Skip to content

Commit

Permalink
long_run_growth: styling and label fixes (#328)
Browse files Browse the repository at this point in the history
* styling and label fixes

* fix
  • Loading branch information
kp992 authored Dec 20, 2023
1 parent 55bdc28 commit 8923f9e
Showing 1 changed file with 41 additions and 59 deletions.
100 changes: 41 additions & 59 deletions lectures/long_run_growth.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,14 +4,13 @@ jupytext:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.14.5
jupytext_version: 1.15.2
kernelspec:
display_name: Python 3 (ipykernel)
language: python
name: python3
---

+++ {"user_expressions": []}

# Economic Growth Evidence

Expand Down Expand Up @@ -68,16 +67,12 @@ First let's import the packages needed to explore what the data says about long

```{code-cell} ipython3
import pandas as pd
import os
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np
from collections import namedtuple
from matplotlib.lines import Line2D
```

+++ {"user_expressions": []}

## Setting up

Expand All @@ -95,7 +90,6 @@ data = pd.read_excel("datasets/mpd2020.xlsx", sheet_name='Full data')
data
```

+++ {"user_expressions": []}

We can see that this dataset contains GDP per capita (gdppc) and population (pop) for many countries and years.

Expand All @@ -105,7 +99,6 @@ Let's look at how many and which countries are available in this dataset
len(data.country.unique())
```

+++ {"user_expressions": []}

We can now explore some of the 169 countries that are available.

Expand All @@ -117,21 +110,20 @@ for cntry in data.country.unique():
cy_data = data[data.country == cntry]['year']
ymin, ymax = cy_data.min(), cy_data.max()
cntry_years.append((cntry, ymin, ymax))
cntry_years = pd.DataFrame(cntry_years, columns=['country', 'Min Year', 'Max Year']).set_index('country')
cntry_years = pd.DataFrame(cntry_years,
columns=['country', 'Min Year', 'Max Year']).set_index('country')
cntry_years
```

+++ {"user_expressions": []}

Let's now reshape the original data into some convenient variables to enable quicker access to countries time series data.

We can build a useful mapping between country codes and country names in this dataset

```{code-cell} ipython3
code_to_name = data[['countrycode','country']].drop_duplicates().reset_index(drop=True).set_index(['countrycode'])
code_to_name = data[['countrycode', 'country']].drop_duplicates().reset_index(drop=True).set_index(['countrycode'])
```

+++ {"user_expressions": []}

Then we can quickly focus on GDP per capita (gdp)

Expand All @@ -140,15 +132,14 @@ data
```

```{code-cell} ipython3
gdppc = data.set_index(['countrycode','year'])['gdppc']
gdppc = data.set_index(['countrycode', 'year'])['gdppc']
gdppc = gdppc.unstack('countrycode')
```

```{code-cell} ipython3
gdppc
```

+++ {"user_expressions": []}

We create a color mapping between country codes and colors for consistency

Expand Down Expand Up @@ -179,14 +170,14 @@ mystnb:
fig, ax = plt.subplots(dpi=300)
cntry = 'GBR'
_ = gdppc[cntry].plot(
ax = fig.gca(),
ylabel = 'International $\'s',
xlabel = 'Year',
linestyle='-',
color=color_mapping['GBR'])
ax=fig.gca(),
ylabel='International $\'s',
xlabel='Year',
linestyle='-',
color=color_mapping['GBR']
)
```

+++ {"user_expressions": []}

:::{note}
[International Dollars](https://en.wikipedia.org/wiki/International_dollar) are a hypothetical unit of currency that has the same purchasing power parity that the U.S. Dollar has in the United States at any given time. They are also known as Geary–Khamis dollars (GK Dollars).
Expand Down Expand Up @@ -219,7 +210,6 @@ ax.set_xlabel('Year')
plt.show()
```

+++ {"user_expressions": []}

We can now put this into a function to generate plots for a list of countries

Expand Down Expand Up @@ -257,7 +247,6 @@ def draw_interp_plots(series, ylabel, xlabel, color_mapping, code_to_name, lw, l
return ax
```

+++ {"user_expressions": []}

As you can see from this chart, economic growth started in earnest in the 18th century and continued for the next two hundred years.

Expand All @@ -280,8 +269,8 @@ fig, ax = plt.subplots(dpi=300, figsize=(10, 6))
cntry = ['CHN', 'GBR', 'USA']
ax = draw_interp_plots(gdppc[cntry].loc[1500:],
'International $\'s','Year',
color_mapping, code_to_name, 2, False, ax)
'International $\'s','Year',
color_mapping, code_to_name, 2, False, ax)
# Define the parameters for the events and the text
ylim = ax.get_ylim()[1]
Expand Down Expand Up @@ -322,16 +311,14 @@ def draw_events(events, ax):
event.y_text, event.text,
color=event.color, **t_params)
ax.axvspan(*event.year_range, color=event.color, alpha=0.2)
ax.axvline(event_mid, ymin=1,
ymax=event.ymax, color=event.color,
linestyle='-', clip_on=False, alpha=0.15)
ax.axvline(event_mid, ymin=1, ymax=event.ymax, color=event.color,
linestyle='-', clip_on=False, alpha=0.15)
# Draw events
draw_events(events, ax)
plt.show()
```

+++ {"user_expressions": []}

The preceding graph of per capita GDP strikingly reveals how the spread of the industrial revolution has over time gradually lifted the living standards of substantial
groups of people
Expand Down Expand Up @@ -365,8 +352,8 @@ fig, ax = plt.subplots(dpi=300, figsize=(10, 6))
cntry = ['CHN']
ax = draw_interp_plots(gdppc[cntry].loc[1600:2000],
'International $\'s','Year',
color_mapping, code_to_name, 2, True, ax)
'International $\'s','Year',
color_mapping, code_to_name, 2, True, ax)
ylim = ax.get_ylim()[1]
Expand Down Expand Up @@ -402,7 +389,6 @@ draw_events(events, ax)
plt.show()
```

+++ {"user_expressions": []}

We can also look at the United States (USA) and United Kingdom (GBR) in more detail

Expand All @@ -425,8 +411,8 @@ fig, ax = plt.subplots(dpi=300, figsize=(10, 6))
cntry = ['GBR', 'USA']
ax = draw_interp_plots(gdppc[cntry].loc[1500:2000],
'International $\'s','Year',
color_mapping, code_to_name, 2, True, ax)
'International $\'s','Year',
color_mapping, code_to_name, 2, True, ax)
ylim = ax.get_ylim()[1]
Expand Down Expand Up @@ -463,7 +449,6 @@ draw_events(events, ax)
plt.show()
```

+++ {"user_expressions": []}

## The industrialized world

Expand All @@ -478,7 +463,6 @@ data['gdp'] = data['gdppc'] * data['pop']
gdp = data['gdp'].unstack('countrycode')
```

+++ {"user_expressions": []}

### Early industrialization (1820 to 1940)

Expand All @@ -502,11 +486,10 @@ ax = fig.gca()
cntry = ['CHN', 'SUN', 'JPN', 'GBR', 'USA']
start_year, end_year = (1820, 1945)
ax = draw_interp_plots(gdp[cntry].loc[start_year:end_year],
'International $\'s','Year',
color_mapping, code_to_name, 2, False, ax)
'International $\'s', 'Year',
color_mapping, code_to_name, 2, False, ax)
```

+++ {"user_expressions": []}

## Constructing a plot similar to Tooze's
In this section we describe how we have constructed a version of the striking figure from chapter 1 of {cite}`Tooze_2014` that we discussed at the start of this lecture.
Expand All @@ -515,22 +498,23 @@ Let's first define a collection of countries that consist of the British Empire

```{code-cell} ipython3
BEM = ['GBR', 'IND', 'AUS', 'NZL', 'CAN', 'ZAF']
gdp['BEM'] = gdp[BEM].loc[start_year-1:end_year].interpolate(method='index').sum(axis=1) # Interpolate incomplete time-series
# Interpolate incomplete time-series
gdp['BEM'] = gdp[BEM].loc[start_year-1:end_year].interpolate(method='index').sum(axis=1)
```

+++ {"user_expressions": []}

Let's take a look at the aggregation that represents the British Empire.

```{code-cell} ipython3
gdp['BEM'].plot() # The first year is np.nan due to interpolation
# The first year is np.nan due to interpolation
gdp['BEM'].plot(ylabel="International $'s")
plt.show()
```

```{code-cell} ipython3
code_to_name
```

+++ {"user_expressions": []}

Now let's assemble our series and get ready to plot them.

Expand All @@ -549,13 +533,14 @@ ax = fig.gca()
cntry = ['DEU', 'USA', 'SUN', 'BEM', 'FRA', 'JPN']
start_year, end_year = (1821, 1945)
ax = draw_interp_plots(gdp[cntry].loc[start_year:end_year],
'Real GDP in 2011 $\'s','Year',
color_mapping, code_to_name, 2, False, ax)
plt.savefig("./_static/lecture_specific/long_run_growth/tooze_ch1_graph.png", dpi=300, bbox_inches='tight')
'Real GDP in 2011 $\'s', 'Year',
color_mapping, code_to_name, 2, False, ax)
plt.savefig("./_static/lecture_specific/long_run_growth/tooze_ch1_graph.png", dpi=300,
bbox_inches='tight')
plt.show()
```

+++ {"user_expressions": []}

At the start of this lecture, we noted how US GDP came from "nowhere" at the start of the 19th century to rival and then overtake the GDP of the British Empire
by the end of the 19th century, setting the geopolitical stage for the "American (twentieth) century".
Expand All @@ -580,11 +565,10 @@ ax = fig.gca()
cntry = ['CHN', 'SUN', 'JPN', 'GBR', 'USA']
start_year, end_year = (1950, 2020)
ax = draw_interp_plots(gdp[cntry].loc[start_year:end_year],
'International $\'s','Year',
color_mapping, code_to_name, 2, False, ax)
'International $\'s', 'Year',
color_mapping, code_to_name, 2, False, ax)
```

+++ {"user_expressions": []}

It is tempting to compare this graph with figure {numref}`gdp1` that showed the US overtaking the UK near the start of the "American Century", a version of the graph featured in chapter 1 of {cite}`Tooze_2014`.

Expand All @@ -595,11 +579,11 @@ We often want to study historical experiences of countries outside the club of "
Fortunately, the [Maddison Historical Statistics](https://www.rug.nl/ggdc/historicaldevelopment/maddison/) dataset also includes regional aggregations

```{code-cell} ipython3
data = pd.read_excel("datasets/mpd2020.xlsx", sheet_name='Regional data', header=(0,1,2), index_col=0)
data = pd.read_excel("datasets/mpd2020.xlsx", sheet_name='Regional data', header=(0,1,2),
index_col=0)
data.columns = data.columns.droplevel(level=2)
```

+++ {"user_expressions": []}

We can save the raw data in a more convenient format to build a single table of regional GDP per capita

Expand All @@ -608,15 +592,13 @@ regionalgdppc = data['gdppc_2011'].copy()
regionalgdppc.index = pd.to_datetime(regionalgdppc.index, format='%Y')
```

+++ {"user_expressions": []}

Let's interpolate based on time to fill in any gaps in the dataset for the purpose of plotting

```{code-cell} ipython3
regionalgdppc.interpolate(method='time', inplace=True)
```

+++ {"user_expressions": []}

and record a dataset of world GDP per capita

Expand All @@ -634,13 +616,12 @@ mystnb:
fig = plt.figure(dpi=300)
ax = fig.gca()
ax = worldgdppc.plot(
ax = ax,
ax=ax,
xlabel='Year',
ylabel='2011 US$',
)
```

+++ {"user_expressions": []}

Looking more closely, let's compare the time series for `Western Offshoots` and `Sub-Saharan Africa` and more broadly at a number of different regions around the world.

Expand All @@ -656,9 +637,10 @@ mystnb:
fig = plt.figure(dpi=300)
ax = fig.gca()
line_styles = ['-', '--', ':', '-.', '.', 'o', '-', '--', '-']
ax = regionalgdppc.plot(ax = ax, style=line_styles)
ax = regionalgdppc.plot(ax=ax, xlabel='Year',
ylabel='2011 US$', style=line_styles)
ax.set_yscale('log')
plt.legend(loc='lower center',
ncol=3, bbox_to_anchor=[0.5, -0.4])
plt.legend(loc='lower center',
ncol=3, bbox_to_anchor=[0.5, -0.4])
plt.show()
```

0 comments on commit 8923f9e

Please sign in to comment.