diff --git a/lectures/time_series_models/additive_functionals.md b/lectures/time_series_models/additive_functionals.md index a7869155..4c729e3d 100644 --- a/lectures/time_series_models/additive_functionals.md +++ b/lectures/time_series_models/additive_functionals.md @@ -645,7 +645,8 @@ function plot_martingale_paths(T, mpath, mbounds; # plot martingale component ub = mbounds[2, :] lb = mbounds[1, :] - #plot!(plt, lb, fillrange = ub, alpha = 0.25, color = :magenta, label = "") + + plot!(plt, ub, fillrange = lb, alpha = 0.25, color = :magenta, label = "") plot!(plt, seriestype = :hline, [horline], color = :black, linestyle = :dash, label = "") plot!(plt, trange, Matrix(mpath'), linewidth = 0.25, color = :black, @@ -662,7 +663,7 @@ For now, we just plot $y_t$ and $x_t$, postponing until later a description of e --- tags: [remove-cell] --- -Random.seed!(42); +Random.seed!(43); ``` ```{code-cell} julia @@ -938,12 +939,6 @@ $\widetilde M_t$ of the multiplicative decomposition has a peculiar property. The following simulation of many paths of $\widetilde M_t$ illustrates this property -```{code-cell} julia ---- -tags: [remove-cell] ---- -Random.seed!(10021987); -``` ```{code-cell} julia plt = plot_martingales(amf, 12000)