5qDQKA0twCtBjXFyWZeRVGizN0VpamGDvIG2MHeUMuVyAhOQdxt7KQX1gGhUIJiZUpWno0RCsvW5ib6f7N3LoQ5O+AIP8nd4PSHxfh0nUpHmUWobRMAQszE7g0lqCdnz3sG+p+gAtdcLCzwocTA/HhxEAUl8gQezMLN+/moKhYBhMTMWzqmSHQ1w6eTWzq/Jc+EVFV3JzqYf7Udpg/tR0KCstwJSETifdzUVwqh5mpGA2tzdG2hT3cXerr/fOw6rAwN8EbL3vijZc9oVAocetuDmJuZiKv4O9rgRbNG6K1ly0szA3zWqBdy0b4ad4LAABpVjEuXZciTVqEkjI5LMxM4NTICu1bNkIjNVrP9AmDEAEAUo5dQsqxS+U/7+v/EQBg8KllODx8brXrHXrOvLrOxESMlp62aOlZ+z7DdVVjeyv0f6GJ0GUIxtLCtEIwJCIyNvUkZghp64iQto5ClyIIsVgE3+YN4du8odClCKaRrWWdeuZLFQxC9Fy7X5wudAlERJBIJAgODoZEUvP3X5Fh4TlARJrGIERERHqvadOm+Pbbb4UugwTEc4CINI1P9xIRkd6Ty+XIz8+HXC4XuhQSCM8BItI0BiEiItJ7t27dQs+ePXHr1i2hSyGB8BwgIk1j1zgDY2plgdGJG4UuQyWmVnV/uEkiIiIiqlsYhAyMSCSCmaRuD2VIRERERKRt7BpHRERERERGh0GIiIiIiIiMDrvGERGR3vPy8sLhw4dhbW0tdCkkEJ4DRKRpDEJERKT3TE1NYWtrK3QZJCCeA0SkaewaR0REei8lJQUzZsxASkqK0KWQQHgOEJGmMQgREZHey8/PR3h4OPLz84UuhQTCc4CINI1BiIiIiIiIjA6DEBERERERGR0GISIiIiIiMjoipVKpFLoIIiKi53n06BE2bdqE0aNHw9HRUehySAA8B4hI0xiEiIiIiIjI6LBrHBERERERGR0GISIiIiIiMjoMQkREREREZHQYhIiIiIiIyOgwCBERERERkdFhECIiIiIiIqPDIEREREREREaHQYiIiIiIiIwOgxARERERERkdBiEiIiIiIjI6DEJERERERGR0GISIiIiIiMjoMAgREREREZHRYRAiIiIiIiKj8/+/x8S4fYQiYwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "partitioned_problem = partition_problem(\n", + " circuit=qc_1,\n", + " partition_labels=\"AAAABBBB\",\n", + " observables=observable_expanded.paulis,\n", + ")\n", + "subcircuits = partitioned_problem.subcircuits\n", + "subobservables = partitioned_problem.subobservables\n", + "bases = partitioned_problem.bases\n", + "\n", + "print(f\"Subobservables to measure: \\n{subobservables}\\n\")\n", + "print(f\"Sampling overhead: {np.prod([basis.overhead for basis in bases])}\")\n", + "subcircuits[\"A\"].draw(\"mpl\")" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "4aeb3f1f-a55e-49c4-a7bd-837132429ee1", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkEAAAEvCAYAAABCEhUaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+O0lEQVR4nO3de1wU9f4/8Ncul10WQeUmIIoiqKCipoBoXjArzPtd06OVx8pIrTxy0vyldtQ0LckstezU1/IYhXokMVNTj3hH0TREvCAKyKIrKFeRZef3B7FKgO7iwrA7r+fj4SOdmc983mvy4cXMZz4jEwRBABEREZHEyMUugIiIiEgMDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFksDt37mDhwoU4cOCA2KWYjbt372LGjBlo3rw5lEolOnTogLVr10IQBLFLI6Ja4DhonKysLLz33nsIDw+Hq6srZDIZXnrpJbHL0mMIIoPduXMHixYt4he/ge7fv49nn30W69atw7hx4/DZZ5+hXbt2eOONN7Bo0SKxyyOiWuA4aJyUlBQsXboU58+fR1BQkNjlVGEtdgFElmrDhg1ISEjA6tWrMWPGDADAtGnTMGrUKCxduhQvv/wyvL29xS6TiKjOdOvWDTdv3oSrqys0Gg1cXV3FLqkSXgmyYPfv38dHH32ELl26QKVSoXHjxujevTvWrFmjP+all16CTCartv3Dly0PHDiA1q1bAwAWLVoEmUwGmUyGVq1aGVVTxTn37duH0NBQqFQqeHl5Yfny5QCA3NxcTJ06FW5ublCpVBg8eDBu3LhR5TxpaWn429/+hmbNmkGhUKBNmzaYN28eioqK9MesXbsWMpkMsbGxVdrrdDp4eXmhS5culbafPHkSI0aMgIuLCxQKBdq1a4clS5ZAq9Ua9TkB4D//+Q9UKhWmTZtWaftbb72F0tJSREdHG31OIjIOx0Fxx0EHB4cGF3wqEcgilZSUCP369RMACM8995ywYsUK4bPPPhNeffVVISwsTH/clClThJr+GQAQpkyZIgiCIKjVamHVqlUCAGHEiBHCd999J3z33XfCtm3bjKoLgBAYGCg4OTkJ7777rvDFF1/o64yKihK6du0qjBgxQvj888+Ft99+W7CyshKeeeaZSudIS0sTXF1dBVtbW+Gtt94SPv/8c2HMmDECAKFPnz5CaWmpIAiCkJOTIygUCmHUqFFV6ti9e7cAQPjkk0/023bs2CHY2toKAQEBwtKlS4V169YJU6ZMEeRyuTB69GijPmdZWZlgZ2cn9OrVq8q+e/fuCTKZzOhzEpFxOA6KOw7+1a1btyr9fTYEDEEWavny5QIAYe7cuVX2lZWV6X9v6Be/IAjC1atXBQDCggULal0XAEEmkwnHjh3TbyspKRHc3d0FmUwmzJgxo9Lxb7/9tgBAuHDhgn7biy++KAAQ4uLiKh37j3/8QwAgbNiwQb9t9OjRgkKhEHJyciodO2nSJMHa2lrIzs4WBEEQiouLhWbNmgm9e/fWDx4VPvnkEwGAsH//foM/p0ajEQAIY8eOrXa/q6urEBoaavD5iMh4HAfLiTUO/lVDDEG8HWahNm3ahKZNm+L999+vsk8uF/d/e2hoKEJCQvR/trW1RXBwMARBwMyZMysd27t3bwDApUuXgD8v38bGxqJr16544YUXKh07d+5cyOVybNu2Tb9typQpKCkpqXTrqaCgANu2bUN4eDjc3NwAAHv27EF2djZefvll3LlzBxqNRv+rop/du3cb/BkrLkcrFIpq9yuVykqXrInI9DgOlhNrHDQHnBhtoS5duoQuXbpAqVSKXUoVPj4+VbY1bdoUAPT32/+6/fbt2wCAW7duoaCgAB06dKhyDicnJ3h4eCA1NVW/reILfOPGjXj99dcBAFu2bEFhYSEmT56sPy45ORkA8Morr9RYd3Z2tsGfUaVSAQBKSkqq3X/v3j39MURUNzgOlhNrHDQHDEESV9NkwNpMgDOUlZWV0ftqu66OtbU1XnzxRURFReHy5cvw9fXFxo0b0bRpUwwdOrTK+VesWFFlkmAFT09Pg/tt2rQp7OzskJmZWWVfSUkJNBoN+vbtW6vPRESmxXGw8vlNNQ6aA4YgC9W2bVtcuHABJSUlNd6SwZ8/NQBATk6O/vcAKv0UUaGmgaI+ubq6wsHBAUlJSVX25ebmIisrq8oX75QpUxAVFYWNGzdi2rRpOHDgAF599dVKfy9+fn4AAHt7ewwYMOCJ65TL5Xjqqadw+vTpKv8PTpw4AUEQ0L179yfuh4hqxnHwATHGQXPAOUEWauLEicjNzcXixYur7Hv4p4m2bdsCAPbu3VvpmI8//rhKu0aNGgF/DhRikcvlGDJkCE6fPo1du3ZV2rds2TLodDqMGDGi0vYuXbogMDAQ33//Pb777jvodDpMmTKl0jHPP/883NzcsGzZsmo/X3FxMfLz842qdcKECSgqKsKXX35ZaXtUVBSsra0xbtw4o85HRMbhOPiAWONgQ8crQRZq1qxZ+Pnnn7F48WIkJCTgueeeg1KpRFJSElJSUvRf7BMmTMC8efPw6quv4sKFC3BycsKuXbug0WiqnNPZ2Rm+vr744Ycf0KZNGzRr1gz29vYYMmRIvX62pUuXYs+ePRg+fDjeeOMN+Pr64uDBg4iOjkafPn2qfGHjz5+CZs+ejeXLl6Nt27bo0aNHpf329vbYuHEjhg8fjnbt2uGVV16Br68v7ty5gwsXLmDr1q3Ytm0b+vXrZ3Cd06ZNwzfffIN33nkHaWlp8Pf3x86dO7Ft2zbMnz/f6LVFiMg4HAcrE2McBKAPoRUPg5w9e1a/rU+fPujTp88T/E08IbEfT6O6U1xcLCxevFgICAgQFAqF0LhxY6F79+7C559/Xum4Y8eOCT179hQUCoXg7OwsTJs2TcjNza32Ucbjx48LPXv2FFQqlQBA8Pb2Nqqmmh6PrOkR1f379wsAhG+++abS9tTUVGHSpEmCq6urYGNjI7Ru3VqYO3euUFhYWG2/arVasLa2FgAIixcvrrG+c+fOCRMnThQ8PT0FGxsbwc3NTQgNDRU++OAD4fbt20Z9VkEQhNzcXCEiIkLw8PAQbG1tBX9/f+Gzzz4TdDqd0eciIuNxHHxArHEQQI2/nmSpAVOQCXyTIxEREUkQ5wQRERGRJHFOED2xW7duoays7JHHNGrUSD+h0JwVFBSgoKDgkcdYWVk17HflEJHJcRyszGzGQVFvxpmJL7/8Un//sm/fvmKX0+B4e3s/8p5vQ7jvayoLFix47Gc1dn4AEZk/joPmOQ7yStBjqNVqREZGil1Gg7Zp0yYUFxc/8pi/ro6akJBgVB8ajQZbt27FyJEj4eLiYlCboKAgo/owxOTJk/H0008/8hg7OzuT90tEDRvHwcrMZRxkCHqMGTNmIC8vD4MHD8aOHTvELqdB6tWrV533odFosGHDBvTp08fgL/664OPjU+1y95buXokWhcVaONjbwNam5pVuLVVZmQ55haWwtpKhkcqmQSyYV58EQUBhsRb3S3Vo3MgGVlacTvpXHAfNE0PQI8TGxiImJgYzZsyAk5MTQxBJSlGxFj/sSsUX0ck4df7Beim9n2qGN8b5Y+SAVhYdiARBwNHfb+KL6GT8tPsq7pfqAAAeripMG9kOr45uh+bN7MUus05l3y7Ghi0pWB9zAenqQgCAtbUMI59phTfG+aNPN3fJBUKyLBYf5zUaDSIjI+Hr6wulUokWLVpg1qxZKCwsxNSpUyGTybBmzZoq7fLz8xEREQFPT89qVxslsmSnkzXwG/ITpi6IrxSAACA+MRsT/nkAHUZsxaVrd0WrsS4V39NizOx96DV5BzbFXdEHIADIulWED9afRqvwaHwVc0HUOuvSprjLaPncD5i/5pQ+AAGAVivgx1+vot8rOzEoYjfyC++LWifRk7DoK0FnzpzBwIEDoVarYW9vj4CAANy4cQOrV6/GlStX9MuCV/eiuLlz5yIjIwM//vgjHB0dRaieSBznLuag39SdyCsofeRxl6/noc/LcTj63RC0au5Qb/XVtdJSHUa8tRe/Hqn68tuHacsEvPrBYZTpBLw+1r/e6qsP3++4jL/N+99jj/vlUAYGRezG7vXhUCos+tsJWSiLvRKk0WgwZMgQqNVqzJ49G1lZWUhMTIRarcby5csRFxeHhIQEyGQyBAYGVmp79OhRrF27FgMHDsSYMWNE+wz0gIODA8LDw+HgYDnfbBsiQRAw/p/7HxuAKqg1xXjl/fg6r6s+fbop6bEB6GERS4/iSnpendZUn7JuFRn1/zQ+MRsfbjhbpzVROY6DpmexIWjmzJnIyMjAm2++iZUrV1b6RxMZGYnOnTtDq9WiVatWla70lJaWYtq0aVAoFNXeJiNxNG/eHB988AGaN28udikW7UBCFs5fuWNUm/0JWUhONa5NQ6XTCfgiOtnoNut/spzbYl9tSUGpVmfAkQ98ueUCSkuNa0PG4zhoehYZgpKTkxEdHQ0XFxd8+OGH1R7TrVs3AEDnzp0rbV+2bBmSkpIwf/58o2a/X716FUOHDoWDgwOaNm2KyZMn4/bt20/4SahCSUkJ0tPTUVJSInYpFm19Lee4WEoI2HssE1czjX9L9tfbLuJ+6aMXyjMHOp2AL2vxb0CtKUbsgWt1UhM9wHHQ9CzyJu7mzZuh0+kwceLEGlfnrFjD4OEQlJKSgiVLlsDf3x9z5swxuL/8/HyEhYXByckJmzdvRnFxMSIjIzF48GAcPnwYcnntsmb37t2hVqtr1bahGz16tFHH37x5E5s3b8aECRPg5uZmUJsRI0bUsjrpynZ8A7BuZnS7dd9uR8xnxv0/bYgKFKGAfbjR7XLulsDbpxOsBPO+LaaTKZHVdG6t2r48fT5m3Xv8PCJ6gOOgabi7u+PkyZO1amuRIWjfvn0AgLCwsBqPycjIAP4SgqZPn46SkhKsW7cONjY2Bvf35ZdfIjMzEwcPHkTLli0BAF5eXujZsydiY2MxfPjwWn0OtVqNzEzD5yaYk8LCQgOOeqBiEbLi4mKD21rq312dshdqNSqU3NdZxt+3ayFQy6fe1Tc1wP1bpq6oflk7Ak1r1zS/oAj52Rbwb6AecRwUn0WGoGvXyi/Lent7V7tfq9Xi8OHDwF9CUGJiIuRyOcaOHVulTcV7Uo4cOQJ3d3cAwMWLF+Ho6IgdO3bg6aef1gcgAAgNDYWPjw9+/vnnWoegin4skb29cd9pKr7g7ezsDG7L++bGuyW/j9o88Ky00cLZAv6+CxXWqO3sJg83R8gFWxNXVL8EWOGGoANkxl+9bmxvhUYW8G+gPnEcNI0n+V5pkSGo4h9KTUuYR0dHQ6PRwMHBAa1bt660T6fTITs7u8Zzl5aW6vfrdOUTAc+fP1/tU2QdOnTA+fPna/05ant5zxwYu1z8hQsXsHnzZgwcOBDt27c3qE1UVFQtq5OuTzaew+yVJ4xu9+9P3sCEFz6uk5rqU/btYrR49gejJwYP6OGJPV9errO66tOIt/biv/uMm98jkwG/x38Db08+tWQMjoPis8iJ0RWpMDExscq+rKws/XyfwMDASqud3rlzB4IgVPtrwYIFAIC+ffvqtzVp0gQAkJubq//9w5ycnPRrERGZg5eHt4Wd0rhVoN2clBg5oFWd1VSfmjnbYfSzxn+WN8ZZzjpBEeON/yyD+7RkACKzZJEhaMCAAQCA5cuX4+LFi/rtCQkJCAsLg0ZTvgJudYskUsPUvn17nDhxwuCffqh2mjoq8M+XAw048oFFbzwFha3lvD5j3t87o5HK8IvkPbu4YUjflgYcaR76B3tiQA9Pg49XKqzw/uscS+sDx0HTs8gQFBkZCWdnZ6Snp6NDhw7o1KkT/Pz8EBwcDB8fH/Tv3x+o5vH42mratCnu3Kk6kyAnJwdOTk4m6YOovrz/ele8NsawQfb917pa3GrJHf2c8N+oZ2Fv9/gg1LW9M7Z/+iysrS1nKJXLZYj5+Bn0CHR97LFKhRV+XNEf3Ts8/liihshyvnIf4uXlhfj4eAwaNAhKpRJpaWlwcnLC+vXrERcXp786ZKoQ5O/vX+3cn/Pnz8Pf37K+QYjl2rVreOWVV/ST3qnuyGQyrJ3fE1++3wvtWzeu9piu7Z0RvSIMiyKeqvf66sMzPTxxeONgDO/vDbm86gtCnRor8I8pnfC/b16AS1OlKDXWpcYOtti34QXM+3tnuFbz+WQyYFCfFjj4zSAM6Wc5V8EaOo6DpicTBEEQu4j6VFBQAEdHR8hkMuTn50OlUj3xOVeuXIl58+YhNTUVXl5eAIDjx4+jR48e2Lp1qyTWaTBWbSYETp48GRs3bjT4UnBQUFAtq6MKgiBg/4ksDH9rL/ILS+Fob4Pd68MR3MlVMm8PT1cXIGZPGt7//BQKirRo6miLzL0TYKe0yOdKqii5X4Ztv6Xh1UWHkF+khWMjG5z5cQRae3EO0JPiOCg+i7wS9ChJSUkQBAF+fn4mCUAA8Oqrr8LDwwPDhg3Djh07EBMTgwkTJiA4OBjDhg0zSR9EYpDJZOgf4glH+/J1sxzsbRAS6CaZAAQALdwb4e2/dUTjRuWPv6uU1pIJQACgsLXC+IFt4Pjn53dQ2TAAkcWQXAg6d+4cYMJbYQDg6OiIffv2wcPDA+PHj8ff//539OzZEzt27Kj1atFERERUt6Tz48yf6iIEAUCbNm2wY8cOk56TiIiI6o7kLlPUVQiiuuXh4YFFixbBw8ND7FKIiETBcdD0JHclqOK9YmReGjdujIEDB4pdBhGRaDgOmp7krgSRecrNzcVPP/2E3NxcsUshIhIFx0HTYwgis5CdnY0VK1Y88r1uRESWjOOg6TEEERERkSQxBBEREZEkMQQRERGRJDEEkVlQqVQICQkx2SrfRETmhuOg6UnuEXkyTy1btsRnn30mdhlERKLhOGh6vBJEZqGsrAwFBQUoKysTuxQiIlFwHDQ9hiAyC5cuXUL//v1x6dIlsUshIhIFx0HTYwgiIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSeIj8mQWfH198euvv8LBwUHsUoiIRMFx0PQYgsgsWFtbo2nTpmKXQUQkGo6DpsfbYWQWMjIyMHv2bGRkZIhdChGRKDgOmh5DEJmFgoICxMfHo6CgQOxSiIhEwXHQ9BiCiIiISJIYgoiIiEiSODGaRBEUFGTU8V5eXliwYAEGDBgADw+POquLiKi+cBwUH0MQmQUPDw8sXLhQ7DKIiETDcdD0eDuMiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJiyWSSQmCAG1xidhlGMXaTgGZTCZ2GUREVM8YgsiktMUl2NRmkthlGGXile9ho1KKXQYREdUz3g4jIiIiSWIIIiIiIkliCCIiIiJJYggiIiIiSWIIIqJqCYKADHUhYvdfQ2GxFgBQWKzFzvh0ZN8uFrs8IqInxqfDiEhPEAQcPp2NtT9ewN5jmbiZc6/S/jv59zEoYjcAoLmbCuG9vPDGOH88FeAiUsVERLXHEEREAIDY/dfw/z5PxNmLOQYdn3mzCF9vu4ivt11ESCdXLHsrCP2CPOq8TiIiU2EIItG5h3ZA+NZFlbaVFhYjLzULV2IOIvnrnRDKdKLVZ+ly7pZg5rKj2BR3pdbnOH7uFsKm7kTEeH8seysIjVQ2Jq2RiKguMARRg5G6NR4Z+xIBmQx2rk3gO6Yvghe9hMZ+zXF0znqxy7NISZdz8fzru5B5s8gk5/v8h2TsOXoDu9c/D29PB5Ock4iornBiNDUYt89dReqWeKTGHETS2ljEDZqHwkwN2r74DBTOjmKXZ3HOXcxBn5fjTBaAKly8dhe9X4rDtRv5Jj0vEZGpMQQZ4KuvvoJMJoNMJkO/fv3ELkcytMUluJV4CTK5HI7ezcQux6Jk3SrCc6/vQs7dunnPW7q6EM++tgt5Bffr5PxERKbAEPQYarUakZGRYpchWQ6tysNPyZ0CsUuxGIIg4PV/HYZaY/hj7gmbhyJ9z3gkbB5qcJtL1/Iw55MTtaySiKjuMQQ9xowZM5CXl4fBgweLXYrFs7azhcLJAQpnRzRp3xIhS/8O504+uJV4CXmpWWKXZzE2xV1B7IHrRrVxd1HBq5k93F1URrX7MiYFe49lGlkhEVH94MToR4iNjUVMTAxmzJgBJycn7NixQ+ySLFrXyPHoGjm+0ra0uGM4PneDaDVZmtJSHf4ZlVCvfc5eeQJnfhoOmUxWr/0SET2OxV8J0mg0iIyMhK+vL5RKJVq0aIFZs2ahsLAQU6dOhUwmw5o1a6q0y8/PR0REBDw9PbF48WJRapealO9249exi7Bn4hKc/Nd3uJeTD3sPZ5SVPJhXIre1xrADqxA4a2Sltk9HRWDApvdEqNq8xB64hhsmngj9OGcv5uDo7zfrtU8iIkNY9JWgM2fOYODAgVCr1bC3t0dAQABu3LiB1atX48qVK8jJKV8UrkuXLlXazp07FxkZGfjxxx/h6Mgnk+pDXqoaWfHnAACZ+04j+8QFvLD9Xwhd/hr+N30VAEB3X4tDMz9D+LYPkL7nFHLPX0PL8CB4Pdsd2/u/I/InaPi+iE4Wpd/Pf0hGzy6c3E5EDYvFXgnSaDQYMmQI1Go1Zs+ejaysLCQmJkKtVmP58uWIi4tDQkICZDIZAgMDK7U9evQo1q5di4EDB2LMmDGifQapu3UyBVdiDqL18F5w7d5Ov/322VQkrY1F79UzoPJwQuiK13F83gYUZ+eKWm9DV1BUiv0J4syt2hmfDkEQROmbiKgmFhuCZs6ciYyMDLz55ptYuXIlHBweLNwWGRmJzp07Q6vVolWrVpWu9JSWlmLatGlQKBTV3iaj+vX7qhjotGXoOmdc5e1RW6ArK8PQPSugPvwHrm4/LFqN5uLMhdsQK4fcyb+P1AyuG0REDYtFhqDk5GRER0fDxcUFH374YbXHdOvWDQDQuXPnStuXLVuGpKQkzJ8/Hz4+Pgb1VxG2goODoVAoOAHUhPLT1Li6/TA8+wTCLcRfv13QluFWQgqUzo1xOXq/qDWai8Tk26L2f+q8RtT+iYj+yiJD0ObNm6HT6TBx4kQ0atSo2mPs7OyAv4SglJQULFmyBP7+/pgzZ47B/V2+fBlbtmyBu7s7goKCTPAJ6GFnPy2/6vPw1SC3EH/4jgtD8tc7EfzBy7BS2opaozm4niXuWkvXswpF7Z+I6K8scmL0vn37AABhYWE1HpORkQH8JQRNnz4dJSUlWLduHWxsDH8BZJ8+fZCVVT7XYuHChTh82DS3Zrp37w61Wm2Sc9UXG0GOBQg2qo36aBK+9Rhd4/67lzKx0etBALJWKfF0VAROLdmEC//3KwZu+wBPzX0RCQu+rVXNbf3aolRm+S9ovaN6AVCGVLsvYfPQR64B5O5ip/9v+p7xNR4HAGpNEYImxFbZ/sHiDxE1/6DRdTcUWU3eAeSNkaXOgpeXl9jl1Dupf35quNzd3XHy5MlatbXIEHTt2jUAgLe3d7X7tVqtPqg8HIISExMhl8sxduzYKm0KCsp/ij5y5Ajc3d0BABcvXoSjoyPk8rq5oKZWq5GZaV4LzdnKrIA6fggoaOFkFFy/iQvf7gIAHJq1BkP3rsT1X44j+5jxTz/dyLqB+0JZHVTawHjcBZTV76pYDPFxrK3kBh1Xnfy7ucjXmNe/50ocygA5oCsrM7uvS5OQ+ucni2SRIaiwsPyye3Fx9a8FiI6OhkajgYODA1q3bl1pn06nQ3Z2do3nLi0t1e/X6er26kFF2DInNoIcqMO/lub9u6L10F7Y/sxs/bb8a9k4tWQTeq2KQGz/2dAWG/c+LE8PT0lcCcpXypFXwz615tFrB7m72MHaSg5tme6xr9uo6VxNHKxgr2hucL0NTZaVFXQA5FZW8Ghuvp+jtqT++anhepLvlRYZgtzd3ZGbm4vExESEhoZW2peVlaWf7xMYGFhpEvOdO3dqPOfChQuxaNEi9O3bFwcOHKjD6h+o7eU9MZUW3cOmNpPq7PyZ+07jP+2nVNl+4dtd+itDxrp46SJsVDVcIrEgvx7OQPj0X6vdV93tq4el7xkPr2b2UGuK0eLZH2rV//92bURgW6datW0IvAZsRubNIni4eyDjjwyxy6l3Uv/8ZJkscmL0gAEDAADLly/HxYsX9dsTEhIQFhYGjab8KZXqFkkkslTdAlxE61upsEKATxPR+iciqo5FhqDIyEg4OzsjPT0dHTp0QKdOneDn54fg4GD4+Pigf//+QDWPxxNZMpemSnT0bSpK372fagZra4scbojIjFnkqOTl5YX4+HgMGjQISqUSaWlpcHJywvr16xEXF6e/OsQQRFLz+tj24vQ7xt+Ao4iI6pdFzgkCAH9//2rf+l5QUIC0tDTI5XJ07NjR4PMtXLgQCxcuNHGVRPXrb4N98W7USRQUldZbn55uKgzt17Le+iMiMpTFhqCaJCUlQRAEtG3bFipVzeuiGCsmJgYAcP78+Up/btWqFbp3726yfoiehGMjW8ye3BGL1p2utz7nT+vCW2FE1CBJbmQ6d678LeWmvhU2ZswYjBkzBj/99FOlP/P9Y6bhPagHeiybVmmb77gwvJQVg5bhXKXbGPOmda63p7TCgjzw2hhxbsERET2O5K4E1VUI4huy61bLF0Jw5acHSxM08nJF24kDcPNkiqh1mSNbGyt8+6/eCJn4M0q1hq2PVLH2z+PWE3qYg70Nvl7UG3I536VHRA0TQxA1CLaOKgzbvwpWSlsU3dBArrCBQ8tmuBLzPxx99ys0C2qHQ7P+vKomk6Hnx9NxfP7XCFpQdc0geryu/i7YvLwfxs7ZD53u8QH+cesI/ZXC1gqxq59Fay+HJ6iSiKhuSS4EVbxXjBqW+3lFSN0Wj9LCezi7Kgae/TojcOZIHPnHOnj27YybCSkQtOWvtujw2hDcTLiA22dTxS7brI16tjV+XAFM+OcBg68IGaKRygaxqwegX5CHyc5JRFQXJDcniBoup46tkXPuKgDAObANcv4o/33L8CBc++UEAKBJuxbwHhSC36O2iFqrpRj1bGsc3jgYAW1Ms5BhcEdXnPjPUIQFe5rkfEREdYkhiBoMpw6t9MHHOdAHt/8MRJ79uiBzX/nTTM1C/NGohRtGHfkMo098Aden/BC64nW0m/ycqLWbs6COrjj1wzDMndoZSoVVrc7RSGWDZW91x+GNg+HPlaGJyExI7nYYNUwqdydAEFCkzgEAOPl74+ynW+DS1Q93L2VCW3QPAJCycTdSNu7Wtwvfsgjnv9qB67sSRKvdEigV1lg6qztmT+mIb7dfwtofk3ElPf+x7Tr6NsUb4/wxaXAbONjb1kutRESmwhBEDYJTx9b6q0AAcD+vEO2nPI+SnHxc33VC1NqkxLmJErOndMI7kzvi2o0CnDqvwanzt6G+XYT7pToobK3Q3E2F7gEu6BbgAk83VaWXEBMRmROGIGoQMvaeQsbeU/o/7xj4LgBg2IFV+HXUghrb7XrEPqo9mUyGVs0d0Kq5A0Y921rscoiI6gRDEDVo2/u9LXYJRERkoTgxmoiIiCSJIYiIiIgkiSGIiIiIJIkhiIiIiCSJE6PJpKztFJh45XuxyzCKtZ1C7BKIiEgEDEFkUjKZDDYqpdhlEBERPRZvhxEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJDEEERERkSQxBBEREZEkMQQRERGRJFmLXQBZFkEQoC0uEbsMo1jbKSCTycQug4iI6hlDEJmUtrgEm9pMErsMo0y88j1sVEqxyyAionrG22FEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBRESPodMJEAQB+PMJSCKyDHw6jIjoL67dyMeWvWk4maTByfMaXLqWp99341YxQl6MRbcAZ/Ts0gwjn2kFlR2HUiJzxK9cIqI/r/DsOZqJNZuTERefDp2u5is+J/64hRN/3MLaHy9ghsNRvDTMDzNeDICPl2O91kxET4YhiETnHtoB4VsXVdpWWliMvNQsXIk5iOSvd0Io04lWH1m+m7eLMX3xEWz9Lc3otnfy7yPq+ySs++kCFr/ZDW9N6gArK840IDIHDEHUYKRujUfGvkRAJoOdaxP4jumL4EUvobFfcxyds17s8shCxR28jinzD+L2nSdb6fxeSRn+8fEJbNmbhh9X9IeXu73JaiSiusEfV6jBuH3uKlK3xCM15iCS1sYibtA8FGZq0PbFZ6Bw5m0GMr1NcZcxbNbeJw5ADzv6+008/dIOpGbkGXA0EYmJIchAX331FWQyGWQyGfr16yd2OZKgLS7BrcRLkMnlcPRuJnY5ZGH+uy8Nk987iLIy0z/tde1GAQZM24UbNwtNfm4iMh2GIAOo1WpERkaKXYYkObQqDz8ldwrELoUsyPWsAkx+7+AjJz8/qauZ+Xj5/Xg+Uk/UgDEEGWDGjBnIy8vD4MGDxS7Folnb2ULh5ACFsyOatG+JkKV/h3MnH9xKvIS81CyxyyMLIQgCXl10CPmFpUa1S9g8FOl7xiNh81CD2+w+komvt16sRZVEVB84MfoxYmNjERMTgxkzZsDJyQk7duwQuySL1TVyPLpGjq+0LS3uGI7P3SBaTWR5fvglFb8eyTS6nbuLCl7NjJ/s/M7K4xjxjDecmyiNbktEdUsSV4I0Gg0iIyPh6+sLpVKJFi1aYNasWSgsLMTUqVMhk8mwZs2aKu3y8/MREREBT09PLF68WJTapSTlu934dewi7Jm4BCf/9R3u5eTD3sMZZSX39cfIba0x7MAqBM4aWant01ERGLDpPRGqJnPz6aakeu0vv7AU326/VK99EpFhLD4EnTlzBp06dcKKFSugVqsREBCA0tJSrF69GuPGjUNycjIAoEuXLlXazp07FxkZGYiKioKjI59Oqmt5qWpkxZ9D5r7T+OOL7fhtyjK4dGmD0OWv6Y/R3dfi0MzP0GnmSDQN8AYAtAwPgtez3XH4nS9ErJ7MwanzGhw/d6ve+137Y3Kdzj8iotqx6BCk0WgwZMgQqNVqzJ49G1lZWUhMTIRarcby5csRFxeHhIQEyGQyBAYGVmp79OhRrF27FgMHDsSYMWNE+wxSdutkCq7EHETr4b3g2r2dfvvts6lIWhuL3qtnQOXhhNAVr+P4vA0ozs4VtV5q+L77+bIo/V5Jz8eRM9mi9E1ENbPoEDRz5kxkZGTgzTffxMqVK+Hg4KDfFxkZic6dO0Or1aJVq1aVrvSUlpZi2rRpUCgU1d4mo/rz+6oY6LRl6DpnXOXtUVugKyvD0D0roD78B65uPyxajWQ+TvxR/1eBKiQkaUTrm4iqZ7EhKDk5GdHR0XBxccGHH35Y7THdunUDAHTu3LnS9mXLliEpKQnz58+Hj4+PQf3FxMRg1KhR8Pb2hkqlQvv27fHee++hoICPdj+J/DQ1rm4/DM8+gXAL8ddvF7RluJWQAqVzY1yO3i9qjWQetFodzqTcFq3/U+cZgogaGosNQZs3b4ZOp8PEiRPRqFGjao+xs7MD/hKCUlJSsGTJEvj7+2POnDkG97dy5UpYWVlh6dKl+OWXXzB9+nSsXbsW4eHh0On43qsncfbT8qs+D18Ncgvxh++4MCR/vRPBH7wMK6WtqDVSw3c1Mx/F98pE6z/pCm/XEjU0FvuI/L59+wAAYWFhNR6TkZEB/CUETZ8+HSUlJVi3bh1sbGwM7u/nn3+Gq6ur/s99+/aFq6srJk6ciEOHDqFPnz5Gf4bu3btDrVYb3U5MNoIcCxBsVBv10SR86zG6xv13L2Vio9eDAGStUuLpqAicWrIJF/7vVwzc9gGemvsiEhZ8W6ua2/q1RamMQdXS3bdyBxpPr3ZfwuahcHdRPbK9u4ud/r/pe8bXeJxaU4SgCbFVtp9LugQvLy+j624ospq8A8gbI0udZdafgyyPu7s7Tp48Wau2FhuCrl27BgDw9vaudr9Wq8Xhw+XzSB4OQYmJiZDL5Rg7dmyVNhW3to4cOQJ3d3cAwMWLF+Ho6FgpAFXo3r07ACAz0/g1SfDnStW1bSsWW5kVUMdvuAhaOBkF12/iwre7AACHZq3B0L0rcf2X48g+lmz0+W5k3cB9QbwrBFRPlDKgcfW7jFkDyNpKXqv1gsq0pWb39VyJQxkgB3RlZeb9OYgeYrEhqLCw/J09xcXF1e6Pjo6GRqOBg4MDWrduXWmfTqdDdnbNT3KUlpbq9z/qVtf+/eVzVfz9/Ws85lEqgpY5sRHkQB1eVGnevytaD+2F7c/M1m/Lv5aNU0s2odeqCMT2nw1tsXEvw/T08OSVIAnQypuipq9qtabose3dXexgbSWHtkwHtab6ceVR57KxEuDWvLnB9TY0WVZW0AGQW1nBw4w/B1meJ/leKRMs9MU2AQEBSE5Oxpo1axAREVFpX1ZWFrp164asrCz06tULhw4dMuicCxcuxKJFi9C3b18cOHDgkcdmZmaia9eu6NatG3755Zcn+izmpLToHja1mSR2GUaZeOV72Ki4mq+l02p1cOy5sdbzgtL3jIdXM3tkZBeixbM/GN1+0uA2+G6p+b582WvAZmTeLEJzNxUy9k4Quxwik7DYidEDBgwAACxfvhwXLz54d09CQgLCwsKg0ZQ/qVHdIolPqqCgAMOGDYOtrS3+/e9/m/z8RGQ8a2s5urRzFq3/bv4uovVNRNWz2BAUGRkJZ2dnpKeno0OHDujUqRP8/PwQHBwMHx8f9O/fH6jm8fgnVVxcjCFDhuDq1avYvXs3PDw8THp+Iqq9kE5V5+7Vl2AR+yai6llsCPLy8kJ8fDwGDRoEpVKJtLQ0ODk5Yf369YiLi9NfHTJlCCotLcXo0aNx8uRJ/PLLLwgICDDZuYnoyf1tsK8o/fq2dESPQDdR+iaimlnsxGj8OSG5ure+FxQUIC0tDXK5HB07djT4fAsXLsTChQur3VexJtFvv/2GnTt3IjjYuMfEiajuPRXggh6Brjh2tn5Xjp4+tj3kclm99klEj2exV4IeJSkpCYIgwM/PDyrVo9cGMVRERAR++uknvP3221CpVDh27Jj+161b4i3VT0SVvf03w3/wMYXGDrZ4aVjbeu2TiAwjyRB07tw5wMS3wiqeAFu2bBlCQ0Mr/YqLizNZP1LlPagHeiybVmmb77gwvJQVg5bhQaLVReZnzHOt8ULv+lvsb9WcEDg1VtRbf0RkOIu+HVaTughBaWlpJjsXVdXyhRBc+enBsgSNvFzRduIA3DyZImpdZH5kMhm+fP9pdBi5FXfz7xvcrmL9H0PWFKrwQm8vvDTMr1Z1ElHdYwiiBsHWUYVh+1fBSmmLohsayBU2cGjZDFdi/oej736FZkHtcGjWmvKDZTL0/Hg6js//GkELpohdOpmh5s3s8f3Svhj+1l6UlRm2VFp1r8J4lDYtHPD1ot6QyTgXiKihkmQIqnivGDUc9/OKkLotHqWF93B2VQw8+3VG4MyROPKPdfDs2xk3E1IgaMsXuevw2hDcTLiA22dTxS6bzNjgvi2x6cN+mDTvALRa064Z6+PlgL1fDnzs+8iISFySnBNEDZNTx9bIOXcVAOAc2AY5f5T/vmV4EK79cgIA0KRdC3gPCsHvUVtErZUsw7hwH/y8+jm4OZluxfDeTzVD/LeD0Kq5g8nOSUR1gyGIGgynDq30wcc50Ae3/wxEnv26IHPfaQBAsxB/NGrhhlFHPsPoE1/A9Sk/hK54He0mPydq7WS+wp/2QtK2URgf7vNE57FTWuHTf/bAgX8Pgqeb8S9YJaL6J8nbYdTwqNydAEFAkToHAODk742zn26BS1c/3L2UCW3RPQBAysbdSNm4W98ufMsinP9qB67vShCtdjJ/Lk2V2PxRGF4d3Q6f/5CM/+6/ZvBcIecmCkwd0RZvjPOHtyev/hCZE4YgahCcOrbWXwUCgPt5hWg/5XmU5OTj+q4TotZG0hEW7ImwYE9kZhdiy940nDqvwanzGly8lodSrQ4A4GBvg85tndAtwAWhnd0wLKwllAoOpUTmyGLfIk/iMPVb5IcdWIVfRy3Avdt5JjvnX/Et8mQIrVYHuVwm2ZWf+RZ5skT88YUatO393ha7BCLgz7fQE5Fl4Vc1ERERSRJDEBEREUkSQxARERFJEkMQERERSRInRpNJWdspMPHK92KXYRRrO77hm4hIihiCyKRkMhkfNyciIrPA22FEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEnWYhdAlkUQBGiLS8QuwyjWdgrIZDKxyyAionrGEEQmpS0uwaY2k8QuwygTr3wPG5VS7DKIiKie8XYYERERSRJDEBEREUkSQxARERFJEkMQERERSRJDEBEREUkSnw4jIqIq7peW4Y9LuTh1XoPfL+Yg52750he5eSVY8uUZdAtwQbcAZ7g62YldKlGtMQQREZFecuodrP0xGf8Xewl5BaVV9hfdK8P8Naf0f+4X5IE3xvljeJg3bGx4c4HMC0MQic49tAPCty6qtK20sBh5qVm4EnMQyV/vhFCmE60+Iim4cbMQbyw5gu37rxvV7kBCFg4kZMHTTYXV/+yBUc+2rrMaiUyNIYgajNSt8cjYlwjIZLBzbQLfMX0RvOglNPZrjqNz1otdHpFFEgQBG2Mv462PjuFO/v1an+fGzSKMnr0P48JbY83cnnBpygVIqeHjtUtqMG6fu4rULfFIjTmIpLWxiBs0D4WZGrR98RkonB3FLo/I4uh0At5ZcRwv/b+DTxSAHha96ypCJsbiaka+Sc5HVJcYgqjB0haX4FbiJcjkcjh6NxO7HCKLIggC3v7oGKK+TzL5uVMz8tH3lTikqwtMfm4iU2IIMsBXX30FmUwGmUyGfv36iV2OpDi0Kg8/JXc4mBKZ0troZKz+z/k6O3+6uhCDInaj5H5ZnfVB9KQYgh5DrVYjMjJS7DIkwdrOFgonByicHdGkfUuELP07nDv54FbiJeSlZoldHpHFuJKehzmfJBjVJmHzUKTvGY+EzUMNbnPuUi7+tf50LSokqh+cGP0YM2bMQF5eHgYPHowdO3aIXY5F6xo5Hl0jx1falhZ3DMfnbhCtJiJLIwgCpi6IR9E9rVHt3F1U8Gpmb3R/y/59FiOfaYWnAlyMbktU13gl6BFiY2MRExODiIgIdOvWTexyLF7Kd7vx69hF2DNxCU7+6zvcy8mHvYczykoeTNiU21pj2IFVCJw1slLbp6MiMGDTeyJUTWReDp5S438n1fXWX1mZgKUbfq+3/oiMYfEhSKPRIDIyEr6+vlAqlWjRogVmzZqFwsJCTJ06FTKZDGvWrKnSLj8/HxEREfD09MTixYtFqV1q8lLVyIo/h8x9p/HHF9vx25RlcOnSBqHLX9Mfo7uvxaGZn6HTzJFoGuANAGgZHgSvZ7vj8DtfiFg9kXn4Ijq53vv87/5ryMwurPd+iR7HokPQmTNn0KlTJ6xYsQJqtRoBAQEoLS3F6tWrMW7cOCQnlw8GXbp0qdJ27ty5yMjIQFRUFBwd+Xi2GG6dTMGVmINoPbwXXLu302+/fTYVSWtj0Xv1DKg8nBC64nUcn7cBxdm5otZL1NBl3y7G1t/S6r3fsjIBG7am1Hu/RI9jsSFIo9FgyJAhUKvVmD17NrKyspCYmAi1Wo3ly5cjLi4OCQkJkMlkCAwMrNT26NGjWLt2LQYOHIgxY8aI9hkI+H1VDHTaMnSdM67y9qgt0JWVYeieFVAf/gNXtx8WrUYic3H4dDa0WkGUvg/U4y04IkNZbAiaOXMmMjIy8Oabb2LlypVwcHDQ74uMjETnzp2h1WrRqlWrSld6SktLMW3aNCgUimpvk1H9yk9T4+r2w/DsEwi3EH/9dkFbhlsJKVA6N8bl6P2i1khkLk6d14jWd2KyBjqdOAGMqCYWGYKSk5MRHR0NFxcXfPjhh9UeUzHRuXPnzpW2L1u2DElJSZg/fz58fHwM6i8+Ph4DBgyAh4cHFAoFvLy8Kt1uoydz9tPyqz4PXw1yC/GH77gwJH+9E8EfvAwrpa2oNRKZg9MXbovWd15BKa6k54nWP1F1LPIR+c2bN0On02HixIlo1KhRtcfY2dkBfwlBKSkpWLJkCfz9/TFnzhyD+8vNzUWnTp3w2muvwc3NDRkZGfjwww8RGhqKP/74A15eXrX6HN27d4dabV6XkG0EORYg2Kg26qNJ+NZjdI37717KxEavBwHIWqXE01EROLVkEy78368YuO0DPDX3RSQs+LZWNbf1a4tSGV/QSpbvpuOrgHXzavclbB4KdxdVjW3dXez0/03fM77G4wBArSlC0ITYKtt79n0eCm2G0XUTPYq7uztOnjxZq7YWGYL27dsHAAgLC6vxmIyM8i/Eh0PQ9OnTUVJSgnXr1sHGxsbg/oYOHYqhQysvIBYUFIR27dphy5YtmDVrVi0+RflCjZmZmbVqKxZbmRVQx2+4CFo4GQXXb+LCt7sAAIdmrcHQvStx/ZfjyD5m/NW3G1k3cF/gqrYkAXZlNY76hq4DZG0lr9V6QQCg0eQCheY1ppFls8gQdO3aNQCAt7d3tfu1Wi0OHy6fSPtwCEpMTIRcLsfYsWOrtCkoKH9tw5EjR+Du7g4AuHjxYo1Pjjk7OwMArK1r/1dc0Y85sRHkQB1eVGnevytaD+2F7c/M1m/Lv5aNU0s2odeqCMT2nw1tcYlR5/T08OSVIJKEmzZylNawT60pemRbdxc7WFvJoS3TQa0pfuSxNZ3L1bkJbJtUfyWKqLae5HulTBAEi5up5uTkhNzcXBw5cgShoaFV9m/atAmTJk2Cg4MD7t69C5lMBgBo0qQJ7t69a3A/ubm5aNKkif7PZWVl0Ol0uHbtGubOnYtDhw7h7NmzcHV1NdEna/hKi+5hU5tJYpdhlIlXvoeNSil2GUR1bszs3xCzp3aPyKfvGQ+vZvbIyC5Ei2d/qNU5bvw2AR6uNd9yI6pvFjkxuiIVJiYmVtmXlZWln+8TGBioD0AAcOfOHQiCUO2vBQsWAAD69u2r3/ZwAKrYZ2trCz8/P5w5cwb79u2TVAAiooatm4ivrvB0UzEAUYNjkSFowIABAIDly5fj4sWL+u0JCQkICwuDRlP+mGh1iyQ+ia+//hrHjh3D5s2b4ejoiOeeew7Xr183aR9ERLUlZgjq5s93h1HDY5EhKDIyEs7OzkhPT0eHDh3QqVMn+Pn5ITg4GD4+Pujfvz9QzePxT6pdu3YICQnB+PHj8dtvvyE/Px8fffSRSfsgIqqtXl2aoYmDOMtJDO7bQpR+iR7FIkOQl5cX4uPjMWjQICiVSqSlpcHJyQnr169HXFyc/uqQqUPQw5o0aQJfX19cvny5zvogIjKGys4aLw/3q/d+HRvZYOILbeq9X6LHscinwwDA398fO3bsqLK9oKAAaWlpkMvl6Nixo8HnW7hwIRYuXGjw8Tdv3kRKSgpCQkIMbkNEVNdeH+OPVd8l1WufU4b6wV5l+LIjRPXFYkNQTZKSkiAIAtq2bQuVyjST9CZNmgRfX1906dIFTZo0waVLl7Bq1SpYW1vj7bffNkkfRESm0LZVY0wf2x5rf7xQL/05N1HgvWmmnX9JZCoWeTvsUc6dOweY+FZYjx49sHPnTrz88ssYOHAgVqxYgd69e+PMmTPw9fU1WT9S5j2oB3osm1Zpm++4MLyUFYOW4UGi1UVkjj56JxitPKtfTd/U1swNRTNnu3rpi8hYkrsSVBch6M0338Sbb75psvNRVS1fCMGVnw7o/9zIyxVtJw7AzZMpotZFZI4aqWzw7eI+GPDqLwa/Vb5iAcTHLar4sPHhPhgXbtg7GInEwBBEDYKtowrD9q+CldIWRTc0kCts4NCyGa7E/A9H3/0KzYLa4dCsNeUHy2To+fF0HJ//NYIWTBG7dCKz1Le7BzZ92A8vvnsAZWWPD0LVvQvsUZ7r2RzfLu5TaS02ooZGciGo4r1i1LDczytC6rZ4lBbew9lVMfDs1xmBM0fiyD/WwbNvZ9xMSIGgLX+/V4fXhuBmwgXcPpsqdtlEZm3s8z6wtZFjwj8P4F6J6d6fN+IZb/xnWT8obK1Mdk6iuiC5OUHUcDl1bI2cc1cBAM6BbZDzR/nvW4YH4dovJwAATdq1gPegEPwetUXUWoksxfD+rfD7TyPQs4vbE5/Lwd4GX77fC1s+eQZKheR+xiYzxBBEDYZTh1b64OMc6IPbfwYiz35dkLnvNACgWYg/GrVww6gjn2H0iS/g+pQfQle8jnaTnxO1diJz1rZVYxz8ZhBWv9sDLdyNf0O8tbUM48N98MfWkZg2uj1vgZHZYFSnBkHl7gQIAorUOQAAJ39vnP10C1y6+uHupUxoi+4BAFI27kbKxt36duFbFuH8VztwfVeCaLUTWQIrKzlmvNgB08f6Iy4+HV9tScHh09m4k3+/huNlCPBpgrHPt8bfR7aDuwvfC0bmhyGIGgSnjq31V4EA4H5eIdpPeR4lOfm4vuuEqLURSYm1tRzDwrwxLMwbgiDgamY+Tiffxt2CUmjLdLBTWMGvZWN0bucEOyW/hZB5kwmCYNjzkUQGKC26h01tJpnsfMMOrMKvoxbg3u08k53zryZe+R42KmWdnZ+IiBomxnhq0Lb344rbRERUNzgxmoiIiCSJIYiIiIgkiSGIiIiIJIkTo8mkBEGAtrhE7DKMYm2n4LomREQSxBBEREREksTbYURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJDEFEREQkSQxBREREJEkMQURERCRJ/x9tHVJxe+LFZQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "subcircuits[\"B\"].draw(\"mpl\")" ] }, { "cell_type": "markdown", - "id": "cdeff42f-843a-4605-8c1d-da48e77d000e", + "id": "cb356463-966f-409f-af7b-eed6506e410f", "metadata": {}, "source": [ - "###" + "At this point the cutting experiments can be generated and the expectation value reconstructed in the same way as the above section.\n", + "\n", + "## Next steps\n", + "\n", + "\n", + " - Read through the page on [getting started with circuit cutting using gate cuts](/guides/qiskit-addons-cutting-gates)\n", + " - Read the arXiv paper on [optimal wire cutting](https://arxiv.org/abs/2302.03366)\n", + "" ] } ], From 3046de2c1935115db31b564a754ff06b3c3c5ce2 Mon Sep 17 00:00:00 2001 From: Kaelyn Ferris <43348706+kaelynj@users.noreply.github.com> Date: Thu, 23 Jan 2025 11:41:10 -0500 Subject: [PATCH 17/17] Fix notebook errors --- docs/guides/qiskit-addons-cutting-gates.ipynb | 79 ++++++++++--------- docs/guides/qiskit-addons-cutting-wires.ipynb | 35 ++++---- 2 files changed, 58 insertions(+), 56 deletions(-) diff --git a/docs/guides/qiskit-addons-cutting-gates.ipynb b/docs/guides/qiskit-addons-cutting-gates.ipynb index ef29de597b1..0c86f543e7e 100644 --- a/docs/guides/qiskit-addons-cutting-gates.ipynb +++ b/docs/guides/qiskit-addons-cutting-gates.ipynb @@ -9,12 +9,12 @@ "\n", "This guide demonstrates two working examples of gate cuts with the `qiskit-addon-cutting` package. It covers using gate cutting to reduce the circuit width (the number of qubits) and circuit depth (the number of circuit instructions). The gate cutting enables reconstructing a four-qubit circuit using two two-qubit subexperiments.\n", "\n", - "The first example uses the [`EfficentSU2`](/api/qiskit/qiskit.circuit.library.EfficientSU2) ansatz and reconstructs the following observable:" + "The first example uses the [`EfficentSU2`](/api/qiskit/qiskit.circuit.library.efficient_su2) ansatz and reconstructs the following observable:" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 1, "id": "98d0719f-a7bc-4d6c-ade8-5a2020730087", "metadata": {}, "outputs": [ @@ -33,26 +33,27 @@ "
" ] }, - "execution_count": 9, + "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", - "from qiskit.circuit.library import EfficientSU2\n", + "from qiskit.circuit.library import efficient_su2\n", "from qiskit.quantum_info import SparsePauliOp\n", "from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager\n", "from qiskit_ibm_runtime.fake_provider import FakeManilaV2\n", "from qiskit_ibm_runtime import SamplerV2, Batch\n", "from qiskit_aer.primitives import EstimatorV2\n", "from qiskit_addon_cutting import (\n", + " cut_gates,\n", " partition_problem,\n", " generate_cutting_experiments,\n", " reconstruct_expectation_values,\n", ")\n", "\n", - "qc = EfficientSU2(4, entanglement=\"linear\", reps=2).decompose()\n", + "qc = efficient_su2(4, entanglement=\"linear\", reps=2)\n", "qc.assign_parameters([0.4] * len(qc.parameters), inplace=True)\n", "\n", "\n", @@ -78,7 +79,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 2, "id": "a5454265-3785-4a54-b423-baf7815b97ec", "metadata": {}, "outputs": [ @@ -92,12 +93,12 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAACPCAYAAAA4J1eUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAo0ElEQVR4nO3deVxU9f4/8BcMg6wCiiwCikW4m2LmkjsuaV0FK8hcb5Fet6vGV1Ozm2VaevOadrUsDBW7otXP5XrVLETKNFxABS0UF2SAMRBQ9mVmfn+YGLLNHJg5cw6v5+PR49Gc+czhPXjOi/fMOedzLHQ6nQ5ERERERGQwS7ELICIiIiKSKjbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQnEZpqIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJBCbaSIiIiIigdhMExEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQlkJXYBzVnMtA9RcFMtdhkAAEdfDwRuX9KodSyMBzKKm6wkwbzsgPV9xa6i+ZHb9mwq3G9ITswlB5gBwjAHhGEzLaKCm2rkX1GJXUaTySgGrheIXQWJRW7bs6lwvyE5YQ4YjhkgfTzNg4iIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUC8AFEiBn48B36hwwAAWo0GJbfzkfVzMhJWf4Vida7Y5Rnk5obpuHNs+/0HlpZQunjCsftweE39ANatvcQuj0xATtuzqXC/ITlhBgjDHDBP/GZaQtS/XMbuHmH45qlZ+HHOx2jdzRdDPw8XuyxBHLoMQo9tWegecQsdwv+D4huJuL7mJbHLIhOS0/ZsKtxvSE6YAcIwB8wPm2kJ0ZZXoiQ7H8XqXNz+5Vek7PwBbn06QulgK3ZpBrOwsobSxQPWrb3g2HUw2oyagaKUU9AU3xO7NDIROW3PpsL9huSEGSAMc8D8sJmWKFt3F/g+3w/aSg10Gq3Y5TRK+Z1M5J38BrBU3P+Pmh05bc+mwv2G5IQZIAxzwDzI+pzplJQUvPfee0hISEBmZiYqKirQrl07jB07FosWLYKnp6fYJRrEY0BXTEqNgoWlJaxsWwAAkj89gMqSMgDA0C/CkRl3AVd2/gAAaNWtAwZvno//jlwETVmFqLU/qiD5OBJDHaDTaqErLwEAuAeFQ2FjDwDIO7UXWbvfrfaa0vTL8AnbgDZjZolSMzUtOW3PpsL9huSEGSAMc8D8yLqZVqlUyMrKQnBwMLy9vWFlZYWkpCR8/vnniI6Oxvnz5+Hm5iZ2mXrLTriKE/P/DUULJXzHDUDbQT2QuGZX1fOn347EmP0rkXYoHmV5hej/4euIX7bVLEPH3r8vfBdsh668FHkn9uDehR/QdtL7Vc+79A+GS//gqsf5v+xDRtQytB4+TaSKDaNSF+G66h6USkt0f6IVHOyUYpdkduS0PZuK3PcbOams1OJ8yh0UFlfC09UWHTs4i12S2WEGCMMcMD+ybqYDAwMRGBhYY/ngwYMREhKCbdu2YfHixaLUJoSmtBwFN9UAgPP/3A1HXw/0XfUaTv7fZwCAYnUuLm05iKfenoKcxFTcvZ6FrBNJIlddO0trW9h4+gEAbNt3Q5n6GtI/n4f2c7+oMbY8R4VbW+bA753DsGxhJ0K1+juRoMbqiAs48rMKOt39ZQ52Vpg27gksn9ETHq7mXb8pyWl7NhW57jdyUlpWibWRSdjy9W/IzC6uWv5UF1eET+uGl8c8Lmp95oQZIAxzwPxI9pzpCxcuYPz48XByckLLli0RFBSErKwsODo64uWXX673te3btwcA5OXlmaha4zj/0W74hQ5D6ycfhvNvkUfg3NEH3ecG4cy720WtzxCeE1cgJyYSRVfPVluu02pxY/1keLywBHa+PUSrTx+7j1zH0FcP4fCJh400ABQWV2JT9K/o+8oBpGUWiFmiWZPT9mwqcthv5KSouAKjZh7BO5sTkJVTXO25c7/mYOKbx/HWxrN1vr65YwYIwxwQnySb6ZiYGPTr1w8pKSlYvnw5Vq9eDZVKhTFjxqCwsBA9e/asNr60tBQ5OTlQqVQ4evQoZs6cCQAYO3asSO+gaRTcUCP9+7MIWDLx4UKdDik7vocqJgFld6RzZa9N2yfg3OcvyNz5VrXlWXveh8K2Jdyenydabfq4cvMupiyLg/bPXfQjbqmLMGFhDHT1jGnO5LQ9m4rU9xu5WfjPePyUcBu4v+lW8+Dx6ogL+Pb7GyJUZ/6YAcIwB8QnuWY6OzsboaGhCAgIQGJiIhYtWoS5c+ciJiYGt27dAoAazXRERATatGkDHx8fjB49Gvn5+di5cycGDRok0rtoOsmbD8BraE949O/6cKFWC51Weg2be/Ai3Dt/FAVJxwEAhb/+jDs/bIXv3yPFLq1Bm3f/iopKbY0/oI9K+PUOTvzxx5ZqktP2bCpS3m/kJCevFNsPXG1wnAWAj3deMklNUsQMEIY5IC7JnTO9Zs0a5OXlITIyEra2D+eidHJyQkBAAGJiYmo000FBQejUqRMKCwuRmJiIAwcOICcnp8lrq6yshFqt1nt8RUWl3mNPLNhU6/LssynY5vmi3uuprxaVStXIdbgDaPhCO9/522pd7tB5AHrvvx+YlYX5uLF+Cnz/vg1WLVsbWEcFVCrTNqw7DlzRe+zney6gg7v+//ZSIbft2VSa834jJ18dTkd5RcNTuukAnEi8jfiEq/Byk998yvrmADPgIX0zAMwBo/Pw8ICVleGtseSa6ejoaAwaNAj+/v61Pu/u7g4PD49qy7y9veHt7Q380Vi/8MIL6NOnD4qLi7F06dKqcZWVlQgPD0dUVBS0Wi1eeOEFbNq0CTY2NnrVplar4ePjo/d7eb/1SHgpW+o93piuXLmCEANqr02XT5Jh266rHiMbln3kU1TkZSH9y4XVlrceNg3u4xfW+Tr88V58Rndrkjr0YwF0r3nhR610OuyMPoCda581dlEmJ7ft2VSa734jM22eAzyC9Rh4X7+BI4GSNKOWJAZzyYHmmgFgDjRKenp6Vb9oCEk102q1GhkZGQgNDa3xnFarRVJSEnr16tXgenr06IFevXph8+bN1Zrp1atXIzY2FklJSbC2tsa4ceOwePFibNy4scnfizGl7jmO1D3HxS6jUTxfXArPF5fqMdIc6ABNKaDQ40OXhQWgLTVFUbIhh+3ZVKS138iMofu1hjmgL2aAYZgDpiepZrqoqAgAYGFhUeO5/fv34/fff69xikddSkpKkJubW21ZREQE1q5dCy8vLwDAihUr8NJLL2H9+vVQKBq+s5CHhwfS09P1fDfAqZAPUXRD/9NCjMnf3x/pe75s1DrmXXZHuhn8ffD398d3Bvw7NIW///Mi9sZm6TX283WzMWbAu3qMlBa5bc+m0pz3GzlJyyrGoLCfGrxuwsICeMzLHrH/O1Pr3zKpM5ccYAYI09xz4NEzG/QlqWbax8cHCoUCcXFx1ZanpaVh3rz7V6v+uZlWq9W1/mJiY2ORnJyMoUOHVi3Lz89Henp6tdcHBASgoKAAN2/exOOPNzw3qJWVlUGHB5RK8/n1K5WG1V7rOq4CMINAUCqVjX4vhlr0qhJ7Yw/WO8bCAvBys8NfJ/SClZXkrv1tkNy2Z1NpzvuNnHh7A88NuomDP9bfiOh0wIIpPQw6JVBKzCUHmAHCMAeEMY+tXk/W1taYOnUqIiMjMX78eDz33HNIT0/HF198AXd3d2RkZFRrhmfNmoWsrCwMHz4c7du3R2lpKc6dO4fo6Gg4Ojpi3bp1VWMLCu7P/+vs/PAuVQ/+/8FzRHXp/6Q73vlbL7z7WSIsLGpOi2VhAdhYK7Dno+GybKSJCPjs7WcwYMp/cUtdVOeY8cPa4W8vdTJpXURkXJL7q75x40bMmDED8fHxCA8PR3x8PPbu3Yu2bdvCzs6u2oWJEydOhKurK6KiojB//nwsWbIEp0+fxsyZM3Hx4sVqjbejoyMA4O7du1XL8vPzqz1HVJ8VswOw5R/PwMut5l2mBvZyx0/bn0f/J91FqY2IjM/L3R6ndv4FEwJ9YWlZ/RSOlvZKLHmtB77+KJAfqIlkRlLfTAOAg4MDtmzZgi1btlRbnpycjO7du8PS8mFIhYSEICQkRK/1Ojs7w8fHB+fPn0fHjh0BAImJiXB0dISvr28TvwuSqxkvdsKrQf7Ydegapi7/EQBwdMuzGNnfS+zSiMgE2rrZ49v1gTiTlI2nJx0AAGxaNgDTxvnB3k6/6c+ISFpk8fE4Pz8fKpVK74sP6xIWFoYPPvgAmZmZyM7OxooVKzB9+nS9Lj40hSdeCcTYA6swZv9KOHdqV+uYZ799F/3XzDB5bULkHI3Ab4sH4LclA1FyM6nWMSlvDUXa5r+ZvLbGsLKyxLCn21Y97tzBud7xzZnctmlTkOt+IzeebR4eoRo3tB0b6TowAwzHDDA/smimk5Lub0yNbaaXLVuGwYMHo2vXrvDz80Pnzp2xZs2aJqqycaydHdBx2igcnvAP/PzGp+i78q81xniP6I2KwhJR6jNUZUEuso98io6r4+A7dyvSI+bXGJN/5iAUtjzFRq7ktk2bAvcbkhNmgOGYAeaJzfSfWFlZYePGjcjLy8Pdu3exdevWandZFFObXn5Qn7wEXaUG965lokWrlvevanvAwgKd/vosftt2RMwy9VZ09TQcug2FhZUSNt4dUXkvBzrtw7uH6bRaZB/ahDZj54haJxmP3LZpU+B+Q3LCDDAcM8A8yaKZnj17NnQ6Hfr16yd2KUZj7eyA8rsPrxCvKCyBdcuHhxH9QoYi7VA8NKUVIlVoGE1BLqwcXKoeW9o6QlP88OLPO8e2w7n/BFgq9bv7JEmP3LZpU+B+Q3LCDDAcM8A8yaKZbg7K7xbBuqV91WOlgy3K7xUDABQtlHhswiCkRh8TsULDKBxcoCnKr3qsLSmAws7p/v+XlyI37iu4BtY85EfyIbdt2hS435CcMAMMxwwwT5KbzaO5yk64ip7/FwILhSUcfNxQlnuvajJjh3ZusHayx4iopbB2doCtmzMef2kIrn0d1+B6xWLv3xeZu96BTlOJst9vwqqlKyz+mIml7PYNaIrykbryeVQW5qIiT407x3ag9fCpYpdNTUhu27QpcL8hOWEGGI4ZYJ7YTEtEeX4hrv4nBmP2roROp8UvSyPgNawnrJ0dcGPvCRx89k0AgEf/rugQ9IzZB46VYyu4jgxDytLBgKUl2s3chLsJR6ApyEWrIa+g87/OAgAKko4j96dohoEMyW2bNgXuNyQnzADDMQPMk4VO9+i92shU9g1ZgPwrKrHLAAA4+3sjKO7jRq0jJBa4bgY3i3zMEdgzTNwaVOoi+IyKBgCkH30Z3h72Db5G6uS2PZsK9xt5ao4ZADPKAWaAMMwBYXjONBERERGRQGymiYiIiIgE4jnTInL09RC7hCpNUYuXnR6DTMBc6mhu5LY9m4q5bK/mUgdJm7nse+ZShz7Mad8zp1qkhOdMExlBcz1fkojuYwYQNR88zYOIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJBCbaSIiIiIigdhMExEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNREYxYsQITJ8+XewyqikoKMDrr7+O1q1bw97eHmPGjMG1a9fELotItswxBxYsWIC+ffvCzs4OVlZWYpdDMsBmmoiajSlTpiAmJgbffPMNTpw4AZ1Oh5EjR6KkpETs0ojIRDQaDV555RXMnj1b7FJIJviRTEQx0z5EwU212GUAABx9PRC4fUmj1rEwHsgobrKSBPOyA9b3FbsKedi0aRM2bdqEa9euwcnJCYMGDcK3334LX19fhIWFYfny5VVjw8LCkJqaiuPHj2P69OmIiYkBAGzfvh0AEBsbi6FDh9b78yorK7Fq1Srs2LEDKpUKrq6umDBhAj755BOcPHkSQ4YMwZ49exAcHFy1zlGjRuHgwYMYPXp0veu+cuUK9u/fj++++w7Dhg0DAOzatQseHh7YvXu3aN+emUsOyCkDwBxoUnLKAQD45JNPAADbtm1r1O+lqZhLBkBmOWDKDGAzLaKCm2rkX1GJXUaTySgGrheIXQU1lXfeeQfr1q3Dhx9+iFGjRqGwsBCHDx/W67UbNmzA9evX4enpiQ0bNgAAWrVq1eDrXnvtNRw+fBjr1q3DgAEDkJ2djVOnTgEABgwYgBUrVuC1115D7969YWtri8mTJ2PhwoV6/QH9+eefoVQqERgYWLXMxcUFTz/9NE6cOCFaMy2nHGAGyI/ccsAcySkD0ExzgM00EdVQVFSEtWvXYuXKlZg7d27V8oCAAL1e7+TkBGtra9ja2sLDw0Ov16SmpmLHjh34+uuv8eKLLwIAHn/8cfTr169qzNKlSxEbG4tJkybB0dERXl5eWLVqlV7rz8rKgqurKxQKRbXlHh4eyMrK0msdRM2JHHOAyBjYTBNRDZcuXUJpaSlGjRplsp+ZkJAAAPX+TEtLS0RFRaFz586orKzExYsXoVQqTVYjUXPCHCDSDy9AJCKDWVpaQqfTVVtWUVFhkp99/vx5FBUVobS0FOnp6Xq/ztPTEzk5OdBoNNWW3759G56enkaolEjepJgDRMbAZpqoiZSWVeLICRVWfX4es97/uWr5/62Lx6boyzh3OafGHx5z1aVLF9jY2ODo0aO1Pu/m5obMzMxqyxITE6s9tra2rtG41ufBoeO6fiYAqNVqTJs2DW+99Rbmzp2LyZMnIzc3V6/1P/PMM6ioqMCxY8eqluXn5yM+Ph4DBw7Uu06i+qTeuofIfVew/N/nqpa99s5PWLbhLL79/gZy75aJWp8h5JgDRMbA0zyIGinjdhE2fHUJX+67gjv5Nf9Q7v7uBnZ/dwMA0P0JF8wO7YxXg/1hrVTUsjbz4ODggPDwcKxYsQK2trZV08cdOnQIS5cuxYgRI7B582YEBwejffv2+Oyzz5CWllbt4qIOHTogNja2agYAJyeneg/F+vn5YdKkSZg9ezZKS0vRv39/5Obm4uTJk5g/fz50Oh2mTp2KTp064e2334ZGo8GPP/6IV199Ffv27WvwPfn7+2P8+PGYNWsWtm7dCicnJyxbtgxeXl4IDQ1tst8dNT86nQ77Y9PwyX8u49jpmuffHz2VgaOnMgAANi0UePnZx7BwSjf08G/4YjwxyTEH8Md52YWFhbh16xbwx7fcD362g4NDo39v1PywmZaIgR/PgV/o/em8tBoNSm7nI+vnZCSs/grFaml9Ir+5YTruHLs/TRIsLaF08YRj9+HwmvoBrFt7iV2e3nQ6Hb7cewVvfBSPe4X6HdpMupqHWe+fxGdf/4ZtKwejZ6fWRq9TqJUrV6JNmzbYuHEjFi5cCBcXFwwePBgA8OabbyItLQ2hoaFQKpWYPXs2XnrpJaSmpla9Pjw8HElJSXjyySdRVFSk15RYkZGReO+997B8+XJkZmbCzc2t6iKktWvX4uzZs7hw4QIUCgUUCgWio6PRu3dvbNq0CXPmzGnwPUVFReGNN95AcHAwSktLMXjwYBw9ehS2traN/n0Zm5wyADLKgYzbRZi58mf870f9TjUoLdNg2/6riDqYijf/2gP/+FsvtLA23w/WcsyBsLAwxMXFVT3u1asXoOe0fWKTUw7IJQMAwEInlePOMrRvyAK9p8MZ+PEcOLR3R9yMf8FCYQlHX3f0Wx2GisJSHBr3VqNrcfb3RlDcx41aR0isftPh3NwwHWXq63hs8R7otBqUqa/h1pY5UNg4otPak42qAQAecwT2DGv0aupVUaHFtOVx2HX4uuB1WCkssPXdQZg67okmrY2kRd8ckFMGQCY5cOrCbTw35yjy7pULXsdTXV1xePNouLrYNGltJB3sBaSbAQ/wnGkJ0ZZXoiQ7H8XqXNz+5Vek7PwBbn06Qulg/t+qPcrCyhpKFw9Yt/aCY9fBaDNqBopSTkFTfE/s0hqk0WgxaenxehtphcICXu528HK3g0JhUeuYSo0O05b/iKj/XjVitSQncsoASDwHziRnY9TMI3U20vpkAACcvZSDwNcPI++edM6lJnHJKQeknAF/JvvTPFJSUvDee+8hISEBmZmZqKioQLt27TB27FgsWrRIslfx27q7wPf5ftBWaqDTaMUup1HK72Qi7+Q3gKXi/n9mbm1kEr4+eqPeMR6utlB9PxEA4D1yFzJu1307qNfeOYFenVqj2xPmff5kY82ePbveO47FxcWhvLwc27Ztw/Tp02FtbV3v+vr06VPtcdeuXZGWllbr2MmTJ+Ozzz4TWLl5klMGQGI5kH+vDMELfkBhcWWdYwzJgItXcjHj3RP4el1gnWPkgjnQtOSUA1LKgEfJvplWqVTIyspCcHAwvL29YWVlhaSkJHz++eeIjo7G+fPn4ebmJnaZevEY0BWTUqNgYWkJK9sWAIDkTw+gsuT+NxpDvwhHZtwFXNn5AwCgVbcOGLx5Pv47chE0ZaaZrkhfBcnHkRjqAJ1WC115CQDAPSgcCht7AEDeqb3I2v1utdeUpl+GT9gGtBkzS5SaAeBSah5WfJrQpOusqNRi+ts/4VTUX6BUyvdg0YQJEzBixIh6x5SXlyMiIgKvvPJKg39EH3Xo0KE6p+Vq2bKlQesyV3LKAEg4B8LXnUbG7017v+Rvvr+JPd9dR8jox5p0veaGOdB4csoBqWbAo2TfTAcGBla7ffADgwcPRkhICLZt24bFixeLUpuhshOu4sT8f0PRQgnfcQPQdlAPJK7ZVfX86bcjMWb/SqQdikdZXiH6f/g64pdtNbudBwDs/fvCd8F26MpLkXdiD+5d+AFtJ71f9bxL/2C49A+uepz/yz5kRC1D6+HTRKr4vrc+OYvyiqb/9H/ucg6ij1zDlL/I9/zpB1fyG0v79u2Ntm5zIacMgERz4FJqHr7ce8Uo6170r9N4YYQvFAr5fqhmDjSenHJAihlQG0nvsRcuXMD48ePh5OSEli1bIigoCFlZWXB0dMTLL79c72sf7HB5eXkmqrbxNKXlKLipRn5KOs7/czcK0n9H31WvVT1frM7FpS0H8dTbU9BxykjcvZ6FrBNJotZcF0trW9h4+sG2fTe0nfQeWrh3QPrn82odW56jwq0tc9BhUTQsW9iZvNYHbmUV4r9xxrs5wObdvxpt3SQPcsoASDQHPt1jvP30VlYRDp/Q70I0ar7klANSzIDaSLaZjomJQb9+/ZCSkoLly5dj9erVUKlUGDNmDAoLC9GzZ89q40tLS5GTkwOVSoWjR49i5syZAICxY8eK9A4a7/xHu+EXOgytn3y8atlvkUfg3NEH3ecG4cy720WtzxCeE1cgJyYSRVfPVluu02pxY/1keLywBHa+PUSrDwC++t81aLXGm/zml4vZSLmRb7T1S4GVlRXGjRsHKyvZHzRrEnLKAEggBzQaLaIOpuoxUrht+3lBMnPAMHLKAXPPgLpIspnOzs5GaGgoAgICkJiYiEWLFmHu3LmIiYmpmoT90WY6IiICbdq0gY+PD0aPHo38/Hzs3LkTgwYNEuldNF7BDTXSvz+LgCUTHy7U6ZCy43uoYhJQdkc6V8PatH0Czn3+gsyd1af2ydrzPhS2LeH2fO2fVE0pPul3o/+M08nZRv8Z5szGxgbLly+HjQ2nCdOHnDIAEsiBlJt39Z5TXqjmngFgDhhMTjlg7hlQF0l+7FuzZg3y8vIQGRlZ7WYLTk5OCAgIQExMTI1mOigoCJ06dUJhYSESExNx4MAB5OTkNGldlZWVUKvVeo+vqKj7SnB9JW8+gOf+uwoe/btCferS/YVaLXQGfoNaUVEJlapxhxcrKtwB1H1nq4a4By9CypJnUJB0HI7dh6Lw159x54et6Pwvwy74q6iogEp1W3AddTmTXL2ZVigs4OFa+1REnn9a7lnHGABQ55RAo3n4bxV3+iaG9ZLe9Eb6KCoqanBMWVkZNm7ciL///e9o0aJFvWMbu72ai8bmgJwyAGaeA9+fyKyxrK4cEJoB6eoinE++Blfn+rd/qWIO1MReoDoxM8DDw0PQERFJ3rTF29sbfn5+OH78eI3nRowYgeTk5Aab2osXL6JPnz5YsWIFli5dWrV8z5492LhxI86fPw9XV1fcvHlT77pUKhV8fHz0Hv9+65HwUjb91cV+IUPR+snHEf/WVr1fk1FxD8vvfN+on9vlk2TYtuvaqHU8UFmYj1/fCIDv3K1w7GHYrOslty7h8rxuTVJHNV0/BSwfBoSXu13V1FdC1ZgyKz8eSP+iUes0V2FhYQ2OKS8vx44dOzB16tQGr+KPiIhowurEY4wckEMGwBxzwHUU4BlSbVFjc6DWafOu/AMoq9m4ywFzoCb2AnUzdQakp6fD29vbwCol+M20Wq1GRkYGQkNDazyn1WqRlJRUdWvQ+vTo0QO9evXC5s2bqzXTLi4umDt3Lm7fvo3169c3ef2kn+wjn6IiLwvpXy6strz1sGlwH7+wztcZV903XpDWzyCSBvPLARPtnxaSPAOTqMmZXwbUTnLfTF+7dg1+fn4IDw/HRx99VO25vXv3YsKECXjzzTfx4YcfNriuJ598EqmpqbUedtq3bx8WLFhg0DfThp7mcSrkQxTd0H+8Mdl38ED/PUsatY55l92RXtq4Q7xNwcemAp90afrTPHpOjMWduw/vdtbQaR5ndgUBAPpM3IesnJJaxz16iHfyWB98MLdLk9duDlJTG75wq6ioCM8//zwOHjwIe3v7esf6+fk1YXXiMZcckFMGwEg58J8j6Xhz4+Vqy+o7zUNIBgBA/PbBaNtGnqd7MQdqMpcMgMxyQEgGCD3NQ3LfTPv4+EChUCAuLq7a8rS0NMybd//E9D+fL61Wq+Hh4VFjPbGxsUhOTsbQoUObrDYrKyuDDg8olebz61cqDau91nVcBVDaZCUJr0OpbPR7qU1AF1d8f+rhoVeNRlfvXc0eyMop0WscAAzs3c4otZuDrKysBscolUqEhYXB2dm5wcO7cvk9mUsOyCkDYKQcGNavBfBIM61PDhiSAa2cWqBPTz9YWMjzKBVzoCZzyQDILAeM1QvUxnz+BfVkbW2NqVOnIjIyEuPHj8dzzz2H9PR0fPHFF3B3d0dGRka1ZnrWrFnIysrC8OHD0b59e5SWluLcuXOIjo6Go6Mj1q1bJ+r7Iel4qkubas20MfTu0tqo6zd31tbWmDFjhthlENWqh38rKK0sUVFpvNs2P9XVVbaNtL6YAyQ1kjwxa+PGjZgxYwbi4+MRHh6O+Ph47N27F23btoWdnR38/f2rxk6cOBGurq6IiorC/PnzsWTJEpw+fRozZ87ExYsXa8z6QVSXkNEdjLp+v3YtEdDZ1ag/w9yVlJRg3rx5KCmp/ZA4kZhaWCsQHGjcO+y9/Ky8byeuD+YASY3kvpkGAAcHB2zZsgVbtmyptjw5ORndu3eHpeXDzwghISEICQmpZS1EhunZqTUG9HTDyfPGmW96VkgnWFo272+kNBoN4uPjodFoxC6FqFazQztjz3c3jLJul5bWCB3NZpo5QFIjyW+ma5Ofnw+VStXob5o1Gg1KS0tRUVEBnU6H0tJSlJWVNVmdjfHEK4EYe2AVxuxfCedO7Wod8+y376L/GmkcHss5GoHfFg/Ab0sGouRm7bc6TXlrKNI2/83ktdVlxawAo6zX290eYRM6GmXdJC9yygEpZsDg3h4Y/rSnUda95NUnYWcrye+4yITklAGQaA48SjbNdFLS/X+AxjbTUVFRsLW1RUhICG7dugVbW1t07Ch+k2Pt7ICO00bh8IR/4Oc3PkXflX+tMcZ7RG9UFErjsFhlQS6yj3yKjqvj4Dt3K9Ij5tcYk3/mIBS2jqLUV5eR/b3w+gtNvz1ErBiIlg71X2hDJKcckGoGWFhYIGLFINg3cdP7dLc2eGOqEebHJ1mRUwZAwjnwKDbTj5g+fTp0Ol21/wyZHs9Y2vTyg/rkJegqNbh3LRMtWrUE/nyRioUFOv31Wfy27YiYZeqt6OppOHQbCgsrJWy8O6LyXg502ocX9ei0WmQf2oQ2Y+eIWmdt1v3f0+jVqf4LBdU5JfAeuQveI3dBXceUWA+8+WoPjH5G+lekN4UWLVpg2bJlDd71rLmSUw5IOQM6eDti67uDUN91goZkQBsXG+z8YAisrGTzJ7lRmAN1k1MGQOI58Gey2XNnz54NnU6Hfv36iV2KUVg7O6D87sP5sCsKS2Dd0q7qsV/IUKQdioemtEKkCg2jKciFlYNL1WNLW0doiu9WPb5zbDuc+0+ApdJGpArr5mhvjaNbnkVA57ob6gfTZWXcLq4xh+yfvTG1Gz6Y/5SRKpUepVKJoKAgKJXiz1FqjuSUA1LOAAAIffYxRL43uM7rHPTNAA9XW8R8MQZPtHcyYrXSwhyom5wyADLIgQdk00zLXfndIli3fDh5vdLBFuX37s9bqmihxGMTBiE1+piIFRpG4eACTVF+1WNtSQEUdvf/mGjLS5Eb9xVcA2sevjIXri42iIt8DnNe7izo9c6O1tixajA+Cn+62U+D9WfFxcUIDQ1FcbF+c/I2N3LKAalnAABMG/8Ejm8di8d9hB2CHjPQG2f+Mx7d/Vs1eW1Sxhyom5wyADLJAbCZlo7shKtw79cZFgpLOPp6oCz3HvDHzSsd2rnB2skeI6KWovfbk+EV2AuPvzRE7JLrZe/fFwWXfoROU4nSrFRYtXSFxR+zsJTdvgFNUT5SVz4P1fbFuHvuEO4c2yF2yTU42Cnx72UDcPzLsRjRr61er7GzscKMFzvi0t4JmPKXJ9hIP0Kr1eLGjRvQao03j6+UySkH5JABADCotwcufB2Mt2f2hFsr/b496+HfClGrh+B/m0bB26P+O/w1R8yBuskpAyCjHOBlwxJRnl+Iq/+JwZi9K6HTafHL0gh4DesJa2cH3Nh7AgeffRMA4NG/KzoEPYNrX8c1uE4xWTm2guvIMKQsHQxYWqLdzE24m3AEmoJctBryCjr/6ywAoCDpOHJ/ikbr4VPFLrlOQ57yxJCnPJFyIx//LyYN5y7n4MKVXNwtKK+61XDvzq7o18MNL43qACdHXmhIwsgpB+SUAfZ2Srw3pzeWz+iJA7G38GOCGucu5+BGRiEqKrWws1Ggy2Mu6N2lNcYM9MGAnm78IE2CyCkDIKMcsNDpdHWfzEVGtW/IAuRfUYldBgDA2d8bQXEfN2odIbHA9YImK0mwxxyBPcPEroIedebMmQbHFBYWYvjw4Th27BgcHBzqHdunT58mrE485pIDcsoAMAfMFnOgJnPJAMgsB0yZATzNg4jMho2NDTZs2AAbG/O+2ISIjIc5QFLD0zyIyGxYWVmhf//+YpdBRCJiDpDU8JtpIjIbhYWFGDZsGAoLC8UuhYhEwhwgqeE30yJy9PUQu4QqTVGLl50eg0zAXOogYYqKivQYJR/mkgNyygCYWS1kuOaUA+aSAZBZDpiyDjbTIgrcvkTsEprU+r5iV0AkPXLKAWYAkeHklAFopjnA0zyIiIiIiARiM01EZsPW1ha7du2Cra2t2KUQkUiYAyQ1bKaJyGxYWlrC3d0dlpaMJqLmijlAUsMtlYjMRlFREYYPH96sLj4iouqYAyQ1bKaJiIiIiARiM01EREREJBCbaSIiIiIigSx0Op1O7CKIiABAp9OhoKAAjo6OsLCwELscIhIBc4Ckhs00EREREZFAPM2DiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBPr/a7kI63WZY9kAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAACPCAYAAAA4J1eUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnQ0lEQVR4nO3deVhU9f4H8DfLIKPsqIBAoBLmmmKmmPuWlrmVUubWleu9KaZGi5reLHdvZerVMuWiUtel+qllVioqhVvugSYKAgKCooCyLzPz+4PEkG3mMDNn4f16Hp+nOec7hw90zpsPZ875HgudTqcDEREREREZzFLsAoiIiIiI5IrNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQnEZpqIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJBCbaSIiIiIigdhMExEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCWYtdQEMWOXkFcpMyxC4D9r7uGLh1br22MecUkFZgtJLqxbMxsLq72FU0PFLZn2GkfdoceNyQ0kglB+SSAZBQDjADhGMzLaLcpAzkXE0VuwyjSCsArueKXQWJSUn7s7nwuCGlYQ4Yjjkgf7zMg4iIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUC8AVEmen06A35B/QEAWo0GhbdykH4sFueWfYWCjCyxyzNI0popuHt4a/kLS0uonD1g33EAPCcth42rp9jlkRkoaX82Fx43pCTMAMMxA6SLZ6ZlJOPkZezsFIxvnnodv8z4FK4dfNHvi1CxyxLErl1vdNqSjo6bb6Bl6P9QkHge11eOFbssMiMl7c/mwuOGlIQZYDhmgDSxmZYRbUkZCjNzUJCRhVsn/0Dcl4fQvFsbqOzUYpdmMAtrG6ic3WHj6gn79n3QbMg05MedgKbgvtilkZkoaX82Fx43pCTMAMMxA6SJzbRMqd2c4Tu8B7RlGug0WrHLqZeSuzeRffwbwNKq/B81OEran82Fxw0pCTPAcMwA6VD8NdPLly/HuXPncPbsWSQmJsLHxwdJSUlilyWIe8/2eDU+AhaWlrBWNwIAxH72HcoKiwEA/TaF4mbURVz98hAAwKVDS/TZMAvfD34bmuJSUWt/VG7sUZwPsoNOq4WupBAA4DYqFFa2TQAA2Sd2I33nB5XeU5RyGd7Ba9Bs2Oui1EzGpaT92Vx43JCSMAMMxwyQJsU30/Pnz4eLiwsCAgKQk5Mjdjn1knnuGqJn/QdWjVTwHdETLXp3wvmV2yvW/7YwHMP2Lkby/lMozs5D4Iq/49T8MEmGThP/7vCdvRW6kiJkR+/C/YuH0OLVJRXrnQNHwzlwdMXrnJN7kBYxH64DJotUsWESUu4j9VY+1I2s8WQbFzSy4VmDRylpfzYXpR83SlJYVIbfr2ahqEQDHw87+Hrai12S5DADDMcMkCbFN9MJCQlo1aoVAKBDhw7Iy8sTuyTBNEUlyE3KAABc+PdO2Pu6o/vSqTj+1ucAgIKMLFzauA9PLZyIO+fjce96OtKjY0SuunqWNmrYevgBANQ+HVCckYCUL2bCJ2RTlbEld1JxY+MM+L3/IywbNRahWv19f/QGVoX/jujztyqWNXVqhOAX22De1CfhYGcjan1SoqT92VyUetwoSda9YizbdAH/3XMV2fdLKpb37+aBuVM7YUhPL1HrkxJmgOGYAdIk22umL168iJEjR8LR0REODg4YNWoU0tPTYW9vj5dffrli3INGWokufLQTfkH94fpk64plV8J/glMbb3QMGYXTH2wVtT5DeLyyCHciw5F/7Uyl5TqtFomrJ8D9xblo7NtJtPr08cm2GIx44yCO/aWRBoC794qxIux39HntB2TfLxatPqlT0v5sLko4bpTk9t1CPDPpe3y8LbZSIw0AR06nY+jrP2Pj11dEq0/qmAGGYwZIgyyb6cjISPTo0QNxcXFYsGABli1bhtTUVAwbNgx5eXno3Lmz2CWaRW5iBlIOnkHA3FceLtTpELftIFIjz6H4rnzu7rVt8Ticur2Am1++V2l5+q4lsFI7oPnwmaLVpo8jv91E6Ee/AQB0j6zT/bngYlwWgt+PNn9xMqGk/dlc5H7cKM2EeUdxJfFerWNeX3IMv8Vkmq0mOWEGGI4ZIA2ya6YzMzMRFBSEgIAAnD9/Hm+//TZCQkIQGRmJGzduAECDaaYBIHbDd/Ds1xnuge0fLtRqodM+2tJJn9vot3H/wgHkxhwFAOT9cQx3D4XB941wsUur05qvLuk1bvfhJCSl5Zq8HrlS0v5sLnI+bpQk9loWDp68WesYna7837rt+uVFQ8QMMBwzQHyyu2Z65cqVyM7ORnh4ONTqh3NROjo6IiAgAJGRkaI102VlZcjIyNB7fGlpmd5jo2evr3Z55pk4bPF4Se/t1FRHampqPbfhBkCl11jfWVuqXW7Xtie67i0PzLK8HCSungjfN7bA2sHVwFpKkZp6S4+RxpFbUIbvj97Qa6xOB2zceR4zxinv8iOp7M8w0j5tDg35uFGajbuu6T1250/X8cHfW8FGJbvzWXXSNweYAQ/pmwPMANNzd3eHtbXhrbHsmukdO3agd+/e8Pf3r3a9m5sb3N3dBW27rKwMoaGhiIiIgFarxYsvvoj169fD1tZWr/dnZGTA29tb76+3xHUwPFUOgmo1pqtXr2KcAXVXp926WKgfa6/HSP1k/vQZSrPTkfLfOZWWu/afDLeRc2p8H/78fryf7WC0WuqkcgWeWKn38BUfrceK0F0mLUkMUtmfYaR92hwa9HGjNJ6TAJc+eg0tLdOh9ePtAY18b4iviVRyQC4ZACPnADOgflJSUuDlZfhNwrJqpjMyMpCWloagoKAq67RaLWJiYtClSxfB21+2bBmOHDmCmJgY2NjYYMSIEXjnnXewdu3aelZuXvG7jiJ+11Gxy6gXj5fmweOleWKXoR+tgTcVaopMVYkiKWF/NhdZHTdKY+hxbWhuNGDMAP0xA8Qhq2Y6Pz8fAGBhYVFl3d69e3H79u16XeKxefNmrFq1Cp6engCARYsWYezYsVi9ejWsrOqeJ9jd3R0pKSl6f70T41YgP1H/y0JMxd/fHym7/luvbcy87IYUifSI/v7++NmA/w/GMPqtUzhzWb95zPfvXI6OftV/xClnUtmfYaR92hwa+nGjJCdjsjD23dN6je3XtSki9l83eU1ikEoOyCUDIKEcYAZA8JUNsmqmvb29YWVlhaioqErLk5OTMXNm+R2rQpvpnJwcpKSkVHp/QEAAcnNzkZSUhNatW9f6fgCwtrY26OMBlUoaP36VyrC6q93GNQASCAMAUKlU9f5+DBU6uRivvFv3mZPATs0xrF87s9RkblLZn2GkfdocGvpxoyQvenqi/RfXcDkhp8qMPo8KndJFsT9rqeSAXDIAEsoBZoBw0tjr9WRjY4NJkyYhPDwcI0eOxPPPP4+UlBRs2rQJbm5uSEtLq9JMR0REIDk5GfhzJpCSkhIsWVL+tCAfHx9MnDgRAJCbWz7DgpOTU8V7H/z3g3VENQka2go/H0/Dlr3XYFHN9HgA0MzZFtuW9RWhOiIyNQsLC+xY1R+9p/yAnNySquv/zIWQV9rh+T7yuJaXiPQjq2YaANauXQuVSoW9e/fi8OHDCAwMxO7du/Hhhx8iPj6+yo2JYWFhVc5kL1y4EADQt2/fimba3r78Ua/37t2rOM3/4PHjD9YR1cTCwgJhH/SGn7cDVkfE4u694r+sA4Y+44V18wLR2lv8G3OIyDQ6PO6C4xEvYNbKEzh4ovI0ec1cbPHOa53w5qQO1V6qSETyJbtm2s7ODhs3bsTGjRsrLY+NjUXHjh1haVl5qqGjR/W7acHJyQne3t64cOEC2rRpAwA4f/487O3t4evra8TvgJTK0tIC703rjLemdMS2765h2ofHAAC/bhmOZ7q4iV0eEZlB21ZOOLBxGH45k46+f9sPANi8qBcmvuAHG1Xd994QkfwoYpLLnJwcpKam1nt+6eDgYCxfvhw3b95EZmYmFi1ahClTpuh186E5PD5+IJ77bimG7V0Mpyceq3bM0G8/QODKaWavTYg7Bzbjyjs9cWVuLxQmxVQ7Ju69fkje8E+z11YfjWysMKzXw49xfTzsRK1HypS2T5uDUo8bpWnl9fBTqGd7erGRrgEzwHDMAOlRRDMdE1O+M9W3mZ4/fz769OmD9u3bw8/PD23btsXKlfrPH2xKNk52aDN5CH4c8y8ce/MzdF/8WpUxXoO6ojSvUJT6DFWWm4XMnz5Dm2VR8A0JQ8rmWVXG5JzeBys1L7FRKqXt0+bA44aUhBlgOGaANLGZ/gtra2usXbsW2dnZuHfvHsLCwio9ZVFMzbr4IeP4JejKNLifcBONXBzKL8Z9wMICT7w2FFe2/CRmmXrLv/Yb7Dr0g4W1CrZebVB2/w50Wm3Fep1Wi8z969HsuRmi1kmmo7R92hx43JCSMAMMxwyQJkU009OnT4dOp0OPHj3ELsVkbJzsUHIvv+J1aV4hbBwaV7z2G9cPyftPQVNUKlKFhtHkZsHazrnitaXaHpqCexWv7x7eCqfAMbBU6ff0SZIfpe3T5sDjhpSEGWA4ZoA0KaKZbghK7uXDxqFJxWuVnRol9wsAAFaNVGg1pjfidxwWsULDWNk5Q5P/8CEn2sJcWDV2LP/vkiJkRX2FpgOrfuRHyqG0fdoceNyQkjADDMcMkCbZzebRUGWeu4bOb42DhZUl7LybozjrPqArn83Y7rHmsHFsgkER82DjZAd1cye0HtsXCV9H1bldsTTx746b29+HTlOG4ttJsHZoCos/Z2IpvpUITX4O4hcPR1leFkqzM3D38Da4DpgkdtlkRErbp82Bxw0pCTPAcMwAaWIzLRMlOXm49r9IDNu9GDqdFifnbYZn/86wcbJD4u5o7Bv6LgDAPbA9Wo56RvKBY23vgqaDgxE3rw9gaYnH/rEe9879BE1uFlz6jkfbT84AAHJjjiLr1x0MAwVS2j5tDjxuSEmYAYZjBkiThU6nq+vJp2Qie/rORs7VVLHLgJO/F0ZFfVqvbYw7AlyXyIMiW9kDu/qLW0NqRj68h+wAAKQceBle7k3qfI/cSWV/hpH2aXPgcaNcDTEDIKEckEsGQEI5wAwQjtdMExEREREJxGaaiIiIiEggXjMtIntfd7FLAIxUh2djPQaZiZRqaUiksj9DYrXURkr7qpRqIfmSyrEnlTr0IZVjTyp1yBGvmSYygYZ6vSQRlWMGEDUcvMyDiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUQmMWjQIEyZMkXsMirJzc3F3//+d7i6uqJJkyYYNmwYEhISxC6LSLGkmAOzZ89G9+7d0bhxY1hbW4tdDikAm2kiajAmTpyIyMhIfPPNN4iOjoZOp8PgwYNRWFgodmlEZCYajQbjx4/H9OnTxS6FFIJ/kokocvIK5CZliF0G7H3dMXDr3HptY84pIK3AaCXVi2djYHV3satQhvXr12P9+vVISEiAo6MjevfujW+//Ra+vr4IDg7GggULKsYGBwcjPj4eR48exZQpUxAZGQkA2Lp1KwDgyJEj6NevX61fr6ysDEuXLsW2bduQmpqKpk2bYsyYMVi3bh2OHz+Ovn37YteuXRg9enTFNocMGYJ9+/bh2WefrXXbV69exd69e/Hzzz+jf//+AIDt27fD3d0dO3fuFOXsmVQyAArLAWaAcSkpBwBg3bp1AIAtW7bU6+diLFLJAWNkABpoDrCZFlFuUgZyrqaKXYZRpBUA13PFroKM6f3338fHH3+MFStWYMiQIcjLy8OPP/6o13vXrFmD69evw8PDA2vWrAEAuLi41Pm+qVOn4scff8THH3+Mnj17IjMzEydOnAAA9OzZE4sWLcLUqVPRtWtXqNVqTJgwAXPmzNHrF+ixY8egUqkwcODAimXOzs54+umnER0dLUozraQMAHNAkZSWA1LEHJA/NtNEVEV+fj5WrVqFxYsXIyQkpGJ5QECAXu93dHSEjY0N1Go13N3d9XpPfHw8tm3bhq+//hovvfQSAKB169bo0aNHxZh58+bhyJEjePXVV2Fvbw9PT08sXbpUr+2np6ejadOmsLKyqrTc3d0d6enpem2DqCFRYg4QmQKbaSKq4tKlSygqKsKQIUPM9jXPnTsHALV+TUtLS0RERKBt27YoKyvD77//DpVKZbYaiRoS5gCRfngDIhEZzNLSEjqdrtKy0tJSs3ztCxcuID8/H0VFRUhJSdH7fR4eHrhz5w40Gk2l5bdu3YKHh4cJKiVSNjnmAJEpsJkmMpL7eSXYeyQZ/1p/FtM+jK5YPm/NaWz65gr+uJ4jan2GaNeuHWxtbXHgwIFq1zdv3hw3b96stOz8+fOVXtvY2FRpXGvz4KPjmr4mAGRkZGDy5Ml47733EBISggkTJiArK0uv7T/zzDMoLS3F4cOHK5bl5OTg1KlT6NWrl951EtUm5moWNn59Be+u/q1i2T8+jMYHn53DvqgbyCswT7NpDErMASJT4GUeRPUUl5iDT7+8hIh98cgvLKuy/ssfEvDlD+VzGffs3BwhL7dD0NBWsLS0EKFa/djZ2SE0NBSLFi2CWq2umD5u//79mDdvHgYNGoQNGzZg9OjR8PHxweeff47k5ORKNxe1bNkSR44cqZgBwNHRsdaPYv38/PDqq69i+vTpKCoqQmBgILKysnD8+HHMmjULOp0OkyZNwhNPPIGFCxdCo9Hgl19+wd/+9jfs2bOnzu/J398fI0eOxOuvv46wsDA4Ojpi/vz58PT0RFBQkNF+dtTwaDRafLkvAet3Xsbp2DtV1u+PTsX+6PIbzBzsVJg84nHMntAerbwcRKhWf0rMAfx5XXZeXh5u3LgB/HmW+8HXtrOzq/fPjRoeNtMy0evTGfALKp/OS6vRoPBWDtKPxeLcsq9QkCGvv8iT1kzB3cPl0yTB0hIqZw/YdxwAz0nLYePqKXZ5eisr0+KjrTF4f8M5lJRq9XrP8Qu3cfzCbXzxbRzCPugl6V+mixcvRrNmzbB27VrMmTMHzs7O6NOnDwDg3XffRXJyMoKCgqBSqTB9+nSMHTsW8fHxFe8PDQ1FTEwMnnzySeTn5+s1JVZ4eDg+/PBDLFiwADdv3kTz5s0rbkJatWoVzpw5g4sXL8LKygpWVlbYsWMHunbtivXr12PGjBl1fk8RERF48803MXr0aBQVFaFPnz44cOAA1Gp1vX9epsYMkKYriTl4beEvOPl7pl7j7+eVYt3/LmPz/8Vh+RtPYeb49pL+w1qJORAcHIyoqKiK1126dAH0nLZPbMwBabLQPXrBE5nNnr6z9Z4Op9enM2Dn44aoaZ/AwsoS9r5u6LEsGKV5Rdg/4r161eHk74VRUZ/Waxvjjug/FU7SmikozriOVu/sgk6rQXFGAm5snAErW3s8sep4veoAgFb2wK7+9d5MrXLzSzDyjUM4clr4LBBN1NbY/ekgDA6UV2iQ8UglA2DmHFBCBgDA3iPJePmdIygq1v8yhkc919sLX380EI3VPLfVUEklB4yRAWiAOQBeMy0v2pIyFGbmoCAjC7dO/oG4Lw+hebc2UNlJ/6zaoyysbaBydoeNqyfs2/dBsyHTkB93ApqC+2KXVqeCwjI8N/1ArY20lZUFPN0aw9OtMaysqj/rlF9YhuEhBxB58ma164kexQyQju+P3sCLb0bW2EjrkwEAsP/XVIycdRDFJcIbcmpYmAPS0yD+FF6+fDnOnTuHs2fPIjExET4+PkhKShK7rHpRuznDd3gPaMs00Gn0u8RAqkru3kT28W8AS6vyfxI3598nEX3+Vq1j3JuqkXrwFQCA1+DtSLtV/eOgSkq1GPtWJC7tfhEezRqbpF6pmD59eq1PHIuKikJJSQm2bNmCKVOmwMbGptbtdevWrdLr9u3bIzk5udqxEyZMwOeffy6wcmliBognKS0X4+cehUZT8we7+mYAABw6eRML1p3Fv0OfNkm9UnH69GmEh4fXmgMHDx7UOwPAHGAOSESDaKbnz58PFxcXBAQEICdHPjMqPMq9Z3u8Gh8BC0tLWKsbAQBiP/sOZYXFAIB+m0JxM+oirn55CADg0qEl+myYhe8Hvw1NsbTuIM+NPYrzQXbQabXQlRQCANxGhcLKtgkAIPvEbqTv/KDSe4pSLsM7eA2aDXtdlJoB4NDJNHzxTZxRt5l9vwT/XHwMe9YMgoWFdK+drK8xY8Zg0KBBtY4pKSnB5s2bMX78eL1+kf7V/v37a5yWy8FButemG4IZIH4G6HQ6TH3/V6PPyvHxthiMGeSDwCfdjLpdqakrB+qTAWAOAMwBUTSIZjohIQGtWrUCAHTo0AF5eXlilyRI5rlriJ71H1g1UsF3RE+06N0J51dur1j/28JwDNu7GMn7T6E4Ow+BK/6OU/PDJHfwAEAT/+7wnb0VupIiZEfvwv2Lh9Di1SUV650DR8M5cHTF65yTe5AWMR+uAyaLVHH5L9G3Pv5Nj5GG++7oDfx6NgN9nlLufMcP7uQ3FR8fH5NtWyqYAeJmAAD8GJ2Kw78Z/4mZOh3wzien8evW4UbftpTUlQP1/f3MHGAOiEHW10xfvHgRI0eOhKOjIxwcHDBq1Cikp6fD3t4eL7/8csW4B4203GmKSpCblIGcuBRc+PdO5KbcRvelUyvWF2Rk4dLGfXhq4US0mTgY966nIz06RtSaa2Jpo4athx/UPh3Q4tUP0citJVK+mFnt2JI7qbixcQZavr0Dlo3EuxTixMXbuBhnurulP9t1xWTbJmVgBoibAQCwYecfJtt29Plb+P2qvGZkIPNjDoifA4+SbTMdGRmJHj16IC4uDgsWLMCyZcuQmpqKYcOGIS8vD507dxa7RJO78NFO+AX1h+uTrSuWXQn/CU5tvNExZBROf7BV1PoM4fHKItyJDEf+tTOVluu0WiSungD3F+eisW8n0eoDgK3fXTPp9r85lIjc/BKTfg2ps7a2xogRI2Bt3SA+NKs3ZoB53b5biP2/mvZpe6bOGaljBhiOOSA+WTbTmZmZCAoKQkBAAM6fP4+3334bISEhiIyMrJiEvSE007mJGUg5eAYBc195uFCnQ9y2g0iNPIfiu/K5G9a2xeNw6vYCbn5ZeWqf9F1LYKV2QPPh1f+lak6nYvSbR1aosjIdLlxp2GelbG1tsWDBAtja2opdiiwwA8zrzOU7MPVksr+ZOGekjhlgOOaA+GT5p9/KlSuRnZ2N8PDwSg9bcHR0REBAACIjI0VppsvKypCRkaH3+NLSqk/LM1Tshu/w/PdL4R7YHhknLpUv1Gqh0+qf+KWlZUhN1W+Oy5q34Qag5qda6cNt9NuIm/sMcmOOwr5jP+T9cQx3D4Wh7SfnDKylFKmptc+2YajiUi0uxWdXWmZlZQH3ptVPReTxl+UeNYzJuFNYZTaAyBPxaOlW//1CivLz8+scU1xcjLVr1+KNN95Ao0aNah1b331WCqSSAZBIDkg5AwDg8InrVZbVlAP6ZACqyYFzf9zBjRspkn6Qi1DGzgAwBypIpReAzHPA3d1d0Kcisnxoi5eXF/z8/HD06NEq6wYNGoTY2Ngam9oHNyDWNDXerl27sHbtWly4cAFNmzY1aAq91NRUeHt76z1+ietgeKqMf3ex37h+cH2yNU69F6bX+LTS+1hw92C9vma7dbFQP9a+Xtv4q7K8HPzxZgB8Q8Jg38mwWdcLb1zC5ZkdjFYLAMDaEWj7caVFnm6NK6a+EqLa6bJu/wDc2i14m1IWHBxc55iSkhJs27YNkyZNqvNO/s2bNxuxOnFIJQMgwRyQXAYAQIvxgOuASotMkgOXZgDaYsHblCpjZwCYA7USoxeAzHMgJSUFXl5eBlYpwzPTGRkZSEtLQ1BQUJV1Wq0WMTExFY8GFcLZ2RkhISG4desWVq9eXc9qSajMnz5DaXY6Uv47p9Jy1/6T4TZyTo3vkz9ZXnlFZHQNNwMAQHlnpYmEkEsOyO7MdEJCAvz8/BAaGoqPPvqo0rrdu3djzJgxePfdd7FixYpq31/XmekH9uzZg9mzZxt0ZtrQyzxOjFuB/ET9x5tKk5buCNw1t17bmHnZDSlF9bvMw1i8bUuxrp1xP+ItKCpDmzGRlZbVdZnH6e2jAADdXtmD9DuFVcZUd5nHvNcex/Sxyph95lHx8fF1jsnPz8fw4cOxb98+NGnSpNaxfn5+RqxOHFLJACgsB0yRAQCwcus1/Gdn5Us9arvMo64MQDU5oLK2wNXdg2Btpbw/rI2dAWAOGJUxMgAyzwGhl3nI7sy0t7c3rKysEBUVVWl5cnIyZs4svzBdrJsPra2tDfp4QKWSxo9fpTKs7mq3cQ1AkdFKqheVSlXv76c6j/s44Frywxs5NBpdrU81eyD9TqFe4wCg79OtTFK7FKSn1z03r0qlQnBwMJycnOr8iFcJPyepZAAUlgOmyoA+3UqrNNP65IAhGdDxcRf4+jxWrzqlytgZAOaAURkjA9AAcqA60vg/aAAbGxtMmjQJ4eHhGDlyJJ5//nmkpKRg06ZNcHNzQ1paWpVmOiIiouLxopmZmSgpKcGSJeWTgvv4+GDixImifC8kL0+1a1qpmTaFgLauJt2+1NnY2GDatGlil0FUrafaNTX51+hqhq8hZcwAkiNZfo60du1aTJs2DadOnUJoaChOnTqF3bt3o0WLFmjcuDH8/f0rjQ8LC8PChQuxcOFC3L59Gzk5ORWvw8L0v0GHGragoaa9/GJg9xZo5lLzXf8NQWFhIWbOnInCwuo/EicSU0svezzdoZlJv8bLJs4ZqWMGkBzJ7sw0ANjZ2WHjxo3YuHFjpeWxsbHo2LEjLC0r/41Q3awfRIZ6vrc3vN2bICWj7umdhJge1NYk25UTjUaDU6dOQaPRiF0KUbWmB7XFb7GmmQv6iZaO6P+0h0m2LRfMAJIjWZ6Zrk5OTg5SU1Prfb20RqNBUVERSktLodPpUFRUhOJiaUxR9Pj4gXjuu6UYtncxnJ6o/pq6od9+gMCV8viI7M6BzbjyTk9cmdsLhUnVP+o07r1+SN7wT7PXVh1ra0v86x/CZ4qpTUBbV4zop8zrJMm4lJQDcssAAAga2hJPtHQ0ybY/mB4ACwvO5EG1U1IGQKY58CjFNNMxMeX/A+rbTEdERECtVmPcuHG4ceMG1Go12rRpY6QqhbNxskObyUPw45h/4dibn6H74teqjPEa1BWlefL4aKwsNwuZP32GNsui4BsShpTNs6qMyTm9D1Zqe1Hqq8nUMf4Y0tPTqNtUWVtiy+I+sLZWzOFIJqKkHJBrBtg2ssaWxX2M/lCVFwf5YuyQlkbdJimPkjIAMs6BRynmt7exmukpU6ZAp9NV+mfI9Him0qyLHzKOX4KuTIP7CTfRyMUB+OsZDAsLPPHaUFzZ8pOYZeot/9pvsOvQDxbWKth6tUHZ/TvQabUV63VaLTL3r0ez52aIWuejLCwsEP5hb/i0sKt1XMadQngN3g6vwduRUcOUWA+sndsDHf1djFypPDVq1Ajz58/X68lnDZGSckCuGQAA3Ts1x8rZ3WodY0gG+Ps44rMFPXlWmhlQJyVlAGSeA3+lmGZ6+vTp0Ol06NGjh9ilmISNkx1K7j28Vrc0rxA2Do0rXvuN64fk/aegKSoVqULDaHKzYG3nXPHaUm0PTcG9itd3D2+FU+AYWKpsRaqwZi2aN8HhzcPQ0rPmv5QfTJeVdqugylzSf/XpO93xz3G8VvoBlUqFUaNGQaUSf45SKVJSDsg5AwDgrSkdsSSka43r9c2ANr6OiNw0rMHffPwAM6B2SsoAKCAHHlBMM610JffyYePwcAJ7lZ0aJffL5y21aqRCqzG9Eb/jsIgVGsbKzhma/JyK19rCXFg1Lr8OUVtShKyor9B0YNWPr6SilZcDTn31AsY9K+xjWS+3Jvhxw7OYNcEEjzyWsYKCAgQFBaGgQL85eRsaJeWA3DMAAN6b1hm7Px2I5i7CftFPesEPJ758AV7udT+cpKFgBtROSRkAheQA2EzLR+a5a3Dr0RYWVpaw93VHcdZ94M+HV9o91hw2jk0wKGIeui6cAM+BXdB6bF+xS65VE//uyL30C3SaMhSlx8PaoSks/pyFpfhWIjT5OYhfPBypW9/BvbP7cffwNrFLrqKZixo7/z0A/7d6ILp31G+6LGcHG7w1uSNi/28MhvaS/8MGjE2r1SIxMRHav3zMRw8pKQeUkAEAMGqALy7veRFvjG8HBzv9zqb26uKGH9YPwdalfeHswMsZ/ooZUDslZQAUlAOynBqvISrJycO1/0Vi2O7F0Om0ODlvMzz7d4aNkx0Sd0dj39B3AQDuge3RctQzSPg6qs5tisna3gVNBwcjbl4fwNISj/1jPe6d+wma3Cy49B2Ptp+cAQDkxhxF1q874Dpgktgl12j0QF+MHuiLs5fv4PujN3D28h3Exmcjr7AMKmtLeLs1Qdd2rnimixvGDPSF2paHHQmjpBxQUga4OtlizdxALHvjKXx7KAnHL97G2ct3kHa7AGVlWtg1VqGTvzO6tmuKkf190In3SJBASsoAKCgHLHQ6Xc0Xc5FJ7ek7GzlXU8UuA07+XhgV9Wm9tjHuCHA912gl1Usre2BXf7GroEedPn26zjF5eXkYMGAADh8+DDu72m/y7Nat9hvA5EAqGQCF5QAzQJqMnQFgDhiVMTIADTQHeJkHEUmGra0t1qxZA1tbad9sQkSmwQwgOeLnzUQkGdbW1ggMDBS7DCISCTOA5IhnpolIMvLy8tC/f3/k5eWJXQoRiYAZQHLEM9Misvd1F7sEwEh1eDbWY5CZSKkWMlx+fr4eo5RBKhkAheWAVOogYRpSBkBCOWCsOqRy/JmzDjbTIhq4da7YJRjN6u5iV0AkP0rKADAHiARhDsgfL/MgIiIiIhKIzTQRSYZarcb27duhVvPRykQNETOA5IjNNBFJhqWlJdzc3GBpyWgiaoiYASRH3FuJSDLy8/MxYMCABncDEhGVYwaQHLGZJiIiIiISiM00EREREZFAbKaJiIiIiASy0Ol0OrGLICICAJ1Oh9zcXNjb28PCwkLscojIzJgBJEdspomIiIiIBOJlHkREREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJBCbaSIiIiIigdhMExEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCTQ/wNBQYF+rLIiZgAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, - "execution_count": 10, + "execution_count": 2, "metadata": {}, "output_type": "execute_result" } @@ -118,18 +119,18 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 3, "id": "1c527720-0d06-48a1-88b6-9ff95a77a068", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAACPCAYAAAA4J1eUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnzElEQVR4nO3deVhU9f4H8PfMMAPDIiAoIKCopLmmmLlm7qmVe1Jq6s3lGup1IXPJXLJMbXEpNUsvbuXW/ZHWNTNJMZdIL2pgbigoIGMoi+zLzPz+MFECYebMcmYO79fz8DzOmTPf+QDOm8/M+Z7vken1ej2IiIiIiMhocrELICIiIiKyV2ymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQnEZpqIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJBCbaSIiIiIigdhMExEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmsiG9O7dG+PGjRO7jHJycnIwceJEeHl5wcXFBf3798e1a9fELotIsmwxB2bMmIEOHTrA2dkZDg4OYpdDZFPYTBNRlV577TVERUXhm2++wfHjx6HX69GnTx8UFBSIXRoRWYlWq8XIkSMRFhYmdilENofNNJGZrVu3Ds2bN4ejoyPq1q2LYcOGAQCCgoLw3nvvldt3woQJ6N69OwBg3LhxiIqKwtatWyGTySCTyXD06NFqn6+0tBRLlixB48aN4ejoCH9/f0ybNg0AcPLkSSiVSkRGRpbtf+TIESiVSvz444/Vjn3lyhXs27cPn3/+OXr06IG2bdti586dSE1Nxe7du43+2RDVFFLKAQD49NNPMX36dLRs2dKonwNRTcBjNSKKGrscOUkascsAALgF+aLX1rkmjTEzBkjNN1tJgvk7A6s6iPPcixYtwscff4zly5ejb9++yM3NxQ8//GDQY9esWYPr16/Dz88Pa9asAQDUrl272seNHz8eP/zwAz7++GN07twZ6enpOHXqFACgc+fOWLx4McaPH4927dpBrVZj9OjRmDlzJp5//vlqxz5x4gSUSiV69epVts3T0xPPPPMMjh8/bnOHou2RreSAlDIAzAGz5gBZlq1kACSWA9bMADbTIspJ0iDrSorYZZhNaj5wPUfsKsSTl5eHlStXYunSpZg6dWrZ9pCQEIMe7+7uDpVKBbVaDV9fX4Mek5CQgG3btmHv3r0YPnw4AKBx48bo2LFj2T7z5s3DkSNHMGrUKLi5ucHf3x/vv/++QeOnpaXB29sbCoWi3HZfX1+kpaUZNAZVTUo5UNMzABLNAbIsKWUAamgOsJkmMpMLFy6gsLAQffv2tdpzxsbGAkCVzymXy7F9+3Y0a9YMpaWl+P3336FUKq1WI1FNwhwgqnk4Z5rISuRyOfR6fbltJSUlVnnuc+fOIS8vD4WFhUhOTjb4cX5+frhz5w60Wm257bdv34afn58FKiWSNnvMASKqGptpIjNp3rw5nJyccOjQoUrvr1u3Lm7dulVu29mzZ8vdVqlUFRrXqjw4dPy45wQAjUaDsWPH4u2338bUqVMxevRoZGRkGDR+ly5dUFJSgp9//rlsW1ZWFmJiYtC1a1eD6ySqKaSYA0RUNU7zIDITV1dXhIeHY/HixVCr1WXLxx04cADz5s1D7969sX79egwZMgQNGjTA559/jhs3bpQ7uahhw4Y4cuQIrl27Bnd3d7i7u1d5KDY4OBijRo1CWFgYCgsL0alTJ2RkZODkyZOYPn069Ho9xowZgyeffBLvvPMOtFotjh07htdffx3ffvtttd9TkyZNMGjQILzxxhvYvHkz3N3dMX/+fPj7+yM0NNRsPzsiqZBiDuCvedm5ubm4efMm8Nen3A+e29XV1eSfG5E9YzNtJ7qunoLg0B4AAJ1Wi4LbWUg7EY/YZV8hX2Nfny4krRmHuz9vvX9DLofS0w9urXrCf8wHUHn5i12eSZYuXYo6depg7dq1mDlzJjw9PdGtWzcAwJw5c3Djxg2EhoZCqVQiLCwML7/8MhISEsoeHx4ejri4ODz11FPIy8vDkSNHypbMepyIiAi8++67WLBgAW7duoW6deuWnYS0cuVKnDlzBufPn4dCoYBCocCuXbvQrl07rFu3DlOmTKn2e9q+fTtmzZqFIUOGoLCwEN26dcOhQ4egVqtN/nmR4aSUAWAO2F0OTJgwAdHR0WW327ZtC/y1xF51tZH5SCkHpJQBMv3fJ2+R1Xz73AyDz+DtunoKXBv4IHrSJ5Ap5HAL8kHHZRNQkluIAwPfNrkWjyYBGBy92qQxRhwx7AzepDXjUKS5jkZv7YFep0WR5hpubpwChZMbnlx50qQaAKCRG7Cnh8nDEFmFoTkgpQwAc4CoDHsB+88Azpm2I7riUhSkZyFfk4Hbv17E5R2HUbd9Uyhd7e8TQpmDCkpPX6i8/OHWohvq9J2EvMunoM2/J3ZpRDZLShkA5gCRIFLKAalkAJtpO6X28UTQix2hK9VCr9WJXY5Jiu/eQubJbwC54v4XlVm2bBlcXV0f+2WqFi1aPHbsyZMnm+V7IMuQUgaAOVAl5gA9jpRywJ4zoEbNmc7Pz0fLli2RmJiIKVOm4LPPPhO7JKP4dm6BUQnbIZPL4aB2BADEb9iP0oIiAED3L8NxK/o8ruw4DACo3bIhuq2fju/6zIa2yDpLLxkqJ/4ozoa6Qq/TQV9cAADwGRwOhZMLACDzVCTSdi8p95jC5D8QOGEN6vR/Q5SaxfDMM89g27Ztj73/9OnTKC4uxpYtWzBu3DioVKoqx2vfvn252wcOHHjssly1atUSWDVZipQyAMwBg5w+fbraHDhx4oTgDABzwO5IKQekkgE1qpleuHAh0tPTxS5DsPTYqzg+/TMoHJUIGtgZ9Z5tjbMrdpbd/9s7Eei/byluHIhBUWYuOi2fiJj5m23uxQMALk06IGjGVuiLC5F5fA/unT+MeqPeK7vfs9MQeHYaUnY769dvkbp9Prx6jhWpYnE8OJO/KsXFxdi0aRNGjhxZ7R/Sv2vQoIGJFdqfFE0erqfcg1IpR6snasPV2X4uXCGlDABzwGDV5UBubq7gDEANzIHSUh3OXb6L3PxS+Hqr8WRDD7FLMoqUckAqGVBjmunY2FisXr0aK1euRHh4uNjlCKItLEZOkgYAcO7D3XAL8kWH98fj5JufAwDyNRm4sPF7PP3Oa7hzNgHZ19OQdjxO5KorJ1ep4eQXDABQN2iJIs01JH8xDQ2mfllh3+I7Kbi5cQqCF/0AuaOzCNWSFJw4exvLNp3DD8dT8OC0a1dnB4x56QksmNQGfnVs//+WlDIAzAGyssKiUny4JQ6f77mEW+n5ZdvbNfNC+NhWeHVAY1HrM5SUckAqGWC3c6bPnz+PQYMGwd3dHbVq1cLgwYORlpYGNzc3vPLKK+X21Wq1mDhxIvr164ehQ4eKVrO5nftoN4JDe8DrqYcBcCniIDyaBqLV1ME4vWSrqPUZw+/VxbgTFYG8q2fKbdfrdEhcNRq+w+bCOai1aPWRfdt7KBHdX/8vDvzysJEGgNz8UqzffREdRu1HUqqBy1DYECllAJgDZEH5BaXo98aPWLguFml38svdF3vpLkbOPYp5a06LVp8ppJQD9poBdtlMR0VFoWPHjrh8+TIWLFiAZcuWISUlBf3790dubi7atGlTbv9Vq1bh0qVLdjdHujo5iRok/3QGIXNffbhRr8flbT8hJSoWRXft52xYp3pPwKP9S7i1o/zSPml73oNCXQt1X5wmWm22zsHBAQMHDoSDQ4050GSUqzeyMWruUWh1j18FNFmThyEzDle4zLOtk1IGgDkgGDOgeuEfxSD6zP1Pc//+Mn9we/nm37H3UKII1ZlGSjlgrxlgd810eno6QkNDERISgrNnz2L27NmYOnUqoqKiyq7M9GgznZiYiEWLFmHhwoUICgoSsXLLiF+/H/7d28C3U4uHG3U66KtoHGyVz5DZuHfuEHLijgIAci+ewN3DmxH0rwixS7NpTk5OWLBgAZycnMQuxSZt2HMRJaW6Cn9A/+7c5Qwc+5/GWmWZjZQyAMwBQZgBVcvILkLEvivV7ieTAat3xFulJnOTUg7YYwbY3dvYFStWIDMzExEREeWuwObu7o6QkBBERUWVa6YnT56MRo0aYdasWRavrbS0FBqN4X+MS0pKDd73+Ix1lW5PP3MZW/yGGzxOVbWkpBi2aPzjx/ABUP3JXEHTt1S63bVZZ7Tbd/+FX5qbhcRVryHoX1vgUMvLyDpKkJJy26jH2Kq8vLxq9ykqKsLatWvxr3/9C46OjlXua+rv2B5t21/9H9EHvtjzOxr7ai1az98ZmgNSygAwBwzGDDDdrh9TUFRc/bJxej1w8tyfOPW/qwj0sd6azewFyhMzA3x9fQUd4bG7ZnrXrl149tln0aRJk0rv9/Hxga+vLwBgx44d+Omnn3Ds2DEoldX/YktLSxEeHo7t27dDp9Nh2LBhWLduncHv9jUaDQIDAw3+Xt7z6gN/pW0sO3TlyhWMMKL2yjT/NB7q+i0M2LN66Qc3oCQzDcn/nlluu1ePsfAZNPOxj8Nf30vg8y3NUofYJkyYUO0+xcXFOHDgALy9vas9k3/Tpk1mrM5OtPwCkBlwEE6vx9e7v8PXH/azRlVlbCUHbC0DwBwAmAHmUac/4DvM4N07P/s8UGC96R62kgGwwRywdgYkJycjICDA6DrtqpnWaDRITU1FaGhohft0Oh3i4uLQtm1b4K936rNmzcKAAQPg6+uLhIQEAEBqaioAIDs7GwkJCfD29oaHx/1lcZYtW4YjR44gLi4OKpUKAwcOxFtvvYW1a9da9fs0VcKeo0jYc1TsMkziN3we/IbPE7sMkgJdESB3un8MtyoyGaArtFZVFiWFDABzgMxFa+TrmjlgM+wlA2R6Ozrj5tq1awgODkZ4eDg++uijcvdFRkZi6NChmDNnDpYvX46srCx4enpWO+aHH36IN998EwBQv359rFy5smw1kB9//BEvv/wyMjMzoVBUfzUeY6d5nBqxHHmJtjFH06WhLzrtmWvSGNP+8EFyofhr9gY6leDT5vZ/eBdA2ZvAquTl5eHFF1/E999/DxcXlyr3DQ4ONmN19mHGR3H4z8+3DNp34/ynMKCrr8VrepSt5ICUMgASygFmgOlSbheg8+vHqj1vQiYDGtZzxtEvukJW3ZtvM7KVDIDEckBIBtSIaR6BgYFQKBSIjo4ut/3GjRuYNu3+GZ4P5ku7uLhg7969FcZIT09HWFgY+vXrh/Hjx6N16/tLrGRlZSE5ObncfOuQkBDk5OQgKSkJjRtXv/6kg4ODUYcHlErb+fErlcbVXukYVwHYwBt6pVJp8vdiK9LS0qrdR6lUYsKECfDw8Kj2EK9Ufi7GmP26qtpmWiYD/Lyd8Y9hIVAqrXtetq3kgJQyABLKAWaA6QICgIHdk7DvyM0q99PrgemjWxs1XdMcbCUDILEcsGYG2M5v0AAqlQpjxoxBREQEBg0ahBdeeAHJycn48ssv4ePjg9TU1LJmWKlUYvjwipPxk5KSAACNGzcud39Ozv01Zh9M+Xj03w/uI7JFKpUKkyZNErsMm9WhdV0sCQvBovWxkMkqLoslA+CkUmDvxz2t3kgTmQMzoHobFnTBuUsZuJGW+9h9XnquPsJCm1m1LpIGu/vLsXbtWkyaNAkxMTEIDw9HTEwMIiMjUa9ePTg7Oz/2xMTquLm5AX/NpX4gKyur3H1EtqigoADTpk1DQUGB2KXYrIWT2+KLhV0Q4FPxEHiXtj6IjngBndv4iFIbkamYAdXzq+OMUztewrDeQZDLy0/hqOWixJzXW+M/n/SCg4PdtUVkA+zqk2kAcHV1xcaNG7Fx48Zy2+Pj49GqVSvI5VW/EIKCgiq9MIOHhwcCAwNx7tw5NG3aFABw9uxZuLm5SXJ9apIOrVaLmJgYaLXWXdLN3kwc/iReH9IEX//3GsYsOAYAOPR5P/Tp7C92aUQmYQYYxq+OM775pBdOx6fjmZH7AQDr5nfG2IHBcHEWf44v2S9JvAXLyspCSkpKhSsfGmvChAn44IMPcOvWLaSnp2Px4sUYN26cQScfWsMTI3thwP730X/fUng8Wb/Sffr9Zwk6rbCPw313Dm3Cpbc649LcrihIiqt0n8tvd8eN9ZOtXhtJk0IhR49n6pXdbtbIo8r9bZGUcoAZQGLw83Yu+/fA7vXtrpGWUgZAIjkgiWY6Lu7+D9/UZnr+/Pno1q0bWrRogeDgYDRr1gwrVqwwU5WmUXm4ounYvvhh6EKcmLUBHZb+o8I+Ab3boSTXPg7zleZkIP3gBjRdFo2gqZuRvGl6hX2yTn8PhZpTbIgekFIOMAOIjCelDICEcoDN9CMcHBywdu1aZGZmIjs7G5s3by53lUUx1WkbDM3JC9CXanHv2i041q5Vft1cmQxP/qMfLm05KGaZBsu7+htcW3aHzEEJp4CmKL13B3rdwytU6XU6pB9YhzoDpohapz1wdHTE/Pnzq73yGdk/KeUAM8B8mAE1h5QyABLKAUk002FhYdDr9ejYsaPYpViMysMVxdkPLytbklsAVa2Hh6qCR3THjQMx0BaWiFShcbQ5GXBwfbgOuFztBm3+w5M/7/68FR6dhkKuNOzqkzWZUqnE4MGDDbrKJ9k3KeUAM8B8mAE1h5QyABLKAUk00zVBcXYeVLUerkSgdFWj+F4+AEDhqESjoc8iYdfPIlZoHIWrJ7R5WWW3dQU5UDi73/93cSEyor+Cd6+Kh6+oovz8fISGhiI/P1/sUsjCpJQDzADzYQbUHFLKAEgoB+xuNY+aKj32Ktq8OQIyhRyugXVRlHGvbMFc1/p1oXJ3Qe/t86DycIW6rgcav/wcru2NrnZcsbg06YBbOxdBry1F0Z9JcKjlDdlfK7EU3U6ENi8LCUtfRGluBkoyNbj78zZ49Rwjdtk2SafTITExEbpHDo2RNEkpB5gB5sMMqDmklAGQUA6wmbYTxVm5uPp1FPpHLoVer8Ov8zbBv0cbqDxckRh5HN/3mwMA8O3UAg0Hd7HpFw8AOLjVhnefCbg8rxsgl6P+P9chO/YgtDkZqP3cSDT75AwAICfuKDJ+2WWTLx4ia5NSDjADiIwnpQyAhHKAzbQdubLjMK7sOFx2O/OPGxX20Zy6AM2pC1auTJg6z09CnecfWbqn4VMV9nFr1R1urbpbtzAiGyalHGAGEBlPShkAieQA50wT2TknJyesWbMGTk62fYIGEVkGM4BIXPxkmsjOOTg4oFOnTmKXQUQiYQYQiYvNtIjcgnzFLqGMOWrxdzZgJyuwlTqsJTc3Fy+99BK+++47uLq6il0OGclWckBKGQAbq8XSmAH2zVYyABLLAWvWwWZaRL22zhW7BLNa1UHsCmquvLw8A/YiWySlHGAGiIcZYL+klAGooTnAOdNERERERAKxmSYiIiIiEojNNJGdU6vV2LlzJ9RqtdilEJEImAFE4mIzTWTn5HI5fHx8IJfz5UxUEzEDiMTFVx6RncvLy0PPnj15AhJRDcUMIBIXm2kiIiIiIoHYTBMRERERCcR1polsWPv27avdp6ioCIsWLULnzp3h6OholbqIyDqYAUS2j800kZ1zdHTE4sWLxS6DiETCDCASF6d5EBEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgE4tJ4Iooauxw5SRqxywAAuAX5otfWuSaNMTMGSM03W0mC+TsDqzqIXQWRYWwlB6SUAWAOkB2xlQyAxHLAmhnAZlpEOUkaZF1JEbsMs0nNB67niF0FkX2RUg4wA4iMJ6UMQA3NAU7zICIiIiISiM00EREREZFAbKaJiIiIiATinGkikrzColJEn9HgzIU7+PX3P8u2h38cg27tfNGxdV2ENPOCTCYTtU4ispxryffwS6wG0Wcenuw3ftEvaNfcG+2ae6F7ez94eTiJWiPZJzbTRCRZqbfzsPbrC9gceQV3s4oq3L/nx0Ts+TERANAy2BNhoc0wfmgTqJQKEaolInPT6/XYf/QmPv36D0TF3Kpw/6FTqTh0KhUA4KhS4JV+jTDztRZ4qqmXCNWSvWIzbSe6rp6C4NAeAACdVouC21lIOxGP2GVfIV+TIXZ5RklaMw53f956/4ZcDqWnH9xa9YT/mA+g8vIXuzySAL1ejy37rmLmhzHIzik26DHxCZkIe/8kNuy5iC1LuyGkubfF6zSGlDIAzAGyglt/5uGf757A98eSDdq/qFiLrfuvYsd/E/DWuNZY9EZbOKps6421lHJAShnAOdN2RPPrH9jdegK+efoNHJuyGl4tg9D9i3CxyxLEtfmzaL0lDa023UTD8K+Rn3gW11e8LHZZJAElJTq8Nj8ary/8xeBG+lFxVzPxzKj92LrvqkXqM4WUMgDMAbKgmN//RKthkQY30o/SavX4YPN5dBnzPdIzCixSnymklANSyQA203ZEV1yKgvQs5GsycPvXi7i84zDqtm8Kpata7NKMJnNQQenpC5WXP9xadEOdvpOQd/kUtPn3xC6N7JhWq8Po+Ufx1X+vPXYfhUIGfx9n+Ps4Q6GofI60VqvHuHeO2VxDLaUMAHOALOTMhXT0+edBZGRXnNoFAzMAAP73xx30mvjDY8cRi5RyQCoZUOOa6fz8fDRq1AgymQxTp04VuxzB1D6eCHqxI3SlWui1OrHLMUnx3VvIPPkNIFfc/yIS6OOt8WVzoB/H11uNlJ9eRcpPr8LXu+o/PhOXHMfvV2zz0KmUMgDMATKT7JxiDJkRhZy8ksfuY0wGxF3NxITFv0Cv11ugWtNJKQfsOQNq3JzphQsXIj09XewyBPHt3AKjErZDJpfDQe0IAIjfsB+lBfffNXf/Mhy3os/jyo7DAIDaLRui2/rp+K7PbGiLHh8sYsiJP4qzoa7Q63TQF98/jOYzOBwKJxcAQOapSKTtXlLuMYXJfyBwwhrU6f+GKDWTbbt4PQsL18eadcySUh3GLTiGmK8GQqkU/7MHKWUAmANkAW9+HIOU23lmHTMy6gZ2H7yOV/o3Nuu4QkkpB6SSATWqmY6NjcXq1auxcuVKhIfb3/yi9NirOD79MygclQga2Bn1nm2Nsyt2lt3/2zsR6L9vKW4ciEFRZi46LZ+ImPmbbe7FAwAuTTogaMZW6IsLkXl8D+6dP4x6o94ru9+z0xB4dhpSdjvr12+Run0+vHqOFalisnVvf3oGRcVas4979tJdfHUgAeMGNTH72MaSUgaAOUBmdvF6Fjb93xWLjP3WqtMY3qchHBzEf1MtpRyQSgaI/7/CBOfPn8egQYPg7u6OWrVqYfDgwUhLS4ObmxteeeWVcvtqtVpMnDgR/fr1w9ChQ0Wr2RTawmLkJGmQdTkZ5z7cjZzkP9Hh/fFl9+drMnBh4/d4+p3X0PS1Psi+noa043Gi1vw4cpUaTn7BUDdoiXqj3oWjT0MkfzGt0n2L76Tg5sYpaDh7F+SOzlavlWxfiiYP+47ctNj4G3ZfstjYxpBSBoA5QGa2Yc9Fi42drMnDf38x/mRGS5BSDkglA+y2mY6KikLHjh1x+fJlLFiwAMuWLUNKSgr69++P3NxctGnTptz+q1atwqVLl/DZZ5+JVrO5nftoN4JDe8DrqYeHni5FHIRH00C0mjoYp5dsFbU+Y/i9uhh3oiKQd/VMue16nQ6Jq0bDd9hcOAe1Fq0+sm1fHUiATme5OY2/xafj4vUsi40vlJQyAMwBMoFOp8f27xIs+hxbbOyE5AeklAP2mgF22Uynp6cjNDQUISEhOHv2LGbPno2pU6ciKioKN2/e/3Tq0WY6MTERixYtwsKFCxEUFCRi5eaVk6hB8k9nEDL31Ycb9Xpc3vYTUqJiUXTXfs6Gdar3BDzav4RbO94utz1tz3tQqGuh7ouVv1MlAoCYOMufB/GbFZ7DWFLKADAHyARXbmQjS8BSmMb4Ld72MgASywF7zQC7nDO9YsUKZGZmIiIiAmr1wzNx3d3dERISgqioqHLN9OTJk9GoUSPMmjXLonWVlpZCo9EYsOd9JSWlJj9n/Pr9eOG79+HbqQU0py7c36jTQW/kp3QlJaVISUkxqZaSEh8ASsGP9xkyG5fndkFO3FG4teqO3IsncPfwZjT7xLiTykpKSpCScltwHWR/TseV/30rFLLHnqXv98h2vyrO5NfcKYBW+/B1FH06Cb3amX/pKVNzQEoZAOYACfTT8YpXN3xcDgjNgFt/5iP292uoW9vRLDU/wF6gPDEzwNfXFw4OxrfGMr2trvdShYCAAAQHB+Po0aMV7uvduzfi4+PLmtodO3ZgzJgxOHbsGLp27QoASEpKQsOGDTFlypQK0z727NmDtWvX4ty5c/D29kZSUpLBdaWkpCAwMNDg/d/z6gN/ZS2D9zdU8Iju8HqqMWLe3mzwY1JL7mHB3Z9Met7mn8ZDXb+FSWM8UJqbhYuzQhA0dTPcWvcw6rEFNy/gj2ktzVIH2YkW6wG5quymv48zUn56tcqHVCegz06k3s5/uCHrNyD5C5PGrIwlckAKGQDmABnDqw9QL7TcJlNzoEIGAMDVxUChac3m37EXeDxrZ0BycjICAgKMrNIOP5nWaDRITU1FaGhohft0Oh3i4uLQtm1bAEBRURFmzZqFAQMGwNfXFwkJ9+dTpaamAgCys7ORkJAAb29veHh4AAA8PT0xdepU3L59G6tWrbLq90YPpR/cgJLMNCT/e2a57V49xsJn0MzHPo5qqsdfeMG+noMexRwgg1nt5ckcsCZ7yQC7+2T62rVrCA4ORnh4OD766KNy90VGRmLo0KGYM2cOli9fjqysLHh6elY75ocffog333yz3LZvv/0WM2bMMOqTaWOneZwasRx5iYbvb0kuDX3Rac9ck8aY9ocPkgtNO8RrDoFOJfi0OQ/v1iQho44gPfPhfMnqpnmc3jkYAND+1W+RdqfyywX//RDvqP4BWD7NfJ+6PmArOSClDABzoMbZdSgFs1dfKLetqmkeQjIAAE5FdEOAj3mne9lKBkBiOSAkA4RO87C7T6YDAwOhUCgQHR1dbvuNGzcwbdr9iekP5ku7uLhg7969FcZIT09HWFgY+vXrh/Hjx6N1a/OcGerg4GDU4QGl0nZ+/EqlcbVXOsZVAIVmK0l4HUqlyd8L2ZeQZnXw48nUsttarb7i4dlKpN0pMGg/AOgSUt8i/69sJQeklAFgDtQ4PTs6ASjfTBuSA8ZkgGctFTqEBEMmM++n07aSAZBYDlgzA2znN2gglUqFMWPGICIiAoMGDcILL7yA5ORkfPnll/Dx8UFqampZM61UKjF8+PAKYzz4tLlx48aV3k9E9uXpFt7lmmlLaNfc26LjE5FwLZ/whKNKYZELNz0Q0szb7I00SYNdLo23du1aTJo0CTExMQgPD0dMTAwiIyNRr149ODs7o0kT8a9URkTWM+L5RhYdv1GAG55uwWaayFaplAoM6dnAos/xSj/L5gzZL7v7ZBoAXF1dsXHjRmzcuLHc9vj4eLRq1QpyedXvEYKCgmBnU8WJqAqtm9RG17Y+OH7WMnNk3xjRDHI5P5EismVhoc2w6+B1i4zt7qbCq/3ZTFPl7PKT6cpkZWUhJSWlwpUPjaXValFYWIiSkhLo9XoUFhaiqKjIbHWa4omRvTBg//vov28pPJ6sX+k+/f6zBJ1WTLJ6bULcObQJl97qjEtzu6IgqfJLnV5+uzturJ9s9drI/iwJC7HIuP51nTFxWFOLjC2ElHKAGUDm1DXEB7061LPI2HNfbw0XZ/FPqoPEMgASyQHJNNNxcfd/AaY209u3b4darcaIESNw8+ZNqNVqNG0q/h9SlYcrmo7tix+GLsSJWRvQYek/KuwT0LsdSnIrPyvZ1pTmZCD94AY0XRaNoKmbkbxpeoV9sk5/D4XaTZT6yP707FAPk19+0uzjfrmoK9zdVAbsaXlSygFmAJmbTCbD5iVd4WrmpvfpFt54c2wrs44plJQyABLKATbTfzNu3Djo9fpyX8Ysj2cpddoGQ3PyAvSlWty7dguOtWsBj54IIZPhyX/0w6UtB8Us02B5V3+Da8vukDko4RTQFKX37kCv05Xdr9fpkH5gHeoMmCJqnWRfVs5qX+2Jgpo7BQjosxMBfXZC85glsR6YPa4V+j9r+IWYLE1KOcAMIEtoUM8N/373WVR1nqAxGVDH0wlffdAdDg620S5JKQMgoRywjf8dZhAWFga9Xo+OHTuKXYpFqDxcUZydV3a7JLcAqlrOZbeDR3THjQMx0BaWiFShcbQ5GXBwfbgGuFztBm1+dtntuz9vhUenoZArnUSqkOyRm4sKP37+fJUnCz5YLiv1dn6FNWQfNWN0C6yY2d5ClQojpRxgBpClvNy3Iba9/xwUiso7akMzwMdLjcNf9keTIHcLVmscKWUAJJQDkmmmpa44Ow+qWi5lt5WuahTfu782psJRiUZDn0XCrp9FrNA4CldPaPOyym7rCnKgcL4fWLriQmREfwXvXhUPXxFVx8vDCUc3D8C0kc0FPd7DTYWt73XDJ7M72NwyWFLKAWYAWdLoF4NxdPMABNcXdpnufl0CcHrnQLRuUtvstZlCShkACeUAm2k7kR57FT4dm0GmkMMtyBdFGfeAv1Ykca1fFyp3F/TePg/t3hkN/15t0fjl58QuuUouTTog58Ix6LWlKExLgEMtb8j+WoWl6HYitHlZSFj6IlK2voXs/x3A3Z+3iV0y2REXZyXWzu2E6H8PQJ9Ohp2Q5OzkgInDmuJC5FCMGfiEzTXSkFgOMAPI0rqG+OL83iFYNLktfLwMu2phqyc8se39bjiwvi8CfV0tXqOxpJQBkFAO2OXSeDVRcVYurn4dhf6RS6HX6/DrvE3w79EGKg9XJEYex/f95gAAfDu1QMPBXXBtb3S1Y4rJwa02vPtMwOV53QC5HPX/uQ7ZsQehzclA7edGotknZwAAOXFHkfHLLnj1HCN2yWSHuj3th0NP++FKUjb+czgJ//vjDs5fyUB2TnHZpYbbNfNGh1Z18HLfhvCo5Sh2yVWSUg4wA8ganNUOWBwWgvkTn8L+IzfxS6wG/7t4F9dTclBSqoOzkwLNG3miXXMv9O8aiM5t6trkG+kHpJQBkFAOyPRccFk03z43A1lXUsQuAwDg0SQAg6NXmzTGiCPA9RyzlSRYIzdgTw+xqyAyjK3kgJQyAMwBsiO2kgGQWA5YMwM4zYOIiIiISCA200REREREArGZJiIiIiISiCcgisgtyFfsEsqYoxZ/ZwN2sgJbqYPIELaSA1LKANhYLURVsZUMgMRywJp18AREIiIiIiKBOM2DiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQnEZpqIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJND/A+5BcUMpX91oAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAACPCAYAAAA4J1eUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoM0lEQVR4nO3deVhU9f4H8DfMAoMgIOiAoGEi5pqippiZe9nikgvlhpV5zfSqeS01TXBL20y7uJSIWy7U/ZnWNTMRKTfS6xKYirgCMoYCyr7MzO8Pc4zYZg4zc2YO79fz8DzOme8585nBefOZOed8j4Ner9eDiIiIiIhM5ih2AURERERE9orNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQCsZkmIiIiIhKIzTQRERERkUBspomIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQnEZpqIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJBCbaSIiIiIigdhMExEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBPZkH79+mH8+PFil1FObm4u3njjDXh5eaFevXoYOHAgLl++LHZZRJJlizkwffp0dO3aFS4uLpDL5WKXQ2RT2EwTUbXGjh2L2NhYfPPNNzh8+DD0ej369++PwsJCsUsjIivRarUYNWoUJk+eLHYpRDaHzTSRmUVGRqJ169ZwcnJCo0aNMGzYMABAQEAAFi9eXG7shAkT0KtXLwDA+PHjERsbi02bNsHBwQEODg44dOhQjY9XVlaGiIgING/eHE5OTvDz88PUqVMBAEePHoVCocCuXbsM4+Pi4qBQKPDjjz/WuO3k5GTs3r0ba9euRe/evdGxY0ds374d6enp2Llzp8mvDVFdIaUcAIDPP/8c06ZNQ9u2bU16HYjqAu6rEVFs2DLkXtOIXQYAwC3AB303za7VNmYkAOkFZitJMD8XYEVXcR57wYIF+OSTT7Bs2TIMGDAAeXl5+OGHH4xad+XKlbhy5Qp8fX2xcuVKAECDBg1qXO/111/HDz/8gE8++QTdu3dHZmYmjh07BgDo3r07wsPD8frrr6NTp05QqVQYM2YMZsyYgWeeeabGbR85cgQKhQJ9+/Y1LPP09MQTTzyBw4cP29yuaHtkKzkgpQwAc8CsOUCWZSsZAInlgDUzgM20iHKvaZCTnCZ2GWaTXgBcyRW7CvHk5+fjww8/xKJFizBlyhTD8uDgYKPWd3d3h1KphEqlgo+Pj1HrpKSkYPPmzfj6668xfPhwAEDz5s3RrVs3w5g5c+YgLi4Oo0ePhpubG/z8/LBkyRKjtp+RkQFvb2/IZLJyy318fJCRkWHUNqh6UsqBup4BkGgOkGVJKQNQR3OAzTSRmZw7dw5FRUUYMGCA1R7z1KlTAFDtYzo6OmLLli1o1aoVysrK8Ntvv0GhUFitRqK6hDlAVPfwmGkiK3F0dIRery+3rLS01CqPfebMGeTn56OoqAipqalGr+fr64vbt29Dq9WWW37r1i34+vpaoFIiabPHHCCi6rGZJjKT1q1bw9nZGfv376/0/kaNGuHmzZvllp0+fbrcbaVSWaFxrc6DXcdVPSYAaDQahIWF4b333sOUKVMwZswYZGVlGbX9J598EqWlpTh48KBhWU5ODhISEtCjRw+j6ySqK6SYA0RUPR7mQWQmrq6umDlzJsLDw6FSqQzTx+3duxdz5sxBv379sHr1agwdOhSPPPII1q5di+vXr5c7uahZs2aIi4vD5cuX4e7uDnd392p3xQYGBmL06NGYPHkyioqKEBISgqysLBw9ehTTpk2DXq/HuHHj8Nhjj2H+/PnQarX4+eef8dprr+Hbb7+t8TkFBQVh8ODBePPNNxEVFQV3d3fMnTsXfn5+CA0NNdtrRyQVUswB/Hlcdl5eHm7cuAH8+S33g8d2dXWt9etGZM/YTNuJHp+9hcDQ3gAAnVaLwls5yDiShFNLv0KBxr6+Xbi2cjzuHNx0/4ajIxSevnBr1wd+4z6A0stP7PJqZdGiRWjYsCFWrVqFGTNmwNPTEz179gQAvPvuu7h+/TpCQ0OhUCgwefJkjBgxAikpKYb1Z86cicTERDz++OPIz89HXFycYcqsqkRHR2PhwoWYN28ebt68iUaNGhlOQvrwww9x8uRJnD17FjKZDDKZDDt27ECnTp0QGRmJt956q8bntGXLFrz99tsYOnQoioqK0LNnT+zfvx8qlarWrxcZT0oZAOaA3eXAhAkTEB8fb7jdsWNH4M8p9mqqjcxHSjkgpQxw0P/94C2ymm+fnm70Gbw9PnsLro+oET/xUzjIHOEWoEa3pRNQmleEvYPeq3UtHkH+GBL/Wa22MTLOuDN4r60cj2LNFTz6Tgz0Oi2KNZdxY91bkDm74bEPj9aqBgB41A2I6V3rzRBZhbE5IKUMAHOAyIC9gP1nAI+ZtiO6kjIUZuagQJOFW8fP4+LWA2jUpSUUrvb3DaGDXAmFpw+UXn5wa9MTDQdMRP7FY9AW3BO7NCKbJaUMAHOASBAp5YBUMoDNtJ1SqT0R8EI36Mq00Gt1YpdTKyV3biL76DeAo+z+DxksXboUrq6uVf7UVps2barc9qRJk8zyHMgypJQBYA5UizlAVZFSDthzBkj6mOnk5GRs3boV+/fvx+XLl1FUVITmzZtjxIgRmD59OurVqyd2iSbx6d4Go1O2wMHREXKVEwAgac0elBUWAwB6fTkTN+PPInnrAQBAg7bN0HP1NHzXfxa0xdaZeslYuUmHcDrUFXqdDvqSQgCAeshMyJzv/06yj+1Cxs6IcusUpf6OJhNWouHAN0WpWQxPPPEENm/eXOX9J06cQElJCTZu3Ijx48dDqVRWu70uXbqUu713794qp+WqX7++wKrJUqSUAWAOGOXEiRM15sCRI0cEZwCYA3ZHSjkglQyQdDO9YcMGREZGYtCgQRg9ejQUCgXi4uIwb948xMTE4Pjx43Z1ElXmqUs4PO3fkDkpEDCoOxo/1R6nl2833P/r/GgM3L0I1/cmoDg7DyHL3kDC3Cibe/MAQL2grgiYvgn6kiJkH47BvbMH0Hj0YsP9niFD4Rky1HA75/i3SN8yF159wkSqWBwPzuSvTklJCdavX49Ro0bV+If07x555JFaVmh/0jT5uJJ2DwqFI9q1aABXF/u5cIWUMgDMAaPVlAN5eXmCMwB1MAfKynQ4c/EO8grK4OOtwmPNPMQuySRSygGpZICkm+nhw4djzpw55UJo0qRJaNGiBZYsWYKoqKhyl3u1ddqiEuRe0wAAzny0E24BPui65HUc/ddaAECBJgvn1n2PzvPH4vbpFNy9koGMw4kiV105R6UKzr6BAADVI21RrLmM1C+m4pEpX1YYW3I7DTfWvYXABT/A0clFhGpJCo6cvoWl68/gh8NpeHDatauLHONebIF5EzvAt6Ht/9+SUgaAOUBWVlRcho82JmJtzAXczCwwLO/Uygszw9rhleeai1qfsaSUA1LJALs9Zvrs2bMYPHgw3N3dUb9+fQwZMgQZGRlwc3PDyy+/DADo3LlzpZ/mH8yPm5SUZPW6zenMxzsRGNobXo8/DIAL0fvg0bIJ2k0ZghMRm0StzxS+r4Tjdmw08i+dLLdcr9Ph6oox8Bk2Gy4B7UWrj+zb1/uvotdr/8XeXx420gCQV1CG1TvPo+voPbiWbuQ0FDZEShkA5gBZUEFhGZ5980e8H3kKGbcLyt136sIdjJp9CHNWnhCtvtqQUg7YawbYZTMdGxuLbt264eLFi5g3bx6WLl2KtLQ0DBw4EHl5eejQoUO166el3Z+CRq1WW6liy8i9qkHqTycRPPuVhwv1elzc/BPSYk+h+I79nA3r3LgFPLq8iJtby0/tkxGzGDJVfTR6Yapotdk6uVyOQYMGQS6X9I4mwS5dv4vRsw9Bq6t6FtBUTT6GTj9Q4TLPtk5KGQDmgGDMgJrN/DgB8Sfvf5v797f5g9vLon7D1/uvilBd7UgpB+w1A+yumc7MzERoaCiCg4Nx+vRpzJo1C1OmTEFsbKzhykzVNdNarRaLFi2CXC7HqFGjrFi5ZSSt3gO/Xh3gE9Lm4UKdDvpqGgdbpR46C/fO7Edu4iEAQN75I7hzIAoB/4wWuzSb5uzsjHnz5sHZ2VnsUmzSmpjzKC3TVfgD+ndnLmbh5/9prFWW2UgpA8AcEIQZUL2su8WI3p1c4zgHB+Czrfa5x1pKOWCPGWB3H2OXL1+O7OxsREdHlzt50N3dHcHBwYiNja22mZ4+fTqOHTuGpUuXomXLlmatraysDBqN8X+MS0vLjB57eHpkpcszT17ERt/hRm+nuloefGMvfBtqADWfzBUwbWOly11bdUen3fff+GV5Obi6YiwC/rkR8vpeJtZRirS0WyatY6vy8/NrHFNcXIxVq1bhn//8J5ycnKodW9vfsT3avKfmP6IPfBHzG5r7aC1az98ZmwNSygAwB4zGDKi9HT+mobik5mnj9Hrg6Jk/cOx/l9BEbb3JCdgLlCdmBvj4+Ajaw2N3zfSOHTvw1FNPISgoqNL71Wo1fHx8Kr1v/vz5+Pe//42JEydizpw5Fe4vKyvDzJkzsWXLFuh0OgwbNgyRkZFGf9rXaDRo0qSJ0c9lsVd/+ClsY9qh5ORkjDSh9sq0/jwJqqZtjBhZs8x9a1CanYHUDTPKLffqHQb14BlVroc/n0uTZ9qapQ6xTZgwocYxJSUl2Lt3L7y9vWs8k3/9+vVmrM5OtP0CcDBiJ5xej207v8O2j561RlUGtpIDtpYBYA4AzADzaDgQ8Blm9PDuTz0DFFrvcA9byQDYYA5YOwNSU1Ph7+9vcp121UxrNBqkp6cbTiD8K51Oh8TERHTs2LHSdcPDw7F48WK8+uqrWLt2baVjli5diri4OCQmJkKpVGLQoEF45513sGrVKrM/F0tKiTmElJhDYpdRK77D58B3eMUPPEQm0xUDjs739+FWx8EB0BVZqyqLkkIGgDlA5qI18X3NHLAZ9pIBdtVMP9jd5VDJH8Xdu3fjjz/+qPQQj/DwcERERCAsLAzr16+vdH38+Yn9ww8/hJ+fn2G9ESNGYMWKFZDJar4aj4+PD1JTU41+PsdGLkP+Vds4RjMoKAipMRtqtY2pv6uRagMZFBQUhB9N+D3YspSUlBrH5OfnY/PmzRg5cmSNFyJasGCBGauzD9M/TsR/Dt40auy6jybhuR7hFq/pr2wlB6SUAZBQDjADai/tViG6v/ZzjedNODgAzRq74NB/E6rsEyzBVjIAEssBIRlQ1ZENNbGrZrpJkyaQyWSIj48vt/z69euYOvX+GZ5/b6YXLlyIiIgIjB07Fhs2bICjY+W7e3NycpCamlpu/eDgYOTm5uLatWto3rzm+SflcrlJuwcUCtt5+RUK02qvdBuXANjAG0ihUNT6udiKjIyMGscoFApMmDABHh4eNe7ilcrrYopZrylrbKYdHABfbxe8OiwYCoV1z8u2lRyQUgZAQjnADKg9f39gUK9r2B13o9pxej0wbUx7kw7XNAdbyQBILAesmQG28xs0glKpxLhx4xAdHY3Bgwfj+eefR2pqKr788kuo1Wqkp6eXa4YjIyOxYMECNG3aFP369cO2bdvKbU+tVqN///4AgNzc+3PMeng8vBLSg38/uI/IFimVSkycOFHsMmxW1/aNEDE5GAtWn4KDQ8VpsRwAOCtl+PqTPlZvpInMgRlQszXznsSZC1m4npFX5ZgXn26KyaGtrFoXSYPd/eVYtWoVJk6ciISEBMycORMJCQnYtWsXGjduDBcXl3InJp44cX8C9hs3biAsLAxjx44t97NkyRLDWDc3NwDA3bt3DctycnLK3UdkiwoLCzF16lQUFhaKXYrNen9SR3zx/pPwV1fcBf5kRzXio59H9w72Pe881V3MgJr5NnTBsa0vYli/ADg6lj+Eo349Bd59rT3+82lfyOV21xaRDbCrb6YBwNXVFevWrcO6devKLU9KSkK7du3KHcaxceNGbNxY+dQrf+fh4YEmTZrgzJkzhinzTp8+DTc3NwQEBJj5WRCZj1arRUJCArRa607pZm/eGP4YXhsahG3/vYxx834GAOxf+yz6d/cTuzSiWmEGGMe3oQu++bQvTiRl4olRewAAkXO7I2xQIOq5GDelI1FlJPERLCcnB2lpaTVe+bAmEyZMwAcffICbN28iMzMT4eHhGD9+vFEnH1pDi1F98dyeJRi4exE8Hmta6Zhn/xOBkOX2sbvv9v71uPBOd1yY3QOF1xIrHXPxvV64vnqS1WsjaZLJHNH7icaG260e9ah2vC2SUg4wA0gMvt4uhn8P6tXU7hppKWUAJJIDkmimExPvv/i1babnzp2Lnj17ok2bNggMDESrVq2wfPlyM1VZO0oPV7QMG4AfXnofR95eg66LXq0wxr9fJ5Tm2cduvrLcLGTuW4OWS+MRMCUKqeunVRiTc+J7yFQ8xIboASnlADOAyHRSygBIKAfYTP+FXC7HqlWrkJ2djbt37yIqKqrcVRbF1LBjIDRHz0FfpsW9yzfh1KB++XlzHRzw2KvP4sLGfWKWabT8S7/CtW0vOMgVcPZvibJ7t6HXPbxClV6nQ+beSDR87i1R67QHTk5OmDt3bo1XPiP7J6UcYAaYDzOg7pBSBkBCOSCJZnry5MnQ6/Xo1q2b2KVYjNLDFSV3H15WtjSvEMr6D3dVBY7shet7E6AtKhWpQtNoc7Mgd/U03HZUuUFb8PDkzzsHN8Ej5CU4Koy7+mRdplAoMGTIECgU9rWrkkwnpRxgBpgPM6DukFIGQEI5IIlmui4ouZsPZf2HMxEoXFUouVcAAJA5KfDoS08hZcdBESs0jczVE9r8HMNtXWEuZC7u9/9dUoSs+K/g3bfi7iuqqKCgAKGhoSgoKBC7FLIwKeUAM8B8mAF1h5QyABLKAbubzaOuyjx1CR3+NRIOMke4NmmE4qx7hglzXZs2gtK9HvptmQOlhytUjTzQfMTTuPx1fI3bFUu9oK64uX0B9NoyFP9xDfL63nD4cyaW4ltXoc3PQcqiF1CWl4XSbA3uHNwMrz7jxC7bJul0Oly9ehW6v+waI2mSUg4wA8yHGVB3SCkDIKEcYDNtJ0py8nBpWywG7loEvV6H43PWw693Byg9XHF112F8/+y7AACfkDZoNuRJm37zAIDcrQG8+0/AxTk9AUdHNP1HJO6e2gdtbhYaPD0KrT49CQDITTyErF922OSbh8japJQDzAAi00kpAyChHGAzbUeStx5A8tYDhtvZv1+vMEZz7Bw0x85ZuTJhGj4zEQ2f+cvUPc0erzDGrV0vuLXrZd3CiGyYlHKAGUBkOillACSSAzxmmsjOOTs7Y+XKlXB2tu0TNIjIMpgBROLiN9NEdk4ulyMkJETsMohIJMwAInGxmRaRW4CP2CUYmKMWPxcjBlmBrdRhLXl5eXjxxRfx3XffwdXVVexyyES2kgNSygDYWC2Wxgywb7aSAZBYDlizDjbTIuq7abbYJZjViq5iV1B35efnGzGKbJGUcoAZIB5mgP2SUgagjuYAj5kmIiIiIhKIzTQRERERkUBsponsnEqlwvbt26FSqcQuhYhEwAwgEhebaSI75+joCLVaDUdHvp2J6iJmAJG4+M4jsnP5+fno06cPT0AiqqOYAUTiYjNNRERERCQQm2kiIiIiIoE4zzSRDevSpUuNY4qLi7FgwQJ0794dTk5OVqmLiKyDGUBk+9hME9k5JycnhIeHi10GEYmEGUAkLh7mQUREREQkEJtpIiIiIiKB2EwTEREREQnEZpqIiIiISCA200REREREArGZJiIiIiISiFPjiSg2bBlyr2nELgMA4Bbgg76bZtdqGzMSgPQCs5UkmJ8LsKKr2FUQGcdWckBKGQDmANkRW8kASCwHrJkBbKZFlHtNg5zkNLHLMJv0AuBKrthVENkXKeUAM4DIdFLKANTRHOBhHkREREREArGZJiIiIiISiM00EREREZFAPGaaiCSvqLgM8Sc1OHnuNo7/9odh+cxPEtCzkw+6tW+E4FZecHBwELVOIrKcy6n38MspDeJPPjzZ7/UFv6BTa290au2FXl184eXhLGqNZJ/YTBORZKXfyseqbecQtSsZd3KKK9wf8+NVxPx4FQDQNtATk0Nb4fWXgqBUyESolojMTa/XY8+hG/h82++ITbhZ4f79x9Kx/1g6AMBJKcPLzz6KGWPb4PGWXiJUS/aKzbSd6PHZWwgM7Q0A0Gm1KLyVg4wjSTi19CsUaLLELs8k11aOx52Dm+7fcHSEwtMXbu36wG/cB1B6+YldHkmAXq/Hxt2XMOOjBNzNLTFqnaSUbExechRrYs5j46KeCG7tbfE6TSGlDABzgKzg5h/5+MfCI/j+51SjxheXaLFpzyVs/W8K3hnfHgve7AgnpW19sJZSDkgpA3jMtB3RHP8dO9tPwDed38TPb30Gr7YB6PXFTLHLEsS19VNovzED7dbfQLOZ21Bw9TSuLB8hdlkkAaWlOoydG4/X3v/F6Eb6rxIvZeOJ0Xuwafcli9RXG1LKADAHyIISfvsD7YbtMrqR/iutVo8Pos7iyXHfIzOr0CL11YaUckAqGcBm2o7oSspQmJmDAk0Wbh0/j4tbD6BRl5ZQuKrELs1kDnIlFJ4+UHr5wa1NTzQcMBH5F49BW3BP7NLIjmm1OoyZewhf/fdylWNkMgf4qV3gp3aBTFb5MdJarR7j5/9scw21lDIAzAGykJPnMtH/H/uQdbfioV0wMgMA4H+/30bfN36ocjtikVIOSCUDJN9MJycn4/3330e3bt3QsGFDuLm5oUOHDliyZAny8/PFLk8wldoTAS90g65MC71WJ3Y5tVJy5yayj34DOMru/xAJ9MmmJMMx0FXx8VYh7adXkPbTK/Dxrv6PzxsRh/Fbsm3uOpVSBoA5QGZyN7cEQ6fHIje/tMoxpmRA4qVsTAj/BXq93gLV1p6UcsCeM0Dyx0xv2LABkZGRGDRoEEaPHg2FQoG4uDjMmzcPMTExOH78OFQq+/g059O9DUanbIGDoyPkKicAQNKaPSgrvP+pudeXM3Ez/iyStx4AADRo2ww9V0/Dd/1nQVtcdbCIITfpEE6HukKv00Ffcn83mnrITMic6wEAso/tQsbOiHLrFKX+jiYTVqLhwDdFqZls2/krOXh/9SmzbrO0TIfx835GwleDoFCI/92DlDIAzAGygH99koC0W+b9omxX7HXs3HcFLw9sbtbtCiWlHJBKBki+mR4+fDjmzJkDd3d3w7JJkyahRYsWWLJkCaKiojBlyhRRazRW5qlLODzt35A5KRAwqDsaP9Uep5dvN9z/6/xoDNy9CNf3JqA4Ow8hy95Awtwom3vzAEC9oK4ImL4J+pIiZB+Owb2zB9B49GLD/Z4hQ+EZMtRwO+f4t0jfMhdefcJEqphs3Xufn0Rxidbs2z194Q6+2puC8YODzL5tU0kpA8AcIDM7fyUH6/8v2SLbfmfFCQzv3wxyufgfqqWUA1LJAPH/V9TC2bNnMXjwYLi7u6N+/foYMmQIMjIy4ObmhpdffhkA0Llz53KN9AOhoaEAgKSkJKvXLZS2qAS51zTIuZiKMx/tRG7qH+i65HXD/QWaLJxb9z06zx+LlmP74+6VDGQcThS15qo4KlVw9g2E6pG2aDx6IZzUzZD6xdRKx5bcTsONdW+h2awdcHRysXqtZPvSNPnYHXfDYttfs/OCxbZtCillAJgDZGZrYs5bbNupmnz89xfTT2a0BCnlgFQywG6b6djYWHTr1g0XL17EvHnzsHTpUqSlpWHgwIHIy8tDhw4dql0/LS0NAKBWq61Usfmd+XgnAkN7w+vxh7ueLkTvg0fLJmg3ZQhORGwStT5T+L4Sjtux0ci/dLLccr1Oh6srxsBn2Gy4BLQXrT6ybV/tTYFOZ7ljGn9NysT5KzkW275QUsoAMAeoFnQ6PbZ8l2LRx9hoYyckPyClHLDXDLDLZjozMxOhoaEIDg7G6dOnMWvWLEyZMgWxsbG4ceP+t1PVNdNarRaLFi2CXC7HqFGjrFi5eeVe1SD1p5MInv3Kw4V6PS5u/glpsadQfMd+zoZ1btwCHl1exM2t75VbnhGzGDJVfTR6ofJPqkQAkJCYafHH+NUKj2EqKWUAmANUC8nX7yJHwFSYpvg1yfYyABLLAXvNALs8Znr58uXIzs5GdHR0uZMH3d3dERwcjNjY2Gqb6enTp+PYsWNYunQpWrZsaba6ysrKoNFojBh5X2lpWa0fM2n1Hjz/3RL4hLSB5ti5+wt1OuhN/JautLTM8G29UKWlagAKweurh87CxdlPIjfxENza9ULe+SO4cyAKrT417aSy0tJSpKXdElwH2Z8TieV/3zKZQ5Vn6fv+ZblvNWfya24XQqt9+D6KP3ENfTuZ/2Tl2uaAlDIAzAES6KfDFa9uWFUOCM2Am38U4NRvl9GogZNZan6AvUB5YmaAj48P5HLTW2MHva3O91INf39/BAYG4tChQxXu69evH5KSkqpsaufPn4/Fixdj4sSJWLduXYX7Y2JisGrVKpw5cwbe3t64du2a0XWlpaWhSZMmRo9f7NUffor6Ro83VuDIXvB6vDkS3osyep300nuYd+enWj1u68+ToGraplbbeKAsLwfn3w5GwJQouLXvbdK6hTfO4fepbc1SB9mJNqsBR6Xhpp/aBWk/vVLtKjXx778d6bcKHi7I+RVI/aJW26yMJXJAChkA5gCZwqs/0Di03KLa5kCFDACAS+FAUe2azb9jL1A1a2dAamoq/P39TazSDr+Z1mg0SE9PN5xA+Fc6nQ6JiYno2LFjpeuGh4dj8eLFePXVV7F27dpKx3h6emLKlCm4desWVqxYYfb6yTiZ+9agNDsDqRtmlFvu1TsM6sEzqlyP6qqqL7xgX49Bf8UcIKNZ7e3JHLAme8kAu/tm+vLlywgMDMTMmTPx8ccfl7tv165deOmll/Duu+9i2bJl5e4LDw9HREQEwsLCsGHDBjg6Vn+4+Lfffovp06eb9M20qYd5HBu5DPlXjR9vSfWa+SAkZnattjH1dzVSi2q3i9ccmjiX4vPW3L1blwSPjkNm9sPjJWs6zOPE9iEAgC6vfIuM25VfLvjvu3hHD/THsqnm+9b1AVvJASllAJgDdc6O/WmY9dm5csuqO8xDSAYAwLHonvBXm/dwL1vJAEgsB4RkgNDDPOzum+kmTZpAJpMhPj6+3PLr169j6tT7B6b//XjphQsXIiIiAmPHjjWqkRZKLpebtHtAobCdl1+hMK32SrdxCUCR2UoSXodCUevnQvYluFVD/Hg03XBbq9VX3D1biYzbhUaNA4Ang5ta5P+VreSAlDIAzIE6p083ZwDlm2ljcsCUDPCsr0TX4EA4OJj322lbyQBILAesmQG28xs0klKpxLhx4xAdHY3Bgwfj+eefR2pqKr788kuo1Wqkp6eXa6YjIyOxYMECNG3aFP369cO2bdvKbU+tVqN///4iPBMiMpfObbzLNdOW0Km1t0W3T0TCtW3hCSelzCIXbnoguJW32Rtpkga7a6YBYNWqVVAoFNi9ezcOHjyIkJAQ7Nq1CwsXLkRKSgqCgh5eqezEiRMAgBs3biAsrOIVc55++mk200R2buQzj2LJl2cttv1H/d3QuQ2baSJbpVTIMLTPI9ix74rFHuPlZx+12LbJvtnlPNOurq5Yt24dNBoNcnNzsX//foSEhCApKQnt2rUrdxjHxo0bodfrq/ypbEYQIrIv7YMaoEdHy12A6c2RreDoyG+kiGzZ5NBWFtu2u5sSrwxkM02Vs8tmujI5OTlIS0ur8cqHNdFqtSgqKkJpaSn0ej2KiopQXFxstjpro8WovnhuzxIM3L0IHo81rXTMs/+JQMjyiVavTYjb+9fjwjvdcWF2DxReq/xSpxff64XrqydZvTayPxGTgy2yXb9GLnhjmPnmo68tKeUAM4DMqUewGn27NrbItme/1h71XMQ/qQ4SywBIJAck00wnJt7/BdS2md6yZQtUKhVGjhyJGzduQKVSmfXCLkIpPVzRMmwAfnjpfRx5ew26Lnq1whj/fp1Qmlf5Wcm2piw3C5n71qDl0ngETIlC6vppFcbknPgeMpWbKPWR/enTtTEmjXjM7Nv9ckEPuLspjRhpeVLKAWYAmZuDgwOiInrA1cxNb+c23vhXWDuzblMoKWUAJJQDbKb/Zvz48RUOBTFlejxLadgxEJqj56Av0+Le5ZtwalAf+OuJEA4OeOzVZ3Fh4z4xyzRa/qVf4dq2FxzkCjj7t0TZvdvQ63SG+/U6HTL3RqLhc2+JWifZlw/f7lLjiYKa24Xw778d/v23Q1PFlFgPzBrfDgOfMv5CTJYmpRxgBpAlPNLYDRsWPoXqzhM0JQMaejrjqw96QS63jXZJShkACeWAbfzvMIPJkydDr9ejW7duYpdiEUoPV5TczTfcLs0rhLK+i+F24MheuL43AdqiUpEqNI02NwtyV0/DbUeVG7QFdw237xzcBI+Ql+CocBapQrJHbvWU+HHtM9WeLPhguqz0WwUV5pD9q+lj2mD5jC4WqlQYKeUAM4AsZcSAZti85GnIZJV31MZmgNpLhQNfDkRQgLsFqzWNlDIAEsoByTTTUldyNx/K+vUMtxWuKpTcuz83psxJgUdfegopOw6KWKFpZK6e0ObnGG7rCnMhc7kfWLqSImTFfwXvvhV3XxHVxMvDGYeinsPUUa0Fre/hpsSmxT3x6ayuNjcNlpRygBlAljTmhUAcinoOgU2FXab72Sf9cWL7ILQPamD22mpDShkACeUAm2k7kXnqEtTdWsFB5gi3AB8UZ90D/rx4pWvTRlC610O/LXPQaf4Y+PXtiOYjnha75GrVC+qK3HM/Q68tQ1FGCuT1veHw5ywsxbeuQpufg5RFLyBt0zu4+7+9uHNws9glkx2p56LAqtkhiN/wHPqHGHdCkouzHG8Ma4lzu17CuEEtbK6RhsRygBlAltYj2Adnvx6KBZM6Qu1l3FUL27XwxOYlPbF39QA08XG1eI2mklIGQEI5YJfzTNdFJTl5uLQtFgN3LYJer8PxOevh17sDlB6uuLrrML5/9l0AgE9IGzQb8iQufx1f4zbFJHdrAO/+E3BxTk/A0RFN/xGJu6f2QZubhQZPj0KrT08CAHITDyHrlx3w6jNO7JLJDvXs7Iv9nX2RfO0u/nPgGv73+22cTc7C3dwSw6WGO7XyRtd2DTFiQDN41HcSu+RqSSkHmAFkDS4qOcInB2PuG49jT9wN/HJKg/+dv4MrabkoLdPBxVmG1o96olNrLwzs0QTdOzSyyQ/SD0gpAyChHHDQ6/VVHzBEFvXt09ORk5wmdhkAAI8gfwyJ/6xW2xgZB1zJNVtJgj3qBsT0FrsKIuPYSg5IKQPAHCA7YisZAInlgDUzgId5EBEREREJxGaaiIiIiEggNtNERERERALxBEQRuQX4iF2CgTlq8XMxYpAV2EodRMawlRyQUgbAxmohqo6tZAAklgPWrIMnIBIRERERCcTDPIiIiIiIBGIzTUREREQkEJtpIiIiIiKB2EwTEREREQnEZpqIiIiISCA200REREREArGZJiIiIiISiM00EREREZFAbKaJiIiIiARiM01EREREJBCbaSIiIiIigdhMExEREREJxGaaiIiIiEggNtNERERERAKxmSYiIiIiEojNNBERERGRQGymiYiIiIgEYjNNRERERCQQm2kiIiIiIoHYTBMRERERCcRmmoiIiIhIIDbTREREREQC/T83E58YNLebPAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, - "execution_count": 11, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -152,7 +153,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 4, "id": "1be6d145-4a18-4c41-bf59-d9b24d2ce024", "metadata": {}, "outputs": [], @@ -196,7 +197,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 5, "id": "b3cf1b65-df16-4bd4-a083-f65cec6c49dc", "metadata": {}, "outputs": [ @@ -204,10 +205,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Reconstructed expectation value: 0.59146589\n", + "Reconstructed expectation value: 0.51680601\n", "Exact expectation value: 0.56254612\n", - "Error in estimation: 0.02891977\n", - "Relative error in estimation: 0.0514087\n" + "Error in estimation: -0.04574012\n", + "Relative error in estimation: -0.0813091\n" ] } ], @@ -224,7 +225,11 @@ "\n", "\n", "estimator = EstimatorV2()\n", - "exact_expval = estimator.run([(qc, observable)]).result()[0].data.evs\n", + "exact_expval = (\n", + " estimator.run([(qc, observable, [0.4] * len(qc.parameters))])\n", + " .result()[0]\n", + " .data.evs\n", + ")\n", "print(\n", " f\"Reconstructed expectation value: {np.real(np.round(reconstructed_expval, 8))}\"\n", ")\n", @@ -270,25 +275,13 @@ "
" ] }, - "execution_count": 14, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "from qiskit.circuit.library import EfficientSU2\n", - "from qiskit.quantum_info import SparsePauliOp\n", - "from qiskit_ibm_runtime import SamplerV2\n", - "from qiskit_aer.primitives import EstimatorV2\n", - "\n", - "from qiskit_addon_cutting import (\n", - " cut_gates,\n", - " generate_cutting_experiments,\n", - " reconstruct_expectation_values,\n", - ")\n", - "\n", - "\n", - "circuit = EfficientSU2(num_qubits=4, entanglement=\"circular\").decompose()\n", + "circuit = efficient_su2(num_qubits=4, entanglement=\"circular\")\n", "circuit.assign_parameters([0.4] * len(circuit.parameters), inplace=True)\n", "\n", "\n", @@ -307,7 +300,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 7, "id": "f417c494-949a-48c9-aa95-18a07cc65b26", "metadata": {}, "outputs": [ @@ -318,7 +311,7 @@ "
" ] }, - "execution_count": 15, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -344,12 +337,16 @@ "source": [ "Now that the cut gate instructions have been added, the subexperiments will have a smaller depth after transpilation than the original circuit. The code snippet below generates the subexperiments using the [`generate_cutting_experiments`](/api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) method as before, but for this example, use the `qpd_circuit` instead of dictionaries since you did not partition the problem.\n", "\n", + "\n", + " The `num_samples` argument specifies how many samples to draw from the quasiprobability distribution and determines the accuracy of the coefficients used for the reconstruction. Passing infinity (`np.inf`) will ensure all coefficients are calculated exactly. Read the API docs on [generating weights](/api/qiskit-addon-cutting/qpd#generate_qpd_weights) and [generating cutting experiments](/api/qiskit-addon-cutting/qiskit-addon-cutting#generate_cutting_experiments) for more information.\n", + "\n", + "\n", "Once the subexperiments are generated, you can then transpile them, then use the `Sampler` primitive to sample the distribution and reconstruct the estimated expectation values. The following code block generates, transpiles, and executes the subexperiments. It then reconstructs the results and compares them to the exact expectation value." ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 8, "id": "37bff595-f422-4354-94da-b03c17fd4a3b", "metadata": {}, "outputs": [ @@ -357,10 +354,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Reconstructed expectation value: 0.54345703\n", + "Reconstructed expectation value: 0.51855469\n", "Exact expectation value: 0.50497603\n", - "Error in estimation: 0.038481\n", - "Relative error in estimation: 0.07620362\n" + "Error in estimation: 0.01357866\n", + "Relative error in estimation: 0.0268897\n" ] } ], @@ -394,7 +391,11 @@ "reconstructed_expval = np.dot(reconstructed_expval_terms, observable.coeffs)\n", "\n", "estimator = EstimatorV2()\n", - "exact_expval = estimator.run([(circuit, observable)]).result()[0].data.evs\n", + "exact_expval = (\n", + " estimator.run([(circuit, observable, [0.4] * len(circuit.parameters))])\n", + " .result()[0]\n", + " .data.evs\n", + ")\n", "print(\n", " f\"Reconstructed expectation value: {np.real(np.round(reconstructed_expval, 8))}\"\n", ")\n", diff --git a/docs/guides/qiskit-addons-cutting-wires.ipynb b/docs/guides/qiskit-addons-cutting-wires.ipynb index 0cd13fcd872..c1672557700 100644 --- a/docs/guides/qiskit-addons-cutting-wires.ipynb +++ b/docs/guides/qiskit-addons-cutting-wires.ipynb @@ -18,7 +18,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "b481ef2d-3912-4eac-9755-335e8f5db886", "metadata": {}, "outputs": [ @@ -312,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "id": "55ac9aef-494a-4834-b277-9fc4028137cd", "metadata": {}, "outputs": [ @@ -320,10 +320,10 @@ "name": "stdout", "output_type": "stream", "text": [ - "Reconstructed expectation value: 1.45048183\n", + "Reconstructed expectation value: 1.33140838\n", "Exact expectation value: 1.59099026\n", - "Error in estimation: -0.14050843\n", - "Relative error in estimation: -0.08831508\n" + "Error in estimation: -0.25958188\n", + "Relative error in estimation: -0.16315743\n" ] } ], @@ -347,8 +347,9 @@ "print(\n", " f\"Error in estimation: {np.real(np.round(reconstructed_expval-exact_expval, 8))}\"\n", ")\n", - "print(f\"Relative error in estimation: {\n", - " np.real(np.round((reconstructed_expval-exact_expval) / exact_expval, 8))}\")" + "print(\n", + " f\"Relative error in estimation: {np.real(np.round((reconstructed_expval-exact_expval) / exact_expval, 8))}\"\n", + ")" ] }, { @@ -377,18 +378,18 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "id": "0d3e4f65-3087-4dff-b6f1-24ba06f60678", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAIwCAYAAADH6UtKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAACAaklEQVR4nOzdd3hUVf7H8c+kFxIgBQKEEkroTbqIAoKCCKKIoEHBdV0LLLqysOr+dhFdC4qLhUWxsiqyKKAgKM2IhGpo0kILBEjIAKGll8nM7w/WrJEEMmFmbmbyfj2Pz8q999zzncje3M/cc8412Ww2mwAAAAAAgNvxMroAAAAAAABQOYR6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwUz5GF4Cy2Ww2WfIKjC6jwnwC/WUymYwuAwAAAACqFUJ9FWXJK9C8ZmOMLqPC4pI/k29QgNFlAAAAAEC1wvB7AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE3xnnoPEtWrrQYtnlZqW1FOnjKPpCt54TolffitbMVWw+oDAAAAADgWod4DHVmcoNT47ZLJpMDIWmo+8iZ1nzZONVs00KbJc4wuDwAAAADgIIR6D3R291EdWZRQ8ucDc1fqzoQ3FXvfzdr+ynwVnM00tD4AAAAAgGMwp74asOQV6Mz2QzJ5eSm0cV2jywEAAAAAOAihvpoIaXIpzBdcyDa6FAAAAACAgzD83gP5BPrJPyykZE59ywduUXj7pjqz/ZAyj6QbXR4AAAAAwEGqRajPyMjQq6++qsWLFys1NVWRkZG666679NJLL2nixIn66KOP9Pbbb2vChAlGl+oQnaeMVucpo0ttS1m+WVue+cCwmox2MOWi5n+XLHNGnry9TWreMFRjbm+uiNoBRpcGAAAAJ7PZbNr082ktXXtc5zMLFOjvo06twjTq1qYKDKgWkQgezOP/Bu/cuVODBw+W2WxWcHCw2rRpo5MnT+qtt95ScnKyzp07J0nq1KmT0aU6zIFPVynlm03y8vVR7VaN1G78cAXXC1dxQWHJMV5+Phq66jUd/SpBu95cXLL9hjfGKyCyltbEvWhQ9Y61de8ZPfPmVq3ZfPKyfU+/uVWjbo3Rq091V93wQEPqAwAAgHN9HZ+iae/u0M795y7b99RrW/TwiJaa9vh1CvD3+GgED+XRc+ozMjI0dOhQmc1mTZo0Senp6dq+fbvMZrOmT5+u5cuXKzExUSaTSR06dDC6XIfJPGJWesJupcXv0J7ZS/T92FcU0amZek1/pOQYa6FF6ye+rfYT71LtNo0lSY0GdVP0wK7a8NRsA6t3nJUbUnXjuOVlBnpJKigs1iffHFbPuKVKSctyeX0AAABwrjc/26M7n/y+zEAvSeczC/Xqx7t1yyMrlJNb5PL6AEfw6FA/ceJEpaamasKECZoxY4ZCQkJK9k2ZMkUdO3aUxWJRkyZNFBoaamitznRm6wElL1ynmOG9Fdm1Zcn2s7uOaO87S9XnrT8qqF6Yer32qLY8+4HyTp03tF5H2Hv4vEY89b3yCoqvemzKyWwNfnylcvMsLqkNAAAAzrd4TYqefHVLhY5N2H5KY5790ek1Ac7gsaE+KSlJCxYsUEREhF5++eUyj+nSpYskqWPHjqW2Hz16VMOGDVNISIhq166tBx54QGfPnnVJ3c7y88yFslqK1XnyqNLb31gka3Gxhq1+TeYNe3R0yQbDanSkVz/epRw7Qvr+o5fm3AMAAMD92Ww2TZ293a42X8cf0/Z9GU6rCXAWjw318+fPl9VqVVxcnGrUqFHmMYGBl+ZR/zrUZ2VlqV+/fkpNTdX8+fP13nvvKSEhQbfffrusVqvL6ne0rBSzji7ZoPo3dlCdHq1LttssxTqTeEAB4TV1eMEPhtboKBnn87Vg5VG72/3rP0my2WxOqQkAAACus377Ke05bP/o03e+SHJKPYAzeWyoj4+PlyT169ev3GNSU1Ol34T69957T2lpafr66691++23a+TIkfr888+1efNmLV261AWVO8+uNy89lf/10/o6PVqr+ah+SvrwW3V//kF5B/gZWqMjrNqYpoLCqw+7/60d+88q9VSOU2oCAACA6yz54Vil2n0VX7l2gJFMNg99NNmwYUOlpqZqx44dZa5sb7FYVK9ePWVkZCg5OVlNmzaVfvUlwA8/lH5q3axZM/Xt21cffvih3bV07dpVZrPZrja+Ni9NtXa3uy97+AQFaNj3M7RvzjLt//dKDf7qeWX8nKzEqXPtPtc0r59UZKoaIxmy/XvoYvBtlWpb5+Js+RafcnhNAAAAcJ3zwXco1/86+xvarKp/fppMzigKuIqoqCht3brV7nYe+96GnJxLT1zz8vLK3L9gwQJlZGQoJCREMTExJdv37dunkSNHXnZ827ZttW/fvkrVYjablZaWZlcbP5O3VLdS3VVYt+ceUPbx09o/d4Ukaf0TszRszQwd/26LTm22b+jRyfSTKrTZ/3TcKWqfkYIr1/S0OU0qJNQDAAC4tfoXJf9KtLMV6aSd9+2A0Tw21EdFRen8+fPavn27evXqVWpfenq6Jk+eLEnq0KGDTKb/fRd3/vx51apV67LzhYWF6cCBA5WuxV6+Ni/JiQ++G/TvrJhhvbXk5kkl27KOndK2F+ep98zxWtp/kix5BRU+X/169avMk/pC73ydkSSbTTJV/HtWkzVP9SIDZFIDZ5YHAAAAJ8vxz9aFSrTzKz6lyAbcC8IYlcmN8uRQP2DAACUlJWn69OkaOHCgYmNjJUmJiYm6//77lZFxaWXLsobmO1plhlAU5eZrXrMxTqlHktLid+jzVmMv275/7oqSJ/f2OHjooHyDAhxU3bWx2WzqOnqJtifZ98aCJx7oqplTUpxWFwAAAFwjK6dQ9W+er+xc+15Z/MGrY3T/0GlOqwtwBo9dKG/KlCkKDw/XiRMn1LZtW7Vv314tWrRQ9+7d1bRpU/Xv318q43V2tWvX1oULl3+vd+7cOYWFhbmsflSeyWTSH+9rY1cbb2+THh3Zymk1AQAAwHVCgv304PBYu9rUCQvQyFtiKnAkULV4bKiPjo5WQkKChgwZooCAAKWkpCgsLExz5szR8uXLdfDgQamMUN+6desy587v27dPrVu3vmw7qqaxw1rogaHNK3z8O3+9Xi1jLp92AQAAAPf08sSu6t4uskLH+vt5adE/b1aAv8cOZIYH89hQr/8G9GXLlikrK0tZWVnasmWL/vCHPygnJ0cpKSny8vJSu3btSrW5/fbbtX79+pLX3UnSli1blJycrKFDhxrwKVAZJpNJHz3fRxPuvfITe38/b338Qh89fDdP6QEAADxJcJCvVs0ZpFuuv/Ic+cjaAVrz3mDdcF3l5jMDRvPYV9pdyZYtW9SzZ0+1bNlS+/fvL7UvMzNT7du3V0REhKZNm6b8/HxNmTJFkZGR2rRpk7y8XPM9iLPn1DtaXPJnVWZO/W8dTLmod79M0rzlyTp9Ll/673D7lyd21YPDYxVRu2rWDQAAgGtns9m0eddpzV6QpKVrjyszu0iS5Ovjpfem9taoW5sqMIAn9HBfHv2kvjy7d++Wyhh6L0mhoaGKj49XvXr1NHr0aP3+97/X9ddfr2XLlrks0MOxYpvU1D8n99SptXGqHxkoSYoKD9TkBzsQ6AEAADycyWRSr4519elLfXVx4wMl94N1wgI07o5YAj3cXrX8G3ylUC9JzZo107Jly1xcFVzBZMcr7gAAAOB5uB+Ep6mWj56vFuo9WeMhPdXzlYdLbWs+qp/GpS9Uo0HdDKsLAAAAAGC/avmkPj4+3ugSDNPoth5K/nJtyZ9rREcqNm6ATm89YGhdAAAAAAD7VctQ78n8QoN0xw8z5R3gp9yTGfLy91VIo7pKXvijNj39vup2a6n1T8y6dLDJpOtff0xb/u9DdZs61ujSAQAAAAB2ItR7mMLMXB35KkFFOfnaNXOh6vftqA4T79LGP7+r+jd11OnEA7JZiiVJbR8ZqtOJ+3V21xGjywYAAAAAVEK1nFPv6cLaxejc7qOSpPAOzXRuz6V/bzSom45995MkqVbLhmo8pId+fmORobUCAAAAACqPJ/UeKKxtk5IgH96hqU6sTJQk1e/bSVtf+EySVLdHa9VoWEcjNr4tSQqMrKVerz2qwDq1deCTVQZWDwAAAACoKEK9hwmKCpNsNuWaz0mSwlo31q43FymicwtdPJQmS26+JOnAJ6tKhfdBi6Zp3/vLdHxFomG1AwAAAADsQ6j3MGHtYkqe0ktSYWaOWo29VQXnsnR8xU+G1gYAAAAAcCxCvYdJXbNNqWu2lfx52eCnJUl3rJ2plSOmlttuxRX2AQAAAACqJkJ9NbGk75+MLgEAAAAA4GCsfg8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuCnm1FdRPoH+ikv+zOgyKswn0N/oEgAAAACg2iHUV1Emk0m+QQFGlwEAAAAAqMIYfg8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAm/IxugCUzWazyZJXYHQZFeYT6C+TyWR0GQAAAABQrRDqqyhLXoHmNRtjdBkVFpf8mXyDAowuAwAAAACqFYbfAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJvyMboAOE5Ur7YatHhaqW1FOXnKPJKu5IXrlPTht7IVWw2rDwAAAADgWIR6D3RkcYJS47dLJpMCI2up+cib1H3aONVs0UCbJs8xujwAAAAAgIMQ6j3Q2d1HdWRRQsmfD8xdqTsT3lTsfTdr+yvzVXA209D6AAAAAACOwZz6asCSV6Az2w/J5OWl0MZ1jS4HAAAAAOAghPpqIqTJpTBfcCHb6FIAAAAAAA5SLUJ9RkaGpkyZoubNmysgIEANGzbUE088oZycHD300EMymUyaNWuW0WU6jE+gn/zDQuQfHqparRqpx0u/V3j7pjqz/ZAyj6QbXR4MkpldqJ8PnNXmn0/r8PFM2Ww2o0sCAACAC50+m6dt+zKUuOeM0k7lGF0OHMTj59Tv3LlTgwcPltlsVnBwsNq0aaOTJ0/qrbfeUnJyss6dOydJ6tSpk9GlOkznKaPVecroUttSlm/Wlmc+MKwmGGdHUoZmL0jSvG+TlZdfXLK9fYvaenxUa425vblqBPkaWiMAAACcw2azafWmNM1ekKRvfjwhq/V/D3b6daunx0e11vD+jeXjUy2e93okjw71GRkZGjp0qMxmsyZNmqSpU6cqJCREkvTqq6/qL3/5i3x8fGQymdShQwejy3WYA5+uUso3m+Tl66ParRqp3fjhCq4XruKCwpJjvPx8NHTVazr6VYJ2vbm4ZPsNb4xXQGQtrYl70aDq4Ugz5u7W5H/+VOa+3YfO67F/bNQbn+3Vd7NvVUx0iMvrAwAAgPMUFVn18LT1+vfSQ2Xu/yExXT8kpmtgr/pa+PrNCq3h5/Iace08+uuYiRMnKjU1VRMmTNCMGTNKAr0kTZkyRR07dpTFYlGTJk0UGhpqaK2OlHnErPSE3UqL36E9s5fo+7GvKKJTM/Wa/kjJMdZCi9ZPfFvtJ96l2m0aS5IaDeqm6IFdteGp2QZWD0d587M95Qb6XzuQclE3P/ydTp3Nc0ldAAAAcD6bzabfP5dQbqD/tdWbTurOJ9eosKj4qsei6vHYUJ+UlKQFCxYoIiJCL7/8cpnHdOnSRZLUsWPHkm2/fAnQvXt3+fv7y2QyuaxmZzmz9YCSF65TzPDeiuzasmT72V1HtPedperz1h8VVC9MvV57VFue/UB5p84bWi+uXao5R5Nev3qg/8XRtCz99a2tTq0JAAAArrNifao++eZwhY+P/yld7y864NSa4BweG+rnz58vq9WquLg41ahRo8xjAgMDpd+E+sOHD2vRokWKiopSt27dXFavs/08c6GslmJ1njyq9PY3FslaXKxhq1+TecMeHV2ywbAa4TjvLzqg4mL7FsL7/Ltknc8scFpNAAAAcJ3ZC5LsbvPOgiQWU3ZDHhvq4+PjJUn9+vUr95jU1FTpN6H+xhtvVHp6upYuXaoBAwa4oFLXyEox6+iSDap/YwfV6dG6ZLvNUqwziQcUEF5Thxf8YGiNcJwPv7L/W9a8/GLN/zbZKfUAAADAddLP5Gp5wgm72+1NvqAtu844pSY4j8culHfs2DFJUuPGjcvcb7FYtGHDpafSvw71Xl6O/56ja9euMpvNdrXxtXlpqro7tI5dby5SzPDe6jx5lFbe/ZwkqU6P1mo+qp+SPvxW3Z9/UEsHTlZxfuFVz/VbsS1iVWSyOrReZ0iv9ZTkVVPp5nRFR0cbXY5T2OStk2F/r1Tbv/xthl768yqH1wQAAFBVVIf7wULvaNlqPlyptrfd+YCCCvc4vCZcXVRUlLZutX9KrMeG+pycS+9dzMsre/GvBQsWKCMjQyEhIYqJiXFqLWazWWlpaXa18TN5S3Xt7GfTXs2td3e5+y8eStMn0f8bfu8TFKAb3hivbS/O0/5/r9Tgr57Xdc/cp8Spc+3rWNLJ9JMqtLnBwhohxZKXZC0utvu/idsw+UphlWuanZOj7HQP/bkAAAComtwPBgVKNSvX9Pz5izp/wUN/Lh7KY0N9VFSUzp8/r+3bt6tXr16l9qWnp2vy5MmSpA4dOjh9MbyoqCi72/javCQnP/ju9twDyj5+WvvnrpAkrX9iloatmaHj323Rqc32zcGpX6++ezyp9/aWVZKXt7fqNWhgdDlOc9KaJ5tXoN3tQoOkEA/+uQAAAFSH+0GLV4BOSZLNJtmZdcJr+igg2DN/LlVdZXKjPDnUDxgwQElJSZo+fboGDhyo2NhYSVJiYqLuv/9+ZWRkSJI6derk9FoqM4SiKDdf85qNcUo9ktSgf2fFDOutJTdPKtmWdeyUtr04T71njtfS/pNkyav4omkHDx2Ub1CAk6p1nOgB85V2Olf1ouopdU+q0eU4zYSXNupf/7HvixkvL5P2rP9QDaPKXlgSAADAE1SX+8Hr7/9Gm34+bVebBnWClLL9R/n4eOzSax7JY/9rTZkyReHh4Tpx4oTatm2r9u3bq0WLFurevbuaNm2q/v37S7+ZT1+dpMXv0OetxionLaPU9v1zV2hxrwl2BXpUPY/d07oCR5U2rG8jAj0AAICHeHyU/feDj4xsRaB3Qx77Xyw6OloJCQkaMmSIAgIClJKSorCwMM2ZM0fLly/XwYMHpWoc6uHZ2javbdeFvGYNP734xy5OrQkAAACuc8+tMbqxS8WHc7dsUlMT7m3j1JrgHB47/F6SWrdurWXLll22PTs7WykpKfLy8lK7du0MqQ1wtjf/0lM5eRb9e+mhKx5XO9RP37x9i9o0q+2y2gAAAOBcfr7e+vrNAbp9wipt3HnlYfgtm9TUyndvVe1Qf5fVB8fx6FBfnr1798pmsyk2NlZBQUGX7V+4cKEkad++faX+3KRJE3Xt2tXF1QKV4+PjpY9f6KOBverr7c/3acvu0u8crRHkoweGttCkse3UNDrUsDoBAADgHLVD/bXmvcGavSBJ7365X4ePZ5baXy8ySH8Y0VIT49oqrCaB3l1Vy1C/e/du6QpD70eOHFnmn8eOHau5c+1/3RtgFJPJpLghzRU3pLl27j+r/r//VuczCxVW008pK0YpJNjP6BIBAADgRIEBPpo0tr3+dH87JWw3a/gTa3Qhq1DhNf11bMUo+fp67IzsaoNQXwabzebiigDn69QqXEEBPjqfWahAfx8CPQAAQDXi5WXSTV3rKTjQRxeyChXg702g9xDV8r/i1UK9J2s8pKd6vvJwqW3NR/XTuPSFajSom2F1AQAAAADsVy2f1MfHxxtdgmEa3dZDyV+uLflzjehIxcYN0OmtBwytCwAAAABgv2oZ6j2ZX2iQ7vhhprwD/JR7MkNe/r4KaVRXyQt/1Kan31fdbi21/olZlw42mXT9649py/99qG5TxxpdOgAAAADAToR6D1OYmasjXyWoKCdfu2YuVP2+HdVh4l3a+Od3Vf+mjjqdeEA2S7Ekqe0jQ3U6cb/O7jpidNkAAAAAgEqolnPqPV1Yuxid231UkhTeoZnO7bn0740GddOx736SJNVq2VCNh/TQz28sMrRWAAAAAEDl8aTeA4W1bVIS5MM7NNWJlYmSpPp9O2nrC59Jkur2aK0aDetoxMa3JUmBkbXU67VHFVintg58ssrA6gEAAAAAFUWo9zBBUWGSzaZc8zlJUljrxtr15iJFdG6hi4fSZMnNlyQd+GRVqfA+aNE07Xt/mY6vSDSsdgAAAACAfQj1HiasXUzJU3pJKszMUauxt6rgXJaOr/jJ0NoAAAAAAI5FqPcwqWu2KXXNtpI/Lxv8tCTpjrUztXLE1HLbrbjCPgAAAABA1USoryaW9P2T0SUAAAAAAByM1e8BAAAAAHBThHoAAAAAANwUoR4AAAAAADfFnPoqyifQX3HJnxldRoX5BPobXQIAAAAAVDuE+irKZDLJNyjA6DIAAAAAAFUYw+8BAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3JSP0QWgbDabTZa8AqPLqDCfQH+ZTCajywAAAACAaoVQX0VZ8go0r9kYo8uosLjkz+QbFGB0GQAAAABQrTD8HgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBTvKfeg0T1aqtBi6eV2laUk6fMI+lKXrhOSR9+K1ux1bD6AAAAAACORaj3QEcWJyg1frtkMikwspaaj7xJ3aeNU80WDbRp8hyjywMAAAAAOAih3gOd3X1URxYllPz5wNyVujPhTcXed7O2vzJfBWczDa0PAAAAAOAYzKmvBix5BTqz/ZBMXl4KbVzX6HIAAAAAAA5CqK8mQppcCvMFF7KNLgUAAAAA4CAMv/dAPoF+8g8LKZlT3/KBWxTevqnObD+kzCPpRpcHAAAAAHCQahHqMzIy9Oqrr2rx4sVKTU1VZGSk7rrrLr300kuaOHGiPvroI7399tuaMGGC0aU6ROcpo9V5yuhS21KWb9aWZz4wrCbASKfO5umDRQe0POGELmQVKijAR13ahOvxUa3VsWW40eUBAADAyQ4cvaB3vtivDTtPKSfPopAgXw3oWV+PjGylRvVqGF3eNfH4UL9z504NHjxYZrNZwcHBatOmjU6ePKm33npLycnJOnfunCSpU6dORpfqMAc+XaWUbzbJy9dHtVs1UrvxwxVcL1zFBYUlx3j5+Wjoqtd09KsE7Xpzccn2G94Yr4DIWloT96JB1QOOU1Rk1VMztmjOl/tVZCn9Osdt+zL03sIDuqlrlOa93FcN6gYbVicAAACc49zFAo39649atu7EZft+2nNGr3y0S3G3NdO7f+utoED3jMcePac+IyNDQ4cOldls1qRJk5Senq7t27fLbDZr+vTpWr58uRITE2UymdShQwejy3WYzCNmpSfsVlr8Du2ZvUTfj31FEZ2aqdf0R0qOsRZatH7i22o/8S7VbtNYktRoUDdFD+yqDU/NNrB6wDEsFqtGPPW9Zs3fd1mg/7Uft5rV6/5vdMLMehMAAACe5OyFfPUZt6zMQP8Lq9WmT5cd1q2PrlBevsWl9TmKR4f6iRMnKjU1VRMmTNCMGTMUEhJSsm/KlCnq2LGjLBaLmjRpotDQUENrdaYzWw8oeeE6xQzvrciuLUu2n911RHvfWao+b/1RQfXC1Ou1R7Xl2Q+Ud+q8ofUCjjDt3R365sfjFTr2hDlHdz75vWw2m9PrAgAAgGs88NcftS/5QoWOXb/jlJ6YvtnpNTmDx4b6pKQkLViwQBEREXr55ZfLPKZLly6SpI4dO5ZsW7hwoUaMGKHGjRsrKChIrVq10l//+ldlZ7v3U7yfZy6U1VKszpNHld7+xiJZi4s1bPVrMm/Yo6NLNhhWI+AouXkW/es/++xqs21fhtZtMzutJgAAALjOvuTz+jYh1a42/156SGfO5TmtJmfx2FA/f/58Wa1WxcXFqUaNshc+CAwMlH4T6mfMmCFvb2+99NJL+u677/TYY4/pnXfe0aBBg2S1lj+Et6rLSjHr6JINqn9jB9Xp0bpku81SrDOJBxQQXlOHF/xgaI2Ao/xnxRGdzyyswJGl/es/SU6pBwAAAK71zhf77W5TWGTVh18ddEo9zuSeKwFUQHx8vCSpX79+5R6Tmnrpm5tfh/pvvvlGkZGRJX++6aabFBkZqbi4OK1fv1433nij3bV07dpVZrN9TwB9bV6aqu5293Ulu95cpJjhvdV58iitvPs5SVKdHq3VfFQ/JX34rbo//6CWDpys4nz7w1Bsi1gVmar+lx7ptZ6SvGoq3Zyu6Ohoo8txuery+c8HD5f8O9vdbtGKnxX9nwecUhMAAKgaqsv9UHmqy+c/Hfqo5FPP7nbPvfa5Zk0d4pSariYqKkpbt261u53Hhvpjx45Jkho3blzmfovFog0bLg01/3Wo/3Wg/0XXrl0lSWlpaZWqxWw2293Wz+Qt1bWzn017Nbfe3eXuv3goTZ9E/2/4vU9QgG54Y7y2vThP+/+9UoO/el7XPXOfEqfOta9jSSfTT6rQVmx3O5cLKZa8JGtxcaX/e7q16vL5GxVL/vY3s9r8PPvnAgAAqs/9UHmqy+cP9q5U2i0otLndz8VjQ31OTo4kKS+v7DkRCxYsUEZGhkJCQhQTE3PFc/3ww6Vh6a1bt77iceWJioqyu42vzUty8oPvbs89oOzjp7V/7gpJ0vonZmnYmhk6/t0Wndps3zDk+vXqu8eTem9vWSV5eXurXoMGRpfjctXl858P8FJuJdp5mQo9+ucCAACqz/1QearL5z/tbVFRJdr5+0kRBv1cKpMb5cmhPioqSufPn9f27dvVq1evUvvS09M1efJkSVKHDh1kMpnKPU9aWpr+9re/adCgQZV+l31lhlAU5eZrXrMxleqvIhr076yYYb215OZJJduyjp3SthfnqffM8Vraf5IseQUVPt/BQwflGxTgpGodJ3rAfKWdzlW9qHpK3WPfwhmeoLp8/nnLD2vMMz/a3S5u2HX65CXP/bkAAIDqcz9Unury+f88Y4te/2SP3e1e/usD+tP9rzqlJmfx2IXyBgwYIEmaPn26Dh7832IHiYmJ6tevnzIyMiTpikE9Oztbd9xxh/z8/PTRRx+5oGrXSYvfoc9bjVVOWkap7fvnrtDiXhPsCvRAVXP3wBhF1Lb/S6bHR1VuNA4AAACqlkfvsf++LjDAW+PuaOGUepzJY0P9lClTFB4erhMnTqht27Zq3769WrRooe7du6tp06bq37+/9Jv59L+Wl5enoUOH6ujRo1q1apXq1bN/kQUAxvD389afxrS1q02f6+qqR4fL19QAAACA+2neKFR3D2xiV5s/jGil2qGVWJjJYB4b6qOjo5WQkKAhQ4YoICBAKSkpCgsL05w5c7R8+fKSp/dlhfqioiLdfffd2rp1q7777ju1adPGgE8A4Fo8/VBHxQ1pVqFjYxvX1MLXb77iVBwAAAC4l4+e76OubSMqdOyg3tF69aluTq/JGTx2Tr3+u7DdsmXLLtuenZ2tlJQUeXl5qV27dqX2/fJu+++//17ffvutund37GvlALiGl5dJn7x4k2IahOiNz/YoO9dy2TEmkzSsbyN9OK2PwmtV/TUhAAAAUHEhwX764cPb9Ng/Nmj+d0dUXGy77Bh/P2/94e6WmjGpu/x8vQ2p81p5dKgvz969e2Wz2RQbG6ugoKBS+8aPH68vv/xSTz/9tIKCgrR58+aSfc2aNSvzlXcAqiYvL5NemNBFk8e116fLDmv5uhP6fvNJFVqsqhHko10L71JMdIjRZQIAAMBJagT56tOX+mr6k9303sIDeuXDn1VQZJW/n5f+MaGrHhzewu0f7njs8Psr2b17t1TO0PvvvvtOkvTKK6+oV69epf5Zvny5y2sFcO1Ca/hp/Og2+nb2rYoMu3TRrlnDj0APAABQTdSvE6znHr+uZDHliFoB+vO49m4f6EWovzzUp6SkyGazlfnPuHHjDKjWsRoP6amerzxcalvzUf00Ln2hGg1yzzkkAAAAAFBdEeqrmUa39dDxFT+V/LlGdKRi4wbo9NYDhtYFAAAAALBftZxTHx8fb3QJTuMXGqQ7fpgp7wA/5Z7MkJe/r0Ia1VXywh+16en3VbdbS61/Ytalg00mXf/6Y9ryfx+q29SxRpcOAAAAALBTtQz1nqwwM1dHvkpQUU6+ds1cqPp9O6rDxLu08c/vqv5NHXU68YBslmJJUttHhup04n6d3XXE6LIBAAAAAJVQLYffe7qwdjE6t/uoJCm8QzOd23Pp3xsN6qZj310ael+rZUM1HtJDP7+xyNBaAQAAAACVx5N6DxTWtklJkA/v0FQnViZKkur37aStL3wmSarbo7VqNKyjERvfliQFRtZSr9ceVWCd2jrwySoDqwcAAAAAVBSh3sMERYVJNptyzeckSWGtG2vXm4sU0bmFLh5KkyU3X5J04JNVpcL7oEXTtO/9ZTq+ItGw2gEAAAAA9iHUe5iwdjElT+klqTAzR63G3qqCc1mlVr0HAAAAALg/Qr2HSV2zTalrtpX8edngpyVJd6ydqZUjppbbbsUV9gEAAAAAqiZCfTWxpO+fjC4BAAAAAOBgrH4PAAAAAICbItQDAAAAAOCmCPUAAAAAALgp5tRXUT6B/opL/szoMirMJ9Df6BIAAAAAoNoh1FdRJpNJvkEBRpcBAAAAAKjCGH4PAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KZ8jC4AZbPZbLLkFRhdRoX5BPrLZDIZXQaAK3C364qzcd0CqheugZfjOgh4BkJ9FWXJK9C8ZmOMLqPC4pI/k29QgNFlALgCd7uuOBvXLaB64Rp4Oa6DgGdg+D0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuCkWykO1UFRk1XFztoosVkmSpdgqm81WbVZ8tdlsMmfklXz+IotV+QUWBfhXn0tATm6RUk/llPwMiq02o0sCAAAulJtn0Ylf3Q9Wt3sBq9VW6vNbiq2yWKzy8ak+z3nPXSwodT+cmV2o0Bp+Rpd1zarPHT2qFZvNpo07T2v+d8naujdDPx88p/yC4pL9p87mK7zPZ7qudYR6dayjcXe0ULOGoYbW7GjmjFzNXXJICdvN2rbvrE6dzSvZd/pcvkJ6faJ2zWurS+sI3TWgiW69voG8vT3nol5UZNWSH47pmx+Pa9u+DCUdvSjrr355mzPy1HDgf9SlTbj6dq2nB4a1UFhNf0NrBgAAjmOxWLU84YS+jj+mbfsytO/IBRUXl74XaDBgvrq0jtBNXaP0wNDmigwLNLRmR9t/9IL+vfSQNu86o+1JGcrMLirZd+psvkKv/0SdW4WrW9tIxQ1ppm7tIg2t19Gycgo1b3myvt9yUtv2ndXRtKySfafP5avm9Z8qtnFNdWkTrsE3RGvkLTFu+dDLZLPZqtdXVG6iKDffrV67UlVeiVJcbNXHXx/S2/P3adfBc3a1vfX6BvrzuPYa0LOB0+pzhW37MvTqx7u0+PsUWSwV/793TIMQPXZPK024t40CA9zvYvaLi1mFmvnpHr236IDSz+RWuF2Av7fuHdxUUx7soFYxtZxao1Hc7bribFXlugXANbgGXs5Tr4PZuUV647M9mvPlAaWeyqlwOz9fL91za4ymjOug9rFhTq3R2ZavO65/frJH8T+l29Wua9sITbyvjeKGNJeXl/uOaD12Mkuvfrxbn3xzWNm5RRVocUl4LX/9bnis/jy2veqEu88XPIT6Kqoyv3iierXVoMXTSp8nJ0+ZR9KVvHCdkj78VrZiq4MrvaQq/FI4cPSCHvx7gjb9fPqazjPujhaaObmHaoW611Pb/AKLnntnh16bu7vUE2l7tWxSUx+/0Ee9OtZ1aH2usHJDqn7/3Hq7foH/lr+ft6Y93lmTHmjvccPRuKEtrSpctwC4DtfAy3nidfCHn07qoanrSz2RtZePj0l/+0NnPfNQR/n6ute9wJlzeZrw8iZ9sfLoNZ2nX7d6+nBaH8VEhzisNlew2Wya8+V+Tf5nol1h/rciagdo9l+v18hbYhxan7O4199SVMiRxQlaN+FNrfvjW9r5+pfy8vFW92nj1POVh40uzWk++uqgOt3z9TUHekmau+SQ2t61WFt2Xfu5XCX5RKa6jF6i6R/tuqZAL0kHUi7qhrHL9dzs7XKX7/yKi62a8NJGDXps5TUFekkqKCzW029s1Q1jl5WasgAAAKouq9Wmya//pP6//+6aAr0kWSw2TZ29XT3ilirVfG33Fa60NjFdbe9cfM2BXpJ+SExX+xGL9Z/vkh1SmytczCrUoMdW6rF/bLymQC9JGefzdc+f43XfX35QQWFxBVoYi1Dvgc7uPqojixJ0ZOE67X1nqZYPeVY5aRmKve9m+Yd71rxxSXrj0z16aGpCqTnz1+rk6Vzd/PB3WrfVviFLRth/9IL6jFuufckXHHZOq9Wmae/u0MRXNlf5YG+xWHXf02v1r/8kOfS8W3afUZ9xy5R2jV8SAAAA57JabXpoaoJm/Hu3Q8+7Y/9Z3TBumY6mXtuXBK7wXcIJDXpspc6cz3fYOXPyLLrv6bX6YNEBh53TWc5nFqj/77/Vqo1pDj3v/O+OaOgfVykv3+LQ8zoaob4asOQV6Mz2QzJ5eSm0sfsNqb6Sj78+qD+9tsUp587Js+j2P67WjqQMp5zfEVLNORr4hxV2zR23x6z5+/S3Wduccm5HsNlseuSFDQ75Rrosh45l6pZHV+hCZoFTzg8AAK7dk69u1twlh5xy7mMnszXwke905lzVHb23cecp3fXU9055omyzSX94fr2+XOWcey1HyC+w6LbHV2p70lmnnH/1ppMaNfmHax4N60yE+moipMmlMF9wIdvoUhzm0LGLGv/SRrvaJM4fphOrRytx/rAKHZ+VU6S4Z35UfkHV+3bOZrPpoecS7Bpubu/nl6QX3/9ZaxOr5oiFBSuO6KOvDtrVxt6fwb7kC3ryVed8cQQAAK7NN2uP6+3P99nVxt57geQTWXr8RfvuOV0lK6dQ9z291q4Rq/Z+fptN+v1zCVV2KsLf/7Vdm3edqfDxlbkf/ubH45o1376/Z65EqPdAPoF+8g8LkX94qGq1aqQeL/1e4e2b6sz2Q8o8UjXDmb2Ki6168O8Jysu37xvJqIggRdcNVlREUIXbJB25oOfe2VGJKp3rw8UH7R5iVJnPL0m/+3vCNc9NcrRTZy8tBGOvyvwM/r30kJavO253XwAAwHnOZxbokRc22N2uMvcCC1en6IuVR+zuy9n+MjNRx07a99CuMp8/M7tID09bX+WmZW7++bRe/2SPXW0qez/89JuJOnw8084KXaNahPqMjAxNmTJFzZs3V0BAgBo2bKgnnnhCOTk5euihh2QymTRr1iyjy3SYzlNG6969H+vePR9p+A//VOsHByll+WbFj5tudGkO8+myw9qw45TL+ntt7m4dTLnosv6uJjO7UJNed93T46NpWZr+0S6X9VcRz761VWcvuG5Y/GP/2CiLxTlvjwAAAPZ7bvZ2p01BLMsfX95UpUZv7kjK0Dtf7HdZfys2pOrr+GMu6+9qbDabHntxg8uGxeflF+tPr252SV/2ct+XUVfQzp07NXjwYJnNZgUHB6tNmzY6efKk3nrrLSUnJ+vcuUvvMu/UqZPRpTrMgU9XKeWbTfLy9VHtVo3UbvxwBdcLV3FBYckxXn4+GrrqNR39KkG73lxcsv2GN8YrILKW1sS9aFD1V2ez2eweZnWtrFab3v0ySf+c3NOl/Zbn02WHlZnt2ifnc77cr//7Qyf5+3m7tN+ynL2Qr8+/de1qrCfMOfrmx+O68+YmLu3XpUwmtXl4iFreP1A1oiOVfzZTR7/ZqJ2vLpAlj3UFAHi+9n+8U+Htmyq8Q1OFNK6r7BOntbD740aXhTJk5RTqYyfNoy/P6XP5+nLVUd0/tIVL+y3PLAcvElwRb3++r8rcC23ceVo7959zaZ/LE07oSGqmmkZXrcXHPfpJfUZGhoYOHSqz2axJkyYpPT1d27dvl9ls1vTp07V8+XIlJibKZDKpQ4cORpfrMJlHzEpP2K20+B3aM3uJvh/7iiI6NVOv6Y+UHGMttGj9xLfVfuJdqt2msSSp0aBuih7YVRuemm1g9VeXuCfDaQthXMnHXx9Sbp7x387abDbNXuD6i/iZ8/latDrF5f2W5eOvDzn0bQcVZcTP3ZW6Pz9O3aeN04WDqdr8fx8pZdkmtXnoNt38ydOSyWR0eQDgdF2ejVNU73bKSjGr4HzVX/G8Opu3PFlZOa6fGlhV7gXOZxa4/AGH/vuqu6Qjjnvj0rUw4r+FzSa968LRERXl0aF+4sSJSk1N1YQJEzRjxgyFhISU7JsyZYo6duwoi8WiJk2aKDS0an3b4khnth5Q8sJ1ihneW5FdW5ZsP7vriPa+s1R93vqjguqFqddrj2rLsx8o79R5Q+u9mv+sMOZ9mReyCrVqU6ohff/ankPnHfr6Onv8Z0XVmEu2wKA5bWs2n1SGA18VU5XUio1W698NVsryzfrhodd0aN4aJT73b/303L9V74b2ihne2+gSAcDpFvZ4XP9p+6BWjX5BuVX8fqi6M+qeZPOuMzp20vgvfL5Ze9yQBxz670LFRissKtaiNcY8bKoq98O/5rGhPikpSQsWLFBERIRefvnlMo/p0qWLJKljx44l2xISEjRgwADVq1dP/v7+io6O1qhRo5SUVDW+lausn2culNVSrM6TR5Xe/sYiWYuLNWz1azJv2KOjS+xfbMTVtu417hVzRvZdUsM+Az+/gX3/orCoWLsOunao1a9tqwI/A2eIufMGmby8tO/95aW2H5q3RkW5+Wo24kbDagMAV8k+ftroElABVqvNkFGbv9i2z7i+f1Hd7wf3Hj7vlFf4VcQJc06Ve8Whx4b6+fPny2q1Ki4uTjVq1CjzmMDAQOk3of78+fNq37693nrrLa1atUrTp0/X3r171atXL6WmGv+UtrKyUsw6umSD6t/YQXV6tC7ZbrMU60ziAQWE19ThBT8YWmNFWK027XDx3JlfqwoXcSNDZfqZXJcuSFOWPYfOq7DIuAXrPDXUR3RqLmtxsTJ2lJ6fWFxQpHN7UhTRqZlhtQEA8GuHjl00ZOj9L6rCvYCRNVSNz2/sPbnR/f+Wx4b6+Ph4SVK/fv3KPeaXkP7rUD9s2DDNnDlTI0eO1E033aS4uDgtXrxYFy9e1KJFi1xQufPsevPSU/lfP62v06O1mo/qp6QPv1X35x+Ud4CfoTVezcnTuYa+Wu1AFVgB3+ga6N/4vwPOEFS3tgrOZclaePm6EbnmcwoIrykvX49fWxUA4AaM/l1sdP9G12DOyFNmdmEFjnQeo/8bHEipGusK/MJkq2ovG3SQhg0bKjU1VTt27ChzZXuLxaJ69eopIyNDycnJatq0abnnOnv2rCIiIjRr1iyNHz/e7lq6du0qs9lsVxtfm5emWrvb3Zc9fIICNOz7Gdo3Z5n2/3ulBn/1vDJ+Tlbi1Ll2n2ua108qMjn/6anFK0ynaj1R7v7E+cOu+M7JqIhA+Xh7yVJslTmj/GEz5oxcdbt36WXbvaxZqndhRiUqd5wzIb9ToW/jMvc56vPrCj+D8KxPFVB0uBKVO0aOX2ddqDG8zH1X+/xywN+BgMK9Cs/+ohKVG+9K15W7Ns2Sl6+3FnZ97LJ9N7z1RzUfeZM+b/mACjONHanhSK66bgGoGuy9t7rjh3/KNzjAo1e/d9frYK5fW52vcU+Z+1xxL+BfeFAR2fMqUbnjnKz9V9lMZT+Mc/b9sCRFnX9V3racSlTuGBeCblNOQI8y97nifjg0d41C8hMqUfmVRUVFaevWrXa389jHLjk5l/6S5eWV/R9qwYIFysjIUEhIiGJiYi7bX1xcLKvVqmPHjumZZ55RVFSU7rmn7IvH1ZjNZqWlpdnVxs/kLdWtVHcV1u25B5R9/LT2z10hSVr/xCwNWzNDx7/bolOb7VtD4GT6SRXaXDCvxa9QqlX+7qiIIEXXDb7qaXy8vSp03G9Ziy12/7d0uJh8ybfsXc7+/JJ0NuOMlG3gz6BWY6nsGTUV/vy6hp9Bfm6O8X8HKulK15XivAL5Btcsc5+3/6W/cJY8Y7+VdzSXXbcAVAmuuLdyN257HQyNMvReoCA/z/h7gZpWqZy3DLviftCcflIqzq5UW4eoly0FlL3LFZ8/8+IFZWZUnftBjw31UVFROn/+vLZv365evXqV2peenq7JkydLkjp06CBTGa9quummm7Rhw6VF45o3b674+HhFRkZWuhZ7+dq8JCd+cdqgf2fFDOutJTdPKtmWdeyUtr04T71njtfS/pPsei91/Xr1XfJNb7EpSFca82DOuPJTRHu+mSyLj5dFdRs0qHC9znDWTypv/XVHff4rnSsiPET+NY37GeT5Bqq8VRWu9vnlgL8DQQFeqm3w34HKutJ1JffUedWMjZaXn89lQ/CDosKUf/airEXGv9LRkVx13QJQNTj73soduet1MN8nWOXNaHbFvUCgv0lhBt8LpJsKZC0n1Tr7flg2q+pHhcuksh8GuEJmoI/KeweBK+6Ha4X6K9jf8X8HKpMb5cnD7ydOnKi3335bDRs21Jo1axQbGytJSkxM1P33368jR46oqKhI48eP16xZsy5rf+DAAV24cEFHjx7Va6+9ptOnT2vDhg1q1KiRS+ovys3XvGZjXNKXI8QlfybfoHK+LnOw+jfPr/RibSdWj1Z03WClnspRw4H/sbv9qEEx+s+r/SvVt6P89a2teumDnyvV9lo/v8kkZW56QDWCyhkq4ALJJzLVfMiXlW5/rT+DWc/20vjRbSrdv5GudF3p/JfR6vjk3fp2+N90esv/Rup4+/tq9L6PdWpzktbEvejCap3PldctAMaz996qOgy/d9froDkjV/X6z690+2u9F5j+ZDdN+V2HSvfvCLc9vlLfra/cIt7X+vlbNqmp/UvvrlTfjvLlqqO658/xlWp7rZ9fkjZ+ert6daw6Q388dqG8KVOmKDw8XCdOnFDbtm3Vvn17tWjRQt27d1fTpk3Vv/+lYPbrRfJ+rWXLlurRo4dGjx6t77//XllZWXr11Vdd/ClQlq5tIgzsu3KjNRxaQ1vjPn+rmFqGBnpJahodolohxi3oaOTfP2c6umSjbFar2jw8pNT2FnED5BsUoCOL1xlWGwAAvxYVEaQGda48b96ZulSBewEjazDyXrSkBgM/v5eXSR1jww3rvyweG+qjo6OVkJCgIUOGKCAgQCkpKQoLC9OcOXO0fPlyHTx4ULpCqP+1WrVqqXnz5jp82LjFwfA/vTrWqZZ9/6JH+0iVMWPEJarC5zeZTOrZwZg6AgO81SE2zJC+ne3C/uPa//EKNRnSU/0+nKwW992srlMfUPfnxsq8ca+OLF5vdIkA4HRN775RHZ4coQ5PjlBAeKh8Q4JK/tz07huNLg+/YtQ9ia+Pl7q0MT7QVff74SYNaigqItCQvju1DFNQYNWaxV61qnGw1q1ba9myZZdtz87OVkpKiry8vNSuXburnuf06dM6cOCAevQoe4VFuNYDQ5vrb//apuJi184cadmkpq7vZPxFrH6dYA2+IVrfJlRuyNW1eOjOWJf3WZaH7ozVig2u//xxtzVTYIDnXjZ/+vtcZZ84o9gxAxR983XKP5eppI++045XF0ieOVMLAEqJvfdmRV3fttS26/5yryRd+oJzIaOWqoqH7myphatTXN7viAFNVCvU3+X9/tYtvRqoQZ0gpZ127VtpAvy9de/gZi7tsywmk0m/Gx5b6Smp16Kq3A//mufenV7B3r17ZbPZFBsbq6Cg0kN3xowZo+bNm6tTp06qVauWDh06pJkzZ8rHx0d/+tOfDKsZ/9OgbrCG92usRWtceyF/fFTrMhdVNMLjo1q7PNR3bBlWJb6ZlaQ7+jVW/TpBOuniX2SP3dPapf25ms1q1d4532jvnG+MLgUADLFixFSjS0AF3XJ9AzVrGKLkE+Utl+Ycj4+qGvcCPj5eemRkK/39X9td2u+9g5sqrKbxX2pI0h/ubqlXPtolq9V1Dx5qBPlqzO3NXdZfRXns8Psr2b17t1TO0PuePXvq22+/1YMPPqjBgwfrtddeU58+fbRz5041b171/gNWV5PGXn2EhSNF1A7QA0Orzn//Qb2j1bbZFd7t5wSTx7WvMl9q+Pp66cm4thU40nH6d6+n66rAHDoAAHBpXvOkB9q7tM8e7SN1w3VVZ3G0P9zdSqE1XLfWkbe3SU+Oce09+JU0rh+iUbde/mpyZ3p0ZCuF1jBubafyEOp/Y8KECfrpp590/vx55eXl6eDBg5ozZ44aN25sQKUoT6+OdfXH+1y3Avnsv15fJYZa/cLb20sfv3CjvL1dE7Jv6xOt+24zfqjVr/3p/nYuWyQmKMBH7z93g0v6AgAAFfPIyFbq46KQ7efrpY+e71NlHnBIUt3wQP3zz66bHvz07zpUubWF3pjSUxG1XfMGh2YNQ/TcY51d0pe9CPXVTOMhPdXzlYdLbWs+qp/GpS9Uo0HdDKurMl6e2FVNo0PsamPOyFXqqZwKvcP0FyNvidHIW1z7LWBFdGsXqSnj7HudSmU+f80QP7339xuq1C8x/XfY2dwX+sjP177LWGV+BtP/1E1No0MrUSUAAHAWLy+TPnr+RgUGeNvVrjL3AtMev05tmtWuRJXO9bs7YzWod7RdbSrz+ds1r62/PVL1Am2d8ED969ledrWpzOc3maSPn79RwQa/Bao8HvueenfnrPfU9/nXE0r+cq1Orr20qESN6EjdOPtJySTt+dfXOr4isVLnNeo9p7sPntNNv1uu85mFTjl/p1Zh+uGD26rUU/pfKyqy6s4/rdHydSeccn4/Xy998/ZA3XK9fb8sXOnz5cka8+xap63jNu6OFvpwWh95eVWtLzUqw1nXFXflru9nBlA5XAMv5ynXwa/jU3T3pHinLaJ8z60x+vyVvvL2rprPQ8+cy9ONDy7X/qMXnXL+uuGBSpg7RC0a13TK+a+VzWbT028k6tWPdzutjzem9NATVWjqwW9Vzb+ZqDS/0CCN3DZHo/d+rGGrX9PwdW/o/pT5un7GozL5eKtut5ZKX7/n0sEmk65//TFt+b8PZS20GF16pbSPDdOqOYMUXsvxobtzq3CtendQlQ30+u/c8i9n9NfgGxwfuv39vLXw9ZurdKCXpPuGNNNHzzsndN9/e3O9P/UGjwj0AAB4quH9m2jey33l4+P439d3D2yiT1+6qcoGekmKDAvUmvcGq3VTx6+3FBURqDXvDaqygV7/XQn/lSe76U/3O2e9pdee6l6lA70I9Z6nMDNXR75K0L4PlmvpwMn66e8f68z2g9r453dVr3c7nU48IJulWJLU9pGhOp24X2d3HTG67GvStW2kNvz7dofOrx49qKl++PA2RYYZ8/5LewQG+OjrNwfoT/e3ddj765tGhyj+g8Ea2reRY07oZOPuiNWytwc67H2lPj4mPT/+Os39x43y8eEyCQBAVTdqUFOtfGeQousGO+R83t4mPfv7jvrPq/3k52vf8H4jNKgbrHUfD9Ed/Rx373Z9pzra+MlQtWtRtebRl8VkMun1P/fQ28/0sns6Rnlqhfjp81f66s/jXLsgY2Vwt+qBwtrF6Nzuo5Kk8A7NdG7PpX9vNKibjn33kySpVsuGajykh35+Y5GhtTpKy5ha2vTpUP1jQhf5XkMIqxMWoEX/vFnzX+2nmiFVb2XL8vj5euufk3tq3cdD1LzRtc39/uN9bbRr4Z26vlPVWd21Igb3aai9X43QmNuvbUG/Tq3CtHX+HfrbI515Qg8AgBvp36O+9iy+65rfI962WS1t/myoXpzYtUo/of+tiNoB+uqNAfrs5ZtUO7Ty97EB/t765+QeWvfxEMXYuX6VkUwmkybc20Y/f3mnbuh8bfexQ29qpH1fj9C9VWyh6PIwp76KupZ5X6N2f6hvBk5Wrvmc+n7wZ51YmajkL3/UXZtmaenNf5YlN18tH7hFHZ8aKWthkSQpMLKWCrPztPO1BTrwySq7+6xKc7JOmLP13sIDen/RAZ06m1ehNm2b1dLjo1przO3Nq+RrKuxRUFishauPavaCJG3cebpCbUJr+GrssBZ6dGSrKrkIjL227cvQOwuS9Pl3ycrLL65Qm4G96uvxUa11+42NPPbpPPNJS6tK1y0Azsc18HKefB3cdfCc3lmQpE+XHVZOXsWmmfbtVk+Pj2qt4f0ay9fOhXirmguZBfr30kOavWC/Dh6r2Fz7BnWC9MjIVvr9XS1VLzLI6TU6k9Vq0+pNaZq9IEnL1p2o0LvsfX28dPfAJnp8VGv17ly3yi0SfSWE+iqqsr94gqLCNHTVq1rQ4feSpLs2vK21j/5TXj4+6vinu/X9Ay+X2W7Qomna9/4yt1so70oKi4q1NjFdW/dmaNu+s0o6ekG5+RZ5e5kUEuyrjrFh6tImQj071FG3dhFu9X/citp7+LzW7zilbfsytGP/WZ3PLFCRxapAfx81axiirm0i1aVNuPr3qK8aVXQ1z2txPrNA8VtOatu+s9q674yOncxRfqFFfr7eiqjlr+taR6hLmwjd2CXqmkc4uANuaEuritctAM7DNfBy1eE6mJldqO+3nNS2fZfuB4+kZim/0CJfHy+F1wzQda3D1aVNhPpcV1ctYxw/J91oNptNm34+rS27z2jbvgztPnReWTlFstlsCg70UeumtdS1bYS6tY3UjV2iPPLBxglzttYmpv/3fjBDp87mqbCoWP5+3oquE6wubSIu3Q93r6864VV/6m1ZfIwuAI4V1i6mZLi9JBVm5qjV2FtVcC5Lx1f8ZGhtrubn661bro+u8gu9OVPb5rXVtrn7P3mvrNqh/hoxMEYjBla9VxICAADnC63hpztvbqI7b25idCmGMJlMur5TXbebVulIDaNq6P6hLXT/0BZGl+I0hHoPk7pmm1LXbCv587LBT0uS7lg7UytHTC233Yor7AMAAAAAVE2E+mpiSd8/GV0CAAAAAMDBPG/SBAAAAAAA1QShHgAAAAAAN0WoBwAAAADATTGnvoryCfRXXPJnRpdRYT6B/kaXAAAAAADVDqG+ijKZTB7/3lAAAAAAwLVh+D0AAAAAAG6KUA8AsFtUr7Yal75Q49IXqseLD5V5TEB4qO4/Nl/j0hdq0KJpLq8RAJyJ6yCAqoJQDwCoNEtegZreeYO8/C6fzdXs7ptkMplkLbIYUhsAuALXQQBGI9QDACrt+Hc/yb92iBrd2u2yfc1H91Pq9ztUXFhkSG0A4ApcBwEYjVAPAKi0s7uP6tzeFDUf3b/U9ohOzVW7VSMdXhBfZrtGg7pp8JJ/KC75M8Ud/lSDl/xDDX9zQzxk+csatesDmbwv/1VVv29HjUtfqDYPDym1veUDt+j2ldM15sg8xR3+VLcufE5R17d1yGcFgLJwHQRgNEI9AOCaHPpPvOrf1EFBUWEl21rc2195Zy7oxOptlx3fcuyt6v/xX+Rfu4Z+/udC/Txzkfxr19DNc/+i2DEDSo47/MVaBUbWUoN+nS87R7ORfWUtsujI4oSSbX1mTVSPlx5S1lGztr7wqXa+9oX8QoN0y4K/q+EtXZ3y2QFAXAcBGIxQDwC4JkcWrZPNYlWze/pKkrwD/BRzR28lL1wnW7G11LF+NYPV9W9jlHk0Xctve0Z7/vW19vzray2/7RllppjVbepY+YUGSZKOLtmg4oIiNRt5U6lz+AQHqNGgbkqN36H8s5mSpEaDu6vZiBu1+en39eOjM7X/4xXaO+cbLRv8tM7tTVH3Fx502c8DQPXDdRCAkQj1AIBrUnA+WydWbVXz/97MNr6th/xqBuvQfy4fclr/xg7yDQ5U0offqSg7r2R7UXaekj78Vr41AlWvTwdJUuGFbJ1YvVUNB3YpucGVpCa395JvUICSv1xbsq3piBtVmJV7aW5rWEjJP341g3Vi1VaFNKqr0Kb1nPyTAFBdcR0EYKTLl+kEAMBOh/4Tr4Hz/qo63Vup+ej+OrP9kC4eTL3suBqN6kqSLhw4cdm+X7aFNK5bsu3wF2vV5PZeajLseh38bI0kqdnIm1RwPksnVv1vSGutFg3kFxKk0Xs+KrfGgMhayjySfo2fFADKxnUQgFEI9QCAa3Zy7c/KOXlWnZ4aqXq922rT0+875Lxp8TuUl3FRzUbepIOfrVFwgwhF9WqjA5+sKv2KKJNJeRkXte7xN8o914X9xx1SEwCUhesgAKMQ6gEA18xmtSp54Y/qMPEuWfIKdPSr9WUel3XslCSpVsuGSl+/u9S+WrENSx0jSbZiq45+laA2D9+uGo3qqOmdN8jk5aXDX/xYqm3mkXRFD6inM9sOyZKb74RPCABXxnUQgFGYUw8AcIgDn6zSzhlfaNNf3is1T/TX0tf9rKKcPLX+3WD5BAeUbPcJDlDr3w1WUXaeTq7bVarNLzeuzUf2VbO7b9LFw2nK2HGo1DHJX/4oL29vdXn2vjL7DYio6YBPCABXxnUQgBF4Ug8AcIictAztfP2LKx5TmJmrrS98pl6vPKzbv31ZhxdcWuSp+ai+Cm1aTxsnv6uirNxSbc7tOapz+46pzR+GyC80WNtemnfZeY8t36xD8+PV+qHbFNa+qVLXbFP+uSwF1wtTZNeWCm0SpUU9xzv4EwNAaVwHARiBUA8AcKkD/16pvNPn1e6xO9Rx0khJ0vm9xxT/4HQdX5FYZpvkL9aq23NjZS0uVvKidWUes+Gp2UrfuEctxwxU+z/eKW9fH+WduaCzu4+WeQMMAEbhOgjAkUw2m81mdBEAAOcrys3XvGZjjC6jyohL/ky+QQEVOBKAJ+AaeDmug4BnYE49AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AQDVRXGzVuYsFys4tks1mM7ocl7PZbMrKKdT5zAIVF1uNLscQhUXFOnshX/kFFqNLAQA4iI/RBThbRkaGXn31VS1evFipqamKjIzUXXfdpZdeekkTJ07URx99pLffflsTJkwwulQAMFT7P96p8PZNFd6hqUIa11X2idNa2P1xo8vCNbLZbFq3zazZC5K0+PsUWSyXwnzDqGA9cncr/X5ES9UNDzS6TKdKO5Wj9xYe0PuLDyj9TK4kyc/XSyNvidH40a3Vs0MdmUwmo8t0msKiYi1ek6LZC5KUsP1UyfYubSL0+KjWGj2oqYICPf6WsGJMJrV5eIha3j9QNaIjlX82U0e/2aidry6QJa/A6OoAoEwmmwd/Vb9z504NHjxYZrNZwcHBio2N1cmTJ3Xq1CkNGTJE586d06ZNm5SQkKAbbrjB6HIBwKmKcvM1r9mYcvePS1+o/HNZOrf7iMI7NFVRdp5Hh/q45M/kGxRgdBlOlZVTqFGTf9B361PLPcbP10sfP3+j7hvSzKW1ucp7C/dr/IsbZSku/3ZnxIAm+vSlmxQY4HnB9tCxi7pt/CodPp5Z7jH16wRp2dsD1bl1hEtrc7WrXQMlqfsLD6rN74fo2LdblBq/Q7VaNFDr3w3WqS1JWnnP85KH3TZXh+sgUB143m+v/8rIyNDQoUNlNps1adIkTZ06VSEhIZKkV199VX/5y1/k4+Mjk8mkDh06GF0uABhuYY/HlX38tCTpjh/+Kd9gbvTcWX6BRUPGryr1ZLYshUVWxT2zVlabTWNub+6y+lzh3S+S9Ng/Nl71uEVrUpSTZ9HStwbK19dzZiampGXpxgeXy5yRd8XjTp7OVd+HvtX6uberfWyYy+qramrFRqv17wYrZflmrf39jJLtWcdPq+eLDylmeG8d/Wq9oTUCQFk85zfXb0ycOFGpqamaMGGCZsyYURLoJWnKlCnq2LGjLBaLmjRpotDQUENrBYCq4JdAD8/w8ge7rhrof+2hqQklQ9M9QfKJTI1/aVOFj1+xIVVvfb7XqTW52u/+nnDVQP+LzOwi3fuXH6rlWgu/iLnzBpm8vLTv/eWlth+at0ZFuflqNuJGw2oDgCvxyFCflJSkBQsWKCIiQi+//HKZx3Tp0kWS1LFjx3LPM3jwYJlMJj333HNOqxUAAEcrLCrWe4v229nGqg8WH3BaTa727hf7ZbXaF1BnL0iyu01VtS/5vH5ITLerzd7kC1q3zey0mqq6iE7NZS0uVsaOQ6W2FxcU6dyeFEV08swpKgDcn0eG+vnz58tqtSouLk41atQo85jAwEuLApUX6r/44gvt3LnTqXUCAOAM36w9XuEntL8250v7g3BVVFhUrI++Pmh3uyOpWVqzOc0pNbnaewsr9wXNu1/Y92WQJwmqW1sF57JkLbz8zQC55nMKCK8pL1+PnbkKwI155JUpPj5ektSvX79yj0lNvbRoUFmhPjMzU08++aRmzJihMWOuvKBKRXTt2lVmc/X95htA1eBr89JUdTe6jCojtkWsikye+VqzzICbpKD+drdLO52r6MbN5WVz71W+LV6hOldrUqXa3nP/k6pRsNnhNblaRsgDkq/9T5YXLtuohM/vd0pNRrvaNdA70F/FhUVl7isuuLTdJ9BPhUWe8zpAT74OAu4oKipKW7dutbudR4b6Y8eOSZIaN25c5n6LxaINGzZI5YT6v/71r4qNjVVcXJxDQr3ZbFZammd88w/AffmZvKW6RldRdZxMP6lCW7HRZThH3TwpqHJN09PPSMVZjq7ItfyKpFqVa3oxM0cXMzzgd3bTYsnX/maWYnnsPcvVroHFeQXyDa5Z5j5v/0s/TEteobPKM4RHXweBasQjQ31OTo4kKS+v7KGHCxYsUEZGhkJCQhQTE1Nq39atW/X+++9r27ZtDqsnKirKYecCgMrytXlJPJApUb9efY99QpXt762LlWlos6p+VG2Z5N4LyFpNAbJvNvn/1ArxVbB/AwdX5HpnfS3Kr0Q7P68CRTZw/89flqtdA3NPnVfN2Gh5+flcNgQ/KCpM+WcvyupBT+nl4ddBwB1VNjd6ZKiPiorS+fPntX37dvXq1avUvvT0dE2ePFmS1KFDB5lMppJ9xcXFeuSRRzRhwgS1bdvWYfVUZggFADhaRd7RXJ0cPHTQY9/PnJKWpaa3fWH3K7XvHBCjxTOPOasslxrw8Hf6fstJu9r4+njpQOIC1QkPdFpdrvL58mTFPbPW7nbTn71HT97/vFNqMtrVroEZOw+rQd9OiujcQqe3JJVs9/b3VVi7Jjq1Oanctu7Kk6+DQHXikQvlDRgwQJI0ffp0HTz4v4VyEhMT1a9fP2VkZEiSOnXqVKrdrFmzdOrUKVa7BwC4tSYNQjSkT0O72z0+qrVT6jHC+NH2f5aRt8R4RKCXpBEDmyiytn1hLTDAW2PvaOG0mqq6o0s2yma1qs3DQ0ptbxE3QL5BATqyeJ1htQHAlXjkk/opU6bo888/14kTJ9S2bVu1atVK+fn5Onz4sAYPHqwmTZpo5cqVpebTZ2Rk6G9/+5tmzJghi8WiCxculOzLz8/XhQsXFBoaKi8vj/weBADU9O4bVSM6UpIUEB4qL18fdXhyhCQpO/WMjizkhtadTH2ss9ZsOan8gorNlx3Qs75u7lHf6XW5ytCbGqlXxzra9PPpCh1fI8hHz/6+/Nfcuht/P289P/46PfaPjRVu85cHO6h2qL9T66rKLuw/rv0fr1Drh25Tvw8nK/X77arZooHaPHSbzBv36sji9UaXCABlMtls9g7Ocw9JSUmaPHmyfvzxR0lSmzZt9NBDD+nhhx9Ws2bNdPToUW3ZskXdu19aBXXnzp3q3LnzFc959OhRNWnSxCX1A4CjXW3o6aBF0xR1fdlTj8wb92rFiKlOrM714pI/8/hhp9+sPa57JsdfNdj37BCpFe8MUs0QP5fV5goZ5/M18JHvtHP/uSseFxzooyVvDtTNPT3nS41f/P1f2/TCnKu/ovfRka00+/+uLzUt0dNUZAqSyctLbR4eotgxA1SjYR3ln8tUytKN2vHqAllyK7NKQdVWHa6DQHXgsaG+PNnZ2QoNDZXJZFJWVpaCgoJKtpc1971fv34aO3asxo0bp549eyoggAsfAPfEnPrSqsvNbOKeM5r27g59m3Disjn2kbUD9PCIlvq/P3RSYIBHDt5TVk6hpr2zQx99fVDnM0uvXO7lZdId/Rpp6qOd1bFluGE1OtuCFUc0/aNd2rH/7GX7WsXU1KQH2uuhu2I9OtCLa2CZqst1EPB0nvkb/Ar27t0rm82m2NjYkkAvSTVq1FDfvn3LbNOkSZNy9wEAUJV1axepZbNu0dHULC3+PkXPvbNd2bkW1Q7104nVo+Xv5210iU4VEuynGX/uoRcmdNGiNSl6/B8blJVrUc0avtq9+C41jKphdIlON2pQU91za4x+2n1Gazaf1Csf/azsXIsiavlr39cjPD7MA4Cnq3YTxHfv3i2V8356AAA8VUx0iCaNba+aNS4NsQ8K8PH4QP9rgQE+GnN7c4X+9/PXCPKtFoH+FyaTST061NFf/9Cp5O+Av583gR4APEC1e1Jvb6ivZrMTAAAAAABuhCf1AAAAAAC4qWr3pD4+Pt7oEgAAAAAAcIhq96QeAAAAAABPQagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATfkYXQAAwDV8Av0Vl/yZ0WVUGT6B/kaXAMCFuAZejusg4BkI9QBQTZhMJvkGBRhdBgAYgmsgAE/F8HsAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN+VjdAEom81mkyWvwOgyKswn0F8mk8noMgAAAACgWiHUV1GWvALNazbG6DIqLC75M/kGBRhdBgAAAABUKwy/BwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3xUJ5AAB4uKycQu1IOqvDJ7KUnVskScrNt2j/0QuKbVxTXl68vQQAAHdFqAcAwAOdMGfrvYUHtHD1UR1IuSibrfT+85mFan3HItUI8lWvjpF6eEQrDe/XWL6+DOIDAMCdEOoBAPAgR1IzNfn1RH39wzFZrbarHp+dW6TVm05q9aaTqhcZpEkPtNMTcW3l40O4BwDAHRDqPUhUr7YatHhaqW1FOXnKPJKu5IXrlPTht7IVWw2rDwDgPFarTbMXJOkvMxOVm2+p1DnSz+Tqz6//pC9WHtXcf9yo1k1rObxOAADgWIR6D3RkcYJS47dLJpMCI2up+cib1H3aONVs0UCbJs8xujwAgIPl5Vs0avIP+ubH4w453097zqjzPV/rs5du0t23xDjknAAAwDkYW+eBzu4+qiOLEnRk4TrtfWeplg95VjlpGYq972b5h4caXR4AwIHyCyy6fcIqhwX6XxQUFmvUlB80/9tkh54XAAA4FqG+GrDkFejM9kMyeXkptHFdo8sBADiIzWbT/c/+qPif0p1yfqvVpgf+70f98NNJp5wfAABcO0J9NRHS5FKYL7iQbXQpAAAH+WzZYS1cnWJXm8T5w3Ri9Wglzh9WoeMtFpse/HuCsnIKK1klAABwJkK9B/IJ9JN/WIj8w0NVq1Uj9Xjp9wpv31Rnth9S5hHnPM0BALhW+plcTXxls93toiKCFF03WFERQRVuc+xktib/M9HuvgAAgPNVi1CfkZGhKVOmqHnz5goICFDDhg31xBNPKCcnRw899JBMJpNmzZpldJkO03nKaN2792Pdu+cjDf/hn2r94CClLN+s+HHTjS4NAOAgL76/UxeyXPf0fM6X+3Xg6AWX9QcAACrG41e/37lzpwYPHiyz2azg4GC1adNGJ0+e1FtvvaXk5GSdO3dOktSpUyejS3WYA5+uUso3m+Tl66ParRqp3fjhCq4XruKC/938efn5aOiq13T0qwTtenNxyfYb3hivgMhaWhP3okHVAwCuJiunUJ98c9jl/b775X7NnNLT5f0CAIDyefST+oyMDA0dOlRms1mTJk1Senq6tm/fLrPZrOnTp2v58uVKTEyUyWRShw4djC7XYTKPmJWesFtp8Tu0Z/YSfT/2FUV0aqZe0x8pOcZaaNH6iW+r/cS7VLtNY0lSo0HdFD2wqzY8NdvA6gEAVzNvebKycopc3u/HSw4pJ9f1/QIAgPJ5dKifOHGiUlNTNWHCBM2YMUMhISEl+6ZMmaKOHTvKYrGoSZMmCg313Fe9ndl6QMkL1ylmeG9Fdm1Zsv3sriPa+85S9XnrjwqqF6Zerz2qLc9+oLxT5w2tFwBwZcvWnTCk34tZhdr482lD+gYAAGXz2FCflJSkBQsWKCIiQi+//HKZx3Tp0kWS1LFjx5Jta9eulclkuuwfdx+e//PMhbJaitV58qjS299YJGtxsYatfk3mDXt0dMkGw2oEAFTMtn0Z1bJvAABwOY+dUz9//nxZrVbFxcWpRo0aZR4TGBgo/SbU/+Jf//qXrrvuupI/BwcHO7Fa58tKMevokg1qNuJG1enRWqe3JEmSbJZinUk8oIgOzXR4wQ9GlwkAuIqTp3NkzsgzrH9CPQAAVYvHPqmPj4+XJPXr16/cY1JTU6VyQn2bNm3Us2fPkn/at2/vxGpdY9ebl57K//ppfZ0erdV8VD8lffituj//oLwD/AytEQBwZcfTcwzt/4TZ2P4BAEBpHvuk/tixY5Kkxo0bl7nfYrFow4ZLQ83LCvWO1LVrV5nNZrva+Nq8NFXd7Wpj3rRXc+vdXe7+i4fS9En0/wK9T1CAbnhjvLa9OE/7/71Sg796Xtc9c58Sp861q19Jim0RqyKT1e52AAD7FPg0lkJ/V+a+xPnDrvr++aiIwJL/PbF6dLnHmTNy1e3epZdt375jl6KjH7e77qoivdZTkldNpZvTFR0dbXQ5huBnAABVU1RUlLZu3Wp3O48N9Tk5l54k5OWVPURxwYIFysjIUEhIiGJiYi7bP2rUKGVkZCg8PFzDhg3TK6+8ooiIiErVYjablZaWZlcbP5O3VLdS3VVYt+ceUPbx09o/d4Ukaf0TszRszQwd/26LTm1OsutcJ9NPqtBW7KRKAQAlggKkctZ2jYoIUnTdik0X8/H2qvCxv1ZUmG/377QqJaRY8pKsxcXu/TmuBT8DAPAoHhvqo6KidP78eW3fvl29evUqtS89PV2TJ0+WJHXo0EEmk6lkX82aNTV58mTdeOONqlGjhjZt2qSXX35Zmzdv1tatWxUQEFCpWuzla/OSnPjgu0H/zooZ1ltLbp5Usi3r2Clte3Gees8cr6X9J8mSV1Dh89WvV58n9QDgAhavIJ0qZ585I/eq7aMiAuXj7SVLsfWKc/PLO5e/T5EiGjSocL1VTbq3t6ySvLy9Vc+NP8e14GcAAFVTZXKjJJlsNpvN4dVUARMnTtTbb7+thg0bas2aNYqNjZUkJSYm6v7779eRI0dUVFSk8ePHa9asWVc81zfffKNhw4bpo48+0oMPPuiS+oty8zWv2RiX9OUIccmfyTfI/i88AAD2sVptqn3Dp8rMrtz74k+sHq3ousFKPZWjhgP/Y3f7//tDJ70woUul+q4KogfMV9rpXDWoE6TUNfcaXY4h+BkAgGfx2IXypkyZovDwcJ04cUJt27ZV+/bt1aJFC3Xv3l1NmzZV//79pQrOp7/99tsVHBxcqfkNAAA4kpeXSde1rtx0MEfo0ibcsL4BAMDlPDbUR0dHKyEhQUOGDFFAQIBSUlIUFhamOXPmaPny5Tp48KBk5yJ5vx6mDwCAUfp1q2dIv74+XurdyckLvgAAALt47Jx6SWrdurWWLVt22fbs7GylpKTIy8tL7dq1u+p5li5dqpycHHXvbt9q9AAAOMNDd8bq+Tk7VFzs2hl0IwY0UWRYoEv7BAAAV+bRob48e/fulc1mU2xsrIKCSr/6Z8yYMWratKmuu+66koXyXn31VXXq1EmjR5f/6h8AAFylQd1gDe/XWIvWpLi03/GjW7u0PwAAcHUeO/z+Snbv3i2VM/S+bdu2+uqrr/TAAw9o8ODB+uijj/Twww9r7dq18vPzM6BaAAAu99eHO8rb23XTwvp3r6fenRl6DwBAVUOo/41nnnlGu3fvVmZmpoqKinT06FH985//VM2aNQ2o1PEaD+mpnq88XGpb81H9NC59oRoN6mZYXQAA+3RuHaFnHqr4ujDXokaQrz6c1oe1ZQAAqIII9dVMo9t66PiKn0r+XCM6UrFxA3R66wFD6wIA2O9vj3RSx5ZhdrUxZ+Qq9VROhd5p/4sZk7qrSYOQSlQIAACcrVrOqY+Pjze6BKfxCw3SHT/MlHeAn3JPZsjL31chjeoqeeGP2vT0+6rbraXWPzHr0sEmk65//TFt+b8P1W3qWKNLBwDYyc/XW8tn3aIbxi5TysnsCrXpdu9Su/qY9EA7/eHulpWsEAAAOFu1fFLvyQozc3XkqwTt+2C5lg6crJ/+/rHObD+ojX9+V/V6t9PpxAOyWYolSW0fGarTift1dtcRo8sGAFRSg7rBWvvRbWrRONTh5/7L7zrotUndGXYPAEAVRqj3QGHtYnRu91FJUniHZjq359K/NxrUTce+uzT0vlbLhmo8pId+fmORobUCAK5d4/oh2vzZMI25vZlDzhdW01+fv9JXrzzZjUAPAEAVR6j3QGFtm5QE+fAOTXX2vwG/ft9OSovfIUmq26O1ajSsoxEb39bdP81W5HUt1Ou1R9XygVsMrR0AUDlhNf316Ut99fWbA9QwKrjS57l7YBPt/eou3XubY74gAAAAzlUt59R7sqCoMMlmU675nCQprHVj7XpzkSI6t9DFQ2my5OZLkg58skoHPllV0m7Qomna9/4yHV+RaFjtAIBrd0e/xhrSp6GWrTuu2QuStHrTyau2qR3qp98Nj9Wj97RW80aOH8YPAACch1DvYcLaxZQ8pZekwswctRp7qwrOZZVa9R4A4Ll8fLw0vH8TDe/fRBcyC7Q96ay27s3QoeMXlVdQLB9vL9UO9VOnluHq0iZcrWJqyceHwXsAALgjQr2HSV2zTalrtpX8edngpyVJd6ydqZUjppbbbsUV9gEA3FetUH/171Ff/XvUN7oUAADgBIT6amJJ3z8ZXQIAAAAAwMEYawcAAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAboqF8qoon0B/xSV/ZnQZFeYT6G90CQAAAABQ7RDqqyiTySTfoACjywAAAAAAVGEMvwcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATRHqAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAAAAAHBThHoAAAAAANwUoR4AAAAAADdFqAcAAAAAwE0R6gEAAAAAcFOEegAAAAAA3BShHgAAAAAAN0WoBwAAAADATfkYXQDKZrPZZMkrMLqMCvMJ9JfJZDK6DAAAAACoVgj1VZQlr0Dzmo0xuowKi0v+TL5BAUaXAQAAAADVCsPvAQAAAABwU4R6AAAAAADcFKEeAAAAAAA3RagHAAAAAMBNEeoBAEC1YLPZZLPZSv4dAABPwOr3AADAI+XmWbT4+xRt3HlK2/ad1a5D55RfUCxJOnkmT7FDv1TXNhHq2jZCdw+MUaN6NYwuGQAAuxHqAQCARzmSmqm3P9+nuUsO6UJWYbnHHTqWqUPHMjX/uyOa/M9EDenTUBPuba2BvRrIZDK5tGYAACqLUA8AADxCcbFVMz/dq/+btU0FhcV2tbVabfrmx+P65sfjGjGgiWb/9XrVCQ90Wq0AADgKod6DRPVqq0GLp5XaVpSTp8wj6UpeuE5JH34rW7HVsPoAAHCWVHOO7pkcr00/n77mcy1ak6Ift5n173/cqNv6NHRIfQAAOAuh3gMdWZyg1PjtksmkwMhaaj7yJnWfNk41WzTQpslzjC4PAACHSj6RqZsf/k7HTmY77JwZ5/M1bOJqffKPm3TfkGYOOy8AAI7G6vce6OzuozqyKEFHFq7T3neWavmQZ5WTlqHY+26Wf3io0eUBAOAwJ0/naICDA/0viottuv+vP+rr+BSHnxsAAEch1FcDlrwCndl+SCYvL4U2rmt0OQAAOITNZtO4v61TihMC/S+sVpvG/t86nTA7rw8AAK4Fob6aCGlyKcwXXOCmBADgGT5YdECrN520q03i/GE6sXq0EucPq3CbzOwiPfzcet5tDwCokjw+1GdkZGjKlClq3ry5AgIC1LBhQz3xxBPKycnRQw89JJPJpFmzZhldpkP5BPrJPyxE/uGhqtWqkXq89HuFt2+qM9sPKfNIutHlAQBwzc5eyNek13+yu11URJCi6wYrKiLIrnYrN6ZpwYojdvcHAICzefRCeTt37tTgwYNlNpsVHBysNm3a6OTJk3rrrbeUnJysc+fOSZI6depkdKkO1XnKaHWeMrrUtpTlm7XlmQ8MqwkAAEf6+OtDysopcmmfb87bq9GDWTQPAFC1eOyT+oyMDA0dOlRms1mTJk1Senq6tm/fLrPZrOnTp2v58uVKTEyUyWRShw4djC7XoQ58ukor75mm1XEvausLnyr/XJaC64WruKCw5BgvPx/dsXamOjxxV6m2N7wxXgPm/dWAqgEAqBir1aZ3vkhyeb+bd53R9n0ZLu8XAIAr8dhQP3HiRKWmpmrChAmaMWOGQkJCSvZNmTJFHTt2lMViUZMmTRQa6lkrwmceMSs9YbfS4ndoz+wl+n7sK4ro1Ey9pj9Scoy10KL1E99W+4l3qXabxpKkRoO6KXpgV214araB1QMAcGUbd57SkdQsQ/r+5JvDhvQLAEB5PDLUJyUlacGCBYqIiNDLL79c5jFdunSRJHXs2PGyfV999ZWuv/56BQcHq2bNmurdu7f27t3r9Lqd5czWA0peuE4xw3srsmvLku1ndx3R3neWqs9bf1RQvTD1eu1RbXn2A+WdOm9ovQAAXMlPe84Y1nfiXuP6BgCgLB4Z6ufPny+r1aq4uDjVqFGjzGMCAwOlMkL9W2+9pXvuuUc33HCDli5dqvnz52vAgAHKy8tzSe3O8vPMhbJaitV58qjS299YJGtxsYatfk3mDXt0dMkGw2oEAKAitu07a1jfO/aflcViNax/AAB+yyMXyouPj5ck9evXr9xjUlNTpd+E+uTkZE2ePFkzZ87UhAkTSrbfdtttTq3XFbJSzDq6ZIOajbhRdXq01uktl+Yi2izFOpN4QBEdmunwgh+MLhMAgKvam2zciLK8/GKlnMxW80aeNXUPAOC+PDLUHzt2TJLUuHHjMvdbLBZt2HDpifSvQ/1HH30kX19fPfzwww6tp2vXrjKbzXa18bV5aaq6O7SOXW8uUszw3uo8eZRW3v2cJKlOj9ZqPqqfkj78Vt2ff1BLB05WcX7hVc/1W7EtYlVk4skFAMD5zDUnSt7hZe5LnD/siq+ri4oILPnfE6tHl3ucJJkzctXt3qWXbb++T3/5Fdv3e70qSa/1lORVU+nmdEVHRxtdDgDgv6KiorR161a723lkqM/JyZGkcofML1iwQBkZGQoJCVFMTEzJ9o0bN6ply5b67LPP9I9//EMnTpxQixYt9Pe//1333ntvpesxm81KS0uzq42fyVuqa2c/m/Zqbr27y91/8VCaPon+3/B7n6AA3fDGeG17cZ72/3ulBn/1vK575j4lTp1rX8eSTqafVKGt2O52AADYLdgieZe965f30F+Nj7dXhY4ry5nTp6R8+36vVykhxZKXZC0utvv+BABQ9XhkqI+KitL58+e1fft29erVq9S+9PR0TZ48WZLUoUMHmUymUvvS0tL0zDPPaPr06WrYsKE+/PBD3XfffYqMjNSAAQMqXY+9fG1ekpMffHd77gFlHz+t/XNXSJLWPzFLw9bM0PHvtujUZvteFVS/Xn2e1AMAXOK0t1XlvaHenJF7xbZREYHy8faSpdgqc8aV18sp71x1I2vLx2qrcL1VTbq3t6ySvLy9Va9BA6PLAQD8V2Vyozw11A8YMEBJSUmaPn26Bg4cqNjYWElSYmKi7r//fmVkXHrHbKdOnUq1s1qtys7O1qeffqrhw4dLkm6++Wbt27dPL7zwQqVDfWWGUBTl5mteszGV6q8iGvTvrJhhvbXk5kkl27KOndK2F+ep98zxWtp/kix5BRU+38FDB+UbFOCkagEA+J8xz6zVvOXJZe4ra7j8r51YPVrRdYNlzshTw4H/sbvvoAAfpR3dKW9v911rOHrAfKWdzlW9qHpK3ZNqdDkAgGvkvr+RrmDKlCkKDw/XiRMn1LZtW7Vv314tWrRQ9+7d1bRpU/Xv318qY+X7sLAw6b9fCvzCZDJpwIAB2rNnj4s/hXOlxe/Q563GKicto9T2/XNXaHGvCXYFegAAXKlLmwjD+u7UKsytAz0AwPN45G+l6OhoJSQkaMiQIQoICFBKSorCwsI0Z84cLV++XAcPHpTKCPVt27Yt95z5+flOrxsAAFxd93aR1bJvAADK4pGhXpJat26tZcuWKSsrS1lZWdqyZYv+8Ic/KCcnRykpKfLy8lK7du1KtbnjjjskSatWrSrZZrVatXr1anXr1s3lnwEAAFyuV8c6atYwxJC+xw5rYUi/AACUxyPn1F/J3r17ZbPZFBsbq6Cg0q+8GTp0qPr06aM//OEPOnv2rBo1aqQPPvhAe/fu1erVqw2rGQAA/I+Xl0mP3dNaf379J5f226tjHXVqVfar9AAAMIrHPqkvz+7du6Uyht7rv/Pnly5dqhEjRujZZ5/VsGHDdOzYMX377bcl8/ABAIDxHhweq9Aavi7t88kx5U/TAwDAKIT636hVq5bmzJmjM2fOqKCgQD/99JNuvfVWF1cJAACuJKymv2ZO7umy/obc2FAjb4lxWX8AAFQUob6aaTykp3q+8nCpbc1H9dO49IVqNIh1AwAA7uPB4S00+IZou9qYM3KVeirnqu+z/7WaIX6a87feMplMlagSAADnqnZz6uPj440uwVCNbuuh5C/Xlvy5RnSkYuMG6PTWA4bWBQCAvUwmkz56vo9uGLtMySeyKtTmau+x/y1vb5M+e+kmNagbXMkqAQBwrmr3pN7T+YUGaeS2ORq992MNW/2ahq97Q/enzNf1Mx6Vycdbdbu1VPr6PZcONpl0/euPacv/fShrocXo0gEAsFtURJDWvDdYMQ0cvxq+j49Jn7/SV7ff1Mjh5wYAwFEI9R6mMDNXR75K0L4PlmvpwMn66e8f68z2g9r453dVr3c7nU48IJulWJLU9pGhOp24X2d3HTG6bAAAKq1JgxCt//cQ9bmursPOWScsQMvevkX33NrUYecEAMAZCPUeKKxdjM7tPipJCu/QTOf2XPr3RoO66dh3l17/U6tlQzUe0kM/v7HI0FoBAHCE+nWCtfajIXpjSg8FBnhf07nuHdxU+74eoVt72zdfHwAAI1S7OfXVQVjbJiVBPrxDU51YmShJqt+3k7a+8JkkqW6P1qrRsI5GbHxbkhQYWUu9XntUgXVq68AnqwysHgCAyvHyMumJMe00vH9jzV6QpA+/OqizFwoq1Nbb26Th/Rprwr1t1LdbPafXCgCAoxDqPUxQVJhksynXfE6SFNa6sXa9uUgRnVvo4qE0WXLzJUkHPllVKrwPWjRN+95fpuMrEg2rHQAAR2hcP0TT/9Rd0x6/Tkt+OK5NP5/Wtn0Z+vngOWXlFEmSfH28FNs4VF3aRKhLmwiNGNCExfAAAG6JUO9hwtrFlDyll6TCzBy1GnurCs5l6fiKnwytDQAAVwrw99GoQU01atD/5sVbrTZZrTb5+DADEQDgGQj1HiZ1zTalrtlW8udlg5+WJN2xdqZWjphabrsVV9gHAICn8PIyycuL980DADwHob6aWNL3T0aXAAAAAABwMMaeAQAAAADgpgj1AAAAAAC4KUI9AAAAAABuijn1VZRPoL/ikj8zuowK8wn0N7oEAAAAAKh2CPVVlMlkkm9QgNFlAAAAAACqMIbfAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmCPUAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClCPQAAAAAAbopQDwAAAACAmyLUAwAAAADgpgj1AAAAAAC4KUI9AAAAAABuilAPAAAAAICbItQDAAAAAOCmfIwuAGWz2Wyy5BUYXUaF+QT6y2QyGV0GAAAAAFQrhPoqypJXoHnNxhhdRoXFJX8m36AAo8sAAAAAgGqF4fcAAAAAALgpQj0AAAAAAG6KUA8AAAAAgJsi1AMAAAAA4KYI9QAAAAAAuClWvwcAAPBQNptNKWnZ2rYvQ9uSMpR2KlfnLl56Ze7F7ELN/zZZXdpEqHmjUHl58WpaAHBHhHoAAAAPcyGzQP9eekjvfLFfB1IulnlMdq5F9z29VpLUuH4NPXJ3Kz10Z6zqhAe6uFoAwLUw2Ww2m9FF4HJFufm8px4AANilqMiq6R//rJc++Fl5+cV2t/fz9dITcW017fHrFBjAsx8AcAdcrT1IVK+2GrR4WqltRTl5yjySruSF65T04beyFVsNqw8AADjP7oPnNO5v67Q96Wylz1FYZNVrc3dr6drj+viFPurVsa5DawQAOB6h3gMdWZyg1PjtksmkwMhaaj7yJnWfNk41WzTQpslzjC4PAAA42KqNqbrzye+Vm29xyPkOpFzUjQ8u12cv9dWoQU0dck4AgHMQ6j3Q2d1HdWRRQsmfD8xdqTsT3lTsfTdr+yvzVXA209D6AACA46zZnKahf1ytwiLHjsazWGy69y8/yMvLpJG3xDj03AAAx+GVdtWAJa9AZ7YfksnLS6GNGUYHAICnSD6RqTuf/N7hgf4XNpsU9/Rabd+X4ZTzAwCuHaG+mghpcinMF1zINroUAADgAFarTb/7e4Kyc4vsapc4f5hOrB6txPnDKnR8kcWqcX9bp8Ii+xfeAwA4H6HeA/kE+sk/LET+4aGq1aqRerz0e4W3b6oz2w8p80i60eUBAAAHmL0gSeu2me1uFxURpOi6wYqKCKpwm92Hzusf7+20uy8AgPNVi1CfkZGhKVOmqHnz5goICFDDhg31xBNPKCcnRw899JBMJpNmzZpldJkO03nKaN2792Pdu+cjDf/hn2r94CClLN+s+HHTjS4NAAA4QFGRVS++79qQ/c9P9igzu9ClfQIArs7jF8rbuXOnBg8eLLPZrODgYLVp00YnT57UW2+9peTkZJ07d06S1KlTJ6NLdZgDn65Syjeb5OXro9qtGqnd+OEKrheu4oL//SL28vPR0FWv6ehXCdr15uKS7Te8MV4BkbW0Ju5Fg6oHAABX8/UPx2TOyHNpnzl5Fn267LDGj27j0n4BAFfm0U/qMzIyNHToUJnNZk2aNEnp6enavn27zGazpk+fruXLlysxMVEmk0kdOnQwulyHyTxiVnrCbqXF79Ce2Uv0/dhXFNGpmXpNf6TkGGuhResnvq32E+9S7TaNJUmNBnVT9MCu2vDUbAOrBwAAVzPny/2G9PvuF8b0CwAon0eH+okTJyo1NVUTJkzQjBkzFBISUrJvypQp6tixoywWi5o0aaLQ0FBDa3WmM1sPKHnhOsUM763Iri1Ltp/ddUR731mqPm/9UUH1wtTrtUe15dkPlHfqvKH1AgCA8hUVWbV+xylD+t5z+LzOXsg3pG8AQNk8NtQnJSVpwYIFioiI0Msvv1zmMV26dJEkdezYsWRb3759ZTKZyvzn0UcfdVn9jvbzzIWyWorVefKo0tvfWCRrcbGGrX5N5g17dHTJBsNqBAAAV7c3+bwKCo1biX4br7cDgCrFY+fUz58/X1arVXFxcapRo0aZxwQGBkq/CfWzZ89WZmZmqeOWL1+uf/zjH7r99tudXLXzZKWYdXTJBjUbcaPq9Git01uSJEk2S7HOJB5QRIdmOrzgB6PLBAAAV7E96ayh/W/bd1a3XB9taA0AgP/x2FAfHx8vSerXr1+5x6Smpkq/CfVt2ly++MuLL76oyMhIDRo0qFK1dO3aVWazfa+c8bV5aaq6V6q/8ux6c5FihvdW58mjtPLu5yRJdXq0VvNR/ZT04bfq/vyDWjpwsorz7V/ZNrZFrIpMVofWCwAALpcVcIMUNLDMfYnzh131VXVREYEl/3ti9ehyjzNn5KrbvUsv2/7S9Lf0r+dW2l03AODKoqKitHXrVrvbeWyoP3bsmCSpcePGZe63WCzasOHSUPNfh/rfOnPmjFasWKHHH39cPj6V+3GZzWalpaXZ1cbP5C3VtbOfTXs1t97d5e6/eChNn0T/b/i9T1CAbnhjvLa9OE/7/71Sg796Xtc9c58Sp861r2NJJ9NPqtBm3FBAAACqjchsqZzc/ss76CvCx9urwsf+WnZOnrLT7buvAQA4j8eG+pycHElSXl7Zr3tZsGCBMjIyFBISopiYmHLPM3/+fFksFt1///2VriUqKsruNr42L8nJD767PfeAso+f1v65KyRJ65+YpWFrZuj4d1t0anOSXeeqX68+T+oBAHCBrIBgZZazz5yRe9X2URGB8vH2kqXYesXX4pV3rhrBAarZoEGF6wUAVExlcqMkmWw2m83h1VQBbdq0UVJSkmbNmqXx48eX2peenq4uXbooPT1dvXv31vr168s9T7du3ZSTk6N9+/a5oOr/KcrN17xmY5x2/gb9O+um2U9qyc2TlJP2vwVvWo0bpDaP3K6l/SfJkldQ4fPFJX8m36AAJ1ULAAB+8cXKIxo1ufLr4JxYPVrRdYOVeipHDQf+x+72bz/TSxPu5V31AFBVeOzq9wMGDJAkTZ8+XQcPHizZnpiYqH79+ikj41KQ7dSpU7nn2L9/v7Zu3XpNT+mrqrT4Hfq81dhSgV6S9s9docW9JtgV6AEAgOt0aRNhcP/hhvYPACjNY0P9lClTFB4erhMnTqht27Zq3769WrRooe7du6tp06bq37+/dJX59J9++qlMJpPi4uJcWDkAAED5mkaHqFaInyF9e3mZ1DGWUA8AVYnHhvro6GglJCRoyJAhCggIUEpKisLCwjRnzhwtX7685Ol9eaHeZrNp3rx56tu3rxo1auTi6gEAAMpmMpl0+00NDen75h71FBTosUsyAYBb8uircuvWrbVs2bLLtmdnZyslJUVeXl5q165dmW3XrVunY8eOaerUqS6oFAAAoOIeu6e1PluW7PJ+Hx/V2uV9AgCuzGOf1F/J3r17ZbPZ1KJFCwUFlf1OmE8//VSBgYG6++7yXxEHAABghF4d66hjyzCX9hldN1i338joRQCoaqplqN+9e7d0haH3+fn5WrhwoYYPH66QkBAXVwcAAHBlJpNJr0/q4dI+X3uqm3x8quWtIwBUadXyyny1UB8QEKALFy7o888/d3Flztd4SE/1fOXhUtuaj+qncekL1WhQN8PqAgAA9rm5Z309OrKVS/q66+YmGjWoqUv6AgDYh1BfzTS6rYeOr/ip5M81oiMVGzdAp7ceMLQuAABgv1ef6qaWTWra1cackavUUzkyZ+RW6Pj6dYI0+/+ul8lkqmSVAABn8uiF8soTHx9vdAlO4xcapDt+mCnvAD/lnsyQl7+vQhrVVfLCH7Xp6fdVt1tLrX9i1qWDTSZd//pj2vJ/H6rb1LFGlw4AAOwUEuyn1e8NUp9xy3XsZHaF2nS7d2mFzx9ZO0Br3husuuGB11AlAMCZquWTek9WmJmrI18laN8Hy7V04GT99PePdWb7QW3887uq17udTicekM1SLElq+8hQnU7cr7O7jhhdNgAAqKSGUTWUMHeIWjet5dDzNqoXrHVOOC8AwLEI9R4orF2Mzu0+KkkK79BM5/Zc+vdGg7rp2HeXht7XatlQjYf00M9vLDK0VgAAcO0aRtXQ1vl36MkxbeWIUfK/uzNWP395p1rFEOgBoKoj1HugsLZNSoJ8eIemOvvfgF+/byelxe+QJNXt0Vo1GtbRiI1v6+6fZivyuhbq9dqjavnALYbWDgAAKico0Eczp/TUuo+HqM91dSt1ji5tIvTtv27Rh9P6qFaov8NrBAA4XrWcU+/JgqLCJJtNueZzkqSw1o21681FiujcQhcPpcmSmy9JOvDJKh34ZFVJu0GLpmnf+8t0fEWiYbUDAIBrd8N1UVo393btPnhO73yRpBUb0nQ0Lavc46PrBmtAz/p6fFRrdWsX6dJaAQDXjlDvYcLaxZQ8pZekwswctRp7qwrOZZVa9R4AAHi29rFhmv1/vSVJZy/ka3vSWZ08nauComL5+XqpbligurSJUB0WwQMAt2ay2Ww2o4vA5Ypy8/X/7dy7CQJREIbRu6D4aMNG7MDAUJuwgi3BJrQAQzMbsQQTExWENTUwMFhZf/acAoZJP+5l9rN1a/MWp205Lutyv1xbm/ludd6V4XT8k9kAAAB85qW+Jw7zTdcrAAAA0DKH8gAAACCUqAcAAIBQoh4AAABCOZT3p5qmKc/bo+s1vjaYjEpVVV2vAQAA0CuiHgAAAEL5fg8AAAChRD0AAACEEvUAAAAQStQDAABAKFEPAAAAoUQ9AAAAhBL1AAAAEErUAwAAQChRDwAAAKFEPQAAAIQS9QAAABBK1AMAAEAoUQ8AAAChRD0AAACEEvUAAAAQStQDAABAKFEPAAAAoUQ9AAAAhBL1AAAAEErUAwAAQChRDwAAAKFEPQAAAIQS9QAAABBK1AMAAEAoUQ8AAAChXqEH1uRmep3XAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAHwCAYAAADn6U9jAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/GU6VOAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB5TElEQVR4nO3dd3wUdf7H8fduekIoKZBA6BAIJYB0sQCCgggWVFBU8DwrCHdy5NTzJ+KdBUGxcHqoeJyiHEoRBKUZlICUQOiEgAkBErJAaAnpZX9/cEaRBLJhdye7eT0fDx+SmfnOfDaEybxnvvP9mqxWq1UAAAAAAMDlmI0uAAAAAAAAVA2hHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXJSn0QWgfFarVcV5BUaXUWmefj4ymUxGlwEAAAAANQqhvpoqzivQ5y0fMLqMShuVPFde/r5GlwEAAAAANQrd7wEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXxTz1biSsd3sNWjTlomVFOXnKSslQ8oJ1Spz9rawlpYbVBwAAAACwL0K9G0pZFKe02ATJZJJfaF21uudG9ZgyRnVaN9LGSbOMLg8AAAAAYCeEejd0avchpSyMK/s6ac5K3Rn3jiLvv0kJr89TwaksQ+sDAAAAANgH79TXAMV5BTqZcFAms1m1mzYwuhwAAAAAgJ0Q6muIwGYXwnzB2fNGlwIAAAAAsBO637shTz9v+QQFlr1T3+ahmxXcsYVOJhxUVkqG0eUBAAAAAOykRjypz8zMVExMjFq1aiVfX181btxYEyZMUE5Ojh555BGZTCbNnDnT6DLtpkvMSN2399+6b88numPtW4p6eJBSl29S7JipRpdmqCMZ57Vl90kl7MtU5pl8o8sBAACAE1mtVh1IPadNO09o14HTOp9bZHRJgF24/ZP6HTt2aPDgwbJYLAoICFC7du107Ngxvfvuu0pOTtbp06clSZ07dza6VLtJ+myVUr/ZKLOXp+q1baIOY+9QQHiwSgoKy7Yxe3tq6KppOrQ4TrveWVS2/Lq3x8o3tK7WjHrFoOrtq7CoRAtWpeqDLxO1fvvxsuWeHibdeVMzPTUiSjd2C5PJZDK0TgAAADjGuexC/WfpQX3wZaL2HzpXtryWv6ceGtpaT42IUvtW9QytEbgabv2kPjMzU0OHDpXFYtHEiROVkZGhhIQEWSwWTZ06VcuXL1d8fLxMJpOio6ONLtduslIsyojbrfTY7drz/hJ9P/p1hXRuqd5THy/bprSwWOvHv6eO4+9SvXZNJUlNBnVXxMBu2vDM+wZWbz+nzxXopj9+p1HP/XBRoJek4hKrvlp1SP0e+VbjXt2okpJSw+oEAACAY+w/dFad71msCVM3XRToJel8brHen5+o6LsX64P5iYbVCFwttw7148ePV1pamsaNG6fp06crMDCwbF1MTIw6deqk4uJiNWvWTLVr1za0Vkc6uTVJyQvWqfkdfRTarU3Z8lO7UrT3g6W6/t2n5R8epN7TntDm5z9W3vEzhtZrD7l5xbr1qZWXhPnyvD8/UX96Y7OsVqtTagMAAIDjHck4r/5//E6pxy4/UHRpqVVPvfKTPll8wGm1AfbktqE+MTFR8+fPV0hIiF577bVyt+nataskqVOnThctP3TokIYNG6bAwEDVq1dPDz30kE6dOuWUuh1l54wFKi0uUZdJIy5e/vZClZaUaNjqabJs2KNDSzYYVqM9vfP5Xm3efbLS28+ct08/7Tjh0JoAAADgPBOnb1bGydxKbz/21Z906izjLsH1uG2onzdvnkpLSzVq1CjVqlWr3G38/Pyk34X67Oxs9evXT2lpaZo3b54+/PBDxcXF6bbbblNpqet20c5OtejQkg1qeEO06veMKltuLS7Ryfgk+QbX0c/z1xpao72UlJRq1oL9Nrf74Eu6XQEAALiDYydy9HXsYZva5BeUaM6Sgw6rCXAUtw31sbGxkqR+/fpVuE1aWpr0u1D/4YcfKj09XV9//bVuu+023XPPPfriiy+0adMmLV261AmVO86udy48lf/t0/r6PaPUakQ/Jc7+Vj1eflgevt6G1mgPsVsydPgK3azK89WqQzqXXViJLQEAAFCdfbbsZxWX2P5q5ceLkhxSD+BIJqubvkjcuHFjpaWlafv27eWObF9cXKzw8HBlZmYqOTlZLVq0kH5zE2Dt2oufWrds2VJ9+/bV7Nmzba6lW7duslgsNrXxspo1ubSHzceyhae/r4Z9P137Zi3T/v+s1ODFLytzZ7LiJ8+xeV9TzFtUZKoePRlyfLrpbMDQKrWtf/Y9eZVm2r0mAAAAOM8Z/6HK9e1me0NrkRqd+YcjSgKuKCwsTFu3brW5ndtOaZeTkyNJysvLK3f9/PnzlZmZqcDAQDVv3rxs+b59+3TPPfdcsn379u21b9++KtVisViUnp5uUxtvk4fUoEqHq7TuLz2k80dOaP+cFZKk9RNmatia6Try3WYd32RbV/RjGcdUaC1xUKU2CoqUAqrW9MSJTKnAtr8rAAAAVDON8iTfqjQ02XzdDhjNbUN9WFiYzpw5o4SEBPXu3fuidRkZGZo0aZIkKTo6+qI5ys+cOaO6detesr+goCAlJVWtO05YWJjNbbysZsmBD74b9e+i5sP6aMlNE8uWZR8+rm2vfK4+M8Zqaf+JKs4rqPT+GoY3rDZP6vO8zDpdxbZhof7ysDayc0UAAABwpiy/UmVXoZ1H6XmFNeJaEMaoSm6UO4f6AQMGKDExUVOnTtXAgQMVGRkpSYqPj9eDDz6ozMwLXazL65pvb1XpQlGUm6/PWz7gkHokKT12u75oO/qS5fvnrCh7cm+LAwcPyMu/SrdD7S4vv1gRA/+r0+cqf1NCkgb1idB3HzCVCQAAgKvbf+isom5faHO7mMdu1KsTJlZiS6D6cNuB8mJiYhQcHKyjR4+qffv26tixo1q3bq0ePXqoRYsW6t+/v1TOdHb16tXT2bNnL9nf6dOnFRQU5LT6UXV+vp76wx2RNrd7akRUJbYCAABAdde2eV317xFuUxuz2aTH72njsJoAR3HbUB8REaG4uDgNGTJEvr6+Sk1NVVBQkGbNmqXly5frwIELT2R/H+qjoqLKfXd+3759iooi9LmKv4zpqKYNy5/KsDyD+kTo1usjHFoTAAAAnOeNZ3rI37fyHZNjHu6opg0DHVoT4AhuG+r1v4C+bNkyZWdnKzs7W5s3b9Zjjz2mnJwcpaamymw2q0OHDhe1ue2227R+/fqy6e4kafPmzUpOTtbQoVUbUR3O1yDYT6v+NUjNKhHsb+rZUF9O7ycPD7f+5wAAAFCjdG0XoiXvDlAt/ysH+6dGROmVp6swWj5QDbjtlHaXs3nzZvXq1Utt2rTR/v37L1qXlZWljh07KiQkRFOmTFF+fr5iYmIUGhqqjRs3ymx2TvBz9Dv19jYqeW61eaf+t06cytPbc/fq40VJOnkm/6J1US3q6sl72+rxe9rK28vDsBoBAADgOPsPndVbn+7R58uTlZtffNG6669poKfvb6+7Bza7aPBswJXUyEeTu3fvlsrpei9JtWvXVmxsrMLDwzVy5Ej98Y9/1LXXXqtly5Y5LdDDfuoH++nVCd10dPVILZs5UHUDvSVJIXV9tHfxXXr6/vYEegAAADfWtnldfTj5OqWvGakFb/Yvux6sH+SrdXNu0z03NyfQw6W57ej3l3O5UC9JLVu21LJly5xcFRzJx9tDQ25oogA/T53NLpSPtwcnbwAAgBqkbm0fDR/YXBOmbtLZ7EJ5efLADu6hRv4kXynUu7OmQ3qp1+uPXrSs1Yh+GpOxQE0GdTesLgAAAACA7Wrkk/rY2FijSzBMk1t7KvmrH8q+rhURqshRA3Ria5KhdQEAAAAAbFcjQ707867tr9vXzpCHr7dyj2XK7OOlwCYNlLzgR2189iM16N5G6yfMvLCxyaRr33xSm1+Yre6TRxtdOgAAAADARoR6N1OYlauUxXEqysnXrhkL1LBvJ0WPv0s//eVfanhjJ52IT5K1uESS1P7xoToRv1+ndqUYXTYAAAAAoApq5Dv17i6oQ3Od3n1IkhQc3VKn91z4c5NB3XX4uy2SpLptGqvpkJ7a+fZCQ2sFAAAAAFQdT+rdUFD7ZmVBPji6hY6ujJckNezbWVv/PleS1KBnlGo1rq/hP70nSfILrave056QX/16Svp0lYHVAwAAAAAqi1DvZvzDgiSrVbmW05KkoKim2vXOQoV0aa1zB9NVnJsvSUr6dNVF4X3Qwina99EyHVkRb1jtAAAAAADbEOrdTFCH5mVP6SWpMCtHbUffooLT2TqyYouhtQEAAAAA7ItQ72bS1mxT2pptZV8vG/ysJOn2H2Zo5fDJFbZbcZl1AAAAAIDqiVBfQyzp+2ejSwAAAAAA2Bmj3wMAAAAA4KII9QAAAAAAuChCPQAAAAAALop36qspTz8fjUqea3QZlebp52N0CQAAAABQ4xDqqymTySQvf1+jywAAAAAAVGN0vwcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUZ5GF4DyWa1WFecVGF1GpXn6+chkMhldBgAAAADUKIT6aqo4r0Cft3zA6DIqbVTyXHn5+xpdBgAAAADUKHS/BwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwU89S7kbDe7TVo0ZSLlhXl5CkrJUPJC9Ypcfa3spaUGlYfAAAAAMC+CPVuKGVRnNJiEySTSX6hddXqnhvVY8oY1WndSBsnzTK6PAAAAACAnRDq3dCp3YeUsjCu7OukOSt1Z9w7irz/JiW8Pk8Fp7IMrQ8AAAAAYB+8U18DFOcV6GTCQZnMZtVu2sDocgAAAAAAdkKoryECm10I8wVnzxtdCgAAAADATmpEqM/MzFRMTIxatWolX19fNW7cWBMmTFBOTo4eeeQRmUwmzZw50+gy7cbTz1s+QYHyCa6tum2bqOerf1RwxxY6mXBQWSkZRpcHAAAAALATt3+nfseOHRo8eLAsFosCAgLUrl07HTt2TO+++66Sk5N1+vRpSVLnzp2NLtVuusSMVJeYkRctS12+SZuf+9iwmmAcq9WqTbtO6IP5+7Xn5zPKLyxRcB0f3TWgmcbc3lr1avsYXSIAAAAcqKSkVMvXHdXsxQeUeuy8SkutaljfXw/e1kp3D2wmXx+3j4Vuza3/9jIzMzV06FBZLBZNnDhRkydPVmBgoCTpjTfe0F//+ld5enrKZDIpOjra6HLtJumzVUr9ZqPMXp6q17aJOoy9QwHhwSopKCzbxuztqaGrpunQ4jjtemdR2fLr3h4r39C6WjPqFYOqhz0dSD2n+/66VgmJpy5Zt377cf3tva2aNDpak5/sIrPZZEiNAAAAcJw1m9L1yOQ4HcnIuWj5np/PaNVP6frztM2aMamnHritlWE14uq4dff78ePHKy0tTePGjdP06dPLAr0kxcTEqFOnTiouLlazZs1Uu3ZtQ2u1p6wUizLidis9drv2vL9E349+XSGdW6r31MfLtiktLNb68e+p4/i7VK9dU0lSk0HdFTGwmzY8876B1cNe9iWfUe8Hvyk30P8iL79EL8/arsemrJfVanVqfQAAAHCspWsPa/CTKy8J9L+VeSZfDz7/o/75331OrQ3247ahPjExUfPnz1dISIhee+21crfp2rWrJKlTp05ly365CdCjRw/5+PjIZHL9p5cntyYpecE6Nb+jj0K7tSlbfmpXivZ+sFTXv/u0/MOD1HvaE9r8/MfKO37G0Hpx9QqLSjRk7CqdPldQqe1nLz6gD+YnOrwuAAAAOMehtGyNjFmr4pLKPbh5+rWNWp9gcXhdsD+3DfXz5s1TaWmpRo0apVq1apW7jZ+fn/S7UP/zzz9r4cKFCgsLU/fu3Z1Wr6PtnLFApcUl6jJpxMXL316o0pISDVs9TZYNe3RoyQbDaoT9LFqTqtRjts108NZne1RaytN6AAAAd/DBl4nKKyip9PZWq/T23L0OrQmO4bahPjY2VpLUr1+/CrdJS0uTfhfqb7jhBmVkZGjp0qUaMGCAEyp1juxUiw4t2aCGN0Srfs+osuXW4hKdjE+Sb3Ad/Tx/raE1wn7++V/bn7onH83Wqp/SHVIPAAAAnCcvv1izFx+wud3Xaw8r/XjFXfVRPbntQHmHDx+WJDVt2rTc9cXFxdqw4cJT6d+GerPZ/vc5unXrJovFtq4sXlazJquHXevY9c5CNb+jj7pMGqGVd78kSarfM0qtRvRT4uxv1ePlh7V04CSV5BdecV+/F9k6UkWmUrvW6wgZdZ+RzHWUYclQRESE0eU4hFUmHav3omSy/Wf5nof/pjp53zukLgAAgOqgJlwPFnqE63SdJ2xuV1JiVXSvO+RXxGuZRggLC9PWrVttbue2oT4n58Idpry8vHLXz58/X5mZmQoMDFTz5s0dWovFYlF6um1PQL1NHlIDG4+zca/mhN9d4fpzB9P1acSv3e89/X113dtjte2Vz7X/Pys1ePHLuua5+xU/eY5tB5Z0LOOYCq2V795jmMASySyVlpTY/HfiMsw+UlDVbk6dzynU+Qw3/b4AAACohlwP+vtLdarW9PTZXOmsm35f3JTbhvqwsDCdOXNGCQkJ6t2790XrMjIyNGnSJElSdHS0wwfDCwsLs7mNl9UsOfjBd/eXHtL5Iye0f84KSdL6CTM1bM10Hflus45vsu3uXMPwhq7xpN7DQ6WSzB4eCm/UyOhyHMIqk45ZS6v0pD4wwEu13fT7AgAAoBpyPVjoUVsnq9g2qK6//ALc8/tS3VUlN8qdQ/2AAQOUmJioqVOnauDAgYqMjJQkxcfH68EHH1RmZqYkqXPnzg6vpSpdKIpy8/V5ywccUo8kNerfRc2H9dGSmyaWLcs+fFzbXvlcfWaM1dL+E1WcV7mR0yXpwMED8vL3dVC19hMxYJ7ST+QqPCxcaXvSjC7HYQY8+p2+33zM5nZLPn9d/Xo0dEhNAAAA1UFNuB4sLCpR44H/1YnT+Ta18/I0K3HrUtUP9nNYbbA/tx0oLyYmRsHBwTp69Kjat2+vjh07qnXr1urRo4datGih/v37S797n74mSY/dri/ajlZOeuZFy/fPWaFFvcfZFOhR/Tw1IqoSW12sbfM66ts93CH1AAAAwHm8vTz06PA2ldjyYvfc3JxA74LcNtRHREQoLi5OQ4YMka+vr1JTUxUUFKRZs2Zp+fLlOnDgwmiQNTXUw70N69tEbZvb9iLVX//g+FdRAAAA4BxP3BOl2rW8Kr29p4dJf36wvUNrgmO4bfd7SYqKitKyZcsuWX7+/HmlpqbKbDarQ4cOhtQGOJKnp1nL/3mzrh+zXMdO5F5x+4kPddCY2yOdUhsAAAAcLyIsQIveGqDbnl6l/CvMV282m/TJy9erW/tQp9UH+3HbJ/WXs3fvXlmtVrVu3Vr+/v6XrF+wYIEWLFigffv2XfR1Vd6NB4zSIqK2Ns0dqpt6VvyOfFAdH701qaemTbTv9IkAAAAw3k29Gmrtx7eqfcu6FW7TrGEtLZ5xkx4c2tqptcF+3PpJfUV2794tXabr/T333FPu16NHj9acObZP9wYYpXFYLa35aLD2JZ/RrK/2a9ZX+1VQVCpfbw998H/XasQtLeTnWyNPAwAAADVCr071tXvRXVqfcFyzFx/QvO+SVVhUKj8fD331Zn8N6hMhD48a+azXbdTIq/krhXqr1erkigDHateynt55trcWrklV+olcBdf1obs9AABADWEymXR91zBd3zVMazalK/1EroLq+GjIDU2MLg12UCNvyVwp1LuzpkN6qdfrj160rNWIfhqTsUBNBnU3rC4AAAAAgO1q5JP62NhYo0swTJNbeyr5qx/Kvq4VEarIUQN0YmuSoXUBAAAAAGxXI0O9O/Ou7a/b186Qh6+3co9lyuzjpcAmDZS84EdtfPYjNejeRusnzLywscmka998UptfmK3uk0cbXToAAAAAwEaEejdTmJWrlMVxKsrJ164ZC9SwbydFj79LP/3lX2p4YyediE+StfjClBbtHx+qE/H7dWpXitFlAwAAAACqoEa+U+/ugjo01+ndhyRJwdEtdXrPhT83GdRdh7/bIkmq26axmg7pqZ1vLzS0VgAAAABA1fGk3g0FtW9WFuSDo1vo6Mp4SVLDvp219e9zJUkNekapVuP6Gv7Te5Ikv9C66j3tCfnVr6ekT1cZWD0AAAAAoLII9W7GPyxIslqVazktSQqKaqpd7yxUSJfWOncwXcW5+ZKkpE9XXRTeBy2con0fLdORFfGG1Q4AAAAAsA2h3s0EdWhe9pRekgqzctR29C0qOJ2tIyu2GFobAAAAAMC+CPVuJm3NNqWt2Vb29bLBz0qSbv9hhlYOn1xhuxWXWQcAAAAAqJ4I9TXEkr5/NroEAAAAAICdMfo9AAAAAAAuilAPAAAAAICLItQDAAAAAOCieKe+mvL089Go5LlGl1Fpnn4+RpcAAAAAADUOob6aMplM8vL3NboMAAAAAEA1Rvd7AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABflaXQBKJ/ValVxXoHRZVSap5+PTCaT0WUAAAAAQI1CqK+mivMK9HnLB4wuo9JGJc+Vl7+v0WUAAAAAQI1C93sAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARTFPvRsJ691egxZNuWhZUU6eslIylLxgnRJnfytrSalh9QEAAAAA7ItQ74ZSFsUpLTZBMpnkF1pXre65UT2mjFGd1o20cdIso8sDAAAAANgJod4Nndp9SCkL48q+TpqzUnfGvaPI+29SwuvzVHAqy9D6AAAAAAD2wTv1NUBxXoFOJhyUyWxW7aYNjC4HAAAAAGAnhPoaIrDZhTBfcPa80aUAAAAAAOyE7vduyNPPWz5BgWXv1Ld56GYFd2yhkwkHlZWSYXR5AAAAAAA7qRGhPjMzU2+88YYWLVqktLQ0hYaG6q677tKrr76q8ePH65NPPtF7772ncePGGV2qXXSJGakuMSMvWpa6fJM2P/exYTUBRjuScV4rN6TpbHah/P081a1diHp0DJXJZDK6NAAAADjBrgOntWH7cZ3PLVLtWt7q3yNcrZvWMbqsq+b2oX7Hjh0aPHiwLBaLAgIC1K5dOx07dkzvvvuukpOTdfr0aUlS586djS7VbpI+W6XUbzbK7OWpem2bqMPYOxQQHqySgsKybczenhq6apoOLY7TrncWlS2/7u2x8g2tqzWjXjGoesC+Nu08odc/2alvfjyq0lLrReu6tA3WhFHt9dCwVoR7AAAAN7VoTare+myPNmw/fsm6m69tpJgx0bqpV0NDarMHt36nPjMzU0OHDpXFYtHEiROVkZGhhIQEWSwWTZ06VcuXL1d8fLxMJpOio6ONLtduslIsyojbrfTY7drz/hJ9P/p1hXRuqd5THy/bprSwWOvHv6eO4+9SvXZNJUlNBnVXxMBu2vDM+wZWD9jPF8uTdf2YZVqy9sglgV6Stu8/pTH/t06PTVlf7noAAAC4LqvVquff2arhz3xfbqCXpFU/pWvg49/pvS/2Or0+e3HrUD9+/HilpaVp3Lhxmj59ugIDA8vWxcTEqFOnTiouLlazZs1Uu3ZtQ2t1pJNbk5S8YJ2a39FHod3alC0/tStFez9YquvffVr+4UHqPe0JbX7+Y+UdP2NovYA9rN6Yrode+FHFJVcO6x8vOqDn3ol3Sl0AAABwjhmf7dFrs3decTurVRr/+ib997tkp9Rlb24b6hMTEzV//nyFhITotddeK3ebrl27SpI6depUtmzBggUaPny4mjZtKn9/f7Vt21Z/+9vfdP68a48av3PGApUWl6jLpBEXL397oUpLSjRs9TRZNuzRoSUbDKsRsBer1aqYGVtUUolA/4s3P92jNEuOQ+sCAACAc2SdL9SL/0ywqU3MjHgVF5c6rCZHcdtQP2/ePJWWlmrUqFGqVatWudv4+flJvwv106dPl4eHh1599VV99913evLJJ/XBBx9o0KBBKi11vb/gX2SnWnRoyQY1vCFa9XtGlS23FpfoZHySfIPr6Of5aw2tEbCXTbtOaMf+0za1KSmx6qOFSQ6rCQAAAM7z2bKflZNXbFObo5YcLY876rCaHMVtQ31sbKwkqV+/fhVuk5aWJv0u1H/zzTf68ssvNWrUKN14442aMGGCZs6cqQ0bNmj9+vVOqNxxdr1z4an8b5/W1+8ZpVYj+ilx9rfq8fLD8vD1NrRGwB7mfZdStXYrXLPLFQAAAC7236peD7pgF3yT1Wp1y9GhGjdurLS0NG3fvr3cke2Li4sVHh6uzMxMJScnq0WLFhXu68CBA2rTpo2++OIL3XfffTbX0q1bN1ksFpvaeFnNmlzaw+Zj2cLT31fDvp+ufbOWaf9/Vmrw4peVuTNZ8ZPn2LyvKeYtKjJV/54MGXWfUam5jsyl5xR+9i2jy3G6mvL5TwfcrTyfjja3M5Xmq+HZ8l/XAQAA7qGmXA9VpKZ8fkudp1XiEWJzO++iQwrNtj0P2UNYWJi2bt1qczu3ndIuJ+fCu7F5eXnlrp8/f74yMzMVGBio5s2bX3Zfa9de6JYeFRV12e0qYrFYlJ6eblMbb5OH1KBKh6u07i89pPNHTmj/nBWSpPUTZmrYmuk68t1mHd+UaNO+jmUcU6G1xEGV2lFgiWSWSktKbP47cQs15fNH5Eg+tjezlha59/cFAADUnOuhitSUz+9fIHnY3qwwP9flvi9uG+rDwsJ05swZJSQkqHfv3hety8jI0KRJkyRJ0dHRl52fOj09Xf/3f/+nQYMGVXku+7CwMJvbeFnNkgMffDfq30XNh/XRkpsmli3LPnxc2175XH1mjNXS/hNVnFdQ6f01DG/oGk/qPTxUKsns4aHwRo2MLsfpasrnz/LJU3YV2nlbzyjUjb8vAACg5lwPVaSmfP5T5izly/bPF+CVo7oGfV+qkhvlzt3vx48fr/fee0+NGzfWmjVrFBkZKUmKj4/Xgw8+qJSUFBUVFWns2LGaOXNmufs4f/68+vbtK4vFovj4eIWHhzut/qLcfH3e8gGnHe9qjUqeKy9/X6PLuKKIAfOUfiJXjer7K22N7a9SuLqa8vmPWs6r2aAvbZ57/pOXr9fDd0Q6rC4AAGC8mnI9VJGa8vmXrzui28attrnd9i/vUOe2wQ6pyVHcdqC8mJgYBQcH6+jRo2rfvr06duyo1q1bq0ePHmrRooX69+8v/W6QvN/Ky8vT0KFDdejQIa1atcqpgR7A1WkcVkvD+jaxqU292t4acUvFY2sAAADAdQzqE6HmjQJtanNt5/ouF+jlzqE+IiJCcXFxGjJkiHx9fZWamqqgoCDNmjVLy5cv14EDB6QKQn1RUZHuvvtubd26Vd99953atWtnwCcAcDXee7a3GtX3r9S2ZrNJn75yo/z93PaNJAAAgBrFw8Osua/dKB/vykXeerW9NXvK9Q6vyxHc+go2KipKy5Ytu2T5+fPnlZqaKrPZrA4dOly07pe57b///nt9++236tHDsSPQA3CMiLAA/fDJEA1+aqV+PpJV4Xa+Ph764vW+uu1G257sAwAAoHq7tnMDfff+LbrzT9/r3PnCCrcLD/XXt/+8WW2b13Vqffbi1qG+Inv37pXValVkZKT8/S9+kjd27Fh99dVXevbZZ+Xv769NmzaVrWvZsqVCQ0MNqBhAVbRqUls7v7pT/12Ron/+d58SEk+VrTObTfq/xzrr0eFt1KhBgKF1AgAAwDH69Wiog8vu1r+/PqgPvkxU6rHzZevatayrp0ZE6cHbWql2LW9D67wabtv9/nJ2794tVdD1/rvvvpMkvf766+rdu/dF/y1fvtzptQK4Ov5+nvrDnZHa+t/bZVl7v+oHXRjQMSzYVy89dQ2BHgAAwM2FBvkp5g/R+nn5PQoL/vVacM+iuzR2ZDuXDvQi1F8a6lNTU2W1Wsv9b8yYMQZUa19Nh/RSr9cfvWhZqxH9NCZjgZoM6m5YXYCjmUwmNQj2k5enuexrAAAA1BweHmZ5eJjL/uwu14OE+hqmya09dWTFlrKva0WEKnLUAJ3YmmRoXQAAAAAA29XId+pjY2ONLsFhvGv76/a1M+Th663cY5ky+3gpsEkDJS/4URuf/UgNurfR+gkzL2xsMunaN5/U5hdmq/vk0UaXDgAAAACwUY0M9e6sMCtXKYvjVJSTr10zFqhh306KHn+XfvrLv9Twxk46EZ8ka3GJJKn940N1In6/Tu1KMbpsAAAAAEAV1Mju9+4uqENznd59SJIUHN1Sp/dc+HOTQd11+LsLXe/rtmmspkN6aufbCw2tFQAAAABQdTypd0NB7ZuVBfng6BY6ujJektSwb2dt/ftcSVKDnlGq1bi+hv/0niTJL7Suek97Qn716ynp01UGVg8AAAAAqCxCvZvxDwuSrFblWk5LkoKimmrXOwsV0qW1zh1MV3FuviQp6dNVF4X3QQunaN9Hy3RkRbxhtQMAAAAAbEOodzNBHZqXPaWXpMKsHLUdfYsKTmdfNOo9AAAAAMD1EerdTNqabUpbs63s62WDn5Uk3f7DDK0cPrnCdisusw4AAAAAUD0R6muIJX3/bHQJAAAAAAA7Y/R7AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRDJRXTXn6+WhU8lyjy6g0Tz8fo0sAAAAAgBqHUF9NmUwmefn7Gl0GAAAAAKAao/s9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiCPUAAAAAALgoQj0AAAAAAC6KUA8AAAAAgIsi1AMAAAAA4KII9QAAAAAAuChCPQAAAAAALopQDwAAAACAiyLUAwAAAADgogj1AAAAAAC4KEI9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiCPUAAAAAALgoQj0AAAAAAC7K0+gCUD6r1arivAKjy6g0Tz8fmUwmo8sAaiRXO1+4Es5tgGvgPOg4nAeB6o9QX00V5xXo85YPGF1GpY1Knisvf1+jywBqJFc7X7gSzm2Aa+A86DicB4Hqj+73AAAAAAC4KEI9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiCPUAAAAAALgoRr+H27JarUpIPKWtezO1bV+m9h86qxOn8yVJmWfy9cy0TeraLkS9ouurZePaRpfrEMdO5OinHSe0LTFTO/afLvv8J8/k66Hnf1S39iHq2i5EPTuGytPT/e7x5RcUa9Ouk9q2L1Nb92bqiOW8TpzOkyRlns3Xi//cpq7tQnRtp/oKDfIzulwAAGBnhUUl2rTzhLYlntK2fZk6lJ796/Xg2Xy98N7WC9cCnRuoQbB7XgscSD2nTbtOaNu+TO0+eOai68En/r5B3dqFqHuHEEVHBrnl9IVnswr0084Ln3/bvsxfP//pfN0z8Xt1bRdSdj0Y4O9ldLlVYrJarVaji8ClinLzXWpqluo03cnZrAL9Z+lBvT9/vw4cPlepNjd2C9NTI6J0Z/9m8vJy7XBbWmrV6o3pen9+opatO6rS0iv/E29U31+P3d1Wjw5vo/BQf6fU6UiH0rL1r68SNXvxAZ06e+V5i708zRo+oJnGjoxSny4NXO4XmqudL1xJdTq3AagY50HHcdXz4JGM8/pwwX59tDCpLMRdjoeHSXf2b6qnRkSpb/dwl7sW+L2CwhItWH1I//xvojbuPFGpNh1a1dNTI6L0wG0tFRjg7fAaHW3bvky9Pz9RX3ybrPyCkituX7uWl0YPa60n741SVIu6TqnRXgj11VRVfjmF9W6vQYumXLyfnDxlpWQoecE6Jc7+VtaSUjtXekF1OOFbrVZ9uCBJk97aouycoirto0VEoD55+Xrd2C3c7vU5w+4Dp/Xwi3Hati+zSu29PM3626Od9PwfO7vkzY3cvGL97b2teufzvarqma1f93DNnnK9mkcE2rs8h+Fi1nGqw7kNwJVxHnQcVzsP5hcU66UPtmv6f3arpKRqFwN9ujTQJ1OuV2SzOnavzxlWbkjTo1PW66glp0rt6wZ6652/9tKDQ1u55M2NjJO5evIfG7Rk7ZEq7+PhO1rrrb/0VN3aPnatzVFc76odV5SyKE7rxr2jdU+/qx1vfiWzp4d6TBmjXq8/anRpDnPUcl43P75CT/x9Q5UDvSSlpGWr7x++1dOvbVRefrFda3Sk0lKrXv1oh7qOXFLlQC9JRcWleumD7eoxaon2HDxt1xod7acdx9XpnsV6e27VA70krY3PUMfhi/TB/ERxzxMAANexde9JXTNiiaZ+sqvKgV6SNmy/cE0x47M9LnUtcD63SH+cHKdBT66scqCXpLPZhRr9wjoNe3q1LJm5dq3R0eZ9m6z2dy68qkAvSf/++qA63LVIKzek2a02RyLUu6FTuw8pZWGcUhas094Plmr5kOeVk56pyPtvkk+w+707vv/QWV374DKt2XTMbvucOW+fBj+1UlnnC+22T0cpKirVg8//qL+9t01FxfbpibFj/2ld+9AyrduaYZf9OdrXsanq98i3+vlIll32l5NXrKde+UnPTNvsUr/MAQCoqVZuSNMNDy9XYspZu+wvv6BEz0zbrMdf3qASB/V0tadTZ/N10x+/0+zFB+y2z2XrjqrPQ8t0KC3bbvt0pFc/2qH7n/1BZ7Lsc/2efiJXt45dpU/s+D11FEJ9DVCcV6CTCQdlMptVu2kDo8uxq+SjWer/x++UdrzqdyMr8uNWi24bt0q5edX3iX1JSalGv/Cjvvg22e77zs4p0q1jV2njzuN237c9LV93RPf8JVaFRfb/hfv23L2aOJ1gDwBAdfb9pmMaNn618vKv/N60rT5amKSnXvmpWl8LZJ0v1C1PrNSWPSftvu+UtGz1++O3SruKJ//O8Prsnfrbe9vsvt/SUqsemRynT5cetPu+7YlQX0MENrsQ5gvOnje6FLspKCzRHRPWKOOk47oFxSUc19Ovb3TY/q/WG//erXnfpThs/zl5xbp9/Bqd/N+I8dVN8tEs3fuXtSoudtwv2hmf7dWnS3922P4BAEDVpVlyNHzi9w65uf+LDxck6f35iQ7b/9V6ZHLVx1OqjMPHzmv4M9+r2E49Qu3t27ijeu6drQ49xh8c/D2+WoR6N+Tp5y2foED5BNdW3bZN1PPVPyq4YwudTDiorBTX6E5dGS//a7v2/HzGpjbx84bp6OqRip83rNJtPll8QCvWV7/3afb+fEYvfZBgU5uqfP6TZ/Kr5Y2N0lKr/vBinHJtHPugKt+DCW9sUroDeoMAAICqs1qteuzl9TqXbVt366pcC/x1RrxS0uzzmp89fbXqkBasTrWpTVU+/5Y9J/XWp3uqUKFjnc0q0KNT1tvUpiqfv6TEqjEvrFNhkf17g9hDjQj1mZmZiomJUatWreTr66vGjRtrwoQJysnJ0SOPPCKTyaSZM2caXabddIkZqfv2/lv37flEd6x9S1EPD1Lq8k2KHTPV6NLsZsf+U5r67102twsL8VdEgwCFhdg2bdujU9brfG7VB+CzN6v1QqC19a50VT///BWH9HWsbb8wHG3WV/u1bpvF5nZV+R6cyy7Uk//4yeZjwXE6T7xXYzIWqFZEqNGluJSSklKdPleg87lF1borqaNYrVZl5xTqTFaBS7wj6wiFRSU6dTZf+QXV99UyVA7nQWnusp/1XRUevFTlWiAnr1iPvmRbeHS00+cK9NQrtl+fVPV68MX3E3QgtXLTRTvLpLe26NgJ23rtVvXz7/n5jF79aKeNFTqHp9EFONqOHTs0ePBgWSwWBQQEqF27djp27JjeffddJScn6/TpCyN8d+7c2ehS7Sbps1VK/WajzF6eqte2iTqMvUMB4cEqKfj1LqbZ21NDV03TocVx2vXOorLl1709Vr6hdbVm1CsGVV85VzNNSVWkHc/RF98m67G72zrtmJezdkuGQ96bupypn+zSHf2bOfWYFSkpKdUbVbipczW++fGI9iWfUbuW9Zx6XHvw8PNWmwcGqumQXqobGSGvWn4qOHtep3alKHXpT0peuK5K012G9W6vsGvba99Hy1SY5Vqj49YkVqtV67ZZ9P78RC36PrXsdZXGYQF6/O62+uPwNmoQ7Gd0mQ6VfjxHHy5I0keLkspe2fL2Muuem5tr7Mgo9Yqu75LTNlVWYVGJFq1J1fvzExWX8Os4KV3bheipEVEaOaiF/P3c+5KQ86D7sVqtev0T514LxG7JUPyek+reoXrcSPlk8QFlnsl32vEKCkv0zud79c+/Xeu0Y15OxslczXHyu+7vfrFXMQ9HV7tzpls/qc/MzNTQoUNlsVg0ceJEZWRkKCEhQRaLRVOnTtXy5csVHx8vk8mk6Ohoo8u1m6wUizLidis9drv2vL9E349+XSGdW6r31MfLtiktLNb68e+p4/i7VK9dU0lSk0HdFTGwmzY8876B1V/ZydN5+mrVIacf9/1qNMWZEe91bdp1UgnV5F2iFRvSlHrM+eNDfPDlfqcf82oFNgvTsFXT1OPlh1WSX6hd7y3WT5Nmae+sZTJ7eui6d8bpmufur9K+w65tr85/uVfetQPsXveV7Hx7gT5rdp/Opzn35paryc4p1JCxq9T3D9/qy5WHLhp/4qglRy/M3KYmN/9XXyy3/2Cb1cWHC/ar2aD5ennW9ovGYCksKtXny5N17YPLdM/EWJeaxtQWBw+fU/s7F+m+v/5wUaCXpG37MvXI5Di1HvqVtidWj/O7I3AedE/rtlm0L9k+I93b4oMvq8e79aWlVkNq+fSbn5WdUz1mh/p4UZJDx1Uqz5msQs1f6bjxrKrKrUP9+PHjlZaWpnHjxmn69OkKDAwsWxcTE6NOnTqpuLhYzZo1U+3a7jfV2y9Obk1S8oJ1an5HH4V2a1O2/NSuFO39YKmuf/dp+YcHqfe0J7T5+Y+Vd9y299Sd7bNlPzt0MJSK7Ew6ra17jb/oOXEqT1+vPWzIsT9amGTIcX/PqDo+/eagCgqr57tU5fHw9daAz55TYNMGin1kmlaN/Lv2frBUP89fqz3//FqrRv5d3wz6q84fdb0LQmtJqUoKrvxKjMnTQx4+Xk6pqbrJLyjWkLGrrtg1tbCoVKOe+0Fzl7nfgJD/+jJRj7+8QcVX6Nm1cE2q7vrz9yoy4HeLI6WmZ+uGh5dfcbrPYydy1feRb7X7wGmn1eYsnAfd9zxo1LXAvO9SqkWoXbslQykGTDV3PrdI/3XgIM2VZbVa9fEiY34GPlxQ/R7yuG2oT0xM1Pz58xUSEqLXXnut3G26du0qSerUqVPZsri4OA0YMEDh4eHy8fFRRESERowYocTE6nFXrqp2zlig0uISdZk04uLlby9UaUmJhq2eJsuGPTq0ZINhNVbW+u3GTbG2wcBj/2Lz7pNOffXgtzbsMP7zW61Ww34Gss4X2Tw4o5Fa33+T6rRqpL3/+kZHvt1c7jandiYr6T8ry74ek7FA17099pLtWt3bV2MyFiisd3vpf6/qdP7LvZKku+M/0JiMBRqTsUCdJ95bqdoCIkIubP+Xi7cfOO8FjclYoHaP3XbR8iHLX9Md694u+7q8d0l/WVY3MkLdXxqte7bN0oOpXyj0mkjpf68ddRx/l27/YYYePPSF7t//H930n2cV1KF5pWp2Na99vOuSJ7OX88jkOIfOJuJsyUezNPbVyg/yuWJDmt79Yq9Da3K2P7wYJ0tm5WYvyTpfpPv+urba9EizF86D7nseNOpaIL+gRAmJpww59m+t3277uEL2smHHCcOO/Yu04zk6kmHMIMZb92VWu3FJ3DbUz5s3T6WlpRo1apRq1apV7jZ+fhfeIfxtqD9z5ow6duyod999V6tWrdLUqVO1d+9e9e7dW2lp1W8E9MrKTrXo0JINanhDtOr3jCpbbi0u0cn4JPkG19HP89caWmNlGTmdxLZq0D3RyM+/L+WscvOMPYkdyTivU2cLDDt+dZ7O5Pea3dZLkpQ0d7Xd95302Wod/t8F8pYX/611497RunHvlC27kpy0TGWlWhR+XceyZWYvT9Xv0ValJSUK79OhbLlXLT8FR7dQxvrKjbp7wz8nKLRrpPbO+kZbp3yq3BNnZPL00MAvXlDnZ+7Rya1J2jJ5jnbPXKw6kRG6dek/FNyppc3fg+qssKhEHy607UlCYVGpYU89HOFfX+5XaaltAfX9+Yk2t6mu9iWf0dp422a82Zt8tkoDkFZnnAfd8zyYeSZfhw14De8X1eFaYNs+424sVI/Pb1wNxcVW7T5YvR7yVK83/O0oNjZWktSvX78Kt/klpP821A8bNkzDhl08vUH37t3Vpk0bLVy4UBMmTHBYzY62652Fan5HH3WZNEIr735JklS/Z5RajeinxNnfqsfLD2vpwEkqyTe+S1FFTp8rMOyunCRtrwZ3ZrfvN66GkhKr9vx8Rj06GjdAzI4kY7uHVoefgcqq26aJCrNydP6I/e+on9x2QGf2HVbTW3vqyHdbqvROp2XDHrW850Z5+HmrJK9QoV1by8vfV8kLflTjW7rL5GGWtaRUDXq3k9nTQ5YNuyu138KsXK28d8pFg161e+w2hffpoFX3/V3Hfvh15Nr9c1bq9h/eUvcXH9KK4ZNt/gzV1Tc/HKn0E9rfmvXVfv3t0c4ym1170LjCohJ98vUBm9ulpGVrzaZ03XxthEPqcqYPF1TtBs2/vtyvG7uF270eo3AedM/z4I4kY38X79hv/KsqRn4P9qWcVX5BsXx9jIuS2xON/TvYsf9UtRkwUe4c6g8fvvDOcdOmTctdX1xcrA0bLnQ1/22oL09wcLAkydOzat+ubt26yWKx7c63l9WsyephUxvLxr2aE353hevPHUzXpxG/dr/39PfVdW+P1bZXPtf+/6zU4MUv65rn7lf85Dk2HVeSIltHqsjk+HcRi831pLp/qnB9/Lxhl52eIizEr+z/R1ePrHA7S2auut+39JLliQePKCLC2Iu9k4EPS17lj0Jvr8+vy3wPbh16t3yLjRtUK8e7k1TrrnLXXenzyw4/A/+Z+5W+mTWi3DZGqeh84R3op7yT1Wvqmd/KWL9bkaMGqEHPKB37YafC+3RU3smz2vfxt2p5940K6dxKJ7cdUHifDrKWlipjQ+W6Ru/7aNklo1i3GH69zh5M06ldKfIJCrxo3bEfd6nVvX3l4et9yU1NZ53b7C3L90bJv7/N7dJP5CqiaSuZrcb1hrGHYnNtna47sUpt733wT6pVsMnuNTlbZuBDkpftT14XLPtJcV886JCaHInz4MXc/TyY59VOCiz/d7EzrgW+WrRcsZ+OsrluezpW7znJ5FvuOkdfD5eWWtW8VTt5WI17Zeus/2DJt1e565xxPfyXZydryp/s/9pyWFiYtm7danM7tw31OTkXnubm5ZX/pGL+/PnKzMxUYGCgmje/9D2ikpISlZaW6vDhw3ruuecUFhame++t3DtSv2exWJSenm5TG2+Th9SgSoertO4vPaTzR05o/5wVkqT1E2Zq2JrpOvLdZh3fZNsYAscyjqnQ6oQBxLyLpboVr/5l3skr8fQwV2q73ystkc1/l3bXokiqYLwbR39+STp1+oyUbeD3oF5zqfw3air9+XUV34O8/ALjfwZ+p6LzRWF2nrxqlf8Lvzr4pRtpeJ+OOvbDToVd10GWDXt1aleKCs5kK/y6DmUXs6f3Hlbh2cp1tTyXcmmX47qtI+Tp56P79v67wnY+QYHKPXbxkw+nndvsrUGeZNv0u2UyMk5KJc4ffMmuvIsu+7vics5l5ehcZvX6N14lLUoq/F1xOcXV4fdcFXAevJjbnwfrNJQCy1/ljGuB/IJC4/+d1DVJFXSqcsb1oMVyXCq+/CCcDtUwV6rgn7YzPn9W1nllnaw+50q3DfVhYWE6c+aMEhIS1Lt374vWZWRkaNKkSZKk6OjocuemvfHGG8ue5Ldq1UqxsbEKDa1aF4uwsDCb23hZzZIDb4o26t9FzYf10ZKbfn2SkX34uLa98rn6zBirpf0nqjiv8k9qGoY3dNKT+tq63LAolszL3zEMC/GTp4dZxSWll+2aWtF+PMwlCmvUqNL1OkKmt1kV/c3Y6/Nfbl8hQbXlU9u470Gudy1V9BbTlT6/7PAz4OfrpSCDfwZ+r6LzxdmkIwrr3V61mtS/6q6nJk+Pq2pfnvzMczqTdFTh13WQh5+3Qru01uYXZktWqyyb9in8uo5K+nSV6rVrqr0fLqv0fktyy/8XcnrfYcW/VHFPpIJTl16cOOvcZm/nfTxUpWeT1lI1DKsnk1x7RphSk69se5v8V3UDvRTgU73+jVfFKa9iVWX2am9zgUKr2TmuMjgPXszdz4N5XoGqqPO1M64FfH08FGzwv5NjKlFFI4A4+npYksLDQmS2VnBnxQnO+fmooltczrgerhPor1re9v8ZqEpulDuH+gEDBigxMVFTp07VwIEDFRl5YdTP+Ph4Pfjgg8rMvDC4QufOncttP3v2bJ09e1aHDh3StGnTdPPNN2vDhg1q0qSJzbVUpQtFUW6+Pm/5gM3tKis9dru+aDv6kuX756woe3JviwMHD8jL3/F3wouLS1X72k+Vl1/+HePyusf81tHVIxXRIECWzDw1Hvhfm4/fr097rf7Q2AETn/j7Bs36qvwBsBz9+SUpYdMKNQ6r4FG5E2zedUK9Hvim3HVX+vyyw/fg2T8/rBefeNfmdo5U0fni8PLNCuvdXpGjBijhtS8qta/809nyrnvp329g00sfgdljlGzL+t1qM+YWNR7YTR4+XsqIu/C+aEbcbnV/8SE16t9FJrNZlkoODlWRrEMW+QbXvvBUzIa6nXVus7fU9Gy1uPVLWz6qJOnOAc21aIYxU2ba24BHv9P3m4/Z1MbL06yk+PmqH+znsLqc5YvlyRr13A82t5v6/L3604MvO6QmR+I8eGXudB7c+/MZdbhrUbnrnHEt8PRjI/TGM2/a3M6eety/RPF7yh8sztHXgyH1fJW+8+dyH4w6y7++TNST//ip3HXOuB7+bPabGtrX9lzoKG47+n1MTIyCg4N19OhRtW/fXh07dlTr1q3Vo0cPtWjRQv37X3jXsKL36du0aaOePXtq5MiR+v7775Wdna033njDyZ8Cv+fpaVbnNsGGHb9ruxDDjl1WQ5Rxnz+0nm+VuynZS3RkkDw8jPsl0rWdcd9/Wx34Yo3O/Zyu9k8MVeNbupe7TXB0C7UZfUvZ11kpx1S/W6Q8/LzLlnnXCVCrEZcOOlqcc+E5oHe9qt/kydiwR2YPD3WeeI/Op51U9uHjZcs9fL3V8em7VFpULMumfVU+hiQlf/Wj/BvUU/vHh5a73jekzlXtv7pp1ihQQ65vbHO7p0ZEVWIr1zB2pO2f5Z6bm7tFoJek4QObKbSebUHMz9dDo29v7bCajMB58FfudB5s27yO/H2NezZZPa4Hjauha1SwoYFe1eDvoLpdD7rtk/qIiAjFxcVp0qRJ+vHHH5Wamqp27dpp1qxZevTRR9Wy5YXBY640SJ4k1a1bV61atdLPP//shMpxJd3ah2jjTmPmxzT6BKL/fX6jdG0XYvhJ3M/XUx1a1dNOg0bBrw4/A5VVkleoNQ++pgGfPaeb5vxV6T/s0LEfd6ngTLZ8g2srrE8HNerbSXv+uaSszf5/r9AN/5ygQV+9pOQF6+Rdx1+RowYoJ+2k/BvUu2j/JxMujC7e7W8PKGVRnEoKinRm/xGdTTpa6RotP+1VaUmJ6kY21sH/xpYtP3cgTbnHz6hem8Y6sTWp7MK5qvZ9vFwNb4xW98kPKfy6DspYv0dF53MV0ChE4dd1VElBUdmsIO5i8pNdtGbzMeUXVO5d2AG9Guqmng0dXpezDL2xiXp3ql/p3xe1/D31/B+vfE3gKny8PfTy2GsqfJJVnr8+HK16tX0cWpezcR78lTudBz08zOoSFawNBs1VXx2uBbq1D5G+MubY1eHzR0cGycvTrKJi578aEhbip4b1jX3I9XtuG+olKSoqSsuWXfr+0fnz55Wamiqz2awOHTqU2/a3Tpw4oaSkJPXs2dNBlcIWdw9opve+uLq71VVRy99Lt1xr/HuGndoEq2XjQCUfdf5AVvfcfOmgkka4e2AzQ0L9dV0aXHFE3eomO9WipTdPUpsHb1bTIT0VPeEueQX4quDseWXuTFbchJk6tGh92fYpi+Lk16Ceov4wWN1fGq3sI8e1460FUmmpQrtGXrTvE/FJ2vr3z9TmoZt17fQnZPby1I7pX2qHDRezhedydHpvqkKiWypjw8VdSzM27FHLu66/ZHlVWItLtOaBV9V2zCC1vPsGdZ50YeDTPMsZndzxs5K/tL2bcnXXrX2ovpzWX/dOir1isO8VHaoFb95k+E07e/L0NGvpuwM18PHvrjj9VICfp75+e6Dat6p32e1czRP3RunYyVz9fdaOK297T1u9+EQXp9TlbJwHL3C38+DdA5oZEuo7tw1Sy8bGvUv+i6E3NjEs1FaH60Efbw8NvbGJFn2f6vRjV4fP/3smqz1eBnIxmzdvVq9evdSmTRvt33/xu8kPPPCAWrVqpc6dO6tu3bo6ePCgZsyYoYyMDMXHx6tVq1ZOqdHR79Tb26jkuU5738pqtarjXYu0N/mszW1/eYcm7XiOze/QPHlvW73/Qh+bj+kIb/5nt/7y5hab213N568b6K30NffJ38/4e4GWzFw1vvm/Ki62/fR1Nd+DL17vq/tutX2KKEdztfOFK3Hmuc1R4vec1JR/bde3cUcveY02tJ6vHh3eRi881ll+BnZldaTsnEJN+WC7Pvn6gM5kXTxVl9ls0u39mmjyE13UycBXuxxt/ooUTf1kl7bvv3Re67bN62jiQx31yF2RLn1Th/Og41TX8+CZrAI1GjCvwnGWLudqrgU+fLGPHr27rc3HdIRRz/6gL761fZrhq/n8vTvV10+flf8Kh7N9v+mYBjz2nc3trubzS9K+r4crqkUVp1hxELd9p/5ydu++MABJeV3ve/XqpW+//VYPP/ywBg8erGnTpun666/Xjh07nBbocXkmk0ljR7Zz+nGfvLf6vGv68B2R8vO1/yi8l/OHOyOrRaDX/6YquXuAc++SNgj2010Dmjn1mIA9dO8QqmUzb1by8ns1fWIP1fK/8O+4Xm1vHV09Uq+M7+a2gV6SAgO8Nf0vPZW+5j599uqNCvzf569Ty0upK+7VohkD3DrQS9KIQS20bf7t2jR3qP4xrmvZz0BIXR/t+3q4/ji8jUsHetRM9Wr7aJSTb7TXDfTW/dXo5n5Vxg5xxWNWpH/PcLVt7tyxIPr3CK92gV6E+ktD/bhx47RlyxadOXNGeXl5OnDggGbNmqWmTZsaUCkq8se72qhLW+ddhD01IkodI4OcdrwrCarjo1ee7ua044WH+uuFx8qfKcIoU//cXYEBVZiEuYrejukpH2/n3khxRWYvT/mF1r3ifyZzjfz1Y6jmEYGaOLqj6tS6MPiXv69njfqZ9vP11AO3tVLt/33+Wv5ehs7k4Wwmk0k9o+vrb491LvsZ8PH2IMw7AOdB5/n7uK4KquO8cSCmT+yhAH/nXXtcybWdG+iB25x3k+H6axrovsHV56aGyWTSzOeuddrxvDzNejuml9OOZwv3vTV/GZcL9e6u6ZBeCr++ozY9+1HZslYj+um6t8cq9uGpOrIi3tD6KsvLy6w5/7hB3UYucfi7RM0a1tLUP5c/Yq6Rxt/fTgvXpDrlfbIPX+xT7QZPahJeS9Mn9tDjL29w+LHuuqmZRgxq4fDjuIP63dpo0KIpV9xuQfcndT7tpFNqAgBn4jzoPGEh/nrv2d5Vmr7RVrdc20h/uDOyEls61zt/7a01m45dcb71q+Xn66FPXr5BZnP1uhF4U6+GeuKetvpXBdM929OLT3SuVg/5fqtGhvrY2NhKbOWemtzaU8lf/XriqxURqshRA3Ria5KhdVVFdGSQ3vhzd/152uZKt7Fk5l70/yvx8fbQZ6/eqFrV6K7sLzw8zJrz9xvU64GlOnW2oFJtbP38+l8vhdturD7zcP7Wo8PbaOWGdJsGSbH1e9C0YS198MK1PM2qpNP7UrXy3itfzOadtH1MDABwBZwHneu+W1toxYY0fbas8rNU2XotEB7qr49euq5aXgsE1fHRf/5xg4aMW1XpsYaqcj343rO91apJ7SrX6UhvPNNd67cf156fz1Rq+6p8/hu7hemvD1ffB8I1MtS7M+/a/rp97Qx5+Hor91imzD5eCmzSQMkLftTGZz9Sg+5ttH7CzAsbm0y69s0ntfmF2eo+ebTRpVfJnx7soFPnCvSPD688sq8kdb9vaaX37e1l1lfT++u6a8KuokLHatWktlZ8cIsGPrZCZ7MLr7i9LZ9fku6/taXefbZ6djPS/7pdff76jbp9QpFW/ZReqTa2fA8a1vfXmg8Hu8281c5QeC5HGXG7jS4DAAzDedC5TCaTZk+5XufOF2rpD0cq1caWa4HQer5aPWtQtX5d5+ZrI/TZKzfqged/VEnJlYO9rdeDU//UXY/c1eYqKnSswABvrZo1SDf+YbkOHs664va2fv4eHUK19N2B8vKqvq/MVN/KUCWFWblKWRynfR8v19KBk7TlxX/rZMIB/fSXfym8TwediE+StfjCKKHtHx+qE/H7dWpXitFlX5W/j+uqN/7c3a7dgeoGeuub9wZqaN/q+YT6t7q1D9WP/x6ixmH2nS9z7MgoffrKDfLwqN6nCV8fTy19d6BGDLLvwHltm9fR+jm3Vdu70gAA4AIvL7MWvHmTxtze2q77bdk4UHFzhrjEdJcjB7fUgjf727V3qaenSf98vrdi/hBtt306Sniov+Lm3KbuHULsut9brm2kNR8NKhuPpbqq3lfrqJKgDs11evchSVJwdEud3nPhz00Gddfh7y5Mg1a3TWM1HdJTO99eaGit9jLp4WhtmjtU7Vpe/WiUt93QWHsX36Wbr42wS23OEB0ZpN0L79If77r6d70a1vfX8n/erJnPX1vtA/0vfLw9NG9qP33+Wt+rHjDHbDZp0piOSph/h5pHGD8PLQAAuDIvL7P+/fcbtODN/gqtd/VT8I2/v512fnWn2jSvfiOdV+SO/s20Z9GdGtCr4VXvq0vbYG377x16yoAZp6qqQbCfNvznwiwfXp5Xdw0b4Oep9/92rb59/xYFBlTvQC9CvXsKat+sLMgHR7fQqf8F/IZ9Oys9drskqUHPKNVqXF/Df3pPd295X6HXtFbvaU+ozUM3G1r71ejeIVTb/nu7XpvQrUpPrbu2C9G8qX219L2Baljfvk+9naFOoLc+eul6rf5wkG7qafvJPLiuj2Ie7qi9i+7Srdc3dkiNjmQymXT/kJbau/gujR0ZZfPI+CaTNPTGJvrp09v0xjM93HqKLwAA3NXwgc217+vh+tMD7VUn0LYwZjJJg6+LUNycIXrn2d7VaqT7ymraMFCrZg3SnL/foOgqDOrWIiJQb03qqc2fD6tSe6N5eZn1t8c6K2H+7RoxqLk8PW3ryevr46E/3Bmp3Qvv0pMjoqrdwIAV4arVzfiHBUlWq3ItpyVJQVFNteudhQrp0lrnDqarODdfkpT06SolfbqqrN2ghVO076NlLjP6fUV8fTz17COd9JfRHbU87qjmfZesrXszlXw0+5JtPT1Nat+ynnpF19cjd0aqe4dQQ2q2twG9GmlAr0baf+isPl6YpPXbj2tH0mkVFJZcsm1EgwB1bRes4QOa6Z6bm8vXx/VPCWEh/pr5/LV6bUI3zV2WrGXrjmjbvlM6furSUWED/DzVuW2w+nYL0x/vaqNmjXgyDwCAqwup56sZMb30j3Fd9d8VKfo69rC2JZ5SxslLB0bz8/VQ5zbBuqFrmB4d3kYtG7v+a3cmk0mjb2+th4a10k87TmjOkgPavPuk9qWcLfed+8imddS9Q4hG3dpSt/SJcJkgezkdWgfpv2/0V8bJXM1enKTvN2coITFTWeeLLtk2qI6PurYL1qA+ERpze6RTp0m0F9e/gsdFgjo0L3tKL0mFWTlqO/oWFZzO1pEVWwytzZk8Pc26vV9T3d6vqSTpbFaBklLPKTe/WB5mkwIDvBTVoq5bhNiKtG1eV9P/0lOSVFRUqqTUszqTVaii4lL5+XqoZURttx4ALjDAW0+OiNKTI6JktVp17ESuDmecV35Biby9zAqp56vWTWq7zCsGAADANgH+XnrkrjZlg7xlnMzVofRs5ReUyMvTrOC6PopsWkeeV9lVu7oymUzq06WB+nRpIEnKzSvW/kNnlZ1bJKv1wsONNs3qVPv3xa9GeKi/Xnisi154rItKS61KPpql46fyVFhUKh9vD0U08FeT8FrVcmYDW7hvoqmh0tZsU9qabWVfLxv8rCTp9h9maOXwyRW2W3GZde6gbm0f9Yyub3QZhvHyMqtDa9frQmUvJpNJjRoEqFED13utAgAA2Ed4qL/CQ/2NLsMw/n6euqadfQeScyVms0mtm9ZR66Z1jC7F7gj1NcSSvn82ugQAAAAAgJ25Z18TAAAAAABqAEI9AAAAAAAuilAPAAAAAICL4p36asrTz0ejkucaXUalefq53tQPgLtwtfOFK+HcBrgGzoOOw3kQqP4I9dWUyWSSl7+v0WUAcAGcLwDUdJwHAdRkdL8HAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGeRheA8lmtVhXnFRhdRqV5+vnIZDIZXQYAAAAA1CiE+mqqOK9An7d8wOgyKm1U8lx5+fsaXQYAAAAA1Ch0vwcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF8VAeQAAuLnsnEJtTzyln49m63xukSQpN79Y+w+dVWTTOjKbmb0EAABXRagHAMANHbWc14cLkrRg9SElpZ6T1Xrx+jNZhYq6faFq+Xupd6dQPTq8re7o11ReXnTiAwDAlRDqAQBwIylpWZr0Zry+XntYpaXWK25/PrdIqzce0+qNxxQe6q+JD3XQhFHt5elJuAcAwBUQ6t1IWO/2GrRoykXLinLylJWSoeQF65Q4+1tZS0oNqw8A4DilpVa9Pz9Rf50Rr9z84irtI+Nkrv7y5hZ9ufKQ5vzjBkW1qGv3OgEAgH0R6t1QyqI4pcUmSCaT/ELrqtU9N6rHlDGq07qRNk6aZXR5AAA7y8sv1ohJa/XNj0fssr8te06qy71fa+6rN+rum5vbZZ8AAMAx6Fvnhk7tPqSUhXFKWbBOez9YquVDnldOeqYi779JPsG1jS4PAGBH+QXFum3cKrsF+l8UFJZoRMxazfs22a77BQAA9kWorwGK8wp0MuGgTGazajdtYHQ5AAA7sVqtevD5HxW7JcMh+y8tteqhF37U2i3HHLJ/AABw9Qj1NURgswthvuDseaNLAQDYydxlP2vB6lSb2sTPG6ajq0cqft6wSm1fXGzVwy/GKTunsIpVAgAARyLUuyFPP2/5BAXKJ7i26rZtop6v/lHBHVvoZMJBZaU45mkOAMC5Mk7mavzrm2xuFxbir4gGAQoL8a90m8PHzmvSW/E2HwsAADie24f6zMxMxcTEqFWrVvL19VXjxo01YcIE5eTk6JFHHpHJZNLMmTONLtOuusSM1H17/6379nyiO9a+paiHByl1+SbFjplqdGkAADt55aMdOpvtvKfns77ar6RDZ512PAAAUDluPfr9jh07NHjwYFksFgUEBKhdu3Y6duyY3n33XSUnJ+v06dOSpM6dOxtdql0lfbZKqd9slNnLU/XaNlGHsXcoIDxYJQW/XvyZvT01dNU0HVocp13vLCpbft3bY+UbWldrRr1iUPUAgCvJzinUp9/87PTj/uur/ZoR08vpxwUAABVz2yf1mZmZGjp0qCwWiyZOnKiMjAwlJCTIYrFo6tSpWr58ueLj42UymRQdHW10uXaVlWJRRtxupcdu1573l+j70a8rpHNL9Z76eNk2pYXFWj/+PXUcf5fqtWsqSWoyqLsiBnbThmfeN7B6AMCVfL48Wdk5RU4/7r+XHFROrvOPCwAAKua2oX78+PFKS0vTuHHjNH36dAUGBpati4mJUadOnVRcXKxmzZqpdm33nubt5NYkJS9Yp+Z39FFotzZly0/tStHeD5bq+nefln94kHpPe0Kbn/9YecfPGFovAODylq07ashxz2UX6qedJww5NgAAKJ9bhvrExETNnz9fISEheu2118rdpmvXrpKkTp06VbifwYMHy2Qy6aWXXnJYrc6yc8YClRaXqMukERcvf3uhSktKNGz1NFk27NGhJRsMqxEAUDnb9mXWyGMDAIBLuWWonzdvnkpLSzVq1CjVqlWr3G38/Pyky4T6L7/8Ujt27HBonc6UnWrRoSUb1PCGaNXvGVW23FpcopPxSfINrqOf5681tEYAwJUdO5EjS2aeYccn1AMAUL24ZaiPjY2VJPXr16/CbdLS0qQKQn1WVpb+9Kc/afr06Q6s0vl2vXPhqfxvn9bX7xmlViP6KXH2t+rx8sPy8PU2tEYAwOUdycgx9PhHLcYeHwAAXMxktVqtRhdhb40bN1ZaWpq2b99e7sj2xcXFCg8PV2ZmppKTk9WiRYuL1j/99NPavXu3fvjhB5lMJk2ePPmquuB369ZNFovFpjZeVrMml/ao8jErw9PfV8O+n659s5Zp/39WavDil5W5M1nxk+fYvK8p5i0qMpU6pE4AwK8KPJsqs/Yfyl0XP2/YFeefDwvxk6eHWcUlpZd94m/JzFX3+5ZestyrOEP1s/5Vhcqrh4y6z6jUXEfm0nMKP/uW0eUYgu8BAFRPYWFh2rp1q83t3HJKu5ycC08R8vLKv1iZP3++MjMzFRgYqObNm1+0buvWrfroo4+0bds2u9VjsViUnp5uUxtvk4fUwG4llKv7Sw/p/JET2j9nhSRp/YSZGrZmuo58t1nHNyXatK9jGcdUaC1xUKUAgDL+vlIF47uGhfgrokFApXbj6WGu9La/VVSYb/PvtGolsEQyS6UlJa79Oa4G3wMAcCtuGerDwsJ05swZJSQkqHfv3hety8jI0KRJkyRJ0dHRMplMZetKSkr0+OOPa9y4cWrfvr1d67GVl9UsOfDBd6P+XdR8WB8tuWli2bLsw8e17ZXP1WfGWC3tP1HFeQWV3l/D8IY8qQcAJyg2++t4BessmblXbG/Lk/ry+HgWKaRRo0rXW91keHioVJLZw0PhLvw5rgbfAwConqqSG+WuoX7AgAFKTEzU1KlTNXDgQEVGRkqS4uPj9eCDDyoz88IgP7/vmj9z5kwdP37c7qPdV6ULRVFuvj5v+YBd6/it9Njt+qLt6EuW75+zouzJvS0OHDwgL39fO1UHAKhIaalV9a77TFnnL50vvrzu8r93dPVIRTQIkCUzT40H/tfm408ad6/+Pm6qze2qi4gB85R+IlfhYeFK25NmdDmG4HsAAO7FLQfKi4mJUXBwsI4ePar27durY8eOat26tXr06KEWLVqof//+0u8GycvMzNT//d//6cUXX1RxcbHOnj2rs2fPSpLy8/N19uxZlZbyJBoAYCyz2aRrokIMO37XdsGGHRsAAFzKLUN9RESE4uLiNGTIEPn6+io1NVVBQUGaNWuWli9frgMHDki/C/VpaWnKzs7W448/rnr16pX9J0lTp05VvXr1dOTIEcM+EwAAv+jXPdyQ43p5mtWns4MHfAEAADZxy+73khQVFaVly5Zdsvz8+fNKTU2V2WxWhw4dypa3atVKa9deOk97v379NHr0aI0ZM6bK7zgAAGBPj9wZqZdnbVdJiXMnsBk+oJlCg/ycekwAAHB5bhvqK7J3715ZrVZFRkbK3//XaX9q1aqlvn37ltumWbNmFa4DAMDZGjUI0B39mmrhmlSnHnfsyCinHg8AAFyZW3a/v5zdu3dLv+t6DwCAq/nbo53k4WGqxJb20b9HuPp0oes9AADVDaH+CqxWq91HwzdS0yG91Ov1Ry9a1mpEP43JWKAmg7obVhcAwDZdokL03CPOuUFdy99Ls6dcf9E0sAAAoHog1NcwTW7tqSMrtpR9XSsiVJGjBujE1iRD6wIA2O7/Hu+sTm2CbGpjycxV2vGcSs1p/4vpE3uoWaPAKlQIAAAcrca9Ux8bG2t0CQ7lXdtft6+dIQ9fb+Uey5TZx0uBTRooecGP2vjsR2rQvY3WT5h5YWOTSde++aQ2vzBb3SdfOmc9AKB68/by0PKZN+u60cuUeux8pdpUZi7735r4UAc9dnebKlYIAAAcrcY9qXd3hVm5Slkcp30fL9fSgZO05cV/62TCAf30l38pvE8HnYhPkrW4RJLU/vGhOhG/X6d2pRhdNgCgiho1CNAPn9yq1k1r233ff/1DtKZN7EG3ewAAqjFCvRsK6tBcp3cfkiQFR7fU6T0X/txkUHcd/u5C1/u6bRqr6ZCe2vn2QkNrBQBcvaYNA7Vp7jA9cFtLu+wvqI6Pvni9r17/U3cCPQAA1Ryh3g0FtW9WFuSDo1vo1P8CfsO+nZUeu12S1KBnlGo1rq/hP72nu7e8r9BrWqv3tCfU5qGbDa0dAFA1QXV89NmrffX1OwPUOCygyvu5e2Az7V18l+671T43CAAAgGPVuHfq3Z1/WJBktSrXclqSFBTVVLveWaiQLq117mC6inPzJUlJn65S0qerytoNWjhF+z5apiMr4g2rHQBw9W7v11RDrm+sZeuO6P35iVq98dgV29Sr7a0/3BGpJ+6NUqsm9u/GDwAAHIdQ72aCOjQve0ovSYVZOWo7+hYVnM6+aNR7AID78vQ0647+zXRH/2Y6m1WghMRT2ro3UwePnFNeQYk8PcyqV9tbndsEq2u7YLVtXleennTeAwDAFRHq3Uzamm1KW7Ot7Otlg5+VJN3+wwytHD65wnYrLrMOAOC66tb2Uf+eDdW/Z0OjSwEAAA5AqK8hlvT9s9ElAAAAAADsjL52AAAAAAC4KEI9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiGCivmvL089Go5LlGl1Fpnn4+RpcAAAAAADUOob6aMplM8vL3NboMAAAAAEA1Rvd7AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFyUp9EFoHxWq1XFeQVGl1Fpnn4+MplMRpcBAAAAADUKob6aKs4r0OctHzC6jEoblTxXXv6+RpcBAAAAADUK3e8BAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAQI1gtVpltVrL/gwAgDtg9HsAAOCWcvOKtej7VP2047i27TulXQdPK7+gRJJ07GSeIod+pW7tQtStfYjuHthcTcJrGV0yAAA2I9QDAAC3kpKWpfe+2Kc5Sw7qbHZhhdsdPJylg4ezNO+7FE16K15Drm+scfdFaWDvRjKZTE6tGQCAqiLUu5Gw3u01aNGUi5YV5eQpKyVDyQvWKXH2t7KWlBpWHwAAjlRSUqoZn+3VCzO3qaCwxKa2paVWffPjEX3z4xENH9BM7//tWtUP9nNYrQAA2Auh3g2lLIpTWmyCZDLJL7SuWt1zo3pMGaM6rRtp46RZRpcHAIDdpVlydO+kWG3ceeKq97VwTap+3GbRf/5xg269vrFd6gMAwFEYKM8Nndp9SCkL45SyYJ32frBUy4c8r5z0TEXef5N8gmsbXR4AAHaVfDRL141ZZpdA/4vMM/kaNn61vliebLd9AgDgCIT6GqA4r0AnEw7KZDardtMGRpcDAIDdHDuRowGPfqfDx87bfd8lJVY9+Lcf9XVsqt33DQCAvRDqa4jAZhfCfMFZ+1/0AABgBKvVqjH/t06pDgj0vygttWr0C+t01MLvTwBA9USod0Oeft7yCQqUT3Bt1W3bRD1f/aOCO7bQyYSDykrJMLo8AADs4uOFSVq98ZhNbeLnDdPR1SMVP29YpdtknS/Soy+tZ257AEC1VCNCfWZmpmJiYtSqVSv5+vqqcePGmjBhgnJycvTII4/IZDJp5syZRpdpN11iRuq+vf/WfXs+0R1r31LUw4OUunyTYsdMNbo0AADs4tTZfE18c4vN7cJC/BXRIEBhIf42tVv5U7rmr0ix+XgAADia249+v2PHDg0ePFgWi0UBAQFq166djh07pnfffVfJyck6ffq0JKlz585Gl2o3SZ+tUuo3G2X28lS9tk3UYewdCggPVknBr3P1mr09NXTVNB1aHKdd7ywqW37d22PlG1pXa0a9YlD1AABc2b+/PqjsnCKnHvOdz/dq5OCWTj0mAABX4tZP6jMzMzV06FBZLBZNnDhRGRkZSkhIkMVi0dSpU7V8+XLFx8fLZDIpOjra6HLtJivFooy43UqP3a497y/R96NfV0jnluo99fGybUoLi7V+/HvqOP4u1WvXVJLUZFB3RQzspg3PvG9g9QAAXF5pqVUffJno9ONu2nVSCfsynX5cAAAux61D/fjx45WWlqZx48Zp+vTpCgwMLFsXExOjTp06qbi4WM2aNVPt2u471dvJrUlKXrBOze/oo9BubcqWn9qVor0fLNX17z4t//Ag9Z72hDY//7Hyjp8xtF4AAC7npx3HlZKWbcixP/3mZ0OOCwBARdw21CcmJmr+/PkKCQnRa6+9Vu42Xbt2lSR16tSpbNkPP/wgk8l0yX+u3j1/54wFKi0uUZdJIy5e/vZClZaUaNjqabJs2KNDSzYYViMAAJWxZc9Jw44dv9e4YwMAUB63fad+3rx5Ki0t1ahRo1SrVq1yt/Hz85N+F+p/8c9//lPXXHNN2dcBAQEOrNbxslMtOrRkg1oOv0H1e0bpxOYL3RatxSU6GZ+kkOiW+nn+WqPLBADgirbtO2XYsbfvP6Xi4lJ5errtcxEAgItx299IsbGxkqR+/fpVuE1aWppUQahv166devXqVfZfx44dHVitc+x658JT+d8+ra/fM0qtRvRT4uxv1ePlh+Xh621ojQAAXMneZONeE8vLL1HqMeasBwBUH277pP7w4cOSpKZNm5a7vri4WBs2XOhqXl6ot6du3brJYrHY1MbLatZk9bCpjWXjXs0Jv7vC9ecOpuvTiF8Dvae/r657e6y2vfK59v9npQYvflnXPHe/4ifPsem4khTZOlJFplKb2wEAYCtLnfGSR3C56+LnDbvsdHVhIX5l/z+6euTlj5OZq+73Lb1k+bXX95d3iW2/16uTjLrPSOY6yrBkKCIiwuhyAAD/ExYWpq1bt9rczm1DfU5OjiQpLy+v3PXz589XZmamAgMD1bx580vWjxgxQpmZmQoODtawYcP0+uuvKyQkpEq1WCwWpaen29TG2+QhNajS4Sqt+0sP6fyRE9o/Z4Ukaf2EmRq2ZrqOfLdZxzfZNqrwsYxjKrSWOKhSAAB+I6BY8ih/1S/z0F+Jp4e5UtuV5+SJ41K+bb/Xq5XAEskslZaU2Hx9AgCoftw21IeFhenMmTNKSEhQ7969L1qXkZGhSZMmSZKio6NlMpnK1tWpU0eTJk3SDTfcoFq1amnjxo167bXXtGnTJm3dulW+vr5VqsVWXlaz5MAH3436d1HzYX205KaJZcuyDx/Xtlc+V58ZY7W0/0QV5xVUen8NwxvypB4A4BQnPEpV0Qz1lszcy7YNC/GTp4dZxSWlsmSWf+P/SvtqEFpPnqXWStdb3WR4eKhUktnDQ+GNGhldDgDgf6qSGyXJZLVaXfe30mWMHz9e7733nho3bqw1a9YoMjJSkhQfH68HH3xQKSkpKioq0tixYzVz5szL7uubb77RsGHD9Mknn+jhhx92Sv1Fufn6vOUDTjmWPYxKnisvf9tveAAAYKsHnvtBny9PrlLbo6tHKqJBgNKO56jxwP/a3N7f11NZGx+Uh4frDksUMWCe0k/kqlF9f6Wtuc/ocgAAV8l1fyNdQUxMjIKDg3X06FG1b99eHTt2VOvWrdWjRw+1aNFC/fv3lyr5Pv1tt92mgICAKr3fAAAA7Ktru6q9DmcPndsGuXSgBwC4H7f9rRQREaG4uDgNGTJEvr6+Sk1NVVBQkGbNmqXly5frwIEDko2D5P22mz4AADBGjw6hNfLYAACUx23fqZekqKgoLVu27JLl58+fV2pqqsxmszp06HDF/SxdulQ5OTnq0cO20egBAID99e5UXy0bByr5aLbTjz16WGunHxMAgMtx61Bfkb1798pqtSoyMlL+/hdPe/PAAw+oRYsWuuaaa8oGynvjjTfUuXNnjRx5+alvAACA45nNJj15b5T+8uYWpx63d6f66ty2/Kn0AAAwitt2v7+c3bt3SxV0vW/fvr0WL16shx56SIMHD9Ynn3yiRx99VD/88IO8vb0NqBYAAPzew3dEqnYtL6ce808PtHfq8QAAqAxC/e8899xz2r17t7KyslRUVKRDhw7prbfeUp06dQyo1P6aDumlXq8/etGyViP6aUzGAjUZ1N2wugAAsEVQHR/NmNTLaccbckNj3XNzc6cdDwCAyiLU1zBNbu2pIyt+7a5YKyJUkaMG6MTWJEPrAgDAVg/f0VqDr4uwqY0lM1dpx3OuOJ/9b9UJ9Nas/+vDgLkAgGqpRr5THxsba3QJDuNd21+3r50hD19v5R7LlNnHS4FNGih5wY/a+OxHatC9jdZPmHlhY5NJ1775pDa/MFvdJ482unQAAGxiMpn0ycvX67rRyyo9aF73+5badAwPD5PmvnqjGjUIqGKVAAA4Vo18Uu/OCrNylbI4Tvs+Xq6lAydpy4v/1smEA/rpL/9SeJ8OOhGfJGtxiSSp/eNDdSJ+v07tSjG6bAAAqiQsxF9rPhys5o0C7b5vT0+Tvni9r267sYnd9w0AgL0Q6t1QUIfmOr37kCQpOLqlTu+58Ocmg7rr8HcXut7XbdNYTYf01M63FxpaKwAAV6tZo0Ct/88QXX9NA7vts36Qr5a9d7PuvaWF3fYJAIAjEOrdUFD7ZmVBPji6hU79L+A37NtZ6bHbJUkNekapVuP6Gv7Te7p7y/sKvaa1ek97Qm0eutnQ2gEAqIqG9QP0wydD9HZMT/n5elzVvu4b3EL7vh6uW/rY9r4+AABGqJHv1Lsz/7AgyWpVruW0JCkoqql2vbNQIV1a69zBdBXn5kuSkj5dpaRPV5W1G7RwivZ9tExHVsQbVjsAAFfDbDZpwgMddEf/pnp/fqJmLz6gU2cLKtXWw8OkO/o11bj72qlv93CH1woAgL0Q6t1MUIfmZU/pJakwK0dtR9+igtPZF416DwCAu2raMFBT/9xDU566RkvWHtHGnSe0bV+mdh44reycIkmSl6dZkU1rq2u7EHVtF6LhA5oxGB4AwCWZrFar1egicKmi3Hx93vIBu+3v9h9maOXwyco/lWW3ff7WqOS58vL3dci+AQCwl9JSq0pLrfL0rLlvIEYMmKf0E7lqVN9faWvuM7ocAMBV4kl9DbGk75+NLgEAAMOZzSaZzcw3DwBwHzX3NjUAAAAAAC6OUA8AAAAAgIsi1AMAAAAA4KII9QAAAAAAuCgGyqumPP18NCp5rtFlVJqnn4/RJQAAAABAjUOor6ZMJhNTxAEAAAAALovu9wAAAAAAuChCPQAAAAAALopQDwAAAACAiyLUAwAAAADgogj1AAAAAAC4KEI9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiCPUAAAAAALgoQj0AAAAAAC6KUA8AAAAAgIsi1AMAAAAA4KII9QAAAAAAuChCPQAAAAAALopQDwAAAACAiyLUAwAAAADgogj1AAAAAAC4KE+jC0D5rFarivMKjC6j0jz9fGQymYwuAwAAAABqFEJ9NVWcV6DPWz5gdBmVNip5rrz8fY0uAwAAAABqFLrfAwAAAADgogj1AAAAAAC4KEI9AAAAAAAuilAPAAAAAICLItQDAAAAAOCiGP0eAADATVmtVqWmn9e2fZnalpip9OO5On3uwpS5584Xat63yeraLkStmtSW2czUtADgigj1AAAAbuZsVoH+s/SgPvhyv5JSz5W7zfncYt3/7A+SpKYNa+nxu9vqkTsjVT/Yz8nVAgCuhslqtVqNLgKXKsrNZ556AABgk6KiUk399069+vFO5eWX2Nze28usCaPaa8pT18jPl2c/AOAKOFu7kbDe7TVo0ZSLlhXl5CkrJUPJC9Ypcfa3spaUGlYfAABwnN0HTmvM/61TQuKpKu+jsKhU0+bs1tIfjujff79evTs1sGuNAAD7I9S7oZRFcUqLTZBMJvmF1lWre25UjyljVKd1I22cNMvo8gAAgJ2t+ilNd/7pe+XmF9tlf0mp53TDw8s199W+GjGohV32CQBwDEK9Gzq1+5BSFsaVfZ00Z6XujHtHkfffpITX56ngVJah9QEAAPtZsyldQ59ercIi+/bGKy626r6/rpXZbNI9Nze3674BAPbDlHY1QHFegU4mHJTJbFbtpnSjAwDAXSQfzdKdf/re7oH+F1arNOrZH5SwL9Mh+wcAXD1CfQ0R2OxCmC84e97oUgAAgB2Ullr1hxfjdD63yKZ28fOG6ejqkYqfN6xS2xcVl2rM/61TYZHtA+8BABzP7UN9ZmamYmJi1KpVK/n6+qpx48aaMGGCcnJy9Mgjj8hkMmnmzJlGl2lXnn7e8gkKlE9wbdVt20Q9X/2jgju20MmEg8pKyTC6PAAAYAfvz0/Uum0Wm9uFhfgrokGAwkL8K91m98Ez+seHO2w+FgDA8dz6nfodO3Zo8ODBslgsCggIULt27XTs2DG9++67Sk5O1unTpyVJnTt3NrpUu+oSM1JdYkZetCx1+SZtfu5jw2oCAAD2U1RUqlc+cm7IfuvTPfrL6I6qXcvbqccFAFye2z6pz8zM1NChQ2WxWDRx4kRlZGQoISFBFotFU6dO1fLlyxUfHy+TyaTo6Gijy7WrpM9WaeW9U7R61Cva+vfPlH86WwHhwSopKCzbxuztqdt/mKHoCXdd1Pa6t8dqwOd/M6BqAABQWV+vPSxLZp5Tj5mTV6zPlv3s1GMCAK7MbUP9+PHjlZaWpnHjxmn69OkKDAwsWxcTE6NOnTqpuLhYzZo1U+3atQ2t1d6yUizKiNut9Njt2vP+En0/+nWFdG6p3lMfL9umtLBY68e/p47j71K9dk0lSU0GdVfEwG7a8Mz7BlYPAACuZNZX+w057r++NOa4AICKuWWoT0xM1Pz58xUSEqLXXnut3G26du0qSerUqdMl6xYvXqxrr71WAQEBqlOnjvr06aO9e/c6vG5HObk1SckL1qn5HX0U2q1N2fJTu1K094Oluv7dp+UfHqTe057Q5uc/Vt7xM4bWCwAAKlZUVKr1248bcuw9P5/RqbP5hhwbAFA+twz18+bNU2lpqUaNGqVatWqVu42fn59UTqh/9913de+99+q6667T0qVLNW/ePA0YMEB5ec7t4mZvO2csUGlxibpMGnHx8rcXqrSkRMNWT5Nlwx4dWrLBsBoBAMCV7U0+o4JC40ai38b0dgBQrbjlQHmxsbGSpH79+lW4TVpamvS7UJ+cnKxJkyZpxowZGjduXNnyW2+91aH1OkN2qkWHlmxQy+E3qH7PKJ3YnChJshaX6GR8kkKiW+rn+WuNLhMAAFxBQuIpQ4+/bd8p3XxthKE1AAB+5Zah/vDhw5Kkpk2blru+uLhYGzZceCL921D/ySefyMvLS48++qhd6+nWrZssFtumnPGymjVZPexax653Fqr5HX3UZdIIrbz7JUlS/Z5RajWinxJnf6seLz+spQMnqSS/8Ir7+r3I1pEqMpXatV4AAHCpbN/rJP+B5a6LnzfsilPVhYX4lf3/6OqRFW5nycxV9/uWXrL81anv6p8vrbS5bgDA5YWFhWnr1q02t3PLUJ+TkyNJFXaZnz9/vjIzMxUYGKjmzZuXLf/pp5/Upk0bzZ07V//4xz909OhRtW7dWi+++KLuu+++KtdjsViUnp5uUxtvk4fUwMbjbNyrOeF3V7j+3MF0fRrxa/d7T39fXff2WG175XPt/89KDV78sq557n7FT55j24ElHcs4pkKrcV0BAQCoMULPSxXk9l/moK8MTw9zpbf9rfM5eTqfYdt1DQDAcdwy1IeFhenMmTNKSEhQ7969L1qXkZGhSZMmSZKio6NlMpkuWpeenq7nnntOU6dOVePGjTV79mzdf//9Cg0N1YABA6pcj628rGbJwQ++u7/0kM4fOaH9c1ZIktZPmKlha6bryHebdXxTok37ahjekCf1AAA4QbZvgLIqWGfJzL1i+7AQP3l6mFVcUnrZafEq2letAF/VadSo0vUCACqnKrlRkkxWq9Vq92oMNn78eL333ntq3Lix1qxZo8jISElSfHy8HnzwQaWkpKioqEhjx47VzJkzy9pFRkbq4MGDWrx4se644w5JktVqVefOnVW3bl39+OOPTvsMRbn5+rzlAw7bf6P+XXTj+3/SkpsmKif91wFv2o4ZpHaP36al/SeqOK+g0vsblTxXXv6+DqoWAAD84suVKRoxqerj4BxdPVIRDQKUdjxHjQf+1+b27z3XW+Pua1fl4wMA7MstR7+PiYlRcHCwjh49qvbt26tjx45q3bq1evTooRYtWqh///5SOSPfBwUFSdJFT+RNJpMGDBigPXv2OPlTOFZ67HZ90Xb0RYFekvbPWaFFvcfZFOgBAIDzdG0XYvDxgw09PgDgYm4Z6iMiIhQXF6chQ4bI19dXqampCgoK0qxZs7R8+XIdOHBAKifUt2/fvsJ95uczJysAADBei4hA1Q30NuTYZrNJnSIJ9QBQnbhlqJekqKgoLVu2TNnZ2crOztbmzZv12GOPKScnR6mpqTKbzerQocNFbW6//XZJ0qpVq8qWlZaWavXq1erevbvTPwMAAMDvmUwm3XZjY0OOfVPPcPn7ueWQTADgsmrcWXnv3r2yWq2KjIyUv//FQ8cOHTpU119/vR577DGdOnVKTZo00ccff6y9e/dq9erVhtUMAADwW0/eG6W5y5KdftynRkQ5/ZgAgMtz2yf1Fdm9e7dUTtd7/e/O99KlSzV8+HA9//zzGjZsmA4fPqxvv/227D18AAAAo/XuVF+d2gQ59ZgRDQJ02w1NnHpMAMCVEep/p27dupo1a5ZOnjypgoICbdmyRbfccouTqwQAAKiYyWTSmxN7OvWY057pLk/PGnfpCADVXo07M18p1Lu7pkN6qdfrj160rNWIfhqTsUBNBjFuAAAAruKmXg31xD1tnXKsu25qphGDWjjlWAAA29S4d+pjY2ONLsFQTW7tqeSvfij7ulZEqCJHDdCJrUmG1gUAAGz3xjPdtTY+Q0mp5yrdxpKZe9H/r6RhfX+9/8K1MplMVa4TAOA4NS7Uuzvv2v66fe0Mefh6K/dYpsw+Xgps0kDJC37Uxmc/UoPubbR+wswLG5tMuvbNJ7X5hdnqPnm00aUDAAAbBQZ4a/WHg3T9mOU6fOx8pdp0v29ppfcfWs9Xaz4crAbBfldRJQDAkWpc93t3V5iVq5TFcdr38XItHThJW178t04mHNBPf/mXwvt00In4JFmLSyRJ7R8fqhPx+3VqV4rRZQMAgCpqHFZLcXOGKKpFXbvut0l4gNY5YL8AAPsi1LuhoA7NdXr3IUlScHRLnd5z4c9NBnXX4e+2SJLqtmmspkN6aufbCw2tFQAAXL3GYbW0dd7t+tMD7WWPXvJ/uDNSO7+6U22bE+gBoLoj1LuhoPbNyoJ8cHQLnfpfwG/Yt7PSY7dLkhr0jFKtxvU1/Kf3dPeW9xV6TWv1nvaE2jx0s6G1AwCAqvH389SMmF5a9+8huv6aBlXaR9d2Ifr2nzdr9pTrVbe2j91rBADYH+/Uuxn/sCDJalWu5bQkKSiqqXa9s1AhXVrr3MF0FefmS5KSPl2lpE9XlbUbtHCK9n20TEdWxBtWOwAAuHrXXROmdXNu0+4Dp/XBl4lasSFdh9KzK9w+okGABvRqqKdGRKl7h1Cn1goAuHqEejcT1KF52VN6SSrMylHb0beo4HS2jqzYYmhtAADAeTpGBun9F/pIkk6dzVdC4ikdO5GrgqISeXuZ1SDIT13bhag+g+ABgEszWa1Wq9FF4FJFufn6vOUDdtvf7T/M0Mrhk5V/Kstu+/ytUclz5eXv65B9AwAAAADKx5P6GmJJ3z8bXQIAAAAAwM4YKA8AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFEMlFdNWa1WFecVGF1GpXn6+chkMhldBgAAAADUKIR6AAAAAABcFN3vAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUYR6AAAAAABcFKEeAAAAAAAXRagHAAAAAMBFEeoBAAAAAHBRhHoAAAAAAFwUoR4AAAAAABdFqAcAAAAAwEUR6gEAAAAAcFGEegAAAAAAXBShHgAAAAAAF0WoBwAAAADARRHqAQAAAABwUf8PDLNz1Cl6EpgAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, - "execution_count": 10, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -399,7 +400,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 9, "id": "15461a2c-85a9-4cb2-a632-b9597ccbc4bd", "metadata": {}, "outputs": [ @@ -410,7 +411,7 @@ "
" ] }, - "execution_count": 13, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -446,7 +447,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 10, "id": "2139745a-bdc3-40bd-bd6f-d26d2a5b5b14", "metadata": {}, "outputs": [ @@ -467,7 +468,7 @@ "
" ] }, - "execution_count": 14, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -489,7 +490,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 11, "id": "4aeb3f1f-a55e-49c4-a7bd-837132429ee1", "metadata": {}, "outputs": [ @@ -500,7 +501,7 @@ "
" ] }, - "execution_count": 15, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" }