diff --git a/lectures/linear_equations.md b/lectures/linear_equations.md index dc4469b6..4b9ccb0f 100644 --- a/lectures/linear_equations.md +++ b/lectures/linear_equations.md @@ -141,10 +141,12 @@ column vectors. The set of all $n$-vectors is denoted by $\mathbb R^n$. -For example, +```{prf:example} +:label: le_ex_dim * $\mathbb R^2$ is the plane --- the set of pairs $(x_1, x_2)$. * $\mathbb R^3$ is 3 dimensional space --- the set of vectors $(x_1, x_2, x_3)$. +``` Often vectors are represented visually as arrows from the origin to the point. @@ -185,7 +187,8 @@ multiplication, which we now describe. When we add two vectors, we add them element-by-element. -For example, +```{prf:example} +:label: le_ex_add $$ \begin{bmatrix} @@ -208,6 +211,7 @@ $$ 1 \end{bmatrix}. $$ +``` In general, @@ -273,7 +277,8 @@ plt.show() Scalar multiplication is an operation that multiplies a vector $x$ with a scalar elementwise. -For example, +```{prf:example} +:label: le_ex_mul $$ -2 @@ -292,6 +297,7 @@ $$ 14 \end{bmatrix}. $$ +``` More generally, it takes a number $\gamma$ and a vector $x$ and produces @@ -429,7 +435,8 @@ matrices. Scalar multiplication and addition are generalizations of the vector case: -Here is an example of scalar multiplication +```{prf:example} +:label: le_ex_asm $$ 3 @@ -443,6 +450,7 @@ $$ 0 & 15 \end{bmatrix}. $$ +``` In general for a number $\gamma$ and any matrix $A$, @@ -461,6 +469,9 @@ $$ \end{bmatrix}. $$ +```{prf:example} +:label: le_ex_ma + Consider this example of matrix addition, $$ @@ -479,6 +490,7 @@ $$ 7 & 12 \end{bmatrix}. $$ +``` In general, @@ -518,6 +530,9 @@ $j$-th column of $B$. If $A$ is $n \times k$ and $B$ is $j \times m$, then to multiply $A$ and $B$ we require $k = j$, and the resulting matrix $A B$ is $n \times m$. +```{prf:example} +:label: le_ex_2dmul + Here's an example of a $2 \times 2$ matrix multiplied by a $2 \times 1$ vector. $$ @@ -536,6 +551,7 @@ Ax = a_{21}x_1 + a_{22}x_2 \end{bmatrix} $$ +``` As an important special case, consider multiplying $n \times k$ matrix $A$ and $k \times 1$ column vector $x$. @@ -839,6 +855,8 @@ In matrix form, the system {eq}`la_se` becomes \end{bmatrix}. ``` +```{prf:example} +:label: le_ex_gls For example, {eq}`n_eq_sys_la` has this form with $$ @@ -848,7 +866,7 @@ $$ \quad \text{and} \quad x = p. $$ - +``` When considering problems such as {eq}`la_gf`, we need to ask at least some of the following questions