Skip to content

some materials about mesh processing, including papers, videos, codes, and so on. Updating every day!

Notifications You must be signed in to change notification settings

QiujieDong/Mesh_Segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 

Repository files navigation

Mesh Processing

I hope the branch can help anyone who wants to do research about mesh processing.

Contact me: qiujie_dong(AT)mail.sdu.edu.cn, Qiujie.Jay.Dong(AT)gmail.com.

Thanks for your valuable contribution to the research.:smiley:

- Symbols

Statistics: ⭐ code is available & stars >= 100  |  πŸ”₯ citation >= 50

- Topics

Feature Extraction of Meshes or Mesh segmentation

2024

  • DAE-Net: Zhiqin Chen, Qimin Chen, Hang Zhou, Hao Zhang. "DAE-Net: Deforming Auto-Encoder for fine-grained shape co-segmentation", SIGGRAPH(2024). [paper] [code]

2023

  • BRUNO ROY. "Neural Shape Diameter Function for Efficient Mesh Segmentation", SIGGRAPH(2023). [paper]

  • MWFormer: Haoyang peng, Meng-Hao Guo, Zheng-Ning Liu, Yong-Liang Yang, Tai-Jiang Mu. "MWFormer: Mesh Understanding with Window-Based Transformer", SSRN(2023). [paper]

  • Picasso++: Huan Lei, Naveed Akhtar, Mubarak Shah, Ajmal Mian. "Mesh Convolution with Continuous Filters for 3D Surface Parsing", TNNLS(2023). [paper] [code] ⭐

  • DGNet: Xiang-Li Li, Zheng-Ning Liu, Tuo Chen, Tai-Jiang Mu, Ralph R. Martin, Shi-Min Hu. "Mesh Neural Networks Based on Dual Graph Pyramids", TVCG(2023). [paper] [code]

2022

  • Laplacian2Mesh: Qiujie Dong, Zixiong Wang, Manyi Li, Junjie Gao, Shuangmin Chen, Zhenyu Shu, Shiqing Xin, Changhe Tu, Wenping Wang. "Laplacian2Mesh: Laplacian-Based Mesh Understanding", TVCG( 2023). [paper] [code]

  • MeshFormers: Hao-Yang Peng, Meng-Hao Guo, Zheng-Ning Liu, Yong-Liang Yang, Tai-Jiang Mu. "MeshFormers: Transformer-Based Networks for Mesh Understanding", SSRN(2022). [paper]

  • MeshFormer: Yuan Li, Xiangyang He, Yankai Jiang, Huan Liu, Yubo Tao, Lin Hai. "MeshFormer: High-resolution Mesh Segmentation with Graph Transformer", CGF(2022). [paper]

  • DiffusionNet: Nicholas Sharp, Souhaib Attaiki, Keenan Crane, Maks Ovsjanikov. "DiffusionNet: Discretization Agnostic Learning on Surfaces", TOG( 2022). [paper] [code]

  • SubdivNet: Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang Mu, Ralph R. Martin. " Subdivision-Based Mesh Convolution Networks", TOG( 2022). [paper] [code]

  • Laplacian Mesh Transformer: Xiao-Juan Li, Jie Yang, Fang-Lue Zhan. "Laplacian Mesh Transformer: Dual Attention and Topology Aware Network for 3D Mesh Classification and Segmentation", ECCV( 2022). [paper]

2021

  • HodgeNet: Dmitriy Smirnov, Justin Solomon. "HodgeNet: Learning Spectral Geometry on Triangle Meshes", SIGGRAPH( 2021). [paper] [code]

  • MeshNet++: Vinit Veerendraveer Singh, Shivanand Venkanna Sheshappanavar, Chandra Kambhamettu. "MeshNet++: A Network with a Face", ACM MM(2021). [paper]

2020

  • Long Zhang, Jianwei Guo, Jun Xiao, Xiaopeng Zhang, Dong-Ming Yan. "Blending Surface Segmentation and Editing for 3D Models", TVCG(2020). [paper]

  • PD-MeshNet: Francesco Milano, Antonio Loquercio, Antoni Rosinol, Davide Scaramuzza, Luca Carlone. "Primal-Dual Mesh Convolutional Neural Networks", NeurIPS(2020) . [paper] [code]

  • CurvaNet: Wenchong He, Zhe Jiang, Chengming Zhang, Arpan Man Sainju. "CurvaNet: Geometric Deep Learning based on Directional Curvature for 3D Shape Analysis", KDD(2020). [paper]

  • MeshSegNet: Chunfeng Lian, Li Wang, Tai-Hsien Wu, Fan Wang, Pew-Thian Yap, Ching-Chang Ko, Dinggang Shen. "Deep Multi-Scale Mesh Feature Learning for Automated Labeling of Raw Dental Surfaces From 3D Intraoral Scanners", MICCAI( 2019) and TMI(2020) . [paper] [code]

  • MGCN: Yiqun Wang, Jing Ren, Dong-Ming Yan, Jianwei Guo, Xiaopeng Zhang, Peter Wonka. "MGCN: Descriptor Learning using Multiscale GCNs", SIGGRAPH(2020) . [project] [paper] [code]

  • MedMeshCNN: Lisa Schneider, Annika Niemann, Oliver Beuing, Bernhard Preim, Sylvia Saalfeld. "MedMeshCNN - Enabling MeshCNN for Medical Surface Models", arXiv(2020) . [paper] [code]

  • MeshWalker: Alon Lahav, Ayellet Tal. "MeshWalker: Deep Mesh Understanding by Random Walks", SIGGRAPH Asia(2020) . [paper] [code]

  • Amit Kohli, Vincent Sitzmann, Gordon Wetzstein. "Semantic Implicit Neural Scene RepresentationsWith Semi-Supervised Training", 3DV( 2020). [project] [paper] [code]

  • Zhenyu Shu, Xiaoyong Shen, Shiqing Xin, Qingjun Chang, Jieqing Feng, Ladislav Kavan, Ligang Liu. "Scribble-Based 3D Shape Segmentation via Weakly-Supervised Learning", TVCG( 2020). [paper]

2019

  • LaplacianNet: Yi-Ling Qiao, Lin Gao, Jie Yang, Paul L. Rosin, Yu-Kun Lai, Xilin Chen. "LaplacianNet: Learning on 3D Meshes with Laplacian Encoding and Pooling", TVCG(2019). [paper]

  • VoxSegNet: Zongji Wang, Feng Lu. "VoxSegNet: Volumetric CNNs for Semantic Part Segmentation of 3D Shapes", TVCG( 2019). [paper] [code]

  • BAE-Net: Chen Zhiqin, Yin Kangxue, Fisher Matthew, Chaudhuri Siddhartha, Zhang Hao. "Bae-net: Branched autoencoder for shape co-segmentation", ICCV(2019) . [paper] [code]

  • MeshNet: Yutong Feng, Yifan Feng, Haoxuan You, Xibin Zhao, Yue Gao. "MeshNet: Mesh Neural Network for 3D Shape Representation", AAAI(2019) . [paper] [code] ⭐

  • DGCNN: Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon. "Dynamic Graph CNN for Learning on Point Clouds", TOG(2019) . [project] [paper] [code] ⭐πŸ”₯

  • MeshCNN: Hanocka Rana, Hertz Amir, Fish Noa, Giryes Raja, Fleishman Shachar, Cohen-Or Daniel. "MeshCNN: A Network with an Edge", SIGGRAPH(2019) . [project] [paper] [code] [code from NVIDIA] ⭐πŸ”₯

  • Xiaojie Xu, Chang Liu, Youyi Zheng. "3D Tooth Segmentation and Labeling Using Deep Convolutional Neural Networks", TVCG(2019). [paper]

  • Zhao Wang; Li Chen. "Mesh Segmentation for High Resolution Medical Data", CISP-BMEI(2019) . [paper]

Before 2019

  • MDGCNN: ADRIEN POULENARD, MAKS OVSJANIKOV. "Multi-directional Geodesic Neural Networks via Equivariant Convolution", TOG(2018). [paper] [code] πŸ”₯

  • George David, Xie Xianghua, Tam Gary KL. "3D mesh segmentation via multi-branch 1D convolutional neural networks", GM( 2018). [paper]

  • A Survey: Rui S. V. Rodrigues, JosΒ΄e F. M. Morgado, Abel J. P. Gomes. "Part‐Based Mesh Segmentation: A Survey", COMPUTER GRAPHICS forum(2018). [paper]

  • Pengyu Wang, Yuan Gan, Panpan Shui, Fenggen Yu, Yan Zhang, Songle Chen, Zhengxing Sun. "3D Shape Segmentation via Shape Fully Convolutional Networks", CG(2018) . [paper] [code]

  • Pointgrid: Truc Le, Ye Duan. "Pointgrid: A deep network for 3d shape understanding", CVPR(2018) . [paper] [code_PyTorch] [code_TensorFlow] πŸ”₯

  • PointCNN: Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, Baoquan Chen. "PointCNN: Convolution On X-Transformed Points", NIPS(2018) . [paper] [code] ⭐πŸ”₯

  • SyncSpecCNN: Li Yi, Hao Su, Xingwen Guo, Leonidas Guibas. "SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation", CVPR( 2017). [paper] [code] πŸ”₯

  • DCN: Haotian Xu, Ming Dong, Zichun Zhong. "Directionally convolutional networks for 3d shape segmentation", ICCV( 2017) . [paper]

  • Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A. Efros, Jitendra Malik. "Learning shape abstractions by assembling volumetric primitives", CVPR(2017) . [project] [paper] [code] ⭐πŸ”₯

  • MVRNN: Le Truc, Bui Giang, Duan Ye. "A multi-view recurrent neural network for 3D mesh segmentation", Computers & Graphics(2017) . [paper] [code]

  • A Survey: Medhat Rashad, Mohamed Khamiss, Mohamed MOUSA. "A Review on Mesh Segmentation Techniques", IJEIT(2017) . [paper]

  • ShapePFCN: Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, Siddhartha Chaudhuri. "3D Shape Segmentation with Projective Convolutional Networks", CVPR(2017) . [project] [paper] [code] πŸ”₯

  • Panagiotis Theologou, Ioannis Pratikakis, Theoharis Theoharis. "Unsupervised spectral mesh segmentation driven by heterogeneous graphs", TPAMI(2016). [paper]

  • Zhenyu Shu, Chengwu Qi, Shiqing Xin, Chao Hu, Li Wang, Yu Zhang, Ligang Liu. "Unsupervised 3D shape segmentation and co-segmentation via deep learning", CAGD(2016) . [paper] πŸ”₯

  • Meha Hachani, Azza Ouled Zaid, Raoua Khwildi. "Segmentation of 3D articulated meshes using shape diameter function and curvature information", ICME(2016). [paper]

  • Kan Guo, Dongqing Z, Xiaowu Chen. "3D Mesh Labeling via Deep Convolutional Neural Networks", TOG(2015) . [paper] πŸ”₯

  • MVCNN: Su Hang, Maji Subhransu, Kalogerakis Evangelos, Learned-Miller Erik. "Multi-view Convolutional Neural Networks for 3D Shape Recognition", ICCV(2015) . [project] [paper] [code] ⭐πŸ”₯

  • OLIVER VAN KAICK, NOA FISH, YANIR KLEIMAN, SHMUEL ASAFI, DANIEL COHEN-OR. "Shape Segmentation by Approximate Convexity Analysis", TOG(2014). [paper] πŸ”₯

  • Zhige Xie, Kai Xu, Ligang Liu, Yueshan Xiong. "3D Shape Segmentation and Labeling via Extreme Learning Machine", CGF( 2014). [paper] πŸ”₯

  • Jung Lee, Seokhun Kim, Sun-Jeong Kim. "Mesh segmentation based on curvatures using the GPU", MTA( 2014). [paper]

  • Zizhao Wu, Yunhai Wang, Ruyang Shou, Baoquan Chen, Xinguo Liu. "Unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering", CG(2013) . [paper]

  • Yunhai Wang, Minglun Gong, Tianhua Wang, Daniel Cohen-Or, Hao Zhang, Baoquan Chen. "Projective analysis for 3D shape segmentation", TOG(2013). [paper] πŸ”₯

  • Jiajun Lv, Xinlei Chen, Jin Huang, Hujun Bao. "Semi-supervised Mesh Segmentation and Labeling", CGF(2012) . [paper]

  • Hu Ruizhen, Fan Lubin, Liu Ligang. "Co‐segmentation of 3d shapes via subspace clustering", CGF(2012) . [paper] πŸ”₯

  • Oscar Kin-Chung Au, Youyi Zheng, Menglin Chen, Pengfei Xu, Chiew-Lan Tai. "Mesh Segmentation with Concavity-aware Fields", TVCG(2012). [paper] πŸ”₯

  • Heat-Mapping: Yi Fang, Mengtian Sun, Minhyong Kim, Karthik Ramani. "Heat-mapping: A robust approach toward perceptually consistent mesh segmentation", CVPR(2011) . [paper] πŸ”₯

  • Jun Wang, Zeyun Yu. "Surface feature based mesh segmentation", CG(2011) . [paper]

  • Evangelos Kalogerakis, Aaron Hertzmann, Karan Singh. "Learning 3D Mesh Segmentation and Labeling", SIGGRAPH(2010) . [paper] πŸ”₯

  • Avinash Sharma, Radu Horaud, David Knossow, Etienne von Lavante. "Mesh Segmentation Using Laplacian Eigenvectors and Gaussian Mixtures", AAAI(2009). [paper]

  • Shapira Lior, Shamir Ariel, Cohen-Or Daniel. "Consistent mesh partitioning and skeletonisation using the shape diameter function", TVC(2008). [paper] πŸ”₯

  • Curvature Laplacian: Rong Liu, Hao Zhang. "Mesh Segmentation via Spectral Embedding and Contour Analysis", CGF( 2007). [paper] πŸ”₯

  • Raif M. Rustamov. "Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation", SGP(2007) . [paper] πŸ”₯

  • A Survey: M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, A. Tal. "Mesh Segmentation - A Comparative Study", SMI(2006). [paper] πŸ”₯

  • Sagi Katz, George Leifman, Ayellet Tal. "Mesh segmentation using feature point and core extraction", TVC(2005) . [paper] πŸ”₯

  • Rong Liu, Hao Zhang. "Segmentation of 3D meshes through spectral clustering", PG(2004) . [paper] πŸ”₯

Related works

  • GrowSP: Zihui Zhang, Bo Yang, Bing Wang, Bo Li. "GrowSP: Unsupervised Semantic Segmentation of 3D Point Clouds", CVPR(2023). [paper] [code]

  • SHRED: R. KENNY JONES, AALIA HABIB, DANIEL RITCHIE. "SHRED: 3D Shape Region Decomposition with Learned Local Operations", Siggraph Asia( 2022). [project] [paper] [code]

  • Wave-MLP: Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Yanxi Li, Chao Xu, Yunhe Wang. "An Image Patch is a Wave: Quantum Inspired Vision MLP", CVPR( 2022). [paper] [code] ⭐

  • BACON: David B. Lindell, Dave Van Veen, Jeong Joon Park, Gordon Wetzstein. "BACON: Band-limited Coordinate Networks for Multiscale Scene Representation", CVPR( 2022). [project] [paper] [code]

  • PSSNet: Weixiao Gao, Liangliang Nan, Bas Boom, Hugo Ledoux. "PSSNet: Planarity-sensible Semantic Segmentation of Large-scale Urban Meshes", arXiv(2022). [paper]

  • Swin-Unet: Hu Cao, Yueyue Wang, Joy Chen, Dongsheng Jiang, Xiaopeng Zhang, Qi Tian, Manning Wang. "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation", arXiv( 2021). [paper] [code] ⭐

  • TransUNet: Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L. Yuille, Yuyin Zhou. "TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation", arXiv( 2021). [paper] [code] ⭐πŸ”₯

  • VMNet: Zeyu Hu, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai. "VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation", ICCV( 2021). [paper] [code]

  • Deep3DMM: Zhixiang Chen, Tae-Kyun Kim. "Learning Feature Aggregation for Deep 3D Morphable Models", arXiv( 2021). [paper] [code]

  • Luke Melas-Kyriazi. "Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet", arXiv(2021) . [paper] [code]

  • Geometric Deep Learning: Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar VeličkoviΔ‡. "Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges", arXiv(2021). [paper]

  • UNETR: Ali Hatamizadeh, Dong Yang, Holger Roth, Daguang Xu. "UNETR: Transformers for 3D Medical Image Segmentation", arXiv(2021). [paper]

  • A Survey: Yong He, Hongshan Yu, Xiaoyan Liu, Zhengeng Yang, Wei Sun, Yaonan Wang, Qiang Fu, Yanmei Zou, Ajmal Main. "Deep Learning based 3D Segmentation: A Survey", arXiv(2021). [paper]

  • U-Net Transformer: Olivier Petit, Nicolas Thome, ClΓ©ment Rambour, Luc Soler. "U-Net Transformer: Self and Cross Attention for Medical Image Segmentation", arXiv(2021). [paper]

  • Maximilian Durner, Wout Boerdijk, Martin Sundermeyer, Werner Friedl, Zoltan-Csaba Marton, Rudolph Triebel. "Unknown Object Segmentation from Stereo Images", arXiv(2021). [paper]

  • Benjamin Caine, Rebecca Roelofs, Vijay Vasudevan, Jiquan Ngiam, Yuning Chai, Zhifeng Chen, Jonathon Shlens. " Pseudo-labeling for Scalable 3D Object Detection", arXiv(2021). [paper]

  • SPICE: Chuang Niu, Ge Wang. "SPICE: Semantic Pseudo-labeling for Image Clustering", arXiv(2021) . [paper] [code]

  • Megha Kalia, Tajwar Abrar Aleef, Nassir Navab, Septimiu E. Salcudean. "Co-Generation and Segmentation for Generalized Surgical Instrument Segmentation on Unlabelled Data", arXiv(2021). [paper]

  • MFNs: Rizal Fathony, Anit Kumar Sahu, Devin Willmott, J.Zico Kolter. "Multiplicative Filter Networks", ICLR( 2021). [paper] [code]

  • IDF: Wang Yifan, Lukas Rahmann, Olga Sorkine-Hornung. "Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields", ICLR( 2022). [project] [paper] [code]

  • Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, Ren Ng. "Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains", NeurIPS( 2020). [project] [paper] [code] ⭐πŸ”₯

  • Nicholas Sharp, Keenan Crane. "A Laplacian for Nonmanifold Triangle Meshes", CGF( 2020). [project] [paper] [code]

  • STEVEN L. SONG, WEIQI SHI, MICHAEL REED. "Accurate Face Rig Approximation with Deep Differential Subspace Reconstruction", TOG(2020). [paper]

  • Gatcluster: Chuang Niu, Jun Zhang, Ge Wang, Jimin Liang. "Gatcluster: Self-supervised gaussian-attention network for image clustering", ECCV(2020) . [paper] [code]

  • KingdraCluster: Divam Gupta, Ramachandran Ramjee, Nipun Kwatra, Muthian Sivathanu. "Unsupervised Clustering using Pseudo-semi-supervised Learning", ICLR(2020) . [project] [Blog] [paper] [code]

  • Hsueh-Ti Derek Liu, Vladimir G. Kim, Siddhartha Chaudhuri, Noam Aigerman, Alec Jacobson. "Neural Subdivision", SIGGRAPH(2020) . [project] [paper] [code]

  • PT: Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, Vladlen Koltun. "Point Transformer", arXiv( 2020). [paper] [code_unofficial] ⭐

  • FPCC-Net: Yajun Xu, Shogo Arai, Diyi Liu, Fangzhou Lin, Kazuhiro Kosuge. "FPCC-Net: Fast Point Cloud Clustering for Instance Segmentation", arXiv(2020). [paper]

  • Deep snake: Peng Sida, Jiang Wen, Pi Huaijin, Li Xiuli, Bao Hujun, Zhou Xiaowei. "Deep Snake for Real-Time Instance Segmentation", CVPR(2020) . [paper] [code] ⭐

  • SEG-MAT: Cheng Lin, Lingjie Liu, Changjian Li, Leif Kobbelt, Bin Wang, Shiqing Xin, Wenping Wang. "SEG-MAT: 3D Shape Segmentation Using Medial Axis Transform", TVCG(2020). [paper]

  • MA-Unet: Yutong Cai, Yong Wang. "MA-Unet: An improved version of Unet based on multi-scale and attention mechanism for medical image segmentation", arXiv(2020). [paper]

  • Xiangru Huang, Haitao Yang, Etienne Vouga, Qixing Huang. "Dense Correspondences between Human Bodies via Learning Transformation Synchronization on Graphs", NeurIPS(2020) . [paper] [code]

  • SIREN: Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, Gordon Wetzstein. "Implicit Neural Representations with Periodic Activation Functions", NeurIPS( 2020). [project] [paper] [code] ⭐πŸ”₯

  • Jean-Michel Roufosse, Abhishek Sharma, Maks Ovsjanikov. "Unsupervised Deep Learning for Structured Shape Matching", ICCV( 2019). [paper] [code] πŸ”₯

  • Yu Wang, Justin Solomon. "Intrinsic and extrinsic operators for shape analysis", Handbook of Numerical Analysis( 2019). [paper]

  • CfS-CNN: Ran Song, Yonghuai Liu, Paul L. Rosin. "Mesh Saliency via Weakly Supervised Classification-for-Saliency CNN", TVCG(2019). [paper]

  • NVIDIAGameWorks-kaolin: Krishna Murthy Jatavallabhula, Edward Smith, Jean-Francois Lafleche, Clement Fuji Tsang, Artem Rozantsev, Wenzheng Chen, Tommy Xiang, Rev Lebaredian, Sanja Fidler. "Kaolin: A PyTorch Library for Accelerating 3D Deep Learning Research", arXiv(2019) . [project] [paper] [Documentation] ⭐

  • pytorch_geometric: Matthias Fey, Jan Eric Lenssen. "Fast Graph Representation Learning with PyTorch Geometric", arXiv(2019) . [project] [paper] [Documentation] ⭐πŸ”₯

  • Graph U-Nets: Hongyang Gao, Shuiwang Ji. "Graph U-Nets", ICML(2019) . [paper] [code] ⭐πŸ”₯

  • Xinge Li, Yongjie Jessica Zhang, Xuyang Yang, Haibo Xu, Guoliang Xu. "Point cloud surface segmentation based on volumetric eigenfunctions of the Laplace-Beltrami operator", CAGD( 2019). [paper]

  • SE-Net: Jie Hu, Li Shen, Samuel Albanie, Gang Sun, Enhua Wu. "Squeeze-and-Excitation Networks", CVPR( 2018). [paper] [code] ⭐πŸ”₯

  • Adrien Poulenard, Maks Ovsjanikov. "Multi-directional geodesic neural networks via equivariant convolution", TOG(2018) . [paper]

  • DeepLab3+: Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam. "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation", ECCV( 2018). [paper] [code] ⭐πŸ”₯

  • Asako Kanezaki. "Unsupervised Image Segmentation by Backpropagation", ICASSP(2018) . [paper] [code] [code_2] ⭐πŸ”₯

  • Pvnet: Haoxuan You, Yifan Feng, Rongrong Ji, Yue Gao. "PVNet: A Joint Convolutional Network of Point Cloud and Multi-View for 3D Shape Recognition", ACM MM(2018). [paper]

  • UNet++: Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, Jianming Liang. "UNet++: A Nested U-Net Architecture for Medical Image Segmentation", DLMIA(2018) . [paper_DLMIA2018] [paper_IEEE TMI] [code] [zhihu] ⭐πŸ”₯

  • Deep Functional Maps: Or Litany, Tal Remez, Emanuele RodolΓ , Alex M. Bronstein, Michael M. Bronstein. "Deep Functional Maps: Structured Prediction for Dense Shape Correspondence", ICCV( 2017). [paper] [code] πŸ”₯

  • OctNet: Gernot Riegler, Ali Osman Ulusoy, Andreas Geiger. "OctNet: Learning Deep 3D Representations at High Resolutions", CVPR( 2017). [paper] [code] ⭐πŸ”₯

  • Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, Pierre Vandergheynst. "Geometric Deep Learning: Going beyond Euclidean data ", IEEE Signal Processing Magazine(2017). [paper] πŸ”₯

  • GCN: Thomas N. Kipf, Max Welling. "Semi-Supervised Classification with Graph Convolutional Networks", ICLR(2017) . [paper] [code] ⭐ πŸ”₯

  • 3D ShapeNets: Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, Jianxiong Xiao. "3D ShapeNets: A deep representation for volumetric shapes", CVPR(2015). [paper] πŸ”₯

  • Jonathan Masci, Davide Boscaini, Michael M. Bronstein, Pierre Vandergheynst. "Geodesic Convolutional Neural Networks on Riemannian Manifolds", ICCVW(2015). [paper] πŸ”₯

  • U-Net: Olaf Ronneberger, Philipp Fischer, Thomas Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation", MICCAI(2015) . [project] [paper] [code_non-authors ] ⭐πŸ”₯

  • Joan Bruna, Wojciech Zaremba, Arthur D. Szlam, Yann LeCun. "Spectral Networks and Locally Connected Networks on Graphs", CoRR(2014). [paper] πŸ”₯

  • Keenan Crane, Clarisse Weischedel, Max Wardetzky. "Geodesics in heat: A new approach to computing distance based on heat flow", TOG(2013) . [project] [paper] πŸ”₯

  • Functional maps: Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, Leonidas Guibas. "Functional Maps: A Flexible Representation of Maps Between Shapes", TOG( 2012). [paper] πŸ”₯

  • WKS: Mathieu Aubry, Ulrich Schlickewei, Daniel Cremers. "The wave kernel signature: A quantum mechanical approach to shape analysis", ICCV( 2011). [paper] [code_from_SGWS] πŸ”₯

  • Bruno LΒ΄evy, Hao (Richard) Zhang. "Spectral Mesh Processing", SIGGRAPH Course( 2010). [paper, slides, video] πŸ”₯

  • Shape Google: Maks Ovsjanikov, Alexander M. Bronstein, Michael M. Bronstein, Leonidas J. Guibas. "Shape Google: a computer vision approach to isometry invariant shape retrieval", ICCV( 2009). [paper] πŸ”₯

  • HKS: Jian Sun, Maks Ovsjanikov, Leonidas Guibas. "A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion", CGF(2009). [paper] πŸ”₯

  • Hui Huang, Dan Li, Hao Zhang, Uri Ascher, Daniel Cohen-Or. "Consolidation of Unorganized Point Clouds for Surface Reconstruction", SIGGRAPH ASIA( 2009). [project] [paper] πŸ”₯

  • Mario Botsch, Olga Sorkine. "On Linear Variational Surface Deformation Methods", TVCG(2008) . [paper] [code] πŸ”₯

  • Ulrike von Luxburg. "A Tutorial on Spectral Clustering", Statistics and Computing( 2007). [paper] πŸ”₯

  • Bruno LΓ©vy. "Laplace-Beltrami Eigenfunctions Towards an algorithm that β€œunderstands” geometry", SMI(2006) . [paper] πŸ”₯

  • Olga Sorkine. "Differential Representations for Mesh Processing", CGF( 2006). [paper] πŸ”₯

  • Olga Sorkine. "Laplacian Mesh Processing", EG(2005). [paper] πŸ”₯

  • Olga Sorkine, Daniel Cohen-Or, Dror Irony, Sivan Toledo. "Geometry-aware bases for shape approximation", TVCG( 2005). [paper] πŸ”₯

  • Wenyuan Li, Wee-Keong Ng, Ee-Peng Lim. "Spectral Analysis of Text Collection for Similarity-based Clustering", ICDE( 2004) and PAKDD(2004) . [paper_ICDE2004] [paper_PAKDD2004]

  • Mikhail Belkin, Partha Niyogi. "Laplacian Eigenmaps for Dimensionality Reduction and Data Representation", Neural Computation(2003). [paper] πŸ”₯

  • Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno LΓ©vy, Mathieu Desbrun. "Anisotropic Polygonal Remeshing", SIGGRAPH(2003). [paper] πŸ”₯

  • David Cohen-Steiner, Jean-Marie Morvan. "Restricted Delaunay Triangulations and Normal Cycle", SoCG(2003) . [paper] [code_from_mikedh] ⭐πŸ”₯

  • Mikhail Belkin, Partha Niyogi. "Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering", NIPS(2001) . [paper] πŸ”₯

  • Graph-Cuts: Yuri Y. Boykov, Marie-Pierre Jolly. "Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images", ICCV(2001). [paper] πŸ”₯

  • Zachi Karni, Craig Gotsman. "Spectral Compression of Mesh Geometry", SIGGRAPH(2000) . [paper] πŸ”₯

  • Gabriel Taubin. "A signal processing approach to fair surface design", SIGGRAPH( 1995). [paper] πŸ”₯

Datasets

  • IntrA: Xi Yang, Ding Xia, Taichi Kin, Takeo Igarashi. "IntrA: 3D Intracranial Aneurysm Dataset for Deep Learning", CVPR(2020). [paper] [code]

  • RNA molecules: Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty, Maks Ovsjanikov. "Effective Rotation-invariant Point CNN with Spherical Harmonics kernels", 3DV( 2019). [paper] [code] πŸ”₯

  • Manifold40: Shi-Min Hu, Zheng-Ning Liu, Meng-Hao Guo, Jun-Xiong Cai, Jiahui Huang, Tai-Jiang Mu, Ralph R. Martin. "Subdivision-Based Mesh Convolution Networks", arXiv( 2021). [paper] [Dataset] ⭐

  • ModelNet40: Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, Jianxiong Xiao. "3D ShapeNets: A Deep Representation for Volumetric Shapes", CVPR( 2015). [project] [paper] [code] πŸ”₯

  • PartNet: Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, Hao Su. "PartNet: A Large-scale Benchmark for Fine-grained and Hierarchical Part-level 3D Object Understanding", CVPR(2019) . [project] [paper] [video] πŸ”₯

  • CGPart: Qing Liu, Adam Kortylewski, Zhishuai Zhang, Zizhang Li2, Mengqi Guo, Qihao Liu, Xiaoding Yuan, Jiteng Mu, Weichao Qiu, Alan Yuille. "CGPart: A Part Segmentation Dataset Based on 3D Computer Graphics Models", arXiv(2021) . [project] [paper]

  • HumanSeg: Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer, Vladimir G Kim, and Yaron Lipman. "Convolutional neural networks on surfaces via seamless toric covers", ACM Trans. Graph.(2017) . [paper] [dataset] [dataset_from_MeshCNN] [ground-truth labels on the faces] πŸ”₯

  • ShapeNet: Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, Fisher Yu. "ShapeNet: An Information-Rich 3D Model Repository", arXiv(2015). [project] [paper] πŸ”₯

  • COSEG: Yunhai Wang, Shmulik Asafi, Oliver van Kaick, Hao Zhang, Daniel Cohen-Or, Baoquan Chen. "Active co-analysis of a set of shapes", SIGGRAPH Asia(2012) . [project] [paper] [dataset_from_MeshCNN] [ground-truth labels on the faces] πŸ”₯

  • Cube engraving: Hanocka Rana, Hertz Amir, Fish Noa, Giryes Raja, Fleishman Shachar, Cohen-Or Daniel. "MeshCNN: A Network with an Edge", SIGGRAPH(2019) . [dataset] ⭐πŸ”₯

  • PSB: Xiaobai Chen, Aleksey Golovinskiy, Thomas Funkhouser. "A Benchmark for 3D Mesh Segmentation", ACM Transactions on Graphics(2009) . [project] [paper] πŸ”₯

  • ABC: Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa, Denis Zorin, Daniele Panozzo. "ABC: A Big CAD Model Dataset For Geometric Deep Learning", CVPR(2019) . [project] [paper] πŸ”₯

  • Thingi10K: Qingnan Zhou, Alec Jacobson. "Thingi10K: A Dataset of 10,000 3D-Printing Models", arXiv(2016) . [project] [paper] πŸ”₯

  • Philip Shilane, Patrick Min, Michael Kazhdan, Thomas Funkhouser. "The Princeton Shape Benchmark", SMI(2004) . [project] [paper] πŸ”₯

  • Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyuan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Sheffer, Leonidas Guibas. "A Scalable Active Framework for Region Annotation in 3D Shape Collections", SIGGRAPH Asia(2016) . [project] [paper] πŸ”₯

  • Three D Scans: Oliver Laric. [project]

  • common-3d-test-models: Alec Jacobson, jmespadero, purvigoel. [github] πŸ”₯

  • SUM: Weixiao Gao, Liangliang Nan, Bas Boom, Hugo Ledoux. "SUM: A Benchmark Dataset of Semantic Urban Meshes", ISPRS Journal of Photogrammetry and Remote Sensing( 2021). [project] [paper] [code]

Courses

Paper Resources

Following

About

some materials about mesh processing, including papers, videos, codes, and so on. Updating every day!

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published