diff --git a/lectures/olg.md b/lectures/olg.md index 3fa56e38..68e4b6c6 100644 --- a/lectures/olg.md +++ b/lectures/olg.md @@ -303,24 +303,6 @@ The next figure plots the supply of capital, as in [](saving_log_2_olg), as well (For the special case of log utility, supply does not depend on the interest rate, so we have a constant function.) -```{code-cell} ipython3 -R_vals = np.linspace(0.3, 1) -α, β = 0.5, 0.9 -w = 2.0 - -fig, ax = plt.subplots() - -ax.plot(R_vals, capital_demand(R_vals, α), - label="aggregate demand") -ax.plot(R_vals, capital_supply(R_vals, β, w), - label="aggregate supply") - -ax.set_xlabel("$R_{t+1}$") -ax.set_ylabel("$k_{t+1}$") -ax.legend() -plt.show() -``` - ## Equilibrium In this section we derive equilibrium conditions and investigate an example. @@ -409,15 +391,7 @@ ax.plot(R_vals, capital_supply(R_vals, β, w), R_e = equilibrium_R_log_utility(α, β, w) k_e = (β / (1 + β)) * w -ax.plot(R_e, k_e, 'go', ms=6, alpha=0.6) - -ax.annotate(r'equilibrium', - xy=(R_e, k_e), - xycoords='data', - xytext=(0, 60), - textcoords='offset points', - fontsize=12, - arrowprops=dict(arrowstyle="->")) +ax.plot(R_e, k_e, 'o',label='equilibrium') ax.set_xlabel("$R_{t+1}$") ax.set_ylabel("$k_{t+1}$")