From 764950173501be77cea3726b829fa91a2b33bae3 Mon Sep 17 00:00:00 2001 From: JingkunZhao Date: Mon, 11 Mar 2024 10:49:11 +1100 Subject: [PATCH 1/9] [inflation_history] Update price level histories lecture Address some content comments. --- lectures/inflation_history.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/lectures/inflation_history.md b/lectures/inflation_history.md index ed5318ea..b04d7c80 100644 --- a/lectures/inflation_history.md +++ b/lectures/inflation_history.md @@ -39,7 +39,7 @@ Thus, in the US, the price level at $t$ is measured in dollars (month $t$ or yea Until the early 20th century, in many western economies, price levels fluctuated from year to year but didn't have much of a trend. -Often the price level ended a century near where they started. +Often the price levels ended a century near where they started. Things were different in the 20th century, as we shall see in this lecture. @@ -202,7 +202,7 @@ The graphs depict logarithms of price levels during the early post World War I y * Figure 3.3, Wholesale prices, Poland, 1921-1924 (page 44) * Figure 3.4, Wholesale prices, Germany, 1919-1924 (page 45) -We have added logarithms of the exchange rates vis a vis the US dollar to each of the four graphs +We have added logarithms of the exchange rates vis-à-vis the US dollar to each of the four graphs from chapter 3 of {cite}`sargent2013rational`. Data underlying our graphs appear in tables in an appendix to chapter 3 of {cite}`sargent2013rational`. @@ -382,7 +382,7 @@ For each country, we'll plot two graphs. The first graph plots logarithms of * price levels -* exchange rates vis a vis US dollars +* exchange rates vis-à-vis US dollars For each country, the scale on the right side of a graph will pertain to the price level while the scale on the left side of a graph will pertain to the exchange rate. @@ -392,7 +392,7 @@ For each country, the second graph plots a centered three-month moving average o The sources of our data are: -* Table 3.3, $\exp p$ +* Table 3.3, retail price level $\exp p$ * Table 3.4, exchange rate with US ```{code-cell} ipython3 From 486ee3eff02ee131b6a50b9465bcb5d374679e29 Mon Sep 17 00:00:00 2001 From: Longye Tian Date: Thu, 14 Mar 2024 23:26:45 +1100 Subject: [PATCH 2/9] update the hyperlink title This commit modifies the hyperlink title using {doc}`file_name` --- lectures/cagan_adaptive.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/lectures/cagan_adaptive.md b/lectures/cagan_adaptive.md index 4bd0b5a3..6ecb5a1b 100644 --- a/lectures/cagan_adaptive.md +++ b/lectures/cagan_adaptive.md @@ -16,13 +16,13 @@ kernelspec: ## Introduction -This lecture is a sequel or prequel to another lecture {doc}`A monetarist theory of price levels `. +This lecture is a sequel or prequel to another lecture {doc}`cagan_ree`. We'll use linear algebra to do some experiments with an alternative "monetarist" or "fiscal" theory of price levels. -Like the model in this lecture {doc}`A monetarist theory of price levels `, the model asserts that when a government persistently spends more than it collects in taxes and prints money to finance the shortfall, it puts upward pressure on the price level and generates persistent inflation. +Like the model in this lecture {doc}`cagan_ree`, the model asserts that when a government persistently spends more than it collects in taxes and prints money to finance the shortfall, it puts upward pressure on the price level and generates persistent inflation. -Instead of the "perfect foresight" or "rational expectations" version of the model in this lecture {doc}`A monetarist theory of price levels `, our model in the present lecture is an "adaptive expectations" version of a model that Philip Cagan {cite}`Cagan` used to study the monetary dynamics of hyperinflations. +Instead of the "perfect foresight" or "rational expectations" version of the model in this lecture {doc}`cagan_ree`, our model in the present lecture is an "adaptive expectations" version of a model that Philip Cagan {cite}`Cagan` used to study the monetary dynamics of hyperinflations. It combines these components: @@ -36,7 +36,7 @@ It combines these components: Our model stays quite close to Cagan's original specification. -As in the {doc}`present values ` and {doc}`consumption smoothing` lectures, the only linear algebra operations that we'll be using are matrix multiplication and matrix inversion. +As in the {doc}`pv` and {doc}`cons_smooth` lectures, the only linear algebra operations that we'll be using are matrix multiplication and matrix inversion. To facilitate using linear matrix algebra as our principal mathematical tool, we'll use a finite horizon version of the model. @@ -278,7 +278,7 @@ $$ (eq:notre) This outcome is typical in models in which adaptive expectations hypothesis like equation {eq}`eq:adaptexpn` appear as a component. -In this lecture {doc}`A monetarist theory of the price level `, we studied a version of the model that replaces hypothesis {eq}`eq:adaptexpn` with +In this lecture {doc}`cagan_ree`, we studied a version of the model that replaces hypothesis {eq}`eq:adaptexpn` with a "perfect foresight" or "rational expectations" hypothesis. @@ -431,7 +431,7 @@ $$ \end{cases} $$ -Notice that we studied exactly this experiment in a rational expectations version of the model in this lecture {doc}`A monetarist theory of the price level `. +Notice that we studied exactly this experiment in a rational expectations version of the model in this lecture {doc}`cagan_ree`. So by comparing outcomes across the two lectures, we can learn about consequences of assuming adaptive expectations, as we do here, instead of rational expectations as we assumed in that other lecture. @@ -442,7 +442,7 @@ So by comparing outcomes across the two lectures, we can learn about consequence π_seq_1, Eπ_seq_1, m_seq_1, p_seq_1 = solve_and_plot(md, μ_seq_1) ``` -We invite the reader to compare outcomes with those under rational expectations studied in another lecture {doc}`A monetarist theory of price levels `. +We invite the reader to compare outcomes with those under rational expectations studied in another lecture {doc}`cagan_ree`. Please note how the actual inflation rate $\pi_t$ "overshoots" its ultimate steady-state value at the time of the sudden reduction in the rate of growth of the money supply at time $T_1$. From 3825e85fec9ab2b18deb72a19a442050bc5d1dec Mon Sep 17 00:00:00 2001 From: John Stachurski Date: Fri, 15 Mar 2024 06:27:52 +1100 Subject: [PATCH 3/9] misc --- lectures/cagan_adaptive.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/lectures/cagan_adaptive.md b/lectures/cagan_adaptive.md index 6ecb5a1b..88d13626 100644 --- a/lectures/cagan_adaptive.md +++ b/lectures/cagan_adaptive.md @@ -16,13 +16,13 @@ kernelspec: ## Introduction -This lecture is a sequel or prequel to another lecture {doc}`cagan_ree`. +This lecture is a sequel or prequel to the lecture {doc}`cagan_ree`. We'll use linear algebra to do some experiments with an alternative "monetarist" or "fiscal" theory of price levels. -Like the model in this lecture {doc}`cagan_ree`, the model asserts that when a government persistently spends more than it collects in taxes and prints money to finance the shortfall, it puts upward pressure on the price level and generates persistent inflation. +Like the model in {doc}`cagan_ree`, the model asserts that when a government persistently spends more than it collects in taxes and prints money to finance the shortfall, it puts upward pressure on the price level and generates persistent inflation. -Instead of the "perfect foresight" or "rational expectations" version of the model in this lecture {doc}`cagan_ree`, our model in the present lecture is an "adaptive expectations" version of a model that Philip Cagan {cite}`Cagan` used to study the monetary dynamics of hyperinflations. +Instead of the "perfect foresight" or "rational expectations" version of the model in {doc}`cagan_ree`, our model in the present lecture is an "adaptive expectations" version of a model that Philip Cagan {cite}`Cagan` used to study the monetary dynamics of hyperinflations. It combines these components: @@ -36,7 +36,7 @@ It combines these components: Our model stays quite close to Cagan's original specification. -As in the {doc}`pv` and {doc}`cons_smooth` lectures, the only linear algebra operations that we'll be using are matrix multiplication and matrix inversion. +As in the lectures {doc}`pv` and {doc}`cons_smooth`, the only linear algebra operations that we'll be using are matrix multiplication and matrix inversion. To facilitate using linear matrix algebra as our principal mathematical tool, we'll use a finite horizon version of the model. @@ -278,7 +278,7 @@ $$ (eq:notre) This outcome is typical in models in which adaptive expectations hypothesis like equation {eq}`eq:adaptexpn` appear as a component. -In this lecture {doc}`cagan_ree`, we studied a version of the model that replaces hypothesis {eq}`eq:adaptexpn` with +In {doc}`cagan_ree` we studied a version of the model that replaces hypothesis {eq}`eq:adaptexpn` with a "perfect foresight" or "rational expectations" hypothesis. @@ -431,7 +431,7 @@ $$ \end{cases} $$ -Notice that we studied exactly this experiment in a rational expectations version of the model in this lecture {doc}`cagan_ree`. +Notice that we studied exactly this experiment in a rational expectations version of the model in {doc}`cagan_ree`. So by comparing outcomes across the two lectures, we can learn about consequences of assuming adaptive expectations, as we do here, instead of rational expectations as we assumed in that other lecture. @@ -442,7 +442,7 @@ So by comparing outcomes across the two lectures, we can learn about consequence π_seq_1, Eπ_seq_1, m_seq_1, p_seq_1 = solve_and_plot(md, μ_seq_1) ``` -We invite the reader to compare outcomes with those under rational expectations studied in another lecture {doc}`cagan_ree`. +We invite the reader to compare outcomes with those under rational expectations studied in {doc}`cagan_ree`. Please note how the actual inflation rate $\pi_t$ "overshoots" its ultimate steady-state value at the time of the sudden reduction in the rate of growth of the money supply at time $T_1$. From b6fbcedfa66e8c88ecefe46130f789dc04ca3b02 Mon Sep 17 00:00:00 2001 From: JingkunZhao Date: Mon, 18 Mar 2024 12:26:30 +1100 Subject: [PATCH 4/9] [geom_series] Update editorial suggestions Resolve most of the comments --- lectures/geom_series.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/lectures/geom_series.md b/lectures/geom_series.md index a18ed010..7a7d4c9d 100644 --- a/lectures/geom_series.md +++ b/lectures/geom_series.md @@ -47,7 +47,7 @@ Among these are These and other applications prove the truth of the wise crack that ```{epigraph} -"in economics, a little knowledge of geometric series goes a long way " +"In economics, a little knowledge of geometric series goes a long way." ``` Below we'll use the following imports: @@ -171,7 +171,7 @@ The right side records bank $i$'s liabilities, namely, the deposits $D_i$ held by its depositors; these are IOU's from the bank to its depositors in the form of either checking accounts or savings accounts (or before 1914, bank notes issued by a -bank stating promises to redeem note for gold or silver on demand). +bank stating promises to redeem notes for gold or silver on demand). Each bank $i$ sets its reserves to satisfy the equation @@ -573,7 +573,7 @@ Recall that $R = 1+r$ and $G = 1+g$ and that $R > G$ and $r > g$ and that $r$ and $g$ are typically small numbers, e.g., .05 or .03. -Use the Taylor series of $\frac{1}{1+r}$ about $r=0$, +Use the [Taylor series](https://en.wikipedia.org/wiki/Taylor_series) of $\frac{1}{1+r}$ about $r=0$, namely, $$ @@ -641,7 +641,7 @@ $$ Expanding: $$ -\begin{aligned} p_0 &=\frac{x_0(1-1+(T+1)^2 rg -r(T+1)+g(T+1))}{1-1+r-g+rg} \\&=\frac{x_0(T+1)((T+1)rg+r-g)}{r-g+rg} \\ &\approx \frac{x_0(T+1)(r-g)}{r-g}+\frac{x_0rg(T+1)}{r-g}\\ &= x_0(T+1) + \frac{x_0rg(T+1)}{r-g} \end{aligned} +\begin{aligned} p_0 &=\frac{x_0(1-1+(T+1)^2 rg +r(T+1)-g(T+1))}{1-1+r-g+rg} \\&=\frac{x_0(T+1)((T+1)rg+r-g)}{r-g+rg} \\ &= \frac{x_0(T+1)(r-g)}{r-g + rg}+\frac{x_0rg(T+1)^2}{r-g+rg}\\ &\approx \frac{x_0(T+1)(r-g)}{r-g}+\frac{x_0rg(T+1)}{r-g}\\ &= x_0(T+1) + \frac{x_0rg(T+1)}{r-g} \end{aligned} $$ We could have also approximated by removing the second term From b51ec91295caa23af662fc7ab5d8a7afdf6d4845 Mon Sep 17 00:00:00 2001 From: Matt McKay Date: Mon, 18 Mar 2024 16:57:33 +1100 Subject: [PATCH 5/9] MAINT: Upgrade anaconda and README (#398) * upgrade to anaconda=2024.02 * update to standard readme * update status page with diagnostic information * fix space * update reference style * tmp: disable build cache for full build * remove interpolation in lecture series * Revert "tmp: disable build cache for full build" This reverts commit 7a09aaefa0cd5a50f084b74f27600ea59d01d27c. --- README.md | 46 +++++++++-------------------------------- environment.yml | 2 +- lectures/_config.yml | 1 + lectures/heavy_tails.md | 5 ++--- lectures/inequality.md | 5 ++--- lectures/status.md | 17 ++++++++++++--- 6 files changed, 30 insertions(+), 46 deletions(-) diff --git a/README.md b/README.md index 6701534b..43c21f23 100644 --- a/README.md +++ b/README.md @@ -1,42 +1,16 @@ -# lecture-python-intro +# A First Course in Quantitative Economics with Python -An undergraduate lecture series for the foundations of computational economics +An Undergraduate Lecture Series for the Foundations of Computational Economics -## Content ideas +## Jupyter notebooks -Content ideas in no particular order. +Jupyter notebook versions of each lecture are available for download +via the website. -Open individual issues and PRs for the ones we decide to add. +## Contributions - 1. Geometric Series (existing lecture) - 2. Leontief Systems (from Networks Book) - 3. Luenberger - 4. IO Visualizations (from Networks Book) - 5. PyPGM (Eileen Nielson ... Youtube Star) - 6. Baby Version of https://python.quantecon.org/re_with_feedback.html (Cagan Model) - 7. Baby Version of "unpleasant arithmetic and Friedmans optimal quantity of money" - 8. Schelling Segregation Model - 9. Solow Model - 10. Simulations of Wealth Distribution - 11. Baby model of Lake Model (Eigenvalue Extension) - 12. Diamond Dybvig Model - 13. Moral Harzard - Wallace - 14. Philips Curve and Nairu - 15. Baby version of the Markov Chain Lecture - 16. Baby linear programming lecture - 17. Basic Nonlinear Demand and Supply (non-linear solver) OOP lecture - 18. Asset Pricing (Harrison/Kreps Model) - 19. Two Models of Asset Bubbles - 20. cobweb model -- start people thinking about expectations - 21. social mobility lecture - 22. Baby version of cattle cycles model - 23. Bi-matrix games. - 24. Shortest path lecture (existing) - 25. Pricing an American option - 26. Baby version of LLN / CLT lecture --- less maths, more simulation, all in one dimension - 27. Baby version of heavy tails lecture - 30. Lecture on solving linear equations and matrix algebra - 31. Lecture on eigenvalues, Perron-Frobenius and the Neumann series lemma - 32. Overlapping generations +To comment on the lectures please add to or open an issue in the issue tracker (see above). -Get Tom's network intermediary paper. +We welcome pull requests! + +Please read the [QuantEcon style guide](https://manual.quantecon.org/intro.html) first, so that you can match our style. diff --git a/environment.yml b/environment.yml index 5792c991..52036b80 100644 --- a/environment.yml +++ b/environment.yml @@ -4,7 +4,7 @@ channels: - conda-forge dependencies: - python=3.11 - - anaconda=2023.09 + - anaconda=2024.02 - pip - pip: - jupyter-book==0.15.1 diff --git a/lectures/_config.yml b/lectures/_config.yml index 348a1881..407cc295 100644 --- a/lectures/_config.yml +++ b/lectures/_config.yml @@ -37,6 +37,7 @@ latex: sphinx: extra_extensions: [sphinx_multitoc_numbering, sphinxext.rediraffe, sphinx_exercise, sphinx_togglebutton, sphinx.ext.intersphinx, sphinx_proof, sphinx_tojupyter] config: + bibtex_reference_style: author_year # false-positive links linkcheck_ignore: ['https://doi.org/https://doi.org/10.2307/1235116', 'https://math.stackexchange.com/*', 'https://stackoverflow.com/*'] # myst-nb config diff --git a/lectures/heavy_tails.md b/lectures/heavy_tails.md index 440eab71..df111e9d 100644 --- a/lectures/heavy_tails.md +++ b/lectures/heavy_tails.md @@ -19,7 +19,7 @@ In addition to what's in Anaconda, this lecture will need the following librarie ```{code-cell} ipython3 :tags: [hide-output] -!pip install --upgrade yfinance pandas_datareader interpolation +!pip install --upgrade yfinance pandas_datareader ``` We use the following imports. @@ -31,7 +31,6 @@ import yfinance as yf import pandas as pd import statsmodels.api as sm -from interpolation import interp from pandas_datareader import wb from scipy.stats import norm, cauchy from pandas.plotting import register_matplotlib_converters @@ -602,7 +601,7 @@ def empirical_ccdf(data, fw = np.empty_like(aw, dtype='float64') for i, a in enumerate(aw): fw[i] = a / np.sum(aw) - pdf = lambda x: interp(data, fw, x) + pdf = lambda x: np.interp(x, data, fw) data = np.sort(data) j = 0 for i, d in enumerate(data): diff --git a/lectures/inequality.md b/lectures/inequality.md index ee006a15..0d59aa53 100644 --- a/lectures/inequality.md +++ b/lectures/inequality.md @@ -68,7 +68,7 @@ We will install the following libraries. ```{code-cell} ipython3 :tags: [hide-output] -!pip install --upgrade quantecon interpolation +!pip install quantecon ``` And we use the following imports. @@ -79,7 +79,6 @@ import numpy as np import matplotlib.pyplot as plt import quantecon as qe import random as rd -from interpolation import interp ``` ## The Lorenz curve @@ -746,7 +745,7 @@ Here is one solution: ```{code-cell} ipython3 def lorenz2top(f_val, l_val, p=0.1): - t = lambda x: interp(f_val, l_val, x) + t = lambda x: np.interp(x, f_val, l_val) return 1- t(1 - p) ``` diff --git a/lectures/status.md b/lectures/status.md index 8309f510..3ada25f0 100644 --- a/lectures/status.md +++ b/lectures/status.md @@ -18,6 +18,17 @@ This table contains the latest execution statistics. (status:machine-details)= -These lectures are built on `linux` instances through `github actions` and `amazon web services (aws)` to -enable access to a `gpu`. These lectures are built on a [p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) -that has access to `8 vcpu's`, a `V100 NVIDIA Tesla GPU`, and `61 Gb` of memory. \ No newline at end of file +These lectures are built on `linux` instances through `github actions`. + +These lectures are using the following python version + +```{code-cell} ipython +!python --version +``` + +and the following package versions + +```{code-cell} ipython +:tags: [hide-output] +!conda list +``` \ No newline at end of file From 0be5f5bd5034385e2769c1d4e5b771e1bd6dafda Mon Sep 17 00:00:00 2001 From: Longye Tian Date: Wed, 20 Mar 2024 22:05:20 +1100 Subject: [PATCH 6/9] [prob_dist] Update Bernoulli distribution section This pull request resolves issue #403. --- lectures/prob_dist.md | 65 +++++++++++-------------------------------- 1 file changed, 16 insertions(+), 49 deletions(-) diff --git a/lectures/prob_dist.md b/lectures/prob_dist.md index 3fb61a39..ba3bc7b7 100644 --- a/lectures/prob_dist.md +++ b/lectures/prob_dist.md @@ -155,73 +155,40 @@ Check that your answers agree with `u.mean()` and `u.var()`. #### Bernoulli distribution -Another useful (and more interesting) distribution is the Bernoulli distribution +Another useful distribution is the Bernoulli distribution on $S = \{0,1\}$, which has PMF: +$$ +p(x_i)= +\begin{cases} +p & \text{if $x_i = 1$}\\ +1-p & \text{if $x_i = 0$} +\end{cases} +$$ +Here $x_i \in S$ is the outcome of the random variable. -We can import the uniform distribution on $S = \{1, \ldots, n\}$ from SciPy like so: +We can import the Bernoulli distribution on $S = \{0,1\}$ from SciPy like so: ```{code-cell} ipython3 -n = 10 -u = scipy.stats.randint(1, n+1) +p = 0.4 +u = scipy.stats.bernoulli(p) ``` -Here's the mean and variance +Here's the mean and variance: ```{code-cell} ipython3 u.mean(), u.var() ``` -The formula for the mean is $(n+1)/2$, and the formula for the variance is $(n^2 - 1)/12$. +The formula for the mean is $p$, and the formula for the variance is $p(1-p)$. -Now let's evaluate the PMF +Now let's evaluate the PMF: ```{code-cell} ipython3 +u.pmf(0) u.pmf(1) ``` -```{code-cell} ipython3 -u.pmf(2) -``` - - -Here's a plot of the probability mass function: - -```{code-cell} ipython3 -fig, ax = plt.subplots() -S = np.arange(1, n+1) -ax.plot(S, u.pmf(S), linestyle='', marker='o', alpha=0.8, ms=4) -ax.vlines(S, 0, u.pmf(S), lw=0.2) -ax.set_xticks(S) -plt.show() -``` - - -Here's a plot of the CDF: - -```{code-cell} ipython3 -fig, ax = plt.subplots() -S = np.arange(1, n+1) -ax.step(S, u.cdf(S)) -ax.vlines(S, 0, u.cdf(S), lw=0.2) -ax.set_xticks(S) -plt.show() -``` - - -The CDF jumps up by $p(x_i)$ and $x_i$. - - -```{exercise} -:label: prob_ex2 - -Calculate the mean and variance for this parameterization (i.e., $n=10$) -directly from the PMF, using the expressions given above. - -Check that your answers agree with `u.mean()` and `u.var()`. -``` - - #### Binomial distribution From c2c1c8e2c8b19078833f74fb3bc360bac17548a8 Mon Sep 17 00:00:00 2001 From: Longye Tian Date: Wed, 20 Mar 2024 22:30:46 +1100 Subject: [PATCH 7/9] Update prob_dist.md --- lectures/prob_dist.md | 2 ++ 1 file changed, 2 insertions(+) diff --git a/lectures/prob_dist.md b/lectures/prob_dist.md index ba3bc7b7..d56ec24d 100644 --- a/lectures/prob_dist.md +++ b/lectures/prob_dist.md @@ -156,6 +156,7 @@ Check that your answers agree with `u.mean()` and `u.var()`. #### Bernoulli distribution Another useful distribution is the Bernoulli distribution on $S = \{0,1\}$, which has PMF: + $$ p(x_i)= \begin{cases} @@ -163,6 +164,7 @@ p & \text{if $x_i = 1$}\\ 1-p & \text{if $x_i = 0$} \end{cases} $$ + Here $x_i \in S$ is the outcome of the random variable. We can import the Bernoulli distribution on $S = \{0,1\}$ from SciPy like so: From 46e870ed62d2cc6ec325995d6e7939a3b560a7ec Mon Sep 17 00:00:00 2001 From: Humphrey Yang <39026988+HumphreyYang@users.noreply.github.com> Date: Sat, 23 Mar 2024 20:11:09 +1100 Subject: [PATCH 8/9] Promote lectures to the intro series and update related files (#405) * Promote lectures to the intro series and update toc, bib, data files. * enable build reports on failure for latex workflow * remove interpolation section that is not related. * Tom's March 19 morning edits of some lectures * Humphrey's 20 Mar updates on math aligned syntax * Tom's March 20 edits of intro lectures * Tom's edits on March 21 of lectures in intro repo branch * update captions for graphs in lectures * Tom's afternoon March 21 edits of intro lectures * Tom's edit of toc file temporarily to remove two less complete lectures * update doc reference for XXX in text --------- Co-authored-by: mmcky Co-authored-by: thomassargent30 --- .github/workflows/ci.yml | 8 +- .../long_run_growth/tooze_ch1_graph.png | Bin 165154 -> 165138 bytes lectures/_static/quant-econ.bib | 85 ++ lectures/_toc.yml | 9 + lectures/ak2.md | 1172 +++++++++++++++++ lectures/cagan_adaptive.md | 8 +- lectures/datasets/assignat.xlsx | Bin 0 -> 209555 bytes lectures/datasets/caron.npy | Bin 0 -> 1136 bytes lectures/datasets/dette.xlsx | Bin 0 -> 632030 bytes lectures/datasets/fig_3.ods | Bin 0 -> 30366 bytes lectures/datasets/fig_3.xlsx | Bin 0 -> 9466 bytes lectures/datasets/nom_balances.npy | Bin 0 -> 1424 bytes lectures/french_rev.md | 1031 +++++++++++++++ lectures/laffer_adaptive.md | 465 +++++++ lectures/money_inflation.md | 1008 ++++++++++++++ lectures/money_inflation_nonlinear.md | 452 +++++++ lectures/unpleasant.md | 524 ++++++++ 17 files changed, 4757 insertions(+), 5 deletions(-) create mode 100644 lectures/ak2.md create mode 100755 lectures/datasets/assignat.xlsx create mode 100644 lectures/datasets/caron.npy create mode 100755 lectures/datasets/dette.xlsx create mode 100644 lectures/datasets/fig_3.ods create mode 100644 lectures/datasets/fig_3.xlsx create mode 100644 lectures/datasets/nom_balances.npy create mode 100644 lectures/french_rev.md create mode 100644 lectures/laffer_adaptive.md create mode 100644 lectures/money_inflation.md create mode 100644 lectures/money_inflation_nonlinear.md create mode 100644 lectures/unpleasant.md diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index 5e9c5e60..ffaf30d2 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -51,6 +51,12 @@ jobs: jb build lectures --builder pdflatex --path-output ./ -n --keep-going mkdir -p _build/html/_pdf cp -u _build/latex/*.pdf _build/html/_pdf + - name: Upload Execution Reports (LaTeX) + uses: actions/upload-artifact@v4 + if: failure() + with: + name: execution-reports + path: _build/latex/reports - name: Build Download Notebooks (sphinx-tojupyter) shell: bash -l {0} run: | @@ -66,7 +72,7 @@ jobs: rm -r _build/.doctrees jb build lectures --path-output ./ -nW --keep-going - name: Upload Execution Reports (HTML) - uses: actions/upload-artifact@v2 + uses: actions/upload-artifact@v4 if: failure() with: name: execution-reports diff --git a/lectures/_static/lecture_specific/long_run_growth/tooze_ch1_graph.png b/lectures/_static/lecture_specific/long_run_growth/tooze_ch1_graph.png index d8ccd58240c3144147813cf745eb4f207c0b1d77..a3833f10307a67d173f8733e9625f8a90e478bda 100644 GIT binary patch delta 48219 zcmX`S1yoe;_dP5iQqoALG)Q+N?U0hv0@Bi*SEO5|yQE8`yBRtqq=xS9p8xgp{k`v6 zcd=kC*33L-&U4N_d+(DQf&L=`{hIs zU!!aFlL!hOoh(c6vs8V-{}$ja-l{^iva;mU&V-1veE{>%lK&e&gbzNy&gKuHn6y%y zxmM$3Z;VN^k%JC>l2?#gPT$WoJrsBfXf#1MQm9oJ=~4mn zJ4`c+Ewiv<1F3|ehRwk}=&MC%l6r$HN{)n<<)oz$1TsKfMM?APB<+-E1)xa(IG41P*yo*bnU@}LaHI4>aD`@C|Q zyG|fLAQvnpO-}NJaUJ@8H;wb$$VEixf}Ac?PrMFi&FKICTqFNJS2UTXyn`B9tBM=V z#fz)1E_>Bdp(d4+RUVm4|B#cZZ7vOGtsq`*zP#hj>G~mOLwL@~6cRZC5m!BgRT^@C{G_njotHXYzwy*@H%*vPQ3i+vcNf zBDI7q705B49+Se&DI=ksOR}Z~=)ecB=nEng=a-UU-RsDosz~HyFcznMX6Tk_h?3z*xn= zSgfpMs;q1>GUk(iW#Ca?IQxz8C7z)FOEJ8+*rCUZp$qxA?gAvZOzo}U%z)R6ZfpgTcD>%9n4aoHAAuv`o<(7m;@|6gUYv>c+$j~zW3%FEH z=Ov0cqsi7%pU9N5;OV8EVK048paLTEf2TN=bg|_tD`vLA$NzvIX9S?~aRs#21T@_@ zD`5wtW&sf=Q)4*Z2k%|s-bpp+G)LOb22YQ}+%SV-wI|IL@^M$w0+mHx@DyC#7$wVN z3CX3p%7^XUmS@la;-f-B0-}zNvLvVW3_hACw5a>pJkr!t_~X7dB+HD$ zF}3@@n-+$mVrLWaaQuL^i7nBSnt?Pu+&tO(E>;FLOG0(yuO(`RSR?~YJPupqH;&U- zhtYB}cC7@(X=mNv{41Z)T9J|DKtotD!zoj zfaVtd3;);7w!1hj_NXU&7kW$)6{+pwzV#p+wm3=1e^*qLv#e2wyZy?Rz{tnXIDQGx zkEM*n^|}*XwalcsIO(<$7n)#`DIJU%YR@!Uli>JSe@KjkAOT<5c$VRROYsUUfXaQw zfi`WY4UQ<}k9a`~bsN7L9~cd&ZhhudOb!uJu{wi@AWLzH);$+0>V4GAeqX*&B9nc{ z43?Hhy%AAh$Z8Rrce5**CV}KTLCgV;GUtQWAtd>EkM!!rmV1>EP3Bifl?KMNoj>b^ zA*fYsbl>p)t1cpP%)$C^*4}WKRhDI!Xz@;6ASO)vj9ld0YD-+*wp6Au=y8Twluac! zAoy5^4?8?C+$I^nD16dN6;YYxQh!%jufZ8ciIo#9wbMD?N)`HbXO+{!0pJM8lNWe! zpb7dCdrtp!I!Deky#+b4>rvzEkPsA-OjBKU$Dj$CW7sA8<=J@Jpn#J8w9B?XUDNVF zDq#Pl5pQ$ip(#LvBVD@nZpZIu)Y~6&65?#0@VUR()RViHHBCN5P4Ado!_;(9{|9I^7CPDf*hxENPnOMGF&Ron6OBT*rOm1XH8Oy$a%Z zjuH*seL;RZnHcmQ!o0QB*17Sg-OihgcD%2uE{pNIwdt$b=p>rtv#-VFraB)lJW^Sc zj-nAb5zo_-sACX_fc8`Ujkd?bXq1m>`PMggcP-=AH(^9lnArb{Cl3`3rDGDh`P0OR zP(jJUeYztH-da-3H9nvDt2`X3FuUA%B00V(Z0nQ1Y|K-I@!dB!@ZPSq`n2V~V~6dY z)Ao0QuBa7H{GST<99HHz&x}`x$G$pX81b-f1{+Mf4Wcgt<%dkJ8A}gb!8mU3sOkT; zYbQy;l$W*PXp7FsTBSKX|)T%H<_DO=QG_p^B$1S0y{RE#97*~qx2*xt21_y12Iea74cjcxQf~7-+oYovx zu01@l$?ws9&urC3reVMIzU;#S;v{ymo z&+^{$(G4927oXnGOM~T9nAO#rxx>(lTO4JlOX4M3ByaO#9nY2H7v_)$>xvDUWHu-B z*rV@%fF-ajV$IRx9giWxsC1ZMhVe|9)VenEH+bpK`x?+lMUD!*^g?D*B(`bCDst2e}SIT;u%^y;=Y#zflhJ(m)H zcbZttdI1Cqh@fmh3eM~CSFU@@dK6;=VY73#!)O~esJ^8p--nThmuX}@fM;ThH zorwBgFQiz2H1<4rOP?iEtcw>~vM2rHhF`tFg&zvLO)?7`kGn&@Li#_1*&0M!kneMn0A*?PZ= z5|22zlM4feLs56S)Cc2MzS6nCdumHvnI!U&n6ov9h!si{Bt#RK?+-r6~% z+gcPf3WQ^$vJvzs)tc1Qo790nYr%44@^ilBzK%cY!^=&<<&ocNd>G^l_jA9&DotqL zD04Ze#X=+jOjf5XoeSvHBSW&2_WH4E->#)~we3{h82~aELEWcIfKJ zmVcK|JGE}G(E8!D4a>iYF_>lyO)9K>W!@;f>hHC{g&y*kzt}nFHD&WS9-8NzkBRlU zMc+rKzLDAszKQcn+Mk7sSJ>ndX;JtCD2y?1%&ygLpxoi}i%q+MmaUX_6au&Mftnrp>*Ho zr~VJqdK4Bp zaE9~!+(;FEel>BHTxI#ZHtS0QQj;h{ZRt1Si+E$8o!YQ21kC&uwq|% z*<-R(jTxFh<>2IZL6!Tb4>m?DmpnQOa7@6itBK`YDsN{AAf4eftJkoBZ+-c*Kgq(WSM7yJ$2-X1;5`MO5)UNo$Yc%n7v^2q5oGY0%nf~ zbd3tUABDlbq$yvi(JUUJ&vJP6hhJ`L+*h2por-Nm{`_|0LEN<+<}(az%Qs?OJs@69 zPKIc^lN{Owjb_lg9=(@}P45kZ)~}N3t~X3DeLvqmey*AFax;?10Y!6W_|1-RXQ&Du ze0~;H;*mF%U55mtil_nNRBf;+)ixY#5FU$8A2B+bv2tQdDgm1v9lNR-C}9G}xnB^@ zTiOpTzuoTB?M^_fvT~-}s7( z%JG>i(U2P@1A)QFw(T*2V}n9bn|fyR16Jge z5E!C+hOnmI3L#B&J}Iuo9jnS8|LcUC1W^dBaZ1kbAEEspBql&HK~eW`CB|8%X=M3KfNyA z8*j@WSvyL= za@bU*7#gZ{Uhk85JE7N+z3)FiZ@r)hg%*GtMqJ}PEVYT4Q6MF7ZqG}TTw|Ss@Bcb76hsCPVf6TO5H#6F8Jw>xw zU!TKZ<4;-6yYP(KiR8e$?;<+E#VveId;Z&HwO(dz7^{2z-fpNPW>mW+6pnv&tGr(9c=F64q{3-`0SG;x} zV{h6u6O6#{p($!U!Wdod!_yH#Y+tG|8%q!lrtaqSnJ;)!KTd@1tWZFW%=gA&|GGuD z5o_9V^ZDJ|%@2;75<59=XPV8f zF8X9|GqcTG-VxSfe#a*j$MIX7VL*L5d5~3}|Kg!<>&;bN_^bex9Ky@iXR9%8?V{}` zc70H|>{Rpq;bY*-3wYI1bF%bQtI>yAybVkK_Vz1$$BlD0q-K<0^$7Jgh&zy@U{MvO zRgNE4Pfd=2^X>(g(&Lq~z(upT0H+d#^6ak?{^{ScwKd+XJ_4oc0DFikBLOB(%pF=U z;-3=!>O9tcpt2%2nGN3|_Vd6sQ(fW%KRO60P~x2p%Ld-D5OJtKZM;s1Byz$CW|N57 zI?sWcSruUWcv(vaOugOM-v^pmeT4(yUt1qMt60|};=e+V! zTm0C#t$^|pKzN;TExvqSG#gm5oSV?AI1W%M?FKt%|J1pcwUeWM5eSTV2Mh^sZTY8# z4;Wi}Cq4Q}$Q#4P4xa{1mxAz(0~OoRHZS_Fr>=u^2Gx9i!6dXGe3LH7+>yvOo8@RZ z&!noJiG{}X%y%inhe1e+NJCY#blDiBk@f9i}Ke|Ws z_eN}^NQ=Z-Lr~WX`HTJW7E+xsdX!H#4(GiPZ@NM|{fGzr=r$6pqJ*A(jcfxeAVL-6 zbcEyiJ=ucx6gA(=3`=UR4+2&x8ILdGG~flhhS(SI_jh+s<9%DT6vNrG=euhTU$kuO z^pyjFou;aQ8dhj{d)*QWYz7E80ud`t~*tLzCUGYs3zCc9}itEAIRFc!PzxMn&8M zSmD5OXog3zbZhB?1WzLBx?!zcLn4i9brgBsmd@;iTi-u~1!QNbw8!#i1sG?V1>=aw zGWV-=EQWr|_-s8@qW^P+U0s77@zks*_Ti<4E0Fyp*BU#G{qxxthvb+L#|qwkn!4k; z`7f4oJEAb@S?e7^H^Lnpp*E zdH{sq2h!7I0{wpX3k1eK6y}HaV=;jW=eH+R;z}!X?;oHsxPsmU#>P~sG>nKrIM|uR zkmzOv2!T49rp9l0Z=|DK9n3%-hiyI1}-3!D5TiDN4ZYpD9 zl_x=&pR@M)AIwaA@i(!K@uF^ag<3qm7U`SX(GW6lyFoXm%;&+z>GB`o1Zb|%%ykK1 zzHy87?b4Tf(@UA7ojLnAC@7~?B9N6iE<|X|DiyiR`2dCvO^~OA&PI})<$y@qF*dQl zOUm$IAtLNkt2e_r*??-s9FCOemomIz01<;KaN59&QGdF>sTve8(2wwp#3V*oJBbt) zv9RKu6$)W=8UArPoS1?3$E}!E3Ou_Cv<!KIm2A8rT29)epW!?K%xRE4|b`& z#^-z^%MoSsw#qXDj6;&1UE=^7ZwNMANLZx(&!m&P*0%MpQqJ4%d!MFWl$9Hu&iHHB zXDPvm!Ag z!pxGy{vCc*&)jy&->`3dSqt) zm5?b2)hROT(EmU^S}BvE{U71)6BIX~*617zc8z!rgO1e9<(YMB|8@_IvgLc<9e;^b z3CDZe9a4Mt*toIvEoZ@7U&YmA%GlNYy{?0Uo)$OQQuN=6fbR;~@<1Nh(a_I$P%;EL zNq6Dsw2`kBX6|n5R6EyO96>m_^twY^4zZ(W?@b;Bu5I5XzsOSdrujo#h0`Z4oI(>M zxDt;6>VNm*1Y7&qS`oQ=ZA(OhCgpJtq|foM$}Z6W=o@?e4-mh7T$Q#9m=$(8@pg%r6*!_D&OHMW7v44%4SnTKAt^)Bp91dfJ?(Ixe9;iZyVz9ARty9krQs88^ zyf$z2t}W#{=ZCIGvU)_s;1BnL{)VX!B`O@u#&i2x8ik_9JicuN;Wv36l$;OaUVRuN zdnxz8vlw3!4JcujX+qAAt3igl*ZK>ELls@ou-5jTMZFkb+~F-1P%TIy6L><~9oAP? zm7RJSLwTEJW$RP1YuEFnKB%LcS*&sAqUB?p{rPsKA zw97tnMnOQql2<_C{+H`yefIaQ&IyD0igOqk3s;ZC;Wru2_J&D(k&yJyzG_UlMOhKh zlA60Xbb})10lmW~^oKyQ>Ug~m$UY3DYYvo$w3~7D2~uHVJ;h%1ty}Dp%o6xVj=5uTj-P+wtnbNY~7`Fui4YDY{->fSYEP0CJ7L zoYzOq2BaNt=uvy>wusj&rTAc;24jr{I**#A=LTfABJo4fLn_Orr0-)W?iG91V|iPn z=Zya=$kTpz&m7D(kH6O;;mQF^c#6Tg?3GkK31?cLhdM9p%D5xvyw678f}APRfJ$Mp zQ7dHg>{W>lyGE;%%b~h!J|0&2^v7kkP9DoJ->tuFnAu|T zfMC-6hv7sc3OKQj1FUtiG@ zd7k?@Lv0n;L2vI;=6uB&)8!=|d`~C5?dG-j#!71u0jMrsf;iJ7@i(YabxUFR<=Tf6 z3j>EqIK`k)ZOsXMo_1EVs=|20XW2RJWgL}~X@c0Nw#1>GLO>?gKR|{x6mR$n;|&#yN+?NTQPx(>+6Am1_3VKBW` z4{S~OS~4%F#}+kXK7V-NfZmh5v{!}`fGTo-ZBEVeTM`FkO@G4lneGd3M7eae4OH{i zc~_uF?S`{>!|TTY9#Ur2y&U___Yf>|Te*3R+rgM(u|EbW^F+`0-9k|im*_N9;~<%gI6L-d zX=hfca=hL@tS;y(Yz4&8(gDGZ%U3K*y1g1s=LCx)uU0G#eN9{CAgeDh*l3j*5Nx&K zsj=SsR1k0K{mFWyvQd!WKs3hL(T^~HRAh`QZZl10M6l2-8foJ3HIRtTzU@efYBWuxD4bJFN;~9%PZ8PkFtr zV#a!0aubo3R9c2W05};V;bn2ia(iWJ?umA;tR$8(jHfXp6j~c`6q9kl{H+EWonXJB zcw~P)AS}&7#{J1dGEuTF(3@hNO)i?j!O*T5@`8K4JlGFkBFIAfHI+XuVpX3;(J-gT zwZ1ZiFsV={7#HOB_VVIWQ@DQS=zI1>fU-}UP?j;a`7RyMK1e}%T;8rPy^SToqGEKF zyo(Gr^;gP@F)Va7@z0mpmNZ4Nq@Vc@<%bn~ILC-z_6nVBK2~dVB}pHdwk7hg@|OsR zV?@mqS3bEQL1c`{Q+x(W#ioHqMx&>dg|ls@b-D!wr`yEeX50JV&M5#=5Y@vw{qvzzH5_B;7PKQxtfZXN@25rhG)jp0Q&B@-2n;0 z3^Gxw@iydt>gs`*)owUNQyb4Q%`tN~hkLMAZ3G8U^(?U?lhJg*F(vI0LZJMI7Tjr63(@2j`^XMkY@)V;SU z%EAdNnHHcR7SvPR#ePQ0zffxSW29jPohMW>;2D0kyf#Ge8}fxrrBa=mLAuOMmcb! zGwtnPO}S4gJ1nnP#%Rn1Zeo3zFnW8l|m7~TB##SAe%lWNdEV9|6@W0mB?u3g;o z>(oyvFpw;7Gj6;*Eu?JrgGq5n853gxSo5S8BlB30&bd+}j-u#6U<|aJ<%&hePAe6+ zNfLyl?jOdhw7=!Qe%tNj=O>{Ez^InLJ6bi?b>u%FYuhO9q^hJ<#&wRHcn1dFxOz!6 z$5}X(t;}6Nu_rF!y(;wGMo@mglhNF)buDI}SmDI&ebw<$A6Xl`|3bZ@l*xj%XCAAs z;CUEROS-#XHpl958`02d?i9T|g*hR~R3A z7WF^AgU=kgc^oyWZeL(9UKr$-QRzx|^SH$9jfk?|17>{^GxA?2hkVuITdlOZk{?bM z{S6ufOPh&UDeeV3+$!1hC^_3)l~fw|jC*Dip?bo=Xv~iPa}l1d$*${tEDgcMn&q_y zxa@;oKdbWf1n|X^>Q98x$;N@Yms{!c*>+^?M+66PkxgyMnv;R8YrcCLayaCXYnRLj zR_)EZ(jV*fm`CcEj*cG(FIjC+xFH5P!TLj!c=ZU@;Mj(Acz^Q>o@A$iTSVg?L4n02 z89DlfnpJXzB$YR-U((wu1X7^At72=0m?PHt&2N+}I6rkNIv;u5e`*2JKNKE@q%v&- zjvy-Rp{+GhtuCm;0ii8`Qktjrw^vGdMw+b{ITjim(;tylh@xRi_cqHv;4=%Kh#Yx!OKsDYdJ5?9^tlsB+XzkTDr zP=2I#P3|1$v};pg-mmZdJY;frm+=MGn{TyUHQiduWC%n%%dbnqy;t$%yBV>207jsL zj`&oAxq_-=TW8SG6@`(0hVEZ~KH#yh3gZKnCXq;>wIK|2Wf3ZtUSGrFrwv?I9wk9O zje?YpQ#1;GV)D@4eG?ioE*)JNg!@mp`F+g3eY5Obv3ttc^%hiRd(VrB`w#@tKrNd# z0%JL%=<_;fj~14fM?eja>}ZDcL>IDi6ZY^*#)6^w6?bqfmK-(m^FTjxk#ohUmy16S@uUuzLRt)c!_`Ni>jSM+F<%9186xkw!n zHY0jd8IqTnJjA37M~e0^8LDRxW{{i)EF9jL=^K4KW=i`S2Q|!#vdFQ-y10}+(2r0F z*d2V1l#|1jb#5P48@%^IJ;5|uZ@Q1_o5Cl7f%Y~qj$9!5F4c*VzP0tsV*A(j_OGq2 zs%;CW-y>O{=WU~8$VaG7jQ(_Iyi)Sef7Il8IecXQ&>hu&FmM zF=^dyGTh6FB}JW0iP@#cJilH>Q>5v6(lQDtuK#FWbHtfXfb0<-B_i9G(wRRHx$Syh z@r=b)_1UHM?yv~Ru>>HUlM{uLn|<7AH+NpsX~|UGOmMqTs;WVtmhh5LOi8;W%=XHe z>X=#{gDs_#Dz#7Fd|2AY}NREL4J40+d`#qaw zjfpXeiXbMJ=42IW`B(BTgs6xQclfh{J!zl+_~M6d6h;8Ai(+}ZIPbDsb2j8QHV1$g z`%q=w z+t3ty8{6Vk-}S!qk3m*R8)IwM;S2J@gYvJo)ObQFme5$fq_TPhQ3_oXORE=40pb=c zac=d^+712HcJ~tBCf%YHxOXm-kQ)$afh3e;kAK$g33)V$OM)CI6*O!hf&SmA?Qafy zUse{JV?ujh27;b8>@0SNmS7yRk2Y^<~(dfod8|9MHnIy!fU#EbM54YkLb-?vFt z;42+oY#a#m-gu)c^XSd{w@>m$cXk?QTd--cM+b5so>Iq8sWo3a1az5~0ayIcM-H6v zdTZH9xi`LR$h>!iPXaDBj)(2u5{1#Ak_sp7xj*(3okyxN>L06UFV_mmFCDMd!*aT# za3n4JfYy_J|9RaDVTz|6Qf`9t)5&vZEZf>!AaIm1c=o5(Fx<$)98z=$0J1)mBQnznD=OOqb?OSk2|Jouw z_!icqy$^30)h_5?5HhuB*<3&3tEzKck{qlu7`!E2^<2;X@EIEoOe^d+n@vR!2DTMkD9c+ZH(8$u*SLjTo1F75h=@ZL<+)Z&Is>Cf_4v*#d z!_!jc4{*dim2B24JK2`S2!~owkYbU zSOL@2CBbofsrGoWVp800nVtu4nw~zkQE^2*>kfsBR75}E)g@ehZFNMspZn!D@a>*a+_K>I*NrF z2M*ud!8*!cxgRptZBfZIf=0Q@N^RQI7tpqs139(r%jX{+CDB`6z0WAjPCf6cm3xtC zU$XeAQMB{n0k9UVC_QJDc?~6{sz?6ESg||O!%tHm!+;qxo3%O$)39vlvNU2hZX~qw}ROLCuFA?Wg;9a491U=^b-09~Y?c#TFU0MzsED z6Yyn80^Zm5ZQ4<4dJ9H5eEc%L2VnyHwC?Dee`pccYhe`>eSW2V$UmtTvlGo&l-7Y_ z&|Fb&dNW>}^DMIoRNDi&7W5ZJ1&v?Uw7=zh(P(n6A`_2{^X5)y{QR-~j*haMvnwri z>h0=zKC$@2cBA+m_WOE7CZ6Y2;+67oT4zr{+TIH-L$f!$L*Ji_B{3Lukc!k4O+G4m zkNzhOO8jk-wAo`*0DUZ1{Y2S^J9oya6d@n+SW+&bn%v9R^}e;IkWNQ=4OpRiMAaz} zu9tVQwxq-}+R;H}-O#SBnSp-%$;h%zcxuuetOJ=4e?rCSWDo=8`o?|DSQsY<`XIBq zC8Ot>d(}0!*!I>Y`5@W+UVOAwairCS9a4FRR{j(9(+{hoK7WpKs{kq3!J)ceYbQb` zL>y4<_uzGo*zaX^lZKw2xv4-$aXG(|r9zExQSVQXmC8z5kCGoCDMvYfutp(^${^j> zlbLNmB#_iyKEt`jb)mM-N(zXNfK;dN1@0yW)%&L%+H_ZMG7Il#ppn=|1l-q<1MS5B z9!87pJ?P=#&UcjN#A@({ROvA1-^dGWCztZIvD|*QN|yNB9(orFg3=eW0h5z9&-f0@ z(X9&>bupAiRF#eywnqab_A+)HO!HAC1)YO5&#dvnK?>*!0B(y8aj>Yi#&h5yr&WN{ z_FLs^srHUmxCQd0k`Bx=dwsheFg*?E%Te*~yT8S7I6I!2)JpcMY^(~*3Wy2ai=A-Y z@guNrQwJ7%_Kn6$LZH5N#VZcxn_6eLeWm3uP@bL_G`ek`5tW{|#Cb*kp3=MVWw}Ew zG~EV=%x7;ERC-5G)h=+kXVBv|$&?bIN37Db3Y`PzgOeVD6e7@poxeyPT%RY{PyDYi z2}?>@PY7<%aiv)8ZqUivt@wC;0q>^(ZHnhtn`00I z-baU+B_;Vwg8N|dP{joiX64YMP?LwtyY(%JkX7a3d`@fuV|)A0P|)XJHc*A_Ra#Ld z901`l(KLOA7fOodl8y&XF&^Dc6FbtbuD)%jfKys_{F==wKKrJ`=VF;G$|X3#@-W9D+}Jw8Vg^T}=2SCc~gWs(6T$6BnH3e3~Rv$v-iy@pgJC(UwcA?cD%# zuB|W)t&$oxKL6{WD9(bdg_)BfcQ*S(xrTT+j{aY(7!~R`x|$zSm3FxYMK2QSUPWX8 zksm!v)!bYumD4Q+e?OJ9;D4WTLt_3y*2@ZFiq5(1)?3r!yMTCgwf^{buKm4p&2RtZ zYoc?cY>5E0DB7qHbX(4kkbxY^${%BYf0)0sS4pEN=+v|IUsC9CQrtwz4UMCWT;1R8 zJUHx}or{R*F|KK(^9RD@huoIu)Z*4 zF%axIY&PSSHVL;wYPscwALY8M{O>#}_5)vWO9e%t(ugVbpV)Kpyi030 z>&{Uc9dyidjSin=O8m`P;{Tde>^XOM!Qh#-)y?Iz#hCN>Yl(cvE-eQ7k04@+;Rw`M6coLH6O?K#PXmM5=UW@R*Jc+36GM;;=ct2fIo z=b+N?1H)_yMavEE4*QtEF9lq-o0`W+i+27^R;t>PwDTQR?sW`hq*>28@xXI$(HPuF zv!CiW-aeeoKAgE{DC*$OiRXCv2mW?m;lPESgg&6GG7!3ccK0?6MXwwcgUDoc{jOB( zNZsA#-&*1kL1I&BRMOX6J%*CqYwkBMgaoM)K?BD8(pwYYzwY1BLaSsGf) z%%ng0YeUS?1jzdE7*Kuc+SCRSY&re7mDsyS?oeoK+nBz*dcp-JGjv=}B6#uWcmpHD zcw6d<0_YpU^cO!iEhYv3%`8WFsPRT4S-I?YOYeJrqTk2P)vo2MAM|xM>>?jXA1jqc z&Q1bHBwgOPUjChpheHa#<1%&6UPegQOVxB9${9z%u+daB(rNx zYi7Fjyx>)2-A7S>M%$}MjzzUFJ2qA@MooaB1`L){DQr#A$E)Ap-7i-DV;#yAnS;|t zOgY%R>U-(`?H1}|jDo`TiXH`j#(W_$aB0>&6Kz~X233-G^jQp~V&QdTif<43nvTqFP5@}_cjK-SwpogO z;a8wn(L9C&C8hqCX8Eoi6ztFyY>wiW zi0_QoXZgKEhCrY+!2iK*=B2*wuy#Rmxe@{n5B|mTyB(|xUU!LTiujN!+BHhy(H5RZ7>!NsTa+ z$o+oL|ww-3LuSOsY-UbOZ})t;VrEp^ESfu-%oe3!pH5SU{! z@0ZaMcWbir!znAV-sR!ruKvFcHE}ZF)?EcQDe?Zc@N!b)mTFut5yjq5XPQto1(NS8M=2g-l#@mMypzMhbmhcuRe6 zvE)P>90`tQklXsk@h&{HGeDxzZ?mLnj2}yZNZgwJ z8w3_q+~@cE*^W;aD^(*&C*9AOF37q07N_s{wWfwN5fO+z|Yt>3LZ z*Fr1Fce`>9Ed>k`Z6n{z5|ZeaTM%=Z&JE`7&0sT0lnV%U#0_lE7!+6Qn(z!_92)_03WnAk} z@_t|0Ow@vm^jz4=)Dh-EchxfrBqz`y#Ot>YNQ44i@*tS_bu`vzYM1G1mlEIZHx%2h z(RKPPq}A7{EN*q4UM0keFCSVTFw4CLm&~h^mkf70slhc& zO7t9L#OuZVPU`vc`;TgS{r`NbraG-ztY`ll@i34mM9DE6&ZB~GeB?|h`;1F{x&W9K zmXJpbsLzdN$WO?ql8>AW9;dvmB>J|B(sC`Evc|}UqHb#0yKcF=f3Is%0MxF|T@1#e zzVP1NyBoYxDmY|PYB6dL)xCT12Ysb-%B-;Fc^=G;U0RtUAb{HfEZm{e9a_iwt@^EYDD?mJ`bhjZjCND)ZdfX6}E7uQeEZ!x`xTCo&+}#l+ z2hz>HYbC3p<-yDyB$Iz%iYj zMhD5${8C$gUFM{gW`({ChW+7{$!y;Q`{h@X$gN|#_dN#u_XrjGvapZ@eA9i`8X(ig zJaKaqW-I9Kek6g5>KdmYT6c**p}ZrC$#YyTA;(-f`^TF`-5pP^4HHnoe`VBl=y(yi zT+&vKvu|hMenJS$Vf^~?HDmkmqV#8Z?Y)j-8oYgLVgR>JoNr`=?RMYjBMYp4H!G2}$#y zlHn?iuqN%Elhs`IS|0VsN!HE(jQ{w*M35z|&(BQdk#bbNMz?pQ%T+d{1zx<4O-e@bHnJ0>Po5fN1p5&j}1 z{6$1ql|*<0Q;l~5{kg~KF>x*Unxn*SA?fE++8yI zo`CHSoYy%X&al?&=Vj^`1fRMkt@7ZV8q=@OCdln&|c?rsi9 zH%DoZkZzD}5Tv_1rQ?8fH%P-f-22>jE!XmkA3XD)*|YbrCYbwA>dy-?V$?t^clbop zP)ny^`F!ZJr7ts7Nx5Uw7Y?9d!Z?ZF4gVO*7=Sk0+~>%U}s7=3Ok!P$+p6S?-P@pbAD3+rNWs0rshg|y!K|; z+Nw+O+?O0Sny=zaHR1W?pL%UXy3)YwKkw<)bQwWF_W2CH`70cQpQWu>gs`UW(^740 ziqvjh^&^{a-}Dm__94K>jPt7mlHB}HoeoL`h9&++rXJUvw$~=_O>uy_;W`NCcRHvu zyQ=B=!9-BEqAVN!;{1F9K)r@?hvnd1Bmy}LaSZ?58TH$7Y>Gr4Icm2w`K_NZAD1W` zVQWXD=?2DYhl(Y`Wt`-wdnT7h3~%ABR|^w9Aw>l?y_4T9@BjX;Y5YQhD#05ucL{QU z^9bwg+*#XJO&FA=E0g`YPtbqMC8y*>efxQR9a?V?V^2qrcYjz|dczpH&(Kzs<-m6T zT#N)||N8L!(-tF@-YbAR7}bG7y`q}!xt}7}^l2tY-f18v^>=Er$L4C3(vP*`@+8r( z8gI~g$>EJx&1D_R8dzCx>(jry>l~G4MUK)@;JQZlTWx@%ogZ&ebxV>s3Dqa(pviW< zgSOT9()_KC;$I^{{i{F+(=fpexeCr{@0=6#TNR+1u0aHS=gODa5==#xKsi9OzD6Pv zjj)ErswVwo_N@jYc_poCy~kTIsA+9!nD$h(dh~Njc()$+oRr>YXxe+!l}`!?+5?E5 z)hC??cwU*7h0=40@Ast@RAm0@LYagX``q<{&ijvHGVFq+=m75I6=Jo23MrEO5lm=; zV-OJd@RVfwfj->pP~xxp9+Hp{)Kbg`rG8}UQSi-w{FG`s0H2}b_~$E!!}pXVy33A!T}k@B558PY1bKa;<)od@je{Fulfu6!88VYu4Qoj z_C+Zc-|Veqt_oOsJMaYpHvGkjNd)tU3tKaF^qaYcw4IXH7nn`S1>Yx|TYQYkz%44u zcv|BjED|kn9qxo0a*#R=VPX-m{rn}df34og+QjY`YkTlkB4Ntxl%%srK`b3mPiGb| z^0jF9R?Yvrti#Yxl87&vxVf3Qxfr>*4*cY`2>2cgvLH{8w=LNSG)1Rjvor5*yG{08 z#K0~Cv9pQ=?gsx~RTp)WGBerASB74who^i~S{(Z;>hdXpw@7QI@7bM}zK0|m4VUT# z3}p$u-zkx|Sm}3`xrhu(CrR{70&D1wm~-2?hzaj#2L%}KKTfKWzaiUOmpp)L_RZZN zm6*N!w5lR{h1)CBF`>2CGql6E8~b8G7EpsMFKO5h9yCWt^4Ay-&AdAmAsKDq7|y<* zB!#SS#L2uMpgrH7v+sCfO?THO#FKVAXt`b6Br@$d+)0$hGTOntJzY?{j(j+fcjfls zN`m$-BO|UFF(36<8fDlsM!eLg#G2N`z@n=DE{?UerXFuc6-xO8I+}f9jvpL8Me}0c zZ}nfiVYh35AdJV6dt%8G5(VC~?Eg^i}AFhL*yIbPl~JsY{Bn}(=) zZejo$X!mICmmfu9mop2CRd{Y&B$02g7~@0ag~x7$yMg)zi8h_Kab}~a`Z-m#PAwrqX%A!8 z#S4FL-cM>j;=u?B1^A**cWN33X5OGZByxT3Db3Ue3oBfg)J;^KaW~R?Qn7Z5i(9wU z(oYO}d$+F_hi-%FcJA6dNvQO=_m}ggCsl9&aPYsQEKvMY?vZ_z3HFnyUX+UTrSWw2Pd7ZQ~9XUw&(TbE^3L@ zHx1^ePCpIlO1N|PViKq$m@xS2eOb_7B?2^h|Kqp%*uv|yD%Lxy@$m7Sv{b-afQYmnhp|ChB-}9`0p0p9Wj!2IGQXz8dbyQ!T zIC)wtt5J!}r#-2CNIDrFr|kRDCT?`#`iQo5&)9d@e4SN4?3#1!T$loM+RYS=^E$cx ztJ;Im(FuBMn)%P6Bho)IB2QdK3AeH+M#cK4q2&ilw?EJ_`5lAqM~R;htbZ?$19Rg~ zZLMtmO?gVLTV8^QH1g_a>rZMVTj5U0_V}@!v|H{i7N&Gxf^i03&Wsa_Ff#k+;{Ot_4l!*Gvoy)20ef znrSU=gXYEikZ+3+^r-IErmry!PcvesJ1hw^Mv0>ePJwJ_`Jx80b7=^jt71fGMf%hu z!7vIdZX5Y@Xrwh?26^_oifnNR%Bp@|CFwxNn)gMIbF06}YrOWK~XDnH`n=0u%tP7;z4tjt15c+G3?<=ogc#IhDgy_{i{g#$;XHCnkb8JR5_G| zCd|XEO&hpKB~?qiK~n*8h(_DhHFN#iH*0zPqaxH-tbG%1K3~&H66#U$r_YZzo>IZS zWbwa*^iW&$`CW?rMC*ryaoxIS}7C zgOA+>xYJ-d;zQGaN)>3nUtvH34@=fArwrqg*PX6gpv9|Du7!?Z@z2SoZNh;b>yZaOIOL7B%S}SbW+ikV z7FdeTE`EVk=Jgclg(d#wgGucPAbHn2@MDDsze-*ywvndXzJ@2SHjyj=jI->_Q=EM$ql@>PNJh|Dw|TnMukX0{t5(LHfZpEH8+sSzpw)GTpIx7s zU7z(l>;4(~b#i?K$uhb&m8Z7Lg81><&AXAq(c(^le_d~n7q)dd=D-HfPXk8}4#e)` z1T0Nf_|pGAoGv916@_D6&;}t+Oy2|}WiE~=a|KIPDBq&c@-B_yiJJ?Y)+FP{hihL} zWJNLkBaOo~C=V*@%dNfJw_{rpnPcNy^(l*J^I3|C#PK&lzz1&aZ3YoDSaJG^S4RKz z{o<>hmX{lg>cqEp2fU^!`sG{aL7`Wr*3h`y{gfwcvpA_%D2b+mTw@%P`bHL9tp5JPnsnLAxf`M2Fx! z=g+1qKW6bqb{@;jBO5lNtP>AKaUfe9#Bih0((kLNv0hT>_ygsflIvVp;(hHmqvHG` zuC#4Mgp$to>VPgiLRy)mgD2!rHQ;5w+aU*I$ zs{I|AqJF{rPxr_xWBV|C3_`el(q;q=KV% z9Bs0cKeMe#NMkw;R6(WW!p|}rgo>3B?Hj#U&-051L1q2^w@9?wK4<24(Tn){N@VDj zeF<(Me|d_lW+Yi!v5#$PHXONA3VqtSX)Is1A}KQZs#CQ1jl|FWu0tqCljM|^d!Po! zea{_4`caU+Jx=~Pr+A=ov_a<*zaxE4M^M{q>@s}R33OG!FK&n=uUUCRh zT4~llJq*yQQC8#u$!OUY1((JV>F<)f4VdFz`jj~d_)@P+Oi|`8UZgQtl#nL7(E}0HL_O{_^orQWmQsVJ^PFJ;0mbLu>EiQ}LVsFOa z4{X}>q2FIHLw*EQI304XX9SMqQw{3IF;WT&!Eye@nUg z>EaXWt7jBjD96nh9do~#GgpSOaJvF#pz?+rG;F2Zxhtv(lrVh`d(T&9Q1UkjkHV6F zPC80VS5g;LxA$nsA1Mc-dtR9qm_^(?mALjo1DQGlP&U}RTTX)ETSKdfnP)kC^2$8C-^of1EsD|aH+H{xjH|`td=wawjjI2 zq+2Qr3@M#JZ*>WETymCm(*Z~g?A!@#n}~pAn~cw~+lddopB{){3nOJVKK%8^`|P0D z+C#n;`O75~$=aF|;o-^Uq_t4U4;nA#sA?59=zKW7+>j(X_+p>YeKEKvb+OEppL63`@@Ih-Yz`$0qb)#PCcO* z4E7wJ()R(uasL`NK@D_$zW`K!VON;mKT~>U`+v>Igp`&BTqhL=yv^j4MLq$lnG?bM z-z#yYKK03jq4ovWI?Amm^(ZsKoE0CpM1zc1>;MHWoJBE~Jvi1J|BD$=^{Js%7296_ zKt1t^CDJGAC%E;`ytEiQrpVq#{GLC31B*~X91kqZUuDRh!Ccy74a@haIDbvq0Y3-7{f|ef4P&x znhB$PT#>xi-GL>L(1~NVD)(pF<$lF~c$h(k$2Zs8NWz5KsdDXa z)A23S%E4Xkvce;uY3+B?dZ;HkD`ru4Y_N}9BBgoC3yf^5z!&bfPCL7uE6TvL)9E@p zH?bcedr7p@8BhHO#NruG4wG9XbszUq0Rlw@^d-wt&lNLGPAtX$cbRRP&?PTPVdK!L zs8?IJ*UQe-IspKb3r&ck*yDm&$gJM-IN5}Cdk@R?p3EzFBHvd3H*Zgyb*m2*q>r7 zA(4j5ns=#`kBZMO5SE(=P))6kIzsxj#YJTtOr}gg770Mjx0=i7=sg2PtAx3^Tl{kO zp<&Z6{iPG@k}X1J`{VW)(&-(}VN@^W9HX|Zy>cvwl}t}|K2+IT6=gaK866o@^p(PB z;M_)${3GnCpkE6c?nkl6*6 z!vmi3q=ueIGq(qSM%5`D#5DA(GRVaKWMU)ejIb~z%VQ(nNCZ6g^JA0E@)uI%Y5LB& zb_Er3gf9+LF!NCp4A+wzthS<%k=Y>2jNMH#{S>vMqE>+pQghN&n(V zh19YCV9>X}T()Uvayx)Y2AJBj+DA!UAv*Qw&}grLYP>&~-TC#s>VMaXp7eOd9^ z)xJN{w4|0p*MTbH4p&5{AWt-a)R+bH^pZ>w71S(V{LWgW&R=P-ChUGxT&I0c>m=Ix z60W3+iYd*yFm-tNp5UF0O+3ab90N4=!>$fm7Eh#E z`j3|Nj6uX$hg1Lgg`U>N#ti@JR^)@7Tp0rG3@6z0vnS4k_cpSkM7i9fY8OjTll8zE z=esWyvF=#u46`Q$)gg)@dxnwQy8|;-C3Kuu7BmiS2(!$A?{+>Ap!}JmSA`C>6>`pe z^f+H^E98nfiH%befdkN|Zt$m;l$FId0A{Jvyv(+7`<>WN`hr_*BJ}XjV5c{EOUb|c zB#74l#F-3rAuVYPMmbbpkV^38=8i41Y@a1NUV1GyjbwMUxSw8`pW;>^NCt_f;L%33 zg2vGr3Lgs`5p@o=P(FTGYD+{K3G}Td?YCHIzB=#sITpenD8$LqKSa8E>J`64Oa7&v zx(OTHjY&y86mYFc(prZNq9jr-{ov;iZjUFmAwT{I54Bef7+X;RVxOO}lSdrvl4=$g zE_ReWNS_#I27vOUBP{u0V)s~8tbn6`Vxq<9^AYx6haY1iiJDc8)89+DZ$pu`7+1d6ncq z9F+6j8^ASDy$cJJNO;Tky4*lgzyJ%2q3z@xLem3Mu@H?HEbNB~N)5j7Bi-wc$}s=s z;Kkn>ixTH)8ysw+i0z0Z0fVjtdD_fmEVAJyWlpX3Wf09(!~vDnbf_Og7w8$`anY=& z+f^5bt|xlNW9{Os&Igvg<^-MorroPR4M+qRq~BhUNhDCMG?Su{bbC4l03j3Y)P~j^ zf9tDRc8RO`pv1+(cJ)10;34TbJA<0nLb&e8zkWi2!SrmeYUlS251##=vhT3t;sQ)J zDCelQ%NJg5S1Q!8+x13*8A2eaC~0w1RY9_xC)()16tAb0h?ebb_$zqPTWIm%dNM;v z9x(T6ktHE8xn@3timT=wK4P5UNEF>@bLch?Z_m`tH*NXlivjxSpZ=vY+&*?ivb^1D zo2M)fad0}RMboV)RZjSF`+#k@OVA!jT$2rA^^Zfag;kj6?Sr_9Cy+Sln(zc)wC%On zk||d)OXV;NG0sfKH*UZ&L%rpa0RRwe#LjJhc*_(ewxzU=R(8z1>mf_WgoLw*#o;%!5O*m5ctI&8x*B#lHTUSV z&#^Y|Z&H4B4ibD%M8 z__Ra%tBKX7tiETG-1w!ZR!aJT1QSNo%NarIgxyazZ?WhFHgapYEQ?Sw2u>^`i_?gU z=$5aMp^UyioY)rFKssMqTDtXBf=3fdc&%C=J)=&dekqqs+wki29ngeuf*$t=nx%!_ zw@J4}*%ryJk|mbyaiDadh#nck-Li1Uml@~4atm5)eR62FWX}0yURHy9$bXNUC(ZNk zUn2mm3su#B;(L(j*ry`VE}VeI9VaatF|h)uk>xOV&PhYZ_#`29qpDga3>Ljx<$Ht!iU$ z*TO5h_$_V>uJ*c4w_E&MXkBoE0^j^!k?w&k&lHdNB(3>T@9Mds-|(QgzwwWF^26e# zkkA8zXz7DjVeIvCqCK5W_#I0)(M{3i9fX?+R<)UdacHWWx1)*|&ij^60&1SWZUkai z6BG5UI7(|SPz-UFoi;7B!quM2txi3(-KD$tIBFLs`RX_{-V}O4H&^E`{s#C^>P(BD z3tQ}lp@&blnD-pvKDN@ubc1KTzjFuRO4-xXmf5&o8mmm$NM3Po9l88c&OD+#yngPxz*(wNlyIm!faPgH9agK2=67?bk5pB9VTJm9G;op zn-_PUO)Sv9c<#4;VN)Lcz?W!8%V14SzktsN=|ITW(q31DpXg0^Q87$gy72@Lr#s-n zt;kxBa-ziv9kYSlb~AxKf<*_H!l;Cm;E*y9(EK(rrS_~Rs68Zk(@436HnA?_W#IjQ z;j$Yy)?-%RjG?lpz(UZmYy|f6|0Llu&_f3r&+lH*K*^IZvP&2N8w(r<15d%g0IJrdVJ0(L4N7NS#^M1O)VaVARaD>&{SHt3RZ1#6REy$ z#jFe2cjz1m!TL}6RFhn0f#H7r0=(Rfj#24BEp}L725v$UiV_PGD>~46Q^`eDjpOqj zRJDuPV3gUD+DD;BvOEuc|AeMWWKpt3vX82|a-{SViX3@5iLo#nYu@?uFw~Jsukh^? z4kFW~%-@~;X<^K)&%`DlJRmg5?BgvxQiOU9O#~~%e-8hE6xp7zF=!}20djcy*4D}x zS#$i^nl>e+G(YsEM2!Erz}FslN=R}4;mZSP!tP+M6wh!WS_ zWj4nr*B(EYF&lg*{NHsUJP@O}K&f`sCYcr=??4MtlFQG~|B}8ZdE)=qRjDmXZu)5Z zrJciS5w)MIKIMxm4S)yGOgG6}CfC&q5U-pH=Fj1jYMl$_Lr@V2+Yb+C(o(z^XK0;giHT^dh4s6vM%Lt?n)hnyOefzE`~9w4he&2-L9 z0W+oksH@R;dLkJf-2eBiZglL@nz~=knT!)3xo@&u(7MWUSnG9_YuAlya$SE8spkk$T$*oCz4f#yV5uEVd}jMG{?Z4?Tb0KSO}10e*SZEPg_nqfzmz^+D)x|Lf3-LH$=@cQK%7GZx_dUKwnWzxvn?`naO zzH!lBFp7$vqaZ1J7v=NhSw;ttwOU!o)^Nxs&dx4rpIY^wXA}$N@7PK2w(n!p$)MvMP5Ltw*IqudGm7&)~{@_p+Y8?C@_gaG3(gsE=Kp?1es* z<{ME-<6u_sDM4_`!dI~01^?Uc@7`AzJ;sdP(71WW(95fYl_6bN;h}Z3mRSu>S08p7 zHjJ!UrM_;Si_8`(4aGFHf>8rZa25cA=$^#NH+H3K-sl5#ZGVkto(nw#oLQ7Kp9G*3 zd0(OJ0<6?os(1n`u@oxJsFv8SI{(Ykx#sM}E5KzFczbPn%ytfPHO3KgM z%*$8Z>@!`mt-S-?dI!Ut`cb*1|k$cZDaB$|5aWNAUxFuu^9LE;cDY<%+6L& z-ZV=|g!1D43-_@RbfI6GO%1>i)7cDB*;+aoC1dIxQV+m^b z3mlFy0m^D`23cY}iA%-C(R&l`$`fYHnuQ5AKs;ci@&GB`w}PdIh7a#(|LZ^PKFO$A zHa14BuCMcqPeL@4e!?}u5sl;-^2CSQGrx^Nl?*D$#E2O$f}4<`9CVA=_tSsM_0DHl z=}*MsX^!woAKmM0s87cIB%F6V!i-jdFDkv&t4kfop zh%CUOe{5k;&Mtb5^(oo)&ttu@#uQ=+!eO#^HkJB|&D;)7`f}PIvodhYe@7!X_S=4Q zR@Hddaohv&P}WJg9l-+#&~I)0H3~q}cfA~OfUL#;EP-B|G!itl4wdU|fcFr-HV;c| z1JS|bwk)VoE0XOY%7N+eV?6t8jXiJw)9Q`tPWv_s+UIw|M-TZi&{ue3mtX%H(cNR}DP#f8P=dsSfk@z8Nl} z03!_)6wJreR?{LZTeEMEiz!)NF|Sm=FF!hBro@ycC&Kv_q4zZ!adn85koU{qM!Kj~ z&v-MA0*M!1N74s5x)a@GE$-xh>@1TxTi9}Q|#p{>FB=^R~eO&;{JPjI7as;EYGWRxhBlac$xK>YXOdC)NsYvuu4q zUxqXde#V)MrOh3pI`D;UpIt1B%k^(cF?oVD2jSOKcf8ZAzNNzqW%!~dB~VtdL~dGA ze9l+yoYpBn5{mSvQ|8%=Hb5UZNua%XkE*&XPse^Bw|-hvj$V}IsMC>AJ9k1Zxp7ZSsC#ABhCQcSlrJB6h%|0_!B(jjlsrBcUL#0OQQHWyGU* z4p`xUtB7)@#NRF4o|02UQnvh{_Q$)Er_?O&a!`4vU8D33+il}=Ab3o%}=iZ8fF0Ag!}6Z8?9 z-KrL3sQPrP8U@BS3PFdlF%j@H@pfV6vNd`P^#8!~tEoTeVNKE^%&|a~2oQG`f%lt& z-M_V($tZ6<66B>1{$0W^J7b;`IywV*!G7q8={&7NPTIjKxZIn0CBel;2Vxs#bDT$|6xa2i8k$-Hw z=SQr%{@NY>%~4>JO4%~O5RxRlp;Iw?Xf)3`momaUWBC5XcWFKi_U{PKJpdX)n&@di zFO(lv955FeqLsT6H;pVRJ>)V{Sojl-%vd-m0S##=`zId9y6uwLh1bZdT))Ijnm;A+ z>KAY<(1qw?2FIY)Dy2}?F}WQ8Hn|n7T3y_xg1$CeGt~@C{Rg;2@PC;-FR`ch2~_}2 z-+bF3bCIPHp@D#wy4{gq3d5(i>>e9sZ-nNg1em;ryKSxpzUCluA5yL?QZACqTl){X zdwQTZG+(jE6iopg1e?y{WEW__`=m{vQ6N%+(a{euyl+h<7x@W3|5s|u1Hk~PTzu3o znTBF7LQd_Ghdn_D2(2zQ20t!zWC=M+VjBenOE*e-_hlu6HzA0+lvUH09i!fFC%vP9 z!zkJ-Vz0NQ?S7&#!}{RaHH_b9(eNQ#eQ(dpgW<$P*Mln ziS|__^zcD%c`Xzelo(9NxzW@%!5V*pJ+&8KaS6x4wvDS)7Rr}T!DY);`f0mqg;PuceQtA@F^Qg@c!WI4EdP@*{LK?glO^U7yUjv@V)sD@rRAnCqVo2^5s3pnDK5X8I4!QMBFFr+;s* zL!XzNodN!XELM22XJE6CHhj4BO-AhWo7r{uebzX0jQMyco8(nyco~^RS@v-w0;=Wz^rmcVxv_PTfdp^mN%i1EY54QGhgI1CX!Pe7M6Yr4LUY=SfcJzybN3={ zSV=NckBZ5`%ipq2w5`vBhAJkY45wQSY4y2f%zS)4x&4o&D;OaH(Yp0*@O%#d85tuD zylDgF{Erj=tjIf9sh9e<3kda;y@KCrlX*yXEy~*AkH>NU{+U&R74t(J0-6N$C6kw8 zxEzmqR5P3I&LuU!<`o>Sl}X2q0wrMJK|aK>;7z=7)dbxC-l6eBbuy+)o@RMbie2>F zF>Lws7o+7TLTyhru!<2BCGDD&0pDD4t4}7kIJ>B*D>44Z0bsg6j*)LVlI$a8G$?^A7fs#nz_!{@C^%mdG#|h>)fXQ!k=|N13e%=h{ zYk(28Y+~IG>kIC{653n$??2v={s@G}6Yy~l`tq*v&~iIO$uyU_&Cw*KYp2mqejaG9 zK8VHyp^+Fa)<>Y}+%1f*DUS<`ViT;nX4~->fXf?w9UoNXMd;~eUPr!ULHFRf$qCJ( zgV`9Be%-}I8*8C=CX1IJb^~P%gOY^l*0-}$*Ol4%G7ah+yy$prKuGI+Ei^)%5PHsD zhqp7{IH_P&Mle~)e3>_T8%@A_^~=!_*=D=ke{u2o5|+MDXo72i6;A zf|J$h={JtrIlXglXyS%K)?o}2v>>bQb5>&$S(8uwutOhZx^2X%D^Dn~NwA;!VEKD~ z2MRxG*piE>9E-2P+iiUd#z0zadJX;F}3T{b;0nWGws|7mdpH z;tK~lG!#srFDUd}7R2gYK>t}%=hIeB@Q7f_nAM%z7p`I8#XXy#i|*BC?_1}4g91ff z?#4(eP){0WaxnscQQeZ*fabCH!$(9JhOd#Lr!rYr6m9AP;~3>z7IWN0uyW4V<K{yN#b^b#*n$Qv5&?|bPKMmAvDRiRNjn@#u1?3J8pfK#eNIpau8*QGQwHBGvo zxp1BCR!pkj!t*t=HrOKOH!b>wmwg@iod%NbW4o`bjvCZe-K9`gGnvxd(9?5!XEg{+ z&?kh1RfP~48iPvbPX(w%<}?k#6=!V{rH$^T!8fGJRvn!;^9L$?CHnmQz0k4|QeXr+ zlhGIU%_Oay9o77L70a5#rXDcxL@8zOVH9wz^AhUfCViDVMPvS;`^S;nRkMkmq@rKq ziM}~`1V#G#?-g8CtyAR|k1v=!P= zGmWHvH25n@Y-n|LS#GXXg7>rZkya!SKa4Eh5{}} zb^_rTcunkR-9wgp?Ep*%$VgBiY_@FI0Bz~=yX@F;r%UFclqzTK!U?;N2I(KZ;`o!4 z78}2M-zh9-FISD4lTvg*MYP7PYg`j-)k0lMohA zHqP_5k`kiCPmMzRVg8&F7mnKWxsVFuDbW<{Kvf)5hi)5-xxIKI4je>9y9?dEj)PB7 zqK@U&v*)i48lGx__i;qOe;KRA4$C6wmkq8^$_CRGw}_+*tX~#Q3?egAkb(BmsB`eS z0?R=x%Y^5pBN5*akOMI~fxjaPZWuo*mC|F=Z6lpA67UTV{T7GWDXlZT@ed!xC-{+2 z!sz7{Y=6Ialn=gUeQa*HmHA5r7HB}gg=V*t@_<21u2rXE#^jg2)=hRs+gGx>m)XhJ z^%S|A;BA9#e?7QoJ58A(JtL6(vNTi_1R<7xgQIfyFaRBB+{h}~+=Zx^OM?!;+;2T^ z^Lz0t>k}CfB3onsg*ny&24pww{L{T(ybgU)67n16Af-Pmktrp3@H167pf5zgK|;<|gBa;&cR|npXr0bCxa&N2-h{s?U@jmg|mJwPZpKq;|I*Ay_cy-fTTcFW_0+EiiiVd62??cmVJUHIg#7iR? zA{MKhI>pNbfZZbahYtt$;s?PlErlQO^JRY%+Xb>CM6alaa?Z+w$kci8pNVyT0)5Iuph;Zn7r{HhzZdGx^ z#cV7P1<-HP_=WcJMyM=+E~*aki6c~I^I>T*wMRk~)A`|Hv1Dq|quy*O!9X9U+CTxz z?ipM><%f_jl8mCh#^aO>;EHO*O*A)ZoW?^x_Tlxs zateK21(~0&d}tk^;c6~8Mw*-?R6BS2l9g(rVHrHABxRf?%VuUSXBwEc?#!TkSM4tdY`^l3hpOsy6*-M~HZlC1-4mW~n zW3~6UR8mxZew6})g>=6O21YoP{40YASI(dT)wqgl8lSc+61fXuq{O;#_8Je>7&+NI z0!g~zkV=?$q40-hL-F^M{Owd$9$iB!Q`9^oYK&3c6@;9!io*oR8CX4W77EshhO(aZ z$*j~Pf7fPZ#$iYVInw46^RWsSZ87z4&ih8z$TTeBu|hdRi1AI=W)+jio){`tG@`bZEopS%`?Qm2Yl6&b{>)`vrSsBsr8<`50@VQaU z#Mv@~7T6zy60e~4&CS1VzI)sK^iZ4%svw=@4zKs^(+KkBa0<^-tD4wtcMH>u4r1m- z-*{t0+Hxp98bcKzyFCm9Ri;=atESwFcOME23MOhR8Ikpn+w<<70^Cnwk}p8$xW@$k zSicqvTG^Cq}*&d(gEWP+gD+#bcIG)PH*ZlJ`UiI#afZ?zN-yQ%#`p$ZN2i zAk}-%B589-ZS$+{{?cNObYX?U&&b-MoSv$JQj6QHcc)kHnvU8Zlx%nWLw0F(+{3VF zT~}+%UhBI;oot$hAx)ni9F8_mhK`nmuKf|t8#-FXuDgF#QvAxwd~f+)R6+*jDb?e8 zQSn}VT3VXV;JzSKwRvk}&k!bZmNfM;b!qO0TUwE?w=TYt24rWz+(=I}`MQE@ZL^54 zj81AOElYJ|^0&G$14MEsC6`M?9UH;n>+76FuiwkiA;pVQ!6%rZ-bx0dQk7WkdEF-d zjQwdT{5eAC)P&iR0!q|dbkF6lbaQ;(tq;vCX%Vm&G%o3kog)w{XL1lO4I*0d42<8- z7}AB%P5NvZx^+=K3uEfX*Gpu~vi`2hHi(fHXkp?L>KU!H5MI=0HR&_+R%ByT+4mFO z*|~8Q)I}=LovSdto5Qjv2GOBE!Y<3TmXZ3*GiT#atu#aH?inX!U`k`COj*nED`|n7 zcT>{b?&IFQn{SBO!E=id9%y%`)10L4A$&NLty>V_eP~CP%&SpzY$Vg7QN6F5+eqa< zuzHH46Fr^zOG~%p6}LC%#w*1W^0FltRkk7MhJI*N(!1x1V0jbJ->iAUJo2?_4tR^x zUWXg*5EVEISowy_b@z)>SBda|KdIxMYtfE@_HGdB040Vq6Guw5+TewqI?J$H%VX^- zciH7~bsKxa+0ZZT+HYSfUJMJuJGn|32v1nAlZC)d{B9S|7q?%?Ly(qdtEa*|%ZJun z&cw@6O^jNU7cO%ID?BUE43s~&@r{ygy7q}t6p-s8Nxbe#^~36lvovrl*bvzqz%@;! z8K_v(Kyz~zKDX&G{z%BNgJb0Q*)0CA^+CdD>qK_4a?R4moe3`!+N`ri-<@O^@rsCv za+BShp)yLD8WpaEiiy!AWg#oYrc|iKC36)rFkYxar0Q@gMd7IP#K`K~@U&EtUg?taZT-pNN0ka=D%%t0Zbp_aj1S+R zK6%nwT*Vzd{w%f0{m$7)aVEM%LyjykTr31 zGDXUBz(1~g{apHMBawNJ!z<{7m-z}2*3Wgyjn3FN-F%OGuHfnhQ?y@9TBE|z^z^YZ zI8IzU$=FSP>{{PE>Cg7$EG==>F>YUCclXd6?G8(iOg}8#a_tGq^C8^~762V11THN#y4XIQU;Nz=ktLHiCv$o7jV8BKDh08J4|F zc|AX+gO z!tU=@YpxwZ@q(_mTU&(XX$Hs|*)3%IcoyOak{QpJOK_H1)ji()R>sX6B6E{_L(yg) zB=2lB;#On@?I<$blK9tlzrHpeApi0-SG|xX3o^17pI+h}vK-mDS8H$Zw>MvWfbz`q z1)5&QCJoULwb~L3X;2gbyYGlOmzvZH4RyV$%LV#eIrMa1vwkfiHlN?39m4N=q&8Q7 zPVR3c%{?>XfL~=gL=h`pnsihJr)(x-SY>Y@D(B44yzGD`JcM-Hh5Y2n7hEz%(b>^n z6ruIdNFqF^jc2?Qvqi5^E-cNQ?M3xn<8s)m*|$UdODsQw9OV}i+TWwy|6=6U?ZRlT zEc&W*%%Q#*5L)Z<`_1#{Y8wSyBLt;glZG7Y_!ue7{wv4jF*%weC9dMiH??2i)MjvL zXSFi>pYwO~N9*94$;)H1#I0mtAeO)-W3b0*E7fMm|7A9giH|7{s|e2tHKN&_>F20s zu8yh7X?4bQRd}H*{dJX^5!Zj?#d<@U$_%cw>khPWd#z69q;aEgS7gte_)`UX2zQ@i z!bD5iFyuQ#X0hJ6L#F4|59d%OuAf;_9yQX|ADTLj4|` zxa?(;{92zaSEZ_G?W9F|@Qf;rHfv%fA-^3)pxR+!c^2DIMX}<=`So|*&*z#~wdQIL zTWFxA=wX$+wW~JrwAJ}LyKo5vJ>=6==*E>y=YzF7=)yy^|CUDPI>rg5CX2fanjABC zmYt*1lQ0E()|{T7-C0Pq64;e&TRPu1EW91pkQ)YGK9SxN8x+O2@f63g4o01c4E^BA*u0 z59cs~Pbz0g$~a9iQWA4IIyzE#bercU6We%%^e^RK!RB7cli;5%>HleQg4$)v>ME9H z>za^7)2T$0+meo0qnDGIWGFSw=ey?#ysimXkZ4uNuVE?KA32CmNABixWt5U+>jXE5 z{Ay!%X7Ct)ql4fb)m-Xqsq!fIMuA*0zYLfPR2O0x&#D|YT>`E`#@d8h6vcY(lK3Bx zHEWOP>|xhvBjeLGBKYi3FV)$-=8!U-ccL4*h=w4eE))RuTP^P(-5~Z7J!qS~nlsK}<8uE#mBxNrv zLEY?=!>-c(?aJI=P7fI#qP#YcyFRYc`_6uRvhCKddX&j9?v-hwRjZLjZpS~ZykG^G zhteP1XPvY65}-nX2h(vSdI~tI_c!K39R*y@=VEId$AxoHPkm`_&J}sFF8&yaVR1ARlpYM#YYch$-!pQyx^R!6UcHHfi_ExfH?k|4KUV zXt>s|j|(@F5F}BeONicE^b)=IK6;HFy#zy)B+7_3(StFJ&M+f-u0-z)VzlUtK1wbk z-sAULvsjBiobx=--ut^hd+&30j*=#0wn*60h#$CQB1xa?G#meH%{Qoctdw0dp?Ew# zDNLsh=52(OxSn_VCMQcX!N?^r4$Xj&PBq@u6n^g@mCnGg$Ny6S?{)sSZ6=Xj`vGT# zGq+cz@ua&!0jMs{m~+fE(U9P~XfL8prm6!(QT6*xknw4lq504Z`d0a_Xul0CHe*kn zN~+j;e|?$T8e|0u(K6k7_)dO*>H0bmG6KHWfo(XU*`L2L=C_Qa@v?#HLQ z@r9Kg(Q?a^FR%y$VZd4cO`zGR2$r6#Ns5NcMc-J`t1X?9pV;uv+}v0LBYQzO`=a!; z)EWGUduN7sV(1lC6H;$lKwh5|aoG``7yQ`+(NFmqSDvhC`)5+`VT8q9AM z*uuBFT|h{aO~yDh(VB23UHsR?<$H2Ta54qUDC-{=z?!0kFN%Rqs){D&1FfC319|Vg zA)RZkB*Pb8ARs%(wQq(OEM=Q?uc&qBJ1KETT1dBBN*{SSgm=Cor0aM@aT>vgkdC9* zv#0a^NQ`|#hB=tGD)4Li*6cz?l8iKa9xeSV9(x#1NfN{8RKf4-?l(Hooo@p?5J-R% zlQf|yQ?hbeea8iOe;mQ!N9Jkc!#QMDAnDZ3v=muo04XdVw?N#p|Br+YfzAhEwT=S1 zpuHWl*?;A8>Msv}L)rN)=1S1;l#Fw^0VH3IZ+HcyPC@e?@-1}(8=&u~8Mc~2&>I72 zHd9^HY@J|-X{BRPwo@MppWS7oeKKciNBZrwfzNYc*$FHZ`M-qRfFq0I)}+pL^khV& zymy9h6-!N%4w8$yyvB!;(&ZI;TQ6sKniAqzUp~i#X0M(mP6cHw(84;OvBL}=lAO%fH%4})Dq2PAGJ<@* z7#DEUtSELj9+^HVyF62pU!xkek{e4$w|}hEK}*`SoVP0PF$YgGfHGuww;`Q}&|Y&$ zXUp5~e4ySqz(ZcRUe0DRP-sJC=QBL1Ujo>}@^K5gJe!F(POs;Pd*#K00)os3_+ori zQABP1MN2!rMbW{2{VO{E1KVulMmQK^J(jjcJxJ8``MGN}hlW(g3&T*JMvv z(0r}4lb47s_7R}@Ts}H+L=>t54~q&rv4z{TbymgR1GB@hf0C0_pW=QxDU^jqSn7^a z5OAqKy9>Y{Dv{ppH}d1>fzLy+g`*zo!g11Kv1Q8))zbmm&oKi*4_aPIM1px&-b=yX z*~0N1IMVPel5ju-nA#KG%JnCpT9=QeKm_+#DhnJh=Z|DS)%a#y;yaAChsc!q2j5!d z4pzt&RK3Qv0!M1?V>`KyA??&ItsJ!a6-$H7z()-cBU%jyE+;}JE=YU0br@eaCRwap5Be@V>&` zNTZsxm;6a}lj;AFsB-uj`Z^_(Z=CP;U{0`$&6W8S~A|H~L9 zI@6ogn$>=e@_Ngjn$z}nCcwnJCoVja_zVCJ@I=qwTCh1V2)L<49!GW4og6|+E{4)9 z@+tTy9?H@zGSPItp1tf6J!@f^vTRC0Vgun8v_vtQP?0tcw>!X-cm6(3FY0C8GrR9# z3T0aE!}o(%lwAofAgfTFq)mRG?1`@L$uF4g%EbHrvYegD)-cI*)+}L8DCM`h?|$|e zNDo2UQW59~-$I#a%OA8b8%w*f)3P%YUn^iUP;8xenQeTLe%agKPgPct7d;+_&6ukgi5znW2Oq|bvTMHgzZb|AqNpEuV@v9!jgsxu zI)NqiMpE*!Tw)8Csz+>6t9V1|A1RSthA{EDF?fHxi+w^$Mas`VFlUt>0LJ7uH?h;> za#U#Dfr+LB9gOc z`sF*C&8lTpa2gwKOJ;SSfR^+&eg5{4iXNu(I+IL!f9N8-OafLOPI3pc@@Kff$hY3~ z7@_B@gJVz8tkLb=&|RT=3qU`gE@QciT1NuY`^A&5mg7eAB*MT!TQbuHhm3e}?fCeh z480EPAya!i2^Ei63?U_Bn8`|m!d~K>AHWqb%r>PL6ROnj338s*)I{br!4L1A-K`k3 zQ?dLi@=I_2TfLf*eRA-*_r&NaP0xNDv?p}}`GZG1RF~SOjB~blgsE#5ed>Dg>QY0} z2%hZS#7*6ps zFO9R6n;KQQ?cFbP*j5SbIYfK8G6uP)vrO$m)G7{!<7QlQKjuEgxF6%f{1;k8N&1m| zsHS{aS=s09U;o;9%+?+bvTTMRS5(;crO$t+a;I5X&V$tm3Di_>{k4Hp#k29H>N+_~ zySB#8bJs|w{tK;pYL=8dpofM2#oW5hTVs={YcC}sdY&5Fr@f_mz8W63&bX+>y^-Iq z-NKW|*Uu~G4^23Rb>>i4bb!0gG@FTdsG-?=FC4!7+x`(c5c?wa$jUWIwh zLHR*wJW0^_DdZ}gjZQonDL0Tpjdmb>HtRqA>t)5io<^|wY5?+*`D8fiS@+WJ4;*01 zmfV7#Nh}$<#;V(=oQR1(YIO2QX{vHpBmh&R+-}M@?hO0%(&mhF-B0d*W|B=o{ZDbX zqg4NUlJDKZWeP`vt~b4zg_-iC_Q~9Z#w6bjdNnx2)JGrF$M<+{2E6hvU&!OAb*lp4 zq!rB!FEqc6MWo)_e1HFG73z!{+jiK8ZQCNh>k$59jRB`WS!p^ubmGya$3bB4{15mR zJZ3zjj0-OoG$tuHclO6-@W$!eTuhX6QY^N z75hRP!dFw3wA<7h2W$lHr;5or7u%~pLgm+U9oWx{aLB@|4P9F@TPJsCg92l_>83Yx z&tL^PHGoejfh@#mhHi)|`*woBfNSr_4!1>np;WM93auJ|rsj_nL`)rWF-i(WlSGh- zrh&+^C&~x&aD3Cqq~|8>LhOsrQfwO`buyYGwpCB`7C#&c4k2#=dXl5|^iIfj4<-Qk zFV@WenGT?2N0Nrk7c~1Nq&Af8q%tyCXe2TiMA+Az^Pc9^nGURhQ2<`+HdZE7WKZUf zlZz7IlHVjvom0H9?rc&3HX!!RjQ&RnV~lv;bZfmW*-1LG{EfW5A0={WGi_^1vYH{%64%1{rmYgAxiye}7M2ZKD$tx(U<7NjLfS%JISu%dI9 z5OeWJ8=mdy&CV@UOP!DiLVVJU1c7`7zC|M_nMUQXHT~7DA6z5>*Hq1qR?sR?7Tzfz2N%^k1r) z3K>J0DG-YLY%guXy~k5Le8eMFzy#zR18~d@a>^1&FQC)_Wx!brIEg;+i&SHQVGn)R z@?bZ#r(JMJ4-5ey&Z;MUo~n*#AD#;n=ny+48`;n?Elk%O#BviNc;+DNg1|HV`0rjA zTv!(gA@*1%kfoP1aaJ^#s$y}&>3%%ym6)_0=~G+j#SsF6DsoEXSEvDxdor5ewtzr6&D<^j(4MWg zVX_qX#u5>8o;8|BlnpSeLJRoDN7KRgoxmn~n!C0EmN3Y|k?dk6PhiacFr}6J6!&Y? z=j_b6yiH0pi9M{4O%OMjB8`_-_bIIpd)$1waK)4Y9cgis2hp16C zdWV^*6;5;aN%Q4=7b(+*x;R%nBK!$uoAsw|;A0YJsTD61nzs3rg>O;X7E_n%om5&j zb6PSgp_OGP(l#`vofFOeB7&uUfa0g$E;7FYKNE1|tLc}N=J>!nSFdIDCRy*bMYTZ2 zox8hjmz*(zeM@V%b!% zB$A^(IAi~3q9mGC*k}39lLP<+bq1>$%;t z3#*;UE}8zxM(1gL@_oYy)9NS1a8ody`Vc^X%J2+Mg}^#US)~PJB2&<+MBb^yT5}l; z-7h!1Ye>?qj6(7k?pDDsRpZ5rP3~*uQJDhuw4k%y=@k~t?NaIZnsP8o!%IC|ZgC6~ zDC8ZZ=fREpnuVT&$MDb99UqctI@ZNJ)4oDxc&o@@*}dc<#$8Y|96b4&X;wzWzx>Yx zRM@Dm(1&ShzDg*+g=H|u3+>Hq%VLUrUa8`wGmwzI(BD7RLr4%kIDFlO1)?TT;IpmW z;?YcI*##J9_+)y7>V9=PI+NUqL|jUOl`lRKD>b0e=||n4mO$4a@>6zf`eRVx%!^3= zkFM0sZ!vkxwSW`{zx-X+6lP>4aqpoh2@kWC$9+EWf6zE0&{+)p@>?ZOJvW`0Q*N5! z7yh$3wT_-oJl;>$N~F~MU(EHU%YC(uC`2Wnzbz&YbyYIn9Qp0dl;PJj-u#~Fj%kYX z>z%l!DwMnWJsa3Qz&kjF;9tB;*~|3$Ud$li7b=zmFH^+%zyKq@6_@nxQv+mf+x9+R zg3FpKIF~Eh2RvVSeKdPv2C$;OX%2$yns*V1(d!P}&neMj_Y?n}cK@9@iMxLMUmvRv z^jbWR_V@s-R+e1MgdPEbedsN<|Ajz{W=zGte|u){mWnQVV{G1| zU#616I*jt+Yc;0K>?)++m2W@drqqeJBwc=v8+j+?uU!_cehc{2yQo0GrSJ(0Fxj46=!xZhmgA^5g^OQODgy>QTL6Pa%kYy<%%^tcQY zZ9f%d*u3?W!ruSt>McU$*4bIU{v^6wV*V~p`bM0hNaS=xe6*xXTH-PsE=S%aUA zA=l@ivP0=kmg(&)wrQo-e!TaSGs#PLMhkO0%z#Wr`qQHMajyJ#kr=9V`1oh)&FOs6 z#CYKNr~8894V;^5!0X1@f;!)yZfbifTBc(oK|@Fg%_gfjS&;|e!_n=)rzU8JjjjBW zsPZ(r;)EU?+x;5hVhO6{<4*sC`>a8hL<(y18-A=Y?aw~K>q8&}a-Ql8_LVL@P>$TV zx{3&5k`zJJ>_5C;fn$YlL0!0yh&E1&2^9=JQDh0qk^lTmnmM$YHD-$LG!ihrUwt`m zZ)wCwXIKI_kw~4735b#hbwczWc6H?YJBA!t3~S(O(F_+&AX4?FGX#;OJ~pofs7z8! zhSQLr*IW;B?I)5c>C=6JXsLu-yllcQR($UE`!(oN70`eN_Jh9dUiwctAOZaP{ApqF z+|BL5D3#5DMmAWXj8NFw-N?azB5|ZfTK6Ica#Ol|!l30q3TpKT zR08}+l=9Pz7peo0LdTrVt>llLyCzY$k{gKY`PDBNZ!q!gb*HaqjBnLqGqpJSg}Q^E z^SHbqU~G01{Y6nDVW1&@G!*R2)YB_^z4VYq917iJ+!}FT-nf#q}`xvb7Pn%X~u>O6icCc`(Agm^bzOOe39f z7W!bM+Oll`S(*^0Dc;G-mr1H zYBp$EXJ8w>#akfs*6N~B6){E{CX5cwkT^}U#MdzuQ-ti(m8E-uwn()0%;?{XH_mi0 z;&=}sHP2+W<>9F)FuX~hdmm+_#Va^KHOADRj!ADuJ#+KyJgnrdPq3Nqhr+|cv`>gr z9%4a^OqmTszCQpRG2{<{y6)rMaULVc7n~yY7%2OIfFQ+!@6+=BMq-^5bF9Q`dbuI) z85SWU9rZ#Gv_^W!s9-~5;xacmnlQShWY=D+%}!QqcNVNpf@h1^c1rNG2Jw^biu)SI zvL3If#Q-{p>JfnWgtY(RFp$=$@clMpHyUp#1%-VrFc{Y4I`~1|n34FokaHb7ee-kd zA9p~kOq`#(23;~ydUT~3n*XhD#lPnaEc{oAZ6hVk?qM;oZY}la5^tVBV6J0^j+tl7 zWhoCJU>$dfH{oq})*v`SZT>J&O&I7T5;QRWIq>UO)834xuV3ltf~3^mFBo*XR0x~` zkUufm2{ZXC?UfD0u-ubM3mB7TBL-2rw#C!x56(e}J<@vuEFQj^n0_-b#LNK|4{}^V-brisr3@}tW2V@m&TLqXY8t{uP z&6FW{uZvNMseehbG+{K)KNkj(a+VtbVev8CUJe!!%sda1Qi%ouHS**)m3C+%2Wuj` zY?yF}l5uPNE5!A@Opv|$Y<13(&&w*$ME9k1HK2ngJCOqL7V&`3h$f)}h_bbx91O3U z&KlhGRh6ot1i$wIXoy3LpAv&RST1n`A(b-AaGx&Vm2ev}S>ztSKQ48*YR7-`fW=GgmT%>8^`WLQg(fA>U#1KW&=?F9)6Slvg;DoB2CV&?;ce;@T{0dAB+->X_H6Ul!KFKp`wfnw zxL4GwAJuMT0N${&_4{G$OJ@7;sgT+r9n8z({ulpZ!uUbrHX+>S&B1y2bUhvKv5wS&DM-%jmBGlSZ>l`19B} zF!6$6qf2H}GOpU-%nUKpUK8f7UDINK7RLGW2elTrGQyZSO)P?uceVuL^*3$=(1zS% z9(=^=g$?TPd7Me6i z8yXM@>9u&-F5WZ7Nq;h`5xHFYlf+^>g#c~yBxs|@I&7jlz!D0q z%vq3ImhP45m#Jef@v%Dd-R|(7^fXQ1Mi&siq_&-_IT_gH_0?ulz^Z|kE9pIB04a4` zFvH&!BDZ4ba*r&Ki7O`7!fjuvzo-{vPrkAPia-WaJIAh7e^EK_R;6{pQ8$5asgpx- zS|A>{0`akbpO1Kg%u$tE7ZNyT4qe=2sX;>tCKGvpu_jw!$o>NtdR>L%ym)J@l4Es^x@2t?o^)nC~!tjDb%Xjo+Q2YS1kf_rHlg1*~c$rR9Xr)tn`?(lgGs#48lPmPs+Qaf{M)G3#q*un^ zqf81g>DUz!!UO*O>-qYoXWeqG4((?^{)>9}w@z=dU<_n z@xA=A6gC@E9e8E+PQUf{waIDLGMP^C{xymao6x`-gIXpopSxCjrKtYV*A4zwkN@!) z0##BlS(?VFLioh*LURc?PvGw&FhW1nm#oa|m;`1nK?NEOW4{&1NvC1}kLOCKa2oVe0ioP-jT`w5$f2PuPbq)C=KmJ> z6O^vUNL?y!%EGvuAhPuFB481CWXyxi2bY=TSD6ncZxvtQ6cx)y>Tz3r)qJe^B)sO<8=;#DTwhYPC zwkjqsbvycS$6z$edxIJkkchQZt;v`5#Ls*eL4pIhmPT6bc*`A*vWE zFoDScEv$Wj_bJUmbsLm-HrU1Uk8vxN8pmC{GEmU9A^AeSL5>jIE*Rc)qWLKEU>ca; z$TV=1FX^x}pBF*fYRustwhJpi*LDB`Id)FT!o_7{uBWF__eLc=mWA|AW-{CWZS+d% zJ$?i~avEhM;V_^3)NlHK9m~0H_rM;D7hkRT?N0dYYM^yA7ygjVoP{U+M%Pa&q8uD_ z;avYxM(1$nooC^OxgLJ+J`Hp5tCa0CyF!*Z>;|%EaW76Ou-oX($#<<9s%7x^zmE?B zw{o6k&@|?*VUgb2Xs4lIz%zLd1oKJht$0G62F8d7&o2hcB6Eai${EdNz_K7xvnE84 zVWe&u=+@W$2NbpgbY3d~`w2*-TA%=uD&z!okMmYfQ#vPlo;zpp)-Gl|5CvE`(9eQ* zur1u@cIBiBa0IG!J^7(?P8i4#Dm6kI=&+VGM+X*qWt$3c$+~_|Cd?4j)s_eyY{l>3 zNIdCGd3^t@iZ_B?ytjST1%}DnYSY-Yfx?NvZK? z8TjPzTsWU)BGwT2OZURpzcRgh*|-G`DYMv!3==zx^3e#LJflgVqvqWC+7C6-Z^n_# z3;SxaXk?vHI~{;xWu8t9RpDJV1Qr3vgt-&eag*~{8g30&_x={TTAo|*jYay7E}D~XdgwlE*ao=BxohN)Ir znaonvRYvA4<)3>qw9dd7{L~(no_p`UAjo~i2lVUpOkNIt${o_`|T%r@y%?~*)X(@giCOT-GR?q>sg z@>s@-Pd(|1SY9w<5vWPT?I{-UQA|7n!M!p&Xa!|rYP$xf8qTROWYArJY0y^e8Ke#ao@zCiph{unh^m? zmf5rel*FLiDD(rxG?1d{W9<)%kBkwFkGg=-tz3CF71PR7D^cANVSe(li|+?W2Cu)^JS4vHg=GpLpL`{fV{ z48WJFFUELb%-c+rg*Qup+?3U4g+3d&oe7`ew6WG8AVl zy`9%fV>&9)`N#hJu3>f#9^A|Ilm=b>Ad58RPrXpo0Mr=-_0mSV44}O%&0yA5mcr$x zK|WR1oE6nxXaB`tM(tRuwE%4%I=oNMxy|{0-z_$Jg$ShO$)cEknlKo5UHp!X+j4<8 zZ?jl?4YSv3MU(nEjIYGy7y<2Lv!Y2t%;gQ*@$&(K_<6f<*?+WJVEUu>8_)0ijkg78 zz0ybIWD$YD69H1F2B9`lWKJ*Qjedeh{=WPteV_S3{z9m5G>;F&d`_D*7XOLoA<&2a z*x(zL)^FD=-la!%fq@gR`?7g9p`b84p_EV1RB7%w*O$D)FWhSny3|NYyMcxY9l3e5 z$*j@CVyh?q96%ug+zo`@)k4-|60j>UIbc5nG&pW%d-a#A2}@Wafdir?d6p;@l!!g^ zuK{?K5mRT)eva+_!1=aft+`Fq7d{v22Ee0BsaEH+2J6-0(@RZg&CLz!4kBV(-w~e? z54_qHKBH-dfl4J!m);@DH;!KmNAScMq!`o7raZF}1lPRX{SSA(Oj}s-r4n7h2CImc z>K@x1>dsN>mH8F6a+8>I_{-@9opFA6?SJiEK0Ai$WuHaW37pZXG}}3FTB28mquVqIIHtZmHd3rP(5>ubKi+mC9Pd#Y(+L}&^WMiN|Ev@R?*TFd9GvfFfP8MV7CSn~=PO<{5 z0BZ&OE14<6dq;y8qKD=~g+gwJFFICV9)&f4tq*?&gwW@=T(%0WoxSIyKjLz?W+M+L zFQ+DUa3Cle90T1CNwD?(c`g0qG7}v6+Q#X{d_xod$6eFrkl$s>xZRvWiqY(G4O8Nm z)5I1T?y`5r0*Q?>=!jSoLV8KhFYerAE-0VQ$EUiXQ>TG>}Pa9SP6#!pb*f`MxCt~Gr;SM z@7e0a_e7Q@1_gUj6W-TGmjs&tEouNbC<1hkO2;de_mTSdB0yKj+F&p5e0OfXCGNw{XYPIsS+) zO@HQc^tb!LhN^YXF3c3g1|YEcCCji6#;r?7eH5UsBe3$1U6@saPt^2H@Z07KGdL?8#HRN=Q&Wv9r3DFQYO6o^K-vZKv1S|q%8$Es2SV6LSCW=1PhN?}^F3JAKS!zNqL6JXSHqx?hlat&vmn&^g zKKOOFw02AyLqqC6`lA!aSLC-&hvk1xM_9>Y)Spj%WJ&h_3k>F-rMi!=`pIUkX+6LK zb=OjMSIAB<`4%4gdBhzoP!-#fAC8xrgTg;}^Eyf;{zR9cjTbJzfD);Ff9wriVnMRz zwR;Cih7OCc2A_9UJrnw)X&%{uy0tLWz*k6JlDjTz*bZO&A@GILZ z$vh0yqShZov0=NQ)k@FARBY$Jz%2%Q%S!H@>3}7}6-5noy$33ZxY;TKmQQu2El03Q zM7p#0dynJT)60V1ct}FPYjZRjBk=Qt;)yp-#Qa0INVhUz`>+jSe&3m7CBvMaZe6Xn zc?lScs0_8a_?;#sHV99RGnq5dixT+c0`ivw0bKVu|M?hc>S$?v0@18R<(EuRz~O)i zjAIo^vYjlHJr01NgrbTqpV4SzHG`2~s$Kbaz6{wyDa_VfTiRVEKF2&)Q0S#gnp(*8 zFRlN2A^w&u+Zt%X&{9F61!_?P*)uaeP0v6Z()LqdB%X=l{R;;0q1u2^h)f{arJ%9^-ZR!^)f^@w4N2WQk=PuZ9*z> zI#7+_8tG3Wy3U8|`uly=o|L)-4t)6sK z1yAc(&W<&mhPE&BrfIX%1U%64IEPlr134uAUt)}D?rq+nH_aEz%!U`eUy@5(L)>V{- zs%}U9<+oktR|d;X)>qlaG(7ZmJ`Goe5P6`!Y6GK55qMbH6(&<7andK+>O6yLCMK&G z4^`LDHHTfzey%+4I<9`JKV1A+9cIq=r@7%hX@VAbY~QfcHHEk6xTF>$7wI>BMpNTa z(|T)0(K$dem+dqoQ3%)hS$?Y{hq)M>f#$-&1VH|I%{j5h+#(>?J^%qFN(K2N`#^51wIiSCA{mj#r+kAC?SEa3DY zd7`kot{^8r*u@{4bBtokn5y;Cd;cc}Hcz|r^0O+Rws%@LCLCCeeIn-hl0vMkx$q1a z(J}Y(nXB}@?v(O>8~2w(=u>1;a~E7O3rz`8jjw;Cxmd1+>#M95Vn2&h&!{64C_Z1t z!jT38xtovQ0XIhg0bZ{9jWGipxSMHWquNKzVaM2Fa=#)XBg3gBeth5~w_~3N&9Fwg z+grSsevpsyNbPe?v`ebYFn#JcE#OeGS;r_|(EY+-mx%r0%_f;O-t3@eEjI~uVA4&N zKS>o(ViN#Q41C06iUp=-i!X^YjW4klP{zf(@SJYV1{gABdF<$#G3M1KTC1;i1u!L#yJOLAbxXE0N= zw_gI78{?t`Ck!U2&8<2u(MmztLFqQ(nT%C$u3B$^?2~DD1Jx$BTJcD6fAqh>TwM8D z_m8hoID5kfXdmnUgq3i#6;(=qUT45SA^LiKm#g;IXW(-&6eoaK*NK2c z2uKe#0pd7p(M#)+7-J}XKZ{)1MG5FPHz~8wd#YTj^N7dzPq?(?6QQ$121aR@@1Oj% z#7(v&fpU@fTL`_4IWYChF=iMGqV;o2rm7T*cd$=Zq9zuL>*X?7X#fWrHA#|GfK|Xo z?sk5qM#E_85HFOfwbX)`in!}s_{*kd|248KKF?NSjg-cY>(rhJ8=~)dF)n1yc5Hhr z)?>^o*?#|ApU_Ak!d}@NGZHDm9k9Zb!4Vbz|0_~@c2}`j7%s#G$Ycg?-{G_x$&>=$WH4S0pOVIsfZL(S z#21IZQ5cAlh0N$b2 zjVM3=P#&lJGcM`*f+>YbHTo^C zLL>p=&wnu+AOC>(!E&|U)@NlyUL>&F>m>M}{EcmCm;Tcp9?SM>BCSu!9wRf1U{_-u z5h!%2sG$`>smqR}wgQg^IEpCTYVdhd_V1pRSU>V!^(z<&QTkuS9{DH4$>O?JJE2T- zEOkj{i%S+FCDgl{sUjrh3a`_}?CG2SzSI++ZxHwOTLWj>0SpEB8rJ#8Nc0=fTzUG_ z3E(*gi@5#$>F#(^RK$gULBOaKzI~_Q=X#nt^F(h71Ilw&Kyz}nCkdF)q_45-in5xI zPg`t?>|);D%Qy(hw{Poqy$?o8}B^ymblmn*u qG&<j(5fA@d?5Q7N- delta 48191 zcmXt5}e}PD$w!l5DfU{=U8+;txsZE#v#@Dt>Qzd6!NNLEd@sM$qZw zg|Tj6W>9$h98;4g>vf?0l@!Z1Da3I(IchZ}2o7<-a+Vk=br{%01Ap{<53kn4@n}hQ z3iO(m&QAG zNAn9Fmmh0!<_>&ZaQk?#gNlKK2>39E_E>+fgBiDQ4;;C5I6Yf7MO-{JM@?Z zQA%XOHxJ5V>p6Yrf?>rJin|uPHfJ*W`dW%@@u1E~Ik{g*^JnIJw;w@#a$=Qzm zw|y*5%wN#M!i8SLh>vjc#|6!|TDQF1cHX?ht_^UY?QUiGivQn(S){)SL#!niEQ(vo z5%A00qus$e2n$=x(sB35T3)uX(o=; zbz^yU4lWK2+D|YrV032a6j(BpQ0(0j_F~B=<>XsWY=eU83#ajiw&^{NC|0er7-5r| zBx5^Hs_!Gk*sMihwSc{*5gUK~yA~7*G-RQdSgry@TdOvaUhOUX#L}o$$OCLHw}LJF z=?1Iu9pAVl*G4n@jK~krXZVkoihZtY5ec?vB(}qJz10W*TVlS zi}27m-hdHs5QB#AFFT2Sv6H}#FnxZm38Z_xgsJN}_p5IDA?O7Wp;s3zV6KN9SFae^ zA2sNViG-5^HjZsrHfizjw(Q*cYo<{?%R{LNXa94jZtCE5)5|TE&>8%*d4~Vu+fBBh z5jD5LFulQ08}+`dn5FF2w{j|L|LE$1Z2YqnVqbi&Jl)RfN#^}Y`8~Jahf8s?u7d-~ ziOa>TI^5=xg9i3Vb|Yk-2^y!p8|ZDTUYR~D8H~S@j-7qb!-NK;Uqa|j$Li>Gmd{J@ zZ9a1zDjHWfU&m@EmaWa6(YuU?$TT2zQVLP_k+z=3|J7q#VbEbKNo&x{PeT%`{TQsu z=a%pkZ~`(TK+Ox^YRR#McQN#(>GCuyCoPpM{yVg%^Aq_Z&9Ky5Sy?^(dq>*$3qZOk z3hkf(>tb>FqaU;E4NNmMJ1BhAGCuDf+Wb=+)wMoh{fyc=<+j%%{Hzdh`xE3Pujd*> z>K|VusfpTUP(`=Vke%HlrFbIX?RWc8#$%^bgvz(3GsazCtKyb~nXr~V-imaBBkCgowq;FupbR*(2I|urF zXt|*_{b2!7K!Cf`qDyg!QAx^RLTy#gqCZR=zS=M4huGE|5(Y*C(0Rk(aJsl9O|?CQhH~E+gkHkB>-;)-;7rQ9r4sabP;2GF-RoDc7 zaUDozNiukJc47BRdkR0vL8*lPX6Mc^A9VcJI)g`+ou~@x*z5nD(QYI#$?4Ar+m%*p zq1SKcf!52NDw1!7BQJxtNTqQkzHBAFT$HW>lLa=v`wBiN?KdCCgL`t0qk=uUo4TwH zzQXwrF#e(~@^}pIjxjE&21iBg^g*EW@>_evA;C0N&MvN!Pwu3c?GHJnV}_5I3F9wN zchr9cZ|Vzqgnnud`Eb@hpKlC>7-Z&ZkriqISDmbVoEG2Jh38D^lKmh-+LIjB)INuI zWN3`7d(5=mbzlD%_5+dv0;j6T>Xt99zdx7gj44fEXz3jDPeg1PKFn;Nw>hQR{Gmy! z8t&}Ino(5z5OfLs+YWmzbXhsR;Mx@TO~KDz1UY1971w|{lnQh4-jz9$3fuAuxWX6m z^XPgcl19A|GF_vNAL7w;tk_(V!$d}cg(M=?+-^A5gYU^Pp$#D>l{`MiqhmLF;dgCX zN~-C4?+_5Jfd!A-V|;F5GbM`F8lS}TZhWV&5c!x|cqRe=)FpAt09%Yw0MVNH-x%2#rmp{eJejxZFb5?4my1 zKJ_pbJWlK6snl@@!~n1^*dMrWNRHDXpg3`IdFh)wae~JcN=7Az6Xss>RUFMRCkzr$Cth6yv-kVmbb5s_~U-!*PfzOT_8vV`5m3Gk2rhPmX zXo1&y@8Po&w?o#M=1Ig6&*Hc*YLuk3_xtU^R%y>wGCH8ks;ie!watO65h*B-h%mQ* z)2ZjR4{$9e_I+`wHB?plpsi&8?6@%XruO!*JQ~r5fo#i}@|elNAt=`ed?+2GPX(nb zT7Re`j;ama&x}QdQaEMqtkzvmgLZ;GXhyhYptG@6^0c2QD-@6`I}>A5Zgoes2QM$L zin$!Ho%D0b@aqCyb_f*!xeB~Ncd?fAoZ8QMHoG~`u}v4r!p)=o-=V+asn^Oo zx!WgbyA~^f$_uv38233i_Z_qmYWS{3muRy9KEY@5)T>+RHuY5)NsgM09#I1YiiT~@ z`Q=!TD>Q9?qyoeizb}d{1%^CRMXmBr(r8I#JLO^|{$Az)6l~nehPDU&jL!*8ef<@I zQ@dyUj7>+cx^?DeVCC%C*pKbA zO{;fGBAuCW4aMd7_J8NyB3oTSz11rg=H0G%`a(iBwe~9lJJ6a;(aw`?Wq~A>WIAzU z`9Mj5^MXYP`^|haA;tA@U!CHx>o4QC-W`40^A-VBVsVVRIvBLmc}cosuTPPFL46jt zCR_NOhT&!2<0g@p%*0Ls#1y5cGr8NX1KC6kPO%<$%0xu%%Hn{ljOM}44P8V8oc+$g zUgxdw>R;lOJHT0RX>42@wcC7UcbaK+vcMIn(6IpcrNXi4{r5^ z^r163J!w7893O7BEK*vkt90@T>1p9>E;u1lk3=JY3hHS`$p`a;`&j63akAMFJ&8~| z?>YYc!~*hP{wgc`dAuE;qTNNE5_fh^n1G_r~B8k z>=Q9@{7C}c*g7pc)V^!SyJfjmE+Hc4dTi^OgG@tVRT#a`)zy*M`f^K{v#Izc>g~yk zAuMB{J3lGUppKc?F6mr*AdIZy&;kW>&d-8Dm~Q@rGOC>Me`iiWUBR4-Q=@gO++7QN zhjX#y%=d62LO+W!56?t{H1_vNXm^dT@3g9OV#_Se()!k?t$#pL#^gVH*xEStp$ zX}cMXIFoK;Z}}=A7!Bk`ul97bCxPQ*m0ZQ-L|h9tW+(;@WXWzJ>mVg8KIhm~uk^QU zU)AcT`TI(-j@Hk0`gZy_OH=LTB{kPPR8R)%Mu41$1Fbq|IACxrxgURM>g$Zt@_saO`8%g`!6SGS!` zWGDyk{I3IYz^gZc2>XTX)!HvPet6E5XzMpWH$zfeRppqO|7m4+;%Cqm4!)?TU40=P zm=00?qM~lj{_5e6 z)R}gp7ji&hBauf}_O)~|%I{eml1BKo>*CM@CI1)hzPJZM{8RTK=byVS7lSURx;Y8O z5;`m-w*nb=Xpvr(5)}zyrH{3z@MnB0JE>`R-uT`#DP3zHQVM`w_KND$XPPWUDeNT$ z_lBxukhopJU#tQZ^K(2zjISAlJ44sU?>xBv*DK|{9dP|+wfzgiSRAWrrmUitp3#~1 z!}dsd4M`dU8LYG zUyvn3%Fk@cfSSsX?1T5_f89TWnbS}QwQ#t4z-rY&FuRi35#`V(UyHM&f-Il0Mw9J| zVim83cfJ1M-5B(6yk5dMombLze7w?q+Abv&05n|24n51b5jMJ;s)gz_r`vbcI)e>C zsM#94l6b3SfVp&Gq3S;C^Nr-bdywQT7&Wbw&E17LLIuMeotXAmgS27ScZkJe%Ky74 zJei?Ap!7)lo+H5X-q8)w-VNQ}&TgpAABRtw9xUR2+_zCPMdZzVNW>_doF)K99K1Kj z<;5!m=vth{d1t3gTAV@Bjx9l@IFGAc|K*Jz%oQy!bjH%CfP_W6@hg`rt?rsZv9#9< zgTyS<7q^etirPuI78sjWD_es@+SZer{gPHK#cEO%W&>gWNZ5@+4`kgDtZA@ivK@uk zGlOFG^B-{w1mHov+?^g?Ku{DYRC>A7{D;~hYUnC3W}{o>O7t?S(gSVD%-i?e$LJI~ zPCoW>{PSeIOD`T&9eoCH@aNt1(guFlAW2Q?^cM~?7i23SDi0>k<+Y6%+@}WTgQmCAOI1G+t2q1I^fHF4_>va| zr6xJNhH^EE@S^+Q%KIn(A9L`bdDECdENV=hD*y;9cy0)*2sF=6%q4a7Cw8~pAk&SA zh7h6i2Wo%+?Rc>H@!;0Ctntl3qwhhOZ`m#KL1W{5ZUzx5uBdx2MlO|DL}fdmYUFFh zkSLq&AGhN^f?)D7{kNkB*h6keM;;a?S>$P~cLhXYG`^MIm{q2 z{R8;9$mI;`7DLI#Ungivty2w)dZli>YTql{P2z-vj9$DJY^7lpoDFDjtIz6d8ORm} z+vLsOSm1MB?I$VdLrra~q%Kr9QZCNf%uU%w1U(`v;uK02&+*T9-}W}&gl3A}6cy}e z>NE8cEt}buKk8=;uj$>hMK&3V8>dLx0XT`eYfq#>Xw<3vT8o_e+~7D?RgIjw&&0;{ z+pd^Gd|zbS4P6yi0K((SO88ao4@R)73s_tXrSjcqs}u=C%*lLmLEF9 zufS4~T+-5%us!9Gbvw5;T{!b)RqfLjszZf0(%uY!-Ve6eT7btt~UW#bF6wX zb3mziuW2dn&w8)8u3q$=!9_-ZN!XmcJz9NN$Ao7DJ4ax4y5M7dN@tOp%h%xwu8A=? zKBN(eR%PT((PpdXB$+;`qvLWeK?aPcvOKpTLL*ulB5jo`=~dNm%$hfypqjcXoV0Lg z8|nFu=GBvCrpz}YX3FgC2R^u*`(^|n)PL>k-)y}Ppt?TlJM&H2x9DCc>EFmSWc57W z?q`r=jWT4{Aa7>#N&9{>?f={B_`^=!D4%q^sPsXMDGh8Rah|G;M7=Ru4OKncz!+l> z{O-ECXa5c@Pzw-781i6CM+EV`X_Z8T(vjh1XLkN=gXHt#-#@L605U~b;;`#WXp4R$ z_LTMJ^E;_cJ(taPpVciZ8)1qEyvo2uVIpE6BHi*a!%DGIqrY(X=+@O@j927Q(Bp(x zjjiMCvV7jU1t$(TT=FcWa#3K3o<;xBLpR$)=jFIv3a!`VG5k|yjH$^fHy87NY>Nta zz_SWc*h=J(EX+Dkl56MfbaWVBE)p*y;3xD2Pt~m3a_6*x7`tbEr!?O7&&r`7Yds>9 zzbl@<`RY}x=l*)n+nElFRFrfCap1`A)ue-`ch}>uit~cF=k0}T?*X+E1~8-FHU4rz zgDlPH`HL%`8RxsE|wtfDtsA@f-3(IYJp&< zojyC3eA%w6tNt$~s$RZs!=J!VF^K#LA|NR=a)MAOIfj@8aQimU6VnjZnL;gpemlC( z!#5Gp+ESC-u}gDyc?m2Mif48JHn>AAj|HjU-r))b0bE|7t`>-CZHP=9v1Gu%iHNv< zJ19!q{YOBz_GVfm1weTHL1j+7;^R9HBXt5N6rD6RyI%$3%d&f^ZFPE2IO9emGjBsH^@a)o z!79%58J+(_arfU7M>Jup$CKr3(56nI4L*_4zY`yk#DLMMGYhYx|}L$*xM*G!l_Z=tO&b)?}qae>GQGV>z! zfo4IXUE^9#gIC1Sce_*yc*iqMG3Zh2E8&5;MSc-%I`B&aH{8LN@~6}yaw|LP0fB)w;Tfp7(xN^PR(^Qu{)CcFU7eWe z0N)#83|CI7EhBa%prf8i#RZj?O0oh=QMZ*pePBozZdfAS`-5>^NmGL@=bmN~W$*P| zY`e_sTY|$wE<9`;pz;AmbQoqsOt4pjR7PmNDeRH4&>_fpl@z8*!@IPgryKzS3}3Rf z2j$vK_eCA*VLvYDsX1m59NyrRlS`z zjB}JruSiZO+}+bv_Gb71=3RB5wV zW{3>*6bE}v!Yc_BUeDtwyCj4nw-Sjfq)|_UD*keP8BXvPXcsqI;Pzo4+A{`w@*j08_{PFw;Sset$T@6~f%0=<@*Mt3)=XaTO6#8=%b$N(6Pa z^eU||07AYW0qDlp%d4~uVJ5A*qYQ}q}#Ne0rQ*7{GW?*q)Ky+7C= zM69fUu)4aD@iF)t7##aJ#!zV7XE$weg`PZ6;hmFvJHYc)o zaE*xa@Q;v@-&ZZ~! zeEtH>{A1%MQY(7cy!k`*l*lK@$_bfx3C8NuV-MP`RElAHC>n8x8Uxx<44*}W*v2CN z>%hCIK!m7OVU+83ioc0L{0mZ8f9aF9e7uNQdM!@fv>d;Mvj8V+3Qr$g-#Bk*q)-uG z))0d9S>7}?af^uXI4^p8TY7nzG2rh2V>{u{j~WV~YY6&eBALBIRvjKDgk30q52Qvvzl>mgtIn}( zLOftzo(Lm*{_?tJ+dfbw+RSEUcssMu{Eo5`@q^e8H0E;221m<2f@b=9vd@6PT71XJ zcAC>*QPSYW1z=%yrJI%&9X|Yx{t*ehq6AupvJy#>%467CV{WO^8cDMuPE>kfz^YRm`lCU!`2Xqnf@D%&(;@j{~OFUI2@~W zN2?;nkag9nTIg0(1rUfxA6fn2&RiP)?VZmbOYzL+~e4Vs7!doydAWv{iyP3C1y zKiETef0w$fdmlOT)Thv!KCf;}+=|oO0yT@Y@VU-}<``c{zC4`H(QyRC&@-kAx2%J_ zo(4dL-EqtW&=R;DuI7yq8gL`SSbKJN$bG*1TC7V%h-K{Sf0^@qMTb>OUarWfQTplY`$;^gYraBSnI`8DryX8(+%*s@68{S4&uS_S?tGf%mv;22fOS`~ z?X-%!Vx8?qfirLBRPy@FmL9%53X!YSs6J|2Kk}+}=7R53`X%=lpv2TV{#J*CC--s@ zUolLdvy!?y`Apkk@Xv)~8EP7?q=@0+g(?{?sE%AofGI27(3*=^c1e zZ@R9GauP+G{g=M6UM%S!OwfyN=!P>euOoN%pW7sDBM* zm#ALlqJ?AbU9vek`tIxgik)F)h5xf3A_Mzb2#OXdy3#T_SO`Wv0&At;pR*?L=};R6 z8X+0Ib#(YLkjysY?ylARz~O+#LBepi7Sr8+M+gfUS2RSWm9>o1XvyL{u|H=sV$m^} z(~)0S#qv6PY5czNL<+U4*=XMIC95D-BMUPqpx^SppWsXAeRh7e>EE7n-@>2DS%g4} zK%4rm2!R^y0bQWGq9ggyE!7452=vX&NXQrW?jtQGC}nN$e0#*}LKOrP9B>#kzp`47 zvB@vS?XL*YH6~RKAFa9TDey)6c}4J_pKxHSz;e*@*3Qy$(kV{8**6h{mse|RPO6T& zw|9O~z-6hdX#k#>+lh(RlNamvc7AnUQ6F@jx}-7oWf$>zJc8h<*u~)NfoG^RAEB%* z+1OvSg#L2|{CLYWZxyer>qjZ@&Zpk}N6yaGDqY}aT|N_cHB#9=@{WlCg+|14Io0im z!g6~4XNJthNOsqb$nrrwi<7IJ%VvGf!pg=2On&r!rnls05{6*gyjC(5$mbjKSARKN z$@DtGc?pJIR0OsHpWtvH`|Sj_4*!>i<%3v43j2p_Ecw|Pz3;7WU#DazwFkbiu7AMP zWXeF*_*Vve(+(>5qM^VEnWO*j;;SmpkjAt3BeS<66HJvUH>t}juc)rM>)+cE;le&B z0JD;eyo+OUe;592%(GKfR0>vVO6zk~ri;J`rZpcosI7*8TfSwJfw~&G$wd^zAo$j4 z5K4$)bx<_;_l-FsJc2ifb_keAhY??cYee2`KjL zBbECEMrUm4imqpkKPAQVPYK6MZ0cg*Q&!(J=FgOj^k+Xa(Ms|kBlD*uVuN;WISiqD z9q#N6cUS<|q(e8Wf3lsiwSmMiOx_-T-K^TOY$#HK&{yo2tgalc-n3=ubHg>d)Fx;6 z&UJ;Lno!3I>a<##Naoo+{UdN z*MIhHH-zPhbDn)JR9(zC5H81+ow(5Z0?ZJ%NggPgc0w0xpX4NJmFgD)HrV(Ay2LwT z7efQuJ(KvJPS|CBV7HP!rU7b|auUWSCc$<~M-Dem!DcweO_Bz|BtEHi+OMpq@t1It_K~S$lh?Wgnb%?C&Y0H|9b4zh*Se)ZLYN#+PDq<&Iq; z(>qIoaZoTS%~hq3>_y)FTY#O=>d30;sWW8{o}{9EGEX8?-h|O@;z<02!S5$~`>L$0 z)N1FPRQFf7u@L*>@I>9iSBf=5hcl$k2QipHuW9JMVD=-ta<@RaTP*KuUYXNjx5@aKNKup- z$$Ihs71T6~Auct)ZAyjXHkr-wk1hhxO5+8P5_8%6s;1IccLHh^^hMh zHs`_(RT;2Ay~F?UDr5_(c!BRjFIoJ)(C)*vqa;hu&CO%5Mr_F3)zt`3z)ib6)O$;8 zL(K7}r{Y(MfV<_j?(?Yy)>nlt_n#Tq404E?+Y7Q|25nB!ar&s2w|*R9Do;d0q(2ZH zJePD0b_;ZmJt52HNubg-<{1qtrSO`U}5L6 zV`y`(rwlYCpBYo@x(vRW-0K^tl3F#^_uVfMDo|r~nK~R%N2kZ@12&3u5j^h*g6ZW) z1KN!5gFqlfL9xEc`sfi5)HT0v6TnEi8Gl*NOMvdM`VW*z?3zmV z$OKheJ=QSTdcn5oGSQm~)mw6TeblSW$-n04i2AK(P?XJuhr71Yys}`cZ+yGT+>h=a z6YrhSOYtBMr5P39)xk4KN$qJyX~*5ih13) zh1H@4nhU|+*x3Jan)Xsd?=`uc{ybL%z%aoXvbl*Hy`h>t3|aG{#@fvBUBSOw;xC&A#mXJzVR6nrj zV#E;e1vHFiued>Rp4=&KGz@GQyP)NmRS5SOd7^9b?qXqJyD{@A>E__HCVQreS0RuA zrslft_Fq!v-w@4)i~!`g%3)+r6a)X=A;MGcb|Vzp@h@ngF{O5y81$MLbekA->KmLP z78SfYNdEZi+8IN6pQDIRJPS?KBN|NcmOTdBcyI#K zB3o18H0I^`7u^yLN9gYP>B~jnecRkO8jB+fLy&p>Nk|Xx7i`%}U=$i){Eu$@ZH|$Q z`O|cS#49^R{L}4>E!3jVF#Fsje|IJ#J3sASo7rB?T3gakyFuSS(GtE50$BU>)E_gA zjnny`s&rQls27%WK6|J8_Sx6h6OQMr^-H^C)><3&-RnF5Tqo$h2hxQ%{vB{>mhz)p z@`s1R`Q`*7B>3wGM0TM+N>wUFdUXU6H`A3;obgAIFhj9KPy=rlE(hq9&t)7{sr(Mc^t*{D>_Z) zej2Zly2{+7ST-K!7lX?R{Z+mC=_5|qCG_m6Hu=lC{wa+d5Wto(+WhKG3|_Gt3vUQG zjA#n)J200T7pJVaG;emyo@+>Q&-7LCws-9OU6vsPw*OR=iPYu&R?<6mo$(Gj&NSkz zlypMJ519wb8gW{$z7Cy)wRi>WrtinA56o|`5<}s4Yn#30%$`UnSx$Ben`Z>>?vDkl z4a39Kv}BGgL{nBj?FUyxsrLtd`LvqbgWV*To`w!E1kR(~& z`c-rQ2eBU=1~CpOKWe(1HQ3jTv0wZPZVQSGR2*aBHvVBo!&kHEzJyg(_k_FH8BEz(kqUxVf! zkNPQ9{;rOLqh5)C8H^k-w3nB;Kh6pjQH^Lr8|Gs*l1&}l7K^qM)PsH(#!h@&SrRb^ z#a#OU8}}tq*_UZbNK)Pk=Qr2Fze2nXe7>g{PD_N6VMk~=;vAX25m{Nw-ey_rbl)s7 zF(15@RAA)JLxpDpP5Y@8H3&2kJ`##Q(l60RTSjeHY>&5(om8+O%XR@}NA4@}0u+!W zi-5I9$>K{WCK7ina|jYpbLuK+UdGoMFXd8Uh>zs^lz2 zKP7y2Bt@-zHE4;L_PNB=^;jmR*#`Lz7~hnF2TeqBRzQU_B5`PK>s)A-LWMIXeXu;J z<<3_iBC&rZMWI=2GnN-KKuqlB?q1h9a4FDKLXPkEeD%{LDt1!d`iZxkby46QVmv=g zRySJ0zX-5@Vf8B1hh{SRmm4Lh+v>J771T9sLFPv4O=ehbx{34&5`uSvh(!M^yxr-U zXUxd53hOOF{|EPE=KJ@Cd-^5GZ-|K6c9GpSKRO3O_}PW%pI?wT_U2M%eMH(NH_4fn z<*ue}v?aL@a<{~y&Vae1di!J-#!cgB8k28Hgah!xqriY8nO_5!@gGrgj-w!u+5|X4 z<3d>YItt1oGo(?BX_9jD#Qch*R{>h@(XLqQYodQgRA?FRM(4LB8A@&VF;{r-{)gaE zrL4P0ry^x&ie(PF4Pyt?I9hC|R-yG{kAX#x!Oz9^M^k#a1X>T{E>9?6oS~Wu(wC3; zz|&PoR6Sv9C)igMTfXG9)SZ@YXxz2)Y0UF8j+pGunEMS1O6y8-p<&7Q|2)K;q_ylX zL%iCKEqV_!-)J5eCAYEvDWJOM=znxp&fLWNs|qb=EpG4~KOz9Ty)=VkyFf>NpEHm; zcue@Wpg~CKzXc?K!ejMh3@I?dvbk{kTBCgU+fWaCW< zR!!IiW~&wx<@*L2{hfaWkB{4`z!}$<66j+`BJr2v)4!VHZ{u5B>pRs;Cl`dZ16BPb z=E1@-Tl(3a2LFwUbzeMRYH>Y+C}r_4UcQhcNowBY{-$|jHlvN%x(DiayG)X$F&?3sD!2sp zhQCTpJO>9*KQN^W?@HJP{*C6XgFhSkWQK_7nue9_G!{z}bz{k(xgGUZHP=>7asF60 z4ZVUx~0tx7wRN=S6FBxciyKo&8#*ty~) z8HyAcICh4a1`(_s(fOwh@nt#}=C6+e`jibyhR$1i9tSL=tVvKQm#)?i-%f10ivI)J zlzUnQg~sf~>DqI1Eq{O_rTlE@> zADO(g$ADt}q!=v7sKkpC#E$N{dQxkr9U2ueC0Z_Q$@ACXRs(CY3p($Vd+$)6z*gf#EU#k+t@__SryE~Tzu>){dH2gd*ROXVZhLdh?Ci7Ng_nkNC{vv0?r zXX|n>_?5!oeqStp3g>4>Y2=B+K1^??456wfy!A-QS?MM4ASK~}mTKqTDHw_$W z3a*VV!ECqjP@{MoKn$`~O76m^;cnlO9F%;!hZ*0U-B~C>QmM(R@&l*ZnaB7?!!<^n zip{IHKE*E=rnzX`0*M-B5_9|?u@c(^#3!!sbEjBqR!?~3qEn%ZCbZQ6xtf4f1 z+%N9JRg!*H4gaptdk;^k6sRD;^ya$^WGx^ef7C7FH{ekG}3 z3nJTj7bV%F3el2`QCm(2*W=Md%ojsTPE$~Fik0Gx^Xt$6dHTWzlNJp@4+<{RZI1&A z1p0TM@@oAKhE?+feAAum2vSk~2BdU=_7c$k6s-^;_ot0HJ&DUQnbm;W1#r~W8e zBO35fD}xJOuLVWP}2~%S6B#)-4~;hC|Yh!h(YRABWI?{-|ghk?b3B zdhA|9ij~QPeYrj-UfNhLEGXqZH*vRoA%R4RGew=hJ9^K&5KsVbh=R8Amy%JP&q6-8 zCnxLnZSUW zWng)D_9l^idh0v$qFG)*{;nl60r5HYYtzit{tfG>@9C9Cbw)A8XUYmHc*YZGq~@Rf zzW>6b{SeB-zg!n?S_jy>R`Ychz#?V_)lL2y`o^VDE*7f)uSL;}|Wm z$bVW8+rhFEbT%8}`lQ(ogS9~P8CmcVJ)MVPPBP)Ax;jTxqhBWUajCy0s8FNu z{d-gLk)I|EkWfVl(#^7N% z?UoSjr&mmi44$+D@ZFGAz11~wE><0UN#J4~q?TBKeDj0gbhZ!I7(Lz>Sqd?tzQ{hF z1hfku3VNcxcLgVxS7u(*P*vEIKFXH<)FGIj8ZGcC_ z+1c55St@p<;pP4zg9YsWQkqI*Q$Ob!FqV{SHvZiGD!PGCp32vWzy#21*<&O{+nfIL zO?M+De@vy2xY9*Kxvz89u<9sPFlcCilk}Y#99`DTko~J|x)vkA^_z_)wSC{A2yS%79h)ICk{)>cL543{GHn{jT+tZoa z2dCw&s=<|`B}b6qfKz9-X!dRveVv7Yicfr0A0CZcu0f zkiBe1WKlk!#sGH=i|Nf!pbMPf!Qu1{mR)lNr|qKTRPzqcb=3T0EAC0eVax808^pit z20i#%@*de05&JJRR>BGvt4TX4H@yjdm#gW9~?H%l^Q>iTuc5QpV`Kocx z6nl&e)mF)I=uNHi((swio%V06lHoLSwwT!gg6d?JXBJkUvm~h(gM)+-7lHc6))=qg zs&Q1y0z6hH;>8#&eFx)dYb)|amPWKGh3Se$)hXf7p?G4u z=t2mmt{?iTnJeYH<&)1vokm@&DJ5TBA^k!VNt3CmJqUt8`^sO?acd15NK65j#Jqej zgQx~=|0+va{AvswZo^TGEj4)tP7Xp!lBTE5nb`xzJ-)jbUV}XoAB9dS2h_2;=u;Y1 z$H6Vn(%-f}ZjK1@i-uLn)zx5nBXEf-+|Gf7atXWmvz$%s+hu!pEpiF21r7&UAI3|% zVh*DbM}V78skt)I`?W;T{OhBMGq1Q~uE50VQ>Hg$;*Cy10_shFUd#$sX|Kn43(z@R z_s{EtZ7C05hzfuMsvzATZ7(laP$7w-#7(0aTV3?+M@$Z~qvG0xgsAr7j~ehR4hgslS|1WPglbv&=$--&An&9~+7Q z^zZJ1(thlk+6f7?p2>U;Hfd^V`z@AeD}w&A5^CDT9*AUzd;-G)>0Sv{X3^TjFkJvluG1wDxB5n zH;xx3FJe?4zTQoEcu>Vj3|IXvb`&Gdvn9jn86GFx+06WBPjIlc{l@Uent#k=a$!Pt z0q>~H(!iP3op=B2565(8`lgTgCOdRrZ8;`UcMzoIo;zONYESTk<3)4#>#}P@5eDSu zHjMIgOpO`s#A@CPU}f2U7;)Y=s!N2}%4*X7j@hqFUF=6-1WHoDdj++sQc2ei*15y( z^wN4IOIh}||7h|F*HrD>Ay?Ab?e3+S>I}R(=1g!c>=yr!l>j0+ko-J3_RTIzLt;d~m=`V0d!GM7}^73K{5#kl%dG?i^>7 z=v(p~IlJVN3N=S2>iTiZ2p!?r;>)M`0ZIN5RpXbCdNz?)CWdfI?65d)W76e1qCl)h zvfN~W&KSxSfk$3z8x$}}i+vAY2L^@IwFw;t0z3imOc7;(FCf7_O!def*|)yFDZ!m0 zn_OIQz2s_*?y3`Ux)brLlkRGqZf5^6_kxn_0E%6JLqvq?ZPud`5Wc!)P@_QIlV4rIZ+lT4kK^?U_ zH;g}2iC3<+NtSuCJ=j_DfIxX-XaAnGq!tT379H z?}7qZ}`(7mcyRSt_8)p=&`z9tr9y;X_#3B~) zaSjFZ&Ygk9aqW%mS}n&G%X#xR7YGyX_wlPPLrVZOTtFAUP#@vrXRz2`G$NG! zPd8JX(qg`CRq0;Ot%s)rxTkP_;9NzL@O(VFz;K)xLrQSNtU$((xTsze${wmv;|b_A@9N~(-=4N;x|*)_&_IMpNU^rF2<`*Ai6jf<+2EMcl#_gHMEutU)`{hc zwGIvko|^W^F+W%f%rFzyUVXLvCcqZH&T>&JDb!MWgS7bxwNH5D-PGIcO#V+CjW^ix z#1X0bMJx*JS#|1oOG>-1p`P4oWmU1aB*b5TMVN2N#2QhpQ^p|!tnPLAi)^ih4*;VJ zd}3ThleLeYb}JVC28S<{XsVXBnB||T*Ai&qb77WEj~n`xM^{st`oA%ngD@(=B!GK=Xml%hLMd1guWRb8%~g3sX=@K-5jQxeH@7TEM1r_sk`wD z6IdnCe3~1Ds6hfvX+j4Wuq3y6da(}8z`8YtugItXYRA9XxBUG7!FjG!HDdP*ga3kKK|KV&$N7XOn{oI~8 zGP%~~b6ej>lL?!a^&yg1XEaJl)#X|vUS!J~pDEHPu(*BZ1!?)qT%I9l5fDMIf6rDQ z$;uU4v;h@sYGY%X;E3~PmZj%UyI6Vf=SCRM;x6od*ABQ_!B;7EP z-VgOrV9C5_oK0Q4a3-&E5fluptO-}$D?9v-jW>6~I)n1vUXd|ORqOTMIYNONajW}* z)=GPcfcH2zd|H~{G6GfA{!*qp<#YHSXX8P`sE8DQh%IL0WJiM9h$vz`gI#Ywq8eO4 zJ_i+Jhoxpg7hf{7LeGdd4{mU|xU{FIkW9H8`B7I&Cx~6v*pnd)+i|0M9H&!#y+xc! z&&9l-k`n*D6`MaO=HK?yn~SimwEZ4*jHfr2JLwEeU)4k{q4U_7*Jp5AU$xy4?i^oS zBjUM?x8`#g#aV>VO<<{&VTnU}s&{w-Hk10_gI@X#U(Ln$MBGUcyuNYa0Nq9p; zLiRM&3jB*LW9)}mpET`vl)f0MIr&kzgO?Hz<%mWx7}fwWn%+Oi=$rT(Tv@T7P_C$7 zz|$^wxryEnl_D?%46ofEoUSo|vkw}`hYG)WPt@_5jPZ@#sc`cRN9v!?6xL8_lz@xd zkVncyFwlp}YU-BZJ+l)2kHF^~gh)pYLR!bQ(t#-|w9U&RYSo)wv#4t&&t-o9@t6F8+=u7wqXzK*%g z4c$IBab6sw6537j#fc8jqp#XT}K&_gfH?K3G8ZRp?o& zjS=uX2K-M^3G693% zntpR&jHl#PJgkY*N4=*$v_*exV8ri;puDioJJVf@ak; zVVcxlwn+_U=tqh|FeNU)du{-uYhx1yU4eQW=f*JAyynQFuoyG+a+7=f6W|?qTwiXX z5RvK&Q*-T<>Lpc<^s1U{B3X~PTP=Sj{kH-+JHT~lEi3e|vKI+ax2@^>*?cg*nv3;R z1b3D63X~T*E}JYn-;7kY2jZm!`k=eYOjaMWF-0n++7ojoczn_;&pil-rVq{Z=;qD~ zihC<%y`Lk@J!0EA{TQgHmTjYclhq{w?AV_{F3H_%Q*M}(!}QN6#nk}Xh0?m5LHdu( ze{Jo)Il}HQ_*hO290LNX%!6M@3{SLga5wh*%|d5F<3$f{+>=XvK$#9qkhkvbC zJlUtLWc93Nbc^ptMkYge&OsA0sn!T57B7I2W*%QQ1L!PazV*pKmiX^b5Xw~$Hr7S0 zB!{S5$4#g|7!g8`Y+q86{#RKR!^LTipfolR9p2Po7~?yziVH=OXP zvqHOoWkIfEy+kgt^j9H`e0;*>KhNSEQ}0ZIaBL~R*%bXwzoU; zT$Xjc_Vn{=SA1`)W^IdfULHE$;)+r{7|hxE6J=!HIY3xie7bUPz{p4dnzv9)26_A7 zOBP~)SK*?fWu})ge%Cu+hf4Gm%dyko97S)350B%wobDZsispU_!7fat-^*0+!pB%sOcc{HqugFp^^1Fd0ope`oSVYF z8S5?7)4{9!VA%=fd3X7fovI%*G&u|J#@>>T5t8Ga5hrXw6ff+^JipQUMeKy*Q)@5R zKU@(e#X>pq{xd2(UTpL*{i#PeHE{A|(yIu~?QIGB@((SP`7vWG!{=&tO8-4ZEDHUm zICCtdG}~;B$SSQ|+_a7)Ft7DTg;lDr>HZzC>AlAB9OveI`7{iki@Qmf#XZXOl%@7V zu1o8Ao|19r8ec}?4sG&+`iy*nD`8PPbW8-U^=9#M;?FGp+h*d8c>@^J*yv;j#=!9Y z!E&^p4Ld;{`2*}FRiQbvvt6o!^-5_a-Vhq7tiDPvF{U(*x`KJK+<0z*-Y$E z4SodiinfM==DhXO`%<-k#TDE<(J>04afS7<)Q?7hN(G~l8v@kpE7}%l!{&?A)__;s zqSRC${tUmhvC1=+^=Fr4&nK_zQWEQ0<@;&b$Ij2H3Feu-^(Bucz{}MySjb}$!#y-m zKCnn)hFYqGvIN(9h1Z?VwHD>8Y zh5FIa$$$(KTx4SM_#0?~y;1r8r0FT<(%}+)!jeyJOd*rA9eQDHCB4euI`nr*$ltfa z-`GUxCS1o68SGnypC}`nsm4r@!^Sf%+d8{o@dmN1a2J_Q%cm_wP6KcLcn-oxoR}x-?A6HfBuWApK|+#PsdzxgQiuKYK@Wi zPLdAF&~%*7P#qd^hZ0WwVDS`T4xeA(-SdD{pEA{hhol@gW%-m`w#El~1-tH0tWw)d z$JnG9O^X3A_E1I-0QxU3mLkPFbKf;B@m;LDGi}bzA7I{Ok2BWe85wpayt8u;uSnmS z{%TcI^%elR^NVoIPBb@`Mh=;-VFCIkF7Z!h;JKjVjDnW=8hH`vMD1{r;ascC8pZ#1e?=&w^Tprdl+$^#hLJVZ=D>i8*#^rdZ*!x zWGG@COaROj3iX|8Tkdm}j(qfnzHYER^4>8lpOBCR5!T7Z%oUW)>-*ZvEQJF3Zsj4T zu+L0^15FOOaaKK#O+-z$!pMwit>{CU^YqQ~499PuHQ`gKIRRwd3fIJyp%I)UrQ?us zP*eUpu&(dk5(d~X7+>wJ5g4pN_aLZssR??A@AvE)rxSIl$cklsO@p+)&a%*H`S)J# zjq5}H%Cm90#Dyllw^@}l9z=w=GhHOAgG%OeQ)cWR%m!?}wNQ!TMiv3tR- zA!`SZ@Cg#I9}k}G6?1jd$0yXnCWqbSa|U!brLcz#P4P{f4=Zl!OfOu@H6fZVQfPqj^@58jwlSIG(urEZ_f4hMV)4MMr$H z|1D-roas@$ot8EttJrwwcV?zM0XRpD$!UzWN1>AIH^XC~*X6#G_%V$H9{8oQe-RSCyiu9S`_F7q67EqlX5)Y6z94k^4G7^WZ}O z`^8CN@?wOw=Z!SjbefPw^CgV+f)V`b0RMKy{EY)7Oy)$F{IR%g>-f(+jWy!|+&?w* z%6XzGf6M(TJAgK<)&~0pp#mj)fQ-}YP)o1Mc!Rn}&o)!Cjai-U=)hqj)cQ7k?#gTW zAY82fm!?Pde!}-<5%hqFt_8;b1@{3#jW2#SO%qpB^F{m#2gD7lPJC$0Jg-!oHRe^H zoq1%M-)s!FU@TTu1@gAFGh=u5wu>A*|0bU<#$M<6PkfT7pbl}00gSLz;b=Co8}0t? zM^OdScz4c4HdIcNLE9L{)Me0RvWb3b^%oTa9!0`t;J^gf8}P%m)V*VMe}bdOu>YqQ zraeV{qz#4{RTH+#G(Z}F4s!lvvU#}*&w66)Y)qQarH&(9(mB2J*fLz9q-OibKE1uu zW8{>`EVF^X(Fk6|JG*tYlDtTQmREsf=(X`-y2uBR_i#Ct*SPo&%&LF;i@7OmHWG?u z<}OYcgx~*fXQ0z%V-l}Q+;)2=UD&q~@;AzkaA2dHC_qB7r}dv^#d|Ekvq1OyT2nJ( z^ebHbWRDN3D%$0kgJr%>#5eT-aSecR{*)fvwxOh?=wxW57#Xd-0FY?!J=0eK?4!%~ z+>F1A4QjAT8K719SRrRW0#ldNR!4awlnWdTe-n?+eONpoO?1^)?3g!S6O4_W;@P^Y zEKJ9<(`q|CGqUd?e@?vJ8vkJt9$PZY+$5Ssdc}1Wlh|;ffZICDRvdwPh{=tW?7!nb zc~TzNcaVb;8b?D1Vbjy1w4ANQ^+ihwOve~+xQR?>)~dX$ta&Ty;_4M2xd_;2jPNA6CfyIFTXBkxx?V{k!M+FK~g*QS4TEsr*w*suJ;W9r{5 zRuj`CFsAijVvx@^AYt{L4Y~n};jYX7-uQVDZ5vZlWh8WIES9HouPA0RD>EHVmNJtk zI@FewKscV(!B0)6c=MTDVsc~(LRBS31pb?Yfc}v|XGbTkyc=>1Sw`-WYUQb1v!qXS z=ZpY5Tt0HZ@vm6r3C!s>@Qm~dNvdPU=2V(x0;p7a6L7Z&ojeU2%(=*q(Jy1`02AZy z*nE$1Xag6nR|0cc#~=%u7CR@;sR?kUyW}fl@9d8_(aaLuh{zB;xJfa?wm7Y;f`+Br zB{T7-*_I^jn64S`{*s)sB9KoMmsOw6)!q!UL_e0W!K11uE6(0|H8VG>9Al2Sp2;>h z5TtfWXkk;}l)6*hJ16yLIjc&e!00wk{U6Z`E{_EdCgKJG@S%x)a>X zGl}9sPd@z@Ck5o#sR|BS+Ui{=5ER^!SlD{-Trt+D6H$<#D+K`A41Hyq=#uD#wX)xS zj&N6&YxA?>4lN`&-sd6V4dNe!C(NyXN0VS$UA(aHiGycWGd3m%BP10#_Tx!b;3?oM z<3Fze>tLF}>h(g4Q}@}04rG0Ol7D6MdsB68Ap(kXIAHr=^;!W<$9lyg8Lv1yv-J5AN~VgEHfklyrI?tdyAhalMEE0da$vPe z`QMy|SVq~aOy5|Rurw2*Zr^{NN|xU-%EILdniLS!F;I7r=y<7W!$)kzCsgp$*R(Ys zwET41zRl+Wa=^i;e z$E&uO9YzVAM-Tq;dKE}1fZBa0T%Jl4Io>8H zT|0NSU!szvM^BlVFH)7z#lj<{QYpbrsY;9A+Aj~3l83KVkBR3-#!GOKbb>+O_?n4y zvc#{rKKU#^BA0fBZeqKt<)*@KdzW`d)h`Uuj#+#*o=h(%@Fq$)6z60N7t9sE)Ihm> zfFm}9E|9I+yf=1N_A8q-yT0-E-`aW@wVjc=rhnuI>zd||?W$(lW?y6#ulcVyIs$n= zxX4N7n-6Y|j|-J(Mw~hTcMvEtz|t@P_M*NUMaOI(OSl%lnk5;*%U7Y7>WMw<3mUR+ zr57*>mbdzc!Y}S4m2wY!SH6$TQfU|7C~0zNH}-E$*34K8A<6$|OM4tH3D;=aV)gwd zhTXJfu@g#Jp_Ruf+-ZS_(Q{TmLi|>dAtY=qG=G=hG6WVF!q#572cm&B14;dT5?cppE)Kocn*P3*Wo6kSY!#E5Q)Ip1%qLQ1vU|BWR@E*4q!1^`W%^g< z3VFd8XIz}Nb@kostj!xl$7m_O8Y744qMB}&_id7B9YB+owsVPBh6RbJDd{`yWnd+k z7`uukgci$x7zN$gXX>h>$^qbT1!P16gDBND^iC?bHbY8NtF>VF58jtTN1@D%&-i;@ zc5ZzzA5!Dc`$du*nw6b!yOz&@Z@8 zi+?Y{5_{`TPj6j&I(Xbyq0=Kfi-8`oy9gt(NTBP&+~x6}lLeBV%*+?|79Bfm4pxivNU zwlET#p@r3imBCtqmTg2uFKBnBqJ1uyU(6R{PlfZ0sS!clg-G=U%M(+pz8tA@t=c+h z(HiX*dFb>_uyg8GH^;~tl1fpwN27}UJA+~{;k14~6qgYmU_s3RG96m&RsDURILIj> zGU1XYbeZQK?S59cmnzNbhID03p0B?_vai_6lpnHZZ03s&We;c;gBxV=Nl$;ken0WR zHzsj+C{=^S-f_>_5plmWi(%i?DlJ^rX!)!y67z)mnR zb93`C^sx4%g1*DzYp&hS!{WVcg8|nEmA=0vP|kU;vBs05Jr56|PcbDHS?(DXXYEKG z+d35nm#F9|+oa=I#_on@BYSWY$+82s_=Has-c}|n+@o{d&e4sTJ<)I|tdDjJ%Z(b4 zq$1yrN<)7{?m$tDE7NN8s3C1i?msck`TTe4I(p0`lO)6cQ?#1DqaZs ziC^bH>Ub^usb1z8tC6qkB1arH+gt2?v@}>c!Zwy_4JHCBlkwLg=8!_pFVFqUmb~W8 zXRwjaZ03a9O1fq^b9z>!RNK4Mz>{-#>t(qH;b#|u@v9Z^Bdk981(3D5(;fP%hLas{ zB59sJUDFd~0icrM@C;2A;3qa-fa=#Wm2G)h`++hVbzF&Y;E1Iyh)byvblVNf4 ztWe*Qwx_QQ+Fq6k#ci2PF<&k8lT|a7t9cs9sK^uLsxQ=`rg=+fUYT7B@bajVlG3>o z;0iOu4l%?Ei79`p=~AUKRR2B+`J-({<{C{FK$t$0cCN-gLr!d8()kT-K7#Xk>GTG* zM+Cv+Z_p-goXU2oB)ekb>e$-CI_NcQY6O*eIR1yHSq2wkreSt_LOBO4ws>l+5YwA$ z`>|(MZq-!Ft&@3slw(wV3d&c82@k~)$%UB-P=+&qIX<%=nZe_mTQ-+NG&2lERrkPC zRbMQ37XS0y2>Sa#;$5W}N4Fj@#z+}``w{zB0l;nn>4^zd*0nE%n89$LW2|pV5m)e0 zF_p|Bm)&#L!Y>5e%4?rj$-ucn#Q6lLVjl7ca7QUxnx$!dB}$dz6YC7LG?m!_$Wp4= z4Z%OdM59P{PH`@`0Wn&N!HvbY8md7vcknW507(#lKOq6Ng*R z?HpE=-wN_D#(cY_0|-Fujy6?gpXS`pS4VCnN>->7#qK1dY>0m7OBXJd1N|b3P=Yl; zi0aky^jjLek+gakm~^)^T0qYMbX;@ki|T|MxGFzl0j&`?j&lxBVPI#%Zcx*}eu0<7 zYx73+EVbD;)+a9ZKyfj@_^y;58cEhYne<;5{f0mW;9VqedKT=TMTeYmLl@l|u zU+kQogKU>Rmn_?$2#13?YiPEbQ{n0^D!b%+K%zAKg$Iog;JrSw9N0knijSSI&vK?2 zQbW=x_a&`Otx-Z2n#;FeWb^&T=O1u5iRL_}U6X#sIzuu>n0;W%odZafWB@!`FpAT? z)j#egT@$=JkIs?pI8DC1eQx~c&jvfleruf;y3DFPPJO)QGodD~3@0uA29h%0RpT1_ zM)I*Yk-9}lmbH&(=>NL{o)oNBYceP&6l&lkiM9?R;d8wfqSVI$GuN*YgKZa?+CC-o z`tqoawO9g-*gf?PL9vzJ`BeP#v8$FWWU3v=Wn%@LrEkoSf-jEP9AYI&@;aY)8>ZkA z6r#?=NIr!M`2bTm;L1O}8?5Ag@!AQ9vpk)Wwz{7J0pqR~YWlc7Z8A8k8uK6Yg&)a3 zYUmAH@3yx$@1N+d4Gvu19>cBY0Fx+6$=Qw3n2%4#MfLXw1ftu(ZJJC&=LJ^N*X->F z-iK3n1vsmGlYA9pb+t>CmK6p%&t!q00Wc_RLnG;;Z<&>^yP!ooThpc^aM@}5Zx zD7k_{QZb^`oM#YZ1mG8S;P5QU=A2vRFfulQTJ@DuPXv^srx$d5tTajJwJxf);l2{0 zc+$ZgSXtaqGG^?X0UypkBll7sP(e|PX~8@f`!!otIkA1sntSI zn{!&%1Q&*9<$Lh}OzR4pek9>?7G8?gM8cT`ql7?=IAMC$N@$< z^i#LwMGU+x3k_N!0UlkBkW#hF- z?i`Vh%ah{%73|@$(UW??qfh7b$j+$%V_79-hW{@M6qK{CxiQNUWz83H4)sa>(Pa?G z3N$|llhwmR=7aO46kl@i(UejQ0L>iTGHF`J%V;BU19}r&X1>OGn&Oe6f7&qnOe8vj z)@*>C%%wLMtecl+xJ><~ixTmPI_U{Kd$K#kEf-RMS=d^?= z0V^{L8KrMQ16J1*;{1?;ERc=)wo0nM|8r!OLv=UF+Ro3Gg)!TCK*|ynrU3Nbe$Eb7 z?nZmJ&ATIRmejtunD$czlA)QJSJ$9`4#MrYLEFIdRlsDf>?9U<-mH8rp79vu!i>4Q zLP!Wu7;Q6r+ zt^A{7iSYRN6DifId=|YY?oaqqW!qdo;I0{xQIW*Ff{0L4<*Gi(OO{JGA(}z@`_z%= zX-e)N;)V^$pw(!|o6k@;lF?|gC|PR@L}e!$x=~}Bw8@v7pAg(%H4#;B+>eW2`2ef% z6t#k5Fvvj>$rb22-w%;V4OX0o+3JGs{8MY-_utHr@}|hw>p<9Y@s!^qHpk32l#%4U zl*`Z3wLM~>FtoQy&p*rhusXjUv}$6_Z;S))AMn64A?gi311(r+?L4I9v$rWSYq>8kg zB7z<5bziwv$ zp@Kg4OiyH}+bqYH_bk81tJ;I`A!iSXDnjJzD@&SokbEa52+v7E+Nxq_)j1&G-iwmq ztSe1*tB2?!n1w=`GT(8Zr%G7q@4EY%WiG%TQaXtI{6?HC?Omd4lGz_l-Up4MvL77N#lFF=3v?COdA?lOe&Gz&~V-b5}5wtQ_ z&Q6L$9~7K}XYk-Gu|a+S68a!9K?da@XcFj@Olp*>K}3UH%gr9r=?NGF5JYWJOzK?R ztg5wF*RpNo9Cmd6FsanaVwS|m3zVoRP@)(o z-7Cdtf!gipmCC%U%$AA|>0HSkPo3wwOKQ5lnevA!9!dNRj0WQEakgfXJ1sb}6&S5<^s@X57s$6G41W}8ad=QERV zIj!Kk3Q@V-{hGRlzT!b~_KFw#Cd#{nd~+SYtr(8v_X$NqRFkJcg{_YC2mpP{5XP;J&E)GKJjI<`<^zg&u`WoE|%e=;v9sMklTw-+dSe(0U||{?yDBEBVcC6 z`X$NdmTq+W1s+J`e3p_cm#-IGX$ErRyNsIxtTs#?_mwqF`hGKW5x%+eMA{Qm2?Ul9TYut zlI&%4E$c%`?-v#-r-*q~MfI$b2NS#DFrV>7+cSokX^UGuQ~n@xesOvF=&nXF=hX#0 zXn{FZ^350TiAC0d6)1UZ0gK8O7urQy)M*TVKa;Hk0d$RnE8+Muie2# z`xqjF^BWCw9hbVFubW55t=~@4^+>SG$75Z=zk|1qXTJiv>$)CJZxiYcC8rx9Dl`p^ z627b*p5)MDKraAmj%Tf}+@nSy&#?Y5zXGw1{9wLh|GalR7eA6~*-x&q09!EZfeTjY zt+p~Lg4{;iYVfkkk*WppRYY2*LMj<>&KowPq{D7#HVYs|fN61b`vKstMomgHe#xup zt(Ry+P+}h8(a?iwo_byLFZ%-g0QLfIO3<<(xJRZR%0K@Wuoir)>~Cz#cP6N~Bd*mA z{j78N>h*~X9B6@`Jb}iTTYa}R4SduK-YAJA@6g2MI?xRmsds-^8F3E`c%w9}0!)@W z9~vBa?5~}<+eRA60ED9^!SK=9C|qKw8EU*2y$DMC=Y`oIt87cly0&d9wB{i=AcyKI zLA+mFNBBr`UJD3Z24_z{;*xr)DQYWIVs+X+vGF?3A083!zhm$acn~*24x`A~|G7&4muH zWx}|*F{G9dS#|_t7u>awaI;{4yWVi_(I#>*Z?zY^sD-h2B$yW|3OoFmI0YS7!Y_c7 zC%Qn;v*4b;xaX*ypLQ3=mv^E8`#7N>^tW1yMXgulBoEqN$t&~C)Svnc)yf}%5MW_1 zf7k3^*SFznuy*4Ff^fRm0aWA(+Y7n4)!wO%0J)Epj(79pZW7eTwB*JmrE>HWR2*)l zQG#Zd!Frx;j50q(YrKNYNnc#2EX;v-1o)+DFM@1L6b#(;4*N?boHV2l=&V)#YZ_Dp zERMJCU%n8{o;C%k5-LB`v<~|CW{PLzzbaD-1XS`?G}PI1`ES%|<&i>%D(G`A0E~b? zA0hZrqrO|vDI9yciEK>a#eadMpsgPLUTLX4fLX0w^k$INzXd+r?+N%~RRTorZC1>( zdw#bKgVEK!L~8x-hT{6DoWC2>%bw}H{XvHf7Ce4vVZVH(1dEDQd}qlFDM`5D$JfWX zrl9gk&&&9f^aB;--YYf=8m}!>VG7RCC*OgjJpNhx8NL=o76L`PZeXIKp5z36iV2^m zXYb&7g$EJej0!zHUG!3wRQ?qBZjRndBQm2foQ00p)^*g0SyiO&yA+WnLGo6ofdB2d)IsFy4Y-bAuI9yhF#*-8e-$E4Y}4R7OIueKE7syHFf%%oO~0b# zbU)7B+Qge3Hb5yO_6tRPR22i6(ML$)^l0O;a~yGzX9QSQUs)XwFOIS%XlLQm|L`Kd zHs`lCCLx|CoINvBq_EnD)*RUp9Q0=#MCkT(Zx+=!I&C{6bac1}?P5tSxQo=-XyaU( zks{+S|T4s+VT;J75pl7#Y z@{8y)zGse$ojNTc%!LZ4+a|i+0+$KW>K?)GSR`W_#iCKHWaMb6zIs9h>UUa@>9|)k z=BYImq@{RJnL}%b{usj)!rEK;z@Q70?AMre`+!{R*izglxzZq($&uCGul|X>}r()+hV1!V@^$IEa(BZ z1Sl_#pgVYyaecu?zcqi0L(u!tQ+rW&xHk0lQf)$x5)GAT(tJ&YYqU3GQhaBhuA2Ov zn-6ZI$F}xa)l*t#Byadkaltp`xA3=o7~+nD9d^{4e8~c&5X)4_V3o@8G+dWN9Oqbx zV-&KA$&G2EdsQg9Sj#^2|Dalc2L2>61nt1mp&h9)>fySkL!r_f2!oT@ zJ8!s9Yok}R4~|J8eVbdK+d?bEd}zieDB6nh!}^76;f1kq!H=hK{>I0y$LgS=mYK5y zc};$^++dblIyaD@Rxv*54a+XGa7mQ}2t~ontRF{?@f(uCY_DfA0UaB4 zL>sYLJi$%)I_A;zb&LJz3Jp2?A~E%D0!QPubW>BtPTc)hezH%+uhM`ssUss7C!D|} zhpEfeEC$pP|9jC7< z`lwODRNMDf)&gmp%Or!OzYQt~C?7!n#7Iz)Y|A5e(?$Z7MU0Eh!R^65uj7-9xmR1y zbvlzX6~5G6A8qrxcoprulFC?Sgy?#~!TGv~3x87biTPnvKIPISb+;bpFUQ73{$5}R zQH}{gsTa||KzE(LsBW$}lBRZg7|3hX^Xb7!%v#=Whzpqe%IDt#?EuaEtjjZ4j@i@D zckr1<8Z2NE4$@s;Ski$YLIBvAyH~9j;S{bZiF)CYPX%?H7Gm^XVCR_mxLWX1QY4wn`FL zNjk1@9}eC;)B<-xo<2Z6spPe!pUM-8Cus|R>IpgAmZGhsOj-x<|10Rv@~E8WqlKSDOJh}$o{M{xfl zh9O&3-!O^yfAn_Xi||5B8$)DI&~!kiNTK^gjZt2_KsBqx@))wdp-&pxe!HV7aOPDL;8SfR<2!zGL)svbC|wCC|6(NAyNnm!JDl+Aj_JI*tr-A6 zIx_BS8ByYO;Z@XsY8)t)Vr;T>)oGo2t*F3DTZ((Nk&a#>k`cbTvEyI|Rp?6=M#tYvp|4~H#QJ^}s zstGVeavkja(&wXba7OAIKpmPYxC<2dxzY=XjIURLhigDGF zg0k_|(yk}RrHbmB!yqI|e*%9J|MY8RWdRfu0aDsec8O6Mq`^>eG8+d_s%x zGR+-la^=UW*fOmBc^5ewQ|5JeJn@F;HJAII3|uznML@dbH8RP2`vC(m227dlBYb&) zdO%%>DAkoG?;bp=G&~NrQoRiPzv@l;i>SAvJ=M$zq(Y$ii-Q&=ohj_)sYE0l(@JhG z*oxDZCax(Ukok=?1O9nf`9Uw^P2=gQidIjt$G|~ELCMy3WkFqG)m6QYc47aX$38FX z=+>I|&JP0!YgvC}9bS0N z^=GKRoUT%MJ)fLOmNJ>Sg7UY}z&TI)zUM}QQ`(M~f;@N5n3IJVueI%~F$Sf)4Ue?p z>zv;d*G!D)PZi+c;5cY_Mv}*yKr|wyhsivPe5Re@7P+*z*64IzJPXAd6Ed<`^dD$E zQ;Nd+ub3?w9$DfKJkO)+!aK9=_GYqHwq*=sMp@oPBEZ4@`2mB{r;JrO z6OQ`#&u>{vD66z)*5*}yDz&zf``uBxm(bEI(0zvKliUCPt749WyBLddcZhh`x!~m} zv4F@Jp~W>qV%H5Z|xX|gqJ5hI1(fQzo{ zsV}3+V9_AZ#ObOkqUgytTk{Dl$Fs7wC>oTE>yHxV*N5@+V1uk@J>i7vEKGTQZsM5a zrM3`OkJ=^_oBO*;C(QqYt7E88W7}z|UbI+TI58E;A>d=wf(w~xH>OaoqX`gCF^7!X z{U*%!{yzFk$y`$-!N2tRlHvoGP{WmV_BZY9W8Q5vcZrBQ3sfWh6C2PIy zc|dX}=yyH0v|#GBqCOoxB`^Pq^;Kq8&Wo>@kLwka>iP5FU~e$x2A!52iM=Miozz|0 z!l&QHYLI7O>=S=!Sbh=PnNdX`;fA>xT}C_`xs!}y3TY9F zU(Fw1g#*5=Lt|*ZhbqYzWYMO4#!PYzlqJQLazPv;+5WWQbfj2xh3ucyZ%?rh@;plw zK1CcG?;g;HCo9b#lx({Dy`mxM5by7N)%}~NFM@tNV^V=W@I#!cW>q&%X8lnt5_9)+ zGou!%CAS0>iq1}U&bGbkq*-+*=&> z-~g0N!2wnCd+#;8+A;pf5twDl*sVmR2=?cwq>YKf{013bLa*tj2Fd)A?_%N=bVU;x z%Ek7xM-TfkJ%pnt46{ES-91D)Amx?%YiWg6^H(d46kmo|-RQaM*2dg_t;8F6zazIf zzVWBu|`z3c4rxuO}7Ge!37j9q@g{)CbeD6b~>Lu5E=X5~l zD;H3ODJtBjqMd;wKu;g)8%);WRq*GjQD!n&QTGsNgx6J!AX*AmAzpYi4r^qA6Qc3~ z8`aimA;V{|^h!KY`8u=Wrt+5gSfcUf+K!Ds^u}w-=_FI%em4lAlyt4Q(~VZ9%$#aFlf(dbUZYz8+0AD{2uyqWHh9<(lHEctiB>GmT0t>3 zlQ<5&-_zRWoXx%O5y42sDmGUZve3U}5LBS}4H@8n5I1tTq2-!~@f2&E>9MjmISNiZ zV}!vrJsYyF)~>BON@*Xo70D&zjwu)nP?;5_ND!#OKJC@0W9H-?oGN^Qez93II(ZTr z(H@u0jE4a>Yi7T-gbJ%dKI?J;t3qx(8}#GclW?X_GTXBs2)*UEXH}>MM75;~bm&;= zs4dGV@`Ld)(vc)HlaV12?mo>1T%X5wMT5zvoWTbcW29$P3tx3dWmA-joRIFBhxMvj zWJ!PA=wwlE$1!R?jof;6BL-b-E+XiWPnr4YH$?t;$|*`?lLh`@cHVq-=5Z02g9cFC z>%l|9!Iib8yXye_z5Waj2d6vE*lr4iP~^Tq#}>@%+uHRVNc?5h;PffvL+V7{IARmglNP4* zn1RpUY2P$U!3Y_%HUD9xN++E<^yp(aX06}LUjaC6o#Q4)j^CdZuA#udhO@>GhhTWDu#_099R!Pu9N;*6;G$uM2sB;{TSH4-HV zz$_7{bc3^NnWoQsy|1RWb8(2od&6n5jUz&XD?-63es%QLz43Uc$o`C1=o?kOE%Rk) zjzc9`V@8IBlM8=3A$JqBI9u{wE$BL$V)oqU1vI-DVxz#(Ug2}cQzdUP?y1nVT7aa3 zFW{s?rUL%%so}+Y3_k2nqrHE0X2DKNkVi0xK?}QORO-jMN|!g`8x%@ua6hyybvC9n zdFpSX?rz`_U7|Kw@Z4n+Q(mC&8E3wUtX@*xd_z=PoFycf?K5A&X6PSAoEv-6FB`1%LAkenAT>GM%E@gTXEHRIJ_eXUZQ9sEH)X z2JwE0+ZlAR`r#uRF$jseiQ~>t?WlEgz{1oZ`+}RK%XxkwTZq*dgPu2L5MV2bC0_*+w11OZkY=@^tmpad;fWxen>$h(U&ee zOZyb2PonsW1EGa{V4Vg3U5(VyC_=nr$>YSe3hp`Vndtls3pi_niteZuJl%hy96wq3 z%vYMGu8WD?XYn&`A?R$=KbM=U%O2%J^9cA=YOu*C85JL+A0~!C%TB?WYUttjt2+pj zIOOKXGSnMGVk-50x?+ySpA&0px`$Rzs?3&>A$aytcm^f0Q7W4;n9lP!`RS-(rs2Ru zKl-U~%^78|$<`^1EM;+5Xf5o!X{ls>vriKa$uW5iucEz4z!k-@Gwf1Gft0#e$vav5 zY|n|3r*O3ee~pHOL}L62UEDy}bG2@A=NiV~g37Wi<=bg1pq;#t7!`XFW@|aTRPt7N zj*KsRNs2I9Q}O7CFo0NzrZQh?f7@MHODn=$d#A9%^(Z!2bcTj2;=pC6t?wakf1i@3 z(V3@Fs-yTSi}btO+X;BaE4rRxakN}oeB%nQai@o4j%RfD!J->%wi$S+n$v`&t*rB^2lKmAY^NGFPkk9fSiAQg5aCeYZv z{ld#>r!H2F-|HBesn~x;%jhI?*}?Y$5=Q2C`-dXP1Cxdjv%q0z%rDo=qjVnzD<=Wn zl#rgr^uQ=%!<|T@OU#Yl!5Ept994ipxGw7*4{MsKe#);JjjrH0af;5B$WOD`3z>P3 zk2n9|J+r_Y8~$QR&5&85f9W_0rRF*38u@iS6e(aMaOkVowwn-T?Gq)FvOVigo^m~G z&`QK(4*zGU6DRX-hO5$MW~qShL04VD%R(@$SbVICVpW9ZL3?*PRmOq~azR{cGP*K8 zo>sK7En8GCAB9eE=~q70@ZOu3rSW{XLFfhgY^EOy!^rJbX}pzKcQ~gbbko~v>iVsp z-da-x8_SOZ168PSI7Vqf1Dtse%(9{4Y7Mk3+JwDmXbDIe#xMTWSE;~{qBEev&T8R2 zJ9CvyvyU#5`%9*V7qXeucH(HQNXTxnQSc`oy@`s@wS@7FS)`mOb=|9GM{d939;8@2 z65lC2G|ZRugwb{tOwb)FbK`@X_RhSKkK49Fgw7}shAEpaqnw}mPfzcy&o_> zXtF3)E03{_l89^0;UZ6YK2~!k!QpglnS=9;k>~#_>Ab_)e7`@gRBMzDd$(4_s9k&1 ztW9Fi60u^`Y^?^hN>D3;nn7aMu34q_s$HXeY@(>y+P}y5cU`&SkN6|cdG7n1_j#T7 z{RE0UYpR)TKK>kV-$X(+ht9Xo)h!dB(aqLYt4`-)bRgM^4tV#ova;9$Tjz^4^c{Y@ zIllXAv2ycg&<{i@i;Tx;+oi%}QkO|_-7!s4L6*!{j9j2cCB8{OKyX}`@7m?%XW~~5 zuiZ>;nu?KQ*}S1(K^{5>nktO>11liZx}4D&#Q$3&`gP9~D%Atej$YqvF5RtM1#epW z52mPLCvAMHz_D~?qcx>O+XgGNAX{$in`2?T4kAL|C8QQs%SG#yKnM6?$VxuFd*;R@ zm({!7_%;_NWl<^;&-lI{`(A5C?Yve0?l1jd-KAM;9{=tnN3w*(<(2l!hc{*5b8&@6-KDQb`b-m!N*{NlZtS#IlK1Qr|)>)RrC3Q+4^%z}#%ase< zOUYpiu04F!IDhM=9i46dtJ`ReX=-MxEV)`%^_b3AO&h3=UjV%dooTOPE{B^|QsMP( zdLEaae}9(vJ8bR%+lfAzjZrQcp}DDVP=E2ToBq7+>(1Nl;q=gnxpae`Yf%S5!h00BdfI>$>XTDvTVE#A4}x;uUe7gc#L-j z-pAcLOBeo<$Bs%VE()YuDQP9q7blD-2aAxUzQ)^I_}ShztT55sNelQ(%L+M3E_U$%cuZ_87XiL`K_sCQ&5Fv+YwdUai4IR1(^v{^D z(p5;I6GvGECt|A<&s#ye7?c$wDXdX=rk+o$-gN*apoM|~?*r8^ZJZ@K*`o-d)42cH zzOP2E(b)FTRS)P3;DIqSRZ5$N_i})B_JdS0{V^Nw-rfEUvdo+Tz8rGuJ8JRpfe(^i zauyXEy@+FGDeFAhKY<@|hDxCx3DPGgJZY@gy+jQF~ zt7^?0Wm*`}khkupc{g}=tifRJ?0K=^B40$?ywF5`3%0QM)9iR-Oi{(Qmy%p|?{+(N zgm7#8D7269=;2)Ir)W-&h*0WC5$+$M%e|#NsU})&^tv?ax|81IkJdHB8|14ivt*x)`zIR~=FWvfT)XdnSE80MM6T`3)Xgtnb*!6b%MK)4kmXq_aT6%tKGlEsOi+QT zcVs=*LZ2+>&K*6Y8qVpuwYTxiJ;qH4iP8_xMrVWs^9p-(hN*)gPadUXQ~9oy07Rex zC^+@3tZSL#4G&jYoznQzT+4=c;1O~HdWIVy(9S=-wQ=m@VLnnMGMjmvN~#QKvY$u; z_b&%3drsP6YgIU1kC!+(d|wT}s%z;HeHDLWeId?mppIYFO$%7pv?J+=gUpUl(vs#E< zw><9&V-OFv?>Zymnd6g36*Y9WT{friwJe4;z=<$7F^(scl9F6G@92O z8JJ6a4cx4(%KBbHfCKO>arPX0X_++etCr!|{R~sH0Weej!hB1}imX`Vh53vSM;~}F z9)$l+Qv;2W+P5R1Nrnefx$qH$zreL+msL9>UT&^B9+Dl1UkD+>6A#|uS`_x-ruBsp zJ+)2?%aIJ1GJ`Ld0Vw4C``SQnWPG-2We%?+r?BMx%<^?HiXV7VlIpE?YK|L(hgL-j z&!!$9YkQdM9T(l)3>lFcC|Oy!8$4K9$x)2k*FhP)GrHAi_B*OA;J^w${DwDm&*0f0 z$m3!eM`45TU*TgrJJ4D3e-&1JRrz!PTf-HCbli zvNr{ZP1*9{RS5R2HS~_$bT0757Pq4r|8yp?16p`JBw*p?s)q+Qs;Bh7m+%Rz z;KQg2>|0uo?Ad(s30kw<0t*u}8F+6MGuON{m)ND-Eun_fnHKObhGSn?Dt?&fm*~EM z24Y;`(VM!Uoggm8{PABYq@|TM*gCk!#8T&d=Z%Uzp5z&;V<}ge{8YXxaC!O0WNrjO zNY#Uz_IXe-Pq;r^ZANIK?Ng;=fM`Go_JJbH@W?#q_>Kil0{*DGz7zRK&@Mq zMqYzIk(o^1STd0i*73wi;qGVuFp!%J!bU_l_}$>+ z{-jU1)vlQF|Kgsx^w?XRgfB96-Zkfqv=e`~XF){N(9fAAEgo3z5?@==$LE?X#ZF1! zAOb~-6n_F+nH~E&rr?LQo!pAjasDr|Xe+ay_GHOmLih*3S_4upE&(4XSuYCxcFrm; zY~MX)(iI!4fF@j`AALxzbK^u1yi)mJz7|K35$+6~%_bk$$!xTZMV#p@}+zRYsf1)B*(QaI)LM~#cn66f|#%QVi4P!~!dox8F$8c37m&IkKKo75cKgw;U8pcU|JSh@TmHMs#g=;-S5z zu~kFRjb4^26uJjP+ADdlGUpkXwm8VsP5AYsmr$IU2&G1`?ktfo^0C_5~!&?CPn~#4XMZr9Nn2n;SXm$Zme7* z0QXbbf?cZ9dkw6I+_C1Zl;Vw6F{W)}w%RPG4lG9&6D(pct5i~Y|gLJ;2A4?FN@*A>g0doD78D2QpZL*J6i(4XXtPfdC{Zw z=E+RN-c)Sy2EfI&3Um%JvD8(V*|EQ2(wFfap+rQu_Guxi#>o(d;F6Z&VX#0my;2uB zWQ<~LQ+)ehQ}V>`Iv`!e{ksBqB!J0)DT86wyC|R<00n<&Ez~B}a$vlrH>fKsJSZ6= zf0QaJb!zJ=+V}*bq+9Qwcxs+1YaNTQ(|Rf^&Pia{fmZstvJtinZTo|!NEunvI={IA zB#xIUZ$(wDye-Sgw1CtAWiGF)mZ6|F18ntIejJ3$uuM<)H zjpp@3Zu$gh_n@bM&P9i8Kp1{C?tR`>m*{pycdnbgx$jPeD&=NaW)~V%&uf~aK6zA-(%@gYS5i9srB#zVzN??7unYR*AUE(# zyK5s}mdoaQyo=Rkv3a6oJs$D6s1H86rL*B=bs6Bc75E|(GGZdOT%jQAn($0N&?hgW z)gNjtBNTcegtbIZew&xS*-+npw~@A1vJ8xl{nIShWUb_`gw1c<3ej90YopxRF(?tm zSk9U(+$Tvdil+0OXvwt}Aji|h>5a^O5{=jpcRoG%>-;TDYhrXi7jZT=x9YExF@5I3 z^=JUw>`xHFe$!-z@Sf(4UPcA_Y+Q8)JQF`2@6e&uvUR35ES<{>m-ES>>Zzu#5>R!u z5S{~f+(!>>COlDvikPV(T6^nQAn&iIKV3_`NY2p9ZEfZo7fjndf92 z@69>f0Exw9UyG1yHER}?Ns+kXywXDE3r*{Jo;AM?citNe$p=+h)T4gn`bMZ_sEyo{ z{%bIjjf9Yw`!RE&}yV|hisfwlmE3*Xio&1j;k6Kyrh1dp&XWEr;@ zW2VbaHkImBX`KL$xhwPp?*u5dmG3m(%RrLw(LO*(0)Y6$-p}QYL-Psjjfrdw?=EL8 zuV)JY924jt5w+V3b@NQ7j()THg_lROhm<7km>#fKxK4vV-cKDNCVSt1^-w^o#6t%M zd(p~hPGuCwufV8+IjnoVR5O_`!Krb!!8 z2l*BAIF1qTRW-6qI!~<;tC7SN%1djOJ9#%ki;ZXRF4;w{{xD5{Jd`iv55jOUL!YyM zN0y-d_jf%ZVBs0iLyuf}F>E_~6W2aRJm_y6#>{5Y&lx6{om7P9P>!%wvn;Q&&Lk;* zXp_B}8j9>mh?^9U{T~jD85}N|L&+e&h|NGbeBrv@DNufaBRBDN0j`*D5RuQ+;t`2* z?@vJ(t3>^|{7}k(y8Fur_U^G5BnBGxC5fW6fVgKfJhBTf0s@NoWc-owF>xzR7T?yy zRzc)AklxCQa;O{lwJ5BCI#ZNk1r?e;sg-QAj9nR^K`Y*^4)lH8U=sX7^Vl6j+l3Ml zU<=6@I1i=V*`3P!_3NO<`>*4MQwy&2)$u{h_-Yo0h^Bcx{7BNzQ>;BI!)&P!BWVieR>y*;^%K2 z6BoY_j~`2>e8Afs^CFH;GrMXvV;RFa^0ERHG$gP)V5$b{;eoOF|Mnh4 zns@O&G&fK6MAXUx1c>*m@Os}^%qI+ulsah6$wKVMiBoQhT;mg0$ih^~<6|A1h~QZ>rx5;qAK0>YGcJ~Z++{O3&?*e&}T9+ z%(*?&6K` z(9C>V=QBCmMCrb4HqZ3)`5`{bN>S@g z2sxWkGq=P0Xxqh^XXvG*x{jN69`GXuz<{_cPkf#=|2mR#{lwWZAT!_~t3R`a_B+Z+ z)voT5u9u}7VaN<`Zxnuhu{2&zjw<81VA?QWT6Qqx!E_jtXNoHlz%7wzAX+n2^gFi+ z2qM*QsC~SP3;+q=elfZ4cjBaFlg9Y#86YI2%PTB=bv2FmIl9$QW3~uOxfkHp7g+)C z3j)HV*R)kQqBPWmWlE)G3Ja3KS;=5bGWdOFqN7#?j0QVgV?U4z_4ne}t61x+;Q;ak zyPrxnY@ix^(7D@z!|Kn9`+V*l?V|?`rn$MJr#s5ZPg=?&TQFzssS@8p9K=xkT%AhM z=DhzGhmhf2OpOK7&&f02bWW)^&+@%YYL9RIOv6x)8Fh9|jVKT{^J z-3!>I?MFeF^Xy~bE)j)8Nd}pulMYB-(qP{^R(J{sS*K!NAD?0F<3T>LP(msmu@|;B z`;CsO6V&Ng)gdeo3a!wFV5aFPuHU@rA(7|I1o7^`AQ>V3rP(6gP!||&p^!YlD;vpU zOlQEkuG^oIW9tO8i3c_QYa*v(-U>`9{oG<+9Pu}+5|7aoQ=zF$==W4(?Q=yM*y!1c z8E#xzM|>LpL#|nFkHuD>* zRtTW)Nj_O*BOpM=-;gL|Cfj-~UyaVWNHZ`(*Ob(#qgEFaYZ?;2>|FTYT%FvzKf>&k z8~Y>t;I~~aa5HwIWe51+QNn71N3i4nmRRNH>-38M3(1&w7niXzpAb5j2tpwr`Q-qw z^}xIF7fkeea$O-M61ZgOnz#ZY$v8ICcuWIiclQ98D!T!wKnlgx$FxhM(NEJ5*8Xx! zF=O|4@eJGuFisH71k+S*iSkpud|^!%Y-VdcB!w}h$A>&Utv4c3Rhv6gmybB@5DT(x ztG$!LRs5@=j(^+9_8EAbpajU_E&~=W19RqS@*-X(3b~s1(bAQ|JP2f@IjU~0KZ%{R z_}zzz&tE>PGW9Tr8VZ<_qXXE`tM0~1$I<^uL+^E>-YJF-6+vZyniD)nRN`d0)N_q&ySaYH$#VMLM;}01o z@8lT&BbyZlZWJDtMu?iBfJz1DZ#2OEq4!)1h-Yq~mz1h!?m=1c%ft)JRgruEL?ra4 ziYpo^QMn-e66y1ObJ@CGSmmU(q;Gz#&FuK!CUgfbr^BI274P?V=&?%I@Eh&khaPlfEA zk%P%))+yOa$Z-XRd)lBttSh!~=HE8T(I03*3y7<@ZvLRD(hNxs0i-aS`Ku6+{L<)O zm9GmXleJCn#b1C)Xef~D=k>Jz>Su#344_(G)U@h%fStB;ct8_(4?q10xHpb)jVXkI ztL*sR&?^I|v-9xi*e4DSOo~9E8%D(mw8crrkxMIp!qd^IDS3`l5@>cjp15MMlK$LU zlV6w6(T=N>DQ(-`*9(<+*!^;A;nP^F6bm?kv(M8l{l{QNT_)f%L#G)kYuV}lv8Un( zT6T?^eM(XwnzU9|wr<;j1~Ow7h!oNu)|zCAHh^b10kJLUpys1+hu9vaOqW@rApm-l z=D)266xGJpUhag%-8ey#R7&Mz;=GGn5?*#F>df!r#d34T$=kSZzG5qBj64x4T@TgP zU!o^+qiNC70{Y-`&3@etE_k#3&hMQ2>L_6secT;rZMWpXkn9dHNIFj$v*s(TJxJ2t zpAY5N5b(Dk_o`n%ugD;T|E!C1HOokA5cBxao7>to`hubPLd{a-b1nadlk?QGoT7>; zel0I{A~iR&q~8Yz?U#O@F|zRXiMNHp?~6ujKG|K~;^^{OZG_E~)bLN5#Z#A8_L1-q zp!u38i)zoilxyAv7a$%hbVSKJ(D&3$R)4lWq!s6R#O6*d2`si-H;AuBii3NVZr9)<--?cTcxCIPUG z<3OLq`JU*joqm2Go$3)0+^zjf?0G$`I8Ra_M*5;5P5|m&3F3LPe zz5G<^f%we$oEh(JRh@6E3m>Ju7BuACUU(t0C%#y^SaNfjb3N_HaS-5?0E^sovXOk6 z2|c=lHnM9YujBJS$z0bt6uYNhRXEm(J>Rq=na=yESfK@dIN(Eq-1YMr%Gla*sA(!f zuM0RED#OEy|J`JZo1B6BctezFrbT%dIYD;nu@)*1`FKa-dF<3-7Rnw!&JlT)*+JN* zLo0wzkv}nPgKXvcg&$We zSvBth+CF$$TIlR(a536(u!;)FkP%^mp6M^#*Gzb~FZ?GeUaY}YOUF%P$YKnq5?o6w z2<&#||IOrh$aHW(6Ag6F6Kib7+}de`*sBLFvX}_V0X|}*3d9B?np#`6W z`y(U%fan-uI=Bn|tMF==2I-tZ7MySEr&ss+mJJoH1jMq^x&83!RmB(iaa=<8OWO)b zvVIc;0S&o;_-z!P$burYJTh0GbwteH+qk;?fxLM6NBlb7v;!f5Vdn@j(8GZ@LQ}w5 z&N?TKS{>~?h+oM@O^#kuNwOK7Oi&jy{mSn8)dHQ&X||)|D5GkApwep(+$A93MgrAY zh>ro9LV7-txo6}=sQMdcr>kusBmXOZTU#8iYQ`w?(y1N6B5t9kF@PH;GxCUV8Jf#TtDndq zhcRKEO@pyaB?H2EPo)UhQ>NFu;D3f!dv;8zN|5SI=7FH4#~#%xYjj%$?1uS306{Wtc^m26+|GwvXjiJq=P*} zA;N(YS|o@S!tIcIbHuY7m{F;nz`F?wWJTwZCUBL~>vqx9#9Hk8PkaEe z9MLG_h{Us4J?il`nIN8u@zuWwy#|wS(b(NwYd~~Hr)K6)mGmoWD$|yE*&8|%yNKnX z*5YOlBZ_x34p5)K5gjiJ{l4leClN9nOR8nX8>9gtBAr}gTr2A!P6Fh6OL_OLTZUGz z`W$9k2-(_c3(1KI+913(inf;*TgVe17&>kJ)jmTwApU~y?b|ohVXfR6i zukO;wA?Q(MtkZtgVTvoiHrx?u@XYF;gdWzb|HvU#cdh%=)rhB?RJOphujUBLNFtr* zs_L&>w^C%*5zQ@Zi2oJQ?6R{aQT%ovr3@^ab5gwLrWV8{3_b{*JS zr+?PldTbT+JDF|W-mD$~864{MYt-2mMA@Z(oXqMkeh4DzMXnMzy41h^o0n(R1H1r<+@~Rm0F=acU0@-oPMm-Ux zf!L=7Nqv2w$Tdd}n`3CMASM5nvS>nrnXcKD8fYB>D?+$!F687Lu!q;G2IESiD*8v z2z`#^gV-gAZo2$eYS+96j|EI;%BEBi6tHVKfdO#s7k4A*T;jvJ7xISOseHO7PaCZf ze^z^a-OQ5d?=)s(BB#Ouypu$>H{v>L0_+Pw?}P>AnzHA2*B9h_dW=<&10OG*@)uk@roV!Wydpd-J*{=^T>!2S?|Rd@Nhs7vvg?1^jy8I z&wA;P%K@dR{S#{``Bxq!llHIcp^iUPb0iq5nKy3VH!#^|nR&9hUMl1C@s5sF8tKX` zQ+M5Tj-ZBDieNaT>to5nRw{gLjmcz2sHE%zFBNUQtLFf^12f7qF389Mi+U%g@VL_l z<`XuFg=DdoHw4yoQ&jR{I7Ph3rYv*!;~;V^7{Wp75cvQLZr8hwMLxSpL@~hg*qZr zv^K~wew5gOHV3n$ou9Y$FivKsmBf4&H#Qs4&KEyt>Pf>Ieyu7Mm8#pAcee=I=aqq8 zSJYDa<<=|ruas+)Hv`G0i%yXhX1B0Lj8L4lO6zGf<-csoHOm=eYXcc9F3V`5zpsYd zLyn(AD++NSFq@fKN%U@e^968r#L{=wVj|Hak=wWYAn&q0v9@1x+pzh8VtGvJ(aX)GzFVPC%hn$J zSm7v@biDA-mi}(YS=d6KtGq+vmt_6cxyM?hzUv&bnZ9)b(Cvtn^5J$SQR-@HR7Wu` zOCa3H*f`tDQg-f0uR!8o)dR&oQ!*GI4W|#!BLAZH-cw(y`f~q=CjakP_V>%3LS!YB zP9BH@9f!-QOQPV0Q+A)gDEp*fBA$+R$}r}U>@9S9wX;p}FtS64Upt467TfRbS|6C_(GwNOtux1sb)KrOAATMu24 zh<5i%GQ@phC<<}C(E)5su2^lzf8F+uHZC})^OvA;LU7Y`!tF>K|#qC#- zLfzC3bHI4&63!j5mVnt6jqpuHGF<)>5;LzYQT5f?FPTl-8ggE&&x6Y~J#_r8=(1R^ zOPI^>y}H02VhLz7@j7hI2Oo6JaA6{*HxES?HAz0V#oBQ5LO%gEL`&iP+qKf z?xx>59|zz>M2TI%N5v#*HM#FKvi^Q5fUm!WVUgnBmc1d#)e97Ko9QR{u(jr-R5Ph+bC43jW*JgFJA~UZhfH^{6cN(G1kWkM8i3;)Ke!& zH@@(xkWxY4l&r?9%k9MZHFLSPN}Vh%h**DM#bC0z?u)P(xw7S4;yik_n@hs{C*42r zW|~6A!?v$#OfgFk;qaIV9jm!p+R+S8s1c0M9+bf22R!+57>$wuR%_g|kX`Mqlj_p( z{vAs0BC1FY{)V67$;S)_lv}a8BFS37%Jr%HjQW(O3ve2nFi!YD)E_45&j2OkD0M9r zI_t038aY?D5hep*&Z`sPn9n-e^{xH8^A4wC`NH>Y&aMV)K`R6I9c&&%q=P(=2rpaP zfeih|AHDaS2BLoE9j+=>rq*ugjqEHaFU+@ApmW?>A1c!R@6D!&1nV*E(vw zY;(N2ylfuu(u8Y9<$+K2gKcrzKiPOClajjJK0C8EiRlhil*0C-Q9bPDv;g;9mrnc4!@!T)&P>kVZxJ9g;=i>ovN{W3=b-Fk|WU-xlW9n1E zk1NI!IwhoW2aQ{&=_1*G;021j%p4y(CTiTYd;sGTSwQay4Lb?Qb90_~A`P zhkWk`*=?-y3TkLZc={3_}FvsUQ(~w1~O>dife-ZAVHN zvtP{*di0lC>uvQpw!O~q?9DS-)645*e!y$pg-5WLc<36++1&@Oo__e=m(1I*L@1b_ z5Kow2i+y}Y&&#x)NgbS77?X`YmKZ{d^vaHwYlvB+B*a#7cCL59XF37e^qki>77nTO^K^j zvuN?@S?c=+zVVPQXv^L@{SQeRX9#-*aSIVo@22{r?f6){_*RCLNVMmQZPtFQM69H@Wm^c%#)*t3B$F;9c@~-fDECV~ZUT&?@}%G`SxH2^uWC93z<9e{E@D zJz>;R@gw`K)sv6|_RecF)(`$bb5bm2UH`SV8$2smRzpqS`0)JYpH*g-uX{kuUY$I- zNjgB#*7Au=vTUljmm-kx#ZW}$#lpNzWH_nLpa+SF_Qe%2m z+B_2pxB<{poOb39jwfh6X{s6-#HRtT)nhhRQb|Mk)O3aiZ;>>(d!(KnqubLB-;JiJ z*&01Nfpea-b%_1{K2M7-ZQdGE5wGJar7S=e3K#9L z(&Qh3VGya)Mn#lc-?3|BHb;+lq^zK1E;g|S<_dR4JVGlJA9G)Q5P5Vj{Lgbkp9Gu<@M>`;;+14 zPR=%cnc{|;ThNV%MN2@7Cdn^e{nYEbADB6Y^a^Kav)(Fd-O5=jQ<&hYxD8Y zooPc@Zdn%AxscH@E!H|>m~C9zgw4NHtM+x{r=kGpjg`xkDJc;(V;63~D*^}WEFH@B zwCaSjgB;DzN8cW1ZMhtLnUiTIqzYtwf7!?CX$ZG9J&i7WR}Wk*vzeb~?O1z{fwgA7 zJTDcx`ae(xvNu*z9FZ_nZ^Y;ZjED$w5dpWs?aZQC@Rw334334*4Vd`?WEtMrA87`A zUn^qkNj}z}iFY?t`wa|x3?IrA0s05-Po|R#D6C@q8Mc%>W`rE_(?}F%r7&`!IsJjU zA+)j-@zrgnpRO_)@D;|{@SpcbopOxC*~ogRRIK&a$w{Fs-n#n(Gh2TsV*8_@?>}(V zp39r=NsmBaT@Ju)>LI~PNAuC$M@~L0b?UML$N=eQ4CAD}p5?kKG+Ey`a!%ak%6655 z$Gvu-x@I`1mZq-VK=vm^U5`-pJs?xgmlL?NuL~b8BJT%mek>;fdCOW+_@=9 zW{Yo8BDOizw#JP@7}t+C+LOs4g}erqka}C`CS*72h!6jrx@IMYCg=XWoP0mS3aej3 zuK*P<5D6htzF~gm_d?i-Sl!@363fa|yke=9Rkmh`dS-agcr%hqNG-6s&CkJWHnq>$ zv3ojRTerDdisj&LygRgD&XTr@zfP45vJFI|?*3cX*Z`M9%P!OFyc37H5cC!^iA46D zk$S|Uv)Hbzi&v(B_c-I(Q2s-86fACA?%{_(7n>8~#cXEId|1m*J9+R{<&eE%>;=xy znS6pN9M7b$yGA||SAe@2G^x6386bd(zD0~FD&Oxqz%rt;%hf`o$GC&x-)2hc`QI+L z*i1ySt0jib!OTvi6{A&BDO$d_zmI%YRi@M-%Cea6I70#|{;}#Js9>Sa9QRzLw_0Gv z_?RO`?U%&xbwwhsbV{}EGV8|SO~4(dNG2I0g(?kS;a%dyHiIC;^c;%_dYCds8>q94 zu-F8D=&C8oRl{$~z^kldXZxzs4CNz~HoZF*ja4G3lK~DJmE^>eQ>~bzP~X|jS!12d zWb@a612+a@>>i9BVRkXdr$Xu7FPzjnQ@mcVq8%p0xC5<}^(@(dPvbvWD7{|2tx3~U#**@{rpA&Qa@`2*XKL&Tgt`9 zN<1(=Lsp%_-S&HyFc{ZC9T_T2W<>wv0V75+qUUNQ*iZAqcFHDQB!!%c)n_q z)^qLk_=8C_Yx=ikMBM!c2_42O0 z&s`_>?ee}yk{apUqb&rP1?VpUfj4m|bw~y&5^$9Wv6x>&c}XUc?@uz_)};8kn0a3l zf-8(&0wXehIH|dKvD}EW2m7@`w4-6srT!1~;tC1+4Zb^EVlZR1@&6UK4c9KXWLupM zf6;~q_MCQdj6UE)UNAfv1d)55VZE6iR4^A$vz6T=F%x?=kie-a z;IMVuN9XOLSgztpZ*c{@^Skem!0$$Z-;<%vKb^@$-?Lu+z*Q-{<#i{=WY2PBKccjy za>)0rU=Y*kmLOiZJu73`o=>JWO3lVmg-5`Am@VA2n6z$bU%zB>{)BnkPndhKauZU z+PExJ;Wy8x>N-EpVgzGt#~PLk@#Qm%#UZVP?y2wpLexH}@>rb6b*5T1LGA?Yx3^Hf zuwX4<`9*&qO>kOj;}ge7=E4UZR{zz9Zu4IZn*DZ?I0dX*OyN^yqi4t4*g7lv8J)Sm z+o8kRTkdzbal@WsUlm@*ure%7T>tznRefqN>wxx;Wtx!vTH%@_Zf8rmNv9U9b)UrO kOqrH~#IiwCjj&dpdhTLZx!x!`>?Rl*s=6u_O0UBH54|lkOaK4? diff --git a/lectures/_static/quant-econ.bib b/lectures/_static/quant-econ.bib index 9d0395f7..409748aa 100644 --- a/lectures/_static/quant-econ.bib +++ b/lectures/_static/quant-econ.bib @@ -2782,3 +2782,88 @@ @article{imampolitical year = {2023}, journal = {IMF Working Paper} } + +@article{diamond1965national, + title = {National debt in a neoclassical growth model}, + author = {Diamond, Peter A}, + journal = {The American Economic Review}, + volume = {55}, + number = {5}, + pages = {1126--1150}, + year = {1965}, + publisher = {JSTOR} +} + +@book{auerbach1987dynamic, + title = {Dynamic fiscal policy}, + author = {Auerbach, Alan J and Kotlikoff, Laurence J}, + publisher = {Cambridge University Press}, + address = {Cambridge}, + year = {1987} +} + +@article{sargent_velde1995, + title={Macroeconomic Features of the French Revolution}, + author={Sargent, Thomas J and Velde, Francois R}, + journal={Journal of Political Economy}, + volume={103}, + number={3}, + pages={474--518}, + year={1995} +} + +@article{sargent1981, + title={Some unpleasant monetarist arithmetic}, + author={Sargent, Thomas J and Wallace, Neil}, + journal={Federal reserve bank of minneapolis quarterly review}, + volume={5}, + number={3}, + pages={1--17}, + year={1981} +} + + + + +@article{sargent2009conquest, + title={The conquest of South American inflation}, + author={Sargent, Thomas and Williams, Noah and Zha, Tao}, + journal={Journal of Political Economy}, + volume={117}, + number={2}, + pages={211--256}, + year={2009}, + publisher={The University of Chicago Press} +} + +@article{marcet2003recurrent, + title={Recurrent hyperinflations and learning}, + author={Marcet, Albert and Nicolini, Juan P}, + journal={American Economic Review}, + volume={93}, + number={5}, + pages={1476--1498}, + year={2003}, + publisher={American Economic Association} +} + + +@article{bruno1990seigniorage, + title={Seigniorage, operating rules, and the high inflation trap}, + author={Bruno, Michael and Fischer, Stanley}, + journal={The Quarterly Journal of Economics}, + volume={105}, + number={2}, + pages={353--374}, + year={1990}, + publisher={MIT Press} +} + +@incollection{sargent1989least, + title={Least squares learning and the dynamics of hyperinflation}, + author={Marcet, Albert and Sargent, Thomas J}, + editor = {William Barnett, John Geweke, and Karl Shell}, + booktitle={Sunspots, Complexity, and Chaos}, + year={1989}, + publisher={Cambridge University Press} +} diff --git a/lectures/_toc.yml b/lectures/_toc.yml index 7ba84da9..91ae341f 100644 --- a/lectures/_toc.yml +++ b/lectures/_toc.yml @@ -47,6 +47,15 @@ parts: - file: cobweb - file: olg - file: commod_price +- caption: Monetary-Fiscal Policy Interactions + numbered: true + chapters: + - file: money_inflation + - file: unpleasant + - file: money_inflation_nonlinear + - file: laffer_adaptive + #- file: french_rev + #- file: ak2 - caption: Stochastic Dynamics numbered: true chapters: diff --git a/lectures/ak2.md b/lectures/ak2.md new file mode 100644 index 00000000..6f530a5c --- /dev/null +++ b/lectures/ak2.md @@ -0,0 +1,1172 @@ +--- +jupytext: + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.14.1 +kernelspec: + display_name: Python 3 (ipykernel) + language: python + name: python3 +--- + +# Transitions in an Overlapping Generations Model + + + +## Overview + + +This lecture presents a life-cycle model consisting of overlapping generations of two-period lived people proposed by +{cite}`diamond1965national`. + +We'll present the version that was analyzed in chapter 2 of {cite}`auerbach1987dynamic`. + +Auerbach and Kotlikoff (1987) used their two period model as a warm-up for their analysis of overlapping generation models of long-lived people that is the main topic of their book. + +Their model of two-period lived overlapping generations is a useful starting point because + +* it sets forth the structure of interactions between generations of different agents who are alive at a given date +* it activates forces and tradeoffs confronting the government and successive generations of people +* it is good laboratory for studying connections between government tax and subsidy programs and for policies for issuing and servicing government debt +* it is a good setting for introducing describing the **shooting method** for solving a system of non-linear difference equations with boundary conditions that take the form of initial and terminal conditions +* interesting experiments involving transitions from one steady state to another can be computed by hand + ```{note} +Auerbach and Kotlikoff use computer code to calculate transition paths for their models with long-lived people. +``` + +We take the liberty of extending Auerbach and Kotlikoff's chapter 2 model by adding ways to redistribute resources across generations + + * these take the form of a sequence of age-specific lump sum taxes and transfers + +We study how these additional instruments for redistributing resources across generations affect capital accumulation and government debt + + + + + + +## Setting + +Time is discrete and is indexed by $t=0, 1, 2, \ldots$. + +The economy lives forever, but the people inside it do not. + +At each time $ t \geq 0$ a representative old person and a representative young person are alive. + +Thus, at time $t$ a representative old person coexists with a representative young person who will become an old person at time $t+1$. + +We assume that the population size is constant over time. + +A young person works, saves, and consumes. + +An old person dissaves and consumes but does not work, + +There is a government that lives forever, i.e., at $t=0, 1, 2, \ldots $. + +Each period $t \geq 0$, the government taxes, spends, transfers, and borrows. + + + + +Initial conditions set from outside the model at time $t=0$ are + +* $K_0$ -- initial capital stock brought into time $t=0$ by a representative initial old person +* $D_0$ government debt falling due at $t=0$ and owned by a representative old person at time $t=0$ + +$K_0$ and $D_0$ are both measured in units of time $0$ goods. + +A government **policy** consists of five sequences $\{G_t, D_t, \tau_t, \delta_{ot}, \delta_{yt}\}_{t=0}^\infty $ whose components are + + * $\tau_t$ -- flat rate tax at time $t$ on wages and earnings from capital and government bonds + * $D_t$ -- one-period government bond principal due at time $t$, per capita + * $G_t$ -- government purchases of goods at time $t$ (`thrown into ocean'), per capita + * $\delta_{yt}$ -- a lump sum tax on each young person at time $t$ + * $\delta_{ot}$ -- a lump sum tax on each old person at time $t$ + + + +An **allocation** is a collection of sequences $\{C_{yt}, C_{ot}, K_{t+1}, L_t, Y_t, G_t\}_{t=0}^\infty $; constituents of the sequences include + + * $K_t$ -- physical capital per capita + * $L_t$ -- labor per capita + * $Y_t$ -- output per capita + +and also + +* $C_{yt}$ -- consumption of young person at time $t \geq 0$ +* $C_{ot}$ -- consumption of old person at time $t \geq 0$ +* $K_{t+1} - K_t \equiv I_t $ -- investment in physical capital at time $t \geq 0$ +* $G_t$ -- government purchases + +National income and product accounts consist of a sequence of equalities + +* $Y_t = C_{yt} + C_{ot} + (K_{t+1} - K_t) + G_t, \quad t \geq 0$ + +A **price system** is a pair of sequences $\{W_t, r_t\}_{t=0}^\infty$; constituents of the sequence include rental rates for the factors of production + +* $W_t$ -- rental rate for labor at time $t \geq 0$ +* $r_t$ -- rental rate for capital at time $t \geq 0$ + + +## Production + +There are two factors of production, physical capital $K_t$ and labor $L_t$. + +Capital does not depreciate. + +The initial capital stock $K_0$ is owned by the initial old person, who rents it to the firm at time $0$. + +The economy's net investment rate $I_t$ at time $t$ is + +$$ +I_t = K_{t+1} - K_t +$$ + +The economy's capital stock at time $t$ emerges from cumulating past rates of investment: + +$$ +K_t = K_0 + \sum_{s=0}^{t-1} I_s +$$ + +There is a Cobb-Douglas technology that converts physical capital $K_t$ and labor services $L_t$ into +output $Y_t$ + +$$ +Y_t = K_t^\alpha L_t^{1-\alpha}, \quad \alpha \in (0,1) +$$ (eq:prodfn) + + +## Government + +At time $t-1$, the government issues one-period risk-free debt that promises to pay $D_t$ time $t$ goods per capita at time $t$. + +Young people at time $t$ purchase government debt $D_{t+1}$ that matures at time $t+1$. + +Government debt issued at $t$ bears a before-tax net rate of interest rate of $r_{t}$ at time $t+1$. + +The government budget constraint at time $t \geq 0$ is + +$$ +D_{t+1} - D_t = r_t D_t + G_t - T_t +$$ + +or + + + + +$$ +D_{t+1} = (1 + r_t) D_t + G_t - T_t . +$$ (eq:govbudgetsequence) + +Here total tax collections net of transfers are given by $T_t$ satisfying + + +$$ +T_t = \tau_t W_t L_t + \tau_t r_t (D_t + K_t) + \delta_{yt} + \delta_{ot} +$$ + + + + +## Households' Activities in Factor Markets + +**Old people:** At each $t \geq 0$, an old person + + * brings $K_t$ and $D_t$ into the period, + * rents capital to a representative firm for $r_{t} K_t$, + * pays taxes $\tau_t (K_t+ D_t)$ on its rental and interest earnings, + * pays a lump sum tax $\delta_{ot}$ to the government, + * sells $K_t$ to a young person. + + + **Young people:** At each $t \geq 0$, a young person + * sells one unit of labor services to a representative firm for $W_t$ in wages, + * pays taxes $\tau_t W_t$ on its labor earnings + * pays a lump sum tax $\delta_{yt}$ to the goverment, + * spends $C_{yt}$ on consumption, + * acquires non-negative assets $A_{t+1}$ consisting of a sum of physical capital $K_{t+1}$ and one-period government bonds $D_{t+1}$ that mature at $t+1$. + +```{note} +If a lump-sum tax is negative, it means that the government pays the person a subsidy. +``` + + +## Representative firm's problem + +The firm hires labor services from young households at competitive wage rate $W_t$ and hires capital from old households at competitive rental rate +$r_t$. + +The rental rate on capital $r_t$ equals the interest rate on government one-period bonds. + +Units of the rental rates are: + +* for $W_t$, output at time $t$ per unit of labor at time $t$ +* for $r_t$, output at time $t$ per unit of capita at time $t$ + + +We take output at time $t$ as *numeraire*, so the price of output at time $t$ is one. + +The firm's profits at time $t$ are thus + +$$ +K_t^\alpha L_t^{1-\alpha} - r_t K_t - W_t L_t . +$$ + +To maximize profits a firm equates marginal products to rental rates: + +$$ +\begin{aligned} +W_t & = (1-\alpha) K_t^\alpha L_t^{-\alpha} \\ +r_t & = \alpha K_t^\alpha L_t^{1-\alpha} +\end{aligned} +$$ (eq:firmfonc) + +Output can either be consumed by old or young households, sold to young households who use it to augment the capital stock, or sold to the government for uses that do not generate utility for the people in the model (e.g., ``thrown into the ocean''). + + +The firm thus sells output to old households, young households, and the government. + + + + + + + + + +## Households' problems + +### Initial old household + +At time $t=0$, a representative initial old household is endowed with $(1 + r_0(1 - \tau_0)) A_0$ in initial assets. + +It must pay a lump sum tax to (if positive) or receive a subsidy from (if negative) +$\delta_{ot}$ the government. + +An old household's budget constraint is + + + +$$ +C_{o0} = (1 + r_0 (1 - \tau_0)) A_0 - \delta_{ot} . +$$ (eq:hbudgetold) + +An initial old household's utility function is $C_{o0}$, so the household's optimal consumption plan +is provided by equation {eq}`eq:hbudgetold`. + +### Young household + +At each $t \geq 0$, a young household inelastically supplies one unit of labor and in return +receives pre-tax labor earnings of $W_t$ units of output. + +A young-household's post-tax-and-transfer earnings are $W_t (1 - \tau_t) - \delta_{yt}$. + +At each $t \geq 0$, a young household chooses a consumption plan $C_{yt}, C_{ot+1}$ +to maximize the Cobb-Douglas utility function + +$$ +U_t = C_{yt}^\beta C_{o,t+1}^{1-\beta}, \quad \beta \in (0,1) +$$ (eq:utilfn) + +subject to the following budget constraints at times $t$ and $t+1$: + +$$ +\begin{aligned} +C_{yt} + A_{t+1} & = W_t (1 - \tau_t) - \delta_{yt} \\ +C_{ot+1} & = (1+ r_{t+1} (1 - \tau_{t+1}))A_{t+1} - \delta_{ot} +\end{aligned} +$$ (eq:twobudgetc) + + +Solving the second equation of {eq}`eq:twobudgetc` for savings $A_{t+1}$ and substituting it into the first equation implies the present value budget constraint + +$$ +C_{yt} + \frac{C_{ot+1}}{1 + r_{t+1}(1 - \tau_{t+1})} = W_t (1 - \tau_t) - \delta_{yt} - \frac{\delta_{ot}}{1 + r_{t+1}(1 - \tau_{t+1})} +$$ (eq:onebudgetc) + +To solve the young household's choice problem, form a Lagrangian + +$$ +\begin{aligned} +{\mathcal L} & = C_{yt}^\beta C_{o,t+1}^{1-\beta} \\ & + \lambda \Bigl[ C_{yt} + \frac{C_{ot+1}}{1 + r_{t+1}(1 - \tau_{t+1})} - W_t (1 - \tau_t) + \delta_{yt} + \frac{\delta_{ot}}{1 + r_{t+1}(1 - \tau_{t+1})}\Bigr], +\end{aligned} +$$ (eq:lagC) + +where $\lambda$ is a Lagrange multiplier on the intertemporal budget constraint {eq}`eq:onebudgetc`. + + +After several lines of algebra, the intertemporal budget constraint {eq}`eq:onebudgetc` and the first-order conditions for maximizing ${\mathcal L}$ with respect to $C_{yt}, C_{ot+1}$ +imply that an optimal consumption plan satisfies + +$$ +\begin{aligned} +C_{yt} & = \beta \Bigl[ W_t (1 - \tau_t) - \delta_{yt} - \frac{\delta_{ot}}{1 + r_{t+1}(1 - \tau_{t+1})}\Bigr] \\ +\frac{C_{0t+1}}{1 + r_{t+1}(1-\tau_{t+1}) } & = (1-\beta) \Bigl[ W_t (1 - \tau_t) - \delta_{yt} - \frac{\delta_{ot}}{1 + r_{t+1}(1 - \tau_{t+1})}\Bigr] +\end{aligned} +$$ (eq:optconsplan) + +The first-order condition for minimizing Lagrangian {eq}`eq:lagC` with respect to the Lagrange multipler $\lambda$ recovers the budget constraint {eq}`eq:onebudgetc`, +which, using {eq}`eq:optconsplan` gives the optimal savings plan + +$$ +A_{t+1} = (1-\beta) [ (1- \tau_t) W_t - \delta_{yt}] + \beta \frac{\delta_{ot}}{1 + r_{t+1}(1 - \tau_{t+1})} +$$ (eq:optsavingsplan) + + +(sec-equilibrium)= +## Equilbrium + +**Definition:** An equilibrium is an allocation, a government policy, and a price system with the properties that +* given the price system and the government policy, the allocation solves + * represenative firms' problems for $t \geq 0$ + * households problems for $t \geq 0$ +* given the price system and the allocation, the government budget constraint is satisfies for all $t \geq 0$. + + +## Next steps + + +To begin our analysis of equilibrium outcomes, we'll study the special case of the model with which Auerbach and +Kotlikoff (1987) {cite}`auerbach1987dynamic` began their analysis in chapter 2. + +It can be solved by hand. + +We shall do that next. + +After we derive a closed form solution, we'll pretend that we don't know and will compute equilibrium outcome paths. + +We'll do that by first formulating an equilibrium as a fixed point of a mapping from sequences of factor prices and tax rates to sequences of factor prices and tax rates. + +We'll compute an equilibrium by iterating to convergence on that mapping. + + +## Closed form solution + +To get the special chapter 2 case of Auerbach and Kotlikoff (1987) {cite}`auerbach1987dynamic`, we set both $\delta_{ot}$ and $\delta_{yt}$ to zero. + +As our special case of {eq}`eq:optconsplan`, we compute the following consumption-savings plan for a representative young person: + + +$$ +\begin{aligned} +C_{yt} & = \beta (1 - \tau_t) W_t \\ +A_{t+1} &= (1-\beta) (1- \tau_t) W_t +\end{aligned} +$$ + +Using {eq}`eq:firmfonc` and $A_t = K_t + D_t$, we obtain the following closed form transition law for capital: + +$$ +K_{t+1}=K_{t}^{\alpha}\left(1-\tau_{t}\right)\left(1-\alpha\right)\left(1-\beta\right) - D_{t}\\ +$$ (eq:Klawclosed) + +### Steady states + +From {eq}`eq:Klawclosed` and the government budget constraint {eq}`eq:govbudgetsequence`, we compute **time-invariant** or **steady state values** $\hat K, \hat D, \hat T$: + +$$ +\begin{aligned} +\hat{K} &=\hat{K}\left(1-\hat{\tau}\right)\left(1-\alpha\right)\left(1-\beta\right) - \hat{D} \\ +\hat{D} &= (1 + \hat{r}) \hat{D} + \hat{G} - \hat{T} \\ +\hat{T} &= \hat{\tau} \hat{Y} + \hat{\tau} \hat{r} \hat{D} . +\end{aligned} +$$ (eq:steadystates) + +These imply + +$$ +\begin{aligned} +\hat{K} &= \left[\left(1-\hat{\tau}\right)\left(1-\alpha\right)\left(1-\beta\right)\right]^{\frac{1}{1-\alpha}} \\ +\hat{\tau} &= \frac{\hat{G} + \hat{r} \hat{D}}{\hat{Y} + \hat{r} \hat{D}} +\end{aligned} +$$ + +Let's take an example in which + +1. there is no initial government debt, $D_t=0$, +2. government consumption $G_t$ equals $15\%$ of output $Y_t$ + +Our formulas for steady-state values tell us that + +$$ +\begin{aligned} +\hat{D} &= 0 \\ +\hat{G} &= 0.15 \hat{Y} \\ +\hat{\tau} &= 0.15 \\ +\end{aligned} +$$ + + + +## Code + + +In addition to what’s in Anaconda, this lecture will need the following libraries: + +```{code-cell} ipython3 +!pip install --upgrade quantecon +``` + +```{code-cell} ipython3 +import numpy as np +import matplotlib.pyplot as plt +from numba import jit, prange +from quantecon.optimize import brent_max +``` + + +For parameters $\alpha = 0.3$ and $\beta = 0.5$, let's compute $\hat{K}$: + +```{code-cell} ipython3 +# parameters +α = 0.3 +β = 0.5 + +# steady state ̂τ +τ_hat = 0.15 +D_hat = 0. + +# solve for steady state +K_hat = ((1 - τ_hat) * (1 - α) * (1 - β)) ** (1 / (1 - α)) +K_hat +``` +Knowing $\hat K$, we can calculate other equilibrium objects. + +Let's first define some Python helper functions. + +```{code-cell} ipython3 +@jit +def K_to_Y(K, α): + return K ** α + +@jit +def K_to_r(K, α): + return α * K ** (α - 1) + +@jit +def K_to_W(K, α): + return (1 - α) * K ** α + +@jit +def K_to_C(K, D, τ, r, α, β): + + # consumption for old + A = K + D + Co = A * (1 + r * (1 - τ)) + + # consumption for young + W = K_to_W(K, α) + Cy = β * W * (1 - τ) + + return Cy, Co +``` + +We can use these helper functions to obtain steady state values $\hat{Y}$, $\hat{r}$, and $\hat{W}$ associated with steady state values $\hat{K}$ and $\hat{r}$. + +```{code-cell} ipython3 +Y_hat, r_hat, W_hat = K_to_Y(K_hat, α), K_to_r(K_hat, α), K_to_W(K_hat, α) +Y_hat, r_hat, W_hat +``` + +Since steady state government debt $\hat{D}$ is $0$, all taxes are used to pay for government expenditures + +```{code-cell} ipython3 +G_hat = τ_hat * Y_hat +G_hat +``` + +We use the optimal consumption plans to find steady state consumption for young and old are given by the + +```{code-cell} ipython3 +Cy_hat, Co_hat = K_to_C(K_hat, D_hat, τ_hat, r_hat, α, β) +Cy_hat, Co_hat +``` + +Let's store the steady state quantities and prices using an array called `init_ss` + +```{code-cell} ipython3 +init_ss = np.array([K_hat, Y_hat, Cy_hat, Co_hat, # quantities + W_hat, r_hat, # prices + τ_hat, D_hat, G_hat # policies + ]) +``` + + +### Transitions + +%Zejin: I tried to edit the following part to describe the fiscal policy %experiment and the objects we are interested in computing. + +We have computed a steady state in which the government policy sequences are each constant over time. + + +We'll use this steady state as an initial condition at time $t=0$ for another economy in which government policy sequences are with time-varying sequences. + +To make sense of our calculation, we'll treat $t=0$ as time when a huge unanticipated shock occurs in the form of + + * a time-varying government policy sequences that disrupts an original steady state + * new government policy sequences are eventually time-invariant in the sense that after some date $T >0$, each sequence is constant over time. + * sudden revelation of a new government policy in the form of sequences starting at time $t=0$ + +We assume that everyone, including old people at time $t=0$, know the new government policy sequence and choose accordingly. + + + + +As the capital stock and other economy aggregates adjust to the fiscal policy change over time, the economy will approach a new steady state. + +We can find a transition path from an old steady state to a new steady state by employing a fixed-point algorithm in a space of sequences. + +But in our special case with its closed form solution, we have available a simpler and faster +approach. + +Here we define a Python class `ClosedFormTrans` that computes length $T$ transitional path of the economy in response to a particular fiscal policy change. + +We choose $T$ large enough so that we have gotten very close to a new steady state after $T$ periods. + +The class takes three keyword arguments, `τ_pol`, `D_pol`, and `G_pol`. + +These are sequences of tax rate, government debt level, and government purchases, respectively. + +In each policy experiment below, we will pass two out of three as inputs that fully depict a fiscal policy change. + +We'll then compute the single remaining policy variable from the government budget constraint. + +When simulating the transitional paths, it is useful to distinguish what **state variables** at time $t$ such as $K_t, Y_t, D_t, W_t, r_t$ from **control variables** including $C_{yt}, C_{ot}, \tau_{t}, G_t$. + +```{code-cell} ipython3 +class ClosedFormTrans: + """ + This class simulates length T transitional path of a economy + in response to a fiscal policy change given its initial steady + state. The simulation is based on the closed form solution when + the lump sum taxations are absent. + + """ + + def __init__(self, α, β): + + self.α, self.β = α, β + + def simulate(self, + T, # length of transitional path to simulate + init_ss, # initial steady state + τ_pol=None, # sequence of tax rates + D_pol=None, # sequence of government debt levels + G_pol=None): # sequence of government purchases + + α, β = self.α, self.β + + # unpack the steady state variables + K_hat, Y_hat, Cy_hat, Co_hat = init_ss[:4] + W_hat, r_hat = init_ss[4:6] + τ_hat, D_hat, G_hat = init_ss[6:9] + + # initialize array containers + # K, Y, Cy, Co + quant_seq = np.empty((T+1, 4)) + + # W, r + price_seq = np.empty((T+1, 2)) + + # τ, D, G + policy_seq = np.empty((T+2, 3)) + + # t=0, starting from steady state + K0, Y0 = K_hat, Y_hat + W0, r0 = W_hat, r_hat + D0 = D_hat + + # fiscal policy + if τ_pol is None: + D1 = D_pol[1] + G0 = G_pol[0] + τ0 = (G0 + (1 + r0) * D0 - D1) / (Y0 + r0 * D0) + elif D_pol is None: + τ0 = τ_pol[0] + G0 = G_pol[0] + D1 = (1 + r0) * D0 + G0 - τ0 * (Y0 + r0 * D0) + elif G_pol is None: + D1 = D_pol[1] + τ0 = τ_pol[0] + G0 = τ0 * (Y0 + r0 * D0) + D1 - (1 + r0) * D0 + + # optimal consumption plans + Cy0, Co0 = K_to_C(K0, D0, τ0, r0, α, β) + + # t=0 economy + quant_seq[0, :] = K0, Y0, Cy0, Co0 + price_seq[0, :] = W0, r0 + policy_seq[0, :] = τ0, D0, G0 + policy_seq[1, 1] = D1 + + # starting from t=1 to T + for t in range(1, T+1): + + # transition of K + K_old, τ_old = quant_seq[t-1, 0], policy_seq[t-1, 0] + D = policy_seq[t, 1] + K = K_old ** α * (1 - τ_old) * (1 - α) * (1 - β) - D + + # output, capital return, wage + Y, r, W = K_to_Y(K, α), K_to_r(K, α), K_to_W(K, α) + + # to satisfy the government budget constraint + if τ_pol is None: + D = D_pol[t] + D_next = D_pol[t+1] + G = G_pol[t] + τ = (G + (1 + r) * D - D_next) / (Y + r * D) + elif D_pol is None: + τ = τ_pol[t] + G = G_pol[t] + D = policy_seq[t, 1] + D_next = (1 + r) * D + G - τ * (Y + r * D) + elif G_pol is None: + D = D_pol[t] + D_next = D_pol[t+1] + τ = τ_pol[t] + G = τ * (Y + r * D) + D_next - (1 + r) * D + + # optimal consumption plans + Cy, Co = K_to_C(K, D, τ, r, α, β) + + # store time t economy aggregates + quant_seq[t, :] = K, Y, Cy, Co + price_seq[t, :] = W, r + policy_seq[t, 0] = τ + policy_seq[t+1, 1] = D_next + policy_seq[t, 2] = G + + self.quant_seq = quant_seq + self.price_seq = price_seq + self.policy_seq = policy_seq + + return quant_seq, price_seq, policy_seq + + def plot(self): + + quant_seq = self.quant_seq + price_seq = self.price_seq + policy_seq = self.policy_seq + + fig, axs = plt.subplots(3, 3, figsize=(14, 10)) + + # quantities + for i, name in enumerate(['K', 'Y', 'Cy', 'Co']): + ax = axs[i//3, i%3] + ax.plot(range(T+1), quant_seq[:T+1, i], label=name) + ax.hlines(init_ss[i], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') + + # prices + for i, name in enumerate(['W', 'r']): + ax = axs[(i+4)//3, (i+4)%3] + ax.plot(range(T+1), price_seq[:T+1, i], label=name) + ax.hlines(init_ss[i+4], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') + + # policies + for i, name in enumerate(['τ', 'D', 'G']): + ax = axs[(i+6)//3, (i+6)%3] + ax.plot(range(T+1), policy_seq[:T+1, i], label=name) + ax.hlines(init_ss[i+6], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') +``` + +We can create an instance `closed` given model parameters $\{\alpha, \beta\}$ and use it for various fiscal policy experiments. + + +```{code-cell} ipython3 +closed = ClosedFormTrans(α, β) +``` + +(exp-tax-cut)= +### Experiment 1: Tax cut + +To illustrate the power of `ClosedFormTrans`, let's first experiment with the following fiscal policy change: + +1. at $t=0$, the government unexpectedly announces a one-period tax cut, $\tau_0 =(1-\frac{1}{3}) \hat{\tau}$, by issuing government debt $\bar{D}$ +2. from $t=1$, the government will keep $D_t=\bar{D}$ and adjust $\tau_{t}$ to collect taxation to pay for the government consumption and interest payments on the debt +3. government consumption $G_t$ will be fixed at $0.15 \hat{Y}$ + +The following equations completely characterize the equilibrium transition path originating from the initial steady state + +$$ +\begin{aligned} +K_{t+1} &= K_{t}^{\alpha}\left(1-\tau_{t}\right)\left(1-\alpha\right)\left(1-\beta\right) - \bar{D} \\ +\tau_{0} &= (1-\frac{1}{3}) \hat{\tau} \\ +\bar{D} &= \hat{G} - \tau_0\hat{Y} \\ +\quad\tau_{t} & =\frac{\hat{G}+r_{t} \bar{D}}{\hat{Y}+r_{t} \bar{D}} +\end{aligned} +$$ + +We can simulate the transition of the economy for $20$ periods, after which the economy will be fairly close to the new steady state. + +The first step is to prepare sequences of policy variables that describe the fiscal policy change. + + In this example, we need to define sequences of government expenditure $\{G_t\}_{t=0}^{T}$ and debt level $\{D_t\}_{t=0}^{T+1}$ in advance, then pass them to the solver. + +```{code-cell} ipython3 +T = 20 + +# tax cut +τ0 = τ_hat * (1 - 1/3) + +# sequence of government purchase +G_seq = τ_hat * Y_hat * np.ones(T+1) + +# sequence of government debt +D_bar = G_hat - τ0 * Y_hat +D_seq = np.ones(T+2) * D_bar +D_seq[0] = D_hat +``` + +Let's use the `simulate` method of `closed` to obtain the dynamic transitions. + +Note that we leave `τ_pol` as `None`, since the tax rates need to be determined to satisfy the government budget constraint. + +```{code-cell} ipython3 +quant_seq1, price_seq1, policy_seq1 = closed.simulate(T, init_ss, + D_pol=D_seq, + G_pol=G_seq) +closed.plot() +``` + +We can also easily experiment with a lower tax cut rate, such as $0.2$, and compare + +```{code-cell} ipython3 +# lower tax cut rate +τ0 = 0.15 * (1 - 0.2) + +# the corresponding debt sequence +D_bar = G_hat - τ0 * Y_hat +D_seq = np.ones(T+2) * D_bar +D_seq[0] = D_hat + +quant_seq2, price_seq2, policy_seq2 = closed.simulate(T, init_ss, + D_pol=D_seq, + G_pol=G_seq) +``` + +```{code-cell} ipython3 +fig, axs = plt.subplots(3, 3, figsize=(14, 10)) + +# quantities +for i, name in enumerate(['K', 'Y', 'Cy', 'Co']): + ax = axs[i//3, i%3] + ax.plot(range(T+1), quant_seq1[:T+1, i], label=name+', 1/3') + ax.plot(range(T+1), quant_seq2[:T+1, i], label=name+', 0.2') + ax.hlines(init_ss[i], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') + +# prices +for i, name in enumerate(['W', 'r']): + ax = axs[(i+4)//3, (i+4)%3] + ax.plot(range(T+1), price_seq1[:T+1, i], label=name+', 1/3') + ax.plot(range(T+1), price_seq2[:T+1, i], label=name+', 0.2') + ax.hlines(init_ss[i+4], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') + +# policies +for i, name in enumerate(['τ', 'D', 'G']): + ax = axs[(i+6)//3, (i+6)%3] + ax.plot(range(T+1), policy_seq1[:T+1, i], label=name+', 1/3') + ax.plot(range(T+1), policy_seq2[:T+1, i], label=name+', 0.2') + ax.hlines(init_ss[i+6], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') +``` + +### Experiment 2: Government asset accumulation + +Assuming that the economy was in the same steady state, but instead of announcing a tax cut at $t=0$, the government now promises to cut its spending on services and goods by a half $\forall t \leq 0$. + +The government wants to target the same tax rate $\tau_t=\hat{\tau}$ and accumulate assets $-D_t$ over time. + +Note that in this experiment, we pass `τ_seq` and `G_seq` as inputs, and let `D_pol` be determined along the path by satisfying the government budget constraint. + +```{code-cell} ipython3 +# government expenditure cut by a half +G_seq = τ_hat * 0.5 * Y_hat * np.ones(T+1) + +# targeted tax rate +τ_seq = τ_hat * np.ones(T+1) + +closed.simulate(T, init_ss, τ_pol=τ_seq, G_pol=G_seq); +closed.plot() +``` + +It will be useful for understanding the transition paths by looking at the ratio of government asset to the output, $-\frac{D_t}{Y_t}$ + +```{code-cell} ipython3 +plt.plot(range(T+1), -closed.policy_seq[:-1, 1] / closed.quant_seq[:, 0]) +plt.xlabel('t') +plt.title('-D/Y'); +``` + +### Experiment 3: Temporary expenditure cut + +Let's now consider the case where the government also cuts its spending by half and accumulates asset. + +But this time the expenditure cut only lasts for one period at $t=0$. + +From $t \geq 1$, the government will return to the original level of consumption $\hat{G}$, and will adjust $\tau_t$ to maintain the same level of asset $-D_t = -D_1$. + +```{code-cell} ipython3 +# sequence of government purchase +G_seq = τ_hat * Y_hat * np.ones(T+1) +G_seq[0] = 0 + +# sequence of government debt +D_bar = G_seq[0] - τ_hat * Y_hat +D_seq = D_bar * np.ones(T+2) +D_seq[0] = D_hat + +closed.simulate(T, init_ss, D_pol=D_seq, G_pol=G_seq); +closed.plot() +``` + + + +## A computational strategy + +In the above illustrations, we studied dynamic transitions associated with various fiscal policy experiments. + +In these experiments, we maintained the assumption that lump sum taxes are absent ($\delta_{yt}=0, \delta_{ot}=0$). + +In this section, we investigate the transition dynamics when the lump sum taxes are present. + +The government will use lump sum taxes and transfers to redistribute resources across successive +generations. + +Including lump sum taxes will break down the closed form solution because now optimal consumption and saving plans will depend on future prices and tax rates. + +Therefore, we use a more general way of solving for equilibriunm transitional paths that involves computing them as a fixed point in a mapping from sequences to sequences. + +We elaborate on the equilibrium conditions as we define in section {ref}`sec-equilibrium`, which characterize the fixed point + +**Definition:** Given model parameters $\{\alpha$, $\beta\}$, a competitive equilibrium consists of + +* sequences of optimal consumptions $\{C_{yt}, C_{ot}\}$ +* sequences of prices $\{W_t, r_t\}$ +* sequences of capital stock and output $\{K_t, Y_t\}$ +* sequences of tax rates, government assets (debt), government purchases $\{\tau_t, D_t, G_t\, \delta_{yt}, \delta_{ot}\}$ + +with the properties that + +* given the price system and government fiscal policy, the household consumption plans are optimal +* the government budget constraints are satisfied for all $t$ + +An equilibrium transition path can be computed by "guessing and verifying" + +In our {ref}`exp-tax-cut` example, sequences $\{D_t\}_{t=0}^{T}$ and $\{G_t\}_{t=0}^{T}$ are exogenous. + +In addition, we assume that the lump sum taxes $\{\delta_{yt}, \delta_{ot}\}_{t=0}^{T}$ are given and known to the households. + +We can solve for sequences of other equilibrium objects following the steps below + +1. guesses prices $\{W_t, r_t\}_{t=0}^{T}$ and tax rates $\{\tau_t\}_{t=0}^{T}$ +2. solve for optimal consumption and saving plans $\{C_{yt}, C_{ot}\}_{t=0}^{T}$, treating the guesses of future prices and taxes as true +3. solve for transitional dynamics of the capital stock $\{K_t\}_{t=0}^{T}$ +4. update the guesses for prices and tax rates with the values implied by the equilibrium conditions +5. iterate until convergence + +Below we implement the "guess and verify" computation. + +We start by defining the Cobb-Douglas utility function + +```{code-cell} ipython3 +@jit +def U(Cy, Co, β): + + return (Cy ** β) * (Co ** (1-β)) +``` + +We use `Cy_val` to compute the lifetime value of choosing an arbitrary consumption plan, $C_y$, given the intertemporal budget constraint. + +Note that it requires knowing future prices $r_{t+1}$ and tax rate $\tau_{t+1}$. + +```{code-cell} ipython3 +@jit +def Cy_val(Cy, W, r_next, τ, τ_next, δy, δo_next, β): + + # Co given by the budget constraint + Co = (W * (1 - τ) - δy - Cy) * (1 + r_next * (1 - τ_next)) - δo_next + + return U(Cy, Co, β) +``` + +The optimal consumption plan $C_y^*$ can be found by maximizing `Cy_val`. + +Here is an example of finding the optimal consumption $C_y^*=\hat{C}_y$ in the steady state as we discussed before, with $\delta_{yt}=\delta_{ot}=0$ + +```{code-cell} ipython3 +W, r_next, τ, τ_next = W_hat, r_hat, τ_hat, τ_hat +δy, δo_next = 0, 0 + +Cy_opt, U_opt, _ = brent_max(Cy_val, # maximand + 1e-6, # lower bound + W*(1-τ)-δy-1e-6, # upper bound + args=(W, r_next, τ, τ_next, δy, δo_next, β)) + +Cy_opt, U_opt +``` + +Below we define a Python class `AK2` that solves for the transitional paths of the economy using the fixed-point algorithm. It can handle any fiscal policy experiment including nonzero lump sum taxations + +```{code-cell} ipython3 +class AK2(): + """ + This class simulates length T transitional path of a economy + in response to a fiscal policy change given its initial steady + state. The transitional path is found by employing a fixed point + algorithm that and uses equilibrium conditions. + + """ + + def __init__(self, α, β): + + self.α, self.β = α, β + + def simulate(self, + T, # length of transitional path to simulate + init_ss, # initial steady state + δy_seq, # sequence of lump sum tax for the young + δo_seq, # sequence of lump sum tax for the old + τ_pol=None, # sequence of tax rates + D_pol=None, # sequence of government debt levels + G_pol=None, # sequence of government purchases + verbose=False, + max_iter=500, + tol=1e-5): + + α, β = self.α, self.β + + # unpack the steady state variables + K_hat, Y_hat, Cy_hat, Co_hat = init_ss[:4] + W_hat, r_hat = init_ss[4:6] + τ_hat, D_hat, G_hat = init_ss[6:9] + + # K, Y, Cy, Co + quant_seq = np.empty((T+2, 4)) + + # W, r + price_seq = np.empty((T+2, 2)) + + # τ, D, G + policy_seq = np.empty((T+2, 3)) + policy_seq[:, 1] = D_pol + policy_seq[:, 2] = G_pol + + # initial guesses of prices + price_seq[:, 0] = np.ones(T+2) * W_hat + price_seq[:, 1] = np.ones(T+2) * r_hat + + # initial guesses of policies + policy_seq[:, 0] = np.ones(T+2) * τ_hat + + # t=0, starting from steady state + quant_seq[0, :2] = K_hat, Y_hat + + if verbose: + # prepare to plot iterations until convergence + fig, axs = plt.subplots(1, 3, figsize=(14, 4)) + + # containers for checking convergence + price_seq_old = np.empty_like(price_seq) + policy_seq_old = np.empty_like(policy_seq) + + # start iteration + i_iter = 0 + while True: + + if verbose: + # plot current prices at ith iteration + for i, name in enumerate(['W', 'r']): + axs[i].plot(range(T+1), price_seq[:T+1, i]) + axs[i].set_title(name) + axs[i].set_xlabel('t') + axs[2].plot(range(T+1), policy_seq[:T+1, 0]) + axs[2].set_title('τ') + axs[2].set_xlabel('t') + + # store old prices from last iteration + price_seq_old[:] = price_seq + policy_seq_old[:] = policy_seq + + # start updating quantities and prices + for t in range(T+1): + K, Y = quant_seq[t, :2] + W, r = price_seq[t, :] + r_next = price_seq[t+1, 1] + τ, D, G = policy_seq[t, :] + τ_next, D_next, G_next = policy_seq[t+1, :] + δy, δo = δy_seq[t], δo_seq[t] + δy_next, δo_next = δy_seq[t+1], δo_seq[t+1] + + # consumption for the old + Co = (1 + r * (1 - τ)) * (K + D) - δo + + # optimal consumption for the young + out = brent_max(Cy_val, 1e-6, W*(1-τ)-δy-1e-6, + args=(W, r_next, τ, τ_next, + δy, δo_next, β)) + Cy = out[0] + + quant_seq[t, 2:] = Cy, Co + τ_num = ((1 + r) * D + G - D_next - δy - δo) + τ_denom = (Y + r * D) + policy_seq[t, 0] = τ_num / τ_denom + + # saving of the young + A_next = W * (1 - τ) - δy - Cy + + # transition of K + K_next = A_next - D_next + Y_next = K_to_Y(K_next, α) + W_next, r_next = K_to_W(K_next, α), K_to_r(K_next, α) + + quant_seq[t+1, :2] = K_next, Y_next + price_seq[t+1, :] = W_next, r_next + + i_iter += 1 + + if (np.max(np.abs(price_seq_old - price_seq)) < tol) & \ + (np.max(np.abs(policy_seq_old - policy_seq)) < tol): + if verbose: + print(f"Converge using {i_iter} iterations") + break + + if i_iter > max_iter: + if verbose: + print(f"Fail to converge using {i_iter} iterations") + break + + self.quant_seq = quant_seq + self.price_seq = price_seq + self.policy_seq = policy_seq + + return quant_seq, price_seq, policy_seq + + def plot(self): + + quant_seq = self.quant_seq + price_seq = self.price_seq + policy_seq = self.policy_seq + + fig, axs = plt.subplots(3, 3, figsize=(14, 10)) + + # quantities + for i, name in enumerate(['K', 'Y', 'Cy', 'Co']): + ax = axs[i//3, i%3] + ax.plot(range(T+1), quant_seq[:T+1, i], label=name) + ax.hlines(init_ss[i], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') + + # prices + for i, name in enumerate(['W', 'r']): + ax = axs[(i+4)//3, (i+4)%3] + ax.plot(range(T+1), price_seq[:T+1, i], label=name) + ax.hlines(init_ss[i+4], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') + + # policies + for i, name in enumerate(['τ', 'D', 'G']): + ax = axs[(i+6)//3, (i+6)%3] + ax.plot(range(T+1), policy_seq[:T+1, i], label=name) + ax.hlines(init_ss[i+6], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') +``` + +We can initialize an instance of class `AK2` with model parameters $\{\alpha, \beta\}$ and then use it for various fiscal policy experiments. + +```{code-cell} ipython3 +ak2 = AK2(α, β) +``` + +We first examine that the "guess and verify" method leads to the same numerical results as we obtain with the closed form solution when lump sum taxes are muted + +```{code-cell} ipython3 +δy_seq = np.ones(T+2) * 0. +δo_seq = np.ones(T+2) * 0. + +D_pol = np.zeros(T+2) +G_pol = np.ones(T+2) * G_hat + +# tax cut +τ0 = τ_hat * (1 - 1/3) +D1 = D_hat * (1 + r_hat * (1 - τ0)) + G_hat - τ0 * Y_hat - δy_seq[0] - δo_seq[0] +D_pol[0] = D_hat +D_pol[1:] = D1 +``` + +```{code-cell} ipython3 +quant_seq3, price_seq3, policy_seq3 = ak2.simulate(T, init_ss, + δy_seq, δo_seq, + D_pol=D_pol, G_pol=G_pol, + verbose=True) +``` + +```{code-cell} ipython3 +ak2.plot() +``` + +Next, we can now try to turn on the lump sum taxes with the more general laboratory at hand. + +For example, let's try the same fiscal policy experiment in {ref}`exp-tax-cut`, but slightly modify it and assume that the government will in addition increase the lump sum taxes for both the young and old households $\delta_{yt}=\delta_{ot}=0.01, t\geq0$. + +```{code-cell} ipython3 +δy_seq = np.ones(T+2) * 0.01 +δo_seq = np.ones(T+2) * 0.01 + +D1 = D_hat * (1 + r_hat * (1 - τ0)) + G_hat - τ0 * Y_hat - δy_seq[0] - δo_seq[0] +D_pol[1:] = D1 + +quant_seq4, price_seq4, policy_seq4 = ak2.simulate(T, init_ss, + δy_seq, δo_seq, + D_pol=D_pol, G_pol=G_pol) +``` + +As a result, we see that the "crowding out" effect is mitigated. + +```{code-cell} ipython3 +fig, axs = plt.subplots(3, 3, figsize=(14, 10)) + +# quantities +for i, name in enumerate(['K', 'Y', 'Cy', 'Co']): + ax = axs[i//3, i%3] + ax.plot(range(T+1), quant_seq3[:T+1, i], label=name+', $\delta$s=0') + ax.plot(range(T+1), quant_seq4[:T+1, i], label=name+', $\delta$s=0.01') + ax.hlines(init_ss[i], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') + +# prices +for i, name in enumerate(['W', 'r']): + ax = axs[(i+4)//3, (i+4)%3] + ax.plot(range(T+1), price_seq3[:T+1, i], label=name+', $\delta$s=0') + ax.plot(range(T+1), price_seq4[:T+1, i], label=name+', $\delta$s=0.01') + ax.hlines(init_ss[i+4], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') + +# policies +for i, name in enumerate(['τ', 'D', 'G']): + ax = axs[(i+6)//3, (i+6)%3] + ax.plot(range(T+1), policy_seq3[:T+1, i], label=name+', $\delta$s=0') + ax.plot(range(T+1), policy_seq4[:T+1, i], label=name+', $\delta$s=0.01') + ax.hlines(init_ss[i+6], 0, T+1, color='r', linestyle='--') + ax.legend() + ax.set_xlabel('t') +``` diff --git a/lectures/cagan_adaptive.md b/lectures/cagan_adaptive.md index 88d13626..62743cd6 100644 --- a/lectures/cagan_adaptive.md +++ b/lectures/cagan_adaptive.md @@ -11,9 +11,9 @@ kernelspec: name: python3 --- -# A Monetarist Theory of Price Levels with Adaptive Expectations +# Monetarist Theory of Price Levels with Adaptive Expectations -## Introduction +## Overview This lecture is a sequel or prequel to the lecture {doc}`cagan_ree`. @@ -22,7 +22,7 @@ We'll use linear algebra to do some experiments with an alternative "monetarist Like the model in {doc}`cagan_ree`, the model asserts that when a government persistently spends more than it collects in taxes and prints money to finance the shortfall, it puts upward pressure on the price level and generates persistent inflation. -Instead of the "perfect foresight" or "rational expectations" version of the model in {doc}`cagan_ree`, our model in the present lecture is an "adaptive expectations" version of a model that Philip Cagan {cite}`Cagan` used to study the monetary dynamics of hyperinflations. +Instead of the "perfect foresight" or "rational expectations" version of the model in {doc}`cagan_ree`, our model in the present lecture is an "adaptive expectations" version of a model that {cite}`Cagan` used to study the monetary dynamics of hyperinflations. It combines these components: @@ -79,7 +79,7 @@ $$ $$ (eq:eqpipi) We assume that the expected rate of inflation $\pi_t^*$ is governed -by the Friedman-Cagan adaptive expectations scheme +by the following adaptive expectations scheme proposed by {cite}`Friedman1956` and {cite}`Cagan`: $$ \pi_{t+1}^* = \lambda \pi_t^* + (1 -\lambda) \pi_t diff --git a/lectures/datasets/assignat.xlsx b/lectures/datasets/assignat.xlsx new file mode 100755 index 0000000000000000000000000000000000000000..eeb17079b2117236cea434a8f970f668f658c8d4 GIT binary patch literal 209555 zcmeEtgOg-Y^JUMpZ5z|JZQHhObK2IlZM%Egwmt2hR<&(oYrfrx-HqS=1-ttq>QzP5 zt@ko-o^vv9zFUeipkQbq5Fk(>ARxpbbgSgIf4>1gA%K9Of-Ha25pl40HM4g$Q1x;& zbJ3&sw6i5DT=+(r5Aq#2{{J8U*UZ3_#)dqA5y?+tJs{$}!+O(EM^Mh|=Yf;Zcm6&b zg{<;8J1@A6&ky;9w7zm67OAs#VAv?945?X>k7@HB`J~A{7A_epOCvp;4 zn85vc@p4_Pa!&Q#NSEWz@3%Z_QA<-2p5MWyQc|wcU%(9~boXU;D#}6#8%c(Az<0*6)*cP-z(6YxB$d1_2%$X0 z7rVJI>m-feg2Swt-M9Hrg`snRp+1cRNNmbw7IWdj?h5fiD5M3=P{g&a>Ua*}Xm3Nl z?me#w(F(Z3TJfDT#5Vt3suDOs?rPtO{Q?C6`2wC4|2K{|t1*&30D&tDq%bVV%r^sP zGg}u1`hRDl!ioRS?f+{y9rJ5eevlDvuEPCS3#Su_Oyr#8&K>V|l#AfmSs;C$WyN#%4DVi9$gZ5}vr+#rqN)KfZ2uMO zzw!I5;(+vihuEFSNGsys{lqdS;ENY&L)al=ucr<+vB&kR`Je1= z1)Iik5cj9^c8dH>)9^}yQ4X4eN^V}jaXRX>YyUZ^0u6U3z6{Q zrb$AQRkC!fsSN6!?TmhR*`ZWrrNqO}sTZNoa~08L$yj3~Re>?dsJI9TuEv7}YqG{V zYz5U5n-55rtn80-9cM#?!`n8M{&N|REQ>VP1&dhUevr4Y6|*4W!;hQeH7az`1mLoj z#ssZe|4c=7ji~(zN+o4Mut0Ox^IrdS(zZWJvBpr8fKw~TTo?fc?i`xV^#j7V=-V$j zjC*fdQ61htg^7Nn&vS@q{*Pr1??7$-uV|iB>->8U{3aJzogo5Y3Pkh&isR}uIR#)2 z54)nd2pIF8O(4HVWfLP3+yJEk)8iyb;;a!fmS~Zg?6uglA1oH4QO{H{IeJLC@mhK$ z+n3CbWf)3Wa{xh!8urph4shWjV$l$Xb z1pdjP=nrr?hzY}54&kz;%dGFqmiA=6qpgJ2^rK4?A&cvu6UQTrVpv{N=8V2a)?7VS zKzK;obfP67cKTv*idiz$2qtj-BYdJrF=;e7XH>b-?01oGU--VAzU=NMh?+=eIqelCzch`4Fn$wU+aZUuWIp6#g$eh(J z$yC{6r~Zr?m?NA2qFIb_Ejv9neo7?(i^;r;KFGr?=PW zwezFDOAql@5t4N0m_ih)`TXdXg5WsHf#Rz9Oz4)v;6bT^$&z!_<&vi3@M_X#s9HIK z6h)1Z)ynyAA8B$u@O*T|G&{Z3i|MOeZ^k;WkdW_k1K%8y9Q#(t@UB^*A(^v6Klot+{+4|4#&=pLK~Wr33+yDF6Y%`kw@Gu{1Mtbz%6=8|y#CPtMVC z!R7jOwXHDpf`GtRTV%D|Ju$y5ekQEEC$^u#*EyTnvZ)?p$7SmFG~@sJQBVnDO0H>) zNKtCn^qB&Jk`XCt{{8)B`|Is2jU#}U_si4w^>LRrYkGEz*Z1w=1ORB==Fk54`qF&= zliU4r`e7OdkZ_j>ReZ9QQmK_DWKfhmJ-$KA_`}=afz2Dw`d~|vU z_F$JOSSB20unWOX>`^4(_}@F3&yytxbUgZ%4ht zfRn|tQ3Jx-T>p=cv%%K1z_Gi*v^UJxFTfq(iO}LmAi#G&19vX#C|rSX#(#W^u+hu^ z@$&ts=i~=HA6Fc7vLZG*RKwMD?4&6t@r!jUPo(tw4lAGOyh~+=}168 z;Nt~?eDN~=>dAhh@#(i*{AMfWrOnC?ZpV4s^QafotiS&gWYLG)kS@WXD~?Nw@$HOZ zt%@uYN4i+lc&B)4GjCW0n|X?HlvfoK2Nn4hb!@vF)9~iKMUHW%a?)CHLKh9Id6sch zJNEJ=)`;s1@N{pHXN{=0Xa#p^-SPb*@OHYG<7;ieHx|AK=SH)V znBi`K8#bbZsB%HfCo)MH`muOXrQmT|kx>!s%Q<~<={fp$r4%3@$xg7~(bXXQ`tRqN z8*!82uDmlPC`oWvyI7NNS8^-U3ysj}cXtbfL21rR#@Ea03KIDGF4Nku9qQ?^IUuK8U$IaBH>)d=2 z9_6#W68u@z2;(s7Y5K#i6APVSOk!ZP7ecboQ6g|HVw!w~aqJ7hx9DJJmBE=%t}P+hA-+~xh~ zDH35|ME5MuM<2UG2)vbefbY`#kGsjz>o?aY_HWFx_9tO!VoS6W?#nG&1jQ>;Tk2i$ zDpq9qpFJxJx-p91Dx#y3p#Nf+4I9g++s0VyOkC~s@nrv zW%8L6)52Q`ESoscTNR^Ju=|tsMDFrUeKiN8nma4cV?mNen%B&TPAs}JK7cGW2Uzm; zcCc=6`slELP^n8%jxaYRq!&OJ-qyn_e_mFJb=mwy^{?WZ7aq!c8d}HPekKghc;d#s zv9*zlfgl!@mK59<)2mjTzpizK9youewM`5VVEV3u?vJ6}F9#duy;@1)W?myEr%bXF zG+xf|^=Vv5Xun`8YDm-$4xr_w)=QYkAjQtmb#}T^OnjsCr^@aOGF#znujz1TCNZ@_ zI{X~@Cz%|D@Zcoq!CzGbAoH&B2>Em2cOi3odTFy=`8tjRRqFEc1zP^HHIdukUM;!S zVBe+WPcN`cR+40S6i|$$>cP6MqXLIN@{P~TXr)wkSg+?AXRwECy79pb-PLOfZiDo%`C$tjL z{^7Kh+EhsgGdowyMl+w1zsp)}ccf*q-j0!8oWs8!#ypi-N`ItgIc9k)JogOf8aMyj zWj)C_ABIR7tr>sXn6;#*Wl?%ng`8p;jvGM8<64kFo3$dRCrC8gRNMS{5Nl0ccf?tB zCxzdJZaEyqzdW({)T%#qg8n-|c(hB{d?qezoD8IT*oV%tC^qZ|?u}~mIfPDI0)?#` ztgKpUhK5m5v5wH7+;<2z8vwV%98YYmg=Pg~x1I&>O}8+QnR5$S+%l4Y=5sQ$oGtgA z>!Q^#fW*+-%y?;*r_-$qEj^^luO63w+9Ex)O;U@+`G;lx@1{!YED~xvJWU7JT5xVF zCd$Pw8*N-~tq6|9_`*zdt-({?+tuGqs>h}Mel?SL8h+2|Cz`RxsFi<`wdT#t)>Mxr zRj`q}mE;fYGI~Q8O|9q`%%@jcHIgGN%g*-?1V7AG&5B}?Dhy&} zAZJAXJV7rt{mi7*c0Es*4u^6b*iv$nNN zP4Tkh0D-+BuhLzvpCKMJZ%l((IzTsa4RY*xE9Iy{{^*$47ZU?1rquLUFFdy%9Ku~P zRcgBNRx^7i!||A_`BpTcS)yBo@r$zAGqe8BnPfNycdOgLf-N{aUR<17NkjvE=hh`! zhm#L1orVv%qcu~Se`s?LB&Y*vc(cCjP_HwgU(|*KphFjIEFa^d+V$>4VB}O6#&tlc z4r8sl@{E?Yv_@%&Mrg1?EN5EAHvS7M49L9&W5sAMt=UdVQs)YT6pSDUn1u#9Dn-(( znsg?5beyj!bml7OEN-3HdQ_YRbFJyEq5%lh^&0pm2UQ)<7)QcrVRg4>%iVvG!1Pxl z9$DH~JCxGQ(S^mSZfZAL66clA#8NA@InzqyIByrHVk!-wu}n~~x#`rR9~`asDVt-& zEh4EdMh@>5E)ozcNktcVH{1ypz~VvGAg+-|{kFslUyeiLgG|)Tt!ArO*$8FAQRzrE z2i+>+W=yJ|s&?@s2)`O5>YrPvS^0&JO?jM+E8lZ|b5^SGS7njR4s9v7wjr_V&S6?n zYXA0pPp8tPW?kAuR`_{uIdOAwAVLBpOH&Kk5qs0a!ykGm2X*9UG5hx zzV9FgiJIzJBg{099y9gKGYi(!s=)K&6DnRsnV2r|_c->r-|(}Nx*g;x@u!{vR1pBYv_BdITQ%~gQR-3I z{9{@sP+s#~E%Jl;*XdDxQ^8LfpyB+SMz^h-lQ%o`MDyQzR`J*|+#$iJ*2s+%Rk&>8oKIvq?}SRw*VC=7qAZ%gMfCy( zh(p572vL6}#bE#FZgZ{;g*Ce)`Mht#(6olehi*DY^?(OY@f5@u|{_i?`b(+KNgQw@N(F|Ol} zfm>m4T}%D04~--5hg7RuJuklYA0;bCWY)&&Y)4{PnBpZ}*F^>3gqyF{s~%TZ!=z4C z*F7feCN4qo6tF*As)u{J=k1;g;vOXN766k;bDRm0u4RU9K$i61;mQdqjOhfEql#0Pzx!% z0zFYohY@IlY}Yw;nwBu!8-$J~G@@a!sj3 zLv{Q9@#MYjaEFcgjpZ0-hVcWc!>05J=!Lzv-uNoBr@~6?_;Ek5CU705LozmEml^t( zVjyaW&-Z!9uIGi@kytGohNd$u>{thIx`8MoRu*k+x_%s#od>!xmznA7q|^%D@XDp1 ziMxg;3lx4P~(DK17HuQ4Gt2jB;2? zU%j7I2k)V`B<7zlG(a;Jt09Na%!g*48BbC z2Qo(Q)?&4m^FPQjQ7Y*lG{bu`3}yWe&ari_bmqnjal}xa7JeF1xTS17Bdm^ z=vW+NuMu0#jaT(!7sTD!opSEgXp+!j}MUf1SuI2;> zMn}}Dmq&I44wPjV0n7n$nBNxb#D{b{z2N57Ik!s$De#`6LRgkVC8?uKRiC8i9HUe% zIO(?Zq%ihv0_C;gqC`7N;;h7~Vqk@WF`N=94YR_%IatnQLT9)q`gv^0;O_}Z#eo_p z-NflC7$|Ds1u90$%~3htGFG8#BbX0RJ z55{!vnG*G~NatV@I*xi4FJ#7G?gH52>mdIuVtrtk%`+&lrLgC)2 zhaH=&#qdw+oKz{&SIpcZW;#M*b2CDT_Fyn|hVsc$`5&2_n_InPLdkpfjcdTv#p?$1 zHAr8J`BUiBbG&O|1m@kZ#o43+vFI82gYqCrFdG&# ze*6cB_mLCpVIe6GZa}>&Q#g-oB!9Inr2yvCDx8ep5$vf)@&z=180!kJSIJKF3ldRV z`n6dRAe4rWw1>&1kzn%HF=$e;cf|VOs7J!m)_MNM$^=S1U!cR%WE~j^AGz0S1VJdz z6pH)LIv~Yy`t}@2OmqerGkL_)VnlA9sF@XHRqNIp$!pzN3dG>hqi4e7&x=P%cgM2Q zYQ-L_L=BV2;vtnl*6vLo>f5U(;ct-}IBN08>v>qT*X{y9K=ePL9}DA zD$*uuo^!Pz1IvXj<0Y;PQxx^j;;@rL^*O;_y!F#7d7(=4=cxSf2Q6#Shkn1O?ZSH--AxsBXwa!P;&tK`j0pGHvRJk3i+<@d3}8 zT~!cWH1PwL4TDsgan3_gCRK6&3Lz}C7(QXr7BhDvO(+spDNh6+4K#lj^bGD=-CUcv zA6!aoseANKRaF^kL_(+oE7eDGji$r7Kc=wQs&Y^l z`>>w-OES@|kk)=Dw#6PxEr`xl$0eho6AfE_n>uYoXU#Sbtc723huN#{&z|bDRQLro zm?J!x?KP-W_>-O7p>FONYrLavMK*#Ej+b+`=q1)AUu~wuIi4&VCT}m6+JgNL=C_3^ zJPN0Z_$b(4*wa9sp)yxyM{lzGx94xL>v;dLN_WQ@3fjnC-$N3gy8$FE zppWAaO~whKi2XQDz)}y|1apnz@xZLHDp4meO@tNS~LNk7jl?25mf@}m}HtyYpV7bbGr zY@rZg;dHB5!hCVHkYX+!+dXe;)Itlz|SDPW2DZmqPPkfSQ3A&Q{|!59lj|ncMP)`L|%!+ z2p(XHO^)YkxhM3g84%`(R6B93bH0kiIx(PjmH(cZue$ZTXR+A7J5R%Em|&$4KN=k8?eKk97#*K%R5Ww}jsgGgd34vUH&FtL{%#U}6RyBFv!B_3S@@@V|@$UkPr0V_&lV&6xfuWgpl zN;PCQ#Cg@fGe?L9Fk{wz!;N~v;m;gVpX;0C3*54D6`E&H+!b7(+RPE}Orpw`i6Q)( z)GbVkafuX|2dd8;z0*GcD5e%slqc(ayUJOMF*fQdG5eYRP`Dxh>`HilRL%D~f4W~> zCSb#X7a)54l0r;86241!`|u&f zg}6XppT??~;p|>k;?eXZE3>dA8PtA-v&m)}>;v8e+XY4mk;2DCxQ?Z%9JsU(DX>Gn z5$Da##-wMcH*MYH(_qUZafjKpKgsv+gL=&wcpu6niPt9UPwft3p<;s+3dPAdcrx5| zid{%zPAs8`H$90#*8z)RsiTYjzM{8t7!w^ap9tjQ6oN~HfXXaDo<~~wimX~3C$enC zhF)R2uItblndZYsqN<;=(`8U}^M>0-x&-Qv4P7@n{`rdMZIc_VHfyi}4Xa97q}>p} z^!LX_v&s2k%Dg>z?Ba2baBEE!{w`6+SNd9;ishp^JhULGuurJap057jB4CzMDHzgX zw?T@|2{p2Mfub?n=TRncTo`uokFZh3Q7hM)%Hbacb}RIOlJohGJv(y;D(HK2i!NhH zEVN~ZI7jT<>Jdy-XjcaI;2$JoQ9qTce^v!19bZn)4>VxZn53?cl^a#j5hzR`xMaE7 z)98yD#tFH@2y2>)&!?=ck_C8`%|)Q?`Z`Ul-uu+eU9O`thYT<-4@IWbg3UQ@4tGHLzQEC4-gjha_-UbO{dFXQ`9M zqLKg_;eWW@r0VpLjK4QVxb3_zV5zL=5%Qng8gmJ-pSoPSYtxsX&c5x&x42p~nZr?~we10?7F8DIkztOD7w=m8@F zffky=acOz4UvR{Ud^$tr^EB4qCl*=6E{w{w%gje=K^_3imB)V^BD)>eLOPd>6LNdN z5@Iqvrei!AegsmToNO-f?(J6=G~ifeClCachU#=kRycJC{sDg+xmI@_lC$F@9Uq@> z2b8+h%<0w?9a#YbGmg_rq`bt!S6P!UM0^CasGxnK_^Rh}DQCd6Ek2niTChv}3VnS% zlb14{+~ygm2*yQb(_-J^={)(lu`ZI8Qp8S(gR9xbaBglt>)$ACRIice=|_ng;0u99 zL2Ch+f5oTDB=-7!Txp%NTy%jbc{g23U;4YsLYM$6;B|LLZ`kNw z+=^|1^M~D^9TlPt4BgE>^3~_a)* z1lYE}E2E?%(M&i}5k^PKcE;5LArBT4D}b(iUVR9rk+gwiFD8+$9T#1Ie;L=>upQ{~ z(Y6Bfm;4DlVpIi1y!`J41;7+HaT^9F*&$c(iZxTk%kOD)YvbZIN7%)GQm@W%eVYcZ zQCyiBD)TM+5J-gK97gSBa^aVyM8zI^BOno~&BkyxBAFq$sV}idXK#x*r??;~Kx+`hg3I^rMN5y@ z#HlRvFCge?30D?g5K&0uN?+R9-Ae0u?{Lr8aKsZuUD%TyO!s947PceciQ56!!5PWS7q(RO6Ja}ldBIeRQ)st{P2e6yZEFHd!c z=frBe_HVwI9XhEZb@DC(iT;T_R3_+K9($x7za#8K+2krz;WW+oy*C-`{CCW_Skz+M zX{?INXHvxM+`P)(AU@b8$S7R|8lU4v+HzO(aYSc0%S}8lOX+a}Ef580xMtuhjr1irXRh z05%?7jX(v}4f2weLQ*j1IcPcu+#BBs0wpm8SBH)w9igJS_5gHXNve+FAxfg&i7O5? zZa`wJcZS9W$1oKe#*F3&H%T1`XB7A77-_Dyeb>g@Yl-^30}B#QgOYxqGY9(b z<_UQnX@n$c^9W8lPBRL&G5WD@cJWSxYgb{ZzxtBj6Qqr+{RL9ePk<(bytlpMrco*v zO~zvp13E~7*^)xQJ*g3B#lh%7vcbtQa8czipYH)P-RyN465?p$`UPalx^0X!tB%vD zPsG#fdIgk~L82=e!FE7hk^18b9L6`62*loo;oHAXTtbWjA7k)L9PO~MkXC(@qjl0HrF zvTB4?`bIwd_ulIZfI$ZfMi?WDXWr<2=-hB|=Z~M|e z%fA6`yIx@VwXNK|l#d%)-f)0+(z&-@uwri9f^(s)Qddmr0RvCU3HGDSC>hxFmE6sK zuS^go{S7oO0_G1Y@zkf!bm!OyaWWvk8`Imv|lTV|iJt+WoT} zhQ@b_)dDfAvN>|Yh80BUekC-b7JBnwZ^mmWt}LkjB`c_z7(09-&^pc(Yci)Iq?oMv z@Er$b`mQBQjUsafw{l*$MzVM%&BVkr#BN@Z1P zY|cW;dYkfyWpyg**7TEk*Uiy)jBP0blUi7C;FnsDd;r(12&3|8l2h@FW~wv%9KnwM9|H?U0LLb z*QDYq?ZHNKu&q*aiH^hWSpS^D_|QL4M0|0;3DaO~%+g?S+{F}z(cpoR zyITqBscHg@$0W9Ke&C`v1gL!$FpNISDjPI#wEG(D=LhVN(Zp^8a_mCkY^~(((6JuZ zMPp(xq)oi0h8V~PAzCo~KO#3{Y#2A@6cr9A&C3|yvuP3PIKi!Sr@MvkV6SMQwk~fh zGTxsbgt~Vwp@=83no>f2h3@Q)SLTX4Ay`gxjHf z&pIY&!M1h3th1jdkYo5~WN3F!;E>s4Vy#PlnJAci!1JL2|| zndeV!e8TVYAl@hjbDQaoL0QLfjdzvf6*1#z9w)7r=h}u9x@5LF&Oekv`$L=l9AQy- zRaIP9$zDF?yUG9qWf{Y%0HcHSi*q88uF(iBBU`$yGDI5lCCFHYXLtE=8@F{?Gu*9@ z6Pf5lLEwRr9Y)9s^o>gAqJ<4>;u&R1-v}xZmNaBsF^RukqVrbKS~a_PM6U zgDZ3f_y`hGb{3&FO>%9wf)h+2dX$*Yr`*1(+;C4?8Y~v?57XJ@y zcGb=!P2RKyH{-?h;IpVvw=N`}Rxi1BuYy?Acka zL;0;+eo;+{l!f8OpwTOY2^N7A% zt`=j$Fg&z;)0od}m}%l1(Y$gJ9g&xd)hUWsy0-BsMp~++Lp?3}X9v`oCY?UALx{UHOW*wZ1ay1q66| zdA)kSuN{TI#Usx0l_)4EFbo>B6U{U~w1%f`_x8T{e|_w}IK+S5UGKu#`+NI--ZUQV zUOv?Ycv!;FLWwyt!X$p&Ki?86d_6qh9Na}5MSOo}6jqempz6e*sQ!Mu8jJzI>m@ips9y5q;OTWw>44=AUk-Khj3G zdp=eGlShffq=$d=6lTAUwcI~@|NXVCpKDqXw3yD{UQnToawJlFQsJgI)v1u_-9# zTT^tnR-W+~RBYrJo^glIgI@oSgW+v~kDG&|+1_sdwZD4$J%d0luFAf!_D~lf@NG!RL#~vory} zkJmQ?{qEP>4~0DckLQESyQ@5Zll{@zfcMuMny;t$-k#UnH^Myr&jkI~hcu0k1Lp46 z2LR9lRj7a$02d?w*E3*tJHY$>{bSqz<9|{|0%?qXz?22tGWve=LdZbG4D3lg#Sb)IGNA6i>Jw~Ds=Rb#8q$is zzqL+2WN8Foa(YdOFqS;2Y=NnC*iFzNt=8|PY18KJTZIn)@Xwod*#45wop=ih;9!`1 zto1KOh_`C%?Mt6m@SKAd$zGIKT_ECypp;TZQGS{nbh@yhMqxWvd**pjH|UyC zOH*u@xbzZrjszQMIj;`2e*)deZH5}uo~W5qPwazVJIHxIxfwgz0g?P~6unbiqfJCL zFP)4{8iAe$w|YIE_2rpkzY`uqT2FBPhnsGZm|1{T)XADr+4rE*Q3|wa7nsJC94P8a zFW*6T?W0LXHy3r|R5xWCM578t)Ot2#ndFC&8hS_Mwdj_=An$o-roa?gNNXIaXu{FTHbT z6-vs6JS1#s?9Sm0zJjS?Ph6V+#mWz5@E7ouPt?8)^>xg) zPGaBzwRvwnSqywOCYPjIi+C;O@W5t~yrHOpO-%gKTJQx%C+uh-yEYFZ*s?3$H6|YiGE`HAi6w77sdN(#+0lvGT2;u9sdi8apk$ zCZZk@uhohiaSd`@V(Q|qo@*z$;aB{%I|yPxLmon7t^=t~YpB-6i1~WDGq3Kl;dj-& z?_%%|%b#wZCji?*~$gKt@?mAoGwCWD;ocWz_g4|dn5?>KcCKwte% zwW*K(c`$i7RM>hrmTwC`NUzkfv%tes>u1At7X!a?!u>eeY+zBm#|$w++?(LUS1-z^ zj1%GL?Mse)dm4A^)=G4eM8F(_zw4ikwAZdfZfij_@B%K@w%zZwryXn>Q8hn3&9-uu zEk{62z`K6~zw3mx?9@Ir$mvntDTsq+DE{0xPy*GihH`R)9oijg^V>13ftXizkWqfc zD5KUA0A*ye_X>)-60HP{)Y4+U!l32rR-fR$nUQ8DG|D0C6Y|)BQsZjVODj~LnLt^q z7+|>O%|!jJ)Y`^=GUz`u%n_ml4MoS)=X`S02&y%Q*+`3r)uvx9{j(k?YXj;mJLnpT z5-O*mfLC|aOgAiJ72GNUEu<$wX-gy6z`X^025E0lo=ZW;k*;JRIGlmh{6y1w2*P z*Lr&DlI)<_JQfGLPY}&jTqq?OBbRK?ryl{;60FcL;7XEiNd2NR?4*=n(k1G;rTAgQ zt~;g;{_Kw%fNTMGr;35n%0q8oisq4ws3tRGwuhpD)D54e$aV}HbrlHkLDxaqv5}kl zw8qfGrw!5j-dx23V+FlU@e85&Ad;h#7)9^RM?xx{nBD5+CQ^IM1!f`*9E}WC-naGAXYzrVp3njzYq%i1B8h7BK^fkwE-gQ*00^UK&R2RISIY<7$I(BTc3fts~x zxo#_`+wV;o9gr<{NJS`$8g|oip{e?ReIeg#r}LzFJ;wl{BcwBHM3>lGWM9alBQO6* zABt-Xn+Cj~CcH8Rj4~11!192c$DpiS2ogcNCjH=#1?1%cH%M}Oq$U(a&6;UDn6qq> z;n=}k!CrqY;8qk2=A@0@U`@*21S(%c07L`Lw}ItNtk87K>^Kb7Gw_#$pE#-#)V~08 za>;llF{qMtZ|#4@xm{hTwJnRxXXxqtwMxGJ=WtQ=-H4{H`_v>&S0f=0DN2_ zqpKq&qZA8SM|dRJqZ}bCXQF1sXHbWb>iROf@529R9@`Kq6F-aeh(Yfd$dVl7+-P^_ znxoO>=A86x0*1NB*Kl`ab)aN43u1d)?Pa$!K*9ZJEsnFa|`_oZV}nb;_@g? znWsoIMcp5W{nLr6tVg|9_P#Mi_T+w42R)L)N#+`%QtsY_3Litj$UloLC^gvW1=lt> zW$~o=7yjIZh{eEQy;!hJ@GQO;M%!&Z!{MeKp*2L5S1YnpE6{|(evd)Mw2L9xhx=#I z!N}?a&?30m$y$siG@oGB7Jbn$#W{TXkW$VRvLf;C9YoZ(0_|F|3OlPqv9pX$UUAAr zS)+pFXcJ)#XkZb%X_L)GM#OW-+yaYFAiKaZ)-LwzvAh-{o@rbU-nY+jmyXyC*w0p& z7*-*5Y_5>}*OVlxzr*MxKw29|!RvYZ z7Lwm)3-1y!Pq4s@ET}ic{HE50>;NhJ-3;39G6j8urqglXM%%t_-6pg!%VUWi#@jiW$JzYp{;*u5HmRrM41*2BzCK!b21wNP#3J1atU7!UrmU}wqj8P)%K-+D|6acGza)ZM0El*AIZ zHt@QwG6fQvw$e7cjb%QsiFNr$-0LE`MddWuzsR0e${tsmXXj)epgSCe2j%XW*mIcN|s?AYD5WUF7O-? zZVV4M;r?0HKc~eYlT{5UcBOPq3A8)wDlLdBS)m?(a9Ku|N%`o{x0<89QSIw>GIh-e zwvjF(PpssV%>}fN3Pa7ON0h#sVW{C-LM-jHhOSt>a6z%4T=Q8-EqEu=L9#l_aF~(x zVwm>Y1W@$K*m5oaP>sf18sEh!kFar5B2%0Kq2lVNL+~$txe&z)94NJrN9x}$=yqCi zUy^6sWj7v9RjPw$kHU_uXra^UD6$dbCW&WU1r zroDiJd+q2>h_@n{H7m3Z3muszZ{WxVb(6{>;2sD{9K`UzEqsfm>jOP3+Ysb}BMDx`~ zLzgwExFP;k98zF)d z2%EpOwbqXI(RFOnf4eUC$A*?}f*AR)WPcO8Iijqo6i?Ik=@A19Em8|)|F9IDYN>&; z8kFE)jJ^Gom&?>$oSmML89b3QZKo_4&lw#)MaT=*K>uz;GyBUn~ za7>&vs(F6dB4nlyaO+u6&l;jsZ3LhsFVi`m$`F=^w2U@Mz6@UoxHqN&#D> zUE%OIq!uN?!#;T>vSHf540)?_Z81lcy5Y5Pc~u?v-0@wpdrkr02eg*8qV|62^|j$> zH4wIke-M1u1?Ioe^;J=IG{M%m26uNm95lGQyF+kyhv30Iz`;UrcL?t8lHl$KcXtx_ z&v&2xweGr)GY>P}HC=n}s-CJI&2-}R?Ml*{JI78JH!~kAR{}#{iufF66l(RUiv?3c zS*k9Jb<}`%AtvP08SneT3;nB}v-oPmM|4Y_gXh~H>PF}xPg#^K>ws0*Fh{H--seEq z9et~8DJZjjMzq!2t6Rcc8$|W7Q|kCr3-W)qbgrt-TDIECK4%O*h=(~8LU_(`N1joZ zjko2_U;j=&oc0L1y@$ajzEU?UoZtXvtCtd4)9=EQ%V`=YiN9~OQ1X~l0e+3W)SW)l ze@|_fW$LTRW)}an?fS;io1{B=X>1LC+$mqj)WfONpi0TKgS{LN!HKLVvHfuHO!=2- zPtso#)J4ufi^tnfB89C{%h{7`dPN($3a9 z%bzCzRYRsK!DZu%;Hrf@0v0TR*Y|^$pT23b52c|p@*Z>?p+KdTvi$zn@sKdzbgv(Z zCC^(OtBX5=ywM5f+jH+WEgcLT{#Vw6ar&PWqj+P!XLOrQD^6o;2tjYO#=&`p|Dk2C zG4wkm8yY$LY`!N{wvv{goo0jkIGZ@4jzjuOjG0j$DN6e_eiWrx*TeS<1gx~KrP-tQJcXvKdz`j0?So3`Lkq=#mFuWH||sXzEMAVD?{%O zk0}B$fX{bikR`8sXtFF&BUz11)D{VCb6*bpp`bV@E7(mOk?5_JE&R3&loBP&3%44h zN12%S#H9{FYq_3%@AG6JvEdN(Ia=5SLA}WgkA(%m=U}@&)0(N%<2kJjXmZN2cQvF*y07#ybub(b=a)TMf|jb8j#DPHWi;rfBa!T-Y+NE zZBWZTmmm@b@)p=)?8weW`*Orc0q)~n8Ib!J>029i>)u(KQR5H@)s9bP7rM5MUd$bo z%W2|hFc7Pj%TYT{_&mY`t3xX*FxR>efP^|H!6kh(Wc_>${ywKTbm-%EW;cfnH6V+K zDI!qTbWoIId;+N|l64riS9nEUe+m*P1!>B!^#2LrZrjJxUEo@B@r1K~7ITL|m3Ga; zuXy%JI_v`}1pEe8YCx^X@REAvq%jF%F#P?-iH-YNoCS$_g2b0Yr$<=n-Zug3-%zP2 zzb-2o{j40kQj=Z-p^G&@FW%cPMdg05o3`lB8hV>;K}@n`FU$C_KHvaO0(I)F`As~E9CpY~R^8A%Gx3ofdS}RRGNn*YeD0Hb!!4oWxtE_tZi+g&!lPGX8 ztWFUs0}I!w6oEO~s#4g`)W9{g4%fL}DzC4G?m8U(qR?@HMZ3lOC=#d@@^DH6Hym~Q z>(#F%$Gaz?5evu>Dfd%~zGPozwT5?rUkyB5=R&!RSghpzg0tzFZFs;?nz{)_I*7k+ zIbnY+sxV0EzZd`&1fg|q>E5=R8xZQ|R4A@6`5InRVaGJgu?_BEm@i0>wqiAdz%*{G z2)Z#ah2c zARmuud*ONv>Yh+2l=BfC#Ob^voW|Q=n!P6bbf=wgVFX{zllUjpvrlfvEny&(gM#TW zpMLXJ!Q`X=L#zS14L6mdf~d%4lVnS%^e#?P#oielp27o76>(DfwZH?Bc5fGaAXkJN zL!X_)v|kKw0K!%|wFP}@0Fz$2%O6b`hcyP77Q@S4yX`h~oGcQDfzUIC9%Y(aG8dK0 z(8>mzNAUAm*$BKZc+C-ME-?D!1gM_-oUI8^&5CJshvnp{!sDCTBj|&R$A4#g&yiou z9w0|-wN0ls74YKslnIxl>u7*-Izw5wA~haop(_i`(_RKQ7e` z0)F!B!>153X1?uunzutr_I8ypilIqoln4!ZL^RDWCe>{)W>-g_ZP?c3P)o+4g0@PnpYX0l{BHA4b4=#djdET(^lNHR7VIM$KnYLawVv~*Sw9@9P43zxK;TOQ9 zHG4aW^5_MMO-vR>dMUSq-`PUq`%ATFsY5IRNF9)ck#!^#{At@8qq=V{X}Q~VTTe|J zaDVMud5mjmf-5nJpW-TP;8Un(1XIdseLbu4O9os-cCkGFU|XgswEsyHNV=5m6?JB( zs|zj)wAfD|nDQ>D1EyiQ&$TWU?W0SG*lU2p6M61}Pn}=NaZo5?%umjDgmC$1bC4Qd zu$PM9_5Wv@cXCrd)xsk2SHmyucVjrKWl>e1k7LQSZ*fJ|P8Jyhnu@MxS)J}ff0*A_ z=BNZy8?n$HMtfHHz&$wKR|bYX$ay7JV|YPv9`Fi$t{9-GpS8vXMBNyhtjB75xGs7B z)Zmk=$?yR1O=GpjbTU}|u7>?wG6jJAzB8xy1~%rVAjL_c>eng-AyVqJJHiK|LP)-*l8SaMqgT5ktO z>(MQt3#!Rsc)jmr$3|l}MoBH0zT;!*WAN;jnX%vAdntfS6q2fyX03|fkcU|OQxHNw zquZv%n2Y-a-=|@k?eu6q7G>{heO0%^r|j}F`ekI5WnjE^GQT-+ zpg?M@azNaV_;mQDkNJqE-q)1l&Ye;$vAW>vATGBAclwkIVsFR_Y2@Mo3!1*r<>!ky?NNrpifTonT+%LIJ6_^1?b0ir$> zSRXqE!>ZC!he<`jz@8K>R%hy2LZP^>FFtnLa*xO#q0Yop5u>8*AVv9B8L6({%kmq$ z2Q(Zw$#tt06Y;_?W@E>kAzr8h>-HT4aS+{N@Ur0q{!`Ghg>~H^o~9PoK%y*parD0li|-9)ark07MRd{zFqqRl(0^lu=nTSvn7B{;N3lNG^^q{;1?Mc# zT~~i=NToE5?a3#?3zhbDdOfv`RVh@GU_zLALTgoteKaFcg}RWKM)suCP+~I+!A0;$ z6mC=ADoc)0iQaz0R?o*WRWg&oiQWRv9Qsfv>3g<~o*nu_vTq1u6T(hAlT_#KNvR&p z%pwEj8Ht>(>0+)w(lAN6W%`Z2Ngye=Q7)4i63lCOVb;W6%;TG=);CMtVu~D`GX3f{2v8A+?&}R=my>2 zZxZV9Xg`YcjLHpe)Tx(Th3y$pH%O4f15Om_1!{F0$?+7Z1o4=XDXS?eHr(v>@93^) zBWDh;*N5<*kD(R7s;OyQ?DEtF&|{%ZkQl<0pNM@<<<}6B%-SsYv>Af*f<~dFg_y4i zFEoQV_d@x47bNV-0?iBeR+B`xr|z-=$tF|7#@rP;Er%pgG0889)3S~GBn7(_B>E)YU%)OWTFCm6`1U~m27ISJX0s#) z!4`D}+=h9*$n>%TX@T#2F~43gpO3|K#Q6j6p$-g9!_(XY5-}(Q*3fr8Kihumg}hBx z@bwb}kC-p`Q}JjQll;sMlM)}%i2df^1wHF$`NLWR6)O~0NI5n3PH<$_@&$#&67Ok5 z>nLo*u~pYxEUy{~UCQW^x5Cr#Z37KZs_&ufXr*X1f{doVdvJa^FM{>yp}n|QNH#4Y zBNOQD38S+sGr44xV`VCkm5D#Mz*}pCNUw@0jS{Jt`WvYAD-WYIm9!-O{i2aM$hU|7 z>KaTco8-f)aRfSpq3s_iDN^Y{Az&HHWObc|wJa-K$kN{-ZH@_b(%~DKg%&!30FzCt zX%ShEj(j)qCPcpS7Ai)SYaQ>yab`{sdxDGqK`Ug3`w|ed^8M9nv1sQ7s3`Q2x@*v! z;Ha#*3To8|m}%CWQ|+Lx$ji#gEi4T9HBqi_9S9jhsb~l!p9Se9-zzj>5oLQqP4nB8 zwf>YwyznFU(X$;oCGC@5ijU26v_d8NShY7U-fnqt8lmI6&219v z@H;WcAe1#2Z;Qv?n;WUk}~V1a2dKyy(dmGPP*TnX;|h2Cx|qi;t6q zlP(kwTr?kF8l>QwT^zPeuG3Dkpjo>ws!t>LgnUJ&apEkx_)-hC8$DTZ=mT9mSd`+G z2M8{!FM12SjZqdDRpy(HXg|r2?GR{#_6<+j7?D31)BL2ecJ(7n(Q>nNlV;(EGwr}e znl}&DW47Xj?S(6I1HX2u5+gJAN#V~Ze_=khOnkvI>IPp=$}^cAUT(4EtvO?HU+6(a z_(qT$p`Dwhe5RHP?$_s&+}~G1?B=qq)Mu23-Fd8r`+A5sRr2O>z4Pv~y9!yK|5%5U z^100X{$|)rs_$~+o*L4qq|!6~>v(a8)JJ7q(UnJJ4pp2#ZN6VlBPqmgY$|kt7uR;Z z*$_H)^1?NM{~08Mnq7uK8Q=*efBi*fsrcJjS!>lSOjsgoP<05z1&p4@eqv~REdutJ zcE0-2=oIC!jS`Rd!$b@5(iDyvW@~V0Xdo6CH}gj*IM>B{<0>u#v~u$Q7O^0oNo&V% znwt)S_0ZbEd9WwT(33L*DM4mD*td;_Us+CG5lA;0cl087kM?P}UJo>4n;Cjx6xTZTj3cc)df_gquxt-BgnisGhj8g0(i}hT0WrD&loH zW?;(%+oZ>!nMr4dMV2E(KeY~5F=}QFmn#^u&km;4(C)9u&Nb2|gy9(P6o!4Bk{0Zi zFBdS~LuOyfhesfoE%u}+yNGBgsD2e_vpq`T++P6HrVTt;?T+FC|DuKY-~omWvl4C~)4D84~5)Q5;yZ@rU1JF5iR{?MTZpO2RM7kWof^Vi{({&1V*D+iv@cOd^em*{_amV_! zO+)9&1~C#gQM-31R9KF37-&waLqj9IRQjF+D(Un1Yo1IF6;rx#XbnC-O~Z{@Ik-KJ za6?3PWAPb!xKwdhF00@A;^aGaxTqC-UhaAH|2~v+IX4|d3t7>8LJq@?lJ}IH?RZHV zor12pAIjo1*pY{&DUrE#(eOb|J=OH3=`53iU!vlmtBPfpHM{bt^(tvfJOBFF=vL6( z;m?ROVUr}AvL!IX{Z5bm8yEH3rNod)ode9a zh5z+Ei^wTg)lkMsV>Mv*UVQ63Qdf_dPN<-UwF2p`Y=*@Wr779h1$Zh@A^GN}l9wuq zsWitYPm$Zw`KS%S(rS-;lO#~)YpG6pbdncD4`au++2_jR=+a_M3*h2KVo^V92QKf{0ab z7_6W~#9b&sh>AI&*RkSgO~<(lBNMK^d>zid^ey#`h2(n`&OLKSTRa^alZG_%*`I3-Q1_N*-Ej zLb?n$SuMG^O{w2d1#2WPTFyLV3Cx>p4y|wn{pZ9z6!!=i`(+tQN(0zuO>ss}pqoss zVj+d?MXyRb{91%d$&43+)xgU1iq58|0taI5=a=A1#YJs!QuKhLLe-|nHjU27mcZva z7sp3c8#C8UVlvjU#3Ep)j_ZhIuylK;G5Qk1F~^kEH8U&wixrVbV-F>hM_(M@di@|R zY7!-RkMBT+^^u2?!$HyZ*c@7dpn9hz_?UEasjEz}V~;OivFGiX$LKHoxTR++h5YGF z$TM2ykJFxevLxGq6LT9@r{6&Y>O4~D#W!M&Jzh{HwA9jMw<4)b^52?xJ}UCnIP1Q8 zj$C?j5Us`nccEo0>vPSV7_Mg1PW~r-kYn*BCqhVl+OmCDZ9`-+=ALsS zDDm^l@p#aa5R$_T-Q0=@XZL&p{FJ0IZ~jq-maF%bBM;Y?UJV1O10b82HU^n9wxS2=qB{rv0&sJz~!(%yg3@9*EH z4@6d}v)OKZ`BZ>PM%k3;F2i<&|B`ZwVs!tVI>h)rKMtPJvtRL~*e@LWyJONQR)b#N zhtEUw9RYHjK*WygVDAI3j)n1G-h8d<&#`EQkup81Q=HTqj@&egV=slBV4&jIfCcjG z>z_xGcj@}j(qU_5Y9KnL7O4Br!Bqxe_eEMuJ@GmmFy$oW#HBThEZvx-U@D2*u7%xw z&F8N7S9txqLsnEAJhdyOF!LKC7M==e?AWerIFL4|Rn&sClAAWyL<;{5Ysm<@+(1x? zr3eovM-54$!lJZ6#-aBd{nPF1SPbkcU-PB4E9uu`MF4ualrCXYG$p!eV9;=a8^oe- z5Q~cbXHmQOu|gc41~snyO}$sQwnIifR-6XDq)r<3^h88C8%Cqw3y#Ruj8zc|!_ZPH zJXB!O1h1OsKrHeF{xXxW=C%C_su}4_PEN#sp2tGW z(`-0FBn_8?CUzeS%NQk;)f>d?p4Jt;M}Q?mHh?q0_p3gUhq1JC@hgMMFW+E*7NBjW zQ#nqI5Ycn`7yiJpE0xk|;9e5(>fFRXlo}j3Ga<3OvaU_T?+QHhXBup^XiA57=a^NY%(Pg&b!99|UUiz%|dg$nzxg z-YGm;XUC$za&x1Zk?Z|gWhp7(0X->Ga>N%{QoeESRqrZERV(aPHtN`pFa{|%5t=<^2ZkkXno*Jsq^tpiIbIk_L!KG5|7}_8d6*YgC_?+Ug5lQ zTU7~7kckw*1ET8jZnn%E3AB;tL`&o~Lotui@6d&)hlO#NO)H@{CSOk+f-e1Ju9F=k zlsAw}{Z2U0J8X+Xf9Nc3%)GmQ0%@mcMLkxaCTJ0vgu87=EWxx`h^jVdT{$FGFRAmL zd7>5=^E z3g~fl$<}-cwjMZBqX9y@p6d&Jl99By!%I9sgV#Tj*iHpIJ?bnJ)rkg#gf7w3@3ppaPjhEog*5bBp4|co-y3bD^XIM|N7|g=-IsMrWJ-N{rhAOBz6eVuP91TU7g{z(kopFotf4ECPGJ%dpA0g0C zIfExP$COc_>FO&ha*uki=flk62rF$N)ZeSfejpucQ%x#=u-qq(&k+Qn!tEZ^j#q9_ zAj0hiH%5-#JE`#c9<>sFH5PBKSoFJaBenfoDtkUsL*|+-EMeeSi<%BJ916+9iYpaK z9wRz86oe@$@9V%|v_)zaRVfUwNENtYUnL*Ako;p@Ny1mFYdieL}9}lYF?Q9m8^dGQ^tirt)9UC~O z;&Ypyq}O;f1B;{Cr*NuChj~dG(=ybd8dj6$ zO%Lu_%x&F0(8Q4Tpr+obL4&Cq?mGshN796kP}KEk>TW6)w%=}3Z=vCSXETWZ9RTb? z#iut$$HI2R`C#FZu|ml+)Ln%W;(n8_t&V5hg(A=6Fp5DLz_d%3&dsZ(%F&XdGn5o4 z2|%O}7vxlL3Xi{U;M#_UP{u@+jFym?GscdTBR^)$9X7G;SWH;U4A|^^#!SMW-_>>g zPP3A4nM01nl95Dt<+yLk5S`8RGo^OiA#;8VtbRM}j8qh=Sj&NYV~!REUkPxD8J*Iy z-gtvUAAMu}fdA4d*HcpuSLG!El^z#^pwd-q4)+Z2Y%7znwVE0O6KyyWyPfn$HjngB z{zYX*)}=OVPCgVb&5V6`Yf||>L>f1vd1*{Tj_>7q`JEw* zaI>>87^)GC?6X_ha#Cq^c*02L;D<$?af?uhcHjd-!~<}G1j{^Ei4YLt@!)=lIqkNjE$XWikB!JKww1#U& z#0l>J0nGM^bno;XOXTC-r2T95tTmD1Nxz+)(xYLcRhmiK$){+imqI$sIc^oB19uZx#FcfUg32c;UXH>v6;v5)G(_xRnLmp5Z2otqaJ4*BWn zYWLhGbvn!xA*&+PBV&+j@>@&=Y6LtcV$&^2LEM9V0je=Z4RfmP>OU;mD0K28pEq_} zlRP}5p}V-_LUQoML8Cw`$h6H!#CJl5;1#R}=NJXHF!dhXmc6gT>Yun2Cm_@IDZXMN zi54$XwC&SR;Cx3X_jI%SGLP|PHi8Y~gnC-_K$^kI7i=7>{I$et1Tcq8qRmH-*nVh= zXIF#d54s~kX)tI}8y*M)d_G|Fo8Uu%R%PX*O3~g|+fQX7AidnxQ|hdkX@a4F$6W~Qn#xH^ZG{o;2$Kl^ewI+`h@*fm=l#SLFKF5uQI-Xhi`V=7w50h>O z575m{zYj)}Lja2%D=FK*&CGCClC(FP{1h{HEar~*qzq$Ustk7^$)iv!GEBu>-G1oL zS202eUS=GCzq6;VGM%R^4hnfB8^dCX*F#CG8M^w&5#Icz9w?Xfksv(cp@t)Qh%=Z) zCebhNQ=CWe*WIU~p7w60JX0~bkA;uMqlTllO}}7oQiqRl95aVT(f{uO_-_BG8_E@Z zB=C=TBb`X9R92BBS0u<2?up14Ne^b~2z()&Y49IK-t1Z%Qp#_reeZo`X2EvIkBdMw zGE_eHA&WVKSfV5Rfm61A1>B~TUdAY043akJ<0D161F{5RNdsqEf{vkLO(y9D9+RNr zp9NQ%5#@nmR59}FeR4z!#$jt*tS=CGyD-G;?KgOc~+vEC)FgR&{9X`L#n%D~3;k2K!xfFj71}TXL5z zd}(m3pP1&7A-QhefntB3<9T|a5eMgHyzp7oRpdR|!zA`y&X&07wz#7*Yzs({qvqKL zj1>*4F4H`ojLm06!l*wa2j7*_*9KVz1@-x?MRMr-WrmI|t8NEm@UEV(u5)4zZMR@6 z#~?s=T>Li$*PjHZ=2}@>o2NEKmePHMA1zY?ivYE$f;t^6K`@u3&w3}R^Siyo$IBH?QCW(3zpYN3BWqeoLGu3Jfm|61 zI3mN8k0Db1YQ8k{9ST+jdiMmV`mXvb?TTCJky|l9OPohH#4BClEYijH(lR0_p0m~dLu8`z^< zDkk>=ueNYtABk?FcBXVdUo`D0N$yyz2c^Zpaq4&WBFEN)O4r9bk1-jVTL>~&d*XT4 zUmq))Who1^M77Dfx1ot~)xygG9rmbNuwBBRJmsJ45Ix7A9Jfp3I^(lg03l2hnmiq2 z+IC!78Zuoo{}zbnN4H>WHu8BPD^sPSSmj#Dgh>BeW*Y1OU-0rNeyYU)sZaY0{wX9< z`T)(H$owltCLcrf&56^XijY|cj&HE509`CKn;Jh?LBvC8XuOEod{a_5GnRpXsBbW7 z`#&XL{%g0*%_*PKw9C#iX!bz2k-W_dG$3fr)g+>a?IC{QMQUNGbZre0u+m$p9^EyxaE5@d|qGs9}^JtL&ocTR4&vpbWK zTKOZ$0;KWW-l;3gHGL%Tj`*=VT#DHM(hTKYk~q#%X8%(B2M(yMR<7~&>nTZ4Q)MB| z%1upA;y{MLlB9C7)xj{vbE)-@1aA$ufPQH01qPvlSTE8r92i``81w=Z#Ic#`5Nyg< zn2Hpzustu3`-*{on@RI;2^$=Tgtz|`P9XK=Dt zQTF^PgX!05L;%AO%^{&>0E&_-<`@+%zNLdVQ0Ns^j>>f|lawT?@PW6TjzhXY&xh9; zu{=G2FK~8F-R4?Ku6lHZW)w}^Q$knheA3_&oy=SU;#K_ z1w%Qvs(vyvxCbES{MsqOFF^F2xgI^bFn0%8y}C0x(n6ar zGmN8X1BI|*+_kdhQ2a<3+Lgc40PxA5fbF;+RN5OQ^=~hs#Vz?u`aR=DzX5{c4(j7L zJe4~Z>Sz*l$&S<%*vB}C?!Oc*EBSofk?HM8nCX`($M7o=wlrVR7a2&8ubh#DN+&`D z&uV2h(R2qcbN5WK|1`|Ypz27XpN%#k5>bzdAIR||9yhOu`bB$*gO!PNZYLgKE$d4< zfKTURDvBR(n1j?ld#8H8l;@;NLU_grGPaEQF4Hv~jU(n^9~PyWsHwAACghtKWgdsX zqcSR4u=+NCDIsBoR6(eO>uGoz;pLi#8DdMLyx+q&^o ziw4rRhL=-C(=Au4&3_pgJ?X%u8>PpLBEOYI+ExX18|QRUNRG=!lMOhiU^5n~{Ufk) z0}gcQye}^M`EW@{i=Pmj)Gq`(xlj`aTm^*Qm3rvqoprR*4}%&N^Dy+ z1jxN0K>i@YB+_hIkIpEIq97bgjL(9^^$o#HWDbHIBxsYaRB>ATW8*tzNxdR^lKA=0 z&N}Plig7*xSo+lrdV#D4!wI|GEpf68j^?3ErT8-Ngz8kKPN~%Qb(HJaX5>1-yI_yL zU*{I|X#BH28&FbZdcnMx3y%p39Y?JBvOOP{Eg5Z!x7XLOR#^~LApzFU2IA z5Iai#XGd=G=r}K_gCVL^l-8E?LzV)nTX?N{5F4aY{S>w|aHKou1mz$7oaeEtDNwIh zD@r}NwWTtS_*&nMt1{S^Nbm++gG)*4CEXHj%fW1(vjh!Tl{%~tK9%dovQEyyR7JYL z=IRrJ=$h68-BQjGh7`z&HGp~x@Pr*35X(T2~b>s@FZ;mMw=p$2Gk> z)D}{h&#Zp2(oF}mqT5JSda?p@WdA6Rxrcc&96 z2X0UrB}P(leF?2t3hGAzFAGYsSnZ-rOoRZ4ikWe(?CPtvw+?Mol@S4w;Z+8C&VlPx z5~=$M0FYC`sRfA2p2eS(ys2hL-F}$Zov9`_Cz!#1aGUx{wai?#9-b}4L)G;nz%#$4 z2P%ml;`g0wj!@0Dj|6&qV za=R^Nlv+*&%BQI|ocg_o6|Ts$B1$=OXr@k3gM3FU&ioC)uP5n=2ZgsaW9xA2m0+m> z-AILh-zzW8mOJV642*~5cKO0mSmnE^-5POmnbFnG={D^uO$;=w^0j36U}H>3qN6-bw2v zzB2mGDqoM4(0X*^V!qAMNA!_HQ~ywtEik{KLW`W|E(oYk^ElU=Cy>u7e4wY{mZNwL zh(YeYTqdWOi#bOsaqyJRPw1dr3DB<4xSDGbE2(q0=ajcBaIS2^83rE3i@a^5g&rUc^S)lE3>Awvs$g8oRAQ$E zGcludD#X}Bg;y#Rify3bmP;!Z^%-*=m2Y)?Fz&p(7^ggmHHt7>Xt4JTYL`q!z0rtm z3t5q*{1fh3RlLJPY{ULxqSav#;Y>6)!uLSKv?!))l_2dx8e_{*svNPdB0a9?$WX&n zIAtDfsCo}t3+saPXawtEAULTf5O=FhMX@p!VKQJ($h`zOCw}3)zBhs<_p!fA%N@eF zTs-s>-Nv*YX1vw_33ZYtLRvIW@u%BGk>}?^)n!kzihM)`9;1|zV7np3wQmU|j0N!Y zD@ef=i6rcV2JSCNMgS0Z6(1bCPQC=y(vpe*oFY!Sk_iA&@{kB{A|O{EKXBF^B>c(t zHT1L5Cf0SbMBI&&=Pv?1;M3WlrwS$F*QxVt9#&gJi4`_G7g(SUB~uov8P@8AX$7q# z0{-NJhTdr~7XG50_$Ei|P|2J{=b8JW?3v*Y<|R1yrAlzY{;kxT*suzy_$Z=0I?t+H zPluq7I?1Z@}Q}z zjD0AFQm^LzA~21OZ=L}T@~IVjl12xS3R+-&s_bdh)*iI8WH3N#Hl`WJDQ(atDFr= zTAOHXFTr?fL>`OZ#)I7?V3}bFnK4bcIO9$aGn(m7_nxwpH5G&I4 zJx6Mq`RQ)db7V1Q&S9mS^_4Tx0yO&7$Yxm?_h++0vM3vhnpG%Kqk}2H-)faAmpzxD zR#D+FVMl*ne>;IngVxXo`zqgD6k&H_3u>GgBR8|T36&4}$>?^CC2R?VSdLebpxvOY z$-4gjtx#Xz@w;js-BNd^DL49`Rh^a&A8cGn!p7&*a|K)Z;bBhqeJ_?=K5S5=%K9um z11D0KQ)1PtdL#z$*n0dH3=|)KQ`s?k``%w${=Q)MptPPg#|;RB7qdR8agZB+Bo!Iv zUbh0x;bRFRO#QyuKJPo1_TFDY)^Z1RP!usm(?N?i0#qpXb)Et<)%juL+Ds7Q4#M|I z!nG5O++fRxuXsOER=^U|@_jNpEEXsD<~O%Otn5bJErdHfk;0tw1m&wKEQZ(r8*=$2 zV6wO=bOKXUzL@`a7P0zqutn3gHeNpkpkLdL+T(>pP>{ zQP+iVPwoGjz+=O+iOhsVaNP}{{IlD73niNPb{ z!jY@)+SM_m(RpV-h~%S{l;i^!Xs>tuG}LEP z1-A)tlLZ;uK@X?qFM0+49yRlp4j8q@5RXpLgjG*Clrtuo0p)ylqAw&4hYLh%Sc<>Z zD$d;y@FvCFte@zI-POzn3h-Nb`N<&ZZIHq8Pe7M1*YE@my#nn(*67-7PAoZ&pg5~8;lGGEY5)e&@r5n8T-GQtGV=WKKNEEPRio>ce1u%=wxd2iF%s=++dIq^^ z88Gp}T9zpcWo3XdqW-80d z3hQ2DRt$ShxV{JI>KZf0rT<2xET_CC0RRaYEdHKbL#8hx=DYNSIQwNBSo4Znmf{Xo z%wt~AwLwsY;+qXb2=N(e8ez0LTP%t|<`Oh|9ZP}?kK1r$WceY0eux~+LGj>_0xXW~ zN-4+Boq9=&>bue*uj%BIdk+a!0JBrZj?G~$Sv!hL>RvLv7#|4Sz3t~a0EbZZ8KXK1 zcSerzYVG-Tu5YNm*-q(sp(6MAh~+m0j}-2Z$U)nBm^vaCdmUM7k)_4X7BfBFdPw(J zzFWQ-JPKNezuO2nnIJur^X1(sI5LOIc7^OYo(`*bQb+k9a7<_~!^^30Oz}dzJ^<$% zH|}>Xer$?oQqnE#vs39vF^YV>km1yFt<(;BnvB26=&1rhY9O^N3j=AXYfd%5O&0WU z!=UHt0<^N`4)rNzEXRIb=8tzbqqbdg7)Bk+{5r%Gg%CSFu zl~RUt{z4xJk-b8Q?1d^H&S^A#0h)&K7_nm8@Qd^XGJ{R#u2dv12BS{CSV3Dd5c%sU zQ_-S@d5KZvyY_rW^o~^q-|kTw_80R!?BkREa#$I5&*=m?@(Qf`RfPczM;?{^6Fl_l zp@%zc!c>8wfY@$;H!hHa*nHS1k_U6%HhRsAC*9mO2a6}0MwZL zdTI1j^M06%gTz>lI0|D5=H$8<@mD+l#3ni3Zl^|{aW(_%fPg!R?nd{Jse#C)T;Tt- z?k+4=wmjLipMBPC_3S;5%dD1vY^w~sCHu+{T?PL~Li7BSE)|&-cIq54^K5E?)snAT zr1)Z~rZU+t| z*bu-lDbfDu=*DR%*8hPk1i;vxI9R^wJ3K?Z~2W5Ejj5&RMtx7q6AFt5qcC{aa z&<9rhNoQ5O<%BX9WvlS+Nu@6F>( zpND!e1`H+7FNld2GcTe_0I$46T?E*{xNBdW7+X`lnAa_l!Vu zzmY3ahP)9#1>J1t^ zWtL*TfOlFeZ(pSXVSt6c5QcjH(`U}Vdq%s@-84n49f1?WDPxLzj{l=V-i;a-7B=44`4~7wEJ0WN6ve$JUhNGloDbnaZ(I-|uS_pha zwCVKjvB+O=9*fa!^Ib}Krd|HT896Kif@aoWG&Z=RegUyF) z!u86Su=}zFvea2*3OpcV6bcyFCf&6y9=7$ifg6b?$Ng zwn^G^*&{0KzY^5%0e2yI-m|rQmGCATbPFR|_Rl=xy|6)F$4zi(F$&7L0K$~JF;pezaRZu9kz z#u}w8U^*zM`9!Gyvu76X{~QQv^d)7ZttLoR`$$yjk7j_z`qIDM28IJ2#iG?%KaEwx zTn2A{;k5d7o6@hmStj2^)ViSZi~p!&uiF)hqfkJFQjP_^MSTnO?Rb5;|9k86{(32} zNw=(9_KRYQf};2R`SSJGH=-Vg+F!=37$%}3LOH#;TSgy#e(mprf4+SzubWIwe+0Y) z2pHA&fzKv8&!&G&w(|Zm=?!=ec)h)D5d0<>C_PzrclRR-_5JD&($}g-IFDQ;lP%EK zFNaS4;dOFwZ~5%!VAjz`_~;AdAW)35!Iwc*6BQG-&nZXq^Mmkv-(LPcUmUz1UX02% z&7v9!=ZSQ82Icj%yG)!d^SUT6fAbgmcRTPN=*9o-4RV%fiJ-7>NLx?O>(k5MgD4CP z)iR3XfA7!NXD?-_fvC6bJ%vy2qc49|Uw1C|I?v$9da`p>C~V<$F`mzk=6~BmRsHzj zmh2Oq{pYYP`q4@h>aa*eQp<_QH_|--x(5Fpk zqbpG4!yP_j=4!GP5k@#LtfxOuWOIIW0gM-^#P>HqlfcE~BmT!fQ~8dJVkNq9D*6f! z`8l>E%Vf)F`3a5WcnDz!Dwq+z_nuP5PK) z8k2L2!bB^IpUES$AWTQ!14PO;Ni+Pd{IbLt!9ecS=H`zEqJLbxVZFL>TF5tJ{MBA6 z05axH|5v@9O!F;%6k_8lV*jn^`Y3|DQ4!v|dPG;WVbJHXunyGr{^RsW6^hA%GL)Ao z(9Fubl-bgq&L?AT)mnZe5meZ0*(Wqxf?5?J0})Veg+Qx-i7*4>vv0f=OZ3d zU80+RYpZ(CDs^2A9I2axn^d9^6VgR2qc^B${Qj-u7yE&Zq<{eS>-!pN8In(WFmGO! zu1=%mk=<{>)^XO!vqG;#Vpq0u0?WQN-H7~7H5Va$azj*V2h)F!(GjK1@cwdpCo1i4 zQz?WijGlI3Y6c~#-TB7Jv1iwZ7nNEKM*2%uyA)OhDHmai(r9~(ks!!nH3{rSx&7N& z(BM*?B_7LB`@rHOv-TJc8^9bQr`ta>!Vtzk!xJ!`}?xE!fI`6l1s5D3q*mBhRPF zfVoyh+A4=Ws~sca_|MQX;l-|XX`!@^1>|+uvdT%zci+*<0F;p{d~~yDQAUl`Bmo*} z2uodnRO=(5_Lokr&^#apEAHYSkQYrT850f)INfqrqLUJ*J9#BbE_s6knQo3|G?;ku zld-#|dA8s9LHMIKsG`F3b`bSf5|d$KZlugOj06)+>}$FuZehPF@73A1B-~wS;nJ2_ z9)gBm+Cr2HmyUinb4mjv4#9)`X;^+_d1a+aWY9{lz+JJkgHFVe~#cI}4B|9|asY)sJNsNfppjrXkJf8oc{w z9qX9+Lqc_Q+Xetrr6JqVC^tSrKvNHqB1$^6NIaz5;HzkF@5S~9I$;k{!+shp_OH!D zCu1w^B`&Kk6(K4u1n9+&+K!ZUgGrnqzF0iC!CCnG{u#}K`+X9rbSbwhL5t4(|>upQw~$( z3-dknRivZ?GWCRjJNZQHhOO>BE&+qP}nn%K6DiIa(~yZ>_@@4YYkY36PevVp$PP1x%)GWX6l7qfK;a zPcU*xQ~_O9A|-RGs+0Tc3f;4K*Vpj6nri^vT$A)z9G*3T-e~*qz+uu|P0J)>eX61$ zFx0Dd;(mV>ty6pzahjT{WEh$*t*kXhAl;6cOTC!ZThX|iB)a_sONFgnzICd(s|H_T zk_|BkhwHeMiIP3{F{&F{+meS+^Mgj=oI!Ds&B_Rw+q9OT;>I8mJc4a?P9BJkTiG<{@3I?UAOZB;R)H!tLy09du5esnbK zhuwi)CIc;WIY1M&>%-w7P0zh^Ng4yuh{zfH;@K-KRjs3=r@-4~=P}`l`i^t4Hw@$9 z9n+)B*Y@LTe&BG8UzuvDkRVkbtltuX-*$`)1^)WCKg%R&PQH39zCkr0mj($b3I8;whVeLNkoBv1{mV-mlD-4%na`=KJk=7lZuH4sIFX^Yk*{t76Rpi zMPTg6jviqg)quVcd`u@I{pkLwRbVU6h<3-uh`U{WAkD-FV?R(;=N^*o(W#$Eb%U$% zg)c8Fe50qor=z{-{;egmO0^FdMqUJpWwB+}iE9ER+LJy6fS4N^FE@jvHqX`~WaN^J zABl7HQNS-IaT}?);r)^w@l$Rr_6gdK^cHHZ65}4+Q;+~An|52_k{lz(jvzjkl72gQ zB3t))t|pc-xP10VHx<%L(nBNQD(4Cnl~Zx`p|mJ6s58_UuYX6JD1FG+0YtRlI0kO0$5^)>dO2Q~T!R)~Ruj=opNAQ`tTldNRzEeIszt>APN-C%P0!tJ* zD-YR{$pRMfse4$7sALNyIC3@pqcf`*YB04#sd`hY`vef7GN#|2RZ7yPbCw4@t`v=^ zGZ|n_dg^T%7d5v@bLvabo(HXWZlSJYU4OIqXowVzXqXJ&?QF6w+kdwwu zLqttzNGb~cBCJG7H7ROZfYz2Qo{y{bH-sxkfQ^us#HGeFy0i~$INOLBS~{aa(`k8y@fAH`fS zbxRR9fY-KC%(ti1p=xNXS?=k^+7M(*WuU}YgM`mmfNZ%gT35g?hPlM{GaoM1&RgfCU-omO{*iuA-~a-jx~%n^DJ zq(Xr5OaXT?2xER(*CK3KQd7Bo4_KJXv%8^2U^oj2BvO+>7M)2VuK~V|)Z6k;Wl?;r zH=JSYReNr?xqgVq*OrAFR=Ya~H{I)o(}Y#=*cs)`0cCY&PXghpi_K9XN)!07EYCv_sQ*V>_vKbB4JaKaJD7^5`tOP#&g)WqBB(S zyW6YDd5Wo^;Hurf<6gklPEapJjhn>kHVxjUKf19+RH#jVWAwtvgsN<9@_A7}siy{T zc>jqxN7dq~wlL>YL;52v2eeEl_``)&<%j{8a~)!pV893!a=i`$&7rrGen`#ZzfUZY z(jfPYd}FVsy<%?RLCNMrq>wmviOUQ7iv=e-of#^13pT}?U;Px7aU};pM8(trD}^B#RaKn(+V?;TE~WHd zIM;F(>E|k?3LgwSpr!%LP`zxoe(i77P++S)P$r3HMPeN@E87$kE+;cUN`#C#gxHyF zYgot=dC=Ll2=Jt?xwSZzJ-2%-r-?BhQw%qB%f>~SY!bMlJ`si-iTjFmpL!kGAf)(- z0m8ZU8=dAxuTrV|fwBT{u}hH*10PI_eljFGd%%D8V7W$YKC~4t>8Oklza;iQ=`ahV z6QI%DY-201{{5Zzkl|eC`3_O+Z5BNkFpuyqo5;#yka3dotdJ+nM5SI~tp9vw1qDS^ z4|k&9VlmFPhW1h%K|FBITsEb`S`Z=YY%QFh+&tQtkp1F0>D&TS%3mD1w}6WUKp+8T zWVgXZ0a7?=KLzCXFNpHmaR93;b^wS$o*rlz!Rim57Pu6o;@_4`AULY$zw5f+78lSH zR)ukpD|}EFw++ADgV#;R27dFqZ59%Wu!E>^P-+^PR6}|gf2A~)G=Zf$;ll>195@jP zPr0Bqys(XK>m0-LEWmA`^Y(U@n$HCnK-7V|BpvUF0?vxB&^q<-vot)j>nh_xQHE^5 z>mgHwdIdU0hqJqP)aylu$^omMIs>wr0DU>ad2^t=U^hvq_L#8{5;f+jOjCch*&b_Y0L9fvhg9JgP^rn|KF>-t0Ms}3W^5Eej8D=X9( znI0*MSXzY0h|#n%WYuVeIBo0l6=hF0_k2NkPlxAcR_2DFDiWbLYOHC7>)%$1BnplA z!wQ$Ox*AP#p;PZ6cW3Wm02jLB1m;xBcWcc#2Dbf-b+MSX-T`e@M$Mr4(S7o zB~v49c8gTw;_zTuzY}Ua10G(x2bcGVCyXthuuY;V1%(V$^6|hm`}2^(Dr+52tmE7$ zFlgZuF%7oUFOm#SvkZQ+hLkl;r(uRYgx6?EHbJDu+Ru=-8)7jQPMagrdVdh`ZfT@ zt-DZ*tHG74zvsUZCuRE0Txhh}U&p0lRGm>rmIjla37tW6+VDaK@hg|&MvQeAJ6sbP zvXe4PN6&v4u2KO{Zc0nI9Yu^WgHp3mMhhU?=)cf(3Ry~O9k7AH`MPKf0d6$&NEt_N zkI>2*pYW8UT%IISu|6CjKYS05-VTZ9_N5zL>^{ysWfBiO?RG+2SCSr$?gbT`)cO5x z^1Md^XY$awn6rLiQ-|fCC%3pS(sDn#GcC>5AZaGRp3P|h$abie0V&hyhM08)qF-%e z0^nL5L=BC&23~RCHxyDft!Tw;tD6vBiSZxd4A5k=Ufmyd2Y;|qwFIo>tZ6$8oH%F3 zs?_%YzHxONJldQ~l}xSW5itnDuqezs@6?_nQa7&Ex;QE)cbe7tpnnsb z?4fc9r7{Gfs4Ue&p&ViA@lTzc!$ktf`CAOR^|-vlRaimJq>saIamO5R6Ihgw$J^9( zePRKbpkzWbhmbC}D}XG+mhocoB{>JsQTr5!c#`X>b*ZXi1$r&?P!<9gpiH|PdI45< zazqI>R)*_EjOovJ1h%1sVS#=*CY+;XUij2)P}NUhB5a9;t-LyLSIBr|T*(Go)**A< zT}C{0+D7(*6>QvCh)Gn5MCqIqvByXr|LO#MmH3%*on=#x18V#yJ1#WGwqpqEc99TW z>D3LpYaBaIlQ5d%vW<=a`T1AUOW9oMz$IAA+eOX&e8{>tFG2|Y>>3e%hz!FE)s7&P zc>>;Ipr+WnB(*~Q_*0dw;kAu*z+V(=2jq4l!+{E8PJ&UwMyfL>ZlWM|=V*F|oN1BY zz9})eS5*Dudn1KRyiI{9gQe2HxQNg72E4^%d6?;1VNI8D|DtHl{=)f?X{vI;PGaJr z4*}@(>a178>OV~-*577_RXGXSaZD%6nqimY`&n z_rxYk{xg7hp{Pn@hY1mE3chs6(7G^$3PCKpevsksMm{!M8 zN)=j)k!S}5bT!38GZv|qg_T6b8{o275t=ELrU5KI%F%G51|K-P2ux8UC2y8+VYF?0 zfJPQfDcl6Yu69C}jNnT#75pb~eF-vgNiO2Z?g4j8Fg54jM#FS$s8*~=O-r3bB)`Hi zh9SKnD4iyD`I@u6WDVz~N4_9O_^myF1yKNt&DyRUm^VO!#xxfJ0at5;Nu!gqS3 zu|NvL7bFszZ(8j(YOpDvgtXQdMuSM>arbMXZN?52W2zouAVxEk2BQpvtOt<^5_+x! zk^_s;`>rT$9@M<*&SO0mRuibImLvuJ1L%095`l?p%Fs75VKpw;v>g5YgHYZ#R&d=N zfj4ho#|6)RN~;#m){i2#Srt+z;u5n06zR?2U6ty36~`M z+=UmV`}QI7yu<`sTYi(Z!gmPwV)rT_2+@h_Y4dps9myamm_fJw)gibxoqo?GE8ICX z2j;Wl)5?fH0cRhakc19IMaLr?tHVR2k&{0NvchNNf?+v}D`Zg--FrhkChT)-8*O&Tf8$d-a5*FK~dTv2QgKEN5#bR3J;2PAk z!b+gJV5|=U`?llO`WNV)9)iU*pf>tLZMKOx6*5=bX6*RkHL95HF_7IzO?DN4F3Xz| zW0|DIab7K10qBGXOd4DX>7*>eTy20nzbq|d2c}D zXZ$MZ^Zj6bsqH9%{bLwB-G`-;T}LeJr>d+42KxI^P5na(#FPo?zyI1aGYItxh!94j z#;2zgBE6dUIuI)D0JgkX#F@DE2&-0?%`phhF>AWGb=E^=8 zJx8Asco`-;V6}-L*k{RJaY8Es!j&cYdBVeVw$2VY@yMoO!Q5-UXU1RcqQif&Z-<2p zxd?bxYhWgyBI|$x;<`HBi7F8%zprYj^*Fg&(lyJ~c9$IWrSy5N1 zPMvxHS6lj^$um`NJxfDd&?jCV5QpmE-&Gx#m_iR%gJ)YN6b0 zx?^j8Z%C4QP|vlL%%!pZrLt@$t}x-sj)x%wR#M(01o<|~mM6P+~fx=Ivbj3vQQS?bwApX5)|&i?5jq)0JdcC-RP3jx(8bgGb%oY|*mL9TguK zok|C&MLZ{arvAEY4GDB`EA zr?k6*YS($_K?55RD?Xbr%m^=+W{RCK;Zn&*P%9VdL?=o2nz4xRZ1!K<&>F_*Mvz6Q z)Bv*V(FZ)-h|^BVVgD-7p^76D#t>@2AU)Z_qkJ0ZbP4Y^jIYW5iT6`NaFrI+wM#t@ zk5YO`EzW!zy1EFvXJPMEP#VfNE*IRYwQn1&8aACt-&>{tB{nycePA~%m&YZF=8okd=7Ds z@zA^$MnQN9z-T*x_LOIjn}`n%tSkyGF3&7)U>bsUSE(nPn>l4sD<~f7DbHLXAFG6? z-ce9eYQ>5|_UR~GYK0V*KTC!p8`EDZP=W{zNU}5(ON^-12ZY<_@Z7e4zKT4ySqLi9 zMiq_r`LYSS;;1Dg@SiNvi%WZ)KYf5$h%~K;;Oo7*w+@Zai-iv$4|xP{nC_%hHB{DH zrvxB-l#AEBldx4Eu>vnLuwcYKJ1P|y@W3#k5bNf#(Z3nqZ&KQx4`CBjqZYmMEoJY| zU_n1b$QjoJJan0+BGXGl;?HEUTq@DHP%*ox;3cgi< zghxBdrmDCICVGR2pd6)^I9@l^1DibU0uud5!#I4S>&(n(QVjEI6N{4wL9iSk4#k*5 zT+u|ABbW_d;`)5co#a-Jp@F`{NgdG$4V=+Q+*j7KAWM`R_SlFeFF1JRX1*7AGvgJ- z1i8WGq+sJ{hI`&|v7|Ax2#>k;=H1JCkgqY;Q{6c1Sf>APColRcEoP$YIy z%x-dU;7v?iv9%;Y!TUkmRG+K%hSQmc|Ac95?glis7!2`xk))?K9HXlAY>SDW_+RSC z{AeYlDchB6Fhio?sys27w(n$vjxaUQ*d;k z)~(Z7VBKowH@s1Ti7uLqWAIT$flEtKzc=H!;T5h}388AzuQL3BcVW_Dnl6#kuDE;v z-#db}K__OFGSw2lc&c+(x1J_sdnS&XdxVYcx@^*5a$8Y(GXGeWa$y%88j3ZdpxJTQ zM0Q#wnnOXXKVfpX*4>I-?df3>GDd()huuh&4{98DB!uU@sBP7*(+Cqfj6V%VC9RG_BjY!!r5= z*|vwF2UX%Ofbshefmk@AmDw&wks;^<^`x0s8E!CbHF_ohcE`{$*A=eD#5iEY39XL` zt!-A-#VO&_O(>&t2YhTRn$fURMm%=~WY`ETahQG>Jc!^Ei>Qs_6iCbB$6j1R6)kXU z<<6VAqL}z8`tv~|9>b)h(SaC`;jZ5)R`V>UAODgWr*#BN(!Wv;nHRYuY|-J)PuW<` zDvSK*YLOGzqz77=7bTcE&SV%17KTeDg5`cL2O`^WeKgMSLR@2AquN1B*`e%qBI>dq zu*~C!Q5_AVZeR%KGl98r_W=3gqQvrw?&3S`-}pYrkv9jdHG&3RzauT4lRSsiuP(=S zz!ry0-$?i{Ela(oLlRU_sgy1?duvFwtQNSgtFf~IFAgXj!%k!%I$B3v#)Wlv(98t# z0QfZ)qc_tX&9v7Y`1UhswrJiY|Lxqx|7e#JEQ{WGq%MUUaE(3m6g=ys&L}9hxvg@c zIjDrm%lL{ME6YWNBy3Zs2sWxc^AIXNP8UGCg-3h1sBXmt68tb?^MIPLpI&mpH&}$U zU*Ng=nx2Gi@iQnIm4o`LF4k}$o97Z|5GaeV!C=XCOVh_ zU!Rd-nf75w*O4=ruD;@j?*!YP01Y7v$So+ymEDFeSbiq5yp3+P9W1wE7_7lGDDdIm zLBHV}9K?ip4wd?gVah|IK(5k3lS6P-I>8AL*V{Uma1E#+ql6@{|IthGeF29OL;;#T;C&0D1241;YdZ{L{Y8tI+aLAMoWhs`8d!;Sgz1sl1i-{RXR^vtm@H3 zc8SlNNF%ine16r=X_>KE7F_(kt-}L4cxIVc5p_JW^)|N2^A73c!hIEf;84RVbEMqL zzvPOtL<#X?8(H_1Jq3Y?BR9azyxK`^m+n0TYS54BkA*m=!Iuw2YbCY4EE-hxJ|i%k zKH}DF#|jvx=PES9X$w9_QZaPrYd;CaD;JYi4s&gNJ$q8B<0^4c7Hn9941nf4rFar+ zTqvwGwo}Az2xCP-0@FJ^e*cvnAt0uQXSeSW`0>dj&ItJRM4Fs0uOXICDel$v^84`e|J=Ub zEd8+&gUlz$H(>A=Il3!n{2{W=*$Y%0^od-1fAn~pdb^1yWXz|h|Gx3af{eJy%O_Mc zU_?wGdsuT{+nb$BKMe<5S+x?rwDimU`yTwa)VV-69s!{6iT~5LZmizlzuTt`q>-)OpIh)}DdOtn2Mlmi;{RP2#sf8QnU4&rdp|A(`}p;J1-rWm6cumkm(-kmT|M4i-hBX-UElA0KYlOy zGfyj*o;PiqfvZ{^w9Yl;Sl zd(ZXNOAiOo<3s1iTi-GMy*{0uzJAg!|L`tlU|GTV5S$j?qz+L(8) z1asr}5Ltb}-`9Td|IFSZK6*F1(ESL&I$HdGY)`MA3lIOgi9h|}`EvB<@_X|NW80`= zfDczJmrOY7)7XnMFQ}{Uz5a>(!A!V*efxa+a{VI{T{0=ds_!pgTyaskvkcO|UNV^t zTU(QBH~Oz;dF#v5|Ks2B;}|*w)K{;-&5T32V4=N~X@ z<1p9VpeAP z%#%+tahmAiUdt`DurOr9l?d=KX zzN&=r$sk6fDZocPW%Bwfokjm5H_uIHIFU5#bB>xO4=ndeojW*b0FLtt)SNc?Z?!e?%@ebQ zzp*IJlHK=exgtLt1AMgEB{Yw=q}Io%pn(gWd10tZ7Wup{s?#@=9_lnRmo;>oWWTFR z>|i)YC|+`YrNYBjmsBJ-Sv7S}Z<5IKzoaZzvQi>SkdB zN@btACaIh0rNl<1^BSku!@ya^dL*f;t#bIaisjNG;zwxkot0BCzA5)L&tWny`|c^; z)@ZDzxN6h=sQI;$nsaw2K(Xd~Vw~?AxOj>mDC_Yp@rKD+btDOmTANpa>ZUE+GpHpeA(7e57LWcDurQvK#DB6?cBDvj!UQ{3t_Df%h zxSG-$p9WF{m(0ehX!wqVz1cy$scp^z6Wwv`-G9t7%UdD?%A9oB6IPMozR0eL#wurm z{tte$PHR+-Z=r>CDjTGTiA?xqDnoIS*xdUEbY3b=6Um&iE;{x}l2a3Yv$mSFP766i zdo5B54123rnVU*Hpf@rh!Mapnl5$`Xd1wB<@|fw0xvM^jwJCTLsOj4G)V8{({>k_u zwsl>Zo$JL-ruIlx;Jic!8n11K#6Vd1_*3O%C4O-iRB!&i)@4`462_9nci(CK@)}HK zvxw`??9bXaO{KW_xOJ#(21D|Q5Y1}OD*Hc54`jS2-`K01G;BV2aj57f6FVqQ@odW9 zL3cE?s*`d%sIFxm@F5(UGG9s^k*f4=pq2=nyOSS&K^E+dSHQ6!^(a1)+em84QAMT_ zxxc?J>3?NvdvZPRhZv0Xu;@0|uxe4AZ7d;2Ek<4Y3l21|vcvp^@G@zM>Y7DSQ~MX8 z(>p2aVHPKDoVUIhkoh8(ORW!DIKLT6_Pps3xMb0kFs|By3l*EqrYrTBNk=Aj%swI$ zIqDgn{J~TFSHFF-(QA-36d{CzHW78)(v$1h?fH!lvPr^w2yAXw>96LjhIll&V{(Dd z8gxWQ={jqJsw;QfuVsE^3!ZWm9CmAhiK^$fB8{Rh0BYj(O?6XzzhTJ;Y9gP2ZX$3| zRCkGv$i%bBHM7}6QFcO8Q9cux3I2K)ME_Q{1cUv`r%LCr0y=<{2L7zB>z?s@Sx)gRO?rsy7%)KT7MR%Vs!Y6B4sX`x zSEfxy1Z!KUec{Ui=Kb(d?~>`R;Gh^6uP-~{XHNT116H~*)#G$bXj&e{YEuZH&}i}8 zN*#hOoig{4BDJOgg51iYutS1wQaf)r>TyYU7?#Ssa4`r_ms}lax#U-e(B?}X_qT@w z41y0#kJaFvN)vQm;n%M=I)2y~AHQ{wI-TwhEwkThX;!)NVMle||FQ-G``Pr=7`X1o z!(;;((#eGm!rPJao+cZi)yXoo*36JPRnILXw-?odrJyv#)vH;_Yheg^57X*k;Am^2 z)Kty2FAB-6PZLdMWC}E!6Zvy$q;J=6E?ymhk@b9&d|E+my=|NTJ)IoK z;Mb(@=o~UZue0qEVMuabTX*WqpVvy3@E9zKvbCFy+ZT%1lD{pAELpX=2oww45?6~{ zrVZ6?Jax+UR*}GWC-Rg)dylq4ZJ7$_#xVXw<(`ZWkHqcJX1csrO&$2+M;QZ81V{=j>f`oafGdA_jvu%lbLitNI8Z!Pct67x#rzbP*(1Ee+L{FeT72gPBY7KSPkQ~Jbs1oM zR2`zs+|8+W)L48Xu#1|QP2aQEv#4e0o z2fh0IR+C}8i;A^n!8j!SryXGKy(ZX^veX?rhu#_)%_bLd=RpgtP)`XIv@TW5@sw+0 zI>VIgi_;f8y6EJUUJNE*p5Kf))g<9#x(Y`0@!}qRsY!bj3IYFdVJw4#+-vm}n5w-j z%u}+@PgllVl&Yq|qxb&s`KNg!03S1|87`_~5X)@ABXn*Y_7ohb?8y*vj4+ns3OHMw z*jd-*CDMa0DWS|k=a~BkVeWmGKt4|%W9zYc5cR|2W1B54+fO0DF^*2GP+kyZGmQ1qZgd-B>EiydT zE*Xpnc#KTd(#krw9~1yQJb1`htrlE(wX`sj(U3acE?^f(-G3sULulskpwQk@;PDZh z^vG%DIHi_e4S>9@D_4_11EG41`6Z244v^M2PMa+z+Zl=t(+~0t*>fR4Oh|RZk4^z= zdaPo%jto`UC}u{u-Xp!h3eHIg6`}_2-)7AvALj3KNDHmL^z!U*rh72)2x ztx||%f%7!wp?Ez4XR;NN+~4K)fxAvxvy&DRg_KM5>9^I3oW&89g{VtD$=NQJ%jpzA ziONO2_ph7Mtt$u{tA|N)$g_Irh4&vlVcIztFj+C%$3KZ*m#z0{Pz8TD-M>@+c^#J7 zBnB?PR!O2*$altKP`l-D*dyCU3fV3z4t+xWF4E?LgkrHh1b-=~G0h z6e7-{-7&q9!DyOZ%pK9WyZf0&1=9&_h<*u;X~I!S|0cN-r-}w&>QVXbzj9e$y}O`e0jef$EfbvSKk zT_UwU;&_;{!zoxFdAE}K7IKv*0OV6i>{O#j3u&?gPL_l0$zfb(l3UKx_Td4I*sKo# zZVWz-PU;&us3_H#3LlpeWo8<%S||8{pDMd3wh=&os_w;Yi~5o_QCbDOJ4xB*wG_d2 zIcSSn)D!VH9en3EPMtHJFmrGRzmzvo{^17@FQ4wB{`>uaLem6Giy{3{EBB#)xP^qb zD9gd<$}d{Wf5Jbo>!>YKY#qw_-IdC%Mt3VYMy@LU10PuRxrI{U`&cYQXy^VL&{cBb z+LJT)Ga&MB71c{zVteh?mMrb4#|8yi6G2!29Y~O0`HR> zR)7rYneG}Y9UvoR*5P%ot)(~L4WOsNw3Nx48GdD7}oyru!ICa}g~^9>}UE)_iPR2es@5ph_@aCcnF{GDq|a$xH0 z7q2f!vYby~H_+qBgDuZ@8B^y05II~;D@>m!uh?L@{b-7An+Eg>CRVxx%`0h{D zXdp`xXeWC)ta{j7djY8+$Q<0UgFW1bgXN3?jqigN-VG2;7p^UuSkuHNORzvQTr?(fkYqwK#UdPFVB6WhdpY~uJed~|w|sLsvsiA&QraLb3& zPMRN4>hauRMZF+#&zJgII5QIn2)W0T#jJybz1Hv+dFxf1rY;N<@q5Xfn+{_g6RBp4 zy|bis6|pQSjMy|-VVY!vI7K1U<^ z2TUBuF5>x5TFB;4=L_>fdImxnLQHV?z~RaLm?#Mdfv|i$(F-oorK8+|Y2YNsv;m5sgnsOW8BT6El}?DeW%2SN*qaIk8$SDkXOv59kTcMkijH39 zRw4!He%L@oM(&bosv2Br6u6(nm&#trQWN=+XJo{giTG#^SCYuo8{%@r!J9|c|0PNi zMGb5!pk?hEb2THJ=b@u}7#^5|X(DBBEhfMe_~wzye-#JK&=J#fHkJ&8Ki&|B z{0kutflL@@hoxT+nK)lJe$E1Y1;`$Y{e6K@9Km}6tGf~% zFRzxUCT2>&`>`G>WoRHH321cKJ@AI6%4eoBTSSvl3j;FUMKfk?cPvQ>(Y9DOju2m}?oPAnR-jM$K?;3Yg9ToK2Fk=Emim!g^JtU-++_F*X{YY#7zhJz?pV&x z1cNY1toi)eBq9H;NZ^E9oqR}PeQ5+walfNC)0-UVaas2TLsXHGLBx)5nGhQ|C_7tB zf7Rzc6DM6=f+s|8jTp*#975&j??=0zFr)EHc&^qL^q`RCzzue7ABjvltR3Q@n2wXJ z)6%cM&QU_%^kRTAh$&1AnGi$O(E=qo_>?6%AmU>F3`0yD2$&%23?tB>o+ltOQxL`k z=6{0$i+drwiaaigMoP0PykI)w1x_R-N6)=3AqFh@mHPa^3&3ivf#f`>!||6!m`ux{ zC(z)=+tbDs+$?)W}?fN+zZvWfp*Y$wO7n10UFw!Dv*A{7E|4 zU?^a`Ncv%^cz7tY!HG0=<@qlaJwCUrKmUqU{5-w-)Pd%H(S5)dzwT!@rnyc5^Y#r{l>@>ItwH@!UZW5B#9@Skh%6n z*Z0RF#+FiJ2=pYo2=$cE=-5>u8x>0wRW}Zk*X%l2NTd}7KVpR&xkC>H`Z_QSn2qG~ zQXlgoet55EV8;Ig%kQq(BY}8fQEwfU7x+A0$!W>s}yCG{{OGpn^H-VzT_LN6#x- zSCK(dMZ~@pqFFg5I6HRwddwC4DH71y4(nmpAbq|Htm}RXEe59l6Qj=rzoXr7_2naV zt_}Qn1J8lHKb@zEc+1zGfA5V`=lDREW0&K;`g&~)=psrHppX*6?A|&L&IPc@={R#EC8&C ziKQYzS_;jUN)=*67)DGUCrTd|sKS9Y*>3=mBc^Z8NlOcDynW6PG;+*Iy~6?YkM0W+ zQKRw#pzIYEHv~{v>Ho--K%wtUpD<7q4|+Y4gb2*djNk|b@p~~sfgpXFFHHP(NzvhM zh-As*I#ZM&+&&q5z+KWfJgmkZ;m68m;x|1TP?4y`Y>yHeNKj~f86gdVh19sx_{sZz z%|!1+ub30DLzk;wumWKM{j5o8BSMCPZ2-S6|H|`05*nqX--86Nf5cyOk1B}0(c6rF z5d|3s3QLl>>YBkIg6YP4q9cN4@X<-#M11APW|CqFDSZvg^A5m{2vA-Rn1}uNc#ig{ z_ispNh7%;O!dN*AgmP#Of_<>gAa#rtlzOSl6h&mIJHQV`6?QcQ$tVYrqXNywA*P~I zraD8XmP49Ler~p@_jV~5%xa!XDa`<)oGFHp0KxW$`8r{MO*D87fss@pg-A^tgXW!s zj`SkzHR2+->;2;jad6i{2;>dXGej1k`LHYQX7p#r&luO32vjy~kJR~6jyy24hai~U zjtT?CLpffF3hUVJq-+fTy^AL88rUjasvK+NnJ`Pdep-qT4b5%_l@r^9&k7Z#C>?~YMS}*>`AZ6=bJGg4`&F(!O zt7zTKwwQ_5m4z8WJNv(0Ooa<^c9A<*@8yZBH7$Y<-cRd5LqsD_Z(-)cL&aa3f+xi+O2s>%+~TORgxHvegvh@utTf*HRgc zA2=$v9*mQ>$kyA$1HE0hPOFb1BpoRIAbwU-n$2Dm7cSLf;w@;+fjS)HQoS_%G_Y{N zSo55%$;u%$d+fI{M;!HP25FLR$E2)HwMFJEe`q+=_Fv&STb+;D)~?0J4*eC0FEAo- z_M#NKjnmh99Ww?uXd!#!z$GomyUw9rvQOD3YS&DVKj(K!^26rh!l3G-SrP*4#TSws zS=hb5^gL{8`1hR54B0n6fbc1fin2!=vk4G7x!z5+%XAjZiE^K>i2LjT2~r`WAi$OA zVBRIizPj!rfx_j|+3G&#hbt5v8e^5}&EF8?z4`h8M;L%YLqkF=Hb=h}Hq-eiAPSCA z^Xsft$6#~}jwm+-9sF{4e^q84?}7UU2ftou4X|HKyd1k_T5guj{xEH`n$W&_oe&C>FkBkAWpGfBR)L* z;lpM+C;ceB{%CKu+=5R_?Gw`E;qu%^z!%oU0P$lk9CPaYz=bE?zX$u{{n+9A>+Qnx z$H(LC_|-rBWsPZg=FEz=9-=|*wB)vzd&Bzu7O~_{w(9i(cAmQ(!rgh^ZPSAR@3&ktGAD@-}aB^E8N+m58u9# z6MUkC@=Z;O#>d!EI^b<{29&{aY@Gk?hBj0D`SJ%e`}lwC>YkU8cLYHI0sX=S0zw5m z;bF_@VrllK(o(eF;y~*|Tz4mOvHwlkh70K$wceOrD~~&D7fxW6nWp)x zNN7>o7kBe00C=d&C>{9EHIpsvJjfrHd5o)VdE9T^bY|lzDq(t7{ zEQJEXqVkJdlMydi-J>!W!1Ci3_T3et3CVp&Wh$-P%X)qL< z`YWH^ldCH*yKK03`9>Tv#7P7h&j8t@=w>vE_Uhs+b|*Z7 z%d2jEFbyOi!+O={`TtzJ{d&B3OFjypizEDY`8->=8zQ8qw>V&k3qBl7-}8GuT_Y?O z%=3G=zr#HC&>H@EAENC0{Pg5TVzDG%h-S?He7>59t{3?F`ZGp;`#Vrl{53&BtVriC z6#gxg3u~AoIVGuMFZvMDFAH#lKsV^~JQ)1_T5fZ*4g|+ocMYLCDp39W9d}dw5aTjS z=u=#yzd$cs7WfP@@D8F6G@2e<(ZNn9#_GfPhCZ63f1*vsT6?rW)L3C<#-4W)xQzd? z;?d$IWKflyzNRFgT>n$PSa*$o50Vv7J|hsvmy?xeDIujyz=(FU0`tpEKZmPxvu$?A zbmgL5@(Rc6l9Ga&mI)z5Imx)=$)m|ss> z^fdhq{Em_12P)b_|~ZGW!LFOeX*7=r-2jyhL@3rjJ0&|b_f|ZLqOLF6w%;?a0L?lIk6%M zl#_-;A=e$;n1xGUTm>}cPvytvc+4DF1&v%GAly1|<2<4xrWH; z9Pv0H(IXS(qo|B;*_{%o!lpE9G-d!La+C2Xne!~y{6BoXV|1lK(>5A=;$&iDV%xTD z+fF97%?T&AZQHhOTW8Pnyl1U%t@D28&)$D}-*@e*uIj6rdm^*12p;|gTrIWvVu0SW8CM6f9phgK2nQ#$4CHKbd|zE~)FVydi0jRn0_oLvos*QdIQ3X`T$kpk_#f<&#!;OSfRLMcy}ijZx|rA21w z?30TsZHhMbGRbsqLB@A3*i9wE<{itGn8%G_**r4G^|xU5{A~;Cun(uIBP3p76$>$j zzL``Wd_b1L&y6mD@ogQ!MLG4>@qSVs$Ok9Hy?Fyi2bSU@(%9p|&Lb+@=U9KiI+lE| zXVx=IYxbAQ;m!a-0~#~IfD^vUr$|3!3097u||ne#ZD|T7-I4_c9Qls@iz`R_X?xGj4* z45Tvjy=J8TxsNz$+utttkC%M6Q}jeqyH&9;uAF|G;=nr1CX?8M&r-DSo`n?lWJ zJVPi!P#rig=dw4+0A7r=qGv8wk$&;4s3N4)Jn}lGsMUE^0m1pAr4Y#>Ols@dp(p)`WnERibuwdwD+Rrs75~+I`Sqi>74UGK#aFO{syy- z0Eq*d}!-r}O|CB>hy7m0g0i5BNYl&>{(W`ob~HhWf!9R~d>@Zv3_g+E7e zzD6)!=M(}vf6C++opxK&!_Tkbq0YiD&|fHO$w{h0h4*%Yof-n3P)}SZvDRSS z*zC~RN4M1{J)!fNG%jBx+7a`5B)-nJ)2&gqN*}Tmz5qb!|63Th25A%N1q}qWN&*Cg z`akp0+`!SqSjpMZ!q)6R(=tiZ#typ`=}Y(Tx4~b8pWtSl6~?OxQ%i(XgEDhYv@I>6 zKCmS^l7?+|I*w@X+s}VCTRI&@{Q|w9KJ3{uJ=nQ~9GxHUh2rODS+`UU9|~QEeS4IQ6#G|JJUqZ9lt@Yj(dUQXi?{v6% zL}|^dJX|iZqAl|>jrT_LgW+LxiQ%Dab9m;RHB}x{NNVj+1ts6@h#>@7#Xbd!!@r{} z_$%nCiDIwRO%#cHO%c)Fs`+*!=&S?nfK-_i_{&gwr=B8jm1Q7a!1MUN;mGIek!237ku zXq5fV^;EJrZ*c@qNm|i*aF;GBEnaHTLHnc*FAgM$zaxFIomJ+9n<{zvqgn>$XIQu1 zsId(;8OW`QLDris$|ondkrgZMux#Z+7r`ClLj}_YRz3%fB0lFmE162!L{yR1D=W+` zS@jy$$Ja$QuaWAHrtU`C+3T$2#vgV^h8a7&e{^boxb$Atm3fp}l3X-G`P+V(J@I7s zXP1M1qPpa>ZIXDG7*s1`XMaS{oR|*mSStsC{>fj7^-ebHf0x4#zK_$HT146s6!<>) z9@EnZzsOnDi9wJ?ENa(LHeo-A^{$BI@pjB|wcQ3>pt;4W9@Ztx7zr28iDK_QBW!q~ z^G8CbeJH6^ozP9pWK$kIah`fIVJlqahIMd7XR&22J!L6LE0&#g z<`{Zm)z8uR)1BLuv~oKL-ACbRukt>(4``DoJnB^Ki~W}d&9u>DFcqjGqzc#GB6P28 zrvq4JvveeGV)YtC&Rn{!bUjOSE}Kkv{&E~m0BNB^r-g}SX7g7R)3sp|^>nIH#cvL8 ziE7?CFOFyy(UyQwlwce)d%A#=zYIVHNgrU7v)B7F=`A zjXFLIq|u0&p7w)O)g%0dpTsO>!#tfTB-i|(%toL0*l}V+ES_v42tF#2T08OG+tD;A zS=v{|CVNrWc{ab8>P-8|DK7c_|GM=y)jnoa8FOiv+k=Lw-1o{*NF1%O@4{y6O3K&} z*FirqD(kwp)XP&l0pkN_5q%9NiHYD83yHATm(nyb9=z_9c*B^uC?CGcmyW7gl%PK1 zG&b3^d`h9>*C#p5g5^5Ej?HYQoq1!km7m;LI z-yQk7&N`j!$ajEB85HWxllUUDNW{e&YX}Az(Kotoa%>^J_XEaX8ny=X8cZ^JdH$+7 z0{i^x3WvyGC!Fwa-9X=`zYWNEpd%1y6niQ;32#ypd)?sL&15TqqPnH!Pw96=DK_-k z?cbWipw+j9kf>u5inb>#vXCVMAH$Js2)PU@foyoPD9j(KG{=TaAt_QTTM-!Zr6iit z6kBmhc|WJoWs0WJ2gm1}ex&i~Ip2ECUg!B`PXo^$*7Fc+`h;Gbz1FRXTJyi&vv>`E z#We|FrxB>FPtff4%&7jWN8-z8-KLcFUH1%?i@;OzW4G@G_yv z*iWeiy%M8fu_u9zFc9;@!vi~_Le;F>`MY}lnz3yLTl3}sxnxu5@g{*zV`3oBW$$*e zNcN!@`BV~fQ20~ zpdkNwitsU5&Cvh)vU|s}|B*)d|2pQ@u~m`7KwbPE{MzZpMVqP3&DsVCVUE^C0DCW_ zo~9xGst|Ab@Rm|8mGlsAaO{fjE}SlVfllbTwn@n?!R|V_HXX;tB9u0`j`eN%(X0b3 z)Eyo{c`mQ56h$6H|_HJ(* zWp=jU;o;T#QweTZHoMIUs!Io7`p1w-{}mxos++enlD0^5V)x*|k3R~T8^OyT?BXrA zLnxdZ%d5KZIJf(t;cf!hu+O?iI!NMp*DHz=zKD0% zw?@2fVod4eLHIN~hdwOFKWGe4`ae}wfq#A)vmVQ0`)Coyj6FlXzZ5iiq8=|{g^I*v z<5>v=#%zz-VSfzm^LMWk6NU6+$q6j}9GOuIrCs9bJ4&>8(hmsP%F8mCE2^t0qSTgb zZn1Ds3foRowlRD7+Q)V^xK&IWahPMFHOW64SYCbrjf&i z<~DMfG_K7DMri%0BIlc>p--0)w!OSDCQ@_=ohFURlEGGsWdB7u0Q{S4D&@sw(#W>j zY!vfrw-|wYZl!JW2!1n@F-EQnF-r9(&QJG&LoVAMl(if#VQ*sBjn0&;+f5SHUfjRq zvz9JLvrk}B=j{xx&AW(y^~zAav4r`od+L+c9eg8gZ{&mUR{AySBoi1GA76HNdpX$p ze8tGS~wkeSaavBtweMcH+HeDXRcdmz{V1U!nTvQuWO{uB<|#BYfPcj zAA)`g{2Y&zLQ=t>2>q^P=#@)k{ok**Rb`0y`bh%>^il={gz;ar=4R(;z=gL<@Wk|Jl)(s z-uCHujrHC3+1~7UdGh*x-TWLbo<`u?`qwc?)3eBIq%OX*86@s-Mx3x8(j{KeV%^!UJo6n+qTvHzPXBL#GHw& zM!5Fvc%|@tY|`57@cI-ofBWX){rJpyyZ-ro|L|~{s&~!D`$5#tvHiV&YBx<3#A&NL zLjQgD@SyhEzq=XBhWY60`SNm8&it~M?fdyv=)-q1>GpKs;QGiQ4{036k~Go zs!jq$b-Jz zW~KZ`LlzGu<7ID6<8{9mP5XySFAIY2FPdy3Rm?&?uSCjbR9&@_T;kPqR;wbY>CRkP zBr<$JM`1y~CBC?y)^iU_#;cyRV5cA2f4-8x)11@jAn}dn4EwYv+b@`?y;laCy=_K* zB!1e`K5PB^!Q{DSs?ODzXrwmwnl7waGoEN@mwL$K*JGPUtHIkgtXC=l+Qck_>c`jP zL!;Fu$EjWA@DOe6J9u)EFc^xd}S!DIJS2eoMs)~*IE+*-~ z(snm*ER0q++ec>BrP#q=SxcU zXinACMMB@~1tb}tYIvP6&P;Fahe2Ou+_t*%vzb1ov#`p1cO_yi0#L2$xJ~mO#vsZ%INoX~h)*^9Ug#Ts zwAB%LRB9d>YA#9~m-s5g5Y~zk?5?@NusVD+-gG#3KEB>E0>`;A^nQ5490ZggVUGOD zQHUe9uR0N7=A)?M zB$x{%qE79|T5mkSaD|3`13SjjhDBg}l_=NR&W)y^yVpV|SEBbWBDPquX%=m}ku9O< z3<~U`8)w&#uRLozXSZlxX&U;|oo{Ij549ZPpjl=FBvMv(e?wzJA*nA9j*-;!SCRhL z=|`EZ6Khn35xr`xU1%A)!QYfp7AVKEPB2h!0@oi^PC99Tyw+w}BwxS1nPE=FVVoLO zKE8jLW)d)^HoPunPD$klgnl#T{E@e<^Vdfz>nOcvEN_E(KM!$JjwVTl!yaig$V@rI z;CGO5IL?Ll7e8^`VzD9Sv7@(D*@rt`7x03H2wpRxhC3+mhK9Ip_EnM=Nv`Bn`{$K-lQ4Wx#dkXegkhCLpB-f9pAaM~d;V-31cpI(S=X!>JAaGQXe} zrjr)f3;1WsVu_r2Eb7Ytd5^%BGeIu(S>421n=S5dz>B2l^_?=M8-xArsZ;g;o?^0L zo@@VXsu3NK*n4wrGBPT#+PKZrVcE})M!?5=|lwWSp zQ8gLB-{^7%s8fmE8s@*Y^y_6A%v#hpR_cMX-=JOptzzKGbxqTaJMhy$UMyG>1FG2> z8X`T#F~l?LTyS+y6TS_{ztuUt*E zxjsXg%4UmXOd0I|tHoI?YRan$i1~hfmBtm|CI+1JD(4e#t}wbjek5fGh(S0pj4$3> zEhHfWg(@2hC#__gKQcj~LX$({MzUH{{SIpOi8U;9Xxd|C5itW}i=Aw9KkXTk==O=+ zE6PJ`n)`oHIhsw!l*MakYhx~1l*S+zUim##2rYr zS4hs=Y57$jMgyCOiPeD7U$-|1BXrviueLsSm*Qkw{sKCFYg78;i1xaflbW~e@2Do_5+KzjP=OR!G@r?kW*A&TVYe<2N@8tT{*g$ z*piHHYWAro;BSKDpQ|q_e2#h4_oVHTg0gU}BCvT_X~8_}98f!P31O2ye7R&NH`^qt zJU)v!z_O|Dlt65CkK3KYH_@*_X-%rC0QO2nvL3I3DLQv_;SSaG6AW0`Ut#oD>$HxA zpFiBHqd3yEu|=m{rWY9c4gja7Ea7-KYr3;ql0_1e3$-xpAWumFE8gdD4}*|6gsl?@ z0*QFi4R`+jP65C_sO;(!6r%fJnhpAzMbigYReyUrFf}vH^?)LfWpF0Q zpLo(;wf)8zOPvim);;uq#_aiah-w_;C}V|7ds8mW^K!91@Pl)aX8Lt32WO~Fb%809 z*c-W^937F@h%m-Mvm|p`KCkX3GcvfKqs(sNk`-Q@AaQ6rnX|Y83Ik|Xy0WfvgY!bi zHId_@_C_BGSDBf{)YPTb5ffrVcO7B6*joDl)&>TyJt1{lT$9?|nl1~DZgpUKvLMJ* zWZPk-mA0AZEGv-sr>=h!w93RRWiA6Cu>tW!+f@dXlzP zeX5)bAuDbW189_X&g3GUg`C#fgBwJPdcwYp(89jK0zT48DXl*;$wXrqqHk{wvym-%ijh2jg>t@^F|x3}0(+=gtBG26BeCY9KWIFBtanJP;3g z2o0o+26{wn&)pYo49od58ylGW81Ks7)&@ar;)XMV2CkBcQ=>vaq$hp2ly77LVZ5g& zptRg~P3=Uv&UCZK7^{~4jOc+wMM_NR*IZBt1#TBx9NAc?{)=^<*(1A(hz+_j74$C< z7k80{sianXg|N>Smc~lgNq1&`k_VE>HI`n?NBC*ys9ocJ;0k_#(gJsN0& z^Rr@|i&eDEWSQ)m>20r8FOXu!g^kcddeR;Q3UHTdjoTXF3WN(8wYqiQVEsI=jzf01 zJ+&KwFbFeVy-LQIpiF3*lGw6I4lm|jstV&&jbL7mzu5p;Zfe^q+d#0O3=8wQ{zT+} z4Q4OugYd3(P(+H3tWr<+JTKTp#$pCE&ft_`->sq63EA&l45Jb3^>j1Lxx<1DaCk-G zt35A?J1JMO^T<36kON&sF~9H&`J_C{9#Q^!i`N4d31$0bpgp8BSJHo}(8vJ^GtwF{ z5sxJqB#w0!#)L}t05FR=^8rvVF!}zDcKG(LvoGFRTrZgXPVsS&WgFT8k*;}z3p#3_ zo-QL+`m*zoyUvLqzkl_*Y84+g@q+kWB5zasVaMa#jM&(yeWW>Hp2A)fRIHsc(fIw{ z>O^_|V;Gw2g$W7%K-~%`>e!Qx7D7kE!r~|sJ+cQF35$D-)l*N*$|vlm|xLIMA*pXX~Uo)T1i?|Kg>k+ zHJMqwD*9YSu?Tvuhsy24`5K@1s&4z`yWqfbLnU&w8iij;Nf#;y@-0dJ4ES6B(tuB^ z@)Ehi;5I$urd?zJ0ggmer`xrw9SOfL0o?N3*BNrME35wkrCVj}gQm`ggD2n^Sy7V0HN&RF^$H-b*K zXw_rrzC9Lq6%fQ>aT8$d(>r^$a>9Y8zy{*t;7~F!5z7XU-fCx#&;|aG&B{xXL)6KL zdVe1l+mIr~z5Lt9k#o$jY0IxmJ;NALgKFyudk|S+mm}HAg17aAddHEtBgqxlkE7#< z@+TQGZ%6hPT3P0L*l*GX&^GQX$Y;DXF({6 zTpHgcnWtNC z2+~QjOvtF=g7Iwzf^lfFPvb|?bGdjndT2x;;UA0H;s!(%2=TX(jj6$tbY^opCnMgfY0_VN8EOQ5J z%N}x7&wBPkTbLF*L-ET`F4rWMYCeGV#ji412}1{|EN4GWi(70_JZ~J>TBhHICD#(l z>RD>W^e7k@!jwi}ZCwRl5Dz<&foP1?tifbe_m`>fg$H#j zq$SbxOD(x8%1l|7{fBJfd!mO~g6v`)&F zxb_)68Wpcs-2o`%jjVxep!s~{Um%XBHmyQ)#Emaa#E=Y9SJyCON%Ip2q=TMG z+QTH4^CFoT!m1&!F=24N_ez(u{ZvJVIivj-$&0an%y+ zTX|Uh2MMi=3MANwvmmYvKG;tyIhJ1nKQ>=PGR?v9xN>*|*s;Nkfo=lZB4 zc96!Fmh1|f5f`+-!YIeHn|js@b-`ZSM1{yP_J!fGV^kzdGZxG?CBubR6hTYcmUb$* z@FPhUgsF@cj(nk{N?b2%Sd5k(uf<=!E{%k-iG7I%Whk8j^tVxFO%ZT0pw#lnsS}bx z--8HbJRp(neupulz>;v{;)iX0L?h>GY|Ix|YRF=*`Su0X2!jIkTbyJMj~rrqa@?at z2!cqSsy-x4wZ#X-MhxU~p&)ooTKMlA67X^8)}OwP_#no{V)j#jLnko>z`I5KU|gd! zV_++T=U=XKz7@$E%^X7KZ*H6;HCxdX8j!q>V)i34&lgnpDPQ#j(AoX+*+7&vSxH@- zQJB*-nA0k+3B5m}Qb?jkUt`Y+!IUM;&h{#T<8f8?!)e9-CRgYazyP&eQgPPp|Fdx~ zL?hiQJRv@3;oSlOxOIh3#jkZHBqL5eVJiJzvWqA1^n!>Aw)*p`kj+1ezf2RxTU(Pt3ZCnkH7Q&^s*AMT*}Zj%%$QYChiH~jZJ&JuLHmY z#Q`^!m7)O7fXL)8ED~&i3U(t4wxh z>;M*U{1|tb@AoeGOI)58U1qdGlGu=6nM|0ugp6PRco7AM7!aWaOFg zy#_s?WBUIg0HQduUeWkLvVz|M zGu1}&46>m)zk$xn6z@kl_dJo(-=9Ts*fH32X5?!{ns{Qov9G!UC839xd%Wh6fA;rh z&CkrVUERtjHqnR@gsE19CF^Lo<*Sx*S;L+ehf4s^#UM7VObtEn*@|pG1F(gRL;5Hn z;Bp_ugxjR8ywz9|4;+S34a8n{=Co6(suKT#o)!)|W$Fc;EP?^K{XToS16bIut@44t z<7$qL%a-7zFbJj06Ks%m?6oup6IpHTiBfAFbDJYd>=FIC0`mQj#I<2^qporzX;eIUu*0-I=@4koXWf5y97(Znbk0Y9)}kB3CUg)JTs*WZ&w&6cNZCtqi&bq=A0eD zWrQ6h^RL_}6}dqEp0nK00*UR7@-+SH?lo~PS}n%W`4lSh^Z_RNXW8(AVk|jn7NEoe zB^2)?&O9F{01#KK7s?EmSa@u;HZ(0-HKgCll2Ns<|0GTS0ZuAPQ|sjvLr4_^30 z9NRx6(l0nkrYkR;bG@S?ZCpwty~#3MLjV@oyRrZU{D(XxNe&vIH**&D1|V>BkM_Ef zAL(R+LgP0xvZoVMP=l`$Z5mtx{RaD6nQdcM#}-Xo_wuehSEf_Pmqshk%1qfE8#Sm4TN29^tV&J zlWITo46z}pM^B%TeXD8~O9fiS?uFIlDi`0*6sn-jF2zZtvn$@xKlB2{a~F0qLELx< z@hrONk2Y>8i}jK@)x4rk;rPu#EK=3KYh+cRG0D9;O3UE0r}#sufoTrIcB0AWVNs>a zZSRaox#VAB;*aoK0!lw2fTR+n{!kBsyG-<-oJNWMTKe0>BIGB1Q&azd!S9x`53IPE zmkxgWUF*LPLTNDzI;>VPBihSk<-Ut2EJnR-{d>#lgKmjlW-!5-J7-ePaT_7+s&nBH zLo}%E!-w=E`MZgJa&DngC)%!r$HonwwnuDbBCGbW9F9X;mQ#|pmCW!s(;KY}7g13- z28R^Gy=PTD^bU|~u4+WV>t%<$OJ$;<}{&@tcQ^P(DF!M`0A6{Ar}I;CErAc*#*ox`Z>gp*$W9>4Suh zc1UYbFZ-bcE-{2hO?=?5FKp$+=HBC66h`z~?*u23YbeA%5}Zy;mueaaGeeNZ80eNl zZ!;JVHqi7{Jp?_fKgPoOgX1Gj#DyMr4;x>}NzDh$j~Lou9-_$-&yGnT zXblX>3voUr0b@ckDyf5M2(awJ*#znK%b;eXIeKo0dME3kXoYq&*^F$R*+nxS<6SW~ z+qwb#8F9e#WOP>VskI<`hM>?(M*+<*GXhiJEj94e#MZGM`Xe`?OZNr=xUMMTexK5dErn{3&$;6};z z4H3}X@R5K3lO#5TX7LH(r*yO={_{?-uD~D$pUs<#c=9xHfq)lok%mxG z7l~L%V*+OasLHIgIkLAjVvaM86LG~$LMcQkBB#TG^L>X6jI7^!|?Hxa#nzJJcoJwwWmS|Jpq_qdJP z$@)vH4FdoR29@m30-%&2$W~hcuU^*IdfPe#!=-YyVb*tBIK#Ura5K<^6jhSpy{Z8T zrlqPs&}c#3vF$~H!&wy6e{2`djh7_JW>2AnJeq?>c2UtB6W;-j+-I%|Cw>(kt6odF zs(zZ>feG9V2!t*UqJhjUBy3IGagn(IEXT_{Vf-nZ5{vu1#Ahgsr)&CMtmLR z)7otO*-+HYo%MTLTiuG{dIE$U@(Ud_b*WB;1@>vjyM!nWD+U&86y4g`vfe+3rre3 zyT7391Sn8`&8d>WeFC!KmMlX8g0OI@+cYJq~BWfV_x!&UD8fXC}aJ%BKG-(f44fm6u>X}lPH@DK%^lx#hIwhKB9snDEoRH?K9PfHY?(?S5T zo?m!NH!?I^ZM2dNAj)^dw|>jxx+!(I?PY)R0d_y^QM1=mxz<0_%V(1Q8FPd>W~U+8 zBvlVw5di{@?3X3M>z8>zOCMD!O$k}%I1jA7D(Gnz-PM3Y1qlkWW&CM+o3%f4{~}v_ zi;PeGr7Rju9Hn27C`jC2R(D%J$nW9U3~LfJW~{!YAX2gVfDE=r#$O?A$qjy}YrkE! z*2w0h;sDHs-@r!60kNIRv+Rb=d1$UXrdS&Boo>y_jMoOHqK^p1l|p0uj=pm!R`^6e zMqE7hM6uEhVBMW1V;NY{zsRkAQ;O`r2kaKL2yr*iC1JA@*+m`46lv6{GiJ7%6GfdB zlg+h#yj?zQ%DWfCfJ?EcgOqhD>;>arG;^x2UK5qh0J9$qWufH?k_tBb&{GUmtpE^n zTy?Hyu!kgQc-~mO=YQMX_DXk8J)7V#7*%)gKxjwdZF#0$l%pqrAtFTxqLh(semu2m?=n1GNGS`7v{GeM}wa>cOK3C(-no9WL5De_l!a z*!tmT0R*@BJS3LQ5HElK@MrCZzK~+Bz?M7F1Bds9V4fxEgchA+@!F_$^aRT~U>E6y zxq$s;eqw991^wO1aF>nkLarj?owrVb-)gK-k(PBoP?P7OdxK%0Fvc|mJ5>-!5bm|% z;cJ+~w2L<#Bb#y}NC1;Vcscl!y?_yLn6+N-_0RuA}Z=2OmPLf6b4i?=%;C zDS}8Kyk&2m0sG#Xj!v(@?I%{8;&zn}$%l1-4L!8L^Q3k+qA&DqgI{v=6fhbxY-~b+ z_K21T+fKaqe7N=i{H+OYBTyNo?PDx_CI8g#cClOS6*5#N zL<+$|2lPpL z0_frW3G?DZa8opDD-|LCD29IGx|dm$OmL!93Z=Rimtcxa@gt}?#f6gwcU4g6w7l*+ zC2r%B_@JU{EiGxxK2-xrrsVL#h~QCsNPdS<;HaAn;Q8S)>&+p~9YglX!Si3IW$PFg zs_5Yn^p*3&OMnfM<-dUB4oFgW&B1Sr3$xn@kaAM}+AH)Ng+6cr^O5qu3Aua%a7HCA zg7Gy=2QXt%Z(!^5hTz08L2ZYdFdlKN7qIZ-W-Lj5#BbyE367+G>%*LEqkG~bU9erg z*b@8+gcp9-$_9)(NMd*D{C88=n%;?7sGhGCjJ$_jR4Ug zXM8G&d(sK<6WtcS8|}b#GIAVJ+kYS+1Fe>f1l~-~;;Bg8(;KcNOpHW+Y`|t0F-c4K z7G(TEj`8?3p!mRor69x|QX+F-4u z4XOx%Rprw?cxVS$wFh8TdsdXZLU*)LaK`Iq2LPo$6$?~8n9P? zfjSJZ=3S=K?J~O%WgC{P(}~F;)V-!r9g${BH_;F_HRvz|$~a%Np9_DrNWRO+fUvp^ z97{u$#6J2eux`3qnWVWRr9gA*poGdpFpFvyjrBilPkM$>>-0HWawNtDjLn4IyVGVg zappy6P9Sa{4%FC(@4#KW65}V!4`C}o`4Y;d ziJ>8g&!7R>(b7Dh*L|BY)_N*Ybng%?d$tQ-lnj_c%6&nI>CfHW5(zrZ;-&YxF+E7W zyf^4^WqTM&u3of6s|d&D<98d22ERyzG_vW%;meZ%S>8ztb&8R)a{W%@8&yg! zZhCWaVK#Gp2m$x=#05#v;Xd3)Zui(sQ`C(}Ep{^!AEimjiVwlu@koU=TK*xa56;K| zk_x`F@tI%dq6*7h7mh;NOekKPBzKX%7{Jj?NpoUUSiHgt;Neo^6SerbhywzDQKaAY zhwO;{6QP0{gROA&09FiOHx|ULAj728A4X2DA4eU9L)Ft-I4HznAjoW4w4wWZ$T^bX zkpl~_7Nk97(ybV-gtz!zdZ|fdf zCI?7u8}+$m3c)X>+wklJsm&O(NJ1UsTzCVJ3@j(xMsB{fvpny?FMh~LoinE%zA2rhMX`FGi$ zW1~V&;H!d0dtB1Av6j?ts1l;{UGu>~Rio@GdF4eq;ZA zwQE&!`Z+)E^qrH5Sy-uum;L>8IGFlQhoI-{@sSgXZ)cCV#pm<+^pVo%`@UY>9mZ_N z)S-N(R}a6%$NT+0@5|fe`9(i+_kD%`27k9%Tpf#$lXIPepTqm@et&p+e!u)ae4O#K zo7d~3#pmrIoYCjw;%hx)*iMgk>wA9}S42(^5C6r8-(q{w=HxK)JvO%6`)hjm7$Hy) z;!mot@7vq*-@4^*JwT=O|8n$g@Nfa~9B}3hMdklmOwIVOm^w;Z$7zGz)mu*GD==@l za)yK-@gV84l5ka7QK3w+)Qj8dVoANR?oeEF`l@>xI2;skuaws34#FND(DB~h9+3X? zJKy)^`Tk<;{r!0Vd^5tbjEbIKR=4->w~w34XN2YNPrY%z=VdjzYPW6PZ9u6tmv770 z`|IJ`H2(K3{?_;H!$)c=-SPc7n&r#W-R|4?`T4WnR;TCd!{Nu{RpIY9pRbUF_u}Jf zx9XSc`|E4nF20;=-s->AvDeBvZr5E~JYMZvmM@2|G%nnm+k9S}({edqZ;v0BF69TW zAMVc)U)^3FFJF$Ix1Yz5NgRS|)5q@!%iXNqnQyyqo5Rmm^WXROU;82-?_&(Fm#3$6 zRXciozAaS>gX6EaAES#NE}`8%nZ@_}`=RHh4qGqXjjGRf%CEEw6yK9?smY(d+u=Ba2swJ)UM;LspT539 z$BU1PcE_p9fL3qSfCKxFhmWV{-?plgYsr;$jY9XE=K$fR<$Se!%WHgIeU67pUJJon z<*s(aic3ac&xgh4JA9u(!FXT$B+xBYiVK}Iv1+ep^vzXLH9r@5T(p-|g&Lu2Xh1fV zK-w8+UM+|3)t;01wIEzY{(4I4>p`p$&G3-g{{q#)xokhnMqUvvCf~x05PxPS*!Qz0 z=IL2~#{WJr+{>|@e0O`EdKIehZA|Z2WVa6ab~R?N4zarMYW3vx?bTbI8o-{trJF zkk>VW&GF<@$#dRW!}B4|@(4+)$iTk=sd%i%2rh*UHjqAsWot()4kbPH9!#!VHDVVr zTC$@l_l)R080M=VxC*~UiSjFrRq`phgsX(4tFtSHb3qcksa&_#xCuOS50k7tXev3u9#qua#umO3IV=PV%M*u+h*z5pkAHXyKeZetRcL=_9;@+ovpNDt zNmY?sq12`2Q)%d|m!1Dc8a_S9k}oBzr|vRIOSKsL*bxZ)FoC9-|*h z+8Sx{UVM&*@z3NKwUCl)BL6?1orD=sv4FX{ft?|2#=L;ARv0c|TH<9~%8ex%%Vu<3 zIZ0eMOhaz0wkk-9JX#goiVVZiG{_)%IHRcBu%_BLA^!&>BMciYS>j%`VqVSs-tRIv zMX5=#1*$3Be)Km_nQ#;H0+Eef4=YJY+f>R%IJq^ACq=c{H$aaE!MUA&e+pS zLknh*@e%~71V1NagHqN%swCFSngZO`ik`1V!PW}6ZIw|qk;;*Tf7US7W_W^BS%sEi zuT_m6EmG9#1$5e!<+6HXi_%MmEYK(>KsSp^q_A*Mn*D6(?&GhtJw4Aovxz>u;4efB zh4F$3Q=iu!m>T%qTq6T$0o<-?V6h5d@-vY)kk_mlN}T~mcWT0CQ`*EL*mvuV=R$t(tI4(ci!5=>E_ z#}$#$xT2tVCR&gy62794Y|6c+tgL`WVUKKrPPT;+SGWSVo@d4o1&+yYY2rXR-|S<} zXe*~$$1tfMl7-fX{!t1%Dp6i#U_LAzA0nlJNm&Y4Pl%!L%M4{vN2wXcXr?^Q(3Q_emxwYgEj~Xl!ZHV+xLhR~B;R z?wX|X?r64(T0B$dlgJqT%0U|=38uzkH@k;sU)U_*JX%sDdv#Lm>N2Aq%(d* zgmrDeBQ^OuM6J)yg9-o-6t5NA?FPn+-X$K_Z@d#)w6IA3^Em(ghxB7{wYdCi{T-tH z<^QT`bnDO>*rk)Mj>?hxaC|;svx?lz0do~h#6`y8SaN_Qam5m511M%k;zM)9?1@^g z_#q7#Jy;M#^EhqXhcAj4m6dGc&l%M>%Qhehz-m` zCsfI3){$Ao(F>>}PtkzZUZn~1-#}X5vrOhFR{2Do)(lpix7ihxAANsmoLe>0-<4l* zv&%lO_u?btBx^N;muYXiJn)TcjeYgpaIwk zyLOslb7ku=25ApaIM`LXax}^a&q&*~PGkY{M02mHbCf_=S-+Io7ret}5J!ZltLbvW zR#|ts^>g+U1yNvrm*dp3ND!2jy}X)vnWX#2Wm> zl<)E(VBs8Yy$H=v7761SP=E;xdB+!q*sXh(4RnYZNyQR>j+i#H^)swYI)TcRW(oYcS_GU``h2+v+=rc0|WUlX$4 z8$0;$}{y*zcF!bQQLvll$`=iS=sh~SM^pk7`B{CTbV5Txyd{`ob*K}x3 zQ~9A?sDENp;$(orX)g~*o+k~{ln!&x!8cgtJJ{tGw-L8fBVj`PY21t0`icrqXPXeG zU80{S5CvzF$F=PMKZ*GAn`uPW>T-8Rv7|kJp(oa*A#Us$TYf-2m=_h^IN96{qWok* z6y3U*=wR5;DgJ{nA%?9#Z!y62=kGKerf=<$1I$>qB$nQj-IWmIA&u!FEYH(a7h=q< z!ri#sJv*D|)vJsG)Hu3uBSA}-2zTHf5|JgNj+=436zvq-Mb?dbcuruuf{pc+zW-J` zV-rLh+0hJOtXAPksRgjMDSUM+=WfM_1FP00$T#et9(q0*U*7z~v}?{|1);I6 zu|C>YPMaA>#QR5Uh!`Wu-R|G|%%i|gAyM7h_tClV{_UQ0_zx11_OA$@@93`oF`M0* zc*&y$FaN&wq=5c=B6ZqjG0dPk9cKcAa^7`;5Q{khmVZG2d6q z5?r#7;Nj$<5rhqrS?%J%U#wH1;(EjrTpQ(RNN$wsXpEZ zb3C=e-LOy-A!C5x%d3jj5Vbo%=X!Qg>G@*~%gThozYOU(@{e?<1#5=|rYsE~b9Cke z%};F6PIAlVP|N297aOe{zseoWurkvtGkLu!LEzgMiPCRU^bZ8ay~ox6*e@^82hsj~ zW_DfHS^O<6y)k)QtIVO$s7$VhBW5?7gux)U^b zfgxRC5}I1xN&7_oFZ|4S!=RRR6pVb6BUnryzIo0%WfE!oEo^*#QX7oE{Ks@vNApY; zVp1sEGYX$KW-kZ|LD%td08EeuASNaqyIafu0`Ri6rb&ZsWkdE``P0(B-?{v*v5)$m zmh-p~hK<>-vY1Cf%^W}$>+WV5^0=(}^AE>I{}aGHyxr%FZ#d_0SzE=iBW}g@rZMrF% z%Et$fX=3*jV)k&n0$eC|SCpLa*4cMCiil)qIYoahhRSHRB@hlf_wPc<=xJ3_8hKtO z+iybZRq!g746fNX*b-T7$6cvEv>KG9=6-zQ%T5 zr+RDUkgNZ56{al}rtM@!z%*4zOX=}>+%O%U7i@S4SuP_w?Y(P32#1j`ft}i4K*Z%# z%iMpv0dGTDZMtAImM_4kMZ`Jzp`j`rCYkY@dQd@fdIprfW zm7v0AdG1@Mema;?EycoGM=x?nsJoogI6-1CYe`c zKP=}--FpqW1v`Mvxqh=s1k`M%`9XP(Caq!9Vohm|+ITvT+}ACly}hM+tQ9Iv?Vy?> z8Tq}d)TSk4Qio=>NW#XyMxC-i%{WuoE@g)}tO~3=E!7_HtNB~A7%-OZawh@UchPuR zKWbM>eus``xKe?DcKa)OEZ4*icjWzq>EU&@mSREs*mx@7&CVWenckZ78a0ofaqovd z)t@_9D8^?B5@pqtIuH`$VhCO&NMB@cut;sKDVJ3#9VE3qtWF**XbwOHO)4|y)*fQT zMd!T@y$V+W{R(r7qmPgP1uF^|-Q>bvz9?{flzO(MG}|MX^vp9)%m~pQ@1WnSNpsfj zj;Bt`t4wcL7^?f$b3xw4KZnQ6iU{)o0dqK zI$8yr1F<)utBa|?3K1vzBV_B2Rs-nSl9W$b=PGL4f!@P01C3#VjqX4@!w0}wNt#Uj zW%>XY)WS{ne+$C69g^6F~K@i>4a?`8>TYHqV4!J6hl~{t+@IXU*NA3+YexlN;r-E2YCI;9J-w$)+?{ZN+;P#hpBXJ(dzZ zP({c$@vbh0nZswG+Trd63wHdwJDiEYg1*x+|2bu4Ud^Nx@Y8q;eVGqUSwqZsFnnd| zsE6bJo)<8hc&@vfQjRW~vs$oQF^H1kAF0rfwbj?sx;d#C4&eXLM3YsXHu1SC^E0h3 zCg8Ji4CdcC#G9qgl1lT!@4A_ju70fSuwi{Kuv+>5*%1JeOmj`CPh}~H!bGf?Tm~%k zG2mL3r|VNs5r+}Ej94sF&JJejWHMk5>i<>*yd&f6tHCLCjfqPf5F;fR%#2Yt>2r3M z^35OP#F)q|{$CXR-2?!!tlYDx+|^8OK4Gt@zQ6hQ4WIG4#%&_3N~0}~-+fUL<^8wM zwoubIv_#6^5u~B`+j+vPAQ%|$$VCEZt%1JY+?WTeT>`Zr>&_4x-2X(c>46nRFq1q@-n&(3^ziKQr53=XP=AR$# ztx-Pw{4zINLv*fvhZ+>>aAzHYvE_gJa=UQ&WAMp^uV>v+KEshKGBa`^a&Kbv*2%Sopf;H7O-h}Qh1c;nfc?^_|5or{&qn>`Dkk6_VqW&o!`&@HAO%nF>y3< z(9P%fA3v{-PKD{nFMrby1E1XddhE9PUYy8tDVljc5nZ)y<c)C5gi?#p#68U1U0HKGZ7zxe0YoYk| za?eauP+*l8l5ra7FgB3j(S|Vkh9nxuRX_Q7G!;3x_jf@9PO(K9Yk+iVqec*sscP8=~(=) zlSm@i8AK$Y=84Tzh)s&}!7DQiE~7>UhC8VbO?06$U7lX$JYi5|n=gG*)$I!-6F(#p z=)sMna|Hms66jTmss2(m@0H~jhQFTo(!m?ZNGg*^)xM@6(8cpX=yq}_8PWRJYpI-I zXsGgCadB(57~d`j@*|ys|6uXl0#*24gY&2awEuD@2AFHBYg+jUV`@pVJ(Sm~$~F2TT@6?G$e{O5)-#1Kg&MySzfd`vuP zwplB6yjJzFbR2&e6nqVN15NF@wu#GQNMxi0FQ?K0GV6~-8h(2XpxWaE>YDeRN*k)C z21L!u{7F9RbdG?rwclTP35$17%jIk?9!q6uXVd=6G88yp4aO=&!>OoA=x?5sdx z!;$Ns4AywSu+r~2$NlCH={6bh2-TE-Zw0;e5!e&2s=;|)#&jKqov}||-A#L|{+YTx zF``tqv68Z3z>XjP)xLoYzq$+#pQ<4*UhDju6QV;^>-Wzrqo~9z5Sw6=vuskU$-$V) z;li`aOP|u|HG%!+)Z5H8I1kYDOPcY(2%C2Nt?g1g%uLJGjQ21yUdR+o^}=&U+{hp0 za}Xu52Rc%BG~(sw6YOe=XzlW*T{um^Lw8ix+3nLg#5f` z<&@SqW@D&l!7Y%QTbVVUvBOc#*Q~fdTMX7R>-O2Fco?Z3p9*rB;-W+4jC%E)BiQE# zEXig=e$bDyu?MdnptP6d?0m*gxZ^ZlhItEjd1Yi5nI}!QT2~?6YLuPRRNpe}2q?tufXGUIL>SjzT~?JMODJ zajaR*0IgZbb)8wRRFP z=mwWL+@;RW4)C;-pPPvKqm=OA6Bxse{=YtJ0DRV+Cy!yJm#eEXRb%wUclX$uo?8d* z2c$+;4b@;Dq6c~D4=`~Q11u}jFG%o!Jwc~Ub#?PkJa<-eth@@d*ptgmJO5w;SKU4W z%j79fV5OJ0R%PF`ULz@MlA8!6IcnFAX>sRVka!SeoCQN@85Ilu8~_*15?d7^+CSxOZ;0CFeij11jly zMI$*wPXANvUj&%oIX<#l(Z|xD-VTN|5?#qHnak@(Af~|I!B~-@-2+e7TB0A`O1Pcm z7=Df~$JB<);_hrm@-&|_^H-GDp z%zKm-P52!^W^{>u9NK0PU^u`$;nR;}_~fjLFsowN|26rEwWr>#r!dzswmcG&(O+0v zZodMRnY32kXc32e0?ZA%wjIPvyGBncGid~HmRNQQ(lc%2G?|f%PZnf8d$7JK>Y=kP zE}j0-k;R=TftsGLyz*))+&8zozucC}AsOUe*m%)pg!;u3zL*nTQv9Kjzl}<2)|5}e zQwhLIy-6!q1AM72qy|pS^X#jMORG`FQeau248A%shAz*}1&dT8B8HAme_!Jc zCtRr+l{sVwQX;GP5#rN_^RfP_k^$l<3V6z7-bh-bL!&CX&TKqr^wAZnjj~Vegcc{- z0Fq0V#eE$D$auWtwpQdfm)+uGnh3yD#lFK%!bLX|N*{ytM?nms-$lVAE7V#!jHF=8 zsru`Zf3tSfxpx%ghOfYq;A2e^DB92EXiXeYMt2+MJc@+^`$S>MLjDgRo6{Hzf#^yYc>r!K{MdJC=N8^&&-!!B<;QGbHeMQdJEy8q4)-;; zh-q4LX{wuheSVD#mAHGxC^r*khyQUAS|$#e(XX1p_Os!FybpEB&#W!=wRyB%-z({< zFvW?mcL&rsX~golDQ8wa_}N--sN8IGs7yo2l)sf-98>GR0IxBgIiy%F0KvsZ9RqS; zCA;&7L`X(UK)c}q({okJ(h$Rw*6vX!I55lNrA-iETyoPf`xQsD%M!k&nl(R?Qwodg zNQE>DLvbPWb&f6+ppN!9KIEIOO4^g?Edf~u=Kr#}099N8K|@9>6nQ{aJYuFNckc8WL1+P;{zy&E@nkWdsaK4RHa_t$QH zxO7e-s{asWfU90UTR0N+_`$;s=K|ZDjiVJ8SG@6vI6*0!EA9J%s8s3Ih;h`%;f<13 znPmv>$)D=0*1RtBwo#O09PlE=6o9tQN*eN_YX&Hvz(mW;+@U?<#j{578!Ivq<5Q1w zt*1@9ZBJ7!zh&LIjt4E9GH7FY^^sp3WB1ru?Sh2qpSDSYQOa${T_+^R(TZH3#ijR) z&BV8#fV3`IkCQ`uPd`1RJP#O{p~v#jqhvy^ zuR=I$jbzQ_CIERUqCi+8bAZO_Es&_?w+t zB=}5}i9w<=2I(P6HOAAW$uwi=5!EW#pz}aJzc2y!?0=;TRTvpI+hl2YUc58r+)X*w zR5A#sPd@^gzkrGRw@!q7n@|WQne?kBuKn!YQs6Hi2Y~5>meowm(zAwPaCYw_Xd$|5 zPMixo{`!Y>%l!n)p{C6Ls!3Fv`g@IKd?E-`7n1>3RwngABpQc@c0y5OVV?6rd9GMj zp~K@T$~B&_=wz;=g$qH2?yym&O<|8maHrs#s9zEq|8w}Xk2N*gI?QpNg1yGEpP;tO z0Y}95*qG^+Wl4)+HIG^ER0PfHbGRkq-}HLn<4E@XlRG*bcTM9m^uHl-O!1!0^`@mr zfeQ#vo^!qN|16xikF3W%V;)E)-XN729?ZurQ#-Lh;i#@!VraE`V4@nGBeP)Ba;x@) z9q*!vv^!p-2+o0Qt7`Px>Y~bEXCoLpq+&8~pKxzii+UT|eVk{Z8ZA&sB5(jILv40) zmtca1DYTj{mW<_O*nqHFNn92O>kaL-&b?(L*K?`T48w z$R+8zhBitHF4%rf>RHZ8Z42~(A7Mo0%L^ep#;x>x+IzseA%IBK--hu?IoTseheEZ8 z9}+meXJ_Fu#rf{*(*?zLCF=nb0(lp|)g|xi8~uBvqPo_6YwyFe!sT9mx5u_hW@I~a zOP|#ebdjtLhk|~WR+)SD1`gd=-8?P3(6{|(3y+I-Of&Hg_#z=PcV%HH-w=uJ(gT@} zs|ZBNdWu2Q5==&`6a4jk;};NNdqqcs6Bs*F9>3jw;l9kN@8-V4!d6_{2ROQpjLeXX z-ZOb3#}{{VaJuz}4sL8I@uC7KIid${-7${*ND_##iv_m>8y9}u_6M%PBy4afefoaw zU7efgmc@n8?|Xkx>M0H*-Or*)?jVg_GD)bPGezw4&9%CMoQ0*R*v?Or3Fo$>Zt)FG zjGG*LQX@mo%Kk>dkHk}(&h`vV_n=(5zujEV{C(QHIRJTo=0k&*A+vm&{%qpzQ;ya7 zH5l3Z%|)04uTa-X}ag(oQ{#Jnv`uReeN{Q9H6 zH=P@Nvu7_O3r+sT#MXaaSqYiy6<-9AK8?Bg@DqJ?4)86?J@ve$=X&|FH=0?P@Ix^` znD5ZRn`!su4gUYyK!NKheY^ks;e$8|*auwT31B|W|9M>}3;VzOI{kH13ApMGUnI^0 zmF{{c+Xu_XeJvt4s5%`~)GK+bs+eN99d)|+H3)wGN@mYtdpUa~OZ_0soSMIc+^ZI{ zeE|UjPW-eG_-E!*p@Dzk>#zI0Bf-GlF^k(+%^Be9(~rc!*S(|I(a5R9i{a|}ErCBz zXOW79Z+^f9m0L50Os{*-fp7JNulG+Af&PF0K0U3`IsLvpo5Ai2e0lh>boRqA@agYU zBC?@n;hWDZx?#Y}pMyl?t?NF+*PG`vL&E~WKQ{1xZ%*6=3V+nU{l31Li7gmh%B0~F zczakIH7w99417BJG!qzbmhI>LdbfkW`gZ@A80g>A{(ABw@wdh2yVHqVM?u4NGtIYb z%%8(&XN7hfik}MK?$!T1R=+(y-F|xP^ZR}0=lFbkIoK!ocAHBw;HB5i`u9&?q2OEQ zlkp26tgG7f{nNrNQ^knpr|bHwnTaFCLM6rc;^(X0@zuqLoa)p!d3DG0F@oOi=liEN zN2Dp4R2!AKmRN4(ha;xKZ(NGk9G3sZlTB_u}+-A#>)5)6Q~1ced4*EK$=ASAyrn>~(p8M) zKarD~NxpZ1rBIT05E564rtE!?#snUeHZWcBK4`oRnrP z%LPFmGm#61#_@d(3~gzB<3ltsHX*A_E!B^J_$HMA!H$Kyf$Q+d$w-#N+Y^Eujsp4p zkDJe{wJWTz%^0d-IuNg6aBY zqlpv$G*@+N|1?KExwgn>+o`R~>Al&}*RbRJ?d9{tFOLlK1M`Tdmf;)0@+S)V zI|Ymwyt}$?A4$Y<#=5ox;96ydHVXr_rYbrsi9@0(4cIMoL&0Gi10vHH5f*P!G~Q<5 z4ytNWSN~C=Fn;f==)GcpLxUbJ+XURzKf9fFRX=duf-hv|rm9*|0u4yP+jFyVwd^Nn z;4Wn*=zY-^Z5!6jf7V#(4Y4_htugR;#%G(W zT`+|UvYCDe8NToBKDRKRLmdLu&|0XgTMfmqqBU0N*fRR{IUKt4oW*n(32Q77NoZ-| zpD5`Q!kMxL8#+7xZS!18yc+L&YXCRV!f1M`sjaHAeug{k_>qM5cT^2(^z>8;Gwmzz zCTaT;CVNwf1GZTlG=+r-W6}_14GaD1KhV9xBqt*{?+j zu^%fye?#k(LC4W#R$8LhFZXJdY-}vV?ttrgCYL_YN0*KM>dxV4F%(XVsv~zUmavrn z^hIVP`%br{aDG0YDj~wd!Oo7%-J3s`%U!qgNjZPR7i+6gsX05DRq}Ho-OCa1%&Dn! zXc{(8F^P$@R0H)hWm}Us|4jAjP9^Q484)`Dc)@VulU;#3X0+d$g-p{XIx?~gg*vjB zu|%UabAosRahr*2|QvJAGP~#Y}swDAz z3@K$NIbv5eZTInW9&)%89L}by$p)p4K9s>xNC>Jh?~lAAZ2bbHX3jDV4ZU5NwcmVA zcEUw#->q+6n$2OqG@k&>uJ9$-nW2Oum@<@HGdEfZ@}T^iar~v(?I^mm*j&4MRa<+|kw0#` z$H=+Ik;zrA1-%n)ROAhAiXJwG{o7CAiu|vGbppGMWOY(c#hp zXP;{b9rAQJCa?JI!&2Cwm_@ZLjT*Ze`yxrdJ~um&OY5fpyxVr1q7@F^w7#nWKb2B= zI#UzoZ|l#1m$SZ5P?Buw2kCG%wGK)!FBbV~Klp6v=hQZ#tHdeGNSS|ErU}0-FUX`X zhg*-tK&GnDhIo|MzqY8;uur>CxK?xPCr7#A< z=q3fW4{Y__p|aLl>OzFEC2=b9H^*#U(V(saa19JYt9OaXCQDY9npz(wBJc`(_MH*I zFj=)H7vR6pf2K?|52di2{&0XfjolTEd^I|Xjn&iEID|bV@*OKoJhFqSlKtrTJ zY4~emoeh~uB)jS;*t!PhTN#!@oOdnO8XzqJy!h=9dqn9CMzgrWT0K3;7|I6^Z9iW{sY$q>+2{)k7l%8R@X?beFa$p*+P)9s`8fl&fVl0aelLLG`tigtBsS zd;U1aMxjV!uPKv{I6XUUd^bEjB?1CW5y3X;_oi z?~^LuSVDLp+wfl6?v5F%P50#KdWXF+dNo)#Hs7|5!{-B2Z! zLM(g*x zwwrjKL_D{LF?)al;_95%^WZ)f!S+gl`enLZ=!OUkT4Z2iR4@_E0gkiv%Z4D|6)3OR&0>A-lA1v1%6!{MvaXO~B zRN$zOlY_C^6=FBR*7O9$Bg8Gu#^;k2Z(RuK%q>S>Gl!@uSO{`?5TKeC#h8GG*0?W2TQY7cm3?9Fy}6;?$Cx>T&*&^)nt=M4NIXd1WeCy zM@zo3nqQP4krn3R@aO!tLWO^00)#TMJI_7)OlUDz=3fu`Dn8NQ`7>>)hS85%^V>zz zt}vYy;wNZ!2>aZ-%j>N7uUw&$HhBQB2VwVQgJXOTcf_ewS6>0B92-rAisrRt-O$oH zFC0mp{{E}l-w0JxotHw`SqJ!Hm%B)422&!HhnYMsO?f*~7+NV4ckb@@rBPlp-?vr8 zUbwHO*5n50;kJY4lvpb+!8ElSu&2(}VPN4fUi9&c*r_ice|EF4kx<1Gg6qP5v8&RF zdF3MfV*}Ok#(VK9Q0A4?2i>K5HE_JD;r)^TU>Ps|(wqrK>liXaH3nLm%?#s* z5Ei2uVDLd^)l~rDlS39`ywk`CnQ+p+-yuSDVRKt24N&y9R$w5>+wHAONQk7Xo)QiY-Sody2_4}tVsbuQ?lH`Go{Xfn-LYIlJtJc zUS(TM`8~ugakH8h32OhGv9y){EKXf(<4>6Hq1uy)aEFjbH%=)UERGu;@1|8UqnG4@ zr`;jY0jA*q3!yOTrI}40ZJyejBOsSD#RhK|`V5`hj!vE|*1!+1X`5@_J*6tOE=zfe@%MqM1f9kU_SMc+h-{v|chd z#KCe@Q0r{)OafII(3Cgxsvq-ybZ%!VGFWG#`r)usH|0Z%TZP0 zR{*mVyAIEpu^>c~nRES?$Q&PTnT#4?6jN6v*3Qbe(1EB2KhTTCita|vt0w2DON!6H^Cc3MUO}gV@{DOrO|u@_=V(9ub4d>u~BK$EbV3+zg8n6 zoGf|5%I*>kpRVoNZLsv%xU9l)I33UCfPyMK)cLzTp7xKa$ioa>e#;fGV*i zctlKY21v3^iYNr!!)1+lH+l7o%9V=C8s>^QNE~~@J_Ne9?iQETO8mFM&m_s8Q1DnJ zFU_5#v8__q+~r=}9sV?umj&KlL$sK;{p1z_^57H-&g|@bpO21`E1^VN_<$62V3jbo zO`xztt_eHoD@*`(DAza@N>A#zy1KQ%)08k&PO%u3@}uL?j9SzSQ^~gQXHK6&TEkQa zRI6SQ_IEd1&yde}#%SML9U9S=a4p4YlGFHzQwa4W*&wf(a3;=JLltNwS|u zlRY$!gd~SGeDtZPB|8^AUfefy$g&J!ZhdlT9mx7xoY6nbe)2W-bAIg$C~n~uCPZYJ zphU9R8H1)Wqs}^~NIdI7_UxrjUThiC$tGh|epV_McyUW|x2>f7k;KCQp6$k_aUB1h zWjK_ab-x&ysZfPpir5w(iDdn_;2-8?-1(TJ!A!2oYLe(6irMv+n)v{Mam?3P;}5cC z#u*<4*a?4l0UXniN0&%RXWlw*QWxxzy_xkbgVTc7S>9FVoS=rjoPbt>) z?YyOX-6ip8=-@W~)!%aZa-Jy}VnM;^aCRLL|B{qdlr}~qpRuyqZBM2+NpN_QkQgPj zhRCV(fD;tnLhK?sbk1Z07DZ4N%Xq|*o z66C5?F`PDy{ zlGQirLbWpybx&tzu;qX9-kmX+_RkfF*%IEJv!!6(=xYH)pVwXUT@G^zW6Ws3seS`N_?7e`S=%3~9uLhNmih zQm`}poa8=pf#Rih&&M2}ZM@#OqJ3popOQ2~1h-12>YK3o5C9P99Cs&e6OUw7UHaBo znEc(X-W*3Zb>lJPq)8*6YVO=m^PIHTq5L~0(UK}hT8R4{C4feq%qOYER+~6Gthy0+ z-Gh)x`i3~$FZjJ+H~STiZU7VrvPlLHpRz_K9i!nJoV1`GA+%v_mbUp=8!f-)rvPk& zL+d%=d&81b>`F0PR)8Q)TweB@Gl!S8Y{J)?2}q(fQ0@__XHmKj@B*)uUxCnlFs*&6 zu5=8c=;Zm|rwma!c++s=34*q(*hDsMULserUvA=cG^<=6VsyNN?LE@zk z_!{MaMSJfj76g0H3b0Il2z?D1BRWGRn#SZwl|+kOm%qG~jhG%}SbuD;rS;wh{%XHw z4a5?u-LEc^@MpH1GNg(nR~KmP&#-MEeG+*m`5bU8=^^3^exzx%C<5Nap-m0(=fuZz z_J?k`v-&YLOmT*oFupm^%C1GZLR8s&aHJZx6lF3rSa3<7oMEybfRAi35y+R;?dMr8 zu>yc=p$lc&%ZlgIhfkH38{|kKtC2F{*VH_{Pkphdz7Opw;W6| zD0cZJJso+M_-q+Xd_HI$J^2Comb6(Is1(T&NfO6A-DGZxFl7h@9Ts&0XZZMXFx!cs zrNpMKKm0Z!w;g`1)5Eh-%ak)^QA=yb?!@C*d}m_?Ab`|{3U&Y2(S~es4lT%t_54b2 zl;#0MpOoN+DVKDsLi|E^P@W{tp#*zQIA4}TKR6MY^H($mI=Clqr=R#~(#bjtZP^s~ zPUtBtVlvi&lP~|CxEnONg`=B3tz-L#_5<0^NV8&i??d$10m3&27bKI5fY2kRyB#n8 zMXw#J6i(FJMwG#21PNXqr#&N0AwuBZ$AvU|xTaic;r~e#{In>P*J{`u9&A_UKW(E% z&8&-9aJF*Yq9~_Xdw+H>Wbld1HprYLUtND> za6F-XPJJfnVF2n$l~<zv>{ERG)p zOd(vmoI47JmfVFMvI-gev&2|w3j>1ytL5vk$&M8>{~oIJp{a2AtylYZ>Y-s;;%H|k zd{(d#d<#n*j$)wE5Xb3EB{gDfC`5Sh`t*T=1~?mBGch{bXs_N&T`xBFdV=Bz_g9i3 zOgHlmw+E>|ue|_l`v9L22F~l)M%G^rv4cSfoQQ+IMYGdexnb2TSlTMm5Fx!V>1VnE z2;NOQ+H(#P+y556!Zr5|=LP;nLuplWPbv>8luj#&WIW)2x&TGVwx|8D9v!UfA1P^t z_06unUR0pIv0Ui6dJ%(ZHY$RU8_vb$$0XS3Xik0$dr=KEIW(c7DTi-|LAPKX~@ZU%x%Qb7* z4@*Sm4PP(mvqywJ?x@POako{x)8yvUdr}Hg)$%k6X87@6g=6LVG62zQaAAYKFo2Hi z6^Gg#DD<{pEv@ux?3Yjsv$v9neMjaW6378hHfqR4ZS&2QKX`v#UcaowD_o?m0hP%hAJ(UuhyT|y(9-sPuZj5?>0tc! zHj8+|drIsfI8Y}b%%F^o3>2L<-KF%zf>E8nbY+B^qz&lJzO1v8L+eFfd&SVC^rH{n1-<_idmYY9h3Kmor`j5 z+sigYuV)*W9rnX<6IQrc2ACj817p=Q$8xyLqR<*OSy`eLD1ep<{4_JoHlb>Hp4TyN zu|g#)$_HD6(_FH9@#4qHA+k+T7D!i=8FOZ)aRCSFIPl=}gqJBT4Q)>%io_ExrF#&U1H}_W4o-ub<|g zrg*UlTyt<2jiP+QTpw?@Y@(5*(k75pFW%!pK$uoi_UD5joC*sQD2S5dSY@tW{zV#i*Kw`LJ3Cl1KPz?Pi)7E!abIF3^eWx zvn`6*cC%~`EI+{i2y>4kD-`=FD5DFaI63mp-Su5GQ&&4C_04Ys$x@hA*vAx2C&o&o z^f7xZf3RboXp1yF7IOp@MrzIn(wI>JK4}C_OkkClKUlhtgPTzax7H?7`t2CG{Gv9H ztrSkBMO<^*S}eqOO2u|oh|J1Ow>csew@Zozjfp>BQ?3ec58La2A&2JxQ~|j;K(;Cm-}asucLcTi9STIKBeI^Iggo>SQzPEfP%TyZF>!`;u4XHb%96(LbV zJFm>O65Y-_r*a1b+D45e8<|S8F!O3W_@xNMbeZAt{=jAY5Zs6>b4^?H?Lyy%=*J&_ zR#NjpN*XCz=FM@!HWMS0e4U|O#HFI4N|;Aa@0M)Q_$( z-*^ALIAs{|H?|iL)x;2|s$wvpmBH~8k z5>h_w6F9@45-&BSS~6d4G^KQ|EmH=<5ZabNApw{witb1+V>>->O0QWD7&!7rA|8LX z4-Q`fP%EL_;>=hyO?-gnQW<4k6;iT|h)^S8C-uv0Qdn_LNI99aEDwPUw_&}N2G~^6 zWf{z(n3{do&Jb{9HZta38P6}m4JT2t=FOuuI;f1x00L5I_t29%D?oQM>(QYUfn2-a z?XY@G$V7=2(130(CB#&W^n!9oE@^r7!K$amW?XWs$=KHCtBn?2Q>^Sd8 zm0`tWyPBBpD3LB9528O<46EbjfDhmV7~VccD9%*)Yr znIixvR%^28G8ao$v6^_$i(fzWepOK^b^1hxykMzK(?9@(Nl~~f^_gFjDVJplA*9Zv zp8jo*a=R2|-pG5PtPZ(9g4xjF%K!SRzp}MJla(;UaPIYIdF9GjRTC^e76}Rgn#GD8fJzESGu7e)nRDQL86kwW4 zCEzD@Za0QWUQ8XTav;L{R>hhy28k>}joC4VhtG>*XY>yef@HPmmTw2NqOP6fu>zzCsw035` zNMkMO*WEZH`>W@R`!CZep8<@h$s@&ixkAA>q;HVj< zy=d?7|M2yeVR0}`n<(z?!Ge2m86d&kEl7e}aCZ&v?j9V1`w*NN+ZS-(z#^w@atX-V>L=8fEUf>!_LI&;^1l6Irj~X8sOVP5#JVdarEJLPPp!oyJ z57%o-x2UH0Gi!#HU(lQ!<;M&r3s!oiR*v<(p+_=2cT5#I!j`X+{BY_%d zu8eq$?>Yyi?OzDkSRuwU*oUAJMNmi2AmasdR2Q)s?r#^rTnz`A!c>HjB~C?AFNvCo z4Tu7nP4ke2U^L-ncMSBm>m%~&a#fDJU}+9nE-Hz< zn`~sozqwAgC2_ogDo_vr^c2X+v>NV0NsteP1;p0$v!AmJS9h4FsO=R$y=#MWu@bP0 zQmcE?v|WXoS;W2|66~cNZ^R9>9m5%?K`7s_z$jL`d&P%^&~eA5UYwCbM(1eac5on5UnjyC@-=i^E>l~@?On`+{z1B+?6x@GuR@}$drG24LW!Th_%v)MlxjWMhc zWS1RZ}NvePSPcqJ%G?u-cEwjc6CjiH9 zvEyZcqKr=x>3*oJ3=1!;y9hIFcpp}r^vKr;lbIkLEN}ST1P?mK?FZLlPWCAuz7kTk z-AgFn8|IR6c9eg$Kt{DjAXz|!MRX}e9X?ZBJE1vj+3AS9U)RcP(ksT{w{&+8)Jf4I z4>%6LdJ>rHiy+?|Ci0)_x`+pyWv)3EC_=k}MQGSeRF}g_{=;S*-ujZs>~Vob8F`~? zm3aGKN8rpFL*jUMj4RxM+YtoV9Ks}Cu2}7X%4(2m4?HM~*@S_YcsdLTm(ZitpTzb^ zkc>_`QQ4{Aagi_+ubes2O`i4oN!qeze-;bLsYcoh4*ry~zcUW!7|h>Wa{Xk$NDQ7H zRStot;AEmA?z++#UPW^V@`4nD&s<77*_0?n9153aTNDWyFLsY$4k)!bHF7Z?KjTB? zvA4h=`@e7};;0w< z4l91%cypUg>%%bAkidyj@}TGA5hzJqz;D2#4;AtEu;$2Aj?mBD#7M*ueq~f0P=$|#7A~*y} zk^X+lk1=gj zC+CS@*nWaiL)lWk*VmH)88*`U&dYQ6bTbeqGJEkS}_EP%Q9N}Yv&@6biPHHQ-S6yU_isGX|P!GYD-h}#MJ8PZV}7)LUu z+sP+4Klv4YILDaU;k}2G>ID_>xZH5SkUz8oH5Rik56-f+;HC9T)LA0~X_X?nZhw~%-sgp+7r8Eb^$H_a6k-hRTp1+Fz3?UOKO! z)frwNcr(?jNM4^J4h(0y#y(t`9F&I*RTO9Z(P-)bGe@M)WH5Z_=(4me0Vjf2h1@`M zv`iB~{Qmgcy|+~DLa#Ffg(d(Wx7#EgAH8!MPMfZXSQ5%@R$~V60hE4D6Er52FG?6v zfy&kIUSZo!x0#$d3BvI$Tz;<48}cJa1ZNNnekQH6#4c4B!z10IqvOon+P^^lK>)yJ zrkp$xUtytaKkPEbAJEbKn43t|j@EXCPC1$r08K8ag9_j)`A@7IyRfh=%mJOhDxT!> z!95x-in6m`KOwG}4l?%#{+y`#PP*i7ZC8_JOp^&kJH0@NY>%v6Qaza6*oC6F>o-Rc zUwOH(gw^G#Bo<*~>U28NYimKn4#&617mJTgLY)&VLoB@3;P@3W}kFGMI^v#(l#dh5k%q&nvBBamaAtq&mmzJ zEIbe_^O{}>HZyiYNi>L)YDxU3rU5SNeGHA)ZR4%SFnZ5}x<80;vD0Fqu4z2=Cv(G3 z~4!v*k zVI2F@0)J)fZ{oCX?u6I>LFfeLV@YN`!8}RuB4S5JYkWyBwhM2h3R(cTgJ{sdZ}v7|j&R%tLk|+(#fCM~Cnz6Vyzoq)8ld51KI7acE9|FH^->QN8gNo;Dsq6EPHJ*l=GI}^2?6Bfz{(A=o_``c=#c*`~Dhn6Z zilKe@_;=S=Jir@uQN#;_WYjTa2lHVYD}psyW2Z9yY2T4OQf}8Mo=!RjKyf}1KIz{e z3fwvlxz|tuLF8d%U*|;3>Bd3R;LnBJ9EmIJo0nLFEH1Xg+?<~~W~5$jmlKmpg3 zZ3oMyA%QaU-)EMC2}5P~!kEOS*2-~vFmt1g_){!lH0BcNm!nPf35XSGvdW9e)+axM zKWYK#Q-O7Gq$f*~xwQ}1Qd^FbAE4$WQzkohwI0zCbbd>djm8lpEU#V$(pF=nE9Jgp zwa8c0-De*Or5ji?{r-#(MtUO4TG%?L$Cp#^K;2C*qZ9}#rKiU&x0DZZ>;J7k&r5_> zh`jt=U4A4n7eiI%t$Yb=7LDjAdjXSZTsRjEO>J=EUeyzqnNrk9jHNJ9Kyk_k>is{Q zpw&-np7D$GB@sJ4rx`?c!Hbx9Xd{Oun?&@PZMug5-UUBsbkxYCZp#2wTRvU&U=xa+ zNBfJeAfKFVI@wc#n#t)So{~WfSYlER(zV1$DQpmZwH+f%41H4AFx?|9Tm-SCGmT7* zuI~sOO)5HWFy>vqsbomT7dxkO@&im+Lbu~5Vj~%$^YnLi;@O>}NxM59+>qr6GZ=f0 zi;~!llzS5FM0^Y*hE(|7Qj#wOk3Se~_T^eVzUd)HL;y@xb$<_6M|+ZrMB7kP-a1ln zN`{J=7~}gbS;wqyvASd@D=(w|@dBc#>Tds-8CNNM(^N3#$bwNH*xzh?#w#zdR<9L8 zFw^uk9}#2yT$g2wzR(x&Fk0rQLn;sxxQ{|K^k{Gj~Fzs`__WBG#}9U%8CA5m`x zT{JXncFo6Ra;4Jn&bK1TA~SY~3z3(c$bi@XUY$nV-S4;D@SX9QCr+P!=_hU27H@}) zlb`^7LWf0I!PbB#SWdOjc`Lz1*u|lZLcWn z+vZ$j$O3u~O<40$ej+F@l4O9Mk@x&yAN&jP{^K|ZRlssAaj~2!sK9BeZ*sr?%g4e3 zuEj@i*$_f}DXq;I4<%|xNjNgq6>XhCUf0$47EZ}4)~31FW@WKBNyVSY&}D;;oi%Ep z=bXtJx~2pYA-2D;3mObjIi@JBjT6i19~svt)KGNQ2$lh@5A1L0@j{(jGAXDzzQV%T zl>m@>`(G(1Yb7pclK{%`+aPu09yC^36GAmJ7d?EzAgq}#tl>B&lXLN@5?Qzw)C%Wn z5%X3|k(?-%mS*hy1k5^o=QW-0>S4Z-Lgb5HtTwTII|uKK#iM0H#>RdpWQA%H03Nq5 zo-2ua)AhRzW!zV8lC7&@B=)nIgmugws^PQ8bC1GzgR)E9ml%HVb8Jb6C{K{qU1@W^ zqo734I&><&@2E_Bx^ak&f;O2yUZA)VT-V0t02I%T8K863%lHTT0`7xiGLhfP=sAks z`z>@s6V*Yr5~?g^QC$XD8SEpWA0x5fP#HJ-1=kRG-qHpmYd?&&s#6^&|x`xo%&`s+{d>cTfM!+#2z*?aRA6KoLi|5p5 zl-J>(VZMXx7b_3A81(H&XUBe4Rx~6Oy+8{=mrd4Y0+$u!2(r&Fs)z9DSXepvkVR{k zN7=z;ACW%W-?x+eJkXww#ri~)LkcSo_FgNHm@-I?B6~zgaXNx0M#g?AI&FJ%(Wm{& zc!AUV64^9E&At?`SSRJOn`$L^A7cKR=!35Ys=^Q0Kq_#?mD1m=p?XJQNKWv{N+xkE%zg~K~ znUA|3%H5bnVtr+c zN%NHD;xq~Ad~P?RAGOsI;^}i6fnk+)_tsLSjpxuE=t6g3_U=U2n~iv}s(=@5F&->$ z6-2A;6&UAR=hKZ^ku+B+v=D(i*ory{7O>6&mcqye>+_AubmFIhLB}!-eRL#Q?7;5> z39&EhyjsHro0zv(L%c*15X}hAHH6Kvtiagm6|GUyF2Z^7x3(vr=n=691CgLu2rr*m??Uivrl2tiGZ-mtq20h%z6UGut| zxoOlS6SXdYRM3-)AS&Uv)AQBfhozLvPkA!F8Ekt(Y-nK=l&u3q297Z!lTu=It~KW| zOWGcoUGC)2yIF>cm2(~DTz_KOh&;Z5$^Q&zupg+}bMq_B-O2KuX!}tP&|tXpVR(+1 z){2TZ{18=Z4HYee7g7x_TJr$N`@RV%Gi48Si2$e zzE)jC9KPGnHWl-7tsDUKQi!yi%}Iz`eBrs2M}%Rp0ZvesfY9@$t z$puWC#3IK-PJj^sHv}@otQLzI50De;=9iKr3Z5;v7$iC9vgcc21vJyZMCnnt2aJA7Ln4Odq#I7Y%Qm zBOKU86Iqpji0a%K0l~n8IVY@I57Fl9WYIJeHUFUHk|gegxfsX6WnG!{Y#fjG^_$#+jzf`Pt2IlLB#M}OmDNrZLB#x5# zz8h_NJOPet#kdDbImm>?+VdNkPpVjS{4?F}AAO%Wb}00s#L1^Ss9hJa{VH~ z=9cmQ+-!{J-)3W9>=RaHuwDatUywmYA(njS8uiCC$)$!t9g@z!4Mc@ITox<3xb42p z-7IbLB%e|Ht&~5VnOxuOJG^ch z<-EUoIPv=O=~H#Nj_Wa=eLPUW+e~;eUt>&BKT!3(L;MD8Mul4e$ zh1M5>^@qbhzIT5K#8HO)h}NIi+#HUb(?FuPz_OA#Mvqa?qK!M3rlUrBMwg0)BS~+A8C0`-v&wFp>(06 zV}3E^^T716modZOP`PPmHl<_PV8&%7NrA!89fP)+oT1aO3tY0R+$UI6@>wOZXTp9{ zTw)vYv3uUfMxepnwx2%5O2mU8;d(^ED13cXR`dN)pjhT2*9ObpnULbSa~6TPUCdVV zMOhJwj#XZVx)KvOyx$skNeFf^X0(gdMA|WND)?4m{Xv1_i*wF%?@)0$*WEdXt?uq#5HStWUf&;s zqzd<8_cWPL9I+qJ-h)}R$W5yk7tzL(P1s0=WWE7=>=>{|)$!&~`1I6L-Mk3OI#AuM z84crtA(Qm)!kE0uYlsNDXcGVSlYA5VLKQB;JgfTWG8v;!#buJf5S_ge6^Z;OZzIeg z<`;F%*n}+4#nG39u0h~dr6T&(&o^u0zk2m_#cEeqRyN$JsxfEIHY@k{6LGi6lfyUo z(0iKSbqu_%Q>3nPr?UWQ?z(;{ku4lgt+p3u-bstQoqtmls$GI~@Sodjmj%1Yce%~{ zb{Z%(o8-&>@?wOra1|bwvxeU&b0CUb9n;H+xZlKjNK&(XAWTEoVP%+y&}nY}K-1!) zz>3aVoU3oQW9aX@=GXWgT9s<@nF%2(BYIS}R-;hE8+Syb_Tzw+<_};bo_>>H*#a-Q znR{W4ybrKEiI4GPsX3Y|{V^*Gv7wd{ifj_T-ip^Dc{y4v`$d78<{Kg(CdjHLggu&< z@LEfAR`vI)X!nVB+Sr6HcROc;sf0x*OEn#s9`u7AH4JyA`kna~We^uN(7352!dHR0 zz)OLdFuyGJD5GRvOXMmQO}Uml?z+Cjt`oJDQ^qbaTe7T~7XvTXGyEoaO?mV;cmn*p zfp&t<*OujdyL_0J>P&IQ{=V(5EkiE(W+&P=OwJJ%S~ zAMT}c$>4Y=!&H&Q>3L)uM`TgtO#w0}wI_5=`zrt_+hWtTVG)47d0@cHG_5bm8j)qx zP?{S4{Ihpwpb*B>Ns_e8ICQ&q5XpSJIQy2KNv2US+2!*O`aNwejNL{yj%rS~5h_!^ ziBO?#ze7VNE5jitRkH-{ZDxCetxBes(lVFgIE@u_Mb_|3*m9UKBHXXsu^N-#QN4R@ zutuD=4xG6A#N%MLr4XH!|AuvZT&J^M0rgto&L@v0nFidj=yS!k3|jMEug%kgn8-7T z_AGkpu=qlN{q5w!8CBLKNXWGt#pwoI<0d@otbY?Y{z~s(g>{;{oQ!<$VqMBK(N|*- z07n;+yT(ploCUVHUSv=^omDijmSoEW*Y^c=*z8cM-YJE*e!9?wsJjS8mqz(7yGL(8 zqJ!K%rjK!>e&J4>R^y>&F$lM&o8fc(4(yogN+~?WUL$1I;`YW3=Kqqd&V|uPC@3oQ ztMVNRa=`s8LhY}?xK)K!Do_7&-sVq1HI102E_F#K0d}l&K_bJ2fvT3du5m$P_@ksn zQLCiBVT#Ult+PaMtz|-Us_LXHcZ+&tGQ7Q1K=Zth@o;g9=tIJyBHJ zKdGX7B4rtRS2Owy&}2p$lBp13Hs&z zTy{(hZSOqRn2NL{YkegV%PhZ4^ABBjhi-eQ@T8Vvlw6#ieBqz;&=5@K2yj;5xyg(^ z?$zmJ6G%?C#p(fs;9q?16qwvS3%_y1;C$(97{Q%%Nz92x7S}!g<&iaLg zgS);%{L|?l-%eGx%~OF7l()pQNSZktqsunX$mwSF;KmDUcz<@~@8HJH+y8IS%Dq9Q zqyi0Cl}G=NBgFn~kelkin!E~VJbj7+ylqw7B@GDk&74u>>?jj3Gf$q3xhi+8)sn34 z*H@L_oz#hb@pda(AlmhCIM;SQ#bLDZ$*bc9lvB>p z)71&>@AA|U@%Ef>#qk@Ib6%HV1Rc8O13kdmwvp=Q``6Q@x2M2>hwFW)g9-HW@$nDA z>-G!0ySV)O_t~=HY?eX;Y<;zRqRKdpM zlmGMW_3m{>M0aRUz*7>pp@^T?>nU^K!)d~ls*&N7ME56uA3y1rov?zX_|5mBDZuCT1sX+Nddi#U zKc4R6cN4!o9b7kAA4dojynjP}i@W?Vb#5fu?F%^Rbb9}kWPKIrFJZfB`$;rODFMM6 z_?qfjXZGfPmwk{>m(cTib-F(#U}ffaepi=JHq_a()1gj#y%Z=A$ZvFy^qD{Ie#!`R zl+pGE9((0iYow=#_>K$y0{9;6LC0kRILn=!H4akQRr+&B2cohxI{-WDs_ZJm`@D)O zG)#x|1EL7}O2<3*cT8&-L@nXS-lYFRp>zU;0M}GkMaAhhdc6j zZc-dTC$x(tbnF?wvh8zbI0?w=P3fh9_;VdW1N{09pap(?M^L#va5;R6|Kv0*$wpvi zQidWJ5?;4@F%eE3*=|XPqV$DbJX2Ire4PF!_(-q{`p0W~AS8Uu9=H;IY=7U3DX@C6 z9RA5jN#K-WWx2xd#xz8+MZax32eWP!dG`pQk9+-%8Tr!k|FUvezpa(PO#HNWa1VA* z45rXtJ?5sJ*Sb(IuE$8fwjrx++n(cJvjcr2yTy9Sdr!A*@*K(TfT+hNW;ajV z{|oX%lHwl%EG?Mq;KjFtp7nl8vc*DM)&GpQ2W*DN*aO$XtL%Xr;i{`nO_&At5CQcV z5F1vzh$Et2MTi;~fP?=?ZHV8mY1`eMeC-csVEP}Noe7`GpF*wMeq`*e+b(3at=m3i zBKDvOe!o@|Q3cNiRISs91gFKX3^Anv--@}1-5SIrpkIelQJ9pnD3^WL`K@DGmZqP2 zS?miT%60&>On~3%*C)}Zh*(F^seO?WEPxik@Dak;0Z^&Y3&)gZg-FO!^c7|nvWK$g zT>ab<=ogqbg)@$?96W|M(|u5())d8cA4i(~^=0rVI||6YNv)I5LC~pnq0ncGD9Y?r zy!EX=gmb-=IlZA+m4;206@uOliF+5F|Ypq~rXsulc|fFiJC+o}ASYO>b88jeX=soi9B$Hr3~owE_34SM5h5Ca=n^wBRMQ z0F4WozNyd%@y6BFfEtqTHO92mKAD}lFNUEMLYCzn!|Y!k$B9ij7F_<>CYcR)pFl?T z;}7yG`Phi@CR)!iAxgrJIv4*t@sx^{{hP;CuyRh~mm>^>kYygJ$Z^y2T>tqeIMe1V z%cNOWd5WU`1POm>e`b1nR5e z>|cMTFF!e%{1UQ6=%CBZ^-FEXsaVe&`)O3ki^3V7;xFX>Lu*KR_Rzxu^o=Hgz3UcN zezEFkWV{KK9z=X9!4Y51f_j?-u?EJ>Qjx6QCPp_T;;#1`M(;#$?Volk0!KsS;Sxl#{MiVe60CN!A(<$>@v}*t#2=h# z_+{Xbme>4ErFfNyr1Maf?=J49tLK<-NFAf{O6p&3zepa{(|VvR(5&+WN`2x0dsHr_ zqnMM>qc%p($u=LwMZ^1(j@j8OS1;19h=h+75jNzGH^Fy_N2(}xF0V{%dS%=vL1thJ z$w)dbcTpeqz*r^}!6BcU>y;22sBfneKFyHPJNt12A*vSX-Z)8DhrB<<8lh~cFU;TZ zwKYZNBBIG@Y*}T++gwxAbIDlFQX^TQuw%U?!uX34~cTVVrW?F zIFmrg;5{YgnO$3*%jZ=VU~%Yax)n<1e@R2=dpV~O$3btgfVaNT$DPFpF>bx=M)147GLZp5oK!hL_kqBV4l)P7C8r;0VJ?NyqHLaS= z+V;01f~^#72kOsg*Kg02_T5Zyvn}JU0(tX$&ejYfPiGtRLW0u$&63*#1X$p;z48-u zdl??jE^wYjSX3z`*t7x5Vx)+%&__rX^FbJUlu?+T{UJ7kwL-%!+A1ejhY|8FnQ^U0 zE5Q(vkAuAOI_ulXkUnbu=+GW+?eMRSG_4U^eOL^TJ843jB59GL71-P>XWhs%L0sWM zjC|95(MR7T&Roofmw}a7W9+#oJ#l)Muo-SlUvxET69J)}o4?t@@}rLub{T4?Yw@^$ zC{xxUQ5DRDQ=gS!&(CWa2;&}+5ao`yS{tT;JM@;H^{ zfOB*Y6+5%S7pgp^jGGiRQ_zQNiK&$`&$riPfC)k#xdy_ga4v?j$Y=;9g9rFyk+J?K zR1f776dC5YEzATgab!k|2wzKVvdru)O%`fPV*O-C=D4a;)`N2V8UIy9j48~GL2pggC7#% zuevtMH&cWV;2oMc%OqAt$;;hm=Z*6AuyiKT*%Xhl1Q5xabZlOU`>zNC+K}v zO^cNac+cQ`_Rb{sA8ns=uqvM1`|kYFUkcGti~Pt{wO&ofMe~j)WwtZg`vX)$)l7m+ z9sfMMXjFKhA;Mlz<=vH%oA2&xc_0L`#%?_-y(dx?M##$62Wb;hWO;tHc~X;OdWS`ijxBQ-^K85PCH*u>!4 zLST6(3#Zd;!LM(9q#0Ws4>0@7ph&mp1T~(0tuV2{#ehs<`GAMGXdVxHA6V^rd3#{) zipV~!@27Kym@vU{KVc3$y2ubymuy2PN}iAq<0ccU9i~j;${0HMGzyTHDfY!P)*T-D zPOnF}?onL7&@d5m6a|HGH~!7?F!9RI$kPFN8~sMXIsTS|E(X2^GxO&i7_2p`p#iWj z4Sy%<`0;BhXL3+TI7FN(d^gLO4F;DfsO3)Ds3qBQrNF3&R>7#o9s33hojtx_+^JfV8%R-R(;PDGSYC10}B+f%oh*j3qEXj1m6t9i3ITK&F zTex7+k6x&Tszr$MrI&t87L1EbFEH`g6FJEYFexmK827|-qiYpL9P7{el zGsQ;gi8AWcB*9N;zk>5s>c!P`C=wk(yH$&HE*O%@LMxgc)RGKg=e zt1JYvuz%u3{`xhG;QCY_r5dgA(RItp+TOl30`-j(F_cQ%1jB_zIQ%eH&@4k-2rldfFMzeQ=$B`kP@|;r_8HSNNv|LG2 z)BE?hHLmphN>-tk1okfY*A1oaJkrFPB!1EUt6P}!4Gx2HHieQO>Y#nvznUKIPm{8 zMim;*3^u?gBZJ@CL0}%Ye#2dNqv2n4)^!+~*%OIsB(s$52j-y;+RTOUjt8f2b`$bq zkZ@#`2VUk;G?qwahhAq)GgmsMWF0w54}^1K zMezdSZOJXw>uG*^Tf-S68PN2hVjYCVy5d~e0QmuRwT1#pTgUP51s(UnGEd?e*I2BT z55W*$B?u?WZs;j@p9dvlA1Qu1O|MAnYm-{T#4Rp&?}_up5UMz@pYrEEQXE{4amtbY z+m*1g3T`}5N>5X2-Gm_+bMiS4V%-ixGW9z2KaO@@WM6LZii&5lbUICO@<1i>SgNHk z^eO;DG2yvdK^Rn0V-IjXr;dc?Lh2(pBO_Vk-p@2bqb)qqP)4CnK{Vo<A6G}MB%$1?SxH2;jS-X>K5SE>-XN^@OdPAWb32FP~jRJYG zqi)eM%jjtjl<2fdWyOd0?~i@ypNIgBjxOhh{E0IDIW6ag&0|RbOVO1+jTQ{a_U0;#h0ts&+6U&W2#VXjRud1mQ1cI zG{d>?zvW98ggE|9aWKa}8E&uaRYF14Lzz7FNF*YrL{^a$=fvoI!m?o`hQQA)>1cBh ziiWt=7(EOA7l}DyQ!|Sgbw+^@!zi=n2(=;$<*?;nsETaIWb|u9Pei&QD)e~2%=N?6~>E|0b@yy@D0vI45 zeo^3TF?B?C*7_?!hndHBOz)%`0`{kVyQUf9Ly80JraEvq8m(xvKq}g?Tgr{zy&bI1 zm3a`YD$#@mhRV;p2i;q+Gn4s*#KHee3w3jIFfzO%vH@eB0A?>q01@t*?YH0t2Uo4a z7g!Zpa_pio#SaI==*~EA5u5FlOTX||k5I{cEH6iboKkLzC)D`7UGuItAKvo$8n%!FJ`hvpqhX#==8J?VThx;6)ESt5y$IRfuchEbPeRjwM z;v8~ho}4NV$B0d(9VKdzOU>!S$fM?M(D?@_rYDco0U3rx&L!|ml$gwe@^bY&!0LUj zh)_s??qir)P*bC5A-zp>K_nj#G&&8{Sh{x8PiHu03ZIR&)6q3~&ev2M90KS%P{M(rdP1Pg=?EvAo% z%t~;2NYT1-*i8RPjb}oMICZ*mB=?U2pNB!Fsb>)uom=$????@!>?dP#FsrZUnQeUW z-E0@ll4?qvBxKPT2^?(r6Bnfyi5tTYN3Z`CmTy7QcxQDavW@l3gbmK@qbGd@!`y0W z_^YLDr=GS)-cpO9L9`@?w~3hgbxKc~C-D%JIcf~6^;)XzeHw^d4mIOgOBWvUiX^3V z_l9ZG1rYVueqYnA(#;yzLb$(HUfGv-WMfFP*{$(t`K(@rTlCw^$;;F`-%uED-*b7f znj%v>bc&7I68uy$Spa)jPpJsAT|#*)uX#4X)2I8xxDRNUbz2UhXll3(@)aGDBwlGU z0!yVe5IUv#mo^qkNZsG<#==Q5g+r95bv{tJ9cUFkbYxoY?~Ca{QWif0j)l#}O$;rI18SV4b8J~Tczv@=|Y zOzv2r8UB21V?6B;9gzc7Rnksc%7ulzQOw2DQrd1!EI13ig2z}^kqsI9Re&<|%3DG} zEoI_OW=g#`kmtq#S<7twT>3AOx9N(5n~tds?kdVTg zI=;P&qd(y3^7G!qAJ&G6Uu3>g)eD#XEGr)@9O$wP^V5LISE%ur30sD&gs1@* zWc7zw8w%yt%!5*@=48il1jO$SiAAVUefny2;?nxJ;L>mQSGgbDaUaD&04Gs2B#~&<{R!oHMNHgg(}6(Hvs~?ca~Yg zisB>>|9XWc=e<+InHh)iM&Qz(gk5eC_qX2zcSce0^fcc@My8)b!l252?1G`aqfkWW zMyDV#(+vesb#^>x=>H>=YfQLLS|OLuxv}Ru;P^y~{=%GPp_qf(s8fxd+YY{)k19^i zce$v8TpX_Nf7@8B6qtIB^GA>*jqRWJ;0%G<5BvdGCXrfhH))V*N`4pi#ZeDmWA@gi z1t#Z!z+|K5WQz7TgK&Fu4|A%TQPux4sB6OO?iyfeao|Aw#QV z025>8ezLWC&d6cPENUtlz#RVYQFo8d z1>cR;a$x1Fe7014$q0??$Hc`JXt8tnKaxMB?uQ`kd4Na-C%z!; zw)Hpw>ikyhP=-E)YWR9w0uzu>3;vEaYh@0eMaG%!Liz+wn+?nX?Bj#`Op#IvaXV^- z29EbDxI`A|tW1o?ENhV-Hb~mr3XgOyC8~RWjsGESAw`zat=7L_tvpbjnvF^&_{N^e z{4?&mOO)KxMu$WKmddEE>PPuLvi^y@Le1;D$@klU|HxT>{^P5m~8X1#leQ7w5|B)(`w3DbSzklo~Fl3Zm zJa-aiv{?^oU|hpbxfd@bxFT&$JG6i=4w#=3!baC#L(onSomcSFjOvsXORb^S+mdo{ z86tQ?vjNR9tB;-AWA(iaqu^6KdgG$alrYQ;m97Nj3!I5I|8vl45Q+iv`gz!!y52?kFT`>x@uhWDKm9{pXFc)gkgy%$NpRmE z{PKn+j&rMj?dVr*XS144jynnR6Rm+2%%1w**-kuEQ*`A>_XYV*Xdrc_w71e=&G3hI zC6n-gb;exj6V#giY69(yb&vfkQ-qxw7hn2R{}ELqZgHW-l}hI70caTjj!S8WAZC5T z4A0@4qTPu$U(BO-DcvYkm~!7)IzGver_Y8##sb>$uqsW+$Q^{UM6Tg>9FQD?9Y#Wx z*A#APUCc$RORqS)91h{*C8=#S#tA$BTkQaIJ3oQe#MIiKK_<5S{m{(#NL2S~sPG2& zDqXe!KeHP+oWSYV(rifPBou=g89P%PwoT|FN~gyUKZoYt6T(qh3oXebk>ptz-T@3` za<+d2|0~KsGi3Iv*ZdsilKe?&6G+Z7IOlZ`z>Vd)7^-FbL;rvd0(GEBLdIg zt-N*IuV8HsgkNCuLlr6p^6!KG%X8mMsxrH6s+4e+`99qCS>zLiaZS<)!*x|({Z|n6 zzv?QIfLbB&mr&nlB@8C`$4orWm=wVeO%p1%-cN?I1p4q%BQ8p!97`e4@`dn`0)P$6 zqj0!$MA^j>H&HKI=L+qvC#Ey_x$62^@NP=!jxlH@Gaqci2+V#pUn zFCV0fv^V{vMU!X+R{8$I#Fh!`d6lq>NJJ43PTe}w8*-C&77%~yoBwRr--q?p{jDQ0 zv(r%k%5%IXvxzZ*|9H^<#`BO#fK5+#-l>w^+F#={xPcRXC42PtW&4Pj-{a>$s>3OT zSjd(pPA`P23|cgg6p0aZov&OGj4$%;<}}P@KMNAF(F1QqxmF0s2OL5 z(DFe>Ix}&|T)^9fSNvPX{-2PUJqx`jnMXpCwUoubP5%|`{5K|lN^&LJTs>3*sGM%y zuseKBLA_760{lc=vhLhP&QD3yleN2!Ax3o((ZsR24LbV_#hXj%I$~lMq7u2X6uyRD zRsyDVq%49**wz1vTN0&lF6-IJ7G>~>{D0+1{ya>*aTPhoZXyA`Pmq#GKX_fknk!x- zds9jGYqmRh5YZkYg_z;^%+_oH?Mkbu!!nUc^`s+0l)nZIr`AL48npXw8fcX`0#l$V z)G^T*RxF1R^Z&b4Cka&4zkLGX80Qg}4eQ=T<4U%a&f-0HGQ>YksF#FoH;xUqm|Jq^ zfe?yL(9^n3qFA?ah(#6&?>%=t@yTt;h*)jtVcrYFT`YbS8V_29z1>wC&fanPC-(n; z#17-I@Q4AU>ljQgaY^Qp77-lDNwHVP)UY z-rLpdhJ{<!16OuA!n)P7%FS6+lU?8f-J|CaaL=KtSLaLnE)acaEj=rdVjZE<_auJ;=dvrq2(0?==vBP^Iu|kCu7d5e5m7m6i zQ9mSd{cn0lwlx6%YNyiXJ)TMUP$AP4oXLNR;UcibcT>EfJCNi)@H0}MlvQ{d_F`+I zl+yv>xFb&o=1iVUssu57#Ww@3*i(2hX~CLl=Re`sf71sH;z4bTnw(553X6^3DXR*= zFZ_I@X-$qlzlE71jg&HHo#jA;{W?^YAbijS!+SELKp=bwTT@N9sbm9jN~&JXUW>^8 zaZ3M9hZ}Z1+dV@G_$(LbcQD4Fu1u(J_iAS|!kT<7{g{UkS< zG@tQF=j_*#UEu@-<2U8(&ad|}LI}@zgrYy_zWey!*J>lEKus%+VyFu&JC@bN8AIic z|NPo=N%iU9-apsn`0;9tV~r?ayE*cH-vdwUOtmUS{Xj%K>tFs-yXN!Ei}5r6*Ya-! zRb}@|+X$)>(S!Kh*LSPd!t)&ut$0OgFG9r^g(<2gQmJ@u(xizgr2c|QC%nD3_C3d3 zrI)#q?;@<@MA)Ci(--=et$!u_*Ld!~p>U}PHO@`S>EcfQ_ldH6l>_0vW%D;erwOTg zI$EIm1=D7E*sY?bOGJHf_8dUT)oY6K7I?f-Lxw$U#Vgw9W)Pi47hm3;4Z;TOyt6{aFOq?VL=M=uptX8Se5qXFzf6okzUoC z(kY9^YsKR+UH1QST5Ym3Sd{gK^nJ;bD=s4jb``jMZ4|X+Seh2HIo67%xGxHP6TiAX z4p%>8ZJI35RX(7%#!!%pJ|Eq|I_B$0Y(-O1pGBub<_$Um8@DURb^a^x{oji7Y4h{y zACW~Cs3}BU@1HfQENNSN9$@_+I}nvbhGZPv$H0qsow=1UnV&zeTZ@TBb|d_$w88y9 zu!f{ptW137^P?0l{x|w@rI-1yUpJlguNl^_V{+j6)3kl(W1sWWuGhEA!$a=ifWVjA3`i!E zsAs}@5F{z=^;cOL1|nd>|I@l?U}wh7 z=I(CG`~LD<=iA-Q)5tupDOs;b;PdkJyGXZx-_7IZwXzqT|(V|veW_sAMc({FCT9=e>tn>i;$X% z1j9#`zii*XJU-8>CcOLkVI1rpU*o*B1&gIURi@t?^!UEqygdKA=_?=CXrJ%%{&;Kf zO7_Y8I~ybg@BguJ1fNKi`Hc?>%K!2IHwTaBzj~}WxRdZEpWYL@zK2WX+Z0OH)Ovp$ z+>6ZmWyAaY(?&D(MtL4@KE9;}Nxo=t(KHxC4P!^XfZS>P_?Es2o1XldJSkJ`^@i;I zb)Sr_C-~{=_I@h(^@SsI(xm6%W}YoS`1Q5!{pE3Y(D$)2=yB_~H6i%*=`vv|IPmFl zw^uYU@R2Oz{T|YEtZvHm?fBR^UnI~U8VS;G?Qz!`l83jwb$eXb`*L?Um0((y|9*MM zrj{oX{CK_1`!dD${`hn(+7s~fP!)JEC2CUEr2qIdmC*Zs+nDBZxy#QXA}aj)HeNQg zZ~FGQU)I~xA_2L0dz<&>{n)wpefxNPJU{4_l8~gGZOrE`LB~&m1^(%zVkXcb*|1=yVs1V-~!{9=b`-G>}d!dQwi^{ z*W(k-SI>3pLC=rYoXS`FnRqt8-(L}i1yA!F@<;!iB^6H`1-w*%g>E~(Ox}51UM`P} z=l2A>&7;I}WIaD6B-l(Qqcq2T%Ipoad|TprfHCG7e0b$x$c8ji<4wK@_VG!CDh-Kf ze{@JsoV*eb`(ll?^%G=ExFw%yOS&Zwvc=iT1WZlt%M;!I{V^4Vsrt(;o+2;C_e?^F z<~m10=)-l6q>z0MSzw+*L)W!_vIh692)Jk`0P(V%ArNO4ja$SyY-|%AsKt&_Rq*Jb zBQBh+E21c%S=W8x+YEBZAHr$6fgBM3JGk;qmN|S{+MiZlePYf7#Z46rIR@gXPE77k zTil6!quayWQWtXxfS+3B^ii4GXverLkLG(8dYU5(zYc1pI@b*P=nHV@Agc>Ir*TjEJJURwOk`5>T7mTb zn`0kTLU+9Wa(6jiW@`EaeJko}E8G*31F^QcYx(#jjF;=xRx160t(^HA_0Oy7(Lcw! zR7dJx=LTO|8ns#$Cj9X@MSYN3H(EZWP~(5{W%wyy;^@m#vCFIr+vB=JS45Q34BAa8 z9=npacl}Np(V=d<*1q3kYA-1&SIBXbQcM%$lMYtEBBKGQzxvWeYiFr`=k?X__A4@Z z>b7FNwlU!G&1}EeTBPMHHYOh5301|sj8~XvX)Ph5Usp=N^8;xLvM;kE@*pn zC?T#SzRnxsTHx{n<0a>aJ>Whri%4_bY2<398 zFauOdw39vHsmxJU+edm$@iGfPQFE)akkP2y4H!pwB{w&#m3pMl3TUFt78M_roaR#h zZL%@YZR$`FXjZSgGvSbwEN$XYZ7Q|YIePeR9dBm<_+{&>IV)}Qx2bUS*j{TUtG+a| zS0}4fCSa{eZ%)Qmn-^ays{VA(=Iu!$t}6q+M?le zGPgWHo~fuvXS0#==iJL#4yL2Y^@P4a3KoA3jwc5Eyh>l}p3VqEX|O zyi#uNPZ!F>^}E-jM}y8M zrKU9Fz9dMgHe2^nxoKw1FxSLX>Poa&bkm(#=}Z<#tN9JxeYgB}xbB!$41%r-mWSP_ z${lFBi<54CNle$M_5IUCa5`?z6=N=rs-JYMZ7Gjxr^93K^%tCINpaCUb-Q`^#~$B< zRi5r=b${>JpK>$kwl6Jpq2dmw?l7?k4251SXX+S#x-`yxsQuI#P`WJ}O)6ETCdZb< zBfh*U-4uctc7v$>3YCvZQ*3<&YL1EU@YZnIy*2h`kkbXn!&b-y&dBJ^O}IW#&+)%G zr*kD3FiM<}RlMBiQ;YqiLH`??YJhtjN?)`Ni{kM;X^ z_|e$E%_z2-cBID92=#8IeqW4Go@Qvc{51Ng2)VHPKmQ#?yL3hk)(ju{VTzmicz*uH zXfeJo{=s{r?#LuS2M<{g9UREMGJN^P6ulnYm;gpI&Nm~Qccs%K%Y2S+`~HOEz^cPj zkdUbgcGMz!J+t2Ttw23gI;sCA4?}(0q477<@0V;pdehyVkd#W|2FT*x@DSf`%5lL| z1$x-7(qvb1o z*l~SY(P)dfKwwV22gA@0Z%Qz-(;4HB8ag1R}g} z02-9|;awQPL^flbAu@b8V3At6s@SxC!(}3Mvjz;i&W6RKcD!!zJD-)M7zCy0{8L*0 zpzW&0XFzj1j+`j=XFc%OlRUHXY)qUl(}S?Npg7zxlol-_wii*-eoJFrw;AswQmY51 z7A(iX;s(B%Y;EMO+)4<^hS)iNzq%I7Iuvpt%4IDn7XR@$0+9lJ_lWq))csPoN zq`@1+TbGMtHuc|W-4d|>HcVSBcDT~6#xndCA`VKIlfvC){sNhf`FMosHEJWVF#X5y zL@tJ~plDvINq?dW{zn#wG${RBE{Px=?L7`mya*lj5t$G3zWkJh4D>3~jf#UfiL|EO zh>tufkI3McY9RFYJflT$7J&jE#u(TsT3mcN5(vduqhn~Hrg{$4D_-hf#aRvi1)GEg zr|#!L?HA*_)6j0|XF&fHeSmn#1QNtqCHOcVOx}TCMrB|6dg3h=iIUnk#Uog=F?lWQ zj?b-ur=3J&`8=z08Ds^P)B4qjD)^NvO0f_>xS~hTY9mCW+ zSs-3CAT^GQ!XbTc>vVhr3Fs9|r`DGPZTdr(-PTMhT-iI#qAoQ5I%6S6*@n$(GSKgL zW>eM~M6LAPhf9YQyRl^BlC=4Hsp0t|Mic5)YJjj%2W+p6_%!L*B`vMg{o|XCKqG6; z(;Me#akd7*LOjG{*Y|sfU6mGLC*&MTAd8Owok5f*SZe7#G?foDv02I%#SzZz-_h%X z1st^8C6&8WK5lwTsnpvjf4_E_0-XvsrD+R)QG3vdRDPEnA?39JpqrkiRM?(kd&YfOATuMIi^Cd zk(!B+XdVa#w;cy*7l|4-MKq5c^^VVl4t=Y!1|@C_o5|7n$OL-Yso_x(2KppLYwB7k z(VK)_+5QY6TCr6!PxD_ICPOXk!1E{#gP9_0%)~G$W!+HU&B_Er@wouu7V0>M$aq~i zQ-QtUNrmpkyn{5J5ZEMWpsm})#Ijw~zA{|D{&q$9HG@ZBNeo{t&xqqx zc|BpZe0vNHTm1L&3_|EMbU4NZdKf+ScX*^r4yG`2^5x4F0p=Z+)t)%$P-Jo_=@Yyw zE=6@vVnI)ZViG=993v!%;+urWt{G5`6$?=q;HztBG|$;+^_Kmqod^&{8*$id$Zv9XW{9& z&fI9AwQ|BCEPy<6==@F2N{fj7ku*s;(l?8evdDp8jgz?0V>C6rLhtq@JK$g;$m#{L zzMsVWf!kj6rtrhIx8H+D^g*!bWrqx6kJvb&qjN|o3lNna0RS1)7=ej=(}FheQH_XC)i3Yw$MOxqOCeT} zWu#RIM;MK3pP_7Digh&*)}R2vLK!tKzo&x+zF1R>j7KVpV&Csu??)1lKj?{Cc7gcO zV&?~TF_hnhw19#6h>B2*+>TQ3THe9MdMX16FrF)sD35BIlX&oj^$OlwNp^@9<2?F6 zyR>TfEV`Bx!M2c+yf|(%lmNNg(1)7C$ntDOkkT?d=2}Azjf5*N`n8wNhiRye(@G(bqt0Bv@~dXU zr-Lg}RNRzKI!kFI42qcXnoaX@_6)acV^syQel5i-?+zRyfwxOY3XETf^NXUIZZfEA z^j3=Mz97y6qVMWnok!qyuOnv07M%YtEBop-~Y` z14V~(Oj=51`CvIjO-|>&!~E3*BiWy*U=E5!li#C8)x{#U5VBR{OEyHjvhmBvy|v`@ z-@ylbR&z>-g|5`X6abZI-8x5`?$!O6>JI=^u_x`b|K@n zXD;4X(L&=kDpLaN} zF_YK8yo&Ei$2B1i2-@foFpMg`h6!=2Ux$`Re;}wfK*5^`MJvlYp>Zu}GV$`4CRuPf zwtCDWi0wHr1GBi2^VEb|NC9cIeeTZ6=CE^Qli1rznFoW@e!r3ABS5nE+h}!U$ zfGSwy8?5H`w_xWt`;Y(uV!qbfTGk?@+h_E*YDFd+-%ce0o!_U&FQm_Hbnv|eS4tj^ zOdjVJRpb zoRpbbxikmypLs$nb(_l7y)8EAUA5?pE7%B)GXm4C6!4#+X}=OLBBPgwh{NDY6p|oD zg;pYIwD6%v7L~%6br6cVhB?{LMf7QHzA>Jx;=u9{E+vR!!jh{lFC`HcSXM?0+Vt_v zGDMP2;sA;>dDrg2YJ*ez-vw}lN3LTa_9U@>9`qoG`pK$?ih~v>4Y*(rqWtu{ebzxO><~LF;k$qwT{r-!P!E;?Du54y;2IWxMN}BCWhJiIgdHw=q#u8kf{@0WJ|qu*O-ohGg&V7@IlB72ndyvGj&FMiN{+lkA^zf-J|;H$z6@RI=Hbv=Dt(!1)er75#IeF4y zY;I&SIh|Hm_ICErTi${HS#g`KBrrjLpe4h3evnt%(qU~W#UI~2jgc{1K5YmFTkTaE z?aX5$k71z_1if80TPrE8#r!OjdmI-9>Qz{~km6X@A-x6JF@6==T?Kz)UcO6Vz;>cn zl6b3mZl$xq$I)!DAZfhd8mo!Q84fa~5F3QfY3cI)dj&4#5D(=JTR+>6dd33)R<&#l zV)H|dhQX+sb}Gz3(H@H$ON+<~@SKZ@jU|r18)zICQo4gf7|;mf$&80{*gH#0TdJv@BP_$+V`yyuUg8A+gjY^t4rtc768QhF zWGu&z3i>sitC10vrK{_H?^l(-+8f9%9M@u&p4lM{#;!nog3g}haF36MOak`N%6w$z zR6(t3icOaDJd-4s$nExQ+KsMg;x~)lvO0~F{&a#%fU)Jsta%N&CR8l&sBGp@WLa^UYl&Ri@s@jkq>OJ42bnCYYj6BCxqAkHMh#S zJ36`1E6iU8$}z8ypa{X;sjJurf%>!5tXPHFy3#lm8cU6aO}=t3_VTJj*(y(ZJG6cv zRb0t(3BmknajzNP2}B~SMl$y^I-m~fx?!=D5O82Dyf>Xk_$}{$3%xWLKpxW6McwU4%)K7=Fj$GMQ@<<&t@nqZ%ab|XeaH!sm{MT7U}}W zSkW!AB7Ck-t@UE7+F&cV{Mm7+hCuQJEmvdtEFW^~Wp@AkX6)e4T#GzbHsVW>`TA=1 z!c&InZC^my-%B`4g*vJL6o1trFUQ^m7qh0b0{dfGldh^PkzOpf*$bR)0N)ywQk@pX z&@q7GM@E5(5k|Mvi}Tq%_F|15?05sb5}V+0ZCUA#cy)Tv%7%?n>?vJ2KCh%G;7jn} zZFrqi)y~JWc`b9WE!U429{8i7%5~vw+BC)H%MM{@k&~Ruc9_{(ZhEsme9B6~9Ltj9 z;|AJ^dcNiX(mzjDZ?tz-Q95nEScVuJ_w}NFGZt=>8hk%n#Z9WJC9@zsm>!!goS9mu zAuDndXb$W4E@{iu-&I*vGqMx!1h#{)iK{tZ)i%6^TO7WFQmr@r}ho1KuYrCHC21 zMb(#K9#TJPs{VKkqnO!JLjaYdR{SgR+Yp(Trjvz)3!3448kwBFbO~y<0|^#KoBBqN zbvRWIS$q6X*N0F6b|WQTg2EUbM+*sf`hEZ*Au`$tiG>B^Sl+MUiTGXq@Qi|XcoX?( zr-Wpkm|tcW_1SiXN=&rwKM(W>^oSAWCr3gagTa5#v7ADegTYsM5c^oehDx*9yqCSA z>QI?`)nyqiiFAgirr`O}fATwmMLyrvevrZ#CGF5+V6-@{sCJ(lDGudtDpqU4l&zB< zu^Y+0&Z{Pf@NjA>zSRvxc+gaW{b8SSLXc%)96htqfxqrQmtI*g6-8_-t za6)}H&cL;}{QYjO6q^fBWBU|ID2a@AKiMhZJhgIQhWocNRS5_QNGt}k6H6!+qUtOq;4DT; zAn%{VqKH0U2

my)_>fD}JO^ zyQi6a8(;v_oIXAtw7)LX!r}x4ycy^}A08fbzGZ53Un>cJn-hTh+ z@(S>MJH5RpoVI^?S?>OR;-rqrXz38{k8u1ty?uQ;{kk1K*4NVfy7uE+KvaG{z2EP@ zo+ivC%=P`g8Z0iJp3W5%5a@o{6D0KgeALhNeUGufm=yTBJsuVm_)dWd+xkPj({0|!GG za-YeaTiWO4UNHBE{g;0!LohS&?_Rq~o%je_IZf^FugbIqo&DRW!#pb22 zo*q6tdWVAg-J6}A9XYZ3dvQ5Gu0QOSH~9&sr4Z9eDrwX}D>zYwo|b>E*hb3R`G@zZ5c z6!Z}g$nnj5yU!ioX6)9ZB)%QKoLrdBWlYmA3jBU?^22-FP>uAB{`@#UpG=!y-mi{Z z{%-wvN}GRO?^jKJxqfr4`+B{jay|UE&zVZ9x3|xU{qE>SFgo}+d~@*Q^*zqiJzgI@ z>=uk{{=BPyg_^trEQbhxP5K@b5pGTn8S(mY>BSKWcIf%GqhLiXHmB{g8C<;+O}+79 zTouoaZp1XWIqeDxa9oD9`^kA?CWz9L#E54oHcqUNC-7PdTZN{xWHP51vFcza1+Fag z)3CD7h2&ctQI=f!yfJHFr7bTZ{W>-AnbmPcEDO_t%QV%2pZsMxw{dZ2Z=5C|{FrVn ze2hcKzcZ>Aq`G&R?eD-%`g;Nx`6hgmN7pt0{fe(ZZ{)onc&*XwDoDJb{P zy8G*ZCT`YBiGNbJ5qOH2YNK`AMRMzGo7NFk`)om}2hC*Wx-zQ@5;(SknL)v9t^1-a z7xs+DG`)TpG`3T>NoBt zqW$ILU?&Ik{HSXSeyeF@$V=S9s_Ogrs%I-bkwcupJbVY5Q|!;D(NoWEQm!YQVJ#0j zh5oHJW$qy7Q?@QG&Ak1@zNgkca;JYsY%a zUe|N+dD<+o!mUH4bU7@kM;Z@Gf@WEHchSa5h}2D`O6cm&qx7WK9>5MXzO z{;;=cMfh1we8Q8qEEA>e(y6{!vLR8j4DDh|K;M?5FtH_JL8l;KD|+=j=ME6qIWc>GsA9g#+!@xQOh zBbr8;md1>4c?|3->bMrX*y{tQ|G)#u5aCj>M0jgn?pVdwkDY9d{jQ5~jIa<#riF_) zRNE5lsMjhnOqe(WZhT#)%Dxl_J`{tnuaV_lfc0@-BI_l7Vl~O{aaMYB# z^EZc_ifhk?+b-LDMcWaM5PQzfn$F)4E;%xJh03e%=ojoQns+xWxu6Oz+q!&6a(lPN<2b!{Pj=zP3GOUY9YJe^AVfMn_Xec>%d;__AEkZ>iJjMV zK2j3*KWKK81L5wZl)|$GO0%kmJ`gHj14`xsAeJ38oMxOQ*V;}(>}yOwT6uJugnD*e z;M?K@zifZ$fOn}N)R>pYCzL?wopNZaTGmE@cR~C6?iiAnLl)_kEsB~+0n@r&($-9q zamJZt4)9nIN}(N*X|E!59q>r3kt3TvJYN}6)hqo0;o0=y!izWI>@lYw#}8{E)c4Yo z9dq2uch0$1jmD~5-I9%P+RArYUCe`ivRc-6X`?cISnf;et|SzvxJ!t)Vh1IAfV)aX zl$7d|dE&~^aD3PJY1Li;$2cwx#14fkuoU1 zP(p$6^NzSCn3y)|7j)Ds{e^hQW_i<}t$)}o2YjW}+K2}TUmC-HlF3RQEuHE8>dt|L zbnQCg8=b2KqTGCRkE9+DP}#0arUTrao1azw}Z_01VhU+5TjX-cEmV0gWel8@8Kw#!+UNQju`G|80P zD{dF1S01`Cu}>qAiG4=H_;zyN1|Y#D2Dzz+((>@b^?iKskA)0Wyg(NeOZ5LLHE*Xw z2n$WAJAt4>ju_#;=q85TU#EdUfN~p*{t`0uuNVs0C$}u($h&XA9$Ej_2g1z;$VrB5AU1Oq){h;#`$dfJ1W1lRNN&Yu40LIi2S zgw_Ixl5>@41nsm+3ySyV3Nki88$Ix1i*egO!h#q8!2^h(CE4pNV8cH)^H33Kn>H~- zBr_Su2hf;_qd<=kLtTRQ^49deb?LqM`{QH&1dy2nh$}cDalpxBMnBu5Hkii6aZA+Z z0LmF+mWcHvk zgWSzsvEx=p+-XOtQk3;?rMosf%5XLhNlcUYN~0Bz0O;_53jjRCA6ts;JgW}85=-5(w0AR>qs_$CFEpog}g>Dd|*fU zY!FARoWN7@T5$a*Hfhex4gHBS(3aEyxTAGOM%Hv9md-tzcrl{5$noOjF(iQ|JB_2% z8kZy^8&0Q+>AVR!W^@StO&qwtAfUMvvLoTy$3e)BHW?0dw|St6^53Bg=%|>aVyqe6c5u+kA?Q)E zczpW9Nzu7yOO;5g+ZRxvPz{Hx;5+3LlN@J8o~u-0mjo;#YK+5v-D&TU_cSh#Pb~(f z#tR%MQFVyLBf)cOWK=`4-Sk%(qcQFFMC?B@xo0D&!)bvDs57(~RBs;I64(l>>8?Tn z+aj*ksbLd$ci3~Y6~;zy1UCNiE*}g-SzTla=hUvH2?A{AoW!F_mJKHf%VC%7cF9L5 zLb#I00iWc2vMvvlmY?M+gZ4(Xrzw{b-hBsq6d~P z=6@hY;+2k%cbxHOFD54%gz%wNiUtI*-E0;aR2suD(c6GG-k%#rGL@=fEHCCF~F(hLR2e*_>X!>ISvO$chTPCvOJrz zJ+*@bhNB+dGZnKLE*aWFM&n?@0y8__=L@)=jd{nAnt5{x6eCb1S>Q4Rl|(37k+Oei zo3WyCS|-$|YYD^XF!qI?c3MfT71jAs(%ve?2TTixa9Y5}vN#b>4n5c~lIlpuk|YfS zhzO;eeVLB9;^Rw0G>JNRa0nMgG?Pm{NA}3$EnHpx*t4D^{@`++@5f%`@)tu}d92_| zqO@fn0+n*i$65Sqco~#~ml+TX*q!v)nH%`_1QYo|*6r zY^TN97r*SC1_>2JCt9s9=UyoG-pMGr_~ti0(ed~@GZ`t`SJp7)JbWgL%t*oOLSV){ zxfZ)oWhFE;Tjq!kSA-BQwo?&k_Bh_8qZlAql+rm^qQT*&4lea4NW>6r3p%D0161rr z!(u7@i4Fr&lSx1ym@r$-Nnpyj@ZZ_uzz_&0GAK44?hxjVLT3+F7KyfI50|i3Z(Vxu z^BNc~7X(w;H>r^Fqv%f^y&ntclGt;IBgX{-?ArUnvJG#{FMVlb`+%e=SW9Gob0}DV zNhy*TcZRPjU#0F$X@{)}CM_NE3Lr&+CEie25k6+aG^v!<>8PwX(Qu{)FUBMc}|1ML!BJMzSu56K{e?!V^|`DiuhPlC5krbS@kz+Z(bk}5^`<%5FBz|P16 zy@?hf(AaTb>3xcN(bRx24hdstHKu{QKFI&#Zf?Me>&aw&2SKf*OBj_x)60g^%eECR z{%A73HXWztKLrqN<3brMjUL}MAdwvc92ufne8?&3W?@l{fGf3D7utfL=CVHW|KcJM z5#N(G3Sr*%WWohGzCfcopoE8$GB$e{3_`r>w2%EFnpIwFqnvJ@Jj6kg;D9pIZ8s*2 z^0*5HT2*>%Je0g8X-q>b*aTv86BL7~3=dc`t*%Al1#a&CAUTT(Tq5Fe2#$M{t1Kw1 zjRt|rBcK$&f?An0tLm+d2Mo?ZWy7%Ar2Xf}@R`#S3g;~{VjD=I-DN@9>C`Cv6#8om z%yYg^09XJ0z?63E&nkj@;_P&g5?3B6fV>0nVbCy_2ZHyML5b8id02{61d%sc7(C1(W=jp z79n9Eq{84QrzUK1IjVyoTg&m`--lVZV^Bn)^mF-pa!8r%pKUq|73iI}o)HBbZ*hv& zlyh@=bhiLC`tq9)jpmUTDUgo$612e|dB}!1)DetIz|WlI zfK0GU=SUY8lT2xNqAA&>R{3U0h3i>KmbKgY(I}G2X*JUp_B7wpf!_zb$~~R zS;;HOWKPayV-0!Iz0>OJF83Pmg zCP0>Rvbzyjd>N~+F`#sAjh!X6l_*b*cf(p;K$UjJ`0+%XaLUGT|K!?hni$!_)`X@x zO;*dUb@V~hve425v^WnBmFBBF>myJi*%7$$E8&(Rt!TJ;Kj`7oh-y(BgPpL9UU`~F z`pROt;!oIzK}chjuE3DbD#Sp*v~`Jk!YGf5)(2qOh(HN3v4CYLf$UX?9)9u-7|Lw1 zM2W^t2zpQ~C2=h1s{jX1TN`Ui&@0Y2Ayfh6!wFLqDVK*al`nL>+r**rO(=TMu*VZ} zk$*|uxqolXOts=qOv^=B=sm0$KvJqwNO!F8g^Y|tDOK7)#JHXDg}|mFVHp#|`S>_F zeJFlD3m-fAs^dVX*f9VHv*8?i3WG4wb&0|uDY7kvNO4_7LO{`Gy|^zmNTkhsJLt6Q z3=%V)vR0#2C&@srmoX=aY7}jFt%M4EX)&SC0?5ptgsuTQ*}H$Cz#n=NSP?8H+`P9) z$awM}XeP8FTR@)t9ZtZQ4&(sohZtF~fO*^wEyq#9wMA>^d4Ej*<|a4*_)Sk7D+1A$ z2a*&llxLQu(DfPT-|!B8EPn!XT#$})#V|N5ln%zHY9(49g%4_SJ%^g;{EjCVqe<0)Z#Ok#a5y5DYiz%Se(P zank_@bF%EgJP&5U@<%p*1OeCTDj<&L&adiP2GG|qudW8ScGe_d0(j_6Iq58^rE43& z!L(z^+@UzKPNfETvr%Dm6|S7NoeMEnaH#{`48}9~fvB&Pj^}mb zoFAZNuul|@dGamH&vrv_J8~f(+@+z8BM2C?1}1 z7#Id8?xvP7{qF+QXoZQW<@_E{)wf)?O&?6ciY_ppM27sB2aiCu*^T3x^k-h+CM&lQ#Umu zV}4(UY@ABIULO3pIn~4GuXo;l?@k__T|cIm*Z)ix4-YG*6;qa?L5|*DhTX4^@83Sp zW0kgbWGO1Qw5L!^%6~F9-5tHSe?5IX-#;2Uj*vJ%uOB|9oz%sBGXkgQ{y%2$+}Ol; zg;7C3__Y52XYiQ+o53s8v9;fCLHW|l`zHSVo=>kNPWFgP#$7?b`ZJjpv3a?Dx@%w+ zTYj(S>1u1M`Z^x-Uq*fjvO3-hmf%4+zCaeIOxwp*bJ}q|U;&Qm1+4^ zBj~llS0yM&=(pk1xoRWGPaq6jgst-2w$0!Fdw04%t#aw{;==S3@1t^uW<6|wez782 z4Aq=vk>>jeel1nEyGqii-2|56;F5d-TQQB5v~p?q@$u02`4Qd)o&d?-y3=S+1X^ji z^XoC_OH=;_KC~j`<&a03ak{(5>9O!6P5UGjqsaC6oO~f_Y39)&u24e?+sCy#-T<-1L451;BA@D2-O4x=sxQSQV;t3 z@B5Kh*!7TVPgt-wnmSOE)58#fHo+UdZC2gU>*+9kC6zcO~`m;|u-#!1R z63ys5zZ|O+LV^#pHv!2iz z6*|jyB%^6TxccnsY9YJhJwv6-X6q^Wl;{I zYUQPd-*p+i;5GaRT91jNDX^z2!E&CLgT*FslYP)atBt4Meac6L7Wx7&qp8c7v|i04 z+zkEx&Dn7Mgnc|1xU0u8wVPyNdz$kaNL&mOo|&6Gb0+!K2$P;vm@W2GtlaueZGz$Y zMHRIKu@XV*;XyCNP*nQ557@f|1;5$$$5b?}cCyFzP=)1Hbli@3FPl0F*I<5JhMxRQ zbO?%UV9|tU6?B;lx*E1-xOoC_($M$$jV};0b_)|6i^SB> zQ~ZXx&d5HeHoK0jlRHHnTs5Rzl}?+Pg`?1|k3&;dsat{HF}NY2$6ytrnf1Oafx;z6 zisKcc*ARLlS{3|wtd#of;()yO7nD8q&s#7Rio2MQ?Hu0d2 zxm>J>EEP#FD>-|D{TA5|%{oNX9zcP$zVo3raHtaZVbDVSj=f$k_Bl8G4%>}<_yXIl zB|3$)R;7XcGxB(0Ak0rsZtQNXz|sIq>ueyu-Y3pd6_hr;LaWn{7AlkTT@}<>dJs^? zdmdp;D>reA%_Hw)3|Uzc3$eA(C!0@aU=r+@Mlmx?2{cH6Ogh{g+5|>hA^A}ou?da7 z#pSM2&rIxdjlQK3^iZRYxLD_s!v;5x1@0&#SrbV~|F|eSokvbdaSRrk$8BlYPIAbTNiSgP+8&fC|t-SXD}mcy`i~Pd0DQp<7&~_Q}|)C9c+~$kdeH)*P<^Ls2F$ z5RL*f%O+Bl61J^B2t;D`(OY(tKywk-+i+)wWd;4wmcOQe#u#`r9T!fXR+~LOfs_R3 zu4nrUfYUAlj=;@&ob4q+`NYlS5U>fwt?u+frZ*vs;xMT<))~>}_gDE_jyv$y1u*)7nMD__#i@WMy=gX(Tm`>e?Pr8liCN3j zkuJ+6!&mHI(K(m$AT1LD&XinVu0vC{DP|M9bON)Ame7tWMj62O$YrS@p-W$sa}n1K zp|Hlj47R~>W6p1sJ6oX+xUQA!k8!~!ha0R7aLPZ}`^E6ALk3n8lmvK) z7U$;BttY)Rs6ndvjZ*2bVeV1IQC(j5F-;gH@DPz68}`Cez6s1fK@(vrASnp67s}Bm zdIyMmQ=U+Lc8d+eX6Vv|RU1KnAX4(yqu{hLE{{Ql6hRcEZd!7kTNwL7*QXU*M48Bz zo8vr9*oQoerNy**Yx4ID2M-YSk2THZMSv%upSECG_Q7k5VAdqGqFeTB%!J01@sDFBIoO^RErOAziPAwow?nz*1) z8*G^PhmfX=2DLy^!A}cMq2@q zK_O(QeLjIL-Bi*Pv;%?UWVacV+g52sEcghyDqGM;B0K`Hn~XQ6)rBx1bepDdXUD{v z=xTs*+P)025qWUY-M1G;Vp&w7q|yd|V3NHjg^{D-o`aTUz6=|>!xoSkh9utm3KNa! zF_6+wG-28$eEWaW>)@ z43j8NE%@?>l>nch^@4&Ae5`5Ik0Wo$kV%n&1Nz6Mg3T`tlY3usHvC=%gf?Ug@q{5N z+0b&bAkzSaXe@4g=oQ7hZqD1;7}wvc;mOXoW9aFu2{A$`k^|->0E^i7c-ev-^oIbp z=|BaWBwouPpc8K*3fn@RZk2s1@& zFStsGs2By-Sb%$@k=~3hI^m+_LrsgxfLlRFW0Qax(oLXMfHS&|wkZ@w&YT&Ea|wwI z0e8Gwd^G+7kN355B!|4vtxX^yGwi-CNU8R&B{sEn)^y{VPn3#$=gA^1p1MYVP=?+Y zCXQoRXk^I#&Bff>QqCM(RMdc05$8oJD_R^Ssvbqm(mWRQ^{gx{Cr?uKmJ1m6As`z+ zNj?f;&qiXwnA#yjxD z^d`bLgc27~eOaWh5VUa5fI_!9bc+;(3R(hY*jjc`Kr*r~5j;TZ)!Jaw(?8@LML_>1 zfPp0elQ~;$4p0ZDJ39xI^ueEpLtk==TwHUR&FY#BJW;TWFHsgI=ev+0&i-C+v29RL zmvg95Gm1RAWHCO_A~G1!u`<8f1^b7@`E?S@niU>H_5{o6H$P=ZNuUm7eDUL&I8~e^fY)d%kp&ZzqAckGQD3!L?L7HhL&A+^E(}=8W zi!!HP7I+0sgZc1cF~1>t)$xV3+B1M7yXjvfPHox5Dgj~6pgBYj_GLhf z%89`OLw}0Z2?cX~5Y_{Zvty-?#nR_z zt`AAxZ>1)a^wJ!2n}b-Ze>hanmGJC})3$b=w$wN|5%BV)NY44fM2^D=l_H$bK9evQ zC(-?$*Ue=RPhd6~pc<%!NM8n$E|PO}2IDXU4fzN_WV>b~6RPr-iT`MqpV5fl)08+I zz&i72cqa+oz)y0(=umV#gerK1Ei(N4`}kNPnyk@GcYsKJHU;V;dLtB|8PmWf(%T^KY#_5Xlm51S<&_%nA&2`(h5lV^dM8(E zo7#R$F5uFIW%ho9o&nBrD~6!rcps{}B4@7AKE^QXVgz6!+f3@%eUYJq;hg_~b8YTy zQe=3q6t>X=!^Z78FoR2EJ2X1i8Ic{t_fZ23Dg#~Ivqt3C>>+MTbkc$KfcVST3n+AK z^a7c|>=x+B<4^&9A4fXKIR-Zw7%2-8PgY*Mj7Lin4`*QKlbjR9k=j|s!aKN%?n1r= z*=9{?tu;HbPBs2)T1HdAYqp^jeA@t9I+pIdOX`e7 zaJz51TjOE^lwI zXXQp2!<2ZrWpcd?+{VEyr_OZk9~LV;-skRt+n=rPKeR(FHUd1D-B-_}Uhf~+I9oTl zcxjzzUjl}&koxa)R&X{l7dP)_2_9P;&%wQz0&ZvJl8oa`P7lwE7Ihj1i)8R0<_F*1 zv#LHx|ND6-{Sq@%S9lc9%jgLl^8V#LNcV|`TZ#U0)co!;(0 z@_WC#TpdpmynF2CZC#%oT)p2t$UC0+{qFeqY#P25x!vV(JGp*AYj0rd%uEG4(GN8> z=X9I&zGY?K`SIrRws|q?QTKjl0}4qUPiMV;fpe|(=6zMq+<^m^x!|34_%!lx@npkX z4&5Uu9$@>tDC)A>z|q#7s!BB5_DZe4`pbKw!J&<(QWW>0l@{a)ZIipL9M)hDX;UO@ zY#n#p^0pf|)gt|ggTUx{dk3|>z2DnqnJ^oj8glW#DOAoDUYD1_ie9f|xV%4KLi(VH zgg{U&GgXO0SnY2znRV>l&q}M)s^$#9rkt^d$HIQ0C+j&HGy0g4;rxCg!IXw%L(7y5 z)|AF%Ll_!$Dc?)vsuGo|cT+3OD)ay&?Doj4>D+RnpTS5Mxh1Mr`n$E!M&c-d`&HFi zO}bw;DBkqiH`icKf#?;J7(s)(^~?tzkJQ^S%N~(~w>Ow>GzAZsnM9*xat=@IWU!g& zr+#h%e~5Tqc8v;<_oF9;BNkBRnjORm`&p^Co4pSRXwjq|^j2*y4|sdiTX9^SyIj8t zKTDr<7)4N0!yDx=@>dXeM+kL~Ds)nYDfpS6qO8qGu}%zRZNCeF8b6pqu^c!N`qCYp z{b`EK>gE=RWeCQ5k>T!9FwYe(`Gs0pKfAk>`m-wmkx4v)w8mBqk{AlAOL^hUteQu; zTS-R-GjPdEnR48w2Dl^9o8TLL){y`s=X zL{K>fl6nP&(oi#-G<_;Jx-%jpdVi&YM1|iHU=R)meMSP8ycFA#)fUHi(BD9H)nnCTlR(6JRm$B^urV_}Z^+TjEhP*F$& zQst!ecVS#H!jS{eF;Y^lBakSD38)j$`^q7DNLZ@!p#3xlCLpKR-K?|)@502dp?{ZB z(9q+!CPXC&!w3G1D{UHh+7nUKM2c}VQZr!ES4degIY_FD>QRZX+e;3 zujg{}N`C+cBF?vJfdUr4z;3dwGg&Bcn@g%4r@+uNB4JbMAkF|xgDuwEHX(9KaZ-ei zD8V1R4V@_+axoH`R=)&88(W~XNaQv0eIPzp?+r|PUQt;;A|Ww9;VhCcQ!ZZI z7^?J$xS}=$lI!#IY0?m8l1qu`C63cWCWcG>OjL!g(QRmu{+HhiLEFi^LG;dO)^NCg zAv6Mz*+dBlCACH*l;Rmu$X$+Cw%B>0aOtH{%*6V>wasSwAk-yW?6#>Hu3W`<{;HehC$A$vbN)D~v{4MF=EUcjcqIr4Vu4H;(enLWJOd@zl@ zDs5`Ad51&_k6W~FOQ>{gT5>Tk&>mH!^8AqE2K7h5FMFc&pqS`Ldxw$)d;3m3RC+4& zG3JmgKgZG%NWj_kzG;0J!$sNtMl8F1;LQ2ZvvR>oY9;_1g`INAU^ge#IU~wtiMDEG z;`URiCUu%a1%hPp(nFb$@GAVR>(xv;77|EDr`DMBl)=4V4M-Iow18oF$m%j_U-&%U zq9q8gm7vLkDMBVZ+8xleB~m(7Vmh@&OZfyY-D67!QJz-_0s+gHNkMSqp76<0_EY^` zS^7v$>%{dVprLw%EizJM32%{8v1Y}n=TLES==6-F4IR{_OnBbT2I+H7K{~4whe=GTJt)DHxe6BWg4F-~H!2tOl z>De^O*+HTjW3p^{^x1?5J3uc+j4Y@jz@U6SfUcQpum-dzy$7`jn({k8 z!ns__2%1(43sZQQg-v;`SE?hBzJ)G@(K5=!%77zTv7T})13f^7g6YH#h6=N*w}8W& zFCBdw{?J80Q)mF(=%cP-7lkFMFjGsDg%o^)OwSpg}W$*hdpj~!XIC33^L7&%x_ zz$G{S?#C-rbTo`cRXddg(Pg38zS-UB)ObhV%;${JQh7lHOR%Km%cS9QmI5GSN48V@ z;8OyZBA%ZDupVVzio!Ku&s(3yb^4r8WkIa;#GVRuniM-{)_e~Pk z?xC>xD}M{qwyTBR=fj98=tTj`n)4}J@);7Ov@BDB3D=k=uj6=}VD-MfEXrlgRepEQ?kEcMXBsE%M+cR3aunxQHWJu0= zd$arH_;rDmRhbvT$+XEpKwZnSQ$1OB)i8P1c$2d`ddmqi8F3@)ZsU9mt;vnKI!bSJ~)(1oz&aC(_?NBn5r zQJEAeBy;sEi5ZV$)(DH1e9&P6(Rsa@QL^NFJto)hu^beViLhhM?thul{D*}U0^j-T zDdqNb9Wmd!<$yX4nL*k6g z+BTEUD~STnUKp^ZjtIQ5xr%)c(XyQ5dE1{q^%d7N6r>KzY4qZViX%7YiRfx2;rO5l&q{clf2v0Z$uq`Br%?D`r5OKAwN9FjyHJa9_4o6Ty=b`jMoD zllb^M36~J9#>2p|q7=uG&_ai}es6VYMe6|BAUIOf#kym@Ez}7TQFD5vz7CrjB>90{Z!Knx4U?b+^gVZXX5& z8GS-FNo-__xISpJT;xpTqBS^sM0u;fA4UDL^X)c0?iipMitr-Wuv0j$@2|!X?Su4g zp@PNG5COnMAW)E~kC{io4CfaO{d;I&m>@71zK(eHDA@v>Um;lkYy$ss&CQn3;jdX7vTXvz(Kr@cM0IQZpL|S5U?PX{vuID-g`jDnI7YPZLDQ)kFZFV!-4f|#0)c8NyI^_< zt3xdgc(5_g{3*(7Q-}jdHVEj|1sB0YrMlBKE%986X67YCQ%xVqBe+X!OHkBS!3ml5^);ts?|7sz(bo`L-$EaQu#9ieJ(eO(_~27L1JAodP)^at@$v zPNxbKP!g3hk%!B4@&NR^8Zmji_~4xm_Y`|$PqfH>`+uT@1F8A2_yt5Hrm-^muK|*% zj4RdpVTGyTcYlPrm0x0oKyUZAk`|0BWvvWolI3Px;7vW@#~SPf4@sm^ny(Vo3>4N5 z_%f!043!tfIR3Q!rLIYkrIsRcK32p4CwVmrQ z+hHs_)F>0sGN}?qxm+~hrr!IowM_U@VGW^opf!L@q0C7maOT4NEgaQjatNWqD&Gm* zL1A1pmiE(+-u+G!Q7TY4srMkYd|I4WBd5qt4Opn>=mQoZi#=W>(=bUg{GF{K!m|W9 z&&+U67|&Sz*5`=BC*{7I4f+#otf%`fZm3524?2#?uM{ToGF<$~zLgNz5GwbM&@^bI z7#>U{;<2?JChbIldZG(U2?NpN5u6Tda6K0NfnmWXA{5YYKUr2q(&6uS4t30K8~xer zZHUv04=FFC^RhS2KtkZWcXf;l;;#--MV^Gx64T3&*F(*g$VSqp$c`(f{vt$maM9>Ubddn(+Z zfD>(#;+8Y`bpX@NAy2A?JFwb2y8BZ0j6QRIVbt0!Eor_!S7N!Z``+|^ z_cr+Ow1qYE_U&5o_I7mo6ZpSdCo&fk+?Edw1Qg5!1cU|{(*HL*z1jb5^w!X_USs*; zNjvpPm;AUwP%_!&gvbfm(&Z#?(XwjNpLou1BI1Y6ZuWATlrMCnxjw4#gqcg+KP(py_QNN;5cH8N@S{FEtULrX^oM<+f-IQoSujG5+?|LcXw5fP3D&1P;XO~vhLxD`toG)@EAg;PusU%_e-7CeP?`+ZSCWDFDK0v(C{x65f@e*TeR^bCK5q?oPTamTZXBOtW0tN?4Akf>9Y=x;K))C>PUPNFUM z1gxhOk4U_6UI?|3!A#UXfljYnn+~|_gvi~|VTbdgyqi)o@sDF24YLnES*!(hi{rwP zQwB9K@Sx*F3JIVWjxi z6mHhMTiSa*LK2PC@1%a_i3KeY{<8ofsnj9(Q4D#@UxLrVf~F!SdxFC!`{Q~Hgsj4& zp+*rSMlGPoZj@>*ZR{<^YI$7Z?h#ET_LWBO3jF>^!#>nrqL;g9gAjh-n$KK*^=|W$ z;}J@0Co%-M_1THaIalB9U|a*v2iccGl-3s#og?em4^E;G2N_pSWD<4=DTpvtyQ&8) zB)}q5TWDjijWCKxRfeiW6ipyiGgq4hh}1Tbo(c`a=w2NevMV)`zcoI@2+nMtZLO>Q zl1+cD$Uah&h_Qh@*`lG*?cwKE>M=V%B@Gp*^;Wus)@W>@e8Lkj)^wk(HG_Tyu^S7V>W3MOb2voIHrd>dQ%*gfD zIElv}NS(e>18Yx^%+Zei5~v$BP)sn|sIo6lm11ir^$&Hln{7l>ZKIt0Yl*qqfdp4t zO(3CZuX5m)L=yXE?L^%gNo~Ux3Fb`-iEP%9`8te|+0?w0$ZI?%QZ>`5 zqXeou)Wn?pi1odG+p(+@DvlRe@*@O?jmX=HK^gGeLn)0aZV%+# z2AtwKjH+nHSmCA|Gk#k<-|Bb3)B%Yq_w3=d%m0h;>Ey5~|y- z;pANWj^pIA;K|T9k~4iqC1u6GDqbS83(pp~ulc~^EiXp2ht&_qb57E4$n;mpx}^7ZF$A7SXJd2KyaDJ~dVJ=8`Yh z9eHH1^Go*zB*GL+WzbA8*{hxYjwc6XO|8_@dBz?3Q(DSE>-bx3zm45+VuBfz8TOKu zA$z9TWa2NCJ-`L4kxPvYujRM#5lx5J7&-G8WOY>w-7Q2Y`vHlREM_4 z9J*64!P+-UD3c#z+eiG%(ff!6G526rP<|5u5HCdzU!`Y~5M_Y1Pw89`LStM*2$K4( zSTJ;RNdIu$$H{yIS+4ulpry9l5S9X6=x@I86w7T_UX0^Nn&4D;CCWHAySX9i%|SI2 zAt8UA^T|UH-^{9kb);mSdY;=}QeuA|)J=4~Vo}(J!ZqChqBwJN=;*g;-JrTDL?vkv zH;m@jc6OzJS&UXYt{Qjc3&XXM@zZfVvjG&}(!vgf<{=FWsmC(1 zPOZy!cACz}^z2gcDrj+&hNYBhha+xXNp(Hruq=!<4G2|qY3mxnZm^B(>Mej20t#3h zOca#?O0M0o*I~^!dYOhWbql#)sr7haso9nXIF_OM(sX)y zq|QaGg9VFviuJ?kVjRt!?d(+J#R77Y2`*^a@}pYIdb{+w2uz*zYl&K>TzDhuiaTiD zU?bcgCwm8X2Xa4DY*x~m+vDBq2-lMiCIrN$HD4XBO)ujVRgu^EYQ({7UnnZ;<}qxPZ+YC=m6a0Qm6lQG!3CT@9ONZ&&UZ8h>@YmY zJ#qd`YMt-M)>MIb$?qLrt2djH${N#CMYUUDEAB8|%EYJR18#rUP2@nM&QnAKG(yxxzMob}L)ba*;T*Pg*r^ud(Qd;Za|8M$QXwvj6Q|qMi>_nuM^5E9$#q-VJGvJTG~O_ArPrAzIU%L?qmQD=0D;QLYD+TH8==ylZkT?-14hcI#{e#5#BA3NW7 zUv<1b&j+n_-ZpVRJ+7;~KQBMet$95@N8#6HH$UH2RpooFy}e#{iaI}D4nN;sPIDBRA^!7SeQr(GR@HjcOBtkxYL%oHxy z0C89IxSJhI?V$}`9}mK}H~ouIQ5V`Gx6`zlYxA-j8~baG){I_1FBRULJvO=aBQJG) z>|u9b7rDGaCYYlxH?QA32WUH=56El0pQSGxiR@-$hAc%1SkXe(b}sfuH8qH|m93GZ zHp+3UT@EE4OMM+j(MNtZAP8n-~BDB;`Tg0HkZ|TO=|w1!8)l?&o~|L z%{{$kR@bHnX|FubxYjmnyNp-WXVk~48=G^T{Yt=Zd%ZJvUA6u-)JbRBN^Wjf?p$a3 z0{a|1ggc=*kGgQ?Ba-8?I1atRTRNkvgpp)J@x7|#llk%{)!B8twXJY{vHleh6l}FN zeS|&l$XREte+_inoVvhV@%)!aecn;9-dO*d=%lCk`X8$EAL>`Z9dXFH;wjpCY5ItL z`5Ni8Ieo#o@rZrik+)8=xcrlCaZ~U+cm34=EqK?$nZ#*1x^&rW<;vu~n-Qe_e+)e1 z4rK>pXKLmgsQ9rZ6$fMIYvLWLY_TPE24k0Ml$@w?uuoM@HnaC59V`42IZd1YKMk#I zFb&am-^m;Qe*h`*wEQFDlm0t2a(BdJE%msXzLlq>f0=iXn6#5h=I$|a`MuJM{Q8M=&(bkU!F8*JenWbzR9CK0g)&-#``{L?OK z3yOxr@8^~6Ju1o5IgEDK;8w2@E(zN$Ac&0R4oEA)L)Xyn*|FN%yjGX%p^ zA!32AifSkjn9}|I7qgMT#1~aI7Wk10ppGU2+FvxmRG{#S{xuW0_@eW_p_j{3-Nnp{ zo>WuHC|ClhR1YS^oGE@Qin%F^8}iOKk?(c27_zjL>`CJjFA&p%;IYd1oW?G975cIT z_^Tz2k&w*~lJ89d^2n8F%HU@#5Z3`^pRfmsw z(RQrY-9BhSCsxeX!?^IUD4B3wE43EeM-3py9Zy|d<=Pf7&LR(iW7OqehwLi`FQRb- z=PETOzlR7kvzR<8!$a;s9|7vhbHaT<`{p*!LC~7}21oDtGxyhX)%tJxjR5vS3S>ha zZdaW!jFriCLLQOReQ)?XQAdHYR?blfB}nBk!pXlgt;n7*^SM^sVYC$ZD-Y|PJlQVA z(O9mP0=1&=Y?VUiAk7+~BRBzjKq_YJH<|@TQFeAPnw{Qj8LE^|EiCh7DfWj9;6Fvd)_(Dhx|A&r^|A#7t{iizPQ@#EY5xcJ{`j$LF zqtH5{wh#%Q5V`abczt{Ep8MI-h@&T6q0|}LJtu62%lZyslFHRRCT#R@4;g=r?wL@< zU0lKh%cxWRRmdc>hnG>=7rj1#?(o6w%IbDgH@lsiaP2v8g_mhKU9%cs&E);V>*stS zefh9=1X0MXjClg(bA#gntkcbU1@gqm<`!R&b0jb0F~HDj-%I@wTcq$tOv*#K+|rLz za1+l-AnFY++U^QIz$>QP#O=%Lmlx(*D56aCK!lRSOUNl)pR{Ue5P2bVo&Z+}g9U>Yxk$TF!+Nh$UgHG-FrM6}LzWPsO>0BWRp zIeZtF2&ICT5J*(n6{pFu#CiIUP%gUi>~RQ#mHSBw6J8$C?TJC-Pa6gT9vh>gr84uO$XuiokcZ~b#TZgapSI$wl zKd@rD7*Wh!mnIkcitN$|R3ZnXg&gz&;6xV&CA&O%a>irz1145@u z^$PY4=mTgY=kj=EcVX84Zs5>DwnU>4wpbL$4t(=J_I<#8Ql#_D9ZJ50AFZ!e~2H2fk0v&&zWCF9p3JynwucPI(TDckR!>%miuPPUVR%Mr5n5&)JdU_*H#bBfPfl*RUx9gmZFX$}S`4?V<-R%Q z73)=U4 zZiG5osw~%EUtB9w^J=Q|gcQq&C3^U+J)P7|N^hcy@D*-Ro;~0*k(LHg>8Q*SY__)W8JQ1UC`6;Y>=K{ z*-O2B2f7`qY{Bke&MsiC+V=~Uw;`t%jSIq!W(XTQVi%8Do;JQ2g_x`}^Ui2|`(lH@ zBA7{Z9>XX6Uhh#GaW9KcTcTVT=xQ=myhf_CE9$dvG((ajK_derpC@c5wkM^B3FZlj z_RF96=cb93vLM*&MMj)PCK|6e8QE;ZkyeeO-qf;vhb7Af=F1UfRgIi`H5Zoe$6@f# z$5x=Yzg^2GBQDI%EQVZL5j}>QCSw+XF&;;})HAB2jmWe;K zB*O#q#d0OqqoiKsk)ect2x?k{kY8VNJ?7#vNLuDHMj&MjU!Zg_3Z%jFE8YKRCPYql^*a&FM%e?=((_AdWZ8+kdU-%!+^`4|2Bm~09G{T&Zf+ILb!f%*dC19Bcbe6 zafts-$Tq!0C|0!cKi;1HuZX=L|HV^?+-7r#!isir3KeK2`kp|IK0w$^lh_P$qc9g= zWIPv-9QZlqYRgv|>dh%jDBn;o*uvl+3>N`nmabE$9=hgyd+&q(y-(|~VP7W(LRUBegbMd4$ z0L>q-(bGV5}%V;4@E@wt~bDI6rbx!$Ay0CW;Y>Ij&BOv!ilOm9e zG(4|PXBmCHD4gR4G?K%v=ZRC|``HQ&}fc2B3H?bTX7jxo*u+Uvm->B6qR z)2KU!OoKs2ZboWE^D#j{$L3ocT}O0kWGgG6bI3Xm)Bd#}zsX3X95vbFTqdY_>70dn zr~63Z^{$r^Fqs(|)^Q1fYni>mNqAP1J~G2dn9pMRI1Um^wXtpCW+D$_MJn@vh(Y~gk&IUJJjjb)86&6@(_79GtEhC&C!C8B z>>yI^#$>l#Zmcm$Ch4wIgPU{KF}QVd%v-1gUjZ2=S^FchJu z2%Lf8+T;*mbM#}|L$^OY|1NKM_f_U1PcquZ?Me_sw>j>{ZJ}QNl`~~_fR**a`10LZRNp(+w?UxZwQH0>1isr0J`)iZ~$~^q7wxur@A^s`La`r zf!_^Cp%DS3EOvgSaQt)?*3q0Ks5%NeRl$-cd)awG`ARYQN(mF)L-n);{FR(bO9PIG zRB;q0#S5r$XpIoSl;ZjdmVX7$IAj!-k^)^OkK+S8&7c$4hGO&b9p+G^n#hxF6zR4L zb$g_{{nLD*Siz93ph?#LuNXd1MScWcdElp-Be$5$V4IfE9jhoFjpR>Oihy&(wpyjT zozr|TS^i&OfOou3p;$D^pdvTx_P|Q9QP^gbE2i9fxDiheblxhyjZhGt@?fIt?@zkug?^8M;FYdBcdQhM*ghb-o%EoATpqGTH;6%RglMhfjuk zhPJ!2*qRJT4?sBR><>V2U+{qjfQv8Kcshn#K!fV&!49XlyKxBh=l(+}63P9C^a}{R zTKw=u0E09*!a}|-uqNHTC)6#Um|e6kV8TKAKcB*p z20)Lm4iL9t{sus&VOWDe13%d#fh}n5ut1VGia1@giLgM}wD;J+uUdy}VYZyUik=bx ziq3kr_)QD<(EpkIszc|iXu}UcQQ!R{&b<*aHgK^7Kwdn>!d@z!H#P=?TPaCPaW5uR zQ^5s)F8UZ4ql1*h3VV{t8a8vA%;cg#{@e87h2^LfhW97!V=7Uz#c7F(n3XtuwT|wT9KgvAbKkGi;Kb3hN$-CBfO~-UShr+q^l8t&dT`7BT zKGJtIxE3x|1fi22pFF@%2aOHC3vyseO=6-wP=U3iH^;>IUhX?FE+kD1p?@ylf|Iw1 zu-k(#5Iu@2*mMqNQf*btLb?HCl=bp0fWJsy_($F2c7wOFtYtYXo~hwQ`INB|EPA4Y zfMXC%MX!Lv+<}L4mt6tjbc3TY6>r5b1fH=hWwTnGsqIDioHqKA%FWmWXy8LfJYI6+ zxD$l{pTWg%!@}yiQ>pT3I zQ=RIfpJX4<{grfxrAlY`U>`}0#`DTP2oFXYmszL*AbChVU3FmRbWusrio zER~|^K0S(Sotl}B-}cwDw?%GOgOd2J6t&4D`D#iYl`a=*sw;NYIAQQ@XLbLko~v{W zv{qNeQ*K!8|HNJdTys39&}Fr6B4^Ims*bWU|6$wO()vmlQ6N8ZD#?)%pJ^yB9hlQw zHP&@2gw&$lgjC~C>Eq@lDsaaYDMX?t&UY*|KHJx=l>b-)8Y9!UcjNj#D>(;sp_W`h zm-6CqvR}elWMX(Xau*&xkpLb$XE_rc9Vj((F8??HGC+y_6Mm`2L2#~9j<;uz{fWs6 zt?>>7tJ=PxDq{}#1D8WGx z|HRaINHA&{b7jgV5QqP9slf+I8B=jmT!;}@J5o^Ha zCECA5NO0+LNxc8IuynxvPfv;uXSsX=E9|0Ai-?}@V_N$dTx+p zV$OR6)i?u@RyDPtcEG9VweOK+!lQ*P(%2z4gCrWh@5Ump&2sg1l^3n`-FmX=20}&; z8x7e2CPC^BBs9?LJ#?RsbFdE4g%rkD>s$80W( zyicyuvycK&vELLXbId;mD<)o(Zy!;-4yWT9f?TOK>%BKY5IsOfrqwOkBpV zR8#@gTV`;i$K+ORMQv38L20Kr8d=}`_@vf(AZ*q+glp#+<*UP8K3ap0*dkU}eGssw zB!35RNa5QxNBOF7mw&B8hi(;Us6J?0Q)cV{I41DznWv!>b|BuM)&U|{&{dSL9k|_J zRjr(kuw08)`)DdNx80nMRNhdpRG2{8Cs3Q9qFBo{DI5^GoW|!gl4~yacl3LgWk$C; zPED<%R9g6bRmE{-96;H6(D-D%9@jQzh0S~ih_7DYb`OLrU*9AGcz0hshG!}9-!{Kz76o!noYSU>pPu}vRj=2JxQ*GtTdYB_8{)BzA8x8I!*fA%|4BhKTCzQ zYhu^BHiEP5j^80vsYqC_7HkDB1)B7gzxZ%&x811lp_oe=2ugT*5U-?~LE#8}xCkTz`zYU|IB|u7yId?SlP9&9kO#$P7d`I9gvi+*~Phmi-8o zKLp=cvCdjH==8PLHMlc-N}+#4%ex$~H@G&#N~MQG54#+=Z4V^4g6Z&Ghgz)O3vf{l zm(qA$N{w&Bx*XZKr(U6c4&j`~$YtUwD7!uJHd2$EjprQG&UQ8may5Va1)|)-QDsFx zs+3yAq~hwcfr`9{LzoC&u>!c+@qe^;F8)xZZva0M#agXMk=i058FV3RrIn%)xr|GU zaT}L1j6vJfV3X^*OlTUnux+W_v#ulKk~W%+B8JMkWQ;pa7`GX}Guq!yX3u}{`@Qq| z9OpChJm2%a&-=V*&iK5~^Q59x&O1nZ7RnJsrUPg@>*dSZg9*WL1yQLr6);APl_&8H zTsZYianLDLr`Yckd?uAxvlG!tRN@=lQQrgWP-|<1}PW00pO=J_hYOp}* zY;Uth@iguCk@&Pp(Jbw(yY*f(-%dOTQ;ElTm3aOxJzN&pk0U%iFcV=pDKRhJAPv43 z_2lqEg!Y8Q30J`2ro}PWtOk|Dh0F#O$z|}6$N>+T-EIBS+zGE4G5S0xOJ0^EG!Aei zP7ExEie_VPp1f&swJ94E`v{7KvOqENA}GdQkt48jMtV*Uc_=1iX2xXtev0S)F~cRL zNGAzPrNt<0ehz+Usd85Dl~UyN^rZCC7{=!2O%GW3>`7lm9P9E~bMw>Y zp_9!mv1MYnCu&Rqu5xIWeROyOY|)LNMvC@+xTV*xQ9FcL{=q;Y=H6TDIkMK2tS4iq z#Oxp80q!@RHro5Ei(ZR-(`PHedFdADsG(&i+vwPzJm=J-K`E5&S2wV(BpG6@n^n!W z;&=Coe?HF@t!#X2jE^Vkp7^ZMwiUKY*{j&ARq-H%nqZO59ME?DFDR8CiKu`2n13wLf$QM?dIzxCizOz`5h=W|OXGAk7@l)oLm+D;tj zNG?|XU4-TCy$#xd9WmIs1`v-y{B%UNQQUI(O64?$a@|~D_k85Xw2d;({fUu z;zTS0Uywq!aYRsa&vL3^k1O&BoZ49?CBnEAhU##qJf5?Zq;4#t(fer2cABpE0@@3@ z8r6;xca&bY)a5E&K=X?2-`e#Dg`2*+1Cw9P?W~l{a6yI*zZ;Dz$>U;MAJaaESYsFq z(ZUvp-R!KO&$h_WxsU*%bCu4W47qRh%z@+H;fpS{yt18&cu+EelfT|3*=VoM47 zuRb*u+qz-(O)c-#-B&?y98Q|BuiR!F|31J$Y~TfA5q{08Gg}W!S^cf(B-7dUKz#s$ zo1A4c=Oy`c-`N7U6{6}MGHC5c-Cwh|X1I_W1YIRYvsG!|5>YrP1ln}t05-7nz$ zv4NWI{x~#mSH_-u8--MJ08r$AyTvD4!k=l$MD~fS8ns-{@Yv-ZRUu3|uJ>K0Dm8Mb zNL|OrWRSwS-f`s$X|dmZN{?N`bWR5IW+h6xAUj7C-bCbVF7x(yKvSsoqkr0J+#0BX z@AYneBc^b1TcvKAme~>6ER1{olDLzM$vbUVTp9Z>t@yj$HwR&2lDnFa?%UV{K5*Zv zg(2mBxxL>M)Caa4f3ZtTM@i~#l2yFPXY}~)Jt9%^GTzf#=T)g!kJ~f2z9XbqYXsM$ z(VSUjT_JPx7=>6QpMZJ4AM@_T=0&y8z8`95^Zy`C`6&b2(qzo+`>9WiO@EpK9v zp9($tQ>e6gZNA}O*|3VsYOj}OgtvOg43_L&A+qkA_`#37&Qv~yap%Jm{LALS z-!fM6>*91}-r~8dF+mNguAdnZ3&N_02y@E6_=BGF?~-P!HRK`|=vJ>b^0otg<$11H z?Ef8)zt}QwH~78Rl8BlXo|lZ8j=k%vPBFalq+I=?OGEhn$<}nU_dlXrZtYO&=^&OS zb&rsXY?T|Z)*sy6M z(op+yo7l&_AM>8Ap1-(bVDSTOs(UN8m0DJq9In)R2nBadIIMi8PjZ6{JXcYPq7hR| zy85T}9kWVb^{Q~kbD3l(ud?w#Xk^n z&oo4DZMRuWs(!d5W>e1Dgf26ownywzinut6Z9F$@%gixI{9(sXB-&mGBma0+$}>G} zc!$LOQu;Q;G@+{a88-ivc($(h_u&CViVd|Ud{F+Db;jK-azsb?t}}$egy}yGO^PFg zvU3h!A|BeoG_-x!ol~JL>6Lx*e0dxd-=Ws`AT+pbvh@O{|A;vGOhsXJWOy#~K2dbu z(AtG$fpZK*o(fl zR}uiE`Hu1TnWK@vUl7_a2xWuEq63kwk9#D?ZQknzB&A^-dH|qdH!r-kRhxQHB zgz=7oie0D%AcB_f8eT?cjxB0lB_lntCVO5Ng|1AxrKLTeQi`IL;K zkQ8klD2%gJuEu~e0CW()q|@MI+J1({=t5!iH#dxD?*ah51VIcl7aDU63NxCkTon$^ zgf&i%S83lcnH7AgGpU@))N{7X_`ZS?J+Y45$9hDn&w0RBnEO!+vP0| za*qMP^+iESV=5#Ca^WnMoz^h`4J>;~kTU-Uk^;GINL(xy4&IOqK%eDB$MKujM@R~! z*DvLcX0SWK$Bt{l0+f*B1VGfh*93YA)7&0rO3rfK6jx;Yn4ozBfAQCiy)St(muqy~QILyV9R zgW9n^M2Qs=B4H5)C1&*g0ud5oC1TNwXqfp@zvsCR{Q=$IuCwd8_dDm@r>)3dXx$y6 zYEU(5U2gvYpEgUQ-Ra5H>NHwUt?!7h>hQi=pUW+;o2tBiH`e{tRdsG~^7b^HCUuie z)2#X5icrZl7i3{A?S_EP$?S50H^>X|PIm1o3jE9V@p5pgoGJc%kPXe8sJYW$PChus zxubW`Q%*kk(AaF(M3(Ruf~;@t$uA}0!UwN@_iWnM=pY|ledcSERPUhve}c?Ba(rd? zK?n5*N4&jMrw zT-U^_!uv+@!SeNHw;IR?KYfBq$R$6LvlMv%w&joyR(we!AFQ1Bt!(m_i9FU!^1-hQ zaR4*v1*}j~4kq#F7vG)+D9xy&Xk9 zSjjgWM*ea!pD7{agH1Ol@sE>|@*cr@KU_hoF`wr$(C-LY-kNykoy9oy;HwrxAaMS-k{_o4cq*kB(1`}L2;;JB42SUAx!$k+N0^*hXCQQ>ikh+Np zaSNH0b=JqHWf{jhefhy!kXw{77zy_M*2PU&Fw)sEInvm%q)(j|)441*|%qxC1?!{K@i7V`Yji2JR|@ zW0_20#xh6#o@qq&I?p^>lXF8&5z0v?+%9Pus11T6e#4R>?)$?6|BLiYt@v(qROn*H z%#rb&319E*qX&qSYssca0PJdXv*GQb11juSZ|r95v&Zx0h&hoP*+9@M4*vH>A{mx@ z1|&YhI(y($9VMr42&tK?777(JrPbfM}`KzHyk+w8H7wiLvsS)y| zN5Z*9ST=%|(PnnEoU2H4=1sOJhaEOT@yCP6_W|QJcoh?%b0G=J)g`7>TX{jTd5J^nJ_90bWjP` zvzqvSh8^MXkGuGVNwl(zpm6~m`@?PE$6NA%{`ax>KhOdYQdw1zv zlEkDuZfrT1f?aODnR>(@-b_eE4x-`!PiFR-svpvw0MSsh*x12$0?E=AInRO<7_*Juo ziAA?yHer(04tcY6@)Bs-^<2>WU0nVdCk+;Bf^3z-p>1_9)^%e*fI;GHkSV7gHy6ca zP04Zb-nsOAStcE$L&JWtX+1R8&(!8~s#{_TY zSNA0GvL<)2T^dy9RR3G2DXzkophx3QdWFCJe1Z;czyZ|T(rO58(=%~JL;G{osfa?J zJ4SJ!*64&%T&wee)s>rvK$66Z6EhE zpke+|+g~>^v=g9zDf8JyGjRe0Ha@wwynfCHC*Oe%&N*UEj<#JTtM3S_>L8+O)yLY1 z-jCshl^~H)x2sam8Se6l9PiwnR`IG+>PDREM>^Bm(%w;6v91U_IHHOO6U=P1Ga<|PBrX=Uq>irfxe1I2T)I^yuH=MDt^dK*I1 z!-@zH-%3#69L0?%PD0j}f$?3r>`>9N&4=wOV^=da0vlYAn)Oh;vIaYt6;E&8tEGco zy4tT9KcaQ~Y;P(>aTS-G4=Qby0*)7V1y^Us8O_4e*WK<@)h`aJgKpJjYSBhgwlaPc zks8-4twmEDii0?(Fjp^*M0`}+v@Ezz)^$>Ioo6Y6893!`5|d04F~vpPDZr5gO-k=y z&Y}<)Pb%j?@}f2ft>l%)RLwPh^zCSLqv(V!pS%+~&W9~WVE&0Maf7;p&Js0Vb=9gk9n=G`@HVH_WYdgf-m#%mlSKW$~_s~rkjJ>sQU&eTB;)j>|x zL5|fy?nh6Cl3reu=+c`>bT@OZr|ErKrX@tr^BJN`7xikHkClsSvN3cc?QNU@;>2S1M!%z>{wvtfI_ z1yj_BDkt9Fa)DErOA1U46mPxExjF;$L4|xG4qT2s(m3+~xxLCz36$t>DMwBxhdL5p zLM2Q=Kn?!yYV1LkO;F4o2uQsW7zpcsRH=)lxw)$gcU)}N)l4ufBi z2;I!a3+`@5{EeFXU>64TwRRf1n`er+cokO65+u!Jl6h-}y)(ifQoBHzzbf73o+ucg z@w&LUICDPE4Zj}B2=hPgU-u3+UT%8)b*h#X^Z9z-uRmWLc0NBZ%67i4Zb!b(QWEkF zdf&gE5^i?*{XZXj2?PZ`(@(xXd;OjgUI@QF4-gX)^7Cc~Iui^9Klc{O@*N!P1^izI z4iswzYqq~XUgMKFZv;Oc|Dt~HAO`fly*@;Ytn6e<2!491)~sAjDc0`v`0zYCzVFHY z_541b+PER`xaoaQ$S2tG!{L3qeLc8PjQu`9bO`u*eSFj0=`E3?csv|9$ga)rp|UsZ zqUv})n|i37oG|S6`xqJ7y`f}D5AgZ^+9}!n_*_w3alL=I@JLYndiXja-0=@)P|W{G z|7`UBd${nP|NZ!SyzqQCLfGryag|l3Xb|vncEy+wP%^fn_y<;zo@Vge9KVZB~z44Bm1?J_xelKR7 z^KfP@JX7<_&FJik_sC&=+tWHMfOi~!a{TLQAmxT|r|T<$P*8vS`{0qPFdRi2-%dN_08ocY5Lf*Kq6=lrJ#6#uZ^JC2I*IfF|@Gw7A%pV=Hj-5}i~QU$pLV}xn)5Gm znw)anC)yA4t=?OlwRZ6h+H<>KUn`2Ts(Lk=qD!^E8?-#sI}K`=fLi7!vQNb4syiyZ zpZ|32NVS@4*Mu8yHTkVAnX|Gj&|qEHXB*rP%iTn*5EAqT@Hl_#`*r>{nj_r7>G2o% zaM%5Q*b)4kc_M6inkxMo$T$3W_ULV7q*?ymVyq>v>?S{8L%E-Y$-in<^S97I(@wkD zualvaS~4}+!-9&OZ$?Qb$dUA^H$!C}HnnnHz4tngA1FUbMZVLz!;MwV9I|l3US}vt zWkHriCT=jun6<%Kouf)cm$f~-S!K|_4pr+(Uv&a|JH5+^Uv43)eD=6vR)+@8I^X`+ z7pAJPcMyzQJ!vz+1!=@+Fnix7TR zhWb?nJw6W1RXCPAD;Gf$yX?o!>37XP;dp}1O1it%@KYd5hZau$Jeu?NKfW+-WZU8H zH5vZ=R9ezERM+2ucQd^FE`Od6DY>l#2h%r9{lrmI^o+-l-p&rPKEaSKv;@4WXVNcB zj0$Q^KYc+TAO(!dr%J}ZMX2$!9{SaeE!hSr%CzCubJZ~>{EMPYxhAZc3lGb{AB zm#|^YTaWSJ=hd_sda4+rYeD4AKf~-e>Ua*L__<6JrzQ<{q&^ubS{_LT?KR!LFM-oIP&%(QMK@foQ|0y3mvp*KIlE2M zR>6Nj0MTFc&}|fAEoS;-ceX{Z)>I&MYCqW-vR^ip9)VFs2#~jsFID10oIkp$I-klP zL~)4{%Lqek@DV03^C!hw-3@_penJi5Qo;4WPKP8No6}nEChq;Y>FiixL)>PSeFP+G zqs3~COdPakQKD;Apr)w9f!0;4c2`7Qu<6-wNN$oYz{{X2t5kL6;n`n{6AqvL2trTU7&a|UI}d`Krlb%T_jQjKuL8-EG#lTVcdJX)(t#Alj7<#)4>a!P{pn zX5ImnkQMPjVHFUNtmxSI=q|u=NgDso0?y(^ufbZb0`YYq^U|!i>VVy5k$f;F-)H!B zz3jH;+*HBuRqv-K`QVh6cYLH1uS7OcDgL^WMT7dzE|sqg4qFCm4Q?(vmcFog9&Fxg z4L5B}3~@5VRJHDQrI?ditmu$g#{KbAVK!7Jt&0YI+Axc|%gbO~df!0LZM2e{tNz>C z>&&F=2Zv=jG&l)2rS%R7s+lSq7Fm!4G|-DMr87{vpQanTHv)`qbqUJwv(2)NgcW_2 zLRiN|f_p{ey73DVaie&%#cxVqEANR9Z}y`OI#>*A zDjcMOzimvA!pm+xgU$FeAXEa6=n$D5M(O1tF;?2qA=xz$V)XsWfuUN*nR7z0zrzdJ zETa|A3k%!iaNmBP@t~1(>$jE??#Y%v#R)B06%Nf-M<<)A(qZG{8sJ;;>U89CDL%Mw zX;^~$aYvTxP-Wd*(HTW|^UO1}ykDdZRJ0yAtAP*4W9Y*I*U+y%F%M-l8X}3Yp;dug zA?7F)$EAz8w&ff;xHT)JSgXqMlxZisYfWUejt1-8Z>y|8iHSGTKx!kEtrpGJhL>In zFLu}hXY?;Icus5v8xizzj3g}(4Hx=A-RN69sm7lU}82#-<(uyPB)W77>K|mU9?3HLgGd3XH{lc&e-;v5Oks%UiFmpR5>g zc@yuuoHD=GGB6CL{*W7>YrU^^mJ7%nZoYLiq-vuU-~IZ!=VNE?*BC}NI#oL4%P0!% zR^L})_l33dRv)>EzfUPLuypkD}Ys*<_92zMKF9uDGY+yu0V$CVuDro_0zV z(YKz?1S_W`8by)l7+ZaIGWAd+x#9J!#Il~WfVL{UEE?5}8kQ%@P4U3sDcvxP!GIUT zc05`>_yO*r>36w>rewYp7cii{XO>x9}~BWO*%M zg7Jss$oYqtl>xgp<(&P`}Y7 zVvE?aKxuUx-@wC$sa*m`(+RR&i9|M5T@q^`oU>_2I}yPK^%cL7!hX-yx`y0i&PRZCLJW{Nh8+gQ@9;*rImF4mrVj;RHi=v46QQ|-ltK2vz}iFD%x z9<0aXU!?(E9L|` z3wjH98+hYMVNNq7dG@=zy>U7eursTzB=EYY_n>8fqZ{K#HUwz+ZiPe!(00@<4CA(UsBcrc9V4^9F~ z*`q`;{Hl8@V=O2NoDnXR0pn{=7YKEy_b-$TOO7M6b3CWew(!NiCT=m+QnoC$2=}md zEG%L+Enz$ca6)B}8-`Oq1OfQGNf?9ho|x?jVi{->pT9^v>LxYOkO55M(jyu`jNlng zA*MY+l5jGdDn^Llb=+jxd#Mim!VnSCK?C8WJ;MkkSEra+hKSfJ%eiK4zRZTTkjy0w zH~U@6jBMz&EoDj07%FPP&;0 zHO$4}WkWxk#Qm`X&gpq|cqr1V8di27_}u6vNG^rw8KA?Gy0bxj5%?4Z#Ty2=##U*w3@8QFic=6G{;>I*}>RXUNEiIq(Q!fAkdg}p#hiZOZ zRMEmH(JC3VM~$Rgz|t40sXIc0$Rq(l_+qbfITyYyY2DjN((NHy?RHl~MUDQ3PMeep z0v>l+LjDuRH>#u9DKI=Ad)DP#>SC9=sf2=`l!17ARQOsSQ<|OuzL8}hgtCb@8c5dC zYAnNLPp*WKi=0p#daJ0!N$=68dz?5}F>yUK9}7hBqZ;I3TORnO_Wbi-jY|#wBASyI zWd99FB{&KM_2zm;_K;yv1tm8jAnHV>0@4A}_c}9_x&n(QXWOr?h#?>AeOHO^q*1Uc zpHR??$Yj{Ko?X{LD$-@k;^wqLh7sF6fzv^}(#^%b&93V~Z_1YMHlE_f6VjGMna8!{ zl;W&k4_M)>9IxYRyH7#Ag=FEx%J*E+VzObyzfH|fY$me4WxjK9K}X6-#`@66UtJln z7S&un$E4|D!X&X5Hy!D+?!P)q!ZD<9mIF>UbTG(@^6|_r|FUlwCcOupACr;X zM@?{tfmx+S&IxyWJ`E{lCB@PFz*tF7;YbzxonVONg@%j7i^=N&H{JG#g5#cs=%Wls%7XG2nWk^z|znt3oOnL$QwEwAil*i#GXpY39;n;?7E z^{|br&9ViJo_~*cG5|bcn>4OQ*I~tdbB}$5Mub_1QsGX>lPTuTh>AD@DDltQQ0BrY zJ^~tIFUlPRW{RnOd$k)fYKwzqx=+JL`~KBoLuqT2j*DdeP7WZ!Byih-Qit7#qgjq;Y80|X)hGM5X zsJBLPE?%SPyXcvWVA>xrX-Gc}MO2x{k!45r$(a2%VaLTFuY9lQy5lIbcv?F(;N-xx z>yw?y+Zxj8-wrHPhg#`XDcU@W$tU%NuL0T2>}}ULpZ5FutwU)3x&mxoxCf#nv2Fl~ zwz3QYo?9fA7{a<3spD;dm}b^?%6yIFCCtZ^s2$3y@N~lwK0tR&m`-mX?)JMyav>^X8_AP| zAM&spN7g_(l*|h2(Dz0aO%yPw$8vn9ueJFBU8}4RYvb5vPx1}$V&!-?&Q(Z63K)Zsx zEk=A{%fz4ckpBn_z(YE1@7pK*@E&h%i8OkMqJ^5O8Yv@R(MhFxn4kV-gRDa#?lJp9 z&9I0Y^y}6hi>{i%RFA06NXkUgo$dLM3-_VaTVbMH3%XM%k%5tb;CpR50Aef zwe_Y#R!S~>v(+R$i5tWdSQ`E4vDB`q!ulhg7&r_}c}XU)ka5y8sRykuY5wtdyFh8b zP~B)b{r}X>=Mlo`gOQ#3qd-ysyK1pBH+iFob&U-EGEd7t=|5h(wN9{;i`gv@e&3rl zm6L#0!81CsnVI+Tf4jnhB47M?0zd#;mJ(wfoLdyaZRwtoJ;%`Bs@eB?lCjsp<_NCc zj2=1o^*HMD$%co9NR8n4Ub--z9d`y7s+i{!`oT~>v&-`IWQF-RJo#Lo=pT4@V?3hJ zcM6{Xn|I>Xf!-ZBS4`Iwx*|b$rto5`F*g_y<4B^|_tnm6+F;v*q7Z5s9{0(h0>O{+ z1x4ZKj1~e>u8aNW)u?7DiIDPvOMA}+);Gp)7k_dyJ^RfA*Rwlmr%k!{X}QnTXNJ!= zQkfzXF+a+^V6&&$lLJ}ai};KhD~OL01D8UB=SUnxa-ZrTAmF;eiUIpQEx5@iW zeZ0AM9@3`IOyly-%}nKIGorDgGwEqA8|kVdau7nREkA)Pss@#Jpg0XyX*$69WI6jV zf*Or-ff}^q)xt>G1spGnh_n=uGd=-ps&aLR7A4j4G=!xj|xzA_xP)?!dMk9NzE&b~; zz1Pp@JK#Be!ePrLziM19f$}yEKd9(z!pUG}jVFLChY$$I5SH1U7IF zXY;c(4Wn;Po{fHQjiMke!=<@E*BTc&FlKQ9itam)N5+!X4jL~&jH#bl2=5yc(c-3~ z*6jvTHTm&km2=HX?B!mtc@v;iTcKxvGM)S}BmdLd_d=L(4(PU=z;{2$z)6X8%CjfW zY)=LWlm@$s&7dFA3u;*kIA_v@^MMv~Gmj?0zCW`Bsglc3hV{7u3fgUc8`*fdAY zRDHI0)7IaRz+AF*LgepPGj`2&6(2F)4$;^s{aNK;nFM!N-|I1CG>Bv2Zj&0H75;0_ zrB6W5!{=>7ohmf@0H|6~u6rb&4lp^BDhW-EYQ?u@)cz!FX%?wf%6K0J1Nr zTjF+My8vq)4>dgzU-*4Hn*PYC?30Pe86G@ukE3Wub>AK>^Kbn6?OnEs^a%LdO$C7hnIHvD= z5;su$Z~X&c2l=0$VnpkLj)`aa_&>PTqMNs z=o!^#Y~CtEb1|d4-U=~~yC>G)-K9f}XgyKbHnYjtp})ByH4mmzj%rk54(D?Q*M+qH z=+GqOA!jjPa6sOC{nn~Fa$sUMsBOz;@*FiP?^Z!ZnX>w7hROv3} zzbVX}tLCo681}dyYtn1>WQlsmGnl!r1%*^{l;m$6!l}Rp_g>0y%~=@fm(s^ge6%c; zy>Pu7q`2=IpP@uOosLKc^pFC6*d6h9w5EWkI@~@s zq3o3}-Fjzpp&40jpz8cR$(WH0M|(kXDyi-UqHzPWjJq%=bUR;Y6vQzPDY2pyx_TL^ z$;}oKGU6f#p`7yk9oU{Y{9^`Sy3sQE>*Qd17bbsty7^D@8biw+^pxm1q#I$gKQ`w6 z4AinsTTo281w=}84dj$=JaqiV64|Iw1wEMi>z*tP?t+G{T?4gk)k#0XYu3t ztOr(I(7x<)x&BFX-kr|tHMw&w-i)GO2hbyAr0}mf$-?mf(8ecawq^ILtL(G2F=8oR z0midEt!wywIg&fGW213XEbH}-j60FUG_Cn5dx3Y{WFHh<6qggV|vW znGFfy4RghC2=7u;w&jPdsrYcp70s4GXOT!xr1s5&nf|&0BC&P^5Fw-~gIc7Va8+gG z@ZT<;lDN3A7=Y_&u!*PD1_XoFW}LBIGjzmv_jArA0#i;>H1A4JxOMd*IA5obmxiGr zJAGa~`ugsTq+`J=uBC%{3VGN&h<(kXeg?(6aCJwP_bV-%^p3{hG7z=1;86g(X6^15 zc__FPS6Iu?7Nj4RHdsEyIj5ae=2khTzfDBHxsm$)cp6xEtY@d#*GSYE=k#|uaz`Oq zqQ24J!y}SdnJUK2KbRYc5&F9ZES}ro`1H1zTs^D}G`@D*6nV9}L!(87oahzZ|nGT+V=vSehwZ%EXN@*-g zmGVlV!B1gtg$8-sA@Y>Hs?Q5PVmPHBUU5ZnOcSP6<9a2O@sg|QzQPO0?4RpPCHo9M zO0r90q=jN#zn$}E^y$TkTVD31AJRtOX*DD~#!KMU5 z4wVSq12P(46P@DMpp?0$SrQKk!7rL>y9KEjA?v+H^yCH6%c^z8u9BK0KS$C^`~T1p z#hC7WyQ3yVCb(%&yieGV_$`+e+Mr56pYkbB9t)Mr=wpP~o_ow;^Qa?tg5hlC!Y30( zdG>g^SM6zzpohzfbaE*|nT%9G?)|VWBd?1Kb5OsFk3LZGY!myys5MM+qT>K?Q*`6v zLqF$U!6x5{0fPlU%K`aH=v7;dY1={0@K1DED0_^%HD`S8uL5PbgHcf|Db#6EtqM`& z1uo2==51}(c45cuSQcS026TC!aDBn&_3ufIKqULK8~qc#&_ zVh~EH&Q?L&$;DNv`e~>L9;WaU@1&e%^=jw?f1prSECT=oJ-Qha=Ockf>q-wk4eqX~tSruJhr0_?LbuRaj?DzS1tKCy zHJ~Pop7PhX=4LxA58dzsxYQJJJ-#Vn&uw39ed_NZo~1N%v~jh>C*?WTMsn68_4hq= zQ!;@tn{m9cRz|$8;D!~nrMPLHzYJG9fK7v)KH0I;jZE_xNx69aX8eX;;-BLA-Y6LJ zS|q!hP>DvRH>MceN42jBDkCzW+BPk})gQYNd6@qeN|%R!F=R(iT3a*sHV;rU>q9v^qJAJN6 zW=emTdiHc=urG6Y;4EazxdqVh(aPzU_Zm~^I9ls#dPrY7pb8};$ zMYb#wTp(kfNg9>6!ScuuUB4i_NvvfQ0ZTe;VkF}f?%b;!vx7m4pHZLKAOJmXb+Ef? z%Yra7%xAdGr9CeX85f%~DUm^BCnEkeI`0==4>?*BJdBE zz1p)BQaCK1i>L8#$M%gfxet)yq%XWX6!c z>4QE$h66UZzN_8q9jLImvvzoQ5h5VXE*6Y%HV}c!*2n4qE2nhT0{gO;!Q-5%r%6Jj z)aQH?K4vGO?)uML_U~LAJ8ClR8EO)3O9;MJHCfVk*;-gwuurU-aakwQgS6BVV{j%i z-2aTt&c6~{C0fNi_{R{_NFVj`!-^XKVET~oTJ%zq#iGd~QO+uWK3g;xl9~h2LdY;r7Ky+k6L^9Y_nCxSa5!&v;i4_K^R(J&EMsu*ne!iO0$E;y zGKw|F-|4}$r#+0*9`?~$Z{^-@bXALUpLb{dAUo_(iVTz;?R2csrOA!QOZi)Yql1~A1P{|!BiPX~Wm4j9gudCF4@~TC4FE9rJ%&^EzHKmT zzUo^JTZ?3OogMq_4G-c^x$I@Smw#OmB7*|RPQghZY_-<3tAK)Fr^s=kJT-&N*l2bZoWOSXXZPVzWAUAOv+H6 z=WWhN3E%y%lEy<5I)>Nv_jdH9YmfVCKh4^(nnN7>uohT*mNZgz+AS(-t8J;2=OIY4 z_So@;s2vF2joVeW|D$;OGG4Lypry3;mC|Rbhrl*EjZwOOPoMsC8lJiA6HPIk=s*>- zc;`Y^Ii=;p5X3n|J*!w$bM6^mxY87_l6;{gbMzdBS1=VX0IBApz*M+Zr8@wq^e${f zo9w%;7C<97V)ce=Ri6cgMh;v@1vbHo z$)^Qe@h2-KCpakmi9u{Lyf@`@yGIH)?AE%-9^0;9uYVJ4k5b2lwBlT*?c5@BXunUk zwz0kUmxtriC_34nKU~_lbMOdI!SR?6!qN>ECZQzv8iTQ(^JTsV(EWqMj*5uIg2UF= zq~-XIEsZEpk~AGPo{~f4PzMHftoAF*e1_qU8p}^e$NLq&YB6johpb1Z2>_Ko(19>; zkjfW6ha^oKp^5a;#3lUk+XQaLQ(yPQ4W3QHW!aue8S9wb><2|uYu5C#d$2J7(SRx= z^dbdRBjR2C12_g7D2e_j+N9KTiw{by<;2Oqq0I;Gfm}^sj`fqGdUYIC8}e{4Voz8s zjabHrLPj9TW4w1W1WO$f&BYoym2&$f6fxl!vs=8P?x7AisU6cF|$-R$U13DOiCpGa3yP+>ObPX-nXF8JXW&U>i0~gZ{p8 zaiCHrqOd?91Tp~XCeYo0Wsa8K6`GX?;fOGqH$&c_O1Bfs-~A2A-2QBzsJEc`egepG zJb(0^hhAidg6Ovd87-Dnc$iS z7s$QrpzaUkqIh>Urq_sh0&o5W4GKp(0wJfsobs>wm|76xRjysv1Jo}7s&0fyCD>O; z$-X5J+*a?dY1&=K2uqqNu+E+LU(5rqf*Y}hO@Nr0yACnQF_5LTs$5p5>eMUL+W|m^ z+;fsZ==Y5P!EsrQQWmQc%~N3xCB-xc+MBBt%_-C=jFUFUks54^fY1Ps!4k0`YQhTd zDS3u6Da!kRlAFswb-Sbz)&(-1KW9abXM8XZZA<9BA}HiyCe8jQl}y!G=f*!2fM&cLn9 z^uvUla5Up;QCskh6c$1ZF~a5`R{O?RTXj;+6%x)&;&WJ+_>s)^c%m^BW6V2)#(A@@ z%-$x;A^DCM#02BiJ6wTXVgXK}E`_r8i?qugEv(3+vV04Vst+9i<#*^r#SA>Dh1+rxh5RoeZ_F!Uc}6sbpTTP+L#4fS-Xv1WLkDlIqpz^zY^gn4`}_M+ zCq>h9?0v_K|5AtIJxozzq5cI1y5h82>{NUkCK$dYIsAe0RZy~$afmht82ZCqB&qFw z?){@breVlc3*V4xuO7IAnOBIr;QM;(xA|1xP;GoY#;aFe6MwRq?r&-q{mWbMhA|Ov z;W({tvg5pW%)$6m$J_UUl(|UA1N3HO4aP6$q59rt(}gojgZ7h@I{d2?hI?9t_s|oF z04z#VjTUD5V87rUMAFh#wpSS4g86uo_$$fhD3N`JQ>sFhI>k|1+k0Bs%49OphwTJZ z)JQ|bFC~5jB`?tuIL< z80KCWVF0?;sN1}P^Lezc%iHQydGKQNhwHfn3^%FYptXvl4y{OGkuIjcO=(8KnPnK< z^;q$C@Lm_&yC1LrjA$^lS8Q1Z%ouWR*yHEET0MXJd=m)MN~dt~N~`tnLP@~9D#pHz zLSh?jzYziU<#YR#b%&9BM4_;)@y)&+T#**_*>6hV{T}jMs?DJbvcWlA^ zS6}RYSkx9Fg%Q8{flT2VWK_HP;HJB72flt~lSr~_5L{{;qsUaO#Qoa4ymX+%;sZo} zRs2NUl(!XD<1svPr^-4bxOQo}rRkMtv^2qfSzp<}rVuI77=*`c?!7Jy>C0`Cg5Pi# zJVFd?dO(L<$fRP7=W*2SBtrYI7c2;U(|m>yhy87sK-8yNUrK`@MEa(XQf)<>J3}mR zzo8Jiu@VaeVMmo=AQP=o9eAvefszxjOvBI)U=SW(ZC6!RZk7FbZ7^Mv8@MUCADEG^ z!(FUEiX(g#72?bsd@#qjAEPXxzl_dHYBR||NW%An2p1@hi4NYbkgW({BG1P!Gxp&b zJt@AA0I zF5;u7b1~TWF&r?MF#z7dQ{(U{55pxa=jVZfV04i?{y&@Wu2EE+fH8lRHA z!K&^r^Q`%tbB<<4U8ub!iGv)*2GFV5(4UPzl#q_3)C}DvHIE`7O7|ZSg3ZM4!uixh zl$#IguxLPBd|xvXBi)x*6HGc6PzeA{;^VGVHnhKVka^6o1w-IU!hA?WZ9FTMMWqbb zgcc~wijfZ0zN<$-V4TA{koRbLU@4CmGZz0hUKQd98mHe8x&zp-(i|K0UcQ{74Pqg~ zY@c}HcRXFssFilxJ<0<{eIbVdr>5EZQOSJrkv?>uw8*|e~2{);s{AHAS0c4lxgzk=w zY4RhF5tQ4BIP2jeyQcj!+{kyE<^#O`CONziWTfTdV8DBqCs29GIiu^U8q1nmcklJNrm=$fig>NvKk`O?9cHFMvhT(6!k>P7)&_ri%Ta}}tDojQ&`KbOwD0Z!z-XVg{^iS|Cu zP?RuKD;Y=>@C&DG711EW@Ox}$lgqVAE~=xbbg0J|)400@EvqJd%eC*7cJ*8?bA?5Z zM~Dyi?bQXnT;Nn(jofu-AJh8Z$UMLo-HR5i@n za-FuaXi~YvOBRn1)me?(cjGnm@c*Qjl&`2StDmFc(nj+ExFlXk99VjywejnjlGw{X z1NAK1fkvGufRa0th>1{J&MYq?FxONZ`P?(J695^38x3<}1a`)o`5EXMXO7OyVfyhC zF3Iz*?UJ2d8g2wz((D8;Xoo93e|xoiQ9g9#A?rsJmYQU-cG}DQwD@?PE^|>Fyw5J)U0mpkFyW zQDM3bKqSJZ3ClYt|6Hfb93lS6eXhqtnuww!fbR}pC1>+otB2hxzx4J}+fv>?%puIV zExrGBe;@ry1=nDhD7Sh|#-17{&5CzT);>$8;EduL4$NGdUwsv!8!Me?JgW?IXZ7HE z7=@bS>_*&f(e*N*CtfiCdNv7n0HAyaC)_Bkp~MGk_8YE+O*^t81E!@0+{<2TLK%zW zSZIfJspCAt`bj1o5XTfaJ@;f=vUUl)kHvX_&2L4zH*v|@Gr0{gFQnF>!EmGM+)PC4 zG9xv`@)I$6Yc3R^c2=YL+uU}y1_MoNkG5yR;EBlnB{v;7*3KVC zg%OQx?fQ=>$LU$vtquqCg+jy9UKOltOa}n13)&4lD+V4>6kV;&xLg2~8{b)6$Qho5 z-g!p}8uEL57qeCF7Z;oECx)}NvH z3z^sve-)Dkq)ut#iOfOq10Y}Kn`3kB*o661J=b-U=)n<#vqxDvHr#5#dn1=)#GM%=W;ev2!f4Hl(}&e?QW_ z+k&bYi7m9YzW%}M@n`0$-*fDmO1GcaU{2tG{%Y#Myz68LGseTD3Mm1(pByJ8Rn0e# zj$m~NA$D)7^6Mc8xaV$kv0Z8=OtJ{+NP=G~dzli#_mJ`Dr*+`pB9AW>e5>w4GLWu8 ze8;5pYFlTbLDltj|3hb-nm^FD*4-Y$wa9evmJ|pH9Zm0US_133XHGC7=RQW?7ee+#`dsw065YDih>EA*OW-0VM92>Ixg1oNUTy` zRzCvyP(@EoBtN*@1{53@$MiL!eU?_1ZbA&;HrrYHTA|3R$r~VG_YHAC4HO=7RFr&*7I5^@P_&`C)GN&})Y@26LuHYLAa`=!KivNaPWw5sp=&`SOrTUQy@X47;7 zL4v!xySux)ySuwXad&t37K%H?p+Iq`P}~c}-M&2E@AqdmxpGg=&Yamj*`3k#R2^$c z9yWcUBInb{5t3jkx&0u_opV%(KU~6aZP$S4_3ahEqEFbA`@BUiBz`n6b`waN%^vLG zbVb_Ku>ctfO+ zXjCv2ouTd_p2X7c&#_7({7HhORG!l0MsqAw%JchMtP@OaeA&eufNw&%{X^ewdP;^d z&6GKJ#*f#`veBZHlrb(^*Yh76#YVbtQFd98#jbF!k7A3>-H;o<<&oHcolx|mq5})w6%#*X@VK^|vvRY(oxsBSj6w*ZfD%?Im{CRy-NYa8jxE7c3|y}> z6&FS@E34U&*u1BtfKSc-f$am9=Ur?5qVO7jh}hWtwpewmIPKpndS3V^kfrNW`;~zc zlp_$kOYSZSd{=VPXgAg4wA4?0e!T5P>yoxETFeo^<S z+&(4EqEjI8mpmB7VL*7jrwCpD{p9&Zru3B-y&ITm|6;jlPWm-|!|k%|R#*Gq;pHB` z;FcLM*wTb^^BX;KchNPngt}?S&sr>aQZ&UsD)(}WGvj7Rx_{}JrQNEmXT!(IRWx9A zkN0?s*UOs@r+R4QtDQpc_im?pFrUl&i1V?mX-63TY5!;M7W4sYkgBQzST^i8Da^Jr z-!uAit{$A3)XvnmH;Sa(w^z}tT#)hcsHAK>RZ_mx%i(Bz-dMy!8?fI3*<%)-$Pw$`FknOcY4vW*ryLgJVY-lA>y^Q9|o5nJM)?Vq6s~=R=O#@(k_#Wi;MkAx7qw|Ju{|;&Nl5 z^Z2wPgH67LdAbzU(sF#&4pNpvzv{cxs#6=A-1)S5t~x#=d36lbcoM{MQXGNVjf(~i z6y>0a<9G~J*3n9pdCEOAlRAStPmG~HuH?)ILmc69?m@k(FwIAI4A1t_44f25{YLoV zXOCR>b2dM+(R`${wCH{KESuE|MrY!u#A4Ck*ofk-W>#4!dhJd4J_QPa?bL*AalbW2 zk)uam-;>{cH{bp|+BRKLn!F2+&Jd}dqN(7wcD}|n(fbn~o)UM#Ed>_*CPT1eWfZd0 z$G7S(gKqqV4;iFLuzntS21aexH9;iUI(aOMK|e*l)1ZdC#{eIJePG8_aJ*%;mrrNW)t zJ$viQ;7QgklmjFEl3ha^dPtRiKOGE3KEs!XAjyiw=1{5!6R`oO*A=A6NgMJGI@GHT z!Bzw+$(|N>k>1CPt0g`XY}4HP_@M}7(RfYUp0dK^76_=nuEac{x!na281i~Q$wc)D{~0`b1K&(C|eh>Y+y(@Rjk}Dgg_mc2 z^+Tqa?x-aYtdW!&4wkG}b7h>nByx#WJLZtD{nk9dP=Jr7WyE8iB+fvRr=3<9GYr7c z+`)mwu6bZXQo`A!7_Z4IV}YuxS&ZK%&)LZfhcl0vq$u*-i@uSXBd8`0RWdyJSxdwn zh*&BV{+}B~R>YCi%$N~+>2+B&rEM=RLD<|3e9oRvthr_hn+ud>?mX|MGrDR1q+(0P zzE)g`;fd&AW)dZ5$W*_MeR>RJeeY6y-VvUtT+phsR{qHETCS6C9i1Hc<#ji>vTZy|FX9 zY#wYK`Qoe6n1)h{ScGfKf9V%FC@4#kum&>vulY0YuA! z0lau;5S3M2!9Ui5pQjhGjzh1^`8>xtpC1*c7MLZBd6ac-*he)Gf@Vnxxk)N^Bj*=7 z85Lhri~dVp^m#dA`4ZNE0x-{f%Sjt7fxLzvmhiwG(F76%u$aSZI>?EQ285(4kiE|L zD`KSQxF0!xflxNS-pk5CUvw)R@%+z4%=wGO)J)0XAACko3)SR4-l4#7xEdfMvu8S| z<*Tn0ef;2w_fj_Zheq~H8P=T|%wO~otp!KP_kBt~cn`h}#=SXgnU?o`BmF8NK4_mE z4rR1XWz~h3rZ2YmZfu#di*zt(Z{ccIZ#iS$V&%j7qG9+LsynKM5-e5l#5u8c$V#y^ z?J_zjJXg2pXp-UOA?$HKRoN^tHC&>doHIs$&yBZeVYjiJ5`McW0FD;3m_})A|wsGaF`}iLOjP%%rZBjl1Z20>l#*D%&%`xe~_)up$ZLcl1Trwra=5c{( zmV{d@7Uv0aHilI>#$U@HeN6HCzun%yGM@Rujt<&}-Q-_sSbTsJR5wwkYv8C?S#vT^ zYM&mXW|kBp^;%VzJB*ojnrTQG`1eo3>POO_@ua_VYJdGNNOZ9Ij0Ywi`)J$Ic>1Ob zcQa#8y)HM9HwQAZ-Un=Qy8eZkAuP{V7z;4-f7o_;ciRu71x&WN=7TjWK}38X%+_Q( zTSlM(aGvUk(M{hyj7fd|*E>1nNghQ=nb3O`tOSYT?WP=wQ-?eR?4v~h_hMI&tv zeyFgsvut2|>X2MBB~&eoMqIppdgVmQP~bLyojsplbH@&}islS(6^s@(2{eW#X|lQ< z6s@uRaiSa0^wbM4+=GJ<{kGpZAcn4eY?YS-MS^1X`ZxO;3=^C%oA9dK`Rso%Jqa|4 zT+u_$?j{b9xOTbgq6g9l;jLBN?R#s{5tBo{%=hatYM=*17(I(OW=|rv0Hc++s`K)gJJYtqc$sT8Pos^5jK`uw)zyxfIv04) ziSnLxim18Dse`kpDe+O7ZE2LcCDCf3z zx#73a$|0|iDN!KqN^UK2GA%_KL;+sujhoe#yiE}>HEHes}w36_t1aPA&A&aX-r2 zGs;{lEAN5-;V?;tOqBy8RQ$uC?$(y^`(xQFbgoO=RfZ&jLv%NjlFPZlACTc(;KX z30B}oX-&cph4@yQSW1HszbClP3!)!1jU&-jSaRg^dbs0j6l-Klb|q6kIXl0(Uv}!o z)S%yanzqS1cF;ibtGbsV{uN6bC6!2i%h$$*gQF@<5z^K1kAf4NX;4Y3N1RNq$JzW4 zqANa_h0!VHTfKYAr)hg5atsew2wSBljwE5 zU#uysNFd>dMNPrteUsQoh~*}xo{(TqE< z-CRh~UIs*uoj?=!9;tX>BewQMh=ek+7K|me`goCSN2{mY$Z5-KG4!DCup^sj`=zF? z-Udsl)6Pa{qN^VpkYtaN_SZw)y*x46^4QN)eJitxKsUz{ExBk*_WJFWe)I-b6#hxa zO&>xlW$*b>D~_+bhOp{9-Vuf^0ki9Nf@~Ci%=wF%gGAh|x$=9RU>2r|dGAd+5nYi= zg*;oe1^HW-Ir=Qf4ewo?d{h|aPgCSi7#_rSO)Jc3JJRvnq-N4|yD5JL1#vvQr>vJG zRLjd44_LRH4qNzwiS^RGqX^np{|mM@!X35hk2w-WMAXWe+XlfzqtlRui$Xq%Q_{&#`i39Pb$VV^Ww1U5c>)ad9l+%_!9 zb%VV(#S^#wqH$X%2L>Emr3 zJSrn34mjVaKS^aA?`tXZU|&g~H_(xi;VqQ-^AQj+c^nnvF6}IX&y6R^*>ET>8C$$p zxGw!y#aq%-I9XegjmiXXFIPfz4l+fx7$$%s%2<%QlVX;>f$%6kV&;_&-G4M+Zr&rb zU7fTHy-;AN>IzGqGmcXWgSwraaw*$EM||BeQz{8s>dV(T5_J9irs=E#K$3Y06D-_A z^_4LC8G;*CUY0)fV?>3DUA z1mcWu-SV(w?e8>|bBqF_T1!$LZO>-%;w|V3l(Kl=nN^YaW9UmGQ#48U4<&55seMAV zaW1jjVO?}Gh}42$6Ul`=0y#3Zl5$FpIaIovXMing=QGi~DaR%k#e<@aP4754s^J!AUQH>d2#dGkCi9B3< znLz!8`D5_i{TOiXnBP{<)HKp5JAqrsGl%UQ#vZQgk5dp>R*l%zDw?>9ns$i(1#UA! zcSdBwJk|}#DuXMt0a)#Wi)_yK*%wEpE9ZzqgXbEBo7-p!N}H82uf;7mT4iB2&s}vP z%Nn7%o>63cpGeZ3p-~@Ir$)LHn#rp{#Bf?U4sA+lwy`wMFcCo-ao zYWdJNddq)T_)JH6b5wg&%|j$i;!J0?Ft$4U2~7(KdyxoXWGgraG#kOZklyq`LZU*O zE}Q7O0Vo@uAVp)!_6qSrp3;c`xhj+ppgan=5JC?vUQz9CUpsh$9u=tEF~`s&n#zKB zyz(!QVN(H|dNnKdf5rMs(au3XWHnY=_dMV?N5}Zoe7vcD;vXA}9 zLrIDr1moEvi@sk-zgE$q2-NPCpZlHo#u_D9%&Rm@W=1vmGW&(!9veP$CbP(j_%MHt z+#0vFTfq#og=wQkgKVm@#_tXkw;XwcdSYyxd=6$TW6V*;Fhi~jQDHp9pkgEifAnA+ zkf3zk>J~Gm>L_p32iRuJo<5G3V{K{}QzTHsa%Bc$I;_v8)Car>MbcaZuot2lxliU0 z!^6qz+5+^hC&>IfTOfpGjg6-w572N&1vn;dX#~=Eie)ne9|#K28N<;_%lfgoALp^S zX^MbwRG(Rk%yC|%gmve)){na@*tuS6A{$e6151#TwHj2>xKePDwH}HJW@pl+Ijmmr zkY&8y^9d;zV zXm3RAlpEsIbH#W$U9R|==#{+{mW{A~uwdGaVZAz7Sp&bB|E2$y?2-V=Gln$fD@I2| zWL{0Q05OM#-l8+(=Gc;N<+3%3tefpTOTq&;^iX?%K2T;l#PBV{gTlQ-gShPDi^qs^ zCHt}A>LPBuYcw-aibXO;s{@_!sCeUf^SmX33HcW6==<(iIxXKr0VPcxmYMa3PmKNG zONy>eJ`+PvcA9p`->TH9GC4Lo$iK9PmNSk5Y-)~YcOtLwMrI3HVpJsIE~jEHRlH*w zl77lz?J=xLlZSYqawriJwLZ>k{l>Vhy;2=YKZpPsptnB8n%`1LwoY1>ypz)c10XaP1UC;OfvX}+43azE_YNsj18(`tmkuTjw8*%Y$Ecue&FmTrd<{=h5 zC?#Q&K@qjACQcq$bloPV5|3N0rBH^*-n<6%><>|Ws4C$|^_a^++QcZF!9KD- z!n}u0N4=p5n4C^Ctv)3h?(=Z0`uaC31?S)MCdvoT3{^~-l3I00--5nflc6-AX3U9w zjYsbtnI|@_kvAl*3DnjI>-K;T(>5N5n*Jv>F9)S{g%BfA1Gn`LAjlZkL5T*w(Pd(r zLp6gmD|IgY4LJ>X+-^QJR?n<@Ich{)4J8Z;%C=QXCcxq4bS80kikdOD855LFmewhf_Qg28@ZrSLf>$=c{!x|< z{`58eK5hTKGvM7o96wzD${3{u&5SUXIQX`xcTEy*?Avdsw`Cqx#MlIdk=Q6nO@gU? zN>j6b%{S#;ISW8VueSrUaHgyn!C2fk!JTnElKVbg)SeLgfK`)9CsS{>*^Ko+)N&N} zi-HVGjopd`b@vX%ILD*8DD}N} zcP!efV~g>Bo)U=~7Den*UG(Ip0knnp+^`7m({pH;$tV18Dw$3odX7 zvzj=K)vf8?GH1+Z0R9ou$lJl-#;H7T)klNN7$%;0^|D3|CAFJ_&J554}&IVl&5z$%kq` zHf+m=tG|YI3}o~PyS?0}*=2URp{K#;$K$S_RR*a8`-_qllinjM|GlN?N;4kE1il^W z!FLPexUoRrNrOQsls~WDI|;v)e>SzB>&>hYYyKc<9Vigv5z9&eT|$luXgfuA-8(u8 z5K%lu?7NqT!am8^9&OVs{zih(b!R5c&=iM;0RqU8Z!goGHrx$Vdt#F)S0wbt%wl)+ ziVGf!h2L3vV;v7h8K-El_JaF@U(QWFR>dMxpr#yuolYbE<&#U%=aL$xyKe;t=#{H^Xcy+=hU#^mR+nZJ1>Kl4M~G^l z9RG*F5Q?e`M1h|1=?4zx))qH|5YL@SkQG8SpGLeZ zARpPIh`tJ?(JBP0A?jHr*G^XmNoNwT?Z>tbJYlY#3H)$ztmI$3up>>lwD@v;1fST= zSX-18e1#(*%`+{7()TQ}9C*_4ec^KHrD4&KY%@8E8_j?$cQ(!7h(~yK#y%$mNw@G7gZiAJ*#Ns0;64}s`@N5aBCU+2bhatWeBrYnW%hpKVum;I+ z(At^X#o-Jl3hgNw<3`AM7Gt51^d^i00lr2(AT{*k5WKCGu3NR@aXY#wDY@=0#>Ox_ zvKcFd+IDBSn?tnqK-}*Hvq24okreQExnT9wBWv%=-?)o{({ENMx&vl}G? zf$Q#yu=ChGLgOULk;DWXps$)KCDy4h&RE=x;_VUC$lUkDw?ZbxiK)8X|VJuB8a~eZ|)IGnMMB;h|iA%d?5A;4zSywovOpE)v?BS@lyk?!2Cj{i{N2M5wT#D!QT-e91h zk*uu<8Yi5?z}zmq=lIJJk$_hMDgZ5zJs>7z$h3`fSB)M)Y8ML4o+Aphq+j>hkjUNo z2TJm4S-WkGms)jzMBd^A9tc|nfqvwWNd_T+IJWkJz@M-(Mh0<9tj2hc!;en+lz-kE z$6eRo{USt(TE-R)1r01q1j5~G7^KTs;$I~OoO+6Zs?C)Z7SvpMk*gMd`WFJvB``VV zA-0IFWYb#nVy6RHIeB)ljy@_boRHu$KC}-3Nt&JI!NV?cbf=#?PHiYYODIKq*B zkvDSU6HIpZCALAHy|W}hE0`PR*OnYGmp2D-nX?M2QF0<)ZnUC{N9+SpcXM2fI>ou< z#j;IWJASNYYs^N}CM~ZiNRw%cmAOs?9kQa19D`+*QXrm8&2E8#7K{1XMc?8pI=X!w zIgQqr{nCFHU(hPn5G$X;`+0Bt#Nj1D}_q&S=azQ>Dt7#|uVM+x_ z8V$iYJT?<*=>zw7O>Q1vCNxI;h=P5QM0>87oyAnR?z)J2@(|N~0$e@=f|wPZ-R>I% zdzui|Phkj1FIGO2G7gNx88H|Y?QM}5*3UjtNMllDVIN9tRi{s44~=aA`?&`YjrB6y z?I!t(Iwob+{W}HWVX?@}+wJKDGWiru8fvK5z{_Z?`g0I_UP6fJHUa4-2o+U#AFcWE z%1DPVCIB;J=N5c_tR`CVE1FgcFSe=!Iqp6VR~$OAR0fMit@dya6PAZ5o9Izyl$ z3khu?=wyPMfpE96n6d*>vK5W=aPC7EHYYgfM1y_7PYrw9<*d7F9H81j%JWd_XPgR5 z+pFgbv2b%KQ$#&nOh;5pT-%yyTu#&Aia067UqH;jT{_@2ocWJ`Az}S7Ka!{Ul8ZhG zr~#r=*{l#FQj_YpL9Hov6NqFWpTV0};?(-a9}~Gkw5E~t5M-FOY*L{5_Co3*{xDSH zKdEDqO6FLLV=5sJAsvj0#1X9Br2;AV9>D`J0NUeWC;{^7Js84pTnOa07A99xVrcU{ zVQV5j?Tqz2Rv@x40i}?&8w9dPpL{n^N;(sH^X;V_BJTMSk9Ka;RlN*QaK%|71N#i1 zJ=(@888|}RQ5!)|7J>VHJxMLOK?AFL_izJR0Z187L95cjpYkI3^1q}LmE@>YKtk8H z(f=s{wQvkdyo*C(4nJB~u7-oP32lExTl2g0l87H8L3q4VWj`P{uTGJtqc~u|2MXdx zpm$EiE8$)-I@R*oHcNizHcK=;?Fi$=NraOqqcpWQmrSxK;=WzssQp{F{N?agZi07Z zAso4akJdN;o7eh8zh|z6sW_hJFwi-FSPuXzwV*gS2+ZIWkNg309Y>R^5+-$_*OSyI zf{6S&yfBLh9utof9$5;(N^=j5{b~t`mOA%!`2Dy<;=(BrneaFi_qp4vbx?7$1CsyA z(={yO6oAa#S9t_@@}fi@LgJn3pWPY2GA__?(Ne`@VF_GAL2}IrHW`5UwjaqsSz3x1 zF;c1)f7Jznd>%7RjOB*!I_}T~HY9QX>-h zyAvd_j7B>ZBNV!-dM(Fm}Ty{er2<)dD zk99)8N{p{5XCpZL5NLn>_JFt%DGtmEF6+;1$_t)P0$}^@M-(|`6=E}2m~EOiyI2JN zO@Wl8eX)f{i*sOqCyOCKO$B~Mmn?}wORo%Pu{T``4+X`i_}4g;#5jxW2=DOIg7%YY z0|4bh-OHiBS5PFEwpLI><-{tt8ZB$CUX1FZ5hb5IJ+t5{fD}h$hI*l*J@I03J40{z z2?!Z%q`F3>ZM^56v4*o~;IUV1991Ve{@OaOyD)&FY_kf;kQBGlY$|q;jAaKB2lLRo zV6>m;eFB*ooCIAV=E+ZBTymS^qcqSv!R)sWDQxwXZ^dLSWB|JO4>PlCCQ0@&ss+%9 zHS*yOfCJ8f2$-l9OEj?P>KQ+Wi8^~h0pL0 zlL%rs*e)AT{1`k0>diw9vSaDI#Z0OuX51j8g}tqAt=uI43G-J`T|1X7IDKWK_!K5m zHodM$e%k=(@I%h4U6V791b@h32d_lTLAF{tuH#BtxUqtVg3y9du__Toc=)t}4uKzNGPPXSAZAMn=#GvaSaAC@w2#~5^bDuyIph-y$;);XMEUx;Hq-(D#{ zn)zX>WcGr@1JD~RaR+qfizf#!1*CTz7^tt768X%K_X3sA_>V_Ff}pl=2t$*lH7qxa z$@Z7H{)$MB9dk^vGxv)*=pf-!vj0n@*r#0Ll*N#y^-~$1Yg0kWh7HwWUDe$2xYF<_ zXk@|-orQ3xzKYY-oREXJRqrALuavu!u3lkkdd3l!*>o^b zaMM8rQH|1($B09CjQ&A$dz>iHs_&oy?KuMt;{;&8e(!U6B3>^JF18|JU`3Z3gM=6A zez*Kv9Bg7$oX&bohW7w1uZVOq_T7NBC zC?QYkm}AD2f$ZY+?^yWL1%$`2j8E}3dlCr(jjY9iVbG2!oq6($Xi1{bE(DqbFY~jq zvMK(3hi>V2#3`bs`Wlq7yQ=4cLBB}Fkb@OuOI{5?2n$LC{BQRS;n4P{u%1wmoedqZ zj!e4xVzR@K=%J>&)cIU@FxcQ&(jBl1Yi?az8E}%nNo>P)LhTo}l%voMh2|ch!afNr zTk*!tz-R<7A;%#1SopFqgS|PGN@1t^S#(Pbj2kD;#?*$y%`>=%zFm&CHOj+64}zlb z!6_dC8eTw4+iTuFXZCdU2c$B^=Lh+Xic@5t&Oxy7 zKIP{VGw<7SdwBo?;A%{*ICDZTxRfGPj5w-&D@yJx9|8xnk!v&(6JxY!V;076Jk$ja z2V~P>@r^t@Og9`JJO2=WC{s^uJsySRk83t^-XCfr!FkIHf!j*Qn9q{vnB1>Rl~5Y8EmT3ZY*N)Cyt03=sw zqSJ8ku;*ugb)W`~5)<2~#e&I~;^np!XI=*qUZ>B3RH}hkI{IX`f3|Fvs5Z`ozJEZe zBxKeZ1)8^b?}sXJ`v50^k5ttF4YUIX>q(O0F-Z-gi7rG!y}GBi3s@|N1yK&|xQvfeati?Vi1)2NMhNV>*jwMnu7-U$%ZJ#6KT==i}Kc!WBZZ%{gg&s zxkZ~KAWfsdcH0=m3a;a+ARtBMU2{e$aO3-1N|7?5S{Kec%^2FJC~$XMabbgi&w5R7 z6?tl|8cQ~$62v${KdG~(fbG}DJwwH5yJY42MiHp;aQ^lRg;bC~H2HYbV^p}~NKv|)TSAtwV052&;;*o~!$q$#rAjXj;<=46aAE)Crv*IXhY zfrn<;`yTeowa*g{e+ScEk<&qh7G&q0KUcCOo&ALd?rj^`%LOK#HGe}L$3dnaV8Qd@EmZasyD3&5ouaz@jpqzh4|2?L4JnVUDGgvi@(CN>lD zs~ZcfrMb(YUyza134W4L}1;RAem{4VE(s zW@*$93RE5Io-|#TGY>n{UL#xQLe}?a`1cBQN!0IvM0&(nv9?*~i)ZrsmMfDvjm zj@3Et0fC##L<wy;f-}|P+~#Auiu{#)q;r)kvlJITvGI@Loyq;+U!A&OJAh> zWX*n^KQ}KkbVpOr8$Xq>KoAhqj`C5>K&@T5ao=+*qttY`@xOB;sb?iKb8>N_#3BB* z|C^JH++7QL-hBZ~5!5(CtcayPKSE25L!kpFh84;Dlm~>kQUZ!eXvIfkq7o^F!^!=G zaA?bHM-~~CuMbqbRV{^6!^kyX2Tv3cGs7-e=^k#MxM#x|kZ7$J8>LckcZRB)YO!~G zOKN)5jk~tg9^n#Wm6SM;ao`6;wo*_%2O*YAL{V9#D3qWbg-ZfmaJ&{@@hD{Y2pK2T zd?DDHsnICp#Wu(9qsBgWK1`{f8Kt`KI-rvpeJG^bvfD6A)lpRxz@0vV@B2%!Vk2r% zo>Zh^?qpa?n3rsW-y_Th1T&z4^ph8y@xcPm=|nIE7$vMbL|F_&UbF{Ml1)^1<>3%P z#3PWY-$O1%K8N%NLWC3je60G-lhvyTOBpvU#;!?O1?}yeq!De`O$#72l|u8Btvo~D zF##M_{eB7ZR{g9yYR1fi?_gBSjv6V9P@NY6Xv!{a>p^2)$Q!Y@JM%S-FTz?#| zNvgd(5$M0smVhg_G)BUXv8JfH^e|@>W}7w()7Q}Nm-Bs_*Xu~_2*eivRGmWf9 z7eg&9aG$YmB<^~)>dFhvpBu7n%je3ciyuv6#_9~=q8*1y*!>7wJ!l-GRSgQCF0NT|IL1s0 z|Lmy{%mCyz>N$xzfI9RC}b_gt>>VHxe?_+j7u%~;znn#@BW>gEIV5XT0bTacm2V%1mwiA2J@Mf%Rd zW@W`4nsr02WS48mJTjE2qI6Sg^)N%FFHIvdvh-6@(`=8*B|C=RNCh~No51^nsm`sd3He!BYel&8(c*xM|}t zpsj$JSyx7oDKCdn&BEQ{dU(2Qc;)UpMGg*q4;exYfu@3}yR_GM4_z|6FuPIbK#dCJ zwRw`iNY#v6gZuZQvIGVa*cufu3jX_(-wd;t;;O>Ath8#gJsm2gQ=fzgDNJ5SM-C6x zFlFaN#Dg2oB91bIei?Wc`Nc1!J59crJE~^U`VK{gxPP~b6F7+$>=f7CBleuF_;j&a z5Y^U8vVjaxZdYgC`Ns!pwl?U7tNW*Px*byYq6_&gpKAt|K7p)E&vZhbjJ`$*=dVb0 ztN(?mlD4vt{BO!4q<%6(B3vTzC&bo7jKV)}(#>E5EHgcJ1U--oz&j>AC${$SxYTfS zKuvu2b+7tl4q^Ap3A_;90b*3c`qokGzd_KEp{j|#hmRp;{;Tl(T{&p$2(vPPTLVyyzQpN|i zXQtYNAjfJE_}NBIOx!2(HwfQZzOzt0c*H=4eP4!mFkt+GO*NbvDODNv0Fxl9gZHD# z(+fHDyV-8312+M6H;i8B_ZRHY(f$yA4^p?dHD#!6A6@5h${($$+|nuHYrjA88jp}$ zWrchHEIGs1K+v(rd*s;(^|3u+5YD_affy`~{j6bxUek$&ew)|9#i!<{NDd*9)g$}< zz!cLZF)BjRhgMegE~W@TIlQMYf*G2e>_pN?MTw^cF~m*akYNWHD#q43dYs$vkizRA#kGd;_BD>ptvq^~!ln7ngJeshL$J z=wb_wWFBemfu}l{U-L2%zNYmC_@KaJtbNNFl+@-v;I`&rg&xuuI2pI!QWQFJPdB*W z^X0%|D@E?wl!TAI7cD?{2GE1=YXJ67b^Um!l_^~~2x)`o9>Rkv@EAs~oNfqQ z`X?XCW0{eA6J-$1s))GK?ZNFpwYBrM{x&pTlD}R{yoUtnH_H$RoA9)2=79I9g*h?D zvWF#dp)_t>SaruuCz2f%c<`^wyvC+G+2cTcw;17}oHb&UWd?5gS?39WXDV$Yqda5( z>Cr%`k33xVT6?o*unV?aZ#E^SEBQNW`jk?ob6M^m5-VrAOIY*CJ2tASjWkm06Zp`{ zv2w{N+ya#MG^GTE!DODA`I|?E@)%pP(y;VY3AV42R^e(}4k8YDX(FJ2ISLySb58Rw zw3M~dO>jycI0$)@zrBjq2WP;HRiz=ITSj^ta_V8U)BUiMFbK1KWcO6NoMU7@YL#gsP5i+k%)BAi>KC%a98n(Qe2#8+90O|Rw zcmA%ciUr)qh$RZ54#%=qrUh_N+fENv@f@ik1X*z0N!mW8ah$t*b`CyXAjDM%vS?d`J<}aDO9fq8i9;F{4#v` zT{{8$Var>}tFkyNm0AS{U3)J|;uus>8`D7<%)epXqm2>CrYVfCIY1;i`U5g?Itas1 z#dCS5+TSHvf_59*2Lcz7hi64fwn=%tf^M-koQ-#v5J zGr<%n{;Xefx`MrlDu38E+8$9%p{7NF6p^OPi%}a-piin9sh*D;F`0#hK}YTh+JbpVHSW0d#;HWp;pJ44KL3k3KX1m@_FR*B z-0R@Sc&N&>3s?(ctz{J4;!aRk4OzEFs_y&^La{{c@4-Cv$@G-@ytu?kk;F=Q-3`aL z(vmL@;)G66mHp6_mU~@O2_iVb%@Vb>*VU7lG8BgHOU$C}JEv5Ymh?H384e8Nnjze@ znTaHFReOp0s`4bjFON{kMJT2iHaV1P@>evFKdPBVYMq#4hv^{W8J3GQxzQc`mvr=I z>deIo#*_s39y33%M^bZ-*ugs*a7uG?{BU3!YAV?S;U;S7R_)%AO7q{S#HJ&$Cqh{d z{NhfKEPzqEK#ECsWRD0c9ZC5YK2fg;B%{LRneaWvAvr{Hi5EVwH$$hM08kK@MhIo< z%{#`GqI=T_W(ql_3>bo$j0De+nL}f0wD^3^#y+lg$ihc?&nD|JEI>IcFC2MG1)-e@x zjdZ=PCOO|JMqU|O?pY>9=Oq2rU`}Q%;n$S2`!$Wg9o{*$_XkU~ZP*A)#1Y!5f~NQW z1HxW;`CW$K`hXiTB4M^8A?uB;!l@tbwH!B68CXjbO{}THr!k+l(_Os-H(jauJ&0ZE z*@At|76DWbBgY5o{dU|@4fND{vJuUGH9(c;PW(0X+YS7%h~KT=DaF%#=>3cxv*XF# zRT;?R8uC_ur97{j5DqDV%a+_;D}Md`orW1RO~j-rH(rhD|5=@(3DQ=fd@&-wI$xWezk`6ei}Jwoy5+4E zONxr{3l#{QJa0sL^THM*$igxK$;kPz*sdPvWy_$>sdM!IT(C{42PzJ`cKHd4(sfDK zfxAewEz@W(?E>BHHroCfx435IH?C_Y_6MtQw7qi$DU{k#43Gw&$RVzAw`H`lSFG*# zMxH$>hc-F9yF2FY2yR20X=!{aWUx#wvjy;kAUfm~xFnq3AZn;}T&LZ<{L-LN%BSmEA> zKB8@^@`T&RfzGsNktbe(8EklmmHP9Im3BLK_Fu$o0<~WA(~q^QVmET_$c5IalUYLZ zigKxGOP~wNziP0GXU-73ij%6?`FgZ0P@2Qq(X8Op&Mx+%X%u zUVAIW=co>g{18pN4I7o%lMj`McDs+Fbu;{GF{9&?>qRHq4?3${txJVP8(EWLnE&hy z^pk1@&f1ukDKz@uH3<XZXM@S#G+P}r5W0SX3AKxtzq6X< zq29RMPU_*Y_0KYr+ADjNFvhYeAOh1Em`}Kez^^?>k(Tw>Q1-uv?;lwZ^L{UdTS;UK z6oie>_66Sl%t*7PYb6|uOTR2gug68Iu6T1W)G(7}knZ!4t|AjR*Ee}F*SgdWoB{&H z(WB@Fi}!r<5#w2lurRjyFgS|ZmwcXlM>~9GI`S0%Furdzd|qd(6!!@}fBbqx`TXs_^^caq-78q0TU^{9`25y!12*~Yy?BY}^7AV9zBzbd zZ}s#3IlKQiyYO2ulZeEIapqt!Fa~HO=p2X%Sj0TK6*$b^7LL_EkQTzAeDN?+Z$$4rA^si8<}s%Ecp$8k6kWpfwLRFLoM3gn(cGxV4=Bv-pIcER()vD;io55eq?t0(z>}< z+^~J*!qV{VaCPbA)Q$OdYo<8s@9}zw>&;8>;F_RdU4PvSkI9z+eIXavl-1>Z_xO+g zAd~*yY3$3s?`k-(o_F2;z9O%r%EGWh`7B$NI-igJ_pb!cuWE!74f)d|7NgUvk1fK& z{35;&?1={r4KgM=D8IIeJ3iZ<-~HP@9)jZS(hE77mb0fRO0GZ4tGx1d3Ba_y5A#J7_WH zvF``tepw7gEZj3Xf{KM*;5M2+VfE=xakzWu4`BFv*yo%#R7yIaDFfK~rCZ4V%UUQ( z6K8vJ1GaKr)5V;Kwo{McbT_umKT}5%bGp!W3QmXki9%Zf1vvwrKPyV@iIo-g#m)p= zo@>Xt^1q`_+s&Gt7^j`Itni?g1h4lr74_p!dE({pgJef5+Ui=14(4E+Xy!#Bwa7|T z7lo2X5B~TEJ|^w88f#l?DzF;Pwz!Af6g<141_uQuc?~IiIe-QDE;xz?mL}xl+w{}Q7dg0hy6V3vNCDh7Im|-JZtm+qw5=^E9-(N zW81c!bjRtSW7}58wr$%^C+Yabw%Jj~wr$PJH&|=dn)#Pxy_-{2yY{ZS_3k}~j%v4@ zMNu|u8@RH1dRa-v*EMkH3*XU|SuJ$`*GHb*!oTI*cy>}<2Z}jO!vhTkhOyoi zh*jf^9ES}&E`H5x*yBv{`1k(qqK~9|qg1QUK9IV@0FRfYjy1j-S$k-21wc^YoCe;^!rJAWMZtbd z7zVTClO|d@$gmFAVUvpmEe!Sah-_x@(fle#T-Pg`divOjl*=x0^`b{0CzB;;cF|BW z?F*PR7lA$+nA$8NGXDmwX0+ApxUxyh!F?|GVS_p=!>`>z?`&rvhk zcv>|+*bydG08k4N&Di&7zR4l}2}-480W2+-F)fNM60ZVA>rot&%LC@_YY^dqf!#Pr zBeQc8f5|zaCB2ot3%&W51h%@eAFWF@plHeIe|MwuCUPs&{jh1=g_@+nVz+yg`i%DE zFW~b0PCEWRm&Uq$=lAB2L#zr@J_=D7!T|-dG*1-p5zFOIZ%@_`3o|v#7Yci8W_S3A zeBbH_0c81+^3djl!OpYbf?D;wI?VLN_v0C5Ry7Mj))s^{qC?&?S>ae9DtbA#>I<`L z8z=&|wZt=0#UR5le98A(9A{hg679tvd1y1X&gTs&WsIV$O)s#T<>J9pGJrcW%SM>; zj|8`D0Y7o#O1`rnJBbOdA$Pe1kQ;4Ct=fwbRig>|i!8C%3UCwueGU{kWQ>*pG1RGp z+|ca7Xy`OIGy%hDF|VCbG87*S<(bmPdoqO=Mx^ND5q@9MMD@;&={g!#MI=vvX{1*7 zLOWgttK{k$qhQN^dVy55_(mx|#l(nDF)w%3Nwe@EoUc@D6IL`U2)DNn#RI)u7 z-EY!(vMo-gp=v60=tn+=ig3{%GAkx&lj# zXCf*q9@_uklfVFk>H(z8dyB1M@ok$4pC_bObuDrqm2f=d2qNe+AiQFP*Hik07^}-E zQHyP{S7gqfPMd8CAmwc7;jA?^OIz{SR*zPR!omcD=6r0Qn^0OoAPmLNhA_q4RwW}e zcZ)R;YjicOf{d(H$c(q)fIF|(z`{1D(qKzABn_i#EfhD7C03H&#~+omVo=&xm%OG5 zPp&K@jXVb)hptzTJm{^{%pw*^s%*we5G;O`>1=pzXNfZUv+!Z>m)*dbH7F0!rU^L| z|CnAVzlh(IAS|SpUDg&bJ=cTUm%()SyMAvi?QO;LK>j9=rS|NHC z%+<){yVfM=9~wUamw{@cAIJz#?t#;8p*Pz*#%otSLWwqSAy=b8sASgN#2Sj-fVyj9 zMe4tZ`7xJZLw^5K7?N#c>z1fqV_U*9 zBbW@0(FKUW-@8FDpffP-vi`_{20gG5T^JZ076D7WQMF6STa-McAi-OmYl^noILAyP z-zTru8v|8Xsm>%#mweUxC3u9-N7wb>S_(mIi8oDY{nz^7uZBD#a!S5aK0@G29q}Sg z=XwtH;5%uBoRPY4ZlbUfWzu!U^w{HZH6p&?`?>9w<| z&loHHqNkbc=^Eb&t5a*q&~42E6~GmBwMZ~cI2%6-nhV%FYh8v zTemdOJvbnlhXubI`=LuuYoll~+IxAKpl$I76;TkTu`p@jXflp~kQbCfVvxsg?!LEJ z8=5qlKW#`jl41H=oBvq>GDIz^p9|$5$@!5Xl?P`v@P9B65yQ*N_iu-@(n7ad1egFs z7FGMa8aGIIRh{>mLJ|f8Sr7@YVPNb%6^+&!S?V+@ds*VgL(d?Z%=uGavBZ}4f1%`v zRm||7g&IJQ&N#>pkcYpAASBM$J)4u2FJfc-Fuex_g9z$Kw3jnBDy&5TdQ(nCP~A>~ zql^+PHdUJb3M7*rdfhD^u?eco8W`N?MIj_02|`JNH8(gVsCw(KAffjKvo?t)y2OWY z(qD*l`}|3uC;uPI#KR z?U+9zs>t16%V6VYPvkLn5_HV+=ng$)TNpqECqu|jF0U?X$h%oOhi@WTsIM&Z;Q?=4 z0~eQ1Gz6om7t%#yzYXvHU%Dv==MaMj(xdD;A~`OD;hLg8N>gY;%=!>%ju(=v16PEH zWhPuLiJ}g@;_?uv*2WRRLX-R1puAM?IY2P|MLQ#0y5#JaC)q0XcO0vcwhpWUI^pMzzHK- zTV^m51zEfr#3T8bKYOZ{e+x*-FiU5@DQVZlzCx!*P#1nY+Ec|wBI#2BLMt&FOZ zAb~`R#*2a;Nmq>r_uD$lWS-CkMwL}#JKcao0jjVJyvS*@Z^?pz>7pbj;ZHUNR97;_eyw()d^A!={w_(+ThEytWpbs z{rk@2F@%4(9y^8sho9a=NjAq{5Sp8d=0z3y4{Wh;W6@?)R^I zT;K!C7)|-?b)k*Gcj1>efgZ1*SPEXT)*LyUX~~?}z>`-Xq9P+*qePRt5KG-UE%uFA z1|6_wv>fl&j;GzV+Zje%3a|Wr9N`~M#xES}i~0mQyE5kHO?I!SR~?UiQ9@!V)`GV6 zH@UPXPttfm?s-ASJEh)ad^%CsBX#1`>&$Ni!Eh4AgM6Mw<{sDM#Sm0;=$qr&Mi81y zSW!f}0o!#hnv!i%h6Im5Y0NQY*7lBc+Yl&aAWaKH$Q2k7ArdOrkSIJkJ!-1z@UCwq z7DvpD+KMT>i3(X?q&qPpt&B!U5U)BgjVnbcd;lT+oY7ex8O5EphA6Zw0S2w<=*`A<=Z8p)UQ3((vj~mHC_a%<$4n*xSz{x?BnzsT0t7uFbDtCSi4q! z@#rs5f;65_3vC?FyLmb#H8 zip)Ap5J-wkQ(ZH*4x45NGk_qV`D>%Yap>$u($X@wir7w%+sWx|A_fA#!(-natUFck zk}pY{y~Bet;nbb1nXiV+^!~cdsbiDH_Xh4ZO%+XxX){#ro2r#w#E@=mnDVXl#`7xu zb+GYu@TC)9Z{}-cTGAMFz}9)!#B%P9rwO-xM!2^a|81ILlE6pT0QB@l`7@h2uj&0$ z2`9J6!Bz4#L@p{(!o^anq40Gjk+6_`nt*2Jo30Aco~{fbOx>6pz*C1VkUUAC(M^#t z!Ht!+_Ydvn;EAyK<=ZVl0f6dV!mckSTAI7)#$`PsOd7m>SvW>BtMbbXS!e1am|$&y)HX)n1aO3y{T$F`b0bpWkBK-_f;z474FgfB7F->~A5og4z} z6q1jMAX%}#5zSoD3owt{Rm6=i+MOOY7Y#26zk!l@yI4Ldi#(Ma9Y9j*zIlQ@3nF&g zHmy$1Ij_6DvCUaN9p{Hl{^EVZm8I)Qi?VQH|b(-001#-`&Z_^clVh|61pvS)-87w1uGCDbvZP#b4e1-g2>)upMFlM@%`Rx#^!m{t{-N^!s31m54{Q)IvlsI-4<oKHG=dJs_J#VK0e|_J6?*3f;X!H6w8{ch@>+X1c-`;&k zp8kCO7{B%FeBS&#ef8t>{+MR&Uf&ep59%Lg7U26lzrLOu$7b$&ds}@czU*Qk;$QbG z-h1yq6xjH2<0tU>vNK*f{dnnnO#goU8s*q(t^am?(La2Mjl?YA2Ok&qcq#Da-R<@C zeCfC5=iR~b?EU%LF8=bl-;4|#BX>W4q#-Ad`sey|`F-}^5=W)^(VpzzVsmaj+I)5+ zKYl(He!OQO?AswDf6_vh>ifEHBy~xcKfWt$`1(GKzrVWqeZF5aBY$#j_&wb>iyu_! zRN`4|9foZhPWlPF?gmX9-kSM!yfS~JX}%4I0VmV1+s~dt`YUw_7Vnpv88fzJobwuC zbT$hMw~cB_r-Q#+yGq;L;x28wKHsk5%qGaseV^~-ij_JT)MQ4dZ%)O0Q=#%^Of$-A zIBg!^qiXuhNtR0}L}#=z*D+*GEo_xD%PkoueIrYnz7Hpt97##v^8Efox0uICE32-- zVW*r}9x2;tU^)EENPYN7BCz^gMYlL+5&6r)%P}{fb}{w9MM`95+i3bpgX>)JU8 z7l4*KQgdd$Io4!3W18t|qpT{YGAS$? z$>;6q?x(JAb4B;+qWbE~iNfc2k863enQ~{>28&l3eXdPYqLfyrRnqh6;zs0tl zrY`=l$U(=}qg02`_Z44sdN!Puvhl_j?d5{*P6gyy`c=_prqjBk)Vr$lNE$0}3`MIy zJI{)~YJv`t22Qj@0kcd}L%KDQ<(ll_e_gFBGE^%T`j}&KsLG-|726+d*@Xal-$gqw zPVffn0`qKah%KDBB2;MQjFus(C;gKS+I^fFZK{!E2P9XP>;G)%*x^h-Qrk4sXf@C! zsixgq5{f$ZMpU=hR8JQe0ZfqT79fU2H`Tq-=^wcMRNO1Qw}#w3{3LX!(_>x~)np(4 z)oGcQ(A+D@8-xC=xjkUvKl$5zK(f_*74wr;W9!sqcc^<|qFlAP%t-&m;o`dxBV0e~ znq^?2wtu{7r)^tF`N<0UC82{dmZbyt6tt`k7JMmu9N@{PTmAFl;`W_+n)zS?;NyYe zwKEP4P_aciU+C)WGA(B+qrtkb)8dr&-)xfI1^6jddQ~kTnOk?SHmk2boctC0UZU*C zv9NkNxpYyk6TT!}ncAeuw4gUH|BzF?#8A+A^4H0Vs^rp5u`w#;r?mcYN_p}`f5pRo z#m@(pg8;^Z>P{vpEW2qN#F~^`->{fGjNL3JFCXks(si1&`!g23)5z6_7d|x|jwr37 znd59ufKhi@`9B(c@poW!uof%Z#n+YpKZf+As|oDmG3Q zT1VQds!Bgh{bXN|HUXlj8^LOIzh6aFmf*DfZ#~iGk6ulxRoHDOl~_`Z?j{o8?R~PX zQx7xBKdnwo?qwRlUtW&KlcpMU9(}IOFxF-n=>pK>7)NU~4Rcgtc==t2mpXRR{(fTF z-o{fo^m}#z-tIU@_I}}>%D>)dT$3ZGZ0p`r)uj%qiw^%yPTk~BgQ-g+({KW|OJkWd z=bCzXEU_)AI3z-YTKOMZr`Hqt$iYbu7a!~wZG-rRi8&oVeP9F@?zvU0>Fq0O_o$y_ zE8R8GW0HDS;e~XdSd0xdHmqxA{vWloc`3qz?+rb6><$sdRskjpg}tmGImM5eEgD8?t%%Pkup65g z<1e0s&dK;Uim09wcj8+$oYB^kM6rsRfK$UJUeFwjDBlR@ezfDRRX6q3i<7@0lsEGf z*@zVvp2Busx>I194C9WvDdSC=Gl-=W7tVv#ty<)5p^~Tc*t(RT%!L~PA1UQ$hXxv) zvRV6ANjvsV7uAlGeSk=uNjwJ9QyVE+OfluQE?3gZBsyTR@ z+em-mzld^Rw4h2bSnPBvVe=0~FZ>TXg+K-S9#2y%Mx2#-V_B-GCh#epGrg+*V-7Yi zKV{~A)XGoJdLA-DDTHs;I(6KJPeuoo9kc8BM%JHGlP^N(PmrkN(aXOd5dO^-(k_}` zMEYqpN${?^MGnd;Vn#J}B|2r`9R45y#B-(7>2AGTNwKDbQe-)%4rYz)76UIN;jNy@dw3$32b8szHE~JyR&N-BCNE)i3|>i-wrB_g4hJw%ZPvre*0rf7r?D2cj(PIjz=% zt2p8^I(2qx6CVP?`1}ma)6ATq$dmjhKn__lCUi`o>5TNB@~fhxxZu=_(dY?0<8*Lk8z*=! zPuZeD?`#Lv?_z!j)^}qgSl?swv7{v#IcB?0%bz$}R_^1ePKq=6T+r8Hd1pYwJyKh^ z7i!4yP$Bwy(>~eh>>;#eOHh^fhyVj}T>PJ0cW~euU95p6-8<|y(EYXG{kaiVa8A3y zKaF~x%y*LYEtR=!mAQ!v%5|PnYVzFGMD|OxpuE?)jNOGMq#>sMv4)45u9z2bC5+=! zjD5Vy%||?VmNjsSx7aph2X9)(=w`Ydv-j`L!KMv~7t^;-lD7u9DGWt_{m7Khv}s-o zKF4^@7WS=_(>#oEL)sSIcj?&g+MKMez5*bY-EyC&ifae$*chG8Fy)6h1h&z|#qLTd z3(f0$_Cs`x#er)bVZWf!G{6pySU&IG7!8LkCL@6H9HduUta|6TSiu``-Y?7x+f(q?x|#wW-+Va)H$2i4p{cK7%ofc!#` z3v1XX$av&`uS+W+)|1sITvMr#ats~iK03onm(T}kj1e|yi&e95azR84jY%7dDO6;{ z2D<;U4^LIa!xM}-SgD#zJC*pj>^wi8@s(vTs;U~7>s_6$T}jjf```v`gx&K8%3>`? z;G_cSlmllAa3S{921;ss)8THhwf#q-vB+q7?^gr7YoXL)SF31kVH(&6vUvQ((is3s zkD+aX0a!>4(8Ak@k41DjNrXtEDro;CgfVcT+XU2eFp#e=$F49_cgl|(Jk{n!4&aQe zAeHTxBQ#IPf1jDr_vvHi`tZ8c$gFpNyvl#Bg^>@1+btSB9K$GJIBz~!DH99j)Bjw} z{`t>}k{vR!>jGc3c@dL~c7Y~EyMfw|H(ng3`ii+a+!2M7qRSHc!E7+w|FGOc5tivi z67-xz?fsAJSf6?yw(`}25X#mmL>;a5k}w<8lJ`HC@fnz+0Zk*IV_02n>~BYirK73E zTcjgv^sS9v$;3 zl7h4+>%B(S2LiG~c-2Z1SE^j^yhG8&%iWF3cRmmNY&C$duN~bY@(^ov!vN4cR^xEIwDVqNo8(I~W{qN-f-km68KTncNs8H`g5+!gG2=6_)E1ey{L{;|XNvpJbXF(~p&a}hx(LQV5V zi9db9SA7KIm`%FNvpG2zgoNV%$|9#@&-c z9kG*n!Rp5;iScT3xZ+MU)cOIKuMUjB*eUQxM%JO8}JVze|ywz>0?vxO; zI{}UmgpSdrY*hiMbC3r<4>*!xZOARE*66PUaVLoZVo0d)!MEbAbZRYICggaP!ChHl z1aU8YyP4mmC;OlWVk3tkwC+1f&0~I#e!pw>>XOQh%vwha%K?J&eJwO5vR@mC;q2GXC|iSioc$97hMw@Qt?i3+}}I~XMJF)V z(0T5JZhb^+)WYj|pbd7jE?1RhNkXw26#H7QIP1PnX}hc-%Bk!TSgiVM_b;lk;(~vQ zr_e76(63XpR|=hn9F(+%Bj6Gqzcu5IflK8{DRP|A1y&;6^9uXd_e9>SVNxp-vqbXF z6if16pF8o1MORC{_8=<#JEbh?)>;kXh@MNlBR6Ompsw&}u&oqdNU$4m=a@%_T{aVq zzoYG`qr?_5%Wi${9KVLC9Z(N(qB;1*OH|{?2c?mCspC+FSD(7zLK7tg5G-*neMrjZ z%?an+|IL?w^Cx;62$}dP#)sY#ud@QL$L}^k_#hAP#phsyo|78UlccLay?5HAZ?@v#% z_D7RH)U#33kz^U!AfihC?M%0o`9aUtyHuw^Ldb16nb58()k&#_0SG46Pd}LB* zrV(|VknycoC9QE}2%Ks8NsGmLkKa5rG63eV^893M%I3x`6T84HFm@Fb!JFbt!f zzwG9fCZT0%>eUvFpLm2BtnO~)IN;zV0x}3Say`)G7g+XyR`|N770?9MpQsC>!Qa^& zw8s=#g&6r$^3TfV7*6U7C8*3mjJ3xQwK0$EU#E0qhe2clmzVnKQdVTIDhT30GmKW| zVpvl&OeHi7Dg$5Lsf^udkbAu8j2CNn6Wcap-BLkJ4=cOA%y2{~H1m{@ER&g~ z;r^~>W)pe?8nv&iSrbZ_M%GDhZ3dgpwYUYu=784#H4TDvAfA3ysL$0C2v0J_c)rHY zoUP*iPF5`g5;qn(27JV>DA9(Mr-}^MAYTfjRasQT+d42d2UO{?#Q{&1`RzKL{-P$T zCng&ZQK&SMtDsQ?Qmx)Z`-P4gj5xBD;sJ_ba4zxn*HBN*mvelI(;_MLX- zkW1v_oKg!TDVVg$mQ?i5=&>hU!B_$k$-{#+DCDK&M2Mm?e4{n?Tp$yFk)gYp^OnbM zMS7DB-kbc%lW6@xe_|33&cqtC+g+K`=F`v`}1m%KR?i}HjWyx~zf4+ntRbkYIe|BqRoDLRX|HvI+T0#t(YQ07fhJnoarTg`- zD!!G!eaXllzvLb&K5<F>iXP*e<-AMDCSh&~8oij2S*^2Qn)=h1OH)A;f-qBlT9Ra&G7&Q(7t z3(QJ3%E+&yPGz=WigJf3qs&5wK}0=Lg2r==`R&#Q7|;g$`NhmJ(25Q_)f14ov-qFs z$bdL41n`ltjw-F<23j6Fk5P)+{OS=Bx+#}q3VTS5%bxIwMd8>uM9wNF zT}K9nX65L?9>+suGcmt7gv=-RUhwI2Wag*5pLotu;(DtA9wnE%Vnn=;Mwao^lr|g; zo?*#J^tcBauJRs$NDndsl&6+Y|l7N7DiLGBvEm!^`pdUKf_yXB3zz0TD z4Oju#_c01Dj>LG|`-S-Ng7ljVuOr%gX6c|@A}xqQ82$8xMJLc)y@_-AHx=8(WpjTD z?)ELt*wvfU@iP)DzTG;#P*ZY|wAQx1JDR)Byj)7KzD?>l|U628Qpd#rYPyP8c7 zzr0*L6l9KQFE?*=GWb9OHK$KIZPWO)EUUxEA*EVJC+=tV5NDDK<)B6--)DuUMkth> zT*8wnY(-x=y{0v(f=FpU6l@)DH?%YzucNhXc6ZpHEM$I44#sn=4jpn8k-@sfUo@jRidB zbI3`Y$d+0(2Z0R)W|eT!p|@U|YqM3h1a0+2F}Gd@3M7G&$u1`me4Lz_>uO<87oNlk zL;<8Of5ub zKT(9~%$TN5msWS1+#=uU3+?(PSoq)mAYnu_G#u7OaHZp5V2%g(MMclJ> z*Vyd9{Ey^KyaY|NMJrFp!r}arq#|_?!qqkg7>reIf9E1)9QZ2Mv?dYg4?@}yn#s&? z!Tx%-a&oL62j(?@(PJNktK)bV?C_MC;zZE~_v>=*(kvQ(Yyb_M2mNvLGwWdcmu;#0 zh}t2Kb46ql6_}?x;Lq+g@V&SM`MRdBqV=OAORPt0<99E`mg=`lB7PdG{IEN6qWoe- z4zwnaPo%RMh4G3u0<^txlJ_W!jcOiRU|lEoggF@zwp#1xNtxvBvZc+dmkB)YClu|G z&V=P98OCyPne7|qvc~WZ?EmE-H`kgqlzfWBdsBcRiyT|AA)m$ zM-_@%^3elx5mm6|&ON0dL7wHxD0$QP%RWII`Hsr5;yT8whAiSUq3f0{aRiqQ=sh%! znx=L`LPYju)Q-6DD?s)!*|t?Xl6)i&uJHhJm;7>enmOWy{PR{n5Z)f-G5D&{Z_4KC zTYO%u`K-B&A$eP%cvrgrjP|BnRcU%C+okA|X#l%y}POoQ z$m+)(6v2arXoHFhsH`cOTN4XuYTD``xy^R|gZOE?l0sh~K}|8f#UPt&N|OrQ*WEe< zgFTnT!qORMk+6ub@`Lpm3QmBvn#qjW&uHm;iB88mjy0pt;PwDKIgwxj53Van{1MA! zf8A0B6g3)x9j4H%SPwE5sfAy0AzbL5GF(#v@GhqZIh8S$h_~u2m{0#Q78ZI?cpjNr z%CTNUOGo9Jf4-<-uzZIIq?+lu0rT4hcOHfdTOSCKM=7Qm<0^3$l2>4J)0c7XBP-j# z(3w-N8mM`3N>3be8Qh~!H3Ej)Vw0S^hLWA!LbPpmREvhat4C#z)D)@vk+w*&`>yQq zx8$w`UyE@AfVW>36!~F6DAO_qy@@}1Hue|xz8D;a&jAwXlNmM42hmS1v^%fIClCp{ z64ttXj{U$bGRComxiO=VWKKsdpFXzB*->=x3#jox5`$d3f_mlSbfy>Kn2p)vB3&rD z(jNZzWftLmm{d#IKNY5JIC9f&jFN!+kNoag4{MEO zGM02I#5ENFq2b72!vz^|lHx)ZLdqr1{XRp?0|3c%_`&(_KAVr)V*DE4>Eu9@-jx~f zw$`>x2Q-k}f2n~T*(~!619?VJa%lal*uaA9gun-f56fpm3_$6M1G$1KNZ4Gv&u!q0 z6Xt#i#zjLV82A>ewehg0qguQA3|$tRnhBncBZxTN1Lv*PZ2v`-Js6UkMopq(wS-T2 z=XZ3cLxv=f{GU_hd{(`<2=_&K?VKQ%X5Q29mqk9&uj_&C#^V6`mYf0342WBe$d9M$ zvLr)j5Ox{o&|$f25J3yawJ*zXK`0cpWYE|Oo>fSPS>o~tqEH12DMxZo$)gDIXtYw( z2xVA71!&BgFdn#*;hJLnaARNnBHo7oNycU0ar7UHd*t(8hE@^XGZj+3`x$Nd zu_2R9*>=Qpx6G4+m5l^Z;IfO4QIVuXa&}w^tCnkkH4(l21V%v_^ ziobCY$<1BLMBV5jm!^FYM4|`TkaUA%XWt7em4d&m$`wdqP>~Z}Qt7t<0xnp_)*dWZ&I&tNymcm^TKc)Fm9PzjO(V1FDxt<$SbjKh* zvkZv0c#u}XRL3{{Yo0hZEJoj7+0#`HOr_IAD>oZ+ljTD#@o|A3jqU97d)zS^7l-y{ zQJMls|BWS@KoBRyuAQ$t*zG27vM=wSfHrPpM~b6ygz*h_J1^-y3w6-_E3e$!T}4#cG0e{1CT2 z#Y9A)g;`2TZOxj?F`6pbAM~h*lwD0Lj+Z8iBv`hJaGUXoIB%l@);Lsk?{fM177aGc zlDIi|=s^gbZK%C%@*7#;4m*5fZfr*c^!^{mYdUZZ{fc z;^CnVR6NvQv~U>QR^p!<;6#P(HhhXMY--88=58J;oxnA%+(7m+9`9vgrro79*e;-2 zkG92hSlK3(R_TgO+y*G~QO%&gW_?F(NZez+GU@X6FGm&|rac~RP?x3P6T90A8QeK0 zM)=9&Z80x5A;bzSjxtEopAMQK{rtoSF78}fmVGieLs$`7-bCRbVMYA3Ck;WuO=6c` zkX2=1mCiaXO@4+Nbspt{X$C=#&TP5p&SBiN$Am zOY3we&hzA+1n8V+IYw--c}u&+F(Aaz>JEMNVd#K9OIMoB3Mw=rRDLvtKBWU6%u)1* zlfC?O5aL$s@TUIDb}BJ>&oIn`8KvFZ?U>q+-Ofa!L*-n#NS^bpr$6{g?<`3XtG5if z-YJV59#d?vPYGtpT%T9$@}oFL8PPHfzP|{jY@AWQ!Fo3vRr1piD^EdMuiFUVR>Kn*f&>b&c^Jp3zaQV4#D!%`;Bi4)5Ju_xA0D|ss714*S(o?|OO?m4 zMFwqXp5twafbBFWzlwf%cg8nty+pOipXVjzn{m!Xj z`P@0njgAU35d1nsrIcNU{;&afj`Kjv$P!KXdXot7h01~sBo#{u5l+GyXpLg6af2UO zd*7*izChjHrq}=@{}aLp8B?Z~IXE5N-`a>|M(nw~HC^&4mi2GYxG&|Na zIBtJ?7le1v1dSiiFNu%J&&A{p6I(c5x9h3Wcb z7MCAjKH^70BPpx>7nYCPtRCe^Z&yBAzh;$yt-wkzD*ph|D9b(*cGxZ@5!m=1P*%2t zPY|caYHdcFhgq@3iJ*Q|;MzHTdfj1_>(obG8;?`|97ZUx%TVJpvYiHYqCg^e6QGCn z0*L@gteV|`x;3{mPN_6@s_5v0mbT4Bn^vz59IX*|eP<>r2=Le2B&&z z0!b+8=y>qa4{wCVJ=fZMW2ypNfZyAY6HtOlhS#HB3(5%DO5L?X>eDzy|3i}`&Ka?g z{w?gU`T!tgI=bG&^d@~7{9MG&n)^yfD2ZPWZEainUQQU;gYsBH5>F0v`!^`dP;H}o zeVIo7{FWW~0v+$s{%`Yh{eN1$5VXO|ju_k(Y|h@YArWlu!`G`~W;< zIB?Wd)&n=hpO2%37C=)IE=@A3lOyU_qq9A(#q>o$Z&m;%+5aXdiMtWB$u(+xKkd)i zTQ1t5m(eSnYvE4ORTRcuC@^geGzRu}h#C#DU`AFkZgFb6abiSve@z3X0v^G5Z_mHD z{$KZJjw%8KKP8&QPkfYMu{qCZzTzd2h!xv5kZRgl05492#sBT&NcB#34Cz83yB)CK z1C0$1m+2O{r)_7uVEsP>)=vS}m3A)2nh`92<}fSfkDM#)FpMfb^pOyp>7WGlWa2LJ zG~&j{g%Wj`k&XN*85wk3iX%|DA@);FM35^0xB)?ErZ7_8L_9O_f!QP#0qW=f%2!{Q z3CB!irI8GiYi!HyUC~!TeX0c(07eH>HafsC89K1oci+;zIC#CagtP(nZ?4n$|G+ed z=;#7(c!62=pP*5%0kbUPKe_cM&NVwjWopK~4tthQzW9#-0y*9SI)UNA|4?G*5=$B4 zYWw4@0wc%)65o^FYD5>f$0@=!h*n8&QL$;bf7eF-0FVKXeXc32X~YK9b8|EipeFt7 z`;FQp92>@e=vo1sG$@mC$QZ>zV-~b0dzv}gAdnrTqIqUPP&xv*mi&Eq>wyz(#et`w zeI>~0d!xX<$%w;bQ#6x_)iNAFi|bw?R^|{ZH_%aBr*ko-U-nq}a3FRjMy7nby}F`) z=FG;N+dy^9Gc?rAC*URvU!9&>S5q`IIZLM)*Ko7=IRxOcARob5LPs%7qT&%}idZ#& zShj_NCeVuf8(DV5kFC_o;YE{MCld%fvcoXdUj8bFnImFgJi!!AMCNCXH)l9|$aReq zZ&k3FcV)#9;EeL@s*80WEdykB$8(2=z|4x%MO!pyf}a@BE#mjeI}jNqIx2UaK0gOk z7<8eYBMU6TL-30ospMgsHm?PdK5_;l2c5_YMBeB|;m{Ie$1yfs3K_cGj)n1>KcELj{E7R zoGF&Hbr^S2!8w~pV<{1TXkr{%%Lhg~4BvzD?j$5$RC<%C4SnkxQ+0m7XLB`JPj@t# z03?$mQsZ^K{xmAl4FtMAm6HhA-f4ITW_z;3SGLEq;x=ZlE_d4VIJx!Ztv{AW1P{{~ z8wriz2;_?Nv9@MU@t9@=yG+>Nu*y(!h?u96RObMkQb$RQpYQ1Yz`I|xhB7bnI&iYH zUHsyU1h&=UtPb?nGOc{IK{Ftg+!825x12=Hkvuu=ibJtc%1}U`rH0D6ER5r?GY9)U zG>!6$$;cGKC&dm^F|CJGRUmqIIHqcr36d0R zW2MQKMog4y0q$zGCYE=|M)ruAG9VZyT-fhY%RoW4$o8dgqdO}kX5r(mBEMk#Xrh-z@qIMZ>TuKI6Du`sj|(SR6%*NY){@WL zfT61chOW-BDBXoBj-YA;U%`o$VFe+MWF@l0WR2WJo#nU0B5#jed7h+rpnec%uEVm^ zvyQ7|M{IQG`AxeTJa3yuM25xAXB})g$eQcZ9Q5vn`{}Z?g z^S{F#%hYMhtV!3jiEmpf$6e!BIHJ--6dXN#c0use88e7HX8!MF)0~OKqnJzy5tqPWu1XsF zZ-sH;e0$C9xxK4k=0clY8_thhsqEiCR(+?^IH?(W6i-6`&R_y0cc@A-7^mz*<`%p^I<$wVeI@kO>R zKLhDwcyY77KzyaKNB-nwaN(nBpt+8ZD2h$&&{EN-6R%(UOWgs(8Lo*T4(~LX4e4(- z`+$X!P=h)43D!^yW`nC;rAOuk!jFk&J9(GMD4rpyhy`bPDdKdcNFMyjsGr{ggv8R4 z+uJGW73|y3>Og20?}_qbwCSC{;35*wjx>MDV}2r_mCC>Q8`lqwEWh;s^=TU)4OM`D zfz%`O9*!8KPa9nQP>SF=#6kY0b89#uW_*|yUEpDeJuO3*R1h;zS3v6yQ&z5j6Ck%-r6Pe0kW zqcp0U^`;}~trhACF(#YsT250S%^!hXx&6Pr8Sm5Na6F#4p4>*w!6mkte{K9CA(=Sk z*Z{NnvJf*xdd`k)qXxg#e~mptT~5eX+cK79eEZ+TWI8hR?{da={KEi_85X%t{Z3dq zw!?%dj?SlqvvwOdC7Ee~{~c`jrxlvBpm-lzuFh{LzPJkJWBC6i#P6%vufUXLFob(` zL1cXD?1ua};rQ`aMI4{CFiGNXSEVSeWi$Z=@Ly;m;>)AcmHz(RGVPqwF=F5wY~bMvs7dr5|YABm!{r-0+m^tnTkN20f!?q%`tVU0Do~D zVuSu3;DY$ZdZCEzd=W-cvdm0Nri7;Vd@0D1%E_cuQH0r4Z}|{hiE_*_RY%y^oa!OK zGlX0di0M1dO+Lli^%a}XSJoW)6&zre2 zM*N`G_Xnpk5m4*(s+#UZUe(7Nu|cl5(UU_Nv$fjd$2(f(WM0)P&s+*;*=fKBc)?mt z*Pr-glyL5@OLX0r`+vz#R^5&M2eSEr;Bhi`$*;T`VCiR`sYbpzp_40~{cP&m_zXCi zOLeH5w^l3d6wRm<0SVklk3D_*^MScLH}@m6>eqi+ihO<`F!68e3Rvs#`|fq~R_fKY z@o{^8Q%x@7?{ok1_9Bbzl_UD{y1lr``f>kw8DX-w3V4p=e_8F@-R&cvwdz{$df9(> zn>>E&>)YKok)Ka#eE0o$d{CVf>3DJfc!H>u9lnPh0=D16CQZmTH6EWY0$!ENM%H`9 z4t}F?Z3K9~HidmWUXJZL!G8L9@D4bp@E{inX#RM7JiqGe8zRpM@O^xJd|D41I-K6@ehLk>qV{9L{dL%Rv0M5QpEqKJtwaJxu~UIwPek_lFzOJ+Pbeh1Gici3X!EH7wTo(0ZI7od0{= z$J6Pg{idk@)ARAoW|!e-ozv4rk@vUL!%dO5x7;qnfV=B^(bm(&PXCw72Pg9P*Vl(3 zld6x4q3Xqt-Gh%eQPGc6h|R0#=b@pv%_{cZO_P9@_n{`IkJsbDnChu#3mn4`@3PAC7<8!4r5$9Hr5_b`%1g2FJvE&$GSKNA;z>m zZcm5S4^2K^s^bCzRxz&kcXP=***~fSzCRx>p7I8~|HH{W4yyX`^!W05@nxrUy{}@$ zu*>D<@Oa21;Q6t-x-Ouz#QG^9SM(!Qr1@d>^Wq|QM{RtEu<+RI=SBaQ$Ct2=_nXz5 z$&c2TtJ#3}tC&z`U57%ax92BS@WF@i%V`q+?Q;XfJu1eB(YGp-m&MY}PKaf(yMGmB zid*3f|f7^OJ?rbwl`@PPToSckxEvVG3eQa?pu7^31JHEf}-*i>gCcj=U2KY}6 zYKa~%rYFDONxu2L?Qwst9C-GxGiVase4K#&@QwHJO`a|d4Y>dIzU(_c@6nX~=E3^5 zR=n!4J`vIsqu7OXto&uNn3wg9qbT#vm$k#=SeMeMf$~xSZZrmsK=GEYC@SX7Q?3i` z_|CH~=WPJHOYt~TR`4VA)-QGAn;_uyRriJC_DAI6fWCJ}Ea`C=u89f%GjM0UBqxqc z^TLbK_~2p_C8F_H715<1-Pl9$|05uafUZBr0gt@f zrK77dNeT^3JRV=YJUv@Y??$fGPa}zLB=~tr+zwu%u z=ZYp>^C!$LEvI$T!!_8fld3-{sP%*}SyNbbLu@sa-Q^S8Ffk`FeZJ@fHd?&nDKFSl zT8ow9noR0qnnn)Qt{IY$XQlqhjY%xo6pdRtv;4Ut1e2`G>Mo|)QT5Hrl@d0iqB82x z5++~7bDh`)Tr4D*@6fHmo_c?@!4lt44aC` z21@-%M6Q(8`-&gruo-#O*Kbm#_8J7 ziGi@03W3*5SKV|HDTZr-g#`|7K`=p)$_W;52zYmcTYTjFY-MFAnpNNTy7LNZ;0=DO znX1)#a!!l@5j=iX5>9yfoszeZfF=HortBAd2BJIYpf|62KB0o8#w!{D_C}w&O!c&? z_iDZd>|djTW#;X06zgAux7Ay&%Z>}ec%+zg_gxnRCG*Yk9BaNPnOo;+{Z^RG@Th$a z?!opu4Nxk-Cb6~duGcrBFoW;`=r62flFUq%8HW1in>@ky6`EVs3S-o~22*O(W&CS@ zPq0D`Ss|22X<=co^zUIi35F(3RQH0c)O%1jS+CxYG! zWxbXGUo?hq6&~Zg{anu*MR>l+ng1#%GYpfUWt=xL=!~jPe~LK`Xi&7O=+4K{byP*z z*kAs(B>q(uIe+TqcKnl8yj`!swKC+80ZK^rzRFq(d95RUQ#~VXgEK- zz}M^?{6?Bowdf!nSkb}A7Q{N#X+Hx+tNE3#h%SU$p5XpL$u|ad@1s($+u@6j^u*q~ zp>Lh^TV_?TutVdiLz`SPd769Mr_9Ec-zfMcXD9Ho_fti@ET$b*x@@ZO_0pNDPs2s_ zXQ|@4+*pRPfoW|wOGUp*D5vao(Bf9{jhN#86J4Q8%^%PfNb~Ve9!xmV>nr*C7Y# zTnz^58tsd_JGe^oFGd~>J`hOnCRX!$7$GA?so zZb?PZ!h81}17UL&v;>rFA=D*P2xg^qI|jdcosT9tWj&TMEzyCTMF;nSEdw7yok4- zO0^}%fv2E(R19vQ240Bal4OSg0bV(;%n7k5k;e8pgL87T83R|@6lPc&Hb2rEx5L7gdw$~$JB46Q5@Y+6cj1kJ6E!-U9g56h%Q%+U8aFa(W^r|~OS z78M*^dxWt)e*)SVnIy4_*}-ZsU&g+sN`zx*{Wk8f+Dn4TPvRW}H#}K(5io7Bc?l9>EM4Q{>{-~&7R{Q*;xw~+cEn2D z@!#guB1-5;hfezwflA!CF}1Eb#Ea`cZT}VK<5sBS8wIhUq7@ZWM#pM=3c~7PmP0oD z!`qSs*1&s_m>XEA$>u9l%8`*}d_^>as;Y+i^%%P5CCm61-$TNHt@gmjLLN{I1-J8v zO%N=2I{Zmv#T2E^VP9vp;%uQv8doQJNShr8RPH&Jg!NO2oj03_ zP&gVvvjQV=H@vs-Hf&5@kTXq#M9(x4<#W>>Dxq8)f@TrVEh=UOG-IB3#^r=sCVYDU+c^?TItbCtQh^tO!`VX{sz`G#-XPn#{;_pjrZRVdW>!I$FK~i_&^%ZTOHt znmLx`XEglm8=gF>y0kS9d1(}nA~7sZ_B^J1EnM@gcUL+Dtt~cG|3ssrCPCN=&NmBy zh6g*yUGYN%SmYse+!tlpYeQy4<7Nz-iBhRV;6W4f{J@`5le;d>k^j5tCx^7i%)es5 z!TuM|L#lM=d#}%l$TeL72}<7{K>?Bn$Le3Hu20ZP2D{5-9Lr~v>|{dXwjI8ctiG{|pvU--ljnN4`qp&DOH8+^*BRP(qPpVu=wG!d z?}m|k_$(ZK<@QGQbU0%C5Vw0{*hPQkQiVE>l@|@4022rT6CsTItwrgV$J3 z!{9~Ras2$?p`)Nt!s+3lB+i%bo0W(v%pzVlK?#wQ>;6buuQxsa5SjQyyk018!YBLu zN7*(h&*2>kHR5uENR^}xkXE1HMuNY05j1j^n#jP z_$aJ<&9JvvGg0N=o51_o{^uAoQGIlxKL3oGP4+YEg!ZsEF0(F+CDpIAkO1eA7yQP8 zJy(+}y+L|kH*$yiGLjYmc#-$~0eI1$!ZQ=i?Cye)C7lx7C&66<|0l_E$bT86|A4S| z_^+&)&jj~%M*+w$@;h#T7u)}eil1(~q^dF7R+G!K-~^#v+hm1g4iA2Ful0u@_ijDS zL`QJ{_4+3|tcCvn$RZ#FsXx0M`u6t^`q;61_=;h|~#?@zuOT5>xYkg?)v$#vs_l~yr zju<=Yxo8R}#-5@XQK5h&SZI-x!Y6C9Gu6Y~o;aGeyEDXG(cA#^A(r4!>?+l*P-OKE z$75{%2BiU_cCKyZ=^4*t){~TxSFz8=ZI=VSSA!w`c?3>IX;iE+ELc`uZiMV!zCU62 zaoR37LbmT1E9qGtI#4~dbn*jstzUYIO`o+z+V{L((%A#L^b01O%PxJx^beN4ju+R5 zR_0%KeneTHj5p_}*pB8ed1D&ix;2+;a+)bKnzvHjIqvS`6K_h?h9wjG$cO5X{wN)+ zjnC2Nx9?tNv+*;4m$3UflUVRm!U?0{z0X8$5}-dryT`O!MTb+v;`U=nfopU z9O?D9+sp#Zx~o8ci(}pSRgF;GDs9*QAd)}uw+k`TzDY?jI_(@wxwYCz*WNKe5rx5_ z!C!;0!+Rf~Ri-qDxq7Hc!|x=ChqCY&j$4tK%P=3l&fGgJa)om>#na8xpR^2Hdn+Sswn5X7c&}3UDoV^hVPXth7NSnqE zXXc-v_*2sZ73y0u+BR@ZqY&%R9qd(k^f0Sr44z%8|_Pq#ghouiW%E=j954zf>)&gYQk7=6LwRtVfn1$Zkg7IfNkn^i0YOH`rW_$uybgW=VRXxnq zzU!l+Z6CR#Y`13CxL}HpHD7-SvXbo~-}}IlU>~KgwNBAlD$(e~W%$nxZEn#RoYs0y zQ;oRVl>*fOMu%>=_9~>#iA)@XPB&AHRkn54p)e)VHA1#&CrQyEeLlZxF9f9!(ba1b zfA$}XN!idiJw!t)DmQwbLO`|z{TU^oLI)?;vkU6Ln(1V6xQpT1nk(f{ali!$L7CrP zb1#RN_4Wm?t^2)pGxtYwEFl#fL9;MHUZ!FP2mE;KOV?wiAl>f?{ho*ITWg-|O>Q%E zR;BWB^>K5Ti|o+tRvunQQt~v4)N>01viaLekpdwo7l^HP!FS~b&Y7i{$-G}-u(a<- z7zdl}r<*LcZZrCD0`GH%#AVl)uj2#UJaGrPZq*ynZ&A-W7nV;mmEXx%cOBt)mT`9MJJJ!HSdrOC6xOVwXL(RBhcZ88Jl2| zeu;7W-hliecCnfE-)klEsc95;c%ccJg}-(0Ws?+NR*Ybt!O@W)4p`IlSZ}|>**mk- z%Zvj~nYtL=*2gZ(nn)q`GB<+IIqG87B(fCxP&Z-CkPpb>dMhO*aMc?2MOM>xP&gPE&w`&dt5c z-0N>x=>!*}fR*^KD_;P}?i(NbniE?9+gR%avG{PK>tqBo((HeHn;yUDEZ#zEZxQSS z2H`@hs4-teo0k2-wn`z!uD&?sBxkY{n0dL-crz5j+5e2<#i~)u_CB7hv z=aqU~y?HZ)Cuaod5FQrzj+d|ydPRi}aSc>$7}Rn3CdHr2Y!NDYJR}?k&G_XD2nwI* zyWM3@alaMU=VL36+eHfJrmEht>Fs<+{7X7SA7^V+6|s$dhP4ch^`xGuu@WdBRyjxi zy)*vPZC|{6*c)F%T!83r)4zUfHZwhB3z;R?Aa{yAQ%vbGUJ=t69MQAyu@0C6KHL>F zB;Wa>v#@+eD1yRl*xKla`+hHD-nX3X4_~L1)w&9M`ff!&V zG3j4J{ZDqIAj-sv`CY)3* znYg7B0{E47k!T1Eal!30GublDcUolNLHC#<&2?w1(%iTdyAl9``1(|K6PzE$_5^ir~Y1&P0q;&!*QW=c4k+XXw1Ea{6+6=ie6eN<(7D!h*TXPzS&Kzx@H%rEqh$SIr*JC1rBaOTlkh@b-bJ{`kh zm;P=;V^9HlHjRMbwmsOoP#k*#0d>23Yx4#>6&37b z4OLY5cza8-=;^}!Zvr|TXlOmI5|A$`2uo3WgeqfcedLBrz>sqo?B5jj{NTqLuY+## zNA_lN4wpysa|too-Ie}IS&494Km2U#D4t!rktR~ z$B~?}be_>l&L($Ytfl5MNYV$XPtZA$b1bo1Db3)WNAamz8Af+3NQ-HDEde$&>Fw1? zDXl-%mCK54fRah^MQXE^4RL2)Em#{AvOI7pw z%Tt$tcFx$9^$FI2dov`l#hl@a88z_hZ@3nlJjcOcKTGh7mi}BEuf!-T+#iD;;RO1=xhX*5r)1~wmMtrpJd|$)m9?wC$$*t2DW%Q@h zzudJPQe^gN%A;?9vUr_B%-`r%idOXAEx=U@d0~1(c8Q)CpDoaJptMsO+((4+NfD@sWbLOZeLON9QyA4?sV*qTY!JlwnJB zu`F2&1W6|Mh~~gkgXXoczsYXToxvbVyieI{(OfB?*$|A{ac96xF9L$USLe@NuehCc{yRzcV6~_xi-u?B3rN!Jq z(LSJi#8eHQuxEUifkg;57B7G>(?U&J1nGE4*apb%rG?oYQZJ5oG~uCWNL%|=BGaQ_ z%T!MKi$FdK!?5`l!3tmzQIe^*BRDW)f_yDncP%UbC z5wy4tW~zA7VHUZ9@Z@m`)wX-w-76s0rN zlO>D1GLDTbUZ$1?LGuJ|n@-G-)}S~_L}JNQLDuJzpGI&=_&!}WPZq>@3Hs?(qqjJ$ z%>Omoflazgumh0RJdl~B@d?aGx0L*)K|{-gJHh5g^awmK}+ z6j-?wn{_2wi9T*620`ocS8}ZBA1LwjWaTCS0hRm}DbK0lR*j_h+d0R+aunv$Me?}O z7&jZQoF{V9QluvPbBRHDhmiw0PjhIr(#ulZS{s?Zi`q((USvoc|0J|7jM~<-tr{8; zbG8q7TL4Ddb7uOQwi2#gieX(U#rZFMK6mahEB6{BTeT-8EE%ZTt%Y1E*^BzRi<+A+?@2L{?*H9=kx4a<|uiN29%kPb6aORLE zb`I3&`}YgUwE3Ci0c@HO3}m!_eyJrLim8)~;(g&9LdRk8C6|?oo9MieGNJKv+He-J)eA+m2w2)xJ zYf=9s5#0U$UMnxj{wqVE;T)U6`fPntEy5=%EmuKfs%;0$jUFu_oMWB{?PK8EoKlvm z?PU>iA1CuW0i}c~9<$A3e=$rq&Pb&rI92{211Pp#TCyS(6FAy5(r)ohlHpoD80SQH z33{8I#7vG@O1Yw_u9t>-r9f%gw~yg0G%(c{s~tfbN3S0uUlbOrqrUX{P(}+EWfLlF zZ#6TK9)LT7xO+}4zCnBdvejA{vMbE>5pYyppq06Q(A@=K1rI~i=Fb5LT5Mr7m4+x) zi-rs*(diJ_CR{@H`V1dWuj;{6Y(OEeHjtO6MB)ed1VovFE!AzQ{QUc;(0gk2h^gGb z1t=(9tBBfHb~d<*ttf+o(_`Tn9>(&ddx z6))rpI_XKzD|mcYK%6TYF4b7dQ;eKT6PV@=WE(T3AYtc#(`+^)O?bc~L@RaIuQcAzw@mo!y4?Ud>0l6__Y>D|hlz`q z6D3kP{seCI3hHG%SN)6-o(@z|cMtPj^qA3-u6eBgGwrO<@P)&?g9Ln;5~*UdWy4pz z6Net7@g<}ST3w=4rjHRm|Iw@+=a|}KUn>ccT3W(4&-oe(FEbZkh)6}f1b4Hr6+H+J z(MSRwk~1alcMM_9--322+vhfX1BU!^itJb!aZ&hc$$CzGj3*3grkL_nR!D>RpR~Z5 zz#S<^h8$gH-@zh?V8oP5{TxIfC*4?6CK3nMOshHK-stY7oRnhuOqrfDD$RMsliye|iVwHWY*daNK58HkE%(yQkE-1OYpKZ# zyem)zPUBQr(VDs!^;((|IRB6;#snSb%Y-o%(BR@{(x*_f4b#|hm1%^g#4Ef@>H~iN z_`8}HIgppFTaB`v4Hx2&E*%5be$hSK!llrOpz>a*198suRyxM%@Jan9QMCk)(Y4Y!f;9hrwE=xS!nJOG$V| ziqXpTOuv(lNHyPPkh|)! z1v^)lHhoE&3XeZ881<(%bPnOiRvX=KUY&CI2+cXMmz{Cmhl$?H;8o%#71iIXvU4Od zQOIc8mcQSb9}Z30cTH#j{hnGHI!$KZuXByKNxaafWMmslpfdq5_l&yStVpHIJP1=AW0hmVWY4~hj zRw3h1)8DFB*Z$5vwZq`oe;YXU&y}b+9GV5Xo#L)t&W#s_dUVAVL{Ou5Xd{JPUS{y- zH3*Mt!we^3oj}M!WvTI8dAf(FVj8ZWQn;B53+1g<>dF1EdjrgUTc{Y-Gh`Wo?!K=P z9N^?E{m#+xh^(y<65iOaMAGif)1jdrstSX$6B+MG)AtK&KG6q<0}IW{dtLCSx?^|K zR*j7-wDX_AX~DFsRl5?IUz8vCi&hVuY_ODCoLI%ME&Ysi__QU$l5Fyv7z0Sj8jSp( z1Y%zZzsYBq$|Ig3VGL6+1oSV(YS-6^Jz|4!T4C2mWN*R7e7e^N=v+M$rY1#a?Dv3< zw1}n7W2*R$&EZV4XF?T9@P#SnOJooKeJq#0v)V&_G05bf`+pQ z962WT+}ePQ)sVguTc}_mBZvu^3~SIeVfzlOi5n0hAWtsth3k@3tL!8;5J5hjpB8QW zML9S_)m9FEyYMTIC*lDHnDYhS7gTZl<}y1#sW}86JFe@@R#uQ7D3o1AcXwf9)w_oX zVp8}kFe(9vUL6YN;3Nf9Fc{^p`W`Yd=1;5*X`&-&2Qrl-C|eG-?6sp+gp%G5|O z<7aj?$8Y2*Tp(-A3`*CuB4PW|EcEB0EQA(C%D5PzmbiK$5o@s9x|F67o(W9Yu|w7o z`RSuPYKm)$%}A0o>YJ5i{M=;IwnUulWiUDJtf&N&iko|leWw5fZPPebEoyg7 zL_%huj1W*u{9A<87J|t}zpP9q6gyCB1oQ4|If%{Sh}{XqWTS90!`2U%n3OwO%2n1o zr(F#@;|!uoqXH8GDvnO6he8DRpQeDm?&frmX`p-!nE*jq%ri(lMS_9PghRs^ zy_EOjK$A$TJgZ=hjI>ll>iQ?sks5ra&>i-fZ z#lh+p%A?`PB?FXCQLhu1AYh?)NP6u-M31jvX{*_sfs%e8S-75~B$G$jWsdx{>~m9n zcrAY+CEiOIr=%G)8HN3{KRb~|d0n!zjMl)l3do#h> z7le#LalG$X>0E>bn2Mwju^`FB1P(c#UG~zDC#^!Ug_J6ey?zwt1?uxRZ?2-9?Le}n zFPL(l$tEL!YC&a}f2c0BUknlr!I~$XG=a2i#VwJY<1B;_NfC(Kf&<3|L<*gxb-aS8 z5ZJLUsJob3)<9P=uy}K2&Fow11tU@Pwpnfdv*Ck>o24p0OFC7$Eq3lJ+)nWioF&3XCWDj-?J6eGz4&#(oh-|8-N?a1}|eUPDIcDo&3j5Q+2HP z%--)Y5ziJKnRg;V_;TBZNl*yID#=!+Q=3QW7}`8>QrdLueR#kQp?_^o-WT6@2QKA_UK})^~6D*o3v_fs>+>_4melB)rKVa{R_T|>>*u5((Y$EGQBYN zk@Q8k4~#fT(rafi=ZGfxj&6#*h;~ilnhsEL`WG_|TcL--lgmSzjc#df=KdoPPeN_; zq&tm=JC64*NGD|8F0U{sX(?W2H%qA-FHaH&dMH1<%4`UKO?zwpHqp^10%UeL3TGPh zu~*#R!xlBVa-$C098cNJgKtw?&$O#uNU zLF&c}Z){IlN~UQVc5B_py%N^oZZ>QTbCE=j31cy*@61w8tNE&PG(NeKbGpF!f91iy09X;&PXuSo;W6OfPc;baO7JgBvAtUYK zsgT=3o@3%M)0h~*itdY|*ke4WOp7TO48|IO?UK?)L{rQa5C~23xLvZp`H8F793Zuj>HNyb$OkF+En}5vxEpDB1 z7<5yV-kNrtdsfd8tY{Xo`W^Q3mcW=l;cCKi&Y$U_#&}<1Vof3DSy05+VIK!MAmsm$ zd@A9TjDW8TDBg@CXE#Q%5$-K6NMK(@cs81Rv8>Nk3tsMaP={g)xq! z3oC3z42H0>qok)476U(j+Epj*!R?;N5=?Lo7YtVSG&P9+sh!3Gz>tUM>r8&~ zDAG@Uws4na)8L_HKuIdK;nz%_#){?uo({hW#P7@z42OQd&6WhV3B;`?1+4N1_rOl? zGT{j8**&IbQv<&Xrl+MH!HNx*oRjp1FWPboQoii8PfSooOH6203h;RqWO!?Yu^rji zk<7m(UJavu(sPSsVjak^}MIUB3!b+-)dj zO#CTm?m1H>xS6$4n(A**tUxQTKgICf?EK61HpY<4S}>LF08{f#|A(o`*M%!9gM_CK zo9Yd#RGP8A4Cq@9!-yQrq2^EN|p9I9yH;;!4xgQIzDswOr)7OxYdCnihH z-JSO3g{i1o=VFoWjrz_XXGZte!)km<4`>U%H7+3UJFe;zYmu#|wk>g7k*}=j!VBiX zj_Nv&%31OJ#CJrU%imU6KXpP)@aR$m7`x#3BvD$qylyEfCyZ|`m#MjB+0bIwkGh*P z)><~1cyTnQWWx}Ps6x%B-FsmMK=%~A$mHAt(#|MO^}IX2@M>ag8NZ{?~QMM8R-td`3;W}NEO9VK&m)X&SZjU0>4C#liSZn>WP>pSr9tz$%+j8{RWhv=8p^(6 z4lyp<%?rt5-JO;MK|t90D-DPm_;2yDogrG~9JSB&B-ZrNqwMZj>d?5S_qYdnf?Mq0 zZ`X3Wz_bNn%x{qF`nRn1YI5tpO(_DLa8P%VN>HVbrHZJ&56e*T5R&wW@v$Xemz*@s z{hBeuh&9EHpU3KFnh`4}c-~th?Lqo7A_tugf;C?AKE^De_Rgvbw&Ro0c`u6(Zj2{^ z-owRxm+PTO!)1bHwApDkB|*dUCJMLoGgF8UrW5hl$JQiopDCCgqKqcOc$joaouTy< z76@V2-|tAC+;VP6uKiUg2~4JDr{7X}Q=K1&Bh>48T8lX5cM7*C{ZJ9eTICW5QGW~k z7Qdkcy4kEfM>mtQXVMfKRjrhQ%b|pPFxZE0O!%R85>8(=x$3vRpL5AZ>QhUsWO{mP z#iE<3Nn9tqTqaBt?4X-N6|S_e~>j$ zq)@0u=fPQvndiCUeK+aHxD38Y$tR8)HnIVExW)Abe?i5aod=Y?uz%O9*@`vSVk#}T z6Tu|Nh1iE?kU`2z(koRSJ>Q;Ij}}qo`u35mNrNAc@|iC{D=+-v5q&y3h2lklF_9_AhlJi`K)`ge`^gk**gWMQD=PAB^Oy$z?4 z=-Yxn+$pZg5Zsy$;pD%AVvmJ(e(R;2PpTYTBkgxLKnGHvs%1lc_Q;983EsDA&l5p1 zj?Wdk4$j|f+hLhN+lsRI+H`gkEc%T73hmg2bVa?9_)~m}wDGh3w3h~vLutvR3r$6N zl*Ge&Jh%`)43@5}iL36>kJI)lnD%V#YWi*hp*`7Ad74p;H1cw&*~#Q<#=8|q_uI7Q zXswOU*%RywM_ugaS-oLsd;wAqI#GKw3~Q5jf6lXmgda$sk-k6olTXs%vur%yHX?Hv z51e3LbIr!fKT@bx5$&z99f2%sZ;roV%6;Xo{+f8rBITahQBmnk59L|V?UuTbGN5^b zGAFdby|68fgkxp81d)Ddcla-`T>x7Y3^)#4@#NS~0s$tWxAOw;0>#yHSG<%z8e+T9 zY;(}f1GRn5?NHXcHnWf7*r9?vP3 z7N2=?9_@TO1!84oDGeN|B~U4{0?UqV84}^rHCdy?b zSjZ4KDXfr*q)VMd?87Tkus@=5d!O%bhN({KcH38R^p&l@hW(f{RN0Q*)^dXV#}s(# zi~zhKN2NaCnIa@jJWNW7hZgYeo76=Ej7& z?*-G*I!(nK&ArGEQ^6gPwz@}ZjPuJn{GBnlSb|4GG-JxsEM*rmJ1GPasP1-IrXt+xT|6qWzV6_ zuxUH){iRWi-Ub}am|k$8QOgB3A{wH#zz{)amtn{t;-M272|o-T&D!!(kd6e|0Yg%H{e(!*vnG}TZU->)f5V04;lX$!b2*__NT~OKmy>V z5{`u;Ka>}hR8`)pjBK!#(1rquEdzAez+e~|gkVI-dSDiU6jUOzV&F7*jSfcn!na!~ z#^>@?U58HS2}Jn9p^cLHE;)-XY8+5wLP)YEv)KZrBAB4p54s5z$=$p#aaxZ;w|lia zhABP=1(DTHdlZrh>yl(X!cY2T%yDQi=g1k<0wu}~KPC^Y}Y;5U>4n2u#h3bFQMa;f70 z$(3dVx-&8l_BVKsB@C_zx*~G#^3DHa9_`j*vU>7QMOz^Yf|zPq<40)|#pER+5m<4@BQfLqZ(-+(HxFai+%2g0>-q+Iq5*kb|s} z>^Hh735+zu^@Rf*Io2iZ8=4jG$C)vO{SsDa#EX9ZlNm zL`ac4i9j5>bM*#%P zzry%5b>z-DA#RIV+@9rEXcrHEu#{_fXSQ&KM8JgVv`AqfgnR%`W!TvD;7p$dg@cCL zkI#vE;c9f9sQBQ2C+FcfY#~gh53P>;a&<8miIPHQOR_~${Jy;)T&>{Ud$mqCiwTx1 zBGT4-6uVC%nlcp}-{L3iB%uG*AFZQe^Mkm9Qb{DzBXM@GH(CzblM=C43Mz-oE6%`& z0RGI9s5eV)>u&mQhi`fYc2`Rd0C zm=L!E2v5KLA-r7V*@j(vri{=M9X~$ucyx$v2rB!t2NK%0;F)^;@jFRa57DbyfZVic z=>Gr{LF~T%W31ymU04jE-_JFEbDsYkYs^uUu{@smMTp;HW0B5H46$-s2=?BEl+=Rj z>aa*{F7nDvT)J8O=4u?UNNxRmGe+8F)vRt;bYPL%Jd~{nS=a^Vh>d6JpO!fhpgw#r zNG1z;`O-1}Y|L$ssPBXfE`&onjrqUEJY~v|F}c8)ry1`;V|LCx_dSV?t>bk&x6?YK zf6?Zq9^6ebc->;LllgMYy-gCJbp1LGw=e3^nAK#QTn$P_msZKZZm+3u% zRm$iy_l7p-EH@I1cgT5Q(v7+~p)GQ{h>)W)ix3QFI)k4W7I|F2+~CTOHkbr>%p0vz z){3K+Ge~84ncV{oSGo0$n?S}$1_&8fi}KKT760bE$z$vVi@A&g9;udHgeJGYYStGD z?c5u&!m5hwp#ZV2SbZ0!5i1dnJ{f&gX()~Ac^0P8E4r)PL~eCBJlfISzKvh3^ll37 zlbPi60E-$8V9_L^Hp36oFbdcQ93L9NuI$BR@{OQWl{XI5cv|Zyu=Ax6;kR18F!PqM zHH698`4UV|u4w1iHx-~UtI-8S;qNpiU`>SX^OiK8wz)_!Au?}%QJk~G&`52LL6U8X zTqHEI%{3nkx@JLt|Fv ztS_lR5`2~aB{pfy+T4y2Dg0;Zh|2$4@j)ZCxh>BYKaxJGOpQ) zJas_naWKq*@Eg*0l%f>!#ySm#;i*IS2?9a8tZ+wf4C7JrK?!*~Um$hg4U9)R=Z-%R zW4cT<*LJvIVo6y%QkiqULJakg+zNg}>&M10k(N7lB9sjsddmli%zA81tsqQFl8f}V zg80}7rfM#gl2*%1Xkh=!HQdwRvLKl%|E6)@a#bBvP4McPB5g zhAc!2*^b@_c9Fvhg?4$qNhbW6$uxrHLe_L;JENF0P4wf&kVxlb@>K%e!QQE7_`71{ zKoSz^G)IyVQ*!UQrsl%PnM@;C^7@EsX(FNs-AMVV0nA#E79zBS9G<~@oxvNxQclP+ zN=L*FG!grx4Pg1Ea+VQh_;Re;PZ*=T-ILN%i|faN;R=sv(fE~#7WeQNx2kR^Zgy&+fAWHATzsR0bYV99_Z za~Jnn)R{{o7>Sl`OXO`Xf`MC$jmFb+9qC>Z`gG4%?^d%)Q6+x$C zxakrS=`;`Vm3B<|hSURDy>DqCEG2zs!}bc<=VALTVUf?@77~kej?P!Ou@2*eN_5xp?UGL{(rKTf z71AM;y}zD&(?WlLJ1z9|UjAStU>@j|1Z-FCFsIr{%jE07@BjXf|M!3X=ci>L)R(r- za(-4Op#&A7gjT6sDR9i+_^-B3=^Yw$k|bZ%FPrrIvQ2xXOqN7yIBw?a z&}|q|VaM{bN~+NgN^Zlz>!)<;FSuG}a;`0X42%0U~5ikNxvlBN1{vfWgU<(F1M$ z%UHjAd;i+j|IPOPZLHtDy?-BTDGyQ1d%|v^+6{957;9`Gr8bTNaLIhx2AlCbeA}akiZyew zm&^*5?lPW;IT{a*T$EFI!DO+x2H>)c z5Z#a)=i@d$xFE`j_A4Vl2A`(hzY1+3m;01N*%d&f~ z_qqkyhe0o_oz)Ym%No6?4PD5;YVIKsNhzc1!VY?X*^Yx>Xm2Y|N_nk|h;+;cz?2&< zy2&P1HNWrQK`{K0NG;`^h(wU`Jv#YU&0YABuQjCG*OT7X9dFm>k@1A3z6fRYiWz+n zjBqWTf%)#wg<)eo0G2|(V=Yv4`$Z_cF&_XE6dS5vo5vImlbNtb1_ zGx{J{lt0vtB3HEy-g?a&!4#3@MwVUA+;fyRqc?&H=7>L|bVGk~!b`}b?asL?B#0SO zlu1cB67w0oF--M~pS#faV{HHJDr&S{jh=o?u_)Js;tSO`qc?{6+i?=n&*T;Y?_l>p zW0;Wh10W_#mWf|s=#1VN7WT`PwfP`YN=5RRF>egBuYjGCZ3~3b+Jp*kSC7hF2-I=r zGCKm7jrtLHZH_aL#zZ0DP~B1<%w3tAv1rQ5q?F_M?Lsz)0RRGA{#^l5qv(oCsK0t} zIwUDOCy&OUE1Gp_2(#jxF7GZ9M6If#jd?>Ds$Z1PFD1kGEv%a~vLTF0JN&L*CMh_Q zVtp#{S4}+^|JeeTI~C{K2ig&LZGI)|CPRVX$nNNfyE0Ewl)79LSD`ltPZ4)*4qTq^ zb*G`ig3nn(+?9DgV{9QYkBTxdX%>?D>okw-QplEewyPL9Asg{mSzB{87BQ8>#KqrO zn1(P#A*naLpiaok^X*(3!UU)82}AQy@ z6c*qvBI1p!o*KeLu-H0Lz7$WWVKy`RK$s^?_p#(BlGF{A5qIa*Z9#2#NtRq=liTBV z4-A6E?Wrn5CTE*p*t66SCU~*I(9QyP?i~cr)EmPzCq|4YqOw5ww9&*>)IWI<`BzM^U+ww}|0 zxjQF=Cy{d`-=OvZ1Its>f1T#2TNr~;!LO(Kzh@6~cbapfI`fkf1|6kZ^Hwo;r@6pK z4k3=jBw{H@!}~R1?oRUvmGHdc8E6)Yea;^J*J=Ld3by9;{`2j;-q-Kt4_?W=W(Ryz ze~2VPsGk3f`L~Dpjo&$%26Kl~NK4ft8S*^+ckdeHkbBi2>)XFS20?wPQ;~ky0~FqJ z_&bAiu7O|;0%gf5xTJiWo&4BiI}M7}G68Ruo7^(OPh%~c^4Zk)#1A1QcVqqB*4Pa9 zRdBjCmzu`vZGIW+$g_JZ{aO~n8`~2L;4q4boS?S;ZLFmUO0W{g$dn*qTmL@Rz$g6{ z`PP_td$sm|v~`Lc^jmR4Dpa>j`p>ZzWIOGaE&?PORnG)#biP1DEH+fU;_cx&Aj+6O zws{IbYI|OID8pO3Bi5)!hkevF=J9@NUP_HK`X_B33N4*cu!k%}JT&H?j=4aX8<##s zj>B1u`Dbk&l#jwnm_?X>lUAUOYVO`;kS#4wd@gr8qklf;`6`dBh}+~1H#EZ<)!>?l zDeWcSO19K08&YT+Y;%ieGXms@n>q8D%U5mAk9bRBXHf<3b9<=`WFizetp0{)$Ysr| zOm(GLO$KKy%ZXF7yRd4z>?gEor@pf1eEnEI51Qdd?wugUJOl$o;n+B6@Ut7T;mRgY zDF{eaZS(%0~q%ITs zW?3{ey?ynZ+^a^%>bf!~9}C35I<6B|;*CyoP$69r&imq?{}ETtWE#W5WTP*lA}2n= z$d7eHnB8dDkj?OpWMau_O@lQTeiVD0FVj09DQC~<4Pl6vd_ zR2W;iT@>^Cqzz%|8>c4}H%PZqu-$cR2ut-^Ykivgu55J6plG9dRMi?a0kRMP;&9wn zrXfr<#cP##=W85!kX@O^FlY|Eq{gYt$}aYjCA?8h#*;c7>ijy_fXGdm*%)S7B$%R0 zDNX{?%@rOS#L~s1hNx7cRm3Y;%__y$IhpGglB=gHok+6AeX9*(x$+`6X^LJWB-wZn zZ&ZWR5a9Oc!Z=C3W_e7!QJIU2;eh>uV_?2H7v8AMu@Ks@1xtF_lS&UL;f=~1{O7J# zF_q0`mDap5j1m)d2vC*3Lhh~7195bYZijnMf;_J_JnTlC1Ycz?kwMqlVc|w_f^#|u zzREne2p|Kci{VCuoqbdhM`aGUqPl-cFnIehZw!OBt zLDZEwBaUh^`ckcoLV_C*^vo}BPw{n{hbd>B)*!SxS=_EngBYsd5~~rONz@{Rnn!IA z!`JDZ30+`EhAExxjyO6e<2Z2H)N{`}*nDR61~Hg!GB3N`1K-G+0WtoOiZ5%<4+F}< zyr%)NoPAjbH-P0y1U!>z5ED2MAchpYu5j4M{i!i5;#_TD>8#bXo6gi3yfI84LT;_g z{UBZu*jV$%u&7QPy~qjCMieiTMj(#PWzU_&QSvIV%gb_y@JyyLOiIH8`ve&fFnL_~ zm^X%rjfB>(Q)F@Km=B1-yzAl#T33YYVbk04O(O&JB$Uv+%8EB7=I6BQeBBz%c zzVst*cy<`#=rk8LrmI6KffgNYzS$n)=rrf^93gBJMTzEjI5U%J5c?}8=)<=&K~L}H z4@ThyRbMH*W>0)_n5Uyou=3_Fe35v)889s}-u|W!pVc6;o>YQzvol6Oli3{Se~oom zeOo2`+(nW0YJ5J{g2j}YQv8<9?nR_u9M+L|eMo8b`r-4DqDTcyPE@u!zAx)nO|pL# zCy4Kf$T+=fvpc`4-!`eiF=|Y5tw6%FO9*I_^rHMY*16I+A2G{^&E=YH{8Jfo z47pc=U-r7NS(~Q+Jl3H&IL^OIjszpyH}%U{zk6%{I@a&r+P{tUySMi5ZEX_^og&+} ztDKvpQ#Da02KJ!gsu9dyA@AzZ0ldsIB!~EU zDP{7mwhonSAIjxXaB|&w(t$SanBU9ic{J$aq33Xuch%_O6)(C#&JzDUgP+)z?nC)d za5LJQtmODtJY5YAgCa{Z4N4HQpnaz&ghdSIcqTfC`$GlXNSa11UYPb3(;@yzZ_Ng) zc)Fep^rh}hMK6GOo6NUu9@Yv!nqC}IcJiKCnG><1@1iPJDiroByIIq*{(c7MrKEB= zb%iAbhFzEjF0ViI1D@`A-EX~(ja=qoO+*u7IACDg%wz_;0h4Iw(Godjb@G>CM zO56k;BU0NvFz98kqpY|=!DMb0*&R0UWjUO>XQ_7NU28u0l|C6MNS;^O5?0UL2f)JW z)9lg!NYkQu81q3e#lB0-NRmWxbn6e)msvZEj}~9aLqmdKrrLP(yQ1d=lf z{l|PD%uOfKRX22qp3$Bg^dste^i*ENh$N>lNtQXI4}?Kz^A0hRPDKUpF&_wvAGrG5 zvC@`ktp~z{ol)VbyQOv|Pnf|6!T^9+EA3w9gg2bGq%HG&QpU91E^PyixP7eZjNTXq zTIhjUg*wn$w{zv&?h-WiCxlFDGTqq6~dkn{$o2cQ_~O zm`}sc+#AEx@uNyhl$%SNZndw+#xNU9Qf%(hTQBwAmDd=CD1^ThgyIruf`yvNG>G9) zRmLTjxx16@;U@BH5KH4xwv5ynaUsjxx7r|vDoEc8eOIahsG2=Y4PyDuAfOT3d00~W z4S02C*1BKui;&(OJs;(gmVML)v8WhrFLVKxAw6{ani|AJB%$@AX@v-MlY6oo#Bxm~ zLL|ND`SRMW;RI1vbC+pzUuc(H8xfjuUQ>gZ7vuea8Q}mj4a+p<4Pvql_Y(4Z$}rhH zw|u@qEP`V~sc@JgC4B9y45qH;9^AlPAk#QKJEG@;sB3Gqc$9Kptp@xXh7ow3=Av#z zN|8@)^S_f(jbLixGGVL;(ol5`0Y6h|2(w8(Oi>V+3aM^B5=(c^Bn>tBaF9KjY7^9$ z!5hKyS~QbcciF3=_BsxIndj(ylIP>|5F&no|CrGm!NkVtTEEn9CU#?)v2^F?36I72 zJcghxJvnpmuykb}e%ahpbXG#V^;SJKg4u~u?v#=Bws~ReXPz3tQkvHI>mp3&!u#Kb zek|QN8Cg17T6k*5YgrX!&B`=_(coq7NZm9Ocu~6@2f+lfk^;P>BA=6YgsBdzn+6a!|B#o_yxs2=;OMY+)~6-BUOlS@RI$t^ zs85Yx5EKtgXrl=3hvxN}Od}X(LzM*Q>QF@nv1*g2Mlc88lUnoZQVr-k`1mvkmVPOz zHR#~tO=w@!BA9rDNXpj9Cmoh)z|x(|?m$~cGfs=MIBe-oEZu1?zt5M)p_giz&9+)I zEZu4D&18S^M-+S6`a?Nj=}z;I#z=>#H{B$8wxG5k>mMf#_qUJ!=Rg1V#hQKnUjE>f zAZz}rZ|V=RIu5H7`}&`G!`~j}H$vtRWO;c}#=ZP!{?6~-HOL{zszElw`u-S%AS+au zT!<4?rBZa5zw(E+w$tU3A$d6vJ;Q_YKelziG{`Dxg2@u1-t|9?wOA}y$S4hpP;Qq& z{5;m&d^9f5otSEgz+c+ld7~__GaFIrFMZS zbvktBM9sR(*ns6alqB}flK2rY-pm`aQUFZ+f>jR>qtR;CrQu7ykSlZ&k$^6|-$1QC zzH?n7jke#Rr_Ov%dSx3AzqfhXPQYDudOGbU{C;QzOZyWs0J#DA2K?BmG=inxDOyNO z>bR0E&O5^L)Xc*iAv0t=QK@N0?sXx@D)ZbMn6h^gc9rb4ZUA%M5@f27${HvpX6EkR zs=Cj#e#8_pXR)ds0 zUpDW?-bkJ{2c|)Gy%_L!>3&+QvgQPYbcknbp73kVG>)gt!yjc~$RS12a?W{24POp} z4eO9f9-^>YEXDDhqd&9u3e7-Ipd@yj(Hp+JM$@n`!kj3*w&acDsnN9p;EjM|(w&so zXY_`zaJ^h_dV@%-ZUm^Cw`y>84aJgl9ALrHXElR2dIh_vA9KYN+uX%D<_%vm1uhyr zb%k<5jy*{YUl=vra;_+jfAPPIb|{{jyF^zCOR^4U5ZgCeu<;9JD+Z9=g%Xrz-00QD zFMB+r^41b7ttY!<8ot!^CGF?~f=|ce&fPYANg7Z=;u5Hy+gw)pqKEH%(o{<1Xz);VzDs8mcAlaBVgi*1@dy!%2 zT%h?}9KiC_WW;H?ixWd(?yh0k(Hp{CJx-n`^d$!Ik3O`SOkIs6 zzM6~@Rmco4*WHAu^VyMDp3^)cpU9_km1J16b$VEy)7%l&(8QnSYNssaoNO%5X&!l{ zlz`ek5SD_`JZfW@vuU}bB@}|G=q$`&dCt+56FCixd@61duZ6s)1~IWc&z^+wLV|lI z+<;gL%K{U8_7&)FshAe)oJ@Ff!6rPq_y9_)dDI3mD1e3q?kec07%}#kH;Bc(=NiUr zfJf4kK^QUC`KVAaiMOa%xS8tvj@~F{ z=E7?JmupfJkuc4p4vHap@>wd=PQ$h6easuhB#|VacCM%(_3=I0Xr6QKoR{jqRTm6i za_-r{Xr9xY*Uj~AawR!xgk1BQ&^)JkB$?v8v_?5t)tlAC%|~x1Zl2!DAB=v=tA3@Q z8ghsJY&1!x= z)~VvD{Cr?}K2FnHPxgz$I{K-P2$^0#y!MfV@EBTeTA^fM?aTUIvz*`c!lf^cSyaUR z*M3#MYRdhqYOM;sJS0@w80_ogSA7Yr$Ni@M@ZTWXj(7i#>#>R>TQS^s$KQEl>;6hU z_2%!TU%-`clKmt<9HYhrze7hTLSPF8qQo>|1{P~jzqBv#JC9_ zvaNq^YukuOh>SGSAKtW$e;MO<@9ba4`t{C^z*?EA$Np`s-@UVcA8UeB7zc(h0lISr z5dRo!ktGU73MPiJ`DX$DY-=oM0MYSwoc(pbc==hcd?-D`8l8r9MYU{-E9u&DIcD)r>si(?Zv@2dP7i3L3%y#Mn zY!r543I%y&$y@aGXtf?)Op)?|z*yXJYg8bgD)U?#g$z*8e%`sWj3=~3B=nDPuOx*8 zH#rqM^%Kovj*_y?t%}?zVy7AXM6j4shJ;m9ZseoyeT$7+p3~;d$Ila|r*t!;H;#$5 z<@6MeI!SObI>pBP+g=!1F~!WKK?0(}qcJ}b%iPmw6UoxG=9Yer#>4kLy4WfDDXE~) zMMydx1*=wX3067QB5yK*+(a@*39Z)VUXaj5x}&r$m)*$>cI80WGV(?qPSCY)b-+u) zg@&j0$AIH)H*k3v`0{qJhW3oeUYv1TnZd8@!(3GF7?Gl&DrVgWz(^GYI2uMt#jrQ4 zQOB#*%GimyHUFym%dNI7h*&H0G%O|$05BKMEGP|zVaF6pjecEetJKzW$E@|}5pSnB zjMq{g*sub#*5=Yn*5_6YgMv1J9>jyvH%W74vu)R zEf)!pYc=;MJrFAbq_DU+$eDYin3}4Rmz4>|_^Wnd8pM)N%SDJAUSMg>8^pvc014Oc zc0k!v*>n^#1VfFP)$k~b^UAeIYpq^7CM;aKuvkuh%&ODmjk)VgbU#5mm6y+JI> zV$L)l=Xm*NMsE;T zYvFe?4Pr z56+&8wUk1sN4G3PLv@bs@3$E(B;rnj$p_B5H;5&06K`-&0$V=ww(gB$C<%l|zAJKV zuv?cgcI}*u^^U^jx_0RT_+7|GF@$VjCON@#YOpKQD5e7HFSx{L&%ZGH9lLf;#*T>w zB4?0tT+w((9~8rOBq@Bw8*DSUE3(ef?ExY#Eaf${D&#EtfEct;B#h`L;(h-a^9C_n zE7t)i{_;=pBxBteCh)x)Z?D~A(=6pdL3PfYw?mlbI+HY11IU3q3aZmQg?2?k-YG>H z|JkWGhS5++efAC5&HP87?{b86KG0*YOV8*wH`Hh5mBbnkB?4c<5^GJ6l z=gov}gS?SUy?c=FkD0haU-+7>%U5&4L^Si5Ka4f8r4XOP#`yR-Px<3mhp&$>4T$+U zxzbN-E#Qq`m;cI{7Il9fYeWOu5V3K63wV_ozpS-a(;M~IvAFUDSo`wtY`ovfnwxSW z@exUUBbw=C7X@iyg=X%bwRtWdNexS@>-BRsA8w~c$1dd~LRb&gsWfrV=%2T_ zm_Jn}$df{&^6;2{QRd!E#1aw)oJ7)wo%@$fg!RIp16#lO zmfpBB=g*SrzHEWp9%y8X)X}{-*Za@U8)0`M8@@XkD2Y=3lb;*+J$%Xp|o1=WdyXtP~dnl{jHl%>3Mw-S}l}DVqBZ=@J+x!S3tu_%ag z?=>y2uv>L{5Y;VKHFt{1$R$3&PG8@_*e%v5ricKq>56Fu5oIWWnR}xcvot(bxsEH#@9&yt%;vE${D#+=8>xMWG^s72{V&v6ti_nJ!s*s&LPR^_;}<_jV_eS z4fQX3K=d=CH;P5du5fo@OpxZb-y6lCB7PdhfIajRT{@#Tilx^|V)W|l;qS-1Q7kpz zT<`TNdfjr5=D71wDVtK$cdB5QuF{D$?&ozvX;!D2adNW}bH z;BbvqnafblJ+ml=+$nQyfKcpp6uFxKxl`sMd#_0+5<10Q7|Zav#_BZBiOywB(R@X! zyFz{BPMPD7A;BxWCMcQL)F>8zcai1KNO12-YZP-ZQrCW+mE78q8pYH~$bVmFJm{vG zOrw~Wj|aHkzg^%k%~^eF6myPpq3o-F@6COUV%jrsjjr)fPW1D>?t@}<+yuQLVT2E< zN6*|F#nh4ooeufs-vzO!2C=ln@Jz3Q zPO0ony+Q0kNSq{h>1Xt7W8NSp3zNknJ3u9^;LW-*EEjAbI$i;RE1PEU#xTplNxu1a zTYI#}oeP7VW=?kPdms6^PWY)YOl;!znODKdT}qAIIY&qGtH%&7PzUAbcpBW!Y0Yn- zc~u2$^ZeZ23*63W{w7^7vgZB2y`8Liy8fVLQtun%MJBb^(R^~4YaHWU-~4^gw@j6R zd{%NWd-k(7k*1}nqBDb{DPdB-$bXHs-m`2JKM)>*n700WtVPFoTGA^Vow$1Z;unWC zmDKxx`(K~Fes(Rd(vt{Am1lDs!b)PktY0?G{$;-eS7iXX6;rC)^ZcrQ*{tW6b#djd zRV33?y-V`-@yp1G9{HR4!~dROJIrs~*uPD%y=#!akV+lD;usY^gd;d1p@7~_Ok2O@)ks(p1A5!0&E%`@V=NfQ%y6`y)rCWLN&#^{#Xgfe{ zq5;s>y?zf5V~rJ4a!cEU()&#Z@bEb1X$eU<9D-A!Yxc>*iD7gvSc|`DRN+f}EG@;Q znM`9?I%~+JuCl9Y^ymdnEjYD*nTaR|`jbmso?iKABf!eiu=cRtz zuSps~fhFOBqG`FEH22}VG522G9_9tPeo3WvC-eQ7M{%C-6xzCapl?E~MlNDK2~_TL zNS$8Px}!IA<)eMdKO{TXNiv;z)W)uBF*GdloG1x#=$bcp*(uVp+@qrUs!V&MR2#nJ zWD*3YL(l5PsP0>B{6bwO)&tVd54t(`Lj#zw6Rltat9s|XZc*%^5e#RQ%P8cQ2njs- z>R%rk!bHw$GXmUj5jjo^1dU;)lDtVugeVi1FO~h+AZDv5HQ?U_2a(F}X?koB6O9`Z z+o6V&ATQ6C4zR032B!Syo`EZh7z zC}y$kMx*QIlUyz=Jr0V=&aSLm+VY+{!YU*l2gUdqP^#lL)gjULIFH9cF;sT4ZnO>p zH0_^#JRS$dh!?nzTxPCSSDHSD@3B$L!i22{9O>vH@)%$9*eIsS*^+xr(UWH5ta+oD z{*JW!K(WBDmZ+UfqZmLZ#ZDjMOKEdgrco?%s@!{>3uEFaZ?sOMm>frJnu@nO&57o2 znzKeRTRdF@*UiBY1Q5@Tm%-F)370vJ5W7Bn6k#W+%O1cXFBn|?*UGkT*~WF0ap5r?bTtkU51Q-hfNLXsk! z;oYxvY8K|HLCgiy5w)Q&)Say9)|#Ih#CUch&(v;mL6r*ej@}>!Agy3Fm?MZO+ba1} zgP2?qS-_D=p#yt6cw-nhMjaa0L7tYFW6si3W0+DC8cjj&1=|<$o*KhYK$uQ+u#)Bl z*n_`MjbSvz*mNb|bWSBK8w`7D3`;j*zKU-9UXZ%c%u{0+fOeX*VfZIo`DWf2W|v^a z@ap;G^-Ti#)Ci_~122|q1g}?gSHCraVIeJ~f*HbF04J>N&HK~{=By^eDEvWrA5!B zQ4w(7gm{Br{`!PHui$6{&Zow&e6c~bH}t*XhF0Ssq&LiEaCad02qI& zWkE)xK5^yxy)vIPfY~JQg+B2)_SJed<_%!OZGF;s_2y5TX?ySOOxxG*=MP@VqTYM+ z+ZQ46P5r48ma9UJe+E##Jx#q##ke)q0H4qa3YvPk&-F^DWM*9DPx zOV*zG?b&)ijI}hu-J9_$S4ZMl|2WnPVHhCXg;d0Lnw|91SR=P#Pp%2NqzQwuKaVv4 zaoky}UMh9XOnw<___R&Tzm5ssPr?f5Q>?s|aer%Tb46@LPWb%K0N?Lp9XzEF(@ZHk za8&xe{xR14hcrmRooAr?8glE;v38nZFzaBXdzN}^RL;4L;~<3&0^oFnqdI0PsGKqv zGMJ1PF3e8RXU(6+TF>{5FPQ-Eac~7u5PM$BTs#v{8)c6)|Xx-T9GiJ z7|t>Ovdv{OwwAewQ-ScV%U5G9n6d>Dm&g%rN^49`J!o!L6wL^JVtp%TJT$bWzgb-E zok|SFSi8SYWP>Mk*?pAZN8Bb*-d1~7SVRApAi_O&+a;?X$g?zM^(l=-L(9TjqS9~F($=CV8# zl$s`d2idcbXq+-9aYJpnu>q#0UuW>{u>maioyZ_%@GtvuHY6ISN6*&Mt@nZ%OP`@} z+FW#+7Gk8yHTNC80n8hzAzm<_vztU-jjgExSIJA;aV zIRgRY?Nb1cjbK8Xu*%-)%YNKtYy`^#N)J;4An~->##=u&f+09!GU43nY6>G_pscRhHD#5o5~6$rDOD@(4!x1Fp= zoYP!9nk$!WG;(Qb=2;gUPFW*1vmHYw1%0<+;HeQz#2qddq$WTQpWe%e!#PJcUj!R2 z7oNtYE=B*;2uAIZQXTG(j$G2P^?W4GIl5r*3aPHZRCv0zJtR(eS<*H<9PtG&{ZTTv;TsP;HHIbq#VDl1_liz7$iw5DbB`p;9(X=?er^}; zQ)8HSBs9?}{qm#>c~6aD*WIbKLeKdI@Yr=948z}M%S6t6MJKzEjbT{LP`NJ-H3H?? zk&R(qrYfV!IIN+rH+MtioGX)W9puKZ=b8Aq$D=U}wVZdV;BtlePHayGk#mlol8#98 z6i7(rrE!&wxf6_n3w#8VCuj5tNLZL?q62gl<_$A$pUYw+SkV~ zr{AuJ{-*x)-=NEm_y5-yLTNX8CtdcALH_2>dJWo=$LN5_zC=2FJSTOH}jrj>-F;5TA#deZ&5h0FW zz>L*0DkNiE{zC+f?MgjnMsE}oGUp<0x>MC7$=}9s58uw{WF&;`f{8St=oOgJziV^J z5HgMYFCU6=qQ?6Bv6gWwfoJh^x$#!}9|pGQ8oU~HLC)YGc?mQ6;Fj>+{acYu;Ae#A zgDnpYTui;pXLSo21w}feH*$q3w$I~im59T?jCn(sEHor)Bp;MtZ|S9M?D8^mjkr?Z z^Y*>Xy}?WNX;g%f``~iP#Io-sPUn`%HA6Bd_heCrnAWCSBu;IP8p|a{A6jy$`i&lK z0CU>J6A`PY!jYf7GPtoGJ>4_u`rwH20kc_1+*q4K4T3=%05)MgCLF+xm3eAExx3f> zD|8Kay;Vclb-y1Tg+wS~6&r5m-VkQO&-cR7cWOwwU6zI$>&c|gULzg(#PgP%(Hp`P zw1ZueKgR^N?%BhQ)#$Py(lvZ49666hw9~;6@7Q8@isI>{w?X(Ni7={}o`A9Lqv)b*q?b{gUJ^CJ+4sYJnX1~Sg zkBwnoP|j$QV&t0!?|IOHFxo|I7d&-}oYfm|JP-zD>=oCC@iFlodr$|$5=Tn`AYPFD zR%}F#)sBfmSJ5uYYaRsqHgg{cOWgy=Aef%VA8>zc2*ZrO7vaR;sX4q<>Yo|CAxxb= z<)Bw5q^7;cu1dfq^I@r4`4PW^lotWx5o)!{r5std) zoVs(L9(?{$P$&f6+7xxuX`Y^Ck;Y33lV6!-Z2ZFhSVy60zCwaz+L6Y593HTAViFvlaae5766OV(rfi+GC!30 zM{d5e1+F8VFl>$~UhEwF!)QWeC+-sDtmTh0cH40)wl zo$#)F_l(~7B~*yK*x1kM#^$k4gI``xQ6Zy6M@9?w@ij!r^QetqLUs=93U}l)`a;GWEq0DhWW|4(#Y=kn zW*wXN`rz%n*Vpgo4_<4I<{f`ie;N`c`}oa2Z~n4NqV(-y{w~dthCdmv;)}3OsiBwS zyLSz8XpY`F$oIz}xFL9uoDT_-Pl(Lx`eAIfC|FZ`wgMXg^jQBm*8GOxCnRYUo160g zG}Z}XNM{5m1bDV`Kl;yY?L-R;9TKiA4Tf#}%NPqbHd_C6Ow!pb9uc|F{fdx!z~9C? zpM?O@gc4BecBSI)W35Ur#)TGbozL6aM-HmjaD zTBY_dssmX_nVT%bE15k_a8%}L1B#yi`Gs)rGy2n*b3EjApf z)a&^@&gh?xIi6PIpjr`qzPB}JpWvuR2hrx97Bcv35lh`D)BXLn%u~vk{fV z90t5fJu0}3oQX;}MI%wnjNZTon$u~WlOYSktjx*4tMus4JB+|xE+}E%4S7Ns^a=Cf zB;olY&*nU4G6Pn^dHF)xSTFmHUlA)cncQl}!B|dv0iQKz>0tm%A#AqrOorD0E!clz3f3fZAKpu6Otq-$rYvcfsk#?2gHyW zIAoZI>{CKqL?t?^$q1u!_cRIyI3>iJ(Fepx27)t~fM*<=7{<)d^GJT#b%>8Pyvpjal6Y(NQ)v%Wv-pcvX-LvY|-Qp@j* z|0g@DN6q(s^5p_SelCk!jKr**=5SQJ=idw1B z(_0yrEi%2jF=y}wF(f68t*rW^_ur?4wmxItAeOt(C~Y=h7f%4K?Cw8UabX zj%_oeH;8HH@g{}ffKPJBRgQUsm}UGpof;7<5xDIRXb97RkX9NInwt$pmpk!BFprlD zkmZ{WAV+f}?i#^dXQ+H<&8hv|8zaP=i8q1;zf#$7p@CZsZ1r81MleMl&e3F2UA1)v zt0|7o_kUFW^z;FU~yVetHWJhcPistB?jFSPP|37K>(j!NbBnkMx)Nz67?jl*;RfQe`naLuH z@AvaIhiPChi^U%L_wOej5e!ptW{|)XXSutRnnrVTGci?BQFYmYxXfFhy_(DfFzy!@ zQsiY9qh$$|%De!~S<&Cxm;rOY{cxiWC(v{t?D6TvX5sR!NIZ9yQ> zOigAYm>D=rM>l+{C@J%aU^%J$9^i2ZQ+BlDL@=w4T#-UOI&JOBAXnB$rQr0aGC1iE z;J$88pXO+oZwo1apqbQYrzOa^mDO6`IVqV`z|x>-7SQ3?&BU-Y@{kWt9>o2DQ0)CX zF)X0_7rv5Ef{&Mfpw@9>80H(d#z{*1dF7)!A=v~mKAX!ok*di^K=kRrt*noFmXu5` z<=(fsl$$&G!BIoBYDoUyfB)-0fAZ7cZ|FF-ZZga7i=eXBADM{kBm6@nce)Vz z|ISr;Q`TZusSBG*o;LY~Y5lgW4H;jOtTf*^Zu<0HS(^iXCLF|Gt?|BWFCU)|)A~Ed z=VMu4K0cqyn!Buq(kh1aL2}I%`CQh>s_=dY%7o6f*k8(+b_u|9l2e*3Q#Xf3wvCsa zR3$nrmqEJYcM=NOHqGNXN?7DehFr2ncN(T)E{H&q^4ul=bB5|Uk!{l)0YVz*&Xb39 zS+;p0X7a-lMgET`O_He|wa_zErTfE-k`diS!PvGr86r9wWk9z4k!z3|i5W-SfI zDz#VHlV!dFs1qbB&dJZ`1xRyU#Qmr%B*t9s(PW5cQ+T6#zD8d`F6JQ1849c6$|MLX z^Mb8p!s5NVgQdmQb(HzUF|I?BPkPJPV(HD%lX)>05-#&(QBYhq5mV=KbZQ#wp0}iW zA$5T%1?s_HO>1OdTvXm{3jI8AO}&5%N0o?-v#AOX1<_Ah$c1&1;SLsA_prq^dO=s{ z6??#W_Q)K{vM%W2BzZC5S|XI2cL3?h=t# zg=-P9JsuGrSD9Y2_5iMJnn%!qMptT*COW$qzA!AIr6%yKt{lBQ#87>YGlBGL5<;UBPx!F9?(QK|Vrj8Gw+M{gw*Ch%;cGJ&-FT z%Eoz^P;GNE=}VZFD6$0#_Iep7f`xrXaHbSRWeUo@&h_;~u;?_BNfQox{f=JGWg=KQ ziKNvWN*5WHa;cj7gfIYhms8K%k=XZ^I@fVMAuO|vVlP>*%~P)+;Ce!sO$DM8G{LS&cq1Oyy0!S(|E&a3?e; zWj--XsFO(8HBVt8=h-(lx^3ORzo2D8EPEtfWmp?sx5eEZiWjH2yA*eKmqKs|?k(txRLufLTb z+EdqrHpXf{z46br{h)MQd4wM$unLqExm#k(PP*LKTV4M~ZzlJ{#unzd?&7OpiWZ_X zl-6y1>Bg`>-R{6ALJSTh28;@}??TTtWjM|thT}BIe#pQt+Q$I&C-zDsDpjZ+v=>W? zg?AX~sqIj=sOH<_3$DV$0VINoZKdVZGqVCbzYn=yf>~(4yF2%}`Ww}&&JoWv#rpq1 zrkQydvzO5Kze3GF7p;1~{}Ab8yUX-^kIyr|~4#ljY%2scR^r6BgeTDVmt}kp>a^rGC;pMN~ zK59A|@uQv{?6pY0-L=0-pFDeXvKku^S^Unc3gYCtw;}8|-_R6VrrmK%?^joS{3Q@B zuz^&^W7&D!+mr~dW#chsW6r&7G`PF9T~%?dqd2A9zt(s8;s__- z9~4~GRkDzUC|fd#tMr9KD~#`cWGO$lR$3Cwx;`3tLrPn-RdpwGK`JnmQeVOVjtT%V z#QGG2U`@aHSNlj<@qO-Y=G&kxiJ_sMdl9aui3X`dXOw%K0i$O$vpz%zyK(A$cMZvE z1`YoG@)_j!+0(esGV`QDsHbW-3W>~u*Df5QE0v1OO1Bszm0@a`3BMb$Qzqkf~NrCTnGsTL3^=@0wr4W`{F6sAjt;tZJqfPz zqgKhEa67y*M=ki=tKS~6u|(>6;ym`spOuW99c_5-XW1)iVSIMsQqUs_LBv5gjstx^yB?rtG-*}xxPQF(f9L#b29Q3k~~nHi*&l#YS7QkR-MH73!}fW2v~ zh=LvLnGNv%+KYlJ0zVWJQwFpxU7RizwEwWd*V-KnZPi)(pmdfAVh<}b`TlduhBVy- z3K_EwR`Z)CFdaimas>G~N+{`@OiIkFxZ1<3(7P8D-=S0Akt^1|MShVy6jJXGMn-@7jpQ}U>; zhMX;RrfAa8Q1pt8$v&}Q@aIAF82)7d+Ew~oCN;t&ts0{Ts!T$KllonY_Lt-r3yQwz z-56C1KVF(&KP6g;5-R?LbNnl-amz)Z86&>!E`ipvS@aQ6f{@RYFp!{=s-0jwYgK>% z<_>-dgm{DeXAs}j@LmAGw{G1Je4wjRXW{96htLipu# zf!+V7+EzQ1-54SESE~x50Jju=X3OCAfHU%=Z3a0FZ*OaBE&7_Dwq!7=zO?etldIzT zVwOS;g<8Uv4YLP}$99Udj?mu@ug+pbvo{icpaZFUMCQ3S!!4rOW4+Y@hH2;qHh0lD zZ8$Yzpjup}jUroEXFPVlcvlh5QW>xyaTjNDT>%5RKJb*O^+fKfmMb06j2!~!>B0ua zi@4I=4}6KqA8FZk) zRn~_2!ky^(Q$?Oi5Y)Vh6M6QaIPOyyT9iY*%rUwiIv}ZxAV(s@I-N zk}zIh?SpmvuMEX2n+}2m4!0;-_l$BsR}>p>hgfB<8oz&pS?= z|4A{;#Nux;)?UxGWcn66$=w#Yk91-wVpQo-In^5u*-7We`*)U5aap*Pb2uFn_#<&} zL=whnP0`aE5FdgmZ;m#!+L_G~JZb)DNBDJo=I!|QS{)5dYF8obd_C*G01eO*S3ro^ z2U1);`m}d|(}#gTRk<`cSD*3%~lIvzEWhOUzgk!EsCh zYU^aOUFXD9B#H8{q`Ez}#%>CyU_T?i@dM*$2(rfvCG|?ZYw5|FBx~8r8DZ97AO6GC1Vf zZ&Pq-u`)r!vP(7bCYipc$C##lf)iK?E`?O^uQ>`obJoJGQa$-7)BGR}Apc}0*isGw zp&Iql#YNN27oss#bg;=wQ-cvQf%tFx`n~_q3EJ0e?{J~>r0Vz6s?Jdf{hQetR|fI1pQGiUny?D#+Xh z8pbzXRuXP{q+j*YaXZsW0$IsO)tYX3>}80IF-^@cs1(=fNsTsVs%wfO#{m=1NL2|x z|E7enXou)7yG;@eSUxOu^-z-9#WM5Ma^3J!mzxYGkRorJM0wS(^>( zwP8&z9A9Aa)-d5;SaE+j8#mY2Cb@Ob|Ej&JOCj;}!|rWpBLXV_#CJE!9SI7Uj?*K@ z^X<{_HGG6(Q&=Y0$R=->@o@z7jUhQ6S)n;w^}z;P5TU1@ogs!c`0qW=X+T{q#tUAPdvZO zABC9GjKj)EUeA1?zwNEHW@^5AhhX1|kBDjgI+>rzXNF>2EX9I?%^RwvWcaot`TMz_ zm0^Z6UHdEWDWnUfnl>D<0v3j-k<8d;YsJFsbbUjvO}i-ejP*CkJExce2I!t8)yB(h z3A^7;nvEl&;IZ3~yYnk;_=x80>$DPyW32m)v+3!2>&@L*M^X?_d`k_PPi%a|q?F*) zRr$d*gFMvdEwlCOYLh<7o?3x226mYK=wFZeH4g0l{K1hAp;r5ey`A1gX*a^!&q#Jx zOCWno?Sf$2&uRa#*NvX?rC{VQAYX`iU11jQby%(!7&bXBzWIZ*1%Fx`eQ8>zW?)(T zE{a`yi&QST)SsB&1A7N@io-gmvB>(;(v9ZkcgMW_sI#J6FA{9B2Bl2Q)ZMM&q&+{4Ne({=?pg4G+8a+mg?>8+&lkrQ)9Ae{>tHK+=Rnzlu z08DpvK_#vvip|A-{sUSjIgM%>QuOV|`G^8WK^^kmEpC;7VE~61imat+EIv1#?Yj_z zU3U9f`i$ji(=^*gkTK4O^3AQxz0gUEqVM8(lVZ*51`)M zLtzAghd3pn+Tst-4xLN7w2*AMt=xDP93pWL|C2H^s>_d(b++)bBk{zM3&x$}BC*Lc z4FsS*w~(MkScZ^i6AEQkxn+Q`e}*RDcr0qbteKecE4BU0y>cqse*th*=6?YYLG#aM z9aE!^5L2NKofXrRvr!|{W-{0Az&VR7)kc?gR7durH7;p3Qf*%@NOM#1R7Njp9VdQY zIcVn<@SZ*KnODi;_z?%LC}e)lH8i2ktc;QM+fvPCz@OeWfU=4!DX0H?uJDM4X@pwSrzm?bn)Mt$4ft3h<=1Dk?h) zvAMv0@4uJbxa#0JyY)y{e(KvrVxbD>IqLJpc}uX48TsQ*iS>_XMpXh;tDr^({w1l- zdBLFqD%N|*qu4Sn)idOHpIYy3a`2h)o3tvaq_C&CiKj;0bwjv@l0l3;!gLOQU{#Wj#t-j|H4F({cxRw zn4jl=od4x$pWh&`@sZ3SUBERC(Ds^P*hG-@d?YE(D-LZXpk?p0-(1@QUX+%ZGXIcJ zZQno-aNoI>U~|BFpd;LM>OKChUZ9MV6khL^*Z#|U`{a^6moA0Bf;V-@t2VRUNNK?Dz{74;Sh0Uo*O}rK04DPu_PCW`G5yh2K-TMf8c?w(QsgrB&0{2of** z4JyYKh&+u-QffF=aCb5@$zLvQEd27F(n`|g^}eHiDd!JZvY?3^P;^tK(Zx(#;Uc1$ zBPy`MD^!|C;?rty`!8U;t0@Fx9Mr;t4WorsQ7TfT{MM`}Tvj-{jFoYsgp~myFhChA*jLb0()YcKCh@QukGr5060 zy>%u0O(fb6CEphHT$on2!2ha`>h9}vPda0t3jQB3!8FC`9KKf0R7Qz%$0f|IcnX9T zN{=u#K*4EA9VMHytwt2_Yd( z8aCTdZU4A7T-05w9G-)yllbBlZ^&bVmXL?OD+0BhR(Y}}y*ix*=WSx^;sMyOBoAj7 z?aMf7eOXp*3!!99Ng!gN;gw1su}*kalH=B?*ozNs|^Khiwm|J4`PLM4{m79-cPqt+PcDptp zm+cIF^Og59PC z?elzdUxKNbJlF4;)gyNjQ6G?)r~YS)FK5y}3Ay=MpHg|-F|`}wSw1hzV*&*Evqb6b?+dzy z@YT(+rZ(@U{W(yYA6XA=Gef=Aa8OP4ZDfY%rLO{ww9-4iMv81)tL$vq6NAVYQaaMIOQ3J znI}^R&M2!ke*(G15FRr@W}BeDhfi|0EA~OZbmMNM(f4uQg@(PSm9DZG=6l zjh+{E)Fyf*?jruqZD>}TTkG0S?uMU8;%|f6oWLPZvO*{YIjtooJ)Ig zrt!Utn{wzSAyqvTjsNJcsUWJZNfm9&qNH%Ya-o+l6f`Ht^9Xy1HDLoEin5O$qFv& zDyycM_;$(N%^=Yqzt9;BSyB6q7F75}3ul1Dm81nDV~_axnSz9gKzD>Y2c2YQND-$Q zW5GPq6QQ5WtAB?JOfO(Y{>n6M-S%YoCX|EN6XGVn zIr~Gfzb8Bp#UuK;uu&DN(eCU(OvVoC)G0GS@WN>Wy^t~<-($7XqFSA(`|;sLcUYfI zCj4MIL2F+B$h~F6xP`>im5-p30g~zdurI<#_^O+NFV^1*yRJJLER@+~TbIDe__Bf& zQW&M-SD0<;wUsh%%3`**b=KnX?=G-HGF!^vqAl}s@fj^V&L=%z=_{EZ=XlYTH710% zaElbdGBRJD?Q0;#t`=nw-3H*CiMwvh0|EktIy0JAbM0cVC1YFCO{}l!z`y8FZCn?b zZ-%jx7`&Vcmj66HW)7Hp^;@6U(x{N=m%xIs&`Upy9KS05LsB!1TfLP7ZJ=({{K`#H zKTE7{{vTUQs>7E~pXto*iR}t5@9JwMX z#(=0mKorpL=t$CSstpER(RZr#BjUYA#InW{?vhEtKM8MFHRRl zd2ucF_!4&SO#*QaB8z?ux{VF(Vg`m(m3-F^c34>JXYKY5NFoh9<7+_Rm z+9Ds(bj0l2&etph251Tp`<_S^00r>ZM3Rw8!Q66vj$#VY7ywpIJO&>HOhx6TP z8SlNy-K2S|3JUD)Jg9l>1|F4UVvGoA8r)dQvJ~=VJUZ)hFp3XJ;`8R}ewxCemyXkh zUZ3thr-i*{9Qp9P^s^d$r=z-{-x{h~%3U1bty0c_>p$iz-CH;9O9ke)IdFMc4u{y- zA6MFZZEmmgyK&;eM=K0fAmPttoo(Rv;lb|zS7X_~R=7jPWpqfbu~bzsM?EZ-XB)= z;8wwh>Fd3}Lwk0QkmUVc2}58`0v-!sruFG6KL1=2WVYHx_y}$u_%unn_&}QrX#1S% zTV6x&l4o1c6VdTUj{6A^{QSFC8-N0hlljHEt2)dQv!_xp{C&GVc`I!(Zj?XOHbsLW zR%AU_5uCpZEH!m<1AIGqd+%A}@J~s~>QxjP8Uh&#kn8sRE6etnev;R&V z_tQ^?3HmNyrikH1(of=*?iTy)ooY{|lw8}KAPAF*NU}MjDGU01TxQHf4fr;5GHxYX zCT#P)89Kfk6p3kd9nb!UJL5Al`Q55FPwV4nAqw@ON8Su;Uw`P8jO?W#DKs~gejF}4 zj`1hA6^|Glz~LU;b}^n#e5Zkz3@Wv;U-|ftX~OuAX$rb>)(bc!_hmS>^YqW)NU0tq zLGfp{rDvIxN7|hwY|@M}9$j6NE$QN1RazEEeLbE0jYss8C}4@XvyBIyEMvJ~IS+rTF0%}||%{Arc;5He>_rR6nbZXg*)%U{CmJtKDAN8XZM*ERd{+yNrKf+4gHKF}>1YS$?l#qCDd zSBqk5tAxYUkhREE{6badt_7Dm8Z!uv_|J+Z-VE;=A_8S&U|Et|dmQ zEnx&%=AWrkX9!>F{&ZF{s%-Ix3kGLO1J&^jN_+jYaJ#_gwO^alB-9LbaY*hm5_?}1 zvmUBKlwy19zM1jwVVnm~p+(WT?)iW~HLas>-wEMBLUomj<>lW>Ibpc*bnnfyE*y>` z<#`tKO%!@z!mZN?uNf`hgzGG3Ba&L~blE%W9;ww20}?KknUD7yHgA>KV&*}U7?x{m zSjdi%+soaeAFy+irx~?3SLQ+HG}P&5z41HmDU<6dx%HP?sXT_q_*f;OVQ-!d?r@^# zs*qNaAzMukz3YX0Z}Sa)8E;$pXI`(S?ksu7rhC$M`*_8~df8V|;S#gdOC87NH8|B1 z$r!>dHsip^@hYQh?_=?BGNd{=SP_ z2vw|nI=3=lZ|#rk?bpZLz0}IemSA>l(>YN;@G%(?+b`Nvv1o<6X;ga$|NRea>t)(r zlHcp4J0$cj{|(^G<0W8yNyhn%M=98xMBfNl7F3n>PCvyV=PvVex&8h~w#C^Iz))cU z;mpRBMAinW9vTpV(g*LnKeFf3j2@3O>)+EP)i#{DI2LEX*VZYC;UcODU5)~Md4 zHpd(=^Nyn+_3~yc31Y#!CCOqbB){y*QLv3F#XE`a1Q#~Nk&KAJ%#I8K0uHhs!Ss$Z z>qm%d%^3fhynJM>Fw_TH@K&;0p&0r$)e+Fi+$hd+Nvxqvzycp2+fZJcYU->{NnX z&nbg;E0<>70S#ET;q0cqXmI4}mLHuY;`+L1K&k-D(&hyFW~nl? zmqK1Er;B_8KBCO3LY$g<{j+>8t=vG+P32VhSJPPFb8nS?dp1Gc8Bw(O&obttWjuz+ zG`(N!MDYtwO^yPvZ8}JlO5UO5{z!RDFx?L4fM)+U?J<*zOlT@i;4m%&aY((ra2^xV zi?1-^63cotP93RR2sdx~cpVl#B?Er`biG+>1#W+u6%U+h;t6)n<)U9N?&WL+`j=Ck zb=kP)jPZWPS4n6_kC7CT*G%?yaCT1psAyN#&f%OV^j%6Dgk7gHHy?sAwvfH)A+Vq) zrZo$B@^*$-UQ<|Ud)NET{AQ?N`c|rF+nWNpTSmf-NM2tEV~_Y@9r<58I$(ius}clT zH4|2bF^;(rTOOEvGW%TJiXR-3Efw_2R41yzXlX=%CmTp4Srx$TEGmue*$yc;J%DAl zrgZ5R8~c-0E(J-+r zm{Lj}2gShXlWCAfBqs?HxurhUW8Qe1r9~EAy$_x5zCVERl^5?nYXR@)z_I}bf=V}L zyetV;)OMbp$Qj!i+F)mw(%o?VyI2*t+9f_EgxeP{mRXvMn9^r=WDbgN#+7sWgCiIj zh^DJCy_{9RR5zEjJye;=ZDl<)HzA5~RB}qO41Nmub2FinVAdl>lEEZA(5k7N`lzpX z+9^UCa5<~cX=8)o$y;2f>oj8{%@&#z12lhx-8-Ah2tQ?%j5Nk&493eC{!(*4}@Z={zacI=89R zadX{An3`!D{f56n*yShJ1!4CSBco9{t}A|D3ksnJSB%R_<>EZ_crr}46#gTfzV`rs zd=0OS9#zjM9-yd1F3>T5%^*o#zpCw$&Lwx(GE^kmo@@pLX10TSS4||o+@02ZUVr0D z4cPdkebkiCc-}|H19BO)BY(tQ10(PwTljkW06lXDr=`*quBnWG&)u0?xJH208LwRj zUb%hjyOnMbJeIJLUH&JDlAuxLr`uM?ht0zft#YB=*r+qFx9U@q>(0oN9fQZ}_7l<>Xd3_3S)KN1 z!4pCGSY?vS+Ys*szIAgRaggsX=iJLg16o?)X;9R}#&J8z+>5>LArYc94pRzaC*`2W z96uffWWr>)V3=3zdsijPE4SEM8*uK!45Jb7VKo<@!>A}nYh zq_cIgP%Q{vb9<;p>Rp%5SUbon|4FV`Di7}6$*7%e8D{ing)Q6m?|QF5bnIY{>P`Q1 zKJM}C-j?0l9CO)>eIJG+dWlfn%M+D-IrgMSlhQ|`VfD-1_8Uq@xWVWOCT%fV)r7Xp zZ3+zO%-#y~(S^m$iL5rpm}a~=faEp;#Hnt5i>Tkq_W=_0d7sI79kRJQ1YRJh`f8MN zvLxT+8=pk6AG+pK{>mlSDQ=Mp&;?;`Vf93bo4kLV#$#7uQR}3;cEsuAXRlR67;JW` z|76_m#6-Fv5>0Zba*R0P+zO2rXJsxrS69znhOMKbRJ-4!(jD8VSH6PEZ<5u);ZHa_ zaLKNr@kY$u*uD;Fl+}h_H>9qi@ujXzF744p77YY!rE6n%7YhHA*UP2vRGho;m&g9s z@~r2j} z04d_1jDwLg`+3e$=2R4cvs9gbn<_AExBLbF8#vdqGU?G=M@c;DJ&y?1)k1?4ORXv^ zszLny48ul;t;pt!DcU~cjjbY3m4vA)m2$p?0k!HVFlhaYz!gPL{g3;G zmgKHp6U{*cqKu6C=BJVCm8&9zz`37Z+mC?{srZLPJYsyf;46slPb19gP06 z;R7;drs3=1#qV^wVuR@rMISm&RfvMpPN`fvny)+eB~zfC@|ARDoLf_jE9RTQUV59J z-l>^u&eQ8{w>d;R=Tr{HCOa_q#?2%hJ+0?3{Q!CUA0wuzLZyc#vo1Z!rQJGC8|i#e z53fS7&F>(csf^RN-||!l(}SAdH&_Wqdb^`$YEDfLsifKOrPu@ephg&R*CJ{dtD*%L z&kQ$;nWf2`U4*d3qRxuq&UCsT-6iwa`#2XGkKh;Y3b)nzzCp=VkGkoCF9#*uWzh0V zEc1CRX9nFMU!ZAU3#vvTt1{7k-n=o#` zX31$@UB(V};+jB{8Y-P_9uc@}Q$PXEEO(3s^1N(hAtgJ|g!V8YA(LhbHj*IX*sx>w zeT$-R`E|WHLv zb@6ufXjD}4gENJ=H)_7Oc&i6Y8c)9W*M;!P2t0xef=c#MC%iw{Wuw!S43SG0o(tXQ z{vM=u2I>6*lSF)9UA~P4xK$c`1K|URJn+?i(H_v8`!0>i2UWggxW$8ljhTYNUwFMp z=DKq5o{wVE{+(BR{@K$WyDP3FQPUHS=46BPQtwP?p3{4v#Lf5YLtt0&y?yUwv_;~i zC_%w;AU2vO>IRon1wQ^Or^fzQPW5;z0mR_M^UmA$mfH#U`HoImPVoBC%T5+pS-*hk zBDA^e!N?J>c!q|WpjO?4{T%IdN3L*^ufO(`C&~;Am4Vf&SSa*!%aiUse4roEXvM)h z%r?nok=KT_#fY|VD!^gGeRlEDhQ6p)!h*fS0qPkWN&j|iN;8Mz)_vUOi)st_bR@kB zux+d|T$12VZK~mL_Sz=CpA!T^#u^cn1N1mq2;j0d4}Q38suCwIVSKOFx|w+;JEj z4YrZ1p-Lc!L~`?w5uQPwf!KR`Q1vY6;lFq0+Cg?UCoPo7bnB`FbKY-QP|I9Uww!VH ztz%ca4uk9IGjOd$tu{aBHes-P?nayu)i_!foY-Cm6|sAx<&Gtns9@s$6?bM=M40yD z#Fh#HTXwv*?@O`!t=H&T=Z>|z@g83tz?3+#8FOHbh>jeNRTy z*A+?9#vC-}-Rx7zXqla0&Ny@zw!>6WUExow8_Rw$t8oja*LT!BpO@r&1Dan&oCpCJ zIl&hQ8TY*kFn>EWWk$3pptloflp15Pdjzc;z)SAuUaf~vlpy+k|Mlp;UAnRpu%z*t zXp5#0;qg>RBX+DhWQRnFIBTk1NvOEcL@-d#g$NyvCLR;eR3sT}!~X$A;HAb(bt3eN zso$iZhG@b`U;hv++(hb)>9d@e@e0FgBK<0=>bwl;Fan5e(#4<6 ziw!2HLJzNdI|xl!ssy$8;Q#!dN~BuRHupsVVa`C6k+012@n?pUKo<=dJlmNIYYqSA zd$JFa-RC;B;4L)3?nE?Dp4?Q@s}2Nkfjh%2u8gyqzWso$=Ls>L!5(eAf-4xlWW}}p zi{|hc+SSN@gO~_oNE_Ek2%=*Nv=aZ4b`kDWIbjofi?rkV4?nC?cQg~xG_#UGcH(t} zwnecj#ZMf(_=(n$iKhnsT!Z|(;a{ae>I`2`3A}67+A8paVihbyZF)A|w8K)h1lNwW zMz$#uo6D&`Wzv;V)YH;}@B?>@`Mllu!67ul*VC@{(bZ#q8@o3#I|hw*NB<+@Q>&a&%TZ;yq`m-B7o8DX^LqOA0 zL&|+KbhCyZ6^b8bY~B4cCIhWzzko^@JQg3BEG($?PMqfPQYqSF$^Fj@#bZ2D3>##id&yJNqEy3NdWUHU3hO~A(w0Hra>ah+-f7OOC%{t z`fm3?%R*hisIT z9!_IMb9a5g*L!T(!gw8sX?%^9ia@=~edrUT8h0rZ8{vK|oq;yxt4WCI;pYXXjeUV- zbRe)^NYBd>3{>>nCCQ1Y869gn;=MHd7Mx3{{%AHEpS)+f64J-@6zQb8sFFd!cb#&l z%zRL9M8UM!mQBizNmalMGP*-F!(%}yuZRnvGXQK|+2m(Y?z*uj zsNJSNEs>hq%Ib{?*D)5RedHf+P=o^;#(ch35*7$NtDZuCmA^ez`UnS~i1=r+)((@s zxx@GF;t1o1@EE1<4Q|R3MorH!wY&}1dWaCJ)y6jB=mH!xdw+Io0^mFlfgM4u>__RQ z7nV0qA&8h*Kg=w_O;g2+2!-G5%Dv!L{VAP| zpB7SxSr^*REz+i$P=sUr;5g8&OKp2lRY0XB?*)+N*rg;P7LP^b`t;vXI}3T?8`ME~ zyqlG<7z!Wxy%n@T=@Z+hR@FERn<=W2L8OF3Ds+$q9XOvPXX%F;3a>?Va@~S}RXJV% zet1-!5KSJC6|__X$WPu-h+}B`Sf@9M%D04}3uKeQPHsCSoGo zyCGxcJhiy8XGIsw_(6HGJ(*x)t#xaBhTBS07J)deZBWZe} zSuA?@75$%S9B)0#1&A0L>JJ#N*Zt7?Cw=ynF?P z3x?)`Vf~yyr@SZ5L!doTudDJOGV9w+z=i){W%%vWf_Q}?`NN-a%T{Z~N|~m!nC6u0xXE`S~KH@1uwtpp; zP4?xFHpn@BPa}&s19hn;v!3?WB10PG7d&jy{EEXi={q2u)(HDstGU|rmj1hqnQoT` zl;}BOD#VagGduQrB9l`^5(5zCZO|dAYP$*X^$ohiNtQ)GUASn`FQhK51Z9@i5L3hT z^Iy$4axGScWIxlSQv1y&G_1~(DbK$Y1Sl2(cv((iqw-o-NZ=E^5)1!dkXrn~%l;ho zdBhG@*n%PxQEq{cmJyfHKdw&neu=$4gW&?iLW19GCc5q#YLEmi%NZy|mswRSliAk3 zv1sPvnJY-^DEsO{Hev)BBEjg6TA2oA3r3Hg0r=>RJJ{Pnx;Au7VJr7ukqKb zVPoLT=w#j(xZaGFk+O$4IFv+#g`u0rJ;!L4YLWk&0Mx|mxgtUJ{G=^#25X9ijz!)J zFKI}5XlS5`L8EjN@9x-D(4R_AK>j-oXj*sNNlu7xno5OdJaI6;2e?^GQr|j!aHS*! zefYhRL&^23TC5%FeG?w%OU)9KAAtt`ZhTPq)|D|vo7RvaaeCa}<^+PnjzR}!VNXQ( zKpQJ&Y;>L>Ba9T*?V@eZDv5KvajL2k)6&n%<=FTatA-hWD zXn*re-&CCy z!eJhjQVx<*;d1Q0StMArLaihoXn)%a@oP8sH-|CEBrJww(uIxCklj9F)Z&QyYb_}M z5V_CXI)PJ6D!y2lH|=nLe`WU8021cI_U%OGOFZ=L+{0TX6fIzrS4tkV@U@$0`{#G!Y+G!7}v zDnEJfJ5=86&_3r(!#P6hBVWNH*yMO5DZLtw;dsz!-yT_TMB@CHy6I3;Z@uaat~;&z zcdc$^>gQC~{XImkL;sWQ#zC*=Tg=QFzv2|+0BfP&rM;;~{Q64k*IGZYdpNSc3RW`L zccIEX$pmZVY)S!^S&vw>osK#T9|l>0iqBAW46S6$E@LD{oS~8?xQ>GRj^(5*FByZZ z%s#>jSw!C(LjUX@%nLO5KmN|Uk7~X>d`t`$dB5DseV+>WI1TuG?G}2Sy9V3wyl)TO za(MAWL!-@l%@cw6TSc<$SD72$0^~vnwIZSYUJ6?f1_(8NT8)hg0c4l<* zmK?PmOiILca=c#_iMb~^+KWl*Y&Q@UX>R=bH2?fuRJG;g?@w}CGBxFBshIiIEqSV! zE;4kqV&%iHQXMINb`A&LsNCe!+I*qE>~;qkGu(;53X+ZGusNHEaFTCQlWEh~;2Frx z#$tKVNv9I;C9BNcwI1s~sKRGok7}matcf*ZFzBBSZtUECgUabnrCN-n^F5pmO#k*{ z*h4@r6utWFC?@C0Ad8XO+8a|UT*yfgS~V#FNA@i)Efyy^NdV~h=882P0g(CftXV7q zvVv%2rMZ;nP-1hZjUgHW&cZg)U?(!V#QFY)BVy7lktrHi*V&^{C{KoNQwK~({;feY zJt63)xETq0lfd9|FaK0y__@0Gvp3Rf+Ho-J^Y~6))+u^pR3M$hND@X&7z?op#+cvS zAQ@)s{)nxoM81*+nGqpvgwv_$5Sm2^hk;xU%2m5FA?gy_K_o8)b?;@hmB-b&MitL{ z_3(Y4v9p~$#*mV-4%LA3_Nf`HXXt0iSC|I2z`kzxb(praxwt*|g zjCCU)ri3Eg+_-#l3Jf&BLa-TgvuM2F*7H@S$LR~N)L(YbRCfG{k?JvV1fuWq7Zyal zy)$z{wB-=c#}T|hM}(vx&$Xj>w2U$tD#MjR+s!S*E-%+xke-43h+tf^pQFjHgn9GYHAzMmD} zO2klV`)_F&Q^FbrSddr9L!ZUi6X>tv^T+BAPP!PkxzO|`zvn0d8Fs%^J+Ct!7x^Smv zvlFr)>8ECQ+p!`_q@SYxWDb;eFD%(irrkWSBPGSaBzRo%M`?MGA85~-_zSHfB?139 z%+_w0AeX+!)1qls!|4r7alad6#ry+2KWMkukI7yFDwJIGf0K(nG#DUj7JJ#8(t0aoTE~u`e^)wW;9`q= z0(_}Z*|iMsI>R2>uL8WyQgSCflL?Dw-wwoyI(O!PM5TzW4xrSN&_|V zH_*~(mxuOtY&44=n`K;SP&hG;DdP5AJtzzI+o9Nlgs%rtzrVbZh5PWMxtMH1_4wl& zfbA`;DWxkxgyPG%|E}Fc{s-?O^Sgz<5yykF{rRkH1=mWj=u}A0yH{ndAYAwVk#vsX zk#yY}j&0kXiEZ1O*v`auGO=xQf{AV0w$ZWe)9-hFb?>XXYgg6Pz4pSh*WGxFAKO=B z^7+90QdQM8BjvO8ha-zDRx5F5B$HR#YMj-D@1@0=`D1Q50pUP_ou6yj6ew?zDToUC zp@-RhgoN)ka-cMhcONs&T|tBFkWQW-Up%GSOgH5F96!2)>l?2i_LE>gU79Mq5L>oP z!`h`k{V)jzguJuu@Ydzc(z&l9hjNVUmqY8wy-;B?H^`#gW)7A9q|9`MYE2_Iq+xd{ z4M3KpWnVUh!YmgP)dp54j(W=wK4KnFjwB78Z7B2=sWr;lS;8z8=wWvEtZL8`>UG4& zc)|w^qnnodLHZMiSPEQA8W4dAtzjVog`Pt7d3* zkBT@^qPHY(qK?MA?p(-~IR5;D_a2I2Fk(vq++{L&r}4cmK~`kD{BP_y?34i$Om%WG zAlD59?P^VDWc&i^_XV1hhoB^guTZbKUj*<@DP+nZ#g4b2w#V3fNU`!sCExwd(j;v^ z_F1wTWWO~Z2`<;b5Dj(LeNx%S-%O%n91k=y2MFcKhHh03I0n->14{5s7Rmgm)BQ*h z9BG;u$iO`fu!{?qKn`s{31qUIx4FY{46~Tg&&GC@rU4kD`{qVFTbJI-&U6&C&Zr`A zNtE>0JM+=oFrkLc|7>=`2AFYzM9b&e4r((yAHLSpb@0Me0GkGJ6`>@h$<7?Sp&liZ z;;6ArK8v4bJgW8}&Me$;H&;eCb#@XP>AeF~#ggsNe?rbSB$(D-7I(uQ zr!k@YElBbE45P9OPCi_JEWm_*%i?bp5uXv#O`XIT@-=$k@le5i$1bn|VhqbDHC)ed zulSR=R~vsEBbqO$V8llaDn@~Q$rNNy4Xr+b)EsX=Z>6n+q)vn&?BS$EIlb<}!5#6n zYCD?A2h%)H_lD-TAR1NtQ<{(6;m@>Vey|nA`9-yapfIY3(qycPG49Dit6z#ELO(1h zelppg4}75M5PjKba~(favhMt3X_6b-MAX$O0N)PK*C*gcFxrr;TrC}A7rQZrPds^% zYs{kkO=Pehv|ov6_+1pN0-OSa9-_7DSk%9#Qe*u@*brN(iIi6#!a zZ{89o`JRVr=1;rNjXdKkp|8L+Akt4bQRj{!(#>ERNTbA1&lih*XNI>wj`lRsWHX`A zM&28^k`$*nZWEKG{{Fs8sXmu&1KQ=M$uyj6@(Q)ENubdqqD|;n#*5L66SVC={9Hky zdcEgFqhc+H+xGjYdf4qO-WFs4KV6jlQKq;q;>3&5jgXMv$B_+kxls2vSv2!t022GJO2i*Eo z?MhD56cO)wGjKx4G3DbXR-CH7_JJmiE2(X}yE-qFm6U<&la+HEXwtN^M8^+GiGA*` zc5L!b#J9bk_MYu~zK?;63{pl?Mmr9d&RGD4z|A6n-}n9S#P6-Ig;DbRya9RYb4KAv zkheXeb8}r23ooqdn02c`9LAL$tPceT=E_^+lWDnee(})pwRl49y!kQCHfD2I`md$# z5S)2ej6a@9u;yTEEU0I%1e##WExy7uBhdJby*2^eMJFKDFkqx15n;4?v896e?zuVD z3MIaQ2X9A-t>ux}#5P0Aq~mcB8v&7oRO?JVvg+=L^ujVZ)b5bz1K>7kwq5*!Qc&jG z@;nJSF<(TjhW1yYDA~6u$;v~lG)tJFTWsoUOUb@>9+I)gFHSvnYT7q`L3?vc-ajD@ znVKbzXBPKi|5Wmyf_i&G#r_wia9uZV za1A!}bk;VBG5fJl+0LC&vkM4suk==N2pDgLx}WU0_7b@WkhIqsaJ9bDi25KC$#e3u0!Q^GczyF5VU}3p0hPO=7emoz+>8jGjgP5?3RQ`$ z9T})UWi#MwROqYUgpBpDd;qa#w9a&K!EBQB#E)ZzAgLu&df|J*lY~#zLV7K+^{J>b zCi`rE#E&mZqD*Li+e!~MUXS{1FdBMPOAyFrh+6L@^7zuKOIm3e1BXf3KOBqIMZeZM zy-R9S82pZ?L}28X&iap;SSyI4O%0-A3p`+5qZ!B;3|v!fHsP6e{x`qwc!N6Tl>0u{ zDKUZmJLo;6iq)NBVvWy_1SHA09(EM$*HnZlcUGwy9|Y?01|=+!MG&dhINziv*YAXM zsk59YPjXFNLYtJ|p-C90N4jh-bjNe#dptA*-Cc)#`KKYps=zO6%P2fZl@wo=;4S7e- z6t^>N+AXv7ZUUdW_o4WeW)f88rxp0(fnt`b^vV18*W>rT;`Z0>hjPZpD?WFMR`h>1 zlzy)w%dL56#4JFm&;Q}hUj>U#Au^AI4?9KQio8;Bga==9G#CV{kmrd1$-)Ft9ko$G z4Q;VoXmL3&uQG}gM)jslWRIuK@t*sK++#hL0U!Ht5nPByMP^tSh3^HaH<5t=`!IMB z+6+|2{%esX^+%rG=aLml^mu0rFowp#Ja_+9fB@z1%+gbdfOIrFL@)^pO(%b$276Ov zF0&)RJ#JvYI&RL_!y98fp-fdNd*`deHA}1O@k1}D6$gJCXdqv^!>&sIxV(GL9LL#S zMoJx3mi>_dXPDmpvZ|E+=XAY)zsWRPvhzM;`x%;aGodNyi}qhAt=MmGi@5A_HbtLC zga_8)S<@5O)O3IkEi&{+_rq^oa9n#YE;04A+26SP9HK-s$wTafDEG z9x!K_0V^#nRUl4;Ae|BQ(V3fEIvyCWfs{-Ou)0_4LDNvVDYcj#263S=t1bf-G*^y) zDG$x75(%3JY*Uwne~teN4Pzda01heQtn!7&XbQVyx213huk;o?unP(1C>sSuN%wd2 zZD{wbVjCRIcM=O0b;FyFXjN24&4TL>!bqgn`G{NO9fCI!me)T;LgxXUr01j5p$F?A zm#J2k&Y{e-%0wG_4&MAG7}7CF2}y_}pgW{%LadR+ld9$8*n3{IGy&orEQr7M8yE9= z&{y#`dfl5)v{N%`Pm+0Hq}p@m3^*-x@>7A9s-*f5(1nBaZXk7} zFq@wJQs*Qknd>`4TVoIXqZ9%PV91L4*|+s*>OjHHGtytb!L*xT?+CkuH}Ie|FT#~K z*4q=_v*In9xOg&pO`y)qMHKYn1eizpD`+dW20(oa*Y>Ey@0-m{u+Vf!W-7FRZwHPih))TOWP(CUV6cI-z(VHLiOJo7cA#EYV2JIOipb<1*Y?GC}P> zx#S4!MUTEx@<45woDZGC{$l|pbclqLs?AZl9!lP18wCqb2_dTy`iTAp-K&_SnD_c@d8&d!UcUFh<0vHT8*gw7M^L0|`X+Qy(G}?kXYN8Pe5S3%- z#jNT2{YR&?u+>*#f3j1C=w%EThNHo=FzrloLZp$>>$Yyxjj}=)C zC`l)d(s$`oen>+aQ>_Cnw=IXMX|S(wp0g-<2iMQ z40!j@9*X4+A$i)FH6Fs^l+7+leTvo@j;s(|m?T^oXU_ONGFhDtAUwUnU(_^&I;2~p zOI&pI9SJRjSxN+2YbPS+-zcxqC5pB%^LUw5l-(9lD)D;724_cR;Z5}UULRoZdA<66 zxMEWdo8pJ_8()ly`LPZ= zbt94clD)0X%6Tmzh&%BF8?KOXQW)+M_}#TCRt;}xTG@^ z^)x-l#E59y*}^{oTtpFEet7d#b;Fh3MJY>e-ZzHo_-oc_9+!U$WG_|F0LFx$JW5Du zG;MVgz}|kzs-#rGkmu_=Y#t%6D9YTMS4SkPM1Lh}OdId@9NP$MINOea04YXNUeefY zc)EWSsEz_AU$VB$6xkYaN2m&tiOxncczwZLDyW4xi=}GBDX-DnD50K;Y@v{b3(|}-KTP*g1=`2WAE21iWX{S|&3D;R(I-vq?BA3V4hxB{cjRK_H;Z;S!XeLG zR6Stv@wqoS!o^R({Tr}pxx|fFJxtQk0#MXA6jTT@9jAy|Z4nkAgRgUzi*+BBzQB!J z5REr~QI?{OAuIGT$OYkG6OvDgvf2+l*JrUlL)8UmcE9Gk(R6oxZvr!aA=WbDvjam*d>altH?9f@8GPu@UYDcMA_m&6E#kITRnFlSgBD@sC~Cqa9% z8UqbH69y=0@4QRjz~9d?yE>>kmnfx@GL}VCsVr=BJN&`D+3_mfdRL&4dl8 zCG`@ci3(hjoLvT_gAXRCFJOQPH#<}>ZGbY@?q$k>DZZrpopfC>;thu9XN0xXg%Fl^ zz38)rw_RuR-=+F|k!+10S9M#W$lgf=YO5VsDYIZ_h!<(jS8&bpmLg)q*=>=@%$IZj~b{<81r{MU|(2zJRwyV%-r%KL8^cEIY5bmU; z!rk>+S_kudcN3BS zY3fqbdGp>DLz?(1MIXfEt8hwHgS1s%kZ+85`#7Dmca8!cQGMk0zU%YfoAE9KkLR9+ z%GM?^qrU|4#leF_G9Ibfy#J4qLE+-0M?waQ*bzihdv24{Ln^-XIp{Bl>C~fjk(@B=(P?8P*Ke(4lOHl(V%v zOZ(KCQecmC^?kmp4)>$Gzc4ryBEs2eIjchnvs41>pb>?ix`XoMD+z!0=}RODj8FS9 z3rVaW20hO#lLtC)j~4pHcojzEtGG!MUd^D8=eB$hSYst?`oEY!Q-zYnhti+yql>;d@$Qj2K2v7H;9d#6Wz?Rjm=gqbAWU z?yqa<(`dSxC+|x-Oxt5h1>}NxF;DjgLUJIf_b+CYGhkW5WF3+MyKDKJULr z+)Ci>X-G0%6jtcECoNak>s%j*!8DhVt zCRxbmkr+-(g*m_PWEIT(l2$x*@W3&HZlIlUu6c9j&nz0%M>#<-sM|`X=&#FEB z^0`cm2{lC;v$v(^1Qjggg|CvOozMDuZg!&u^?YTw^KaB*O%fdDi9WgwDU7dK`MD#X zQIy^WPT&!1k!uv2=kVBhE{Z{{&B)1I3YGXcXs_Ss2{$;pPM|uq+0P&SDruX0+2@~z zd55G|ZSr}m*+DzRoRtS34auVI7n}7HgTk*?3d{e0J z$|_$N?6Nzv>kCHI&12hKZ*m*)@t&dN34xU+q{psCnK^Ef(U)T{zjB<=s zGl#Q1#l6po!Ly`*L=}Y{zj@!8r;&{YCr(1`%k1*)4(l84`qyp2Xut#(R?^7cFzx|s zAoFyV+*b&Aw3TlE%in~^mET!h&gQu>ZE%hM#48@tw=Fa6HOCKG z#I;!Ohv{(kgo^VFUFcTV^-`ezEmpwP@5suCkb|6X7jbHPDmiwu0|o2K?LSRKu?sc! z_ir|?;!dNtSBJcJ4MY(>?AF~b=*iXiYY=v%XaJOye-e!UI4T5JnC04cmWY!;{u$9D ztdwf1G%7u8F}y~Sc4r`4VnNQEEKv8R;lKc!(iN+)xUaQoZ42x2AcYaDF!L+cKaxI$ zE<#+h-;Y$A(1jBx4u|Gz50@4Po-?Op>kkFEUI6uK8>gRi!pYXv~A&E#d$jjK-kQmv2$0}g@`pP5*uLkVb%;{YRvlt z%weu6LiP8)PegLS5q@>}53*d`j=2e&snyRT2{b(Y)wK-?#!e-+&N66ksx3ue5L=o{ zO}>c2_?rN%Q>u!_?>|1?89o1x%=iYXvd(}|xmV8zuAjk5P{_pN^u!qPw2aR7)DX#N z7}4qVS$Y`~wLaOslu3zFoW;E61}fw@*I=RJeSi*h|9bb!aq7rHHhKAmXNl!afmCx4r)=75yc7GpWEmZnW z;rGUFkYTj1E|bk4J#31XAJ2)7|HX9$#C*964R?ZGl*O{S`V_JwKXU?+kyqju3y%J` zu!A=ZX8LRa!VxI8q&lOzL!dxR_FsunKojN;I1$pT9j@}(t8#fC`xBQJYW}(@FTkPG z5`w(h<^Ajwr3!Aw@J1oti-^Du_DMb`YfsY%*4zkKayW>L{juX`ru(|@`Sl^-{YL74 z`T2dXUKSt5=rs{;38-RZ&J*LtS?^S=ol?P_&XOVB26}M zla$Rn?o&(W{-Y0KIGcboFw!%9MsfN3w!rgq?LyJ_?FKyojch}YBRr&Y6{DttkKdKk*)Ucq+NMwHFAMw`n^Ek%0Cd!gWw{s6wDmj&-;zH zCTNotwBcnZ$B#PiaFTy+=G9jRB?k1zDQ#?_;$Qlg52od-cqZ_`XP3b>_@j~LVQvcK z%;@sT4{^L(APX~N49(d|Z>~Bb_xZmZ8R8c(N7mKnZ+p&ZbF(v?>BiiYiRx2C2cMax z-^&mkjNo1S9e=mms5UXjQ{L6g&9#N8vBsRVYX8IUvI=*$DeS^{9#KYNoaRj_t)Al+ zQeOP~Pkvl`B?A4e#dDkg*AHXNxvL8AkT0`po5^RQSG45Qf=EDrX^Opbm{ti&5BNmt z;#TKUD9h^)1f~^f$9d&}Ho(rqi4Sy zYCu{$A)B7@6};B$Zi-DnNrHP^fckawd`XQO_BDvuUoh>i!CW2Wb2tPMy|E?X>5!coX@$$$A;RV`aQ&0m>?i(Pu@)uBu_KcQ5R zV5!7u>aEH4zCE{g++vII`Iz$5r%lOS_WXen$&`j2gv7jW^D!`f)r6S&u#gh!rh(er zSGx6&A;RnkG#SL={j}v&;`!E1pOGu*iRi7)T`;C!vL<&caBFDy*r~UOR1R}&Wtp{JNI2cAS zU!8!f_0Rq!U1-?u%go;_ZOYO3_T-_XiVnAtan5X!L(o#BEd`DXD*O$wN+8E6doD*+ ze=osZqvC(ZhN-z`bWkZ1>i1Mx@pOo4#Ma4aF7&v8{ z*`uICp}Lf#dbfs+v@;_-T1d95OT&tvtQIlbBcKZgrTI8;YINm0u9Pre#G9@$wf*Ei zPcyTEfya)R_iXF=rBAEqt1s@?W)rmwPDI+pm=`Dtl0DVbEYmF*u`RZlMzL=zn*L7K zbxBUdVLv?xEWBtgy6L0#_QsWX9#$R*;b<*8&WWv-rmTi6S;3$mu68n!pJE5E@6$r< zew0;ci&e{!pB}#b%ryoXCvedk^{%16u$$4#ZJ)H=NM2t%k6nDnmWGAewIO;%4GFKx z<>OMca!coXTqCe^G^uw zmCpbwj#O+TTD`C#QQGaO7ErKIN8au98RECX2{N2xK)K>_S@cn8%QKPXc!^j&fC{9D zyCzI&SOp!YFOzK;4$zj$hu50zJPrZ=ug0~Y;~FF6yW;^O%`)hxUB^c9k=MC<$@@{f z1hr2R;2p5NKd)SIx|_cmD`V0k#it_rDlS`Lp4K#pugbx#CEL-= zrvwFY!}vTHg8g3)MaJZ$tfahne>#7Qe^zim)r{M8MHPsIP@xgpolLyxu?l=v>qtQa z2%~ex+a8)UbrBfk_~AM;MLoKHvYjX2yx!*B0(!VJ41&I#Wrb9fH7KyjRiZNHTNGoR zuu%Ef$K6Yn<6&PtE+?Pf>zGPTCW8B0d(EKzEKR;(+(_tQbYb~Yv|5Nq))^qmKjhO% zZCP7yRdtRDMUf~SPodyr-eW%bmKE)v4aVQ(H$GSD{G2+zmxqzWB0b4@QO@>Eyw-sw zfYRcLy}GDJ?xr9&|3>z2b#}1nRlQO%<7q;wJp?i^ZFduE>_b(U6^6b^+pHq<$D3Mg z(ci6T=5!Pg>^zcT&c~Onzw~f7Jf-J+GvK$tFYGdCWJB1xex?U=gnec3S_RTKi{o*| zxPnYzNk_$_JgqchlNCT6OMI($RVeAc zxe`4fIKtp6APhwaVR2r~Z)kWyu`dhfoX|VIp$^)f!Ne#zC*Wg7PJl^YJFYd)!9faV zlnO^)Vs4czxV-KrCcbmHKbPVQBG2o0!UW90SU7LeG1c&!t zZ-47c9bU0>F-Eom!dD@B%msru?Lry=JX9SzRhx-u7=PEmFE)j7hGUZ#UK3HM4fcaTUyrHV0D0!|EuN`sw zn|@fHss52-WL4LmB2F*L0L(Y4S|t99Yv4b^M;hX9qy~VLKP}MEHdd6YN7X#gOp&e{ zj@din4!;LM>Maq9>NNGNerFE9N363t^+f49-u)InOev`jbdtYIK_vy=&ipFI;3@g? zhkag<@NgZ--`#GBW0@oPnTqzooc1OJgjtkiZlh+x)XCD)S%5PK1*&icyqlbaib{NP zkI~<45J1x^06HW;m@|e4=z#nrejSzMsGVhEJY526AjlO!8Rn44{7X1~m4%9MDH8q( zc$UKCxsjP{g9j==l6!{_$t#~H1m4pk^CjGUHjQopW%0q6Kz49C7`Zqyl{05bRBAZz z7^ii&ov1Np+#}C(C{wm}=3&86p|m^r^_MM7)Qwt&S_Rl}5lr*1*!537T!%fX{Ox+@ zMZ<^;06TkVfvOxoX!k=X-^SmUTA1Ux9RG<}d$3M85f~%$hrZe(1(}ElsI1rI6Y(V$ zl2o4N8%l2XYX`0;cJ}Z#!U*mDKTt%k8o#$m+ihQ%lYt#uK0Zd67C#ksPm7yJ)l z^!!gcqH@DycWrW6bfsco!eG-2)B*pU{Zt8$t$ydoyj3GkYIg3Owd*ONR zT_TQ{-=8h*{g`Je>ZKKdB%Gvm!pAg#RI4D$uOo-YM|g~#(2H*sH!s-@`%$DWwid0mGruR+PNgr z>`aML2EX=S0h2pWFs?pD92kqD_7Sg*14DUJvFO5J4-qQG|NQ(?|xcWdOD zJ0?J;qk`(X4%}4TL)zvjP~;YxR(TNU6w%gv?)$a5Y`=Qn6aBd0{k78UH<0^nTWLiT z3>`pK?^0f_pR}{F4oNFGel8agqzRc}t%QNGsZW+64Eu|*O+i=O=#M!m zewP@uRi&s)#J0?nrGfQ;#xF%DIW|~Grn@x$*%vd_f}2jNBt`oN%u?9HnIA#(5JkEJ z2Q)+X*=?MGgn?IvXo89`ExAO@LWtAy9M~gZbVd(P!uWlr8!8l-ZiL1i>~3_3MjnD< z!jTl6OToVUjz&K6;)$%8Oh)wmf^^Y93)0}4(%@A>8gcZjfhP;+K&0oTUn_QWKd+iO zhu^1$GX`Efg+3zF*+e4*r&J^v3dx3ags*M0q~8C+;-36!L^Ssg5;m&?Z8)tBJgtTt z#%2NZPKAgrn$dX+m!hPLP+1V#3Av*1k;VNp>VSC9g|BHtqE^%(K8_Dw=hYhi9fJX>Fn9wyG5}nryd=1f3gLmMVJ_au+G90tR9<{GOY6g{? z9~@Nn-(+(XY_V>(2geCSSpjx!?TpA8!Edz%na~J&K^igNL)RZmg<=|vhG(yf;30E` zJ+IzE3b>VAybyBDwI4TyGPT3+Rnex_?Bb+KFaTB*F{su-PZY}b#PznVMAOmFwmpRO z~L>mW;1FwvxG4GIiR&UYM8=L6#XKo1pqNdlIre?b+z;{5aQYmcwn*d zc;lyx1eut$ihuLsG4(mbd22p;sN328h*C0n5@TjOUx}bN zo8&aOyoK7ha?)89Pkc@JDAUo^rY!88(V@H98R%NN#LnN{wfMfK{WJZiLpCZc#!dai zwq*(ik_3r*6PZZK_kDhh?i%Hp&V0TkUwXdnB!2tg;}|Bl_&&7c^_>EKM{t)ewp_%| zHUpPtiw7vi?T-%9Ul3zH*tm~5-bEVS0qKZPr)qFY;FG&C`gjn~)hZ{tgq-sVRDgVHE1*h}wP;zugB-QH;QO0iQlg=k)73Vj}60 z%0+weGWosz0x4qq;G#ZgrZo=CmB}jfp0YVl=VoVp+@*7RMVuZH>y^F;fn0wNckcaI zOo-rJXSrsR@%|mYGBXkW4B^H?SC}{p<17PtVR0^}>8(O(V5b@}D$IEMwzl4X6cix+ zbL59xnK>Xvp8$S@Oa>4 z9uIG2w|_~*!loO`rum`P_4Gx@Zn`z&teAjjz9cZ{>!I<(6SXF9O1T&$$o~&~zF)_U zA*8o0a4rBrw3LdRNJcnyE5vS$0T1$#94oo(?KKsq*%t6Zc+{a8 zY#<$DQ~v!mNUD5a51J+^Alq*yn!5GplnJ2Ti z0;H#Hb#)d(UjNgjC0pt>>S2m!XRptz)Rk}ul`+sDC2IimWygEl%B(fOS4_Uf(mPl; z*~*<2z&E=B#68*D&%wNr6Aq80P?r}_j#4}e`$TcFcYz92?7Mr8G}8jr()y5pUy-se z??dTDFAKDzF_~x2U6x{=?6?VkSsbh!i)G%HrW1;58Juf{_JoRXFpJ|or|?(i3o>g# z+O9sv_vxFX?yOxLa-$GBqx?%ShO5v3Ia5IG^HIH)m{F>~zBPG@QX~%a4>47g3iq18 ztWY{vBcoMYT?+B;fTki&O;A|_t<-nHI}fq*1KWy)>hc4j5Kk3kunn&G4pRIYQ#z#` zDsmM7_=L+;5r^R|9?37d^1cxDPKcEl{f}NBYhlLH&Fimf-*Q9)P*WsOS5~>$-|V}z z?B0HAwxjj&KGvsMN<$s-h=#)O-HLCkl-wjM9KdS*Fnh!-D?b9vO=~Y}J68=A`kIN? zr0G3XDHE?;j$6h6e4g!H-g?N9cX$I!VuKk`E(Jekq94pg7qBKIi#GP#De>w%r-g2o zH;w^t>p{d0DH6Ll{07#=GJ~0Qy(>N!M7*BeDpfOiDmN6e7mjRpW4$EiWtQtIr%g2& z4OAT`afY|Wk})ReLMfp2{-BS~=8wC|kNiVEFEbr8!dEH{yoLi0FxE0GztN`npwae8 zWn2lxbvz^K71l6Cr{>8WBu7zjK=!J6y>k~irNsna5;Cg9O@>OCEZ;IoDh=%qleOzx zUkQ5*-uwxo-kkBJgF(Pe#M5+Ao!Ov$1kb!cKiH+8J%(zDgDECq$9q`L7+a*{3j~_g zp?~p+a)5~dO)8NdPkd<}z4euf3+*QFj2=Wr5aqr{u9qF1Efy9YSRW4;9SeptZ%0XZ%4s9UgzwKS(Etby`#o0LU4O{?3 zV;Rg=Bacy^k0X3V)F3pe1&8+utns z>3>;q|F_cb&-aG!*BSrMYya;S3;#FZOI(lO{Q|OnCwkQP+j~RHw%^~OwK>!&V?hed z;|pIGJVw}GajVGBj<|+)v|Q`^NzJ`~9X>@bjm}A5by4z~AMa~B$m}f{dmSX7SM!>h zRPiemzD9k~h&rkS1+_E=J%7dmH)g(040(RZK|T3;&W1HfL#6uMqd2!G=>^|s8}M5j+s{6_= zmcg2kH}ZB${vfN4|4kQ>jJKUnAxH`m#&j+U*Tx--TWOLbQw?+HoaBd**DM+%cBe5~;q<%*Gb z9GCY8l<0}y*)oi{m_7xIT>XuTY!pt?ltL(eh}?h>N<&YquIkgf)2$Q62~50ITDPsVfD5P-! zqBWB4J{Ce-Cy~lT2XI5FRpas}?PfP;W}Gdw#7L$7PXZmU-`^bo*(+X7DpxS6;6Tn^ znz@$T>V$x=`9zO8ZEDlE!0!)@S=bdCXgg^xRZI(F9Bva z+~GQa{o4(wYa;l4`cJAGwQn@JBo*TBxO}2jOgNwk%xJ9YvY#!yga_I_RxHL)PmB{g zCfgPm-xBc36^Gjk-%M@d4=QaI454^Q5%%5Z+Wh(OblFF;r-6J*^jSUC8yT)G-c`b4 zpop%Ee*x}07*Jv%u)-kRVP21!(8U|@*be{j@ern=t?U$Ak1@IP> z(S`l!w!jXfc51aC#2noMp89L9lA!@%$PQCE<>g9FCi?#2oHp3#jWn! zi253NVUQ`XEGTocE8M>GpMV_tKsITkATGpHrcNvJQ!o=FJAw56*zNq48IWD%g4#^= z8;QHGiI?urNKHo$pQ6NLIIUA1pS+2ft;T(0(yWUhPemDoLsbifbw_5F3))igEe~#n zimjCL#?oe_CBkknjpkI{851~BPv*VP{;!CJHuQOcM#(&!RQU8B;nQhJs#bhk0p^Rr zgO*NB<@Lv%s~v@4o=-Px5Py2SUjFDugEZ0a1i|lECNWL0t8T`T$f3LbWzDFRM=z&wU`P2SRY#}OUmaTgP93XZ;RLA6oF*Zgbv2KKfj{H z-DUx&#$Bax{vR%FP#Y^rLIi1$ai}IaVP9)&!dJRTfrWYWNqZh2UyQWFn#yUNYE-{08=cpQOK*Su`Z#E~DX*N#3z=DX3vIYD)9$d=18FNs z+B!i?zyH!+-nY}<`ii}er+!&nc-v^?z>7<^$OCSnFDqrA_6wx4=OzAk#3n;=pE}Rp zHHmDN`!60Oh=*xAqFd^nhv$1qFRg}F_bcS-Z^Dz&bV>t5HCK77rKY!j|Mf!lZ$=_3 zc_ru-uNhzCf@Eg}D!gv?CgFjzL@YnzB9kZ0XnEOZDfHxao!TcOBtunr%01%X8^v?_ zQ+tjn^bBcumY=vKXTZjo4@P$UXrI!MT>civNye80y2H6*{f4;Di(xD0lSY>V*$uff zAf8oYG^N!`ROze3yqpF<$Xk$H^M{jxM7V-I0%2)uO~v-zi%t8zXIGYrmu#5ABpowV zBX3e_U088+#7o=+d%2zI@-ev!w8Q+qNFCiR?JgGd&g@x(76}mL5Xa)Jak+;#@B?}I zKLMr{@MbW}rc^!!*oSz!z5N5?I`xy(0U;jLQ)B2hn%cwYJsk8XNbwV53$3o7`RKjj zX0ag?FRg^`vMfhezZeoLJ(zRp341zI5Jp{EFeG)~tc!jQ;F zyXfLP6m?|biBFoB0k5jYz0+L;M`IMV9vmb5B(HfQTXJn>&Jm58-;X!RT4bV=iUm{DEy3@nc-#GnS`dk3E+ z=}^qJ@g603Zc@1u{vD=7t6)AcOGY3{>_vQE1UAaVE&CeSlC%$P0n;6`Gch=6Mduj9 z%%Ie6TAFJB%3od;hDb}^oD4^|K&o}PwTgkJ;E@GLH4Z+OPD;+f+ud5E4k+P~GMBlN z3X$;5uP+qlu4q?DLc3l^TNL2y(Dd(h^xw6@X z3TuSCj>cp-R$j6PsUKp~^W_c40;oU7un#pYK}mADx6jdg5z0R}7gC{&?VD98Z@LA_ zoe=z_AEbpYdw6;)7`)iiA|14}QYRZM^Ia8~pO&)eQpQ=HK^lujpVoR;HJm3bI3N}0Z12_{@E7e^ZmE{1#m>SP zN_@2TBWnl}-FZEFC-8c|&*FCJI)R=rKxgRrG0RN-=z!CjP?({ZB)K5QBpXK>5lLClRA;d{ghM>aH1SZBlCY{t;%Cq_RjR6n0sN|e3wNbIfB2_@wyk}V}E>atvCT& zt9Lx2ZS{O*sP?2ArZKTXQ*L=M`oonmz`Z5P9!Na-HRm-mU<{6V+KMD<0GW1y!um>u zH7knR(4U14v%XLfiX9zFpT>~={yQz9w20K&x?hdEesyF-&bh(y(~m}$h-bzj8~~bz z$@hPK&s)t@p<}5ZQ_2IhaY;bDXuiaIK`I=W{^vtcb-p=Eu!Bzt$K_C@)^~T!+4z>9 z`6R3Y*`+>Js?*~_kz#%##Ek9tO#gONgyO62-}G$!le^Lb7;NsAaKJW3uE3 zx=_^Qj<-`2Zc@67SU^0*(Y4(rtnz3b#RA4Kq5oTqTy$Z|?v5bDL{x+_olWxH7fK-m zm4x_Pdz!=JZK=T|#E&!W?nDRQ0G$smx!S_A(a`p8dz4nsU}W^lM5yB?1Kaa0X5f*? zpTTeX^ljhObJUu&XaKXHNwkN2a>P-z{QVnTu9(ltP$A#Watxt@ZMbIw1@FlE&LD_w5>v*rSx3mLs>HrjHD z8o}~DLi?4j)BEEs#?A7S=@$Nees~|R`zdl@kTJobGqM)=NRu*NFeNPg^@P6!E(C9* z3{yMHk~|sTA!^x>dIuE*yNIa+VC&oiAB+NjMRpb5=zl*DWtWLR9$M>niK9jeyrDNU z2oAVr+8SVf%dL_X#v@i=VSejj&k3S8dk8`Z@<9=P-6h-0@+Y3=h}N-Z1gX+ zBou!jagAE-K7-;)UAM(}L``KW{cE0vlj{HO%>S_TNKIwcF%i_Od=9?GP*aG^2kRbW zAw!sf_H%QKCnsDE6NM$YR1TLTLy2%hy8E~wk>u!PzmHdzW8V)VTXBxYp1^5!;6I<*y+2gL2fdhO9#r31f6jQ@J1lfM;!T~`=VzQ;zshe>=fA&wE}d7HyaAIx z>0G?HK=H|rUfK)~*2-8jKU^~@bgMLhC5=uxi*sp9bX0*iv(d*Z9;tISd8QS}tY1{t zgM0fmOJlniS6@t(HY*?5kWK?Yn5JO^diOAk-Q?r@D z-ti2&9x?Fw2eXqZLvoecb{C;&;d?W=q*1XasAn;%txBuZi_kqd1c2g{4yEaugD#!B z$lr)kAMJ&}hV4KnI;LUab;t~D)nT*eRbe6!>{pT1gXFAGM)xf-Td{XDy>XzK-e6`l zT&RV>;o~<>s!IKCDIO0N3S=kVWVk^`97lEa$+6X^cSWdW^OVLb2N~ zqWIF@hw47)!;Cab?y8@)jAOT?d_yM^-X;orjb;-s2G^DXjmJH?EWXj@6HAg?E+ZU1 z9}|-mKgEL;>kPT^9s&RI{8md5UA&mD2Xm=|Gp3Gzs ztN+{{)9qdi^hY?9dMV&*yKDDs%(*7dBmkeww2Gsc{yhrO{sL6#vw-i+xL^`xtnPxH z*?*)t9MY3tk^j6Q+Fv0O3X=CA1E+o}9Y|IQWZzQI&y;Q^Y3sRT` z@W_G!(INd515ml*PO$soQTi|9a2DQ)Aq6<(mf~e#$5o+GSnXW-xIY2xTL8y3jxGvJF%ViZqFoi| zl=$nS_D6ILu}pAYn!f4;=WVnhiFyPDxMdZpMS%Zse$ZulMdns(IL@Nk*p9=g|85!>yEMq>C}e^D#J&V6Fox@5<{tq;f?_w*KnX+dl%+BUd;YPHzP|g?G4}XqV5UIrfwjb% z`L9rUSAS6$%Am9K=OWBVvZ0+Y^Uhq#J-xlYv}owx&RE(mdfa5vIl#>=mQ!V!Xc#h4 z4H0J-=g~T>;S733Hc!PbYOT+zPME`e)qP*(AY8e?1cHF3e1G>26t~^0xNc>R(6zS4 zN(#c;7u^|AKD64|+N<x ztD@6Bb&e{qAfI3OV6Vd_o|^M`e!(QO^IjxDqpiU z$y4(=;N^;5b-7QIxUz&fNpXG|nuBxVRk-x>;QNiZQR+if#!4X;+>of_Vfpda84XMC zxWxlLoKlmr?2%{Xn-CpiHqVIN?-5k-5TGmd3z6xGyiAX57k@!Jp64D$G0b;KhB2h; zF;~7n%ZcJvjKLDv@SpG>xwv?aPRz2rsY>HiyUkIjU5e2h3{smhi-N`^IYmBJ~xGN(cru#flEGUCK9+9a-d z_+c&&2q`F@E6hN)9y2mT#8b5esc3^_QRN;1k5+`No#tnFS~|Cs{|PLIm2G`*E8ewv zl9DwszNdPU>2V>Ce@j+7{C0Xm;Av>`?uBbt7qyz0 zKd#EKtrAj!ZVLLL7B*LcT>PO!?SUDHMbj{Lq{V%QaJFleyi$;g<$rF@FI(QAi$|_G zoc~Ojs6rCxiPEooe>WGv1ki6YkW#iWZ$MU#;F1NY_g$9TwfRddANeek^_UDBg@72? z1f-8!)ID>uw5M^}sC*y5UE`Rd*aQcLu9|?kdZ&;k$&B{ zwW(d7u7-AUG`88dq1|Ao=u$ia*A^IeX>nNT$vhm-DV zkP-Sx<7;UAcD-i#;g#)UA>0iJgCrjh=#ZX+MJiTSbSqGCR8L3Q=T#qzy4FV!@y^7W zig|F-Y_!;mR zZ00$}lT<|X0XPj_oRAmLzw1(7-U~P^Q5|Lu4QX>L4)n8VUxltGd&ReR>;({4^sU!L zI&Lz|$_DbwXUUHWO_<@ip-04ri-1<^KIsEK5kg%DA#K(`|C?Y2DZB|Ds?b{XoEIj&jRalaF zzX~4(jXU~fbkb&;?AgmBw1+lXddbtq-)C`%gpS@$9?-tpqOu1eFo}ApY^3Uy%bvol zmTA6ChGK%yF)t(^B~%fC9@x4uaTQTR1JdQq9JgV`gO|UZLs{QnH>JH8dSR&3n-j(F zzY%@Wrn=-|X#ARq8CV)uDZo8wO}Qa$?yHq-NOnK~v?EHF-L=KkSm~etlyjuINkLHt9_ICu8j>e<0QEErJ+ zs0lu+OM}?0@Hxt*3AA0MM2?L=DTF%vp0ParQc$t?{8qv};E@!gfi8*zJ|cHNF6t}C z>2;eX$U_D_r;5EZ+Aj4qxdil=ThnXF0pUP(b5}&1K$8w!Vf&;si|T8TQIsARtQNbl(s+yE)@n%vPi^w79+*o+ z+Bl0iy#;JNBFv++z&bx8>&VP!0?hWPsL^8g3FTz(D{-2?LiFV{W(I;V&o;DsW>H;L z`T55iSw0U);Aa_m)#b0D(K<)avOPeUHAv&@<-6u&_V$EIc<+DZ(66ke^~ zrsrop0=O2hsVUSW_g^hYC&AQ%dISpJ7h{}ncTr`lQt(+O}a1MdXNSy}8 z2Cx`1N_40f(nx3Q(3p50cOWWf^7lyDl8K2CL&#PH!l?-;>fF3zKpeveZQ?22o0A3< zRSO0gRr>)exdHXlT7%ptYaFu+#%T%g)MZ(Vg5D$pgl65pV#Kf_v5AR$Y5 zt|puloXE~4h0`g+*vqC4_ZN5LDk*&Rk&J49rfPc+pN3H5Yk+`(K$zRh{;3)XcjF{E zx`IypW+sK*n&rq{7N>j(Knfgnj5mZ;QUiI+>K+X~(brN-eq1d61E%(=mpNIeDCS&#$Y0a?`DD&>r$P0484UzXO+Xb-ue zhID~r;+4yQ%*>RaV0Y>Yx79!`rRpON9)hWgMeNU&h8HsDL~5p z%IijIpwQ5OJ&djqJc7gXC>=Uuwg$i2d*d1?N+-Sj78aC*f1=SCYjls&@+{y(VzFDV zapY%dW4=8GN_R`0Jt2ue=sVbr)9fUaUR3>zZB(#YboW|-6!0#|)PI8rLBZ|1b1teK z-I!0&ZFE(`$0*2I#V?LYA=ZOMjyubqle`s$f0timX#1FIBna6=LmlV-Eh?%U+OmqZzCx@J#_2%0Q~UNI)h zEj!;BY=TtgnT#vIV5?7`5UQQgi;vwG*~w{s_@gVg2yo0o(~@d;O=-Ry(?|_9U_w9c zzl}+PAaA!8)xN}hcjk%eB}R>ZX@oBAB@dAYs|XFJ7Po|V&7afvQw#Hr6FIc`uFNow z2V7(BI<%4yf+ zeJI{2;R!Aa!$hsjMzkeOCy6rtVKZU*xt7fPU7V-P$l3okaO~$fd3TCl@6%gP%@(Xg z5Uw&lv8GFqwzuTDJkzs`abSW%eUMNe zqY_xa$pUMx}dcA8p4APxU{GBqG8!a)NVm zfAuwB>h*ATRm4SBg-Lj2{-q_wbv)iUJhJ~@CYxFL6YlDSxsQHX7$2Y49NnJPBtygc zF(S0sU1_Ro#%;_)h3z(Yw(k^EP55|%4ngqPs!Q-#{ppf=cT5@fjQo~56usdigW4w> z+$t6>hr}a@hGB2RfWwP>Bp^J>Agr&2rgf7x4%)-%xQnV5PFY~2fTfTs%QOH&BD&s` z>xOCNjtNp~NPCNRQ3)!yfI$IMHcO6IMlasg)WH8-1t}rxIVgw&`*q|sKS5l>CS=tG zvfX_RGa`q@Rm%Qx%Fgi}kyE=k3QrK_8Lmd8{}@g z7+P+sC6Pno=)FLDZ(RjpE&Dlnv4)o&6qKSEd!on2m_md@Ifd>SPB%$#+EgVf3lP4y$}hGS-1 zAUX<|_`1sWA3msjcn5PfC?0vob@@-R$~LZ@#SKo3@@V=5Ea9>ZEl1(XehxHbRM1dd zgQ{8laStNQ$sg=wzNvqY3Kp*x@695zuJeuRk1=!oaohQ%gW2;k*#7Jl6M_O{z~qCO zY1m%jQ#jS55;o2mk)&ezp=CzY8D$X5MHKlL01qLGP08uh)>I$uP2bGh(#SP%jD~+7 zE+|5~U!nA}Y1-5IfF-jd3kN@4}R=AYlnuYn{4beuUC%VW?btVvMxv ze&&$*CfR;iNea$Sfd9wrCK0@Yr&M#QHGX6dK-AbyH-HP>6W1pYkdJ3a6hhkBPv%1y ziNl{mRf7J@vY1^Ol(=LDOgJ+0SL+eY4pGth!l;_WYKEn=E^;LHDgsK+oO{g13EtM3 z?viIG2Y zDM@v=riYIf)PCE2T$NYhaj{Nd9jBlaG-If&>dZvHQ6UKC98qslT}$<3t$ckk0&gWK zb9%piD&J0K_A+`jojPr(Ip@96*Lb_i5BHJHG;NkFZJHhi7A|HlKqQt8F1z>ohzM+k`&kCW{?S7OZoV3JyNbQPaTHk{a+lcV2bj7HWj*_Hg&^eR6py_X zTd?2`7pwe_?>X&aYRyBn37423(OzamdzB-s_V-xa+c{5mFuCL<@TxhvE3cgfpH6n@ z5uA6|ZViR-*=qwWfrrOOH%q=<-G|qWHmZ3DrQgC8Wt;bd)kJ z^8Lo1+=cNi6rVgJ4CoyH{)`k~__25hm(%>YBjAjRgo=XV7+ld4JWFY~p(#>^#X^;PbTk>lFy=Z9kcQa&9sa5{?GAMm> zXOx6Q^*xcCvFnl3fSSplTW&;F{`&zy)JA_pnZ3m%?|p!Gw+V>(=<85M50{b8lKvV1 zHqrY6H0PEgKcUz<{Im%i{nWZjiQv-b2x8f5@7o>_`yOdx>u?uH6to3&-gF^%&9g)s z+<}n9Ag6YeiUVSrgj8$YfF|iGZVpnJ)?~B88AGQwC!1p)y1k#;$f>Rec$Cklf|Cs0 z0cfq_g*9>yuQ%Vf`(sv=p1xHGXBlsr*O>N<*x-Jjv7z=f+1CsO_L{$Vf@q_RKmo zM{kGfPy~a}F^DH25da+BY+R#5?{k7oq<52_U|;nhl}o^t!9xhT+X26pU8YB?7|8Lc zO7CGXn{#q{TPo|yUfNTo52PCW?wGA;Vpd?evy+2@?wQG%(^3g)9h+yK=o){(~V}( zktpVqu~%>_j+A~L{0?U!Qg;B+DM`; zl^cQ2-K*n{$$h_9c!3mescR0yG*il+x-=PY1$nLIqZIPOCgoTqo+4jXJ5C&?xUdY~ zFsd>=5c zq!{>D6%N=N_7QvmVnuD~igSVMB2wR{iUSDcT4ppN$-GnXd^i}qMfz-BF~(&OnkP?e zw?6H$xLnxtFL8OX`mL{lU#+K2;&Iz-o_oEO?fG7YmZxbQ>kZ?5g>ENM>IyBbeMB}_ zeh<24ba?lg!7?ZWQ|9ktequ5@(jI;)=0=&Vs64^v$U{KO(Ij)kRFfro07t^@QW$+V zL+XvEj5pRZN!D5$+Y##oLqGyV3?WH23cTADN-K39am;mxUGh9XD z>zPH;kk`t1LdsBWQevs_9wpwXK>qh2X4RiCjk8w5s(kUTc0Kx0efqhyE@)O~ar{jd?dp-lgpWyBtzX_8)>wCva9k~|0AkS?oybGE3vzmQ*`)a z0qlnYux{H0lDtEAf1!stYQwP4QlZ6ys4-FbBvj)yz7EjAs>S?LZtqhNv)O);&Uy=|k#iCKF)S@X(NpT+NdXy80|`3NS^}2UrY+QAqn(OKUDlqyOqH0| zU^oEuh?XjjP`^{Or@siXpGH9G>yT7P5X3SVojx(3=&+Fzq3)xJY$z~IkX?N96j&Lx z$`-oXLI~0Nd^aIdE#CRpMTuYgd0C|u65Q{1OxnTQyqvF(WJmU(Ugy@O(=ESJkV?(0$m@7*_V2No27!VUbs#MMAwksR z^$;33YOne(OD(Ou<$T1`I|BpYwxx2-fm9lPjBRDWsEM`t(E`ru)kGXdg%u~+mw79J zNEJv4sdnD7hvy(rilZ{I(S}0jbVSuB9MOBMo#g?B&^c^pWS!{_;;LyW6GHL)X^kLd z>)ZoyQeN3oVz3Ta`awjHYsD8>fqk1B{jz$nnKwr17*vvL<=SYOo9>oD=QL&rWdkZGbC#j|u{ikxA0Ii*^#}cl&@kLiT$< zoPpROZR6nc6B67i`ajm|It@X71>vE3I0M`9Hz`rc>(Wa=gZ7Nv8j8H|gYs{^9;KL@ z92ng2w-Vny1(?q$4S<+tAKT573+Ty-)RWXCSUz_CF%oIP=&JNjf4ba7pdTnQ#QvcK z{?aPxQzL|J8^Ezgn0e@QXZ%TF9q1BY(vos6LYLq3QF~shq`8h()`7YX3(lE#r zn;bviNJH}e8y!Fl>Y zxZh5UJNg2cP?Wluft7KA9M0s3Q?h`Y9$|dzNTm} z6_cPoQh8i@PI(tY+agY9jJTj!Y*e#0*uR8gVCofQV9;tYa+@3=kir-8KsrnGOXHMk zCX)yFBpAuVnuJvf?7hC4<9j|HwLzZuWIo^HdOW9Bb-mqT{(KpIe(hgmV;`PeU?g?^ zjMl$yQ#X!mnM5`@`~B!ti+BIt{k8A?xh(7T*33y3|DyZ#IA87k>9~FJrSI@*$@_JF z{N?(kTh?c^An=<&>Zk3k^X@=9{s+u3q4yT}?wAE8Dgk+G+dcH>_O>}TaOa@oiXxf($#db=j?c<(#&B9)^92QNG+4kCXC`ns%S& zlChKXC$Ps)H>ZUXu!1`MbwM7eK+os~{t9hL13;j>z@??;IzlO^6bZO{T9a@Rx z(v?=+IC&x2NZ>SNovc=h~=0`|Ct4x^Bzh$Bb$V zp!0|`gsp^)GPwm;E4O2Pf^@d|guV*B7WweQ$IJG7{EUSSy2=l&G+Lc+N49wwFA8w>-Ud4gk8=w=J=PXFX zFlP&@;k{|>Pq@;YB6(onTZo9E&aow=?M77E{1Xh7_*#KQTYW|L+RE{rC4WZ82(|^M z1-&C|P3DZw=6A?%U+O|%zXK&1(@xWk50-qf$p}UP??)wpZNM?q{FVu7nP{1E>x`LN zuUR&o2GTK&2qB$FIGjtegmtTiVJtdB~`j*1vA@D66FkeYMt|+G3 zB!d~CJWcvNTbL4=YSz(wpGPUNd8D+_3;KDU(aSU_Eeh2{^8$8KDNHkF;0>z&$YAlp z7|qsmwcFf!1hPQ(Ohtv7HHmz&$}{j+wJ@Og)AlS$xL!v)nz82lDp%Rf5Lmcg@L`%o9CQ#$NBrfWRiSs+{{#`>9 z>smDC;UdauHvi?mLJZzu9{Lm0Lu`AuhbsQ-pSSz#ckK1avu5wF{UT1C3hxg`e6p=K z8@j7FQCKv z8BHRY18+teHDtm`p zaKiOrxl1ePdBMsLr@_V=6_{uHcb2|2trgYr>)}3Y_zf%;R+!sF91pw6H40$+wJvCK zS)QYFcam|e`#OH9<=LUhrZ`Xt1u|xA8HdAprNN7}a+e)#0xzjIG9BQ1_-57#)(t8X zXw7C!`^NqhY-W{=0)isBKq>T|+tl+9zTp4+555rl2VX#(j@NAQ_y%~)hYOk9hsM4p z=oT|8Nq)Pq7p{=HEVP-&T9z91PuHqSpdJ@k3=cQU>eEjPpqK;4INaC9DQb*JpaF$e zZR(ao=~mli(*3n(I_i!3fgIjzVSa=Gbfko*oLj)Q@542H6n9XkC37sgVfGNYh?1k~ zQF*&D*els!ozE?RhP9`5Qr#W|RXBAly(?nOGbG}!M9`5UiL~q$W#_i)?UYpUL*8d{4dhWXZACac*)OiCYIs>` z1;Ef7e!U;Sv7}1gxP2x>r(+rx&&DB&bF$2|3o|b(LtF|jUhDrxBmJUaJOVZkOHMe` zvBcww(#=+%p#S<^)#19C>3f9E>C4DOE0=Q|h55J?DDg%i(+W#4bBd?CT5zb|`YHmK z+s8Uf34luq(t*S@E7TB_{NwAa5RWW?w5K2kR5#(ScF}dR6`w4CJyYi-TJ?yYQ0ibE z{Y^G)`mpF18@CjwWL7opt7iJ$^+OPw)HeqvQZ>{4xS(bQP$!wcp!B0^T~sLu3RFHK z>R90LD7|@aEsL4Ua0X%#jkGAeda!}d=49;^@BKpbr78#X1yr8`??D{mz)Q0SN)muk z$B9{vFI)jfLD92A7#WqtlfBx;^CU{?Rg^_8!?WCG_XB>EjDRo-HDEEO@l>;s9;Fx3 z^xG-cl^Ytl7ilyJ<0~55mCVpU^(1>65MZ`R1#)DP=_5xro}Lb?Nyl?dcy7Z>4{V{d zLm2EJ%@cq{%{5qsZYEG#Bk6UZnn*f0RP|#WO15}g2K?n50aNeuofFp9VeqRBmHW0s zqXWWO)*EhGays;t4WdGfC)?D=6N7aNe;8Lau796qegeQ-_W&7|Bu9l8}yIFrT@Yhxm$lxbAAW}7C0(h z2?U^U!9G|bYp}0kG_uPt8J(enngn3vMUcB~C_YBs=_lilB(uv82PcMdkQ>+_K=#(h z5h+X9xiF6?)#83xWYRf5S6$A6axw{I3*kJNuL4;X9wWZNN@UKD0f1XQlk*MN-vW91 z1jC-H7zidT6N#8#q>iO|)|@{!4-lBKkA69gRgo=NBdj~<+R+9GFN{1}#|&D%Cz;yT z103IeU^FqRR(H`xhKFitRuu`xM@6h3z#P+(C0K2au;IV^6T>cQYUfUD{5b9s^cB(l zd@xd(0Lg#$Ko@;b5!g9&wYi6qk>3WBK-?T}b=*U?ZmNRKmYR&hlO3jMf{~Fa32XDE znEQ-!QIO@x4dawF9>uuys)<4=Z!%{cpi}SN-u!`5p=CHLXXLKiwFrJ09;%`_{hR$} z**)j^I)F+zODNECWM7j;t}Df7kW(tQtuASQ^or&;QaDMT=26nMt*gzWWadhui|U$3 zA?LuM#uQ+9aw$0sJ11MsR9$*xPhWII9>e)D#F(cxJoy^)^uZl4zmyneR?>mr|Ij^RX~4G^XO9F2&M{6SjZW=w_d?lBgje>!y+F z_AIu_!NI>VPB^C1nZc61Lb|TkpLg!OT5V>KEa$#*9EB+}f_${LW}w6GeQq+c!eI<3 zw{xq8|EOBnp(mu$y|qV>FO6z%-<}Gnc%V;W_WJPYRD`be3(AyqOQCOEyoUzYu~}^U zgMd;Lq67bz`GTUmw36G7a@eQM3jph6Rva9vxP~@n*$z_5xA=Gx|4QQX=>7TjH3TdG z-nQ_0H@}vTC_f!ofn3V_Qf2p=cjn}fjpRLMgkXLTSn*--2d( z%<}*PhJw6w1n+tad*VUiJg2-jqO{p^y-u6gsv2S|DWJ%I+ob5(`7 z#x0*mMC$w;&a3Cobl8aNzQ_X zbbfiIvn|pmf9}FNR);(sd@ZIA2Nkh{_xZ;I?%c7|nZAW8N;@>aB*FbU48L!t>Z1Bq zuyCSTj>u<{lGcMBHc&crQo-+vgT83Z_(L|Qi=Ui@Y4UzD9(71l*jiW<11D_xK&J2L zX7pMqt;&T0GlGc}|NSM3>uKX?Pw8BXBC7;?RQ)$}YkfNonvrSBxI6UMjCt5NQO$z8 zoXyQ&CcT1ITZQ9u4v#=4B`E>7&m@=+3@gu*h7yD3=*|bwku22aFhh?NO&`*Raekk$ zqPU=_N=#cbihs_R0o^A!nKRl{jybk;yo6wBpe3Oi?x%r(n^P(0+}DQRACk#n5!!rRVef0uUTy0KLM3dP;{Lamf zI$79zk$D8_?Q+zu^PC?EqHzH@{gpE4{eO`ekFuCLZcKdAX*DXNjHEA4HdMlY|x07wguc!>aW zO_@u1BbzI{uIe<@=O~3#)R@G@SH$(Gtbh$+%oeyu&A_tF6F%5aYQ8Vkp?I#2BQ5pd24jQ0NWo<{c@*x1Y}5W-ofe|aEOF!*^q=^ zA$|P4peTk=Y;!XC*97D;euZe?`B-O!N|A(%X`>pn4i32vV)oQz_mivUlilg4{(7Ew zb7(4{gc^kz8P7<)zUyyDs*m5uM@>8adJw+-KPKb-@a{cR*Djk!>XODpD;!j~2jAnz z=AQ!~U0`X1Wfn;@Wt(N^a)R`grE(wN+RS{aP^e|fM<_xiAvAsO4J{7MO07f}0+9}D z$%m(wz`Qq7Jp(1y zqG+fN*Vp#JKq+Uc*!R47N3~oF-)MDZtjPmhnc0o_%1n_M?0Q{(F#EzN+M<;$tR^uu zG>c@96kg&b95s;n?6JG)liArA3gS2Zo*dF#E??287WL{RM++}7>#F_ic z4%y$5svic-YTHRxK>{?KDoisY@~Jb<)f@my=vQ^=wR!qimJ;%|Hnvl&H<>V@XmAb* z#g|^LWyUj$@`GV24!!sb%%uTFrg&!65$~Og8zQllSMV>r zn<40xM+qjmNJ_EhCvewkN1v>yz5MIJ z2CH=trdTwXug`BKrV{qoF0^E?oQ9M)Ysrap%OaV*4teu$oEu}Mojgr;CXI_3G2l2H z7^$t{&?(~)X5@U$teN;Ata+yEfn4MgsfS-t`dEKM`<+pD|E0`$-G8AgHgav_+px#4 z-D)HJ#ulU>fw9^r|MdP&5#i~-SS?}vq9vZT**5acx0UO^SWR#J$tclm?^Pdh_l4PB zPbzJ{uhw&&2N5%}YimLhZ~FB7&~?535xd&Tjp6or@2a9q&NcHcDfshOU7nm6$O01 zl<8{6ispGOPxjc~uKkFb-L=12`!|i1p|e-t&2EMTtvPm@o5&nN&Kwg03{#|R z{I0DoK;;Tsole(al_BPCjZ_i{r*56&jNIO)d*rJo%%h+v1xEgS{}vFkDJ6P1mcWh| z=+k;MGMV*CUL}=UoWj&KN@D=`vOk&t;Ngz$KS2j@oecG2!``DcX<=bSsxiJ*J{S)6(|gDm&P5@dY)mym%ECqYTl_ZK*oY%z zqJ{4Qj=-ZP7UN@E4>c4Nd!=%8ibIhQ7_||>>ntUho?O+yNi)1j@zXo1OF)wZANE%V zVR5P=Tkl?-0j2{U-6v_6vjy+7p?@L~B?#BC5MkWgoWsNF&N$Fdx!Ro>KKSj-MgCqM zyKV1cfN+O*Yr`IR(7pf}a#d*BYiKe&J&WBDa}WYa86E}bO&Z?7?o5C_b}M4p-aFAt zyW3n61(b_y%d+g$vZW_4zYM1DS&m6`aIP5AM(Vzz;wxAsZ>LNrFT4ao=J`O=T|ez> zC5zMyv_WF=?K{0iK^%@%Aegr@q#Lc`;|#N3lsXuXZTJaki%$*s>d$u|!CEOxhIVez z{$0RnVLU%EfBPYxv5>Bd2{{z6UMY{)9{cI!>^a%WYB?RYrCv2kjLG7tSZW$iH=ca zb9m%{&e3b@>z054e5n+<{U%{C{cckHs4l#!1TGG0iY_OQztkBofh1ZUY-45(0zR?l>6)3 zH`>VE&f{A@pblRcC5N89m9CQSJBpTWMuAe&DpR$F}^-+|qJ% z-!e;4E4lt=A@wxB-vis;_F9@#62fpvPN=RmntNk+Gk}(IDdA^SUc(#9QB8%-oL&BI z!DN!^SpEuE41`q{GS(~-Sn+8Gv8Qpw=bzMa4nRmtlYJ(V8^#R1P0c;Lq7DFbKzl#n zMSp7sLz>W;+UoEchnDr8-UcTDE09?eb58=@QG*qcDEMhRHrPj{$W|YAOH8a1mE0%` z#I0&JK%h1muu9Ve8skAt7%k3=t=4Dw%fVd>JZ9zmcGl_dcFIJU^#&o(LAU7vdAG~n zcIft?wj#e6nt>-URIEqxbP=;NHqs-^?DSADhEVGYzf>(2PHGRL%Y*Jqms;+|G+d$* zaVWze7T~OSJ9)?7&yYGqX%YNX{P5$Q9NV>OqTOwwTRyh0K@qc}65WJL#O8oQ;cp88 zBda*EP=#v>R@()oh2ZkB5IMHK1WfW!mB)dseFEn>c-PUOv)RqvUF#oHt+X&XkfV=& zL-lQQt^tpQy(janzW`mVZiPEO>X*ymgX3FM(D^IXwn(40ow6CNj|I88!bqZg0QdMoHNC~QOWJ)YZaNydxU56Ly z{lVR&Av0vvMMfk?>Rj2V1p3(HCScl$Z$wr6Mxe|##^v_KZD6$znBw=j-sr}~9SyGY zJ~GL`pV@LfI5o+b8b^9}d0Bt8kXts4+`KJ;y-AGJ8XDX6rI z1XYtC4xmz=ZhV|?N;1BN&+TH&+2>rOkse@53s(!S_^eLtfp&i_6J z-%NeM1Xa#G7G9p85uxQ-E}DFr$b$SS8GUE}bMX9U`F)w!*djqOb=Hv9-{tVvCa&^w zq@SCWQ8p5TDN%drz;7WO0kZOE!2k9FCo2g@Tts%0%QCvC1J_!Y99`@}<3O9sGtxB_-Av(Pol4 zbKp;~Z3o_NETgk3Bo?Md8AM4|T>6bzs^Kuwx1SbV5z*1hr65HU#+>9)RyRyxzVw~6 zd&I_3r{A1Zf91V5ciVhi8M##+wFVEEN5IU_I~ZNqqtP2zp(ex$gvK$D;_E@hZWp>G zve&tz;vrewGi23e>=Kg)bQ6*X6LC#td>iH9NT$~f zX?l6l=Fw!TiD;KUGAL%0*`pK21qem~Y#igOAJ2Qi0?63-W1Lf}Prxa)FSRUmq~@Y7 z8_c@;Fg@Yy&B4W_qA!T!UFhjYb9#RdOBn(*4;aW>Q*S->I16Y~>Y_nPDAWPr6EJa*JIhaHJeIi;4+ zGk3fcQP9Rtov>=M_5|0*`ZTI{X zrawP%3fp5D)|l9O#kQqcwqTCRs^|;*MeX1`p&8v>n>Owuub;?$eU$&pvQQ{e-@YS5 z5wAD48>0V+(+c)Jpzr3^lj6*J@fYk3>(VHj(3P0xoO;}tqzBgc3T6=rb%RDB;4ZT($aKl_8>#ynon_hfbOqy8 zSA+E4ohdfsidVvMOqU8oO|b__JRJ-H(`)MMDQV71Z8V z8hm37EaSP6E9BULpdcx!1+jl8Pk*?@S_lT6@$JnLR ziuF4>3n!8AlFNdtvW|EsWd?c=6 z7q8}x+Ek=7lgvw=!UH9uQ3WxX2cRNV~4||mm6Wg|J+n(6Y#I|kQ#@D&Ox1Jwe zb^6EEUDdt!*=wz>eAv4|8mxNKD@Nj)q8cNT88{s?xxksB56QIf6hM5v=RO8aLFFQ6 zyWEgsfYU956cDC-l2n-$@18`Z)(gKAteu^*)F5It!T$1OnkZ z*DHn$o70ixA)l~AFAmP562wCs&7xAw6e$*HZUJL7G9ci+7VR96I)Gv;J~DJ+m+nz4 z9|@lc4Fk5tfzczKw69a)(7YI*Jx^tCbYpFnq#l&j65@;a)Qc z^XMP;vXnBrZ%U)|D3P6C45)oJxPdu>2g)0M0A_zS zuk;&S2Q$vfTMrYczKts&PNHAPc0AO>+2itN z9|8Dm&uizNh@7v6tT4~>CzHwk7o_bhs_e=B0w1rJwE=EOjQ5z~ z27tOWGyFcC@1B~`3obQ!LC+%w>QQbpo!>B*G|qZT{xIm#8H-H)x7yCK$<=DFNJ^oM zweKGx5bqDmt2K=#R%{Z2Jr@X%r5M0^wyi8Ho@Z|?YtO}$%+F`1FevSb<$o}#iq>CIdu1Z?!?wal7YX1 zhk|X;%!l-br>XosRoR*X7sxB z*Yf;sE)?J^m#_(pG>6doQ|ld~T!B2m>C)P@|LAA&$maBttok`-8bVLNtxThd{n$D1 zMrt=3T7$PZ7d%C&lpD${pc>p~;0J;e$MLN>70!kQ^=4Ns6r{1xA)7mW}8lP_+ zeT+=h)8Xm#w)7ulv_ZK7ns$y{GbrEf1dKJLit1rPwMe_3R};_fdoAT<6bjR9 z2|>W=n?ugljqDn@5_Cd`A|X*vtzs`*fxhHOEaSPEz)I zvF#V&*J+ocwHk=WAp97YPotS51jo4$Yx7mYYNf3CBV8;&3!xmt9-bEKEB-cb&xLSi zI2$1vt5Icj>myBe)N#wmi-amfpFnsSca4`yA3} zy}civ&_oV-d;{7l3>dr5m9_3ZbD*P}0G+QPwm^|us>T?{908V@-6n5^#Y-%n)K^Cf zUd4gzCN}Z}90)ST8h$4B$@&3zgCUnmkSL}o{a)0f*dlX_KVNqMG`i_;6PwTsdVu6D zR!DF+upl5C4%fv5v@(5Cdsz5D3Ghk#mnS*h1vxI5$+?A=z8CW51$D0wf-AxMxw{7f zuln~Huf)5az-*hX*(p)C_Q?28WeH8(wNvf1RET{^&A>G;HlTAa&34`BsNSzQYRK_d zBEAN;MV!z1#V6d5DI>2fI{^Cx9ILG=#W7n^ zf?C~}=IFi_7agk$r^PnMJa93(pV(D&QzFqfyY=`!Wb8s5&Y)Q2myC?>aIKR)cKMI; z#^>z9;*-R8Zs;jUUg{^nPSJYE9FB~iYpXdC*xFJ@Z3z57C@B2z8(D1QDfo__xMZudSQYj1{r2SM39-IBlIB3tCv)!yjGrO5+~>OyrUrQWr%J zEkZYz5a=4=vpA0j3|R(8>(G4SN&{zr)|@3+(AJoLyY{f(XMBGm#DaT(aXVA^AT^qSW`2 zABMNBaoO!Pecaq9$ZjrvHOH6#5wc{o6lO1P6unY!zq_Hq*k?>f*E}_ ze)g@6vqr=50(KZ0AF7OUXk4I zzpB<>p0}3~WYT22gE^_nHnNw3#@nQ84gdof2+S&hnU z5dF)Q`mvh>zczdfx`i4Y_qRCy+Ol>tb-#D9(>|=uH3Ac%%N~8djFmW!CmtG;Qf+nS=+GCqa_!l4{LLZ1rqDKfF(K?d8|X+r`ufQE`mFZ3 znfr2;89apf-1>S=(fxd6_;P)E)BU`#I*t8$BlvpZ|JpuKdlPmp929NL%)94M4S51Q z;Q)Vi$7K9vQ?>tfacx}JpG(*rz{V?uLXYzMG}ezZ}M$SV#!J0=^Qj5FqbR|y?If`<28tp@DuV|dS+dYX;u57dt0!qJ zfcfavor3t>+>|$nf5D;kedW-M^+Y9Qn^0Mu{$`mx1zfyLOd>$~)q1wLq}180ffTCb zFVGEgPeKJ>?cwaOM0~%IfR0fj?X zu@p2u5w`=d_vE`++_pf}!($rRLzD|jhE}cJdEk8<4h>+WM6#5K0==6PKY=@@r!Y@O zW^JZhFpYUT?)jA9UdLn!xF|&Vdwai9rdQ~od{ixnG@m-?fwID5n=KXfyo=!wdnZz+ zEo8D8Z`@BQp(H-x$7*<}U2(J7S}n%?Gf(z~OPY%hm zlM6;<4^B7fZyrb92i9fhe^U-mxxnX!)G`M`&ECX-oV@o&O{#{EjAvbR$XGSfKw$15 z3orE#V6EwSxffTpP#>BuIiTQ@u-k@*geG!nG8AejL?mo-0ngRN6IHOV_=-d5V?-QfO7ui*Ua$1!r*e zPfIkcV1dO;nSbCQ=9ENf?=h#=O_$;D?ezU(XlM~nxEgDj!eF-bg#Y#Ml=9yvgBT#T z>92vk4sE$Dp&uroZVKZn60yhJyfrzWjz~2l5VHTgz7Wz>1T=Jo_K@&w4yKL_H94=f z!zuIQ1?g%2%aAjw%vf2N`!CZ0_nqmO17tc-NT<=kI4}mJb85V+w^lVmk&xTGw2&9= zbTYTb(q$9DQ%;1lSV1yMhD0ajZ0lk+6dDMy|0s-b1sfC)9~se;M?FEkauNDEAI1XS zUOGYe5^Ez5clt4<1@o%u+u%`6XD5g;11|gHBQyKaElEnksyoci8AOf22nVFw*Inc& zsjpdEQU&RZEPG6P3en5U`3IdEw{fqa zF4BLtXrc0Aen9+xx{AZdztCfB)9dF-; zXr#Zwj13mkI~R0pu4#_P>_cnSBl77)BT@xRc^VXWgiv!MRvB;2J7bOK<3-vj{MR@( zR$U8&)dibtg4BM}%v{l2=ykx6@$^jwd-kD})x5!an~>zwV6H26`U{v)`UrQxdggnc zkhE?IKzh{&W{^?|IujNhf0c4eU`=5+F$WJM!6bLL_(|#)}}FGCeZf z5~=}{t&bK^-dqZGD1Q__8Y131Ip&d_>}OiX!V!M-0u+t}*8ZG&8`q5n%FPYH+q+q? zZBjlv*AH+_Otfx!&=mcas8LW#(Rg>cMB~{qhY@d(d3R7@ zD?1kgLTdZ$-py}9#R`Q5t&DJb`=J@nV4?-i+VD%M?gq<*0FCTbVKRrEU}|XJdvItf zX57m1tlETn{92sg)B987x#e)}=Yg2fuerou?1Qen(#!oxr1IQGYXe_}m7TDm6^R4% z0#+tEqjP#P%Md~H?1V!em#uu7k6IDEByciggip#JvRVqM6&0&#lxENi4M4PXWB|JA=($4 zkx5qVI&Mh^C@Kbddu)UA2>>BG2%H>-mwLUz{T&d!a)Q2jocc3!MRj&ibswil05W3V zAk>;-?VHM?;V&nn$-;LVPEnnchqui|MBoCa1>83<;RZJLE`3-oF&r`*g<2?cksg9W zgi&5EviKisK^!x9~ZL)rX!APrg{cMHj&)Lmso{``;McA%g@|tg)4<1gqLFTQ~ZYo zRkq?Evhbi@+<5H>g;{4^yE>WVVPB5kCO_aL9X4-DX}U#deyhdy|42hLM{4SYarDgc z5QMjOBPz+D$f}$OJus3jnaJiEg$-;p-s~|7YAW5zRzMRE4~_9+ta+)+$5a*ULAED@ zQ91dA?`*vtT)vM#mV*}L5PjT>Qv{fTkN>n&f&VtM7wu$uj0_*EnwE=4DCl)4WqzDr z;!%DQ+lL3!o__eFo!Pl^*lIP?+hm$t&L_)$5P07PeRXGC{(GBU^+> zz|4kT1O**i7WNHiT4@qY0zLx6uu+eIA9Ec<<16CPEFCRi4_s-3j9q%>Hv4Tn&QPII z8_`kKZ!>Jb1lqLe&UVu;oL38r!k#9b%->SAEn$?V|s9UIj>Mp z+dIpqiJa zz;Cc`CrofMUgfcbAF}A|@tcEa?ea60^%a6Q56b{AF%Yr=mZInHat31p>p>*{Q04bv1W<{il z^;8$sj%ywqFo)w0C431bgmRy^UTc>ki7poCL6^S}C_4eCc zAonfJ6ah;Hkt;(l5G}5ei~Sp0Ke?B@(YY;XcZcuVC6aW<1>22Xq6#ulVbWDumud>( z);M|hEW6Jr2#!|P1&(foWHwDki_I-wUi6fRGDLnsO~J++4b47JFf-+8iz-I-nyc)bm{K<3A(#Kzf#|1)WR6ZIBmwHYmzJK zCWG*cvf#vH3Q{t>GvP<5%ejDJz54&fA`c*>X2QJaR9=)dAPNFc1l%(v*qQB=w_5O* z_lD(R7w2DPN+oQ1Zk?JGKD}Qq44R_P@>Cs%{LA?V-sXG3$rdw8SPMQYa&<6dq<=E< zbC!1ZvhNk@H(+1R`zyT$wn(T5BfiPIndTaAPljuJlYhW0iyJ_?kEp598Dbh5)ZMcq z;{G}Mtxr^N%x&ugFe7jyJV%rVyc2f%6z=~Bq3|E$NoSj3ND;8zw2K2!tKE)UpcKPP zKoKt>%wQbtcZe0aj%r!j>#gc!aHv9XQC%$vY|;k=-prmIWq5K(ZyRXb9pF&w|DNmf z;ji#3cG&h$Iz0o?ra-nfm`g z9LzU}tG{ln7)Us2KQTp%6NVq;?Auz!hCen%H;XSWCK{^&DECNRKqTA9G34uy@wpu| zgQR6@5zIsQJ-#h0nABed<1%FSgqL6nzphfDM>P-Wg~IVxNy^2ekI~0%y2nuP_wk*& zLD>hY06W=*^ND+kyl2ocair`YxiN@*OvKyt-A8f*9nhFI7uEyi#gMG)DuGI#*cNMR zub($df^I0*=cyyfpEP)edJVVatT+o%J!M8h zZ1~6C)}^mjCxW~h9k1`1cukS$k_F2kd07Su*Xwv6PNk>?Zhxbz0G1AeXSF^%_IuOG zv0W=Uw8mHVK!R>r!57@w&gEGNe;zx(&_NHoeZ5MJLk%?}1)a!{dC|@{B?`?MwVEjX zy|{wIeL$k`jJSP$ebV4swA$5$IoW25QuL?kP|*%e*3?}ZeIDpaj=~_tAglL*CSP6U z4Xb5;o3!5UED-rJ%|h5w5R&a}=VCTbuO@@UIbkj4iw3fpf)E>EHQj!B>HN_59@TX_!d~+K#5;d;fTE zbRjj}jT2ojaI;?Tz+97a{c@PK zconL6R+#k^`k56Rx_3sK8^#Z?HSMX8v!nkI*%ox!fSp8L;{;pY@wW!yFXfpSjr1@0 zi#I7bWsES){!#cFk7;erOWF>3xC0_fc|D@mfUOF_7=e6tqt!DfHa=Ark+ia;1Z}$%dnE`;-#aUT znfNNOS%B>WTQCs&=wc;O73F|4X)DE^U}pd|B#3R3Lo@3{pO2?Z>rRgASzS~c{Anwm zc{0uB{e79Cw4Oo*dr&M3fyJ5uG;wSXiT3s*;yQZ*IM7+=>n~dQN`^2T2xq~9t`eV$ z*C}=Wj!#+T%WC3%dzES;Hjra0e@O~Cs##L53GKL*LJ?1jH{u0U=B0X>1&QRe;$w<= zZiSBwRa_0|#eU34dgyLoh|C`qu*Z&gp{aDg7mdY2I*aAS$(a3aqSr%euRXm}N&a2S zXMWp7;t=OJ)2|d6?W9W-=>zA5=E?OQM>D(UoXVlHvUll0>UZV-KKhFo)Fn%rzKvQ$c>eR;O_P`S>))D0aHOPCy@JOlJQ8p+2339y*Ug8I*n9Z{!SdOFe zUor^^l>|?x1})sJA|`n-{_W`wr2R)|HQUXG!JQ8}Ldzp+2t;B2?eNZ@4Pa}Yl*cBXkMF+I zgDU8J9?|aa6W`HYXEP3B zE(>TQo$-ul$N+-Cu0l^%Gwqp+6>$tnT1R1+Rz0`IeZwY#g`3U`A6v;NOs~S)YhTS_ z$E@;tebuFKgzf=&YuQAQB4?m;baL2m2*eS$*)+;vDGBf zq1l5=e!DOk`M3J(6f!A2ysUpHI+#ictQe>3)%XS469~XOH}oq(? zX`!KuqF2;6r7yxDW=3^eNP#P;>Yu5?jgoLu@JqPuxOVXfs+>1j<;Z=An-JE%jOzvn z`GItUeL6?eM|_IAqKq68dOCq=#9Y-`wmwm%#4{u>G^&0CbOoVkgNz_#P4}&W{I4b) z2Le+O^%&EPN%J8Q)+4@Hnh!z4bq{I19W6bBdtmKR^S$=981fUJD?zQW$hO7pXE8RokGP-RO%*C$s5=IUi?1f1m}wRV24hv$|y$(H#rA zhqtEj9y&!t)`$**55LdELpYfhY zk1SH&aeKE%3MR?0AGkgMav#$H*mp@KxEZ`kXI01 zDl2|`K{C`hB*eEIl0R=QPX8uoQu10J0NwIy;XH?C?hOv>9~=VaSRcNjk6T{g)y+e4 zJj`uv(K=bvzBkF>5xMPzgp6+SnIH-3Up$_tT2-ujm+*OURH}wSZcqOTr}>KksuF0F zureEn1AF2L%FcDoiYS~z$|q{Ws^mp{Ea44HJM-6=SMl!!H`WdKrj3&BXe_!W%1@|z zqwH<3j$dcdr#2^k@m6D6JCTTLr%wf#mK$g)fl}9e2*dSKhCh;4O$~(7elT#SwS+aG zh3aSZpj!1aaM=&S_nmgLF@$*qIQni*#k3;^eKQb z!p1y|dgBKhk(@;JT1wRh?a*Hdyy7rYUrw#yIlB)kebWXN+x0dHjRlBva$I(o^*PVE+Y+z#3MyBCZc+~g zcWcU98^ZSPvc+n!J}1Pf;oH-5`fo*ft;W;&twI4WVQ!z*L^cBM7c8Tn{JwQa@j-Rb zMPAQuFBV;FDWq*WZvao|5RW#C7_vf=pPS4lDn(1Q<%b_gXhQcr0^KhsqWVm;_-KeE z(du7rYP&FI-OalLin%Wg>Z5fDU>*5_0R`~o3bPbu5`MWWO`Coy;s3fK> zVAkuL=5*p~7(mu4Y&QM6SN^y!ot?b6-OITl|CWqzX%m&7ruIj;>2bfProPJ*1l6mf zZvg~7hqDkbD#T+6{n9%qjTxs7Y}g|}y~D=BB{@^5z`W}yJv;JDNWI+x3F(B2mAM&* zsWRooKvVGx6geiEJ2OcJ9IzAnDKi)lA3j(;srKGv`<9wy#T+)Bg*kBb`rd4;=td#0 z=k|F0!B&b=_C3_wGcD2L*c9+CBo7TV3o2-a)r>ic|CC7yaxSjn9wMw}o=YK0;Kk(% zrUQg~{;|y6fDR&KPOaNP4(9n#3Zi}zYVOvR^ZRlp_dVU!ul>m{ruR(g03tBqK)gPY z;F#>fKA#kt_NqwtWKYhh(X?>dV^)eeSMdr|lA2h0>Cc0Hqev$_t@yZyUzDGC57*Oc z+*REn0SZ%OhTEL)Z_lK6bd``pTFgaG(l?7UHGdN5aYk(|5vBib<7RN)vL<)dMvb3b zoEaWC7IRx#iv2x%EmUX^jNmn679uOP!pfrw)~nEoCS)5S&AY~WX=hcsf%!~7Ebrh7 zZ%E2Sv01M}lL%7cO`{&MTo$$29(@AI&FoN0%2b+{L9^QLO_|p85rlv~5zs7=_jJ-u zA*H+%>f3MRTyY4yURdC5pp#&+9yVx~)9P1Mz3bDI*dVo$E%dSo4X93bgLbLMk@@s} zu+x-C(w<1Oqed;g5dk^N&|C*P#8n?^SV3gjMw}=uRa$X!yn!(llT3mbF!5vS#Jd4} zvVLj&lw0pipAqHAH*%0wxpzCv2rRNF*?rMKgaDf} zIY1?V+4K6h8!-HLTwRnvNwQ7)jZ#t4b>H!?kqwHlatDRVNh%Dl;o+(7@DH$d8~hV{ z>Ca{+@3!7?`JWObY_wl!Ggq}#f6LkY;J+T6*y(9^{g?nAu!ftq_>&9^S^`w$HvpyR zU|UFriS~*&oftAt-~cHnt(5ogwKwy#CpY*yT}o&db!@}I8;8RTZ<-F@5s8sIs9UbSWr{~+R|UXmAkH9j#x@5>+N@yGT#`AlQ3HvFTIrY0UJV+m z_zKCDwXcB0TbG%|`;`FTQL;dZYC#TogU<53PojOLgP0fTK}{SeSDxvY}feXxssmeFcuaxcIrl@XlW80RPs z%&jWuODa&Ae^DH#IA#n*^Vc}k>h!!NA(%bTzeyc5#P05YoI}BJ+_?1D+W-QmzkP_? z8Y$B^?ib9Zc&V$2XrF-R;%8oR7PSE2Y)lfOj-D0A1st)(@2aYJL)RQ|~ zHVD4<11yHVyssdZj2EW*4wgX2<`4=@UP|FwxbB!e*3pR^G^OSz#MsO*ZqX`EU3CGJIIH9RU?nv8g9H=H{Q}ePvq4H5G*C~Cnl99f~;@8uhrUBv> zI0Rhh=xCN?xM#NsgIo@4d`*oO8{q#|s(buycKI70eh%$8sBgL8b~St-Ei|R5i-!vJ zxWEJG;ncoV7U|J?Q!E8{JA8}d$8@f)tR^BK#lJ=|nrp7uyR=rZB@*V6_cgMypKR3l zDJ_~CYTAAm>r?D@H_6faG;uM5xFV@zP!XAQy-JZ}iz{88Fh&}Vx0(X}voBB(iCU`2 zW|+*TlR7PI*t{PHn)}(Q!0WN6fImME7bG(yA}){@`Gz*ElNI-KH#-?fk0LyWw1Io` z*l0lLoW?2a=w7=Dlq4Hwf4z&AnSmfGXl&Hc)&>;eWU<^55nz-BJ*QDx@Z*zNrl zKzLu`uMq`pVCwX6Iwvg2%kF`U@zuF6sqO_Spg2q*V)Q@Br>iF_&7b4zfE|0r<2EGG zb0|EvF+S7fbkMf=L%pPyOBv7-S5U|8QDpl91H-j^~s<6h^q!#KXLSV!kYc!?OpQ0|9bn- zvZn0@7lVTC#_N6zlV?R0kdH3Bg zG=i%t4&JT?;ha{ngAYg~Kr?fw94UXGruB8dKIt-`zlGDj!{z@45;v4HTkFUNq~45n zY}iJ5Gi*}ik-5o1qmKYdZDMeFqZ|0MUMZYzK<}PBlR7u6nm$sFsVE3vVq>>YuNp*o z39sg-PIHXa1>BC!2{Ppl_!QRDYDrVq5h!3Y;+t%D%6~^I3#L`n3I*A7dFuCVf6Z)WicU0MQXn@wZ4c1Iwr5Y0(J?)^FS>#x{uXOdkGT_OLidc> zBv=d+I)md(E!ZD~?!JDPvVkRN(Ic#rP+&)QA@Q%3VbdFq&Z%~X==T^2`Rz9Fvvs$Wc7P8OX)(O12n}ja(RX2hCboSpLqTcQ}iem?j~4UxaMnhM!}=*#LGW))^v zSW?~gYv~g-O^PIS_wIhWMX$GgHt=8NRN8WFD0ek^5ggSQe#9oCC`BPW;dldZnJ}e5 z#-7dDF$Gb(1g2#_0BX-_YJ7Y}R%PV?EngmxRd6qU?hqVR2UQipiBG-At8;P%PBZ~X zXTK9{av@!LqC~$#tSZX)H{5>6)2VOZ{D!<#gE_(E8@(hJINr00EIMHmbZ9KL4L3TeFR-Wi^ixmc%g=kHPat#(r8(1=mSaYzR!@HjS{t+40)DgK$?ft(=v! zpCgE+Hv0<2Npr&OrffHb+5WuZ=kS_o>2qXT%+z{TNh>p4NKPla{0v_YY* z;;;$_9u%DkQdJs4e-|UC^moFL=6_60-9{pOhXO+dac0<8!Ld;z6^KKbS3<0k;fFm# z%_FSIVJBfdNIr$+hC-8kzNKqzm&e8mA7z8h)BLK&U>xFMhZMse^b@IX;rh@sVKCXK zkQ+eV(q0r@l?gY2qa_JQUICamt>)K)cLz{Xd-XVfX3(KpSl!9E!|1c#ysA951D#XVasw4SCQSl3=zKJ8ehlW!9y(^hmnEiS;(YiQ~=-TLmQN=O5`?l4%L7~(^l%LcQl;;jXfV8b3Ddp739X{?b zl?E@B#d2H>5hCnt;XFIO+G9f{n|?H3S}1L~3t4*J{=Z1F z&~k1VvTs0?uejj)jfl&&@eVGSp)=)vMDS1I`D7-$^z~yG5k)!T&Syg`P+WPbQvmZ) zvF{do!mJLcEg@JgH%t1Cv>ME7ZHihER=Mqd(TxVWdLN+9><(@FBy(j?)}!;p(^IvEQ}c}D+|LH%G}i+w zz)HcS6>xyqhxA8@jO50Ek*P(`;J~-?P`#sh%q{cEzO&l!O8*Ks^{;sOIiiDNabkJK zO>Pt8oNfqI8+$xr;r!=u8DL&`Ev-7F>(9JCd0yX|{$kOkMqpN4>0$ANgXq|Awme4U4}|Ph?#AQFG|01Oej08wrnysKHz=$3|>}Y^7JIlakNH~W zT5ou5HM_v&s!B{>ExF_;+w#O^jpW;AC~3Hhy0+l4@HBxA|F$Faqs2%PmeV+A2qZf3cO7tzPV#b36WcvJFw*?rQvyNbuR_6J=e*(S?6rK;&ombDY+d zmo)J=QNXgW*5fjG7MzpIE$F|z}-^I~v^^5J#AAPatN|N{CG)W^AuvRBAiW=5|wYv#lXyt@f zJk3XQh+T!yIVJaC%FoP2Q{}x&L>2G9Qo~W&+b@~nwudItU1k=4`3VJ{vI>*YG1cxxVqCGL92 zO1xC@Ov5k^frRYE@N96om2;ACadbB^;HORx<1jr}vUD=G%wl~39sP=0Cf?v=Q0t*l zIr^!T?hGB+9|f^Ix*&mPxKjBwKvva`&~rhTt$@oM-zrSbaIP^(ZM<)%!kuemC#`BY zSw12&r=uIZ?lzY*wDA>MFLR-0$E--|AGq;S&%LYRR_OjP)^N}i)2wjiWGe`;|6t^BSIRzT^j(0T3YRF=Z`qH7wx ze$1&V;-Lg3_f(N@Iqiy?m*?Z;zK2=!H4&j{Dw8jDc>sb2*5mo?lP&#~WGJ5$A1oelK1uY(@*~P(aXRvO=KwMAygF8i8s%0BZZREMWfbb`dfO=nDcZ{2hCBT zmZ7?*c!eru?DRr|=G_@e&}?GYr+|~QlrRQDOly(EVWO(OUQ;W%MEFlzWhZ!Ni|5jv zgA~&ha$x5EnDgv&YyI*`5xabfNt^)}hqz20=Sfep96-b~%X85XG@ z_AWDTt|MMf@ztN(GkX?eerGJUs}Nqdgw<5~PbBss10F=1PsZ$st3Bbmm49R(%wreA zN$ja0)sNC=s*b21PIhbqEGsNoCTSRmd#X5-NSb<7%A{q##@mn7-u5^T&Zy|K7@!>m zvJt$ycw&l}hfblVI$9-upyiCj@gsVm00&8HL9kgvs~)^^!z%?g(bK0;07mmD0NL)4taPJ^O*Ev`57Q(=C)zH)63%W3c>0z%)GeI>ft}nZvr2XmN z>5wN3>kqi9C)P@RLp3g<^gY62J+sL99n5W4km>AQ)4+B1vk{V`Ne6Z*OAL`g4utIM z1f^adXG+p8m1n^>{ub0)CF2>b-&(CtdM2@4s*icFnBF))$zs}Z-`}!BzuX|EH;{e@ zd!c(yau@~{K3S01p;P%h##Z76wTtEJWIqbKL77)3lPHRI9OH=k0V?A-D8aF77RT|e z(0z--lZ(tfkShjAxrLZbormQ{$|1@erHkP@)_}u5uODESmotub%*oG*5%n=Ne5us~ z11qW+h;L)@-FQjkr5461t7LG!e@9X%rluBaQScT}Dmd}@ zyr0A_BK6a~)N`Ax!ea5r-C4!~F3ZcE7GPG;u@LArWX?N|oE&YVC);@3wO7yG`hbAe z(TMu;bq~&SHVO&(zaXqEHSL^x07FEjGTB>rW|a&v*Z4e*|Gq9S)Om5K%dqD?t}3!BHNd2!1Ej4d~1pzi&ce~LV2#@+u-(Y^5&_ozDWV=pk1nq-&s zOr3qjo+U$3MT>B^-QkBnK{SQW>ai3w>uWwd`Q$6)Vta?Q8=ZJ;ji8D$(~u`up`&6&2SZ+chlc0m zEayD<^Y@y;&JHuNid?yzt>5jJ*}Mv6x~hSxT3JL|>`-ZKng(wfq56~dF3Q(33zz|U zm|>MY-|j zsnZD!{$Wsf$JBn3BMvv{EEQQ72tn5UIg?B};xla-*I9%*(qzAb50&^X28_nsfKIs_ z<(wy$lPD7sn_p9Vp)2QEP}abn<3`GTtDUfnU&0e{(_Uo1rmg>uW#`s3Lp zC|9(+^(CRbx@GVL!)#WDWRrlff&C>_aAg8l{)l8A`LIaW``g<4fa%Q`# zFX*X74<%1>CHx6)%_Z+?UhtPaY8RiGYi0&MUcKFW4pef-SG&{rx>hu*^0#GFDmO0JcKw;`zd z1pRR-;@Qr@*(G@Is-_RCUZS-bt@GOkFDEl~4=(B?H~%DCzRXv+D1vN5trT|DvPlZH zoo#<4%I-;y8a0t4ZVW&8^246QHkWbyv5EKj!+wJFzLE(`o4ecODe03wi;=i< z2e<=ab&K!8i~uHRclMqZnX15*qIZ4Q_D|-dgN2@6Oprl9!ee$TqyaRDGD|xM7tx?i8H%^TX4db0ZloaTzeBcZBk^hVufD(_T0Q-JGH6@?%?B|^B zOPU(fOfi|^u8JDuxaE-dYhIy4+=ig%GC11mR{w!go$gC!Rjyq!{r#OQ_?uT`C2Fq? zT-9!fhK2I?j=xMv*Aaq_3~fOkxwaMQif9@8&P0y7>QRdx_CAoQnZ0o3%-^)&mM|k~ zc#(1{n7x<>(JD&vi;@9uE3a%z@Szj>G7?4G0fgaFuts~qi~uRdI2yymw|;yLE&8i& zaGB#>>7vXiWFyy|GL7N~z9i=&vwQC)1R*^N=dy|4>Y2Wa$q2t%K?#bXyE7`zE{*^0@SHlLnOVgw|K_3&8dnBW6L_|r3b+Hf6)5cI2xB65^Hm7z z1sYCuQD`QbySDB<#ni#Fh*3A%ARJ{E$XzE|MamnhjPu4(&tj{UM*WQya z06NV1tQJ~Eabg|N#&ufuJa+zIFEW~7hNA~afVi6|cV3bXP|{72I6ZZEy0_h`>H;EW z;Xgi)=0$1XZ-uO|@nLVad1D9M(y|dL+Oo+mjkJH7S)GSkikU~MH@gG+ONBDkr6@Aa zrGTX6o|SB8)}o#j5IGspmb`$TOU+x}L&@cRLpu5VD;+ zQK7uYA111GyXBH(^%s-CajL0eEORw>P-Mqi&j~F}hdV$U9d`w0&k2jIlwi>1=TWs!!e-yUmVo}&+Xkiy5QNLHFfw8&uInMmv?BZ^sHmj zZFIc0QxTD>;{PQjGJ^&)YTURAY3K!;DFmXhu^en-%k)m2#meu8H+0sF{$uh70O#mJ z%f$7t^JI>j+Wtdx?B8gv;Tz2Xf@w(&fQ9Uko9A;)xccDCDsc$ldQ4Iv_p?b{dr9(i z<43!CtRYs)-3?!3sU*f(N=fDnk&Pv2(}MNeRP5%epozb}qxtRoL;rq;72>@Mo6GTj zJ8oaho?`4@0TTI3nQ3)laChC$9~sG8jO@z;N==(st*#nkvf|it9Yx((GG?JRfF%zu zZA@*Bf%4l#s@E7TWl^3n3Mknq4He1E6zTL+ObV>72^>O`^mq-^Z9mY{!((Ut{ zsdKKJN@xO!036h#eVvj#rO(L%MY3Iooz^u63U2*VXB^5p=-!GmP9U}vlvG6ZHu&$B zNR6K7p>>%?AUKTG#>K3W4GjVqhG=O^i$~iRjakB>9mAMl zP;%%G7WwU)L`021{ykYc<~!_7st-fSav@(atiJ)gJpB)HA&igo3?LX?-E;vgZQBGgo1KXQT;i1vY+w)i2BN?IGU#I009!5;2wfI!5xCTy9IZ5cUaur-QC^Y-F0zy zw|8?t-#Oop-LuUMGc{G!S5;lzJ^kc;9}P;y_BW-5Jz%&heT+|)Odg*=z;vxt7SE4w>gPCWa#D+d8H*z!MUnF#Pq9Zirq8&T;J_+w+ZyUZKPS@Hy zul=^A{n0^qv=Pl`7a*yaM4~P#rqZ+XN--f2jU_da9Z79JGui?|CZ%}8Z>R|T%0#64 zJbqCE*fUe_Xm%mN$Z&w2`YcfNQ+ne1SF|P(dWfNQN}F=}Vr*ua`<^vXO!!$qbTabV z-})aWdJxQpvK7m!n_0<7W$cudQA`^5QPIPWZljtwD%#!agx)IeO*7Ws9KhbnS5_7| ztV-PE63f-wsm^$Z$Ta7*i5fd{>2j|GLpXv!$UQhr#MjV}ny)QR1?3x~w_-0bn*E+X;|U;sC=)6Ajd60L0WL$rf#8ETq=0bx0P&5e&$mV$c@ zRc*@x6U6EOC(#Vlk=a0Xz+h&q#R7;d@;(`ttRKb1Jbzp1ORG35;>e-W*9p&+nAEcO z|GW!HUsg)IH`81AIKKPFuypy=_G*pi^3vxK)>c;a%I0~skyEdtg$U#^l}QqeB>0Hm zxhdX4Expu*7sQCAkI4j5Auf_{2$}=NQ)~>yc{64yelAfL2ID#gNteHSHi{Ck=o%wP zIv{D-AT~9%DO^6MO-)tWUH-_Y1sC31m|^>x%C7Q{>~K%&{*Am6gf-Ef)JFyNm$vNc z`w6Rdgv|5T$z!#w?QyK?Ctp{%S^Gs%hd>xjofQe8S( zQoyYlc3`Z5nGn)}z6R%(Y+-}=nW z!Y0bVdnD(|a0L}s{)&Bz$b>YipnZAfhm!pxxvP%XZ6yA^4Kj zp!Fy$sVpc5N(SXXu+d_UMVdaIej8xP7#P{rS3B0POJ|TOr7=%4(cPvqx2{uBMFHf5 zVk{(VdTfL$+!bU3*tdQwViELt?c7x@4|5bW6$!{wDV%v`O2v!?Sv0c%sbwu6rr%*` zx8gFko<#k(bz$r7U&K8VFn&gUq3V4;0z1QTZ;#)A5XB}^;FOCE{=|2=vui;Qs%80D zcv3vxCcM9Ki(%6qu)2d}M-s`j*=6G(`tfSuW)CesN5C zT@Y*;2m30E8?`n@Q5!MwmrfWyxM(VFx;iJg@j86uZ$U|PoS`YSLfV*;nM6$VJpuk-W?MA=++Ee5h!>{l(YWOARjpjFF3r&d21dj*(8* zd!d%Pl5xJ$bLUl9x2F?gAihlR4F@-+b4=0c30z*kNq%nC=<70td0P||=k|%7CG0l- zN2B+IQ(p6FAwE1<2XU#zfhQOKk8q4j)sjjJ%DHl&r8sZOtf@Gf^;i^J)<}Z%agjo5 zQkZkAR#M|q0}rSubFaqKK;*&z2mmrJOg;{7K_%E?;!^7GPyT^+iYDm9c2Gj2X9=;t z%scR8(=M|;W{5^sT6wqdG%u$N&2_nd|I2ngW@9yX-R@wSa(fUf3pAmrZPd#0kP>gN z6GTnDkI^{oEVL2U^x$-1=@3gn^dBg7WX%Hq^2Jl&h6kBWLw*tzGKpA9*p({Dpcfqb zfGAWue~4orKf$0p-TgUGB?k77K!pbpsB|XXOB6IuIdp!*Z6ch`S8MU;&Vu#|I#me5 zmNW4nLg1OI6o;=cl!piV#7vyAiK;eWS1;gaaSTI zO%>aF&f}@AC>uPT11Gd0V)9lP|ImuSrgI9$rZSgbiVl*bb2tzbVVg}H$VjK74-%LG zq7vd=4>28DDgeH-3QXZ7mbL-71z~h3@mH7pO(;KCe%vNll3{I?M_}UBPZvO%IWN*U z)hZTrm7wJ9ej|MY8+~f=qvJiQtlnk%YQ$O~nJhPyn3Ak_cM+@_9wb>GmW(Uo2*dENo$6g>I6zR$~c{o1UJ8=%^me`Q%~0 zR$O$e#069*m7neic4!kvzSgL!&~kLG<%y;U+nZQVR@SO6)rfOu{bSJ$nt`0MSy zRWLvmMIIFqdLBP{gEHF4&m;=ZohR>%+1g%)ckJca0JJ&A%bT@m^xxCenSB+jPDl@) zqEwfn+G2xA#^FO2(pk1z1XD&vcc$Mxk$V8_)fT6e5k~U9Xe{C9V=0v5dKxOWzOWDS zmTd0AXwOo&JS&Sz>3Q+Bt(;$bLK9rTw1f0=O|euA#G2cG(A_CKRxcE~E`^#=18VzW zKi0DzmrK3_uk4=?q(}RCY4hi8Sm;03LZ+P|`37eV5+!YrHg-2_P&*i@<^#J~UalWX zNy?%)>-F_}`W-)2SCie^+n?&`N2Bf`|8G(w) zt9KVhY<2#r^<~y1A2U&;wA!ra-3%BLhJ-rw&Oh5*NONVmjzobVl@5uG1Yag3{=Rr# zt}9y4cDyIvi=iNeN!{OK?#Rc`((3|5P;!c4~nXGzH$wJR58n4J%_? znrHXFyw)=}Dob`q@i`g-96vV#Jk4YC!^qJe;awRW{_}voJ$2L|M%B)R;b4zN(SNBs>} ze1TzIwRn zMA_tjcB7lDw6hip)VR*sU?+xtaufj-wdrT_y`WJFWksr+m7CIcHG-zY&Co)CAk5jt z_Xl5>y0;_S1a~So-2@ObTz<3|!$EKW@_?@kr;oT8^r^sQ4&}?D`kNer+{N!i_1_?6g~t0bKv*4HyLSR zqv*vFV__BBL$U(a_Q_*YU&Oz6dRR z!`OHfXFsjXf-{BSLM4R3BFS^P;EsJeMp~TTS(Y#r{{q2P>e3~!hW-!iHL8=Vu8PHN z8K!?lnAyjGXt9+F3_AEl3gcPz(5p3qMJEc7v1>Kx%D+V*&z5@n2k)D9XewXZ!0>}g zi9El&zs0wXRT$U17iWvG^&@I&L8DN6@ILnLo9Q6f(6&!7GTEXntJcmm=S;Z_`ih7> zMVCf!L0d&oLiXt;o|f$|Dp*eWXijk0hiZ5TC&ix(#1CYUs`N~s6(u!{NM)8(8sKO8 z;sN4enf~#x+28*LU6DvVapcEc_mnZbe-rsFUj)+yf6Pbjg8H}A>0JDCLl0ihzZj+_|AEy~wSltpTSN25p-oHUTSEkQ2WVFn4h#;emM zN)JmZS5yRstq~@PQXfI!EaGY>9q`k*bJK6 z4?n*h{}(+N*qE&pK_B$Z$qQZJAWV=eRYQ%wb1nN}pbB=-;K1H~`}%Pk%A9z=Lj};C zkC8^{AS%69@l`Vx0*NNEbaJC_>!FHdmLGEB-CGfyG*QNPNa1G=G=%5l(*Bf8P<_^} zfbLoRGC`fO44~W})rc{?iPGhBG2@>VajMrS8irE3EkfStmTz5I{}qJR#j~!yz$o6* zNYK8#O4{ilT0xd@SiZy;0YD(kG9jc*8x|m*nbnD%RjW{YvuhpNrQILZR<}%n6sX+t z-n54C&w@1y#wxCD<$fY^K8uQDAZ}9(^V`v2^4^v_@KHhiu`JV`31JrWCNtj;`U0Y# zNgibDwsS*-8FuOu(T}|u;?GR^$b!a>Aj|Po!Tt?8Bhdm`j?u^ugPLprVx+5}XDg^a zc<@_Id!|@if_GXKC~4d8h&z}nt~swFVn{TD#H0lb3*en*j4t)*mIS%1(xOTfgpz&Y zhxgqhspwOK==hXr4iF}bXK@mLHS#Q@!k+y-6)ZMJC1~|ok)fu0IsB#4 zrqPSzTz-%(y;kDY1pskH?Ns6s4d^=myPL1?aXQU|4X!)Fd3om|iaCJG@DqZ&f9Nfa zfj}mRN#6<%Q=DXh3Yc=xoQZHOTlHJNT}usd!04VS6I6zAFH6P!Kmy|up+d!{tggKJ zH(5an<%Kr^(G9&+A_SKPOnR0yZwtx>j@O_>VVSE^OUWxm7qG)=lwpzpFyS z@6_(JSv!G0=1-=f@=(t?oHw%^+OV-rA ze9Bv+8*fl6LQ9yQX+=OIS=VyocD0?Sth^&t`b4nGG*AU?_^zj&i>6R_Nm#59gxT%r z=tCOR*@ddDRPo^wJVsxPsvxM>^-0R^O3t3*(mY|`&c4a&u7*9uRe^!BC`D??8MLN+ zVdS+8=eus2XM5W-AjX}s>C)^a<59R!NP9OEFMBj!(lDgpcR5m`!=d1r)0@)*8Y6u> zu=LTL`*penDoz!+`m+x7^2yMRUI#tQrj)OV7&fC$7wMtoXk)C5qi)nz9XbykBr49__S(?u+AI%)G|!QxjYS z*9$hh_{{89Y*eN%1?U zs7d_#tdcWIX6X{vO0O&fD`?-{N08q!iWJY?L&~&tV4f1zoaXkQT`DUJx$GmeWIj5g z1{eG(N-V`;1Xcw)#tLutU$nJkTt_13>kIAPq2y2aVeX!CMIU&GPon)EGvCJMcBb?Ijd0rAaz?Ofl>)zmeoU*bFi742z2Um~xol~Xh zcNrUOd{gl6>m1#8jj}qlwkKrBOUpoIhL*+iJ9Z$#;+s+REMw?il*ECiL$t;((g7WbpBxAPbh|)Ey&!PwJ1O0>~@Wj9Y zmg0@*4k3w&vJhmoeMWY*BU|_5p)cIR1__7E0pJEl88vTf#*lX2oha%+Ysr6H-#{$%`}13lbvQcdp{a0@w*sNW?VOb^6r7|UF! z-L+*RS*9?j`hwk*^)YxY2Bf76Y*Hwah$hm`5aF-O2U`p;Dxj>zfwUyVrZtKz>~xt6 zY)#`G3$k30Pz7|5T>+XE3IQY;KN6KugJVbTmZ8<;AG*6LxMf7-+{VG)4o&*-6KWiPzYU z0UFT@jf1K181o1zB*s^3(t<&^6y}$f;NFY6}RQjEOaNRdxl7*~?%3y_5Pwnz?}FZ+7W}BG<3wjoJIreVDCE7~MIT z6H*8OyA2>QN;UJ|Z8a9P{b2~Q=yk}@WVX(oiOI{|@?alWb}D_I`xHL6-pRVIKEOF6 zwzL$5<&cp&w)IzLXYnJ#SEGsTK1svE@9R_Mt2b<-?^KJS*TEG4cvUGJb7 zFscSfk2nehFXiiSOMTW^7D{eA4?2`5wE;SAm#ex^31_!4{!Qodn1!;P))Tll(5R4# zA#LH19D{Co59#e{&lJ+slWRt~2mC7elIrw#&~={Rj%ks4B>=8jDixsX+BUGPJz+JM zjO++v(Y&ec-(ynpDoW%8EbJ-FNgoVAdn>z+M8m}!zZo+3^!L~Y@RqgrkYKaM@cuB{ z@j5Z80*NlotS}$uloYP?bFHNU)b4`l9khh9ob-hI?<4K4X%g2t7-v$)!d2>Tb2%x0 zBH6xGv-5Se9LRm}Wwo5Z+8Th{b5Bvf(q)TaNe*AN%&0OE3PGjh&vKZ!GIQ|8FnwT@ zqEWw6I&c*@df)7BI+g(qzk0?SCNWF}xV_NjapGuSE%Z-Q(kuyqvG5dgS#8%Tx`tRU z2Z}5BOOqoK)AMGBDfUcIW*Q$2d~24TuoFgS9{Ogbd@Uh^4?624nZ9I{d(R2A)0M&A zxO)QWkiy8P`IV`EFlbTOFHI?ZMXU5p1o;0x=bXC`& zUsK`P%pT$`-N@EpQ_>9>z5O0P>98~HL6ZJCQZN4McS z=3J)Y`i(P;=7V)Q7>45!bu(kpOIYHgDFp3dVheNC&Nmm8$yU4 zZajBoco6v(rYh;4A;)LPX|h9!uO$zCd1gWPq8D~JR}d(mIh@n5A`>tdokd+x5Lm`$ ztoAEWfL8W5@@#We3kMA@5F?YBMsr|go{0(;MV1?DQPxZdR>gK>$m1zoLIEi*h0pQ4 z-UbaZXW)M1)MlC?Xm?zqD4@)t8L^-SYeg!r{~L+)cNJTo)a#;f7R9ARcNbl363u;u z=AxdBg>Am*0 zhZlE&?CZ zSwh)!q!1JPjFwxv%3t1bdbu9s(QH?V;U?xwL?b^cfYXXX@fc+LBiq4gn%Uk0Z-wv| zTX2L1@%!VEFHImPxVW=MJA5hS77fFFNYC4l75G%XR+J{u=&OspeGio2$-;lv7-0Nq zM3e;iy@Zc?ztFpk>FcsQ^RUO#uLYH`xh^H#aIg-hwdT9{pNnFl$eR0~vRU$79`aej zy0|Nt)ZHDEIBtA+egIaCyNw^cPpO+VV z-W&aM&EY{lt>TT*P~4E$@2Db!ri=%^q*TyxCz+s8RsUTb4seFunC5e-cJFlHn?!yL z6!Qx5!k5wF!vgPAU{dDYAw}l%dF3xiEK)#nnPT^&Vdz}=xX~A^QLo$9+#jDD1E>Ao zoUg}^by>53eS~t$y}v|ELuc}o12bL<5Ko6R@*doN%9IX$ zL@=K0{O%WPd2O14y8oB0xvkUL)Tz=5a9bs|C?Q5fw-SeU_O%)2Thv{E9>scI05K=F zY94Dhr&@TzRX*ySat3i7N`E<=K`!KgBGEAyzpP#u9sdVGIu>Kcq3nfFZl~8nt}3ofx(+p8N1ON(vB~X>i}3 zuK?odaXOw35z-!PQOIs~*a2PPJ`z7{pCmT)$Wd!1aUEH9oIrniC+QU*#vfbZ%N-3Jx!(D}bD4i-Zz`cL&k$Z_YcH8)unA2fx?X#?i2> z(_{yW&i6SLPm@S?4^w6XY6)H}|Lp$-AsB9H0U{^OsFv=jY=*|chpd+BU{0&r!Go-? z@16L!^zq5zX+MUff7;BJln5o|)NJHX7-3NBc_z*%eW#3@8lFB1PZqvnY}jApP%3lK z;|9=CD50DP&hKOT)GBF;uNQ2`J@5NWkxZC_8J0bHNj44vkupB&5#$*3ix6jy(^obK z)p;#rCqUl^oD;kjg1(&sAh1~{1V&bQ-@D-Eg8Cug=#2qkW`dy!5X@7kA}V>Q^K;S7 zCqtnA^NhtseLpa-U%cC?eA~kYVTLkOCGh&hsa9W{Q?SfIIK0F(I%(l6_Nkg=oirEaG+{ z@fdYy#WuC!eTwDM&pNigf{>q!oQWfM#mJg1l_=8wdDb)SmRrPI5djDAa3fN2YN4RP zY4Os8-fkr3)V=k7?)tng`W#^f?eOzvjhN;6F^2egU!C`QGgP&Ce)JamzSiZijM(P* zGPfF4jZ5~>2c-JUX;exH$2a!{tiJT!fpxJA?Bg@w(Bb(RS+PJK=~e*6+&{nG7Ze!K zm^{u@Bifc*AIO~OU-P~|j)ImY3246jdE>*Kpqp~()xrgGNeq(F)TK1piWbi<6GjTk z=H!zLB>5s0ydnf%32yD4Z&^7boWMHUYm zQ0E5%2PkNV34l+I1Mc8F^DTwG(lf*-1UG|%KdWs%3nxY69GO$n593*7#e~K2MN@@# zCUVw}TK9-PSRK{)cZe-cF^h9>$0We@>~FOHtgBPfjB?8fu4dyEZQ*ve{C6MKF)9hI25gfbc=6AZFL$C8KA zTHd~?mXi3Ik}3{_cB*niB82kpOlHEiD)5C>6g|B1_3CMl znq8|Uj(%xItG8_*;j}toO3&<51(fwR(omI;58UUkDq?q3c6CSG`?5`k(p@0zHA{3( zTe|;3q4SmTF2(|~)}O}L5GGo<^8woe@uEt#G) z;v^2DrQOxQGpo)$*iD9AQREs{B91XiR!(UT*{i~3DCALq*nAAkl$SQ7wdrJS%r+%A zRHnmU?;ad4!MZQ8{FS_T5a;c@6pBb4*wW|7Oief0+wh+~x_oXNsZO`_&A>lB zX>0SVIkXHDJJUG=gV2H2laUWxXv8nV@~}(KO`vv(wM@*els7#dm8ZAt6X|PTm?Foa z85hHwEcaF~t2L6?_pnCO?Y?p zC50#S&qzlZx8C4XeUuabUe>Rk(xfu6u3tOxfIQ?L3j9$rQ{$Q;27_hy@2yuf8P29A zVwSomzHPk+tyfaIM1mpC$rQh&HFrK8chcY=IhbB1(Ikc>hh&!mt=YsVbv_x#zOFCs zw$i%n%DDddQ+n5Ic#`|_q>0f!klp-ih@Fl}rexGZa|zNKNW$0Pda%yQIlrWEWi%E? z(({)C@k?3Mp<_>)nY1keQ;%3_+QN_==%}!=X~o##ZXsp!#2Dyk+z8Q?RqOn7;ZEuH zRqOTy>|fXMlFXce&8X?k9nkUBo%Rd*g2Kr{JztIw(4B@??>0)ZeD^~CxVyYN_Gr9- z8>X8O{a}xj;;jl|g_0KW!DfV}i*W16g0wD8ZG4SjOt0POb2WF7=w+?L-N#TA+5S9n zWo{=?y>pTarmZ+be!NF*U%{s*p_D3WgPyimu7usRQH+GQ4yyR@Wu2RuaqPj_Gmx+E zcTxPk4DCtb5+}*z7hHQP(z{8Zt_eCBm%ag`d;NjUy|Uz?XnSH;$+A~%A`J!1F-b%V zq$xF}bUn+)Fj&PgUTO#bOtYnF6bs7CtLnEtVOBaMo0l1D)5rQ($8~)4*7rdO<=5D> zf(Hb1R|!PejT=4qN)2ISwnDjv7H&k?&DmX4@-0`w=9&3|~AUxpZaBtnZ$s zT>qdS{-RhwWx+$h61Et%FWx&fuvazl5&#Hd)=+e%Q1ieg(IiMiKM#>a&3t)rWuBDb zeK|$KB4SyD_KIde0X%*AmNHqQ*I(E^kWtS?+h$q?b61s_&`tyP-Ia=PRu$_HZ`C0Q zB4h^hI|G+XxEX*Nv&NPCTX8$KdJ7n0W?)G)0ujspeaM>goB1eZy?K11et#j?yv(Yp zy`G5y%9cu%g!Zy8i!Oj6{b^b~94T$Ata=nNf56+ntoDzJwZvwag@pm_UlUa8!bnhH zC~OG7l0VMTi&|QVkW~pZ3*lo3r*{fIJ&;{`fiy2AfpqX#ZNHGN-@@xwfwU+g`W7XU zIk!D>zYBu>C_=QsW>YC?V`bh-KNjS$S5!jx{$$}9MJ;b#94}F1{ms>+9s6I2JeiPI z+sxMIa>x_SR01YYJEhYRYCqAc0NlQ_fOiU)Fn}4qN^Hk0PU^q z5+;c}GLVu5aD|N0+a311gVj5yCqxOyeV6zk_?NqBsGs>+^VkHB<1xazdlI*3p81jM^_Vv>7%d>FwS?3Z`Sy78MOx>sOn<^Eb6qe$fSA?@iTTcYEh&HIfz&k4q{g zpD{(rM1BqiA$5cE zGe-cL;=~lK`FAs+BmG#s{RTZb$i7@H_&sf(GwA0h3OEQjpFsH9Jxpc@yD zWp8)r23NB+8i5l3DIA>~KZlIRVwlK6HIK>Khc#1`6>Yn(kV|zM($rLSOfkMS zuP?|2brCZ^`HRDM$Ev5N)@~Y42Rp<2NrlQ^rhP#NO-yXN9k_Z3^3s`)XHEz>4ThX{Qm4<{hDZ zlH+d@HBxG{`yI44yR6HZa2Nb+fK!UAc3K;WMNRl4x?j2RCb-=@t=$osd5kQX3Zo=W z_a86DPakvmou5z61HdM_X%8K^6U+JxnDo!O`& z5ywqd`CbwkQSjy5tB>)bS?e`ztH+*Ot{S%&XFYN!Uyh=rB@*I{iz3aLNv`kWk?g#+6KU9JAtNpd z%wXlW-Pgf~bgSOphb}9prq*!*utEw;r>x9Ssp<}&b8B(+)~~Zz_>&_`13ZBiYqWP! zTYo!04mEqb*0ubhtW(-u>aaqH!!x!b&(34EI2vd*YiTqFrlNHkoGBc*Tb$h?&x+mG z4l-6(yWZb@$0O*BH%lJ(jha4Rc|V`3KJT`(aJOIE!o8`r(ZqlHJPSL1`Q$ZxoONHb zG=P39V+zM#HdRghXqCx%1z*%qMr0T#=kp;RX8V5ke5p!sXSnSCZvEVDmvfpx}~ z<%)0-Zqd-B^pR_JK|+{=ZLfg3M4_bgmN-neuyuiMUOB!+ICv<JdLt7s+a^$0 zI6GHbFIwL{9MZ-xevQc>o7)s$ ztVg%0F3j^evP1uw^mQzmxoJJU;+Wh@NUlMC)lI9Yt?&(LyMUPA_Z3Mk0w+_w|14gXrFp1PpU}=Ub7B zT8{R;o0XV5m8Dpiu8x?9Z@=V#QicxqiBpNcrI^SyHHEoGctv$e^}>L1wUmf$W|pO7 z4KsJY^`hbr6csp#=ei{N9jo+pBXH1d|Hi;+EJX-y+`H47E%U#jmkLFgEIrk1)fSiF z*tQgRWcQy6O?0f<4%39;_N*nSH57LwG!`3Dsm;srnW7@WbwvtEkF4s^gW6nSqvs`^ z8l~!-8DkX#xskxh;jfkL;ctz_fT#1^0|R~Ny_W+%JhI1@V*Rf0)(ZcL+=~}(45eX{ z-R}cZIV)R*USqkWw0CxL?%hYHLIW#y9;+o0w}+c*@z&M_G-hg!VH_}f&k{XCwqBey z%T{H+oT0{YYOs?!!Vtzna_@@{@sTRQdfr%>)>4SqZOmxM{dKz@yIwgZm5UB%80(GN zvgWO)O;x6_c7kRpzeHYyUpw6$8LfERDUYwN*;?Wr=gnq@+!o{_l%IMwAybN2*L>9* zXQS%AEc)R^t{OYYSx!b_5%Ep{)fBiyWTTVEgx(I-)=iqkP`kJXtTC98FRyQNu`^0A z!ZE$EHkOTWYRu1TX7o-w(h~zc9|?04 z&DA?1k=e^@ONx32~reFywS!hZF*nAg(dI$nF63u zAFhT%g%8X`JIWQA`Xp}FWXbhD&YB3Fg2YM6$pf2BSl*TLC$ir3Nqy>E4Im;h>L z3MFiJPlRj~ZI#lEfE*TK&Qd!|h`aw1Jt1lAl=i!Wz0|W!i^7oCWp5GnN#&NkTnv?! zY>xgD&gN!>Dy2F0k6k+{POKX@DMETg@tFh~Y7-Kyt$XFwRP=odDG{(823(>y%5cOB z>d1E2L$x_MF7r_o80gVzdY{rv5L7hhCN=|?T9Ov;kh;|7xUM2ikq=0HCVM!fFK+qp zUMFarFn~r<&hMG#qYfidD(h|3YJUv$yA0(7^vlCuoY(phi$+qvgp&9~5-tR4S8?`$20;nPvHYYFDg`BiLct@mAz1HC?a`PfjKt6RrX*N%uuIB!&;0r*}ezPEs0uD z@rL?;L%U`Odq|RVd)XVLJv_Yh0&}zn*dKxlpOiNZo}E7%p&=LvXo$s2jq>CLLE3Mv zm%n(uAI&fQFsdA5F4@|USO&zU56~1)MpW*Ip76Ikptr{9pn9KmC%ZB)`emLX(n06MMnoHMD-UXyHo7%v!WF=*Dxtt_@4sUzL8- z`F+>Z)HJ)TA?a?;3q!of5La5N%5QVp=6|E2fw1#}kMxLO%V zl7U(p!jTi}8H|PL(pf$5U1(9kTxYiDAs%MYGiF64?IxaY8_yw#L_UPNGOo{BHe}2QQkngPP8pp%MpRlkcXQB`H z5y&_6A*!vkSssD_gd2QJC4m8Lnol45a~y=hx{B}j>UEz7ylAG?{9phrkLLq10*3K(tx6qgb3^}ao2Bt!0c7FKNS!!B7;`~-kcjI$ zvL4CS#-n>VBTZCYL-hD;?P6R$eOg^)2wK(8LRfO8Vb$8&eOK?yX)n&+_wx?bzFvd2 zsOFciawclAC_z7nsw*q_Yhg2X#$S#AH3?9Cc89OF=%UzWR_nWbciQBXoIBHxqb4R&O-C)bAWnl-~EJohb+ckGlDmPcWls_H2kB zO~#DQ^r$OG!T@&%p++hZF0M$>Y|{+JHIKxt$9E@87+1-VWL1c}<@_LH$0we%-2@H` z-t;6KYWyle!l3PHh4Qh~bhfWM`BM3!GA?tjq&d}1GqS4EYUH?(>!wkD=ozoB8;o^A&40vB=B_=8eejrcuxD6KAA43YDKqbt~KS1gE z=ZpdYI4FNP;FE^Z>~-+D{%7k&Y_F_WnGu#h%tZK^tJP7^2-dZiAiuZ_5g;Salf`Tc zFBSBUct^(#+U@Ay8Acnz&QlLN@a?0mFCPgJcp3PKyD53z=@~ z>N%{%zF*^d5cU$#C&$Is&mGnzS`xXz>+l zq2l!w%RD;u>zkfUV#7VQ9Gj?CuU$>A{dkDTi)za9&+QNk`m+D7KDECo-lvNU>a*Q= z^(|J!eR4mjFYKCv{)vdn6nY=;IoYdDHx}0nu@!RHYKM#au-L>VDeOkQGB0^G1qo;~ zg2G*eC(WYb=kJddg93;!I%w?JVqF0{!^4N7L4|g?asW_wjxFMV(=ws`-D$!^X4X+I57Hs1yFB>pkY7b6 zaoOURh@lw^bC-78pd!Ke7CPsDjxMMs0bhd1Er`y&<3vRr3x)|zCD^t<4R&jc+VZb)*OzG)!; zSq0P2#5@!vP@i^aEq2*Y^;T2QLbnh!xGkCR;mdNc1=*da$G+R1XCAXloy=Ik)T1%l*u-`DZb@_ zBx`)WWYvW|vDy%N?fX!KfHotJZzvHrzOdxXQa`j9^s!)~j4ot{shxL~33!l~?596b zK+q`bqOc1M14@d>QRi`_XqkdlzI)zc0|>NR{NHZ52^jsr77v4E>k#b^)D=+kg0RAIpPZCk)zs)E4z9_=A8nv z8uoi*6(q@I>IAzY3?Wh04m!NGS{w4|-U0y0wY-U6Gqy4()^lYw^??0?+(8QXGgo{& z)zOLDg?90%v-%rVuiSFUenBoUSQLI*tjMhd{K0>ZdmjXbva7#J7q~v_RM%aO`K4p- zjiQ{F5BqnM_&%Qca@Eh$t488so^4danexMXDRO6y(B{-0DP!Ue=tlbv)`Ihm6qm_?2)w@c#i$g` zG}O8!tZjAfz~7pcrhWAz;gc5ZZU3dXGmj?ihW_OrFitjb8~Q<5ZFb~l_x!`1j5P!n zCp(y(%2FFtz~Xrvw9fKC6TKpG2;{G3YL&JZDV=8X!agJii%?=aVzo{Le1s??E8E~2 zvF>7dieDr}X}tTI$WbW=z-~PEF zvukOeY@wC7U&lHoq*nq8Dx5o!6b^be2o$GBJ3_b>w&#W8_S6w<=y3-i`lg?7C0ZJ2 z5E15r^4M;vAdCKjmVf?(#l1f`zkv?C=_1Kp zU8uZ!Xq$WFyE`ad9QxI~e0pnmFZlm5#`xT5I6~TMHCPNwOqRDFfkb7K&SUy=??$p9 zK}p!;I3YtB#7YecB5w-LSxdbS}Mw zbazXabeFVrcS(1rG*Tkn2-1isB_-XVlH&K^@BRMVbN1}cnR{lgYp$8+xjjkM(p{Jw zi#On&Hw-w!Q!Yk>5sQMz)UHo16?C&>PVHo*(CwyqS+W@9y72l<{hc1K+y$I1X;Y3bi5%18>i9$)93Uo;=Q3i56m-6w*ajkNyu0 z$uPrlP^9_3bpCPm;q{1??#!w3At7m0wq1jhJ8m#`)c(SV>T;%nt1OTv2s$7NUgmUk zT$Bc&J$njAoxhAtY?$9sqm1ngQ{`zYaH$}gcjTo!iWDx)QOq@frIg3z ziPAlY)&0d04qv+MfevBG?SFOi)D~YmUuQ6Z0i8l(D&sCTEttvs@tI}GV`e2cV@zHEdprjgK0%os9XmVsQE zRHK%;|DjiAol>VjEI@tXVCcTD>JTDayg;O^!_?IBP<7{qHnlx*Wp^gsrp6x`6Y9&~ z_E1+dk6z?mUo#(lT_Y5DlU$>=H=EA$USp(l@xtP}?<@J&reBh`Gge*zVP_{_Pq_}TEZTgz z7V+K);BD#eIH`9@B2qXB-HwgzHxFET%o+`*N|Hrm@2n2Rj_(Ru7u8*xSZ6tcA6{6h zjn4@8Jp1~GAezoUDQm+Qw#Ntc%6Y9=2yZneVpnC}9;R=W*{cQ*tto|@=QzU2k%v{c zft!Qy^_(y&jW+*PjUQ)_%nXgj$lX)mW1qhbE>_pg9l-6;yHwaZkNK^u9Wl5ofFl@! zKliK>CZ`f6=-|Pn!~)R43~hKki}58_>>i=~)tBr*5#r6atwK?3v?+Nw)T>g@SA8#G;U)IpwX?I#HIj_hkcx0w3=_R$)Tbs1i|86j{OXjd z1HD@;L%jF$Yb#Zuimy8(wH?arbqp~yXh5A?D6eCu1$kUiW#(CpU?GN65cH)zoDETY z8nH$j^S2GyfumJfmHF157#C|Ul|afD=_J&!=MWI4>Xtec-x6ao;?$tjeM(;o^oTa6 zwWy%!Qn%d2dR-{AGz&0P=-Win=&pV_+pBSPF@XKibV(RlmI|qSWRMn27^Phl>WZcg z3dZ@{xlR~m4ny`CO(f85V-5JpHF=-G2lPsCl~wyUh@heA%Xhh(2-0HrnY|o>ODnOT z<_h(|SU`M6S$_fusl_a9Dh(FWWbv83ZxC9OE2xmz>vQvR`2#VssBadsLp_uIOu&wGGs<#+ShKW z4o#4Nu8*5TQ{C5m;O&mP!_uu5BHnJhT(;;K;6^7m(#U^mR!Z2DF3kYD7_i;^S)bOj8|#S&MDSv7yf;Q$rNJM|?*Ll~edNaYNdQeo3+u*s5R z$-8+&wVV6Ce8KCi*th=qKa3=QxC(^|Oiu|UKP7pL zv@E>Eo6y+Lpu-C~LuGpG5!CpN(x&@I&MqBMR4j`Sd{s+G*tElpC6gZBiIjHUn zI*yV`COFLnKA)c2)ipKKn=M*@We_yauI;l_i_FVUc>aJ1}&T;oA0Kh}lh^O28ejY+1~R+V-07LXb81obz@zgu55AJfSknekuq zopXo;%*B!3%bAOxs`$K9mPrHx`V?WPJ7s*u)kEtNp`p;=Ci;*Vr6Ci_$*!oxKTf0m zR_}pHjLLj8T>SS-GbqagK@?pDC2C!`xyk?g7HT+?_?tJA9I4I703Qx?DbUOez&Pqe zq2HbN=&GDHjk_6Pn=qUxUyKmoDnj%}12I4)bMrN4liDPu{d%+B{&Uv_<;lAq(Iveb zs5@yl_}=jyq|1QV1d?9-p|7Gb*-fg4f*U2z!w*j&dc&YVE|>7;liU*nV~SpX%uxhP zy$_+8cq=;1d`xr3Z-LDR$0B;744U4J<3HHqz*t?Ao%AoDH47;$K@KZu4wu3I9|jy5 z00G-h=Pps2wgi>^+(V8U)DVJs))W8T?>!h-KjTpsh+`6`8*wuZhEeg?Hrp0A#=j_f zfc4*8%zO9E_U!WZ-d$HG-dv<1CN#z5A>BBB1S?O?dxZJhd32Oqp-SvG#6LWIf7cU_ zo5XQRV@txz^?imiK}c?8N)&W9H$>sXb;{RxWwafS^a?yj*d16E9DpB`EJFG|)+k!D zxg~(~9DuTci8zRy*>$tjDm#D4CKb^H1G$B1j0-j(fVl}^^(!Z?~! zmv-p+U1|u~^-(%6?w^N@;P!4z&4DGcM8-IFz|dox&GiL3eB+2q|w!-G`4($hb)bNXerFI)`_0@33AFko1pLfJjJtW z3Na~vw~8l*AAURSphS4dh-@)C#3$eE#@Xj*_WPzCN^ln1J_fEIp$|lqhO3O{p0}Mq zHY=0&^x_)-oJUZHvDog4q)@kCJrjB1hGFcEMWU$kiC_N5>NqZ-7=&5(NHlsABA63} zw%V6E(9chugl^EEQh1rCg(S;by~zA(?g|-2zETs2V_U?R<^F&ZZVbFxdr{QL#2Np% zpW!zFiuaT!79&`!I*1E(Nx~XA7=^M|wEF47 zEMTxPICBSw>%FfE<-c+_dCGsH8K7AnM4LJ8OMVA*Mc>)Y^f8t>Zhxc$EKF}ZRO)!m z|F^!$+*Vg}haTh!NG1}a2NkIk19B16V0ZM0)2v95X#&=EQkGd)LGz<6ym*P99iq-B z6=GC1F~>iMnPNo%tackmDpV?4^%oVm)RmBEe?Af*H+Yxr%dfwn8>xe@HbVdTH=R1{ zA`NdU-#$xs6HZxM&}?RtO`P;$9i96cGXj7;yynp6%LWKyYW@t}4JO7=p=oKOKXQ3o zuGaI;-2sVzyfId4K%sRLHD}(p&bgXjp5)2ocm|ZnGznUY9dt%o;kZ(vt72CIy&HN` zC3pMF=CCXCM>L@SWPTGt;lpawkNdXit>{xH*XJ8ja;)?%HlVYAL+CZoblQZ_@C<5l zJ4ow(t?@MjdL$(2Z$q=gg46k!ElfAnnD;)KJaW|AFV_r-YR)9;6WRZjzLJ~TI&BL> zt*e=RemIu@Q{{{Fo+=q1F9Z$!1M8^jqi}P4{S!Y%?&1*Af2<4{W+s4M?8sB8_;I?{ zT~<HZCgJUUX?%|Vfug|+yVbc;wu4Umg45y>%cB0}_?1c{0H^eY)e zbC-(H#%yN^z`4eCHQZW-b1A4sXSfmqu|NLcGd7@;iwlIij0YeBn(Xx?``kDmCaD73 zl!zhqQ!n9-7v<2pi-Fbt5^lR|6Y_+BQYuWx2#GPD$imRWIG7c1qy5xB)f~unqX{Ft7q1C-k1Y6BZb$It;j_c2e%Wt4tl@Vs2hZDWI@SuJb#We zpa57%`2wqxa{kOD$BHI)@Le7T3c%CDt$WN|36cqC_|C~pCeX}TrzSAN(*&?+Ym9A^ zAz^5T41_51Zt|3sJy-h8iUN6uICk*$A#Mh?6cBjN(@9#Kx!x?1VYRIEF zDsqx$i)YGUFWvQGyjR3-l<4e0Oe_fCkFnuJl~uiw=4GhZ)1?MD9G-px94#O0&f?ZX zt!3N}5rjElBQm*7dZglX1V`4zr*dxL3B<*RHg7TW%|u9{e__)@``56c{S-;L?;@A3 zB-^rmv_k_laBAQxPj^LEzOrr{N^p`*8(z9`CdoV@L1h~mgKO-7SYbrqTRW~^p+_7U z$>)P+uHRfnsSCw2VMn>R4nJQ_Q$IY6TYnDnxm;*RxnVxPH7REXueYnXi&jeaC{n-S zq0)o@9$HjFG8eoEW<#7L{3@#t`G~;RYd2LCCx9n}-BGFKJ?bHej05P7ZY^7=S4#A1 z^pYDqenF%oAE<{XWTV{-{MvnyH@yx~@G$zyHU6Mab@yG_SqV|Gx*`omh^os}r!z~O z{20yDH|Q?k-ftMtpPSbjQo|?#h9=T<+QkZyX&Cyx9>F1H{|?Ej~I6f zGwfp#C}OU`WglV4QiLBqX~j_YeTo26K$cKMW3g|7<@`OPx5fjiFyerglP7HT^@_&6 z$Q~0?fM@0Dy%RAc>Y*3tLQ1=G(Ze~OAz}b=Ov{9kQVt_>_Tz_m+fx8@ zy1OYP49kE|^GXP*Aa_c7$Z4*iMhuEIq#Q4_7M*FD2qP)VS$$s)MmftI)~Zs!Ur`dA zK-Y}5N}g~+k2G@9OWzj;U^GIMRF07oIYw+Ul|w%fH0rT8!o2bqv-HHt-`x)IfA!cI z--|ZtV<9}zZyxcVF0#&rT?rIq`pkrSgs-L2kX`0+BA~u$s-f&rJ4#-fAFk42Od^wR zTvanMdLM;vfPyeQ=@b7kRnAA(84ZAFFQ|L?9m*&-njrf9G08uBHx^^nm>=FD& zoKs8NRv8I2H;tHC|0k1_h5(GApI7Luh@9C6#*bb-R4=yH9OB=}WWVnIW}&p}5;EB2 zW*!tWbk% zuYney%$V9>@`o>SN#jJFvU@39$v}gPYq@HW!5#?%C~lFmU6PwH>aXiP6JP_|4{{lH zyBZpRLm^v_2(_|VR~G4j3PF(cq2KL}NQ$Xd?RE1%__&QId6k#FOdq@);Yj(XErT#} zlI0%DGg~I+$1i8h$Wd2k^_aTX4VSXqIv!fRQs#d-V*M?4hbee4sUM^)6s85hb+6yGJL1ot8Z5X|8WSUK902I__;_2t^g9AJC-kqeO}ArB!FxGyV#tv$2oi zKBi0M%Gi&G;1Q%p*_VXv`T|3$K8mREYH+5ZED&fE_(}D9 zYngc2J|L0>bk}bge6{r-9uB(Bj7452*S$%qZoIkuVQ8*l^2)+_O-8$OjK0g|6cx~p zv8$}9LxeEEuMJZg;^@6a>zvIbC`ORJ+z4dP)!8#@98jv;y3zMm?{r*LcF7x1OPp-Y z*NM36Q4$g72&Q{DIL~$&@ml-OW&vSdeAhWsMY!F(&>KS*F<({yD92>+#0MXG71osR zuS~B-9N2;$v&rIfdNM82>@VTIP*hZW$Lmzz<8Wf;_)4v=Z`SK?LQ)KDi8H+|CuY|F zOtbia#z-CnyJX*t%oJ%_UXYW?m$2G#L^M#@XxAL0mmprBpJcgG`QC#CuWs^RiQxVP zh~V)kog~upjLFxM3GIG|mq(v5;Mclj*%O0ES1^#JTdB}z(gPY3W&eJWI3y3{pWEeA zT-*4&w{&%T^pp!`Q70L&_(RI59gd!$%VN)^?{ZlRs3f76vc=twI}zN`M)6~#hr8n+ z$QO$PT3aMKPU=R>P!|ol7LRR3IKG}Wmf>FG=0fjukgy+7>5i?xs z;0H0faAFdf1)K@XozBSe{ATl@Lh@3`Pbd)=EAfeDalvMINN7kf{j7U%{=(aUIa$Jc zDq93KOg>V6V&yGY`zgYo^K3Zba)pf8HWx+l?azpZjQcT;(ORnH+lKoJY#qQf z`y=c7yD9p09eSSvfpH^-$E(Ra<+yu08_~vKe?CtnY5ih`5$aK$kgS*I55V+$lrBSs z;Wvv-!bx6@1MtT1Kg>bjU7|~bAq(LUi<@Q&;Rp<@p%122QbvVTfKrL$0_-vlaa@r_ zb&N$TS>2oYFG*a*0k6ia7--b50VW<=S;HpCKhHwIIkj}sE zuQg()gZL+Detal~?`|?+;8H$9AzhYD6TOwZYQ+thmtP_~{9m)j}cRIxfB{G0CX zgonC9)Tfqv5!r(`1c00F9zcMw6QLk@I4{=7++kwlMx8%w5b0bCE79I_qvFiu_{RrO z@pi{2B&^Xpe9~Q_28>xL!sphML^>5nCuFy2uqd%#aorrSt_pxVzm->IYZzA#ij@jP z=lob_lve7FMX$aflW0Hs5Du68ln7?bL7Ib3f8wOZS_(oRJe6~OuKd+7M~V8F_KAtx zF)>68;YSSecLj=2p~fx|Dc{h_nm@X8DH8VIa*;7iU~Fc{l1->>sUOGaC!c zZ-zGLPfGXd2^e~AF@7`{bNvGnrFg(C$ z$?T1w`&jFoV=&8O7@i-W=RWx&emyZ~Z7@2k4kIZrSM|bUL{%hoPxv!ow+6wBa_j?d zjxAv#dch~P0G-#$IE666tLg0e#+BT^?o9^~HK3j0Wjcod8tT`@g4`Azjh>>zub@E< za@>eA=1$2Er|-hW-BM2Wekh~}S&^LDdID(wFOtDThk zbN5xId9iqu@WHZ@XAnNRYr1&#uhpw@?`d=aT(wq*ex_Kip2#Mw6FHAneJufymqaPx z(uk@n>WT%GkAk?!ksYs0OI^2*vDd#}I+eZwV|0ym(!PLP>UHMQ_`Q-rv0&H1{KvRT z-2mzL9B!Rolq=ob)aDQ)2pHON*rw3Gor8f>JC2PZ?`HYl;IrSf1-d!1*b^CWq0|`T z8eSTj8gkHYKE0mGhp9YohNWu1_mDF=9JCa931MsyimqwYJwaEhu|dK5J=2V)_5)YS z`$o`mp;UG+BYMF29Yy$|=1b1p!3p}Rl-_3KaGGUKE&+nyho4+uPSS-Aa5OiJ#!9l9 zi>{C~ZPxfAg!g2aHQo&a(u~A0nIKiX8ysN1>Tbqjhw+a?eM|OM62f7C&W7*GWX9hFT|RSjjvgI0J(m%MlJ3;BQEgosH(pJvw^Tig3$X@YCaHt zuiG^M_j5FJd?XC1h7Fx$PFnRsu2VaRKtM!*GDi^mHTvJ{e1s8>8hpJ4Cn^`$|&8XBI#Ppr`1<~6?c+lH(Nw7e;7e^*9K;!G` zj!2@?m1yLoe(WGD&L@jaNp>VwCg~8KEFMLdFvx|3nn{0sF8pBw69iDL5bF+*D`Z2W zu{DlDNVRcc?9f-6S|BdGxSusha=pfk?JTO2T0X4c0-*J zZR5|IhVNfDR+Hl$_cTo9u5Kk5uddt>*YS(1$vX77O5BP;6PHQ^XRvP6rN{DV!-|dGW1R$&h~e z6#~SD+BRXhd6~@B1p5>w4)Q48;))#_TM=exnuM5~7gp*>PsV((PFPy|2Io0Xg@Z`h zVU~J9$Lj+RU(dZ-uz=f(Dq}A-!*Cpi#h0diJ`!e_tF~I5(+)KOgy7TM1GMc01aS&dn8{q= zco7>Jg1YhTB-+DnMp^lvbE_(Q^2`U3)U!9Zex}wf`Dj?uDG%fV+of!_x44#cfEei) z#DWzl6NLC=u#tWG4~n&-hOw_aoIu^XG^j!(m56_(wY2m zjOPr8O^G#Szo?-Bo>b8l?ria}=<1&A#AJ}egZRjmxUjWZLN2s4@{^CJI)IG-3L*Q* zMA(y=wd`^GZY+c<6^h|Llwx`??ILvRBL042L&SOPgm#`=EDUCN1LDkYw8lVB8X={< z2y{mF1fr=EnLRU*z)mkgpvX?9MQHYyYG3Fny_#l(%9!;Y8k4O3_qe33fQi*b=Q+gz zDX}keVa~vU1gSO^4WY`*YlbFQfrKP;8DLGY&zL8Pwzax53lG8jZ#xP-t&yu>QdGmh z?2HRJ+fRnE_)5aUy^9btsw9lKw=_w)i@I*Sv3z+WlIM7Rr@taL{P(&i995Wdc=&zTr4l;vQP{ZCWN=D( zwU~97c5g!m6d#OJ1r{6F?fR#>@+;s#CWx&(mm9*Grf;69f0{A&`u0 zIimnNaXwTfG09)_b-Wx=s2d=t06E}^B{f*7Jr5@%R;uqt3=b5U6Sy(0bUw6WTJ(s~ zuv111?=lfa@uhUKr93Q^^3+X2VV^>%$nZOVQLd^)e8%W-=11^peeX}?@Xb-6oL?OKX84*D z_8kCz&WAcx$DC>Fau;lVn{e+p1D^M3gatv#kqHpkZ4Dx)zO1-uv2FoQ9WqlvaPxh1 zMSVwx4p{t*{4Sz0RwZq4ueFE-6R7CGo*_!w5s@jaFivFSole`72t1oM_l$nJF+{Z# z@upUI`@^13!`$pIGl!L~ypAe#KQa$>vMRI2U}CYoqgBWhh;KB?)FS6#K>DHc8)5iQ zyFn)e!D*tV-+NZXSW#4c!yCgbFT0i2=E9Aw43ZKhZDW@SvPH`UTI%XpumEiZB_4#8 zh`7e+C7NOO=Gzv3Th|P(<2-tJnE+O)RHVviyL@#<3lW&&o}jbP`b#T^X4jA_0$Lc zU{2J;bUbqC)6ywIs1cfoL87~DvJP9`xMa8ETe?~6XN35ac){a+ zd`T#Xz!DfI|59)ov8&jf&-`0SN{6@v=iN)Y_57spg6-y z%^}ST5V0RCHm3ERIq;6Ga!A*8KHP-ES-Dq?Edki4XOAC1mMx~tOm@V0y1`-Rgj^ritg!C7m&o}jlB^wP%>HXq*I2ZBJ7s%}x zLW~L#Cf6F6QhVPsECu_a%$D%QV=?XUE-I3vc~W^4aVEXB@k@bOD~ALAKXZ1DLn1Xo zZfO}PQhsogO!N^`1D{1mhkY<`i@35ox;X^eG{`9uzu`-As;PE=xjd$0^8}Wqgo*9g zv077k_{{ZBbvTc65A?^v6Qv-tfshDki-AF4?Ui_2S`(GIB&t@Tw_pm=gLnBGa1T1x zCgSl7W1(M3Jloafu+-|~#ovm6xRs3U-VP%D{d!(D$obG9ee$zb4@e&DkAT=ghp2w` z@YP2CSk}#&ncaoNXUsAIi>WAG$tmMEm}`PuA8;_A4lFSe%GB{pu8Z!_K}Ni%5!iAF z6V~SFRJ7CfA4<%Xm*ym&S~W*N(agp49=Z}s2X6U1{~hP+A}*5S{q<_3z#h-wZG|)q zYB#FcmQv&yLK?QZcs9G4h;XWeK=4^oiv+i^F=M^~qKei?G3aNdfzbl7etA7%MEQeM zkK|vGc#ju7WuA)*`uvv*2T8hTWyZa?=#fTvJZC2XW*>BtNOl9hDaj*#AD#Wt;fSh+ zop67$G)Y0QYCvy7$6+9)8Q2EUA-h9Z2rx(<;fF<{(@kaTD)r?&CrRW<01lG=aM+EVgUiY5W^ z=W{tm{s)-?G&k5cE(~)BYIrf|P15WOt^{|B@B!HLXPYP(CjK5p=B^YC5Ibo_0%ny` zA^x>I8iOrqL4^Vmi|^eL5e_~Q{ru=nN6jet+k+>>6&NLf8Ol{c1WsngaGy21w3Olv zP8+jC#O_G5FIdd3|9DWV?^RKj54(Evw!%fwHdTr*7#H?amkctF8a@c?w@UA_nHX_Q zCFxf3FNVjlrc75S*ZmTp(GT-DONJ|A(h-r5tj_T8Rwalzs`}5NJryb@0?i&p7v_Q& zge9@cmC22cJ2HsGS;oh9$|2qk&6AeV5x@cheF!3JY!62_^-j@@4FM25)y{!pzWZoeMvDW_apnWrRlnD?3s-{0iA%O)o{sz%QA_oJIP};SmPp z$_^eL8Su?NFLTt?p(AOmbn-&Gr4Q(*cb8Mev%tD>kkmjtZNqok=7<|tUV{Wonzdr6zE=&i|j=iEOhz(dlH3mQZ5xVC1?_ZFls7R``FlEi)yOlEVYfU`ObmJ zE76F9bK}@}P+Mq7yU2rHPgfQTjmQE9xVC$9U|J{9+%fgasp;i_`)%7e@Yv|M_0sXR zVt*VBp4&+(P1)axW`i9K@`3aZ1<3-m9Y&aOt+JFALw7XKXIZhhV*5xkZ)k#eS`_Vy zf8(!@39H?$IWAe42XfeY4YB;n*>U9WqSeUfHVU!cnsjohm~xWL%b`G)DXU^W4DnXy zd6reB%_AK5V|74Y4$e1(FzHb6A+MTZ#Mn~@ti&z0C9|Pk;S=&3uP@J#F-C#((c&J) z6Y$&cEg${(&KGBeT(S4lsn^w(glf{sYE8(huUslrU#$zj!pvRP2=QO3A67AMA!UEw zIy9O1nG&L+-FM`Ys)CG~U$nT)*HqT(DbO^`oD6v$hkj`0?+^|=?`!cABpD~^AzJAq z)t50vcz+@TD?k~%P6qC1+Tu;4PW?tA<9j1tYP0Kd53H%HItgwE!sMS57gVO59eTeNIYhEV zf9EAz-#AQRej9*oHH8JyXNp-Uy$h81Gq3r#^6x#6qT(m>P`-D&j9!b&82z3+GYawz zr)~jQh<~r*O{TP2zwcOk-m9b&QwwKlN|9+k?J`y^@1I!+1We z3gbrc-k*Nmw+6pjTfTeCcd0)>FKfMmgWK{nk7E~RCT z_Ilg!)KD+;=lZqi_TJfJ&-Hmp(gWwUDC7%pr$D#R3KOeu6glsUzGfO*gtSHEugv3s z_Ny==T3p&`miIgO@uKL}w_wG+zrRkz-~UbW6Zb|K%2mv8KrRX0rBrn}<02E(6U9i6 z+)nV!D;hy)iGPPQ3H-n+s$Ipi^x)~6D0~`1lT+oDoqdbYbxZ$NiDQ>#X`3zFb`Pxi zA2#BD#0O6szNM`QoS*A)1!Q5W%H?{~e3g|eBT?wmr^ej&Yo>e|zDOxqD6shF=RKrr zX@ukQ+=oB0bhr96_}9DmIuhbOnD`WGBjL~Ey8Vx-5^sOGwQ_6eIyt_aesdx%{h&6x z6r_1J;+j;}ul_0^f`d^KFId9=q_RNxEt}dlYlV#k%_Kuz1s8lxQIKCn_M>WK))bF6 zl`V89iG?0jRXJ6@vOK_Ef%2W)@CgnEhetnl`fsfn_q%@85S3rF=#sVu{G~h<HKk)+`RK*cO7F+%^7xeAd|2bsPO=KH~|+t zER{k|UCT>!tS+-{yCVAvisQvektTv#40*x7v{@g$Fb*F^8gzAdh^>^|W$`Awfv==b z7saFwYWu~heOSh;OcxHOO>}%*j_ehi>=V1~G9EE)a9Rm*`NcwWjllW$w%;_Lwc?TM zhLzu!e_UWce%uNlt1WO%@&3C&K)fk$bMM!Yoww`W%r75$H+W^ROJ3O%bbdyEaf?S7 zT#4~DRqe4iro6JD{{i{^_V&g*k zM$~LKA6Kbt4aeF#>aUox#le>3%d z_*gq9c_s!55;U_h?|(rnMuyG%P$P+CrX&dZ8Rhg9@7izoYJB}mAx4N`K<|OsU*|-F z6vTe%ak9LYd0`M;WJPb&33JwgNj>O8s!&L?#qvFxkeoKWCfsHyvj00z0a(ai+wJXF zGbyU3K9R(xLYs~HIH6EV*kyLEF9wJH%T-ejkhk9{=&pDRO}t2tyw8@)N0AvUhXp+M z1~p>FkNMDh8~OsAX&Tp04j+Q!K{uyhy4Xkp`Ug=EM6GdPzW-5f(12Hu_s^XoML)Ud zx(DcdH*^w2sreh^x1s^HewXU2w8-oiPNFFOv(i-g5VZUmOQcpDIZcN7b6z{b#%Yck zh<)ixVu;{f_dY8XDnsVCOD&RCJ`)NFd%A-LfjUJE7xLG^dc26l^9{yzG=F3#3t)o*NFHfQhWxoEV}J~FMM3QY)u@*B!<3048g|E>O$NP#!k$&~|b&O67`#R%NwOzY*C~d^6YU$PG13`Q(h4TwhajvmvDC1zFxW z0|n)Tl3oT24YKdAOJMXY-j%k48*1_elFAgBl5Y*iC%MaZ!{F^{pGmiuSS@4Pv!|;7A5X-&Qyy;UxXgtAN&OSUi%^)aX#hgG>c{6>sLl5uNLAcG)D*jP5;+KvD@|IEqxjjpJ zd3@x4YT-eG_uUvtuBZTL3B{N<|2e^+Zxo8Z(?Lg*N$d?~v{RPE18(G8;sbgZWi_f-R z%nfAkov5mjs+x5rey+%Bl)+D3(GZ^_s)+1+&8t@!`0$<74tj5CK zmqXrlXGu8X--!&fU9s*z1P;IzZ`|A*!_RP_lL$OGNa2HieC_#I#9z38qeXee1~;E` zo5YcQ&bUP`w(e&2##Dl&bMkz$A)m1!W^@%-ia?Q|7Wu#N?S4K9}lx$~TUP9)!#XD)@ zv`sWI!tqy4xU)4}T>9E&pxwrAJC%cMf%6o=!m1Iy@BnTaOib^RfJc&})$Gm{C{ZEm zc>cm8LfbvREkp|A_b%VhA{8kYi7HNvY6^aSh{T>>=pkkc28@$rMq1eTyfo)>Fcn`x zv8t#9?s+}H9=U+kdSLPCU$p&cDfO`BeF+Jy3N)f=C;W`RoqF^V&mT&!qjG9*h7pFp zWiE);%|Oc$3w6HtKK4o z^9Nhm07q#%`xaDK8P;BPc!g<_b8Um-or;3;iW{$EBq2`A_)gcxm5G@&VZXgKhGh&k z8?&a@0d{mrq*y(u;(;9(XKTLLhpF({r< zbjNtl6FV%?_}(LAJZi(yIDLg)HJ1_zYLo3+xTEDnvY#!u1xkJa4FZx?n?nN z3Gy!EHF7j>p+mgG!YZ&-55pdv19e=Y1Q2O7yz<@j)OU$J3BMPsi-aRMx%u6%6_+Cm zpH-vhe(=i=x$c})tjEJavY|vllfHg@2x(L~I6Hh*7{fpE(c0~ufM)aR&n~x{fO&+$ zJS|Pg;+8avs)$-% z_z!IS?#ah8bV7|FJJYAG)_yk5n}>bZQENwGAwv4|)kn8L_M}fI>F&KyW-Pfne`_>T zE4+MkmQ75oH4b6lt&hWn)sTLM_>7S*C zby`@>14S+LD~GYfEY19E4s)$6!=W)1@M00_oZQ9P^UnB&`EI=+k94r z7!mlVCQ{jMu6UW>um@LmnvUC~v;VoTtRjjm#Rkps9W&nBbiQY`%gJ&vs%?B?0Xl^k z5l>hK+MHr%t~H1P!cVSJ8rJAk6L-kMq1lRU#E$*}NZ9>iNd0`-aeR@eUj1Wx@Y@JD z4)2f5{w0eAT65%0HF*lD6w#fZ+>#om{SqW};D4qSP-;lA&Ay5yeU`vcra_(Hb4@Ua z72*HKS`jq3Vx9Jxq3=KIM(($tCoQ!{mHrF9llnGI-R;vJT;&8Wt$*Q%6v5wT^<-MK z`asoqH;fUV=qnPvnkB1}8TwN-*yda-{hc)96Hc#xv$FDWekvZj+{uJEXAek!v;;3N;US}F z66Awke$@k?(!WNujIN`L9p*ATLOfWAefE^P=#Xsl^o5`igg{K&Kb0JIJ*h_^!!rYn zj~BXL#P=yXbjTZOQxyH@-;Te%vFp{POBC+FV*$$z`zxA74ffn$;-PgL7q;oq0wo2G z1^zg`@Y79YWQPw;g&8%}?NIaQsugEI{)j1y9ohaK@JLAAhFBbNaQg3hhZSsbGdZgHL3!9k@91F?L$=3>2QGx zDLHY=f8=DAQFLwWSz0EgQkeaby${oY%q+^A{T!H%)3Y9vw;r3=U~jTRG?x5itY7xj zOkUerIkDKQiU(-i%=qiN%?zoGB3EYGj27RO!8~X<1D@7*LayE9tW)>?5dikvL-DN2 zWjS$8%XfolfSL^6DT352E>Rn*$6MDUc|29UfdLW&8XtuvI=k;wJ?tmvn*(yXgU5m| z0hW|lY_h;U1|20EcFULmOxvf23r!9eDf87XC-Lr%W1RAS!S{sXy%oK^jHPc?pjepSepqw32vm=Kb&gMs0<2OEw^!%O`@GbzMyMEox&HJ z;#1tJOK`xa<(`PZWs0=;oqh-gT{N6@ubIwwqz_WOO7_GZ%D3xPg~v{^==g&^xx_4Q zI)Z{yCx?bP=jQ_=u!rFP}qW z_ZOX7W(HB5kqf{qN}HPTg|V~p^0%@n@%7`;+}~b!64)(c@h{3yz8S8^+$E~$`PB8{ zGkSudR|;fw*I+8=>%8B4Z^yqEYD!GAa>g%TQsg1_#vGKVOPPT?^!U!L<@%QT39@81 zd`LsB3*~@=Hix2ZbISUhHHKP?#`dSXOb%3~d-~iH)ct=0*=GAnCOH^!6yUAT zR$l$jxK_tO5wAPikt!M>LBK4TO^Dj%vy6SQ{ZA~9`g}J&UH;qTW^yw_^1G_uaSK-3 z?M|wX4Q0(yvpwcO+^NS?Gls#4UeXG85~ywf|GZB>yNPV$hFt3PldGD5K8+gubjlF& z=%n++zzUk`ZlZsuY#DV<5#!hr%m>O;7eNCER zQ4sq+`20;nYKl^PP2Sfc|6P=jE~ZWp?_QHo>hsdyoeK2Ktrz6%~JY$tNB;` z=e@hbix2acpQ!REpV38P#We3yvM6B&<9|1~%rbX*$oQ0kOwRe^oyzB%352T`s*kkK zSXKgWXrwP2&2jqEKZ6nq$ifWkUwrnAs1g(aYO^Y6K=_6x(vKKGw%y(Q@aKuYR`W$T zEH}FI!@S+q9tX>Cida%Rx!nWuWM2>d4pnw|f zC89%ozc1lE^$ti~u)r=sz&?MJ?`8jYRaB6Rvw{X3gv}xRNW`ye1QNe3em%wp!gm zxL=kqn@ULaNdwmpotYRewXF=|@j6}nNnnQnq(Mj|@>4Oc!~xX^=s3Pc)IWw{0`(3Q z_(L~gi$6gYJFMkjw+#Yb8O_X(45R^Ou|n{dO+m=#8g|1y_CFg1#h4Ne;co?u@Xi;7 zo3~t;_O@Q|4*Y=C5F~4?H+qJ9-yJ-lUwc$^;PUMb&!OxrGy}RyLErwL%8<`X@+{A~ zYf%f5(Oz*POlI?g=0konJXvL(hyujF0Tk4F!C|yKgt%+_xpE`j9R#!9$dDIRqStJA zSA&iEkKKWMJfv*?dFz#LJj{TH;8L*mI!vLz%-(n3a`AcGpvf#^J&+5Ia8+M5^^At^tKv!XYBk`!6 zT@bUP6hQnJA@qsiNdW!>3SGI%+5NHq&E@;vXct<_XMwnHKIfnBI0oXH_9pg5H>K_D zn^#7X*0rlBfd@IJcKoQne`n=5id;Oa7`r`=Ty*jN#g!6f(ARezp&7rvZ5bY-KK^BdJ7U&c?m zJ=+>ellC5~AIORZPI24}W`>WxjfD;=z(e z@@JPKX+|-h&cTT8nMi?r;vu=1xS7%8T~~m_8_pGPSI6A_SZ5r)91Ax7#Fr}T%eSuz zKO4CKEe3t?9<1=fMWL4m_VbOhV%A9-0#Jk{ZNne4+@cyP8j{Je zm+Qnw8}#o{TS>%K17G>m?yTgG+0MO6WJvh!lvUsyMLa6ZyvO!7#kaLLsXg?4)Ll&L zNAGk~WL4JmmB_*+QpWiC<#i5u@AP}EAjcQb0o+NaSy2-@Xn^~i=U)U7RA$sd3l=p$ zv?@9T&%Oii`@F*WYVcc~&5g?!;6nbu2#G|Ch>9ORXei8woa5Jz(!u!^#q`OSo}w3p z?aA`zX0)!?GG3_U8v<-vNOjq0Q*2Gq{(hxJcZBS<)SQSqABIo;P%Gxr%$$7li>@_= zLN)%6t+xz_D(c#X2@xcv8w8{qq)VivQ(8c9Xc$VmLpr2WkWOik2I&R?>1OEefnoR# z-uLr7-;ehf!<@7CUT4L1t+n=^nOC5r@`q+RlP_z7DId_HNZ|3En8&<@(4GJIohFcf zF4=y#UwDpWW|q}GhmADc3|(e|yiyBeDE&K4&65C0qH}PY3h2xj{!o5?^Kl4|;vjN! zGaSr_y)c2xcm1y7g(#H;b1^=N&l2TbIW|ws>{>>-?HaV@FTiO@iqcoT7?1c~B}8_r z2*0Mrt&leDc0JF9o%R%t`Bq!~b`X~2g%I;UEjX$n5!O3RqAHsNpQa#~+fw`YDz(-d zY}7amOjK^d69K#vK`^UTd2K`PkKzm~i0d=n3i}Wi(bBjz_wfC8c>O{Q6>d*8JF-dx zf;J>{?2_-x$OoabEn@M_lM^}6F+uU0t-p2U#75R^ff;v&Uo$q~)Kv(%_9|kJ4cj09 zhu6stEnbB`M#AM0)P%GYyWWp-zjIBP_iTMs(pe(hWK5AK z3lK8-`stM#L?)OR8wmsRU;Tp=J}e zbhj>OTFO(e^Qq%KaWL%a&o(}=Bc!EH1gHJlvBep5|9D$S6&~4f#siPY>N5sfcQ)rm z(TVlLgT`WvSbod}XBNLoXVD15{70U1$&KGoAhbeXL8g$_Xdt)ZvML_! z;=EucA9x9rwSh5uG4y#nD6+-gBrpHdIF=L0NBe|~LlgVb5{rbH$?D@`xAcfMzXM${ zK2xx5)>tj^GJ&vWeif|)V=?}&(hos}_i%M}=W^y9xp)6!fm7|P7H(9|U&N!d9!LD=%#Wp^T?%lFSb3y{ENW9MYQ4*6N>&00<7Y3IuMnKA#O z$T`aNwb#qs<%AFg6^I+g?cI;h?^`AkXzDo*D`4pM_mJYImRoVg^-rBq@6K-w-OQ)v z*F#2NSQ_alTlz9TtZf%BJBGJTmv6OzvKuZd@mV*!PVTW?aUN;FCt6&8X>9kJBxwx; z-(CDcLyb|*TDHu^hTa~lcGJx8RFA)nf_sYKe$Zw`tHZW$5zQVFw=kFL1 zFcP(4M`MMU`{Urw3aJs`H3b#ZSSOb#kbFUMr575|yTH{odHbKb zCo1n}@Efv#-b!}?bRo8!8ovSy$9<|rBdQ3LrDbOX2Nx+KU|%J9$pwM$Q0?0*wXak! zSfQE!fjonkfi1-a;jWtEkR$+T6);Gy92DI1lHxD_90&=IApzz0izp=ijGzyK#VMycdt(yr&M>wpHVy@eMyQWdvW%o zC3&<9$d@Hn3)zF!eF+}a`_vrQIX4y*;XG^69p|`f;MS;)-$-yLU<*?JZAH1a#f~{l z|0t#-@y~7Kdi5Ev>#JhDma^whS-cezlbDbo4X=M_BD=o|wn@9ylV5F`OtjH`}ng)eCGv;NcMHDm?Bl)5ho>xjL7MtRng{-B#iA#=vPIwSv6#s ztA?;|KAIZyHxuWyEt(|t)5xl8ypAZhZqA((am3h^bsYw&TZn&JFk;7FrngsWx1D?^ zXdQ`8Ym8hb^5pE6xdR@*IiDJ3r!4>?-88)q`rIQndVvlYzd9*7GG$) zDPoVQJlyp3zVi2~%E(~$h#rL+Eh^sCWoBIga*d|y4(Ff17_H4V7O{Bs!SGtujwhX| z#C@zc<*KGQEp>vk!DO_&293YAWNqlaV;fm@C-r0QQ0)*hk^Qu$x^7DFkpf1@8VQJY zD#utlgGnsJn*Qm*>C$@~u_FVOXVdNd{01W#!ITz3LMg_@I$P0dbPi$%8m&T5Z2+8( zNn#yPSDFOhyEk+}pL$Omb|8l>nyUTd92{Ol!3cB^D`OQXSt_t)8}&+ey~> zK;{AhI4w*27H2o)R?++ZQpBjw7^-lZf^1Ik9G;6EUSYot4#TfsT;nXDfH|Hpy^U7O ze4(-J4TC)GruYfmm~B7pc5|-8He?#co%YeUCtri~JlX zZkIBLC}aNncuVD4qvm*ccD=Ff242b*Ud;do90&own3L1e&m?)4;mPqEB7R`1A^$oI zv0n9z$M!GU#P;_fSP~Tav{~`HGy5te&ex2$rRwkFEfB4;A$g;#^I%d)_^kbzQL-=eFy~zP(i$ zlI;PSM3kFQaU0+BIBXbB;V&z?m@P$EJvGnmC&18U;1}6<)lh+x5OS+0VY(JEMW24< zyw|#ooVy!>w~_KveA&c-_YL2&7E<{MnZPRsv(Yqd_8gQtAdMSO#tj!%6qI&RV2n3y zI{mNjEybpFNDZC)+}zfhWb|gw1wWWtr(V6yUTOT8M=pu%7wC5wE=Lj0G3O&=bRHXH)(hb7 zRUq+%=b}{4mb#6Pfhtp{RgY^8y26^-^Rf;DKJnJxgSt2J|)FN zufGDZkrxM(NhrB}w1a;E1wVUsA(j&+XPv;?B|h^fMMD zay)yDDlJu7Ho!m~me3Jd!A?Y|?n!Io>9>CSq`ax0vglm={jADn&dJ;0qO6$gt6;($ z-c`_O`RKt&KkO*q1!fx@`QZ-V&gm$`jQ8iN)@kH>fFLj(yDPopll?Y9w}j+K|A||R zdlQNthc%s7=5P&k*r7GC`w!|pWAJ#z z=oexND@Y8ISSyjwGkHMWM=X7+Vu8HQ{#ee#No7qZyooqUuiU*sSZoz%iY4JdUUTAS1m-Jum<(QjSER49FOUB%oYn!+`V1U&7B;V&N9yd zEqF>TBHZ%XqLuW;2&g#vS3bBw?O9I3KI)C*DSws&Q0*Nx3u!NbaJVxyel>m{?p`aJ z`}WUOg8e1s(GbxkC9$W!}s1~T-L6Cb^O(9AKa=n(K^0trOm6v{yGEu zyo_jNbGWp^z)5LAoW(_bsJ-xn+lA1O&0YJdOYX_8+wS@7>SEDOS#%$WGjH{W-%YQ` zW5Mc=M{)9fA3{Cks{>5+>7BY{Evsh>IIu2DCn9B`#kP&}S&6MSqpSz)hl5R5oen8; zS<544azysA-R$fFjtw*mvnxdeiy(LG57;$I`$Tj< zNyYN=Hg=n(prW*`?J!ZE<1xV$p~W3;qic`E8YpDehf5(75Aa0c=VeOm~}CIHj~QTZ*5*ipA_=;?fg|fyMEQTH_Tt=JGM$v6xx#9?b87zf02b)qCS<#KwIcIQF+xH6&Qy?XGw*Ca~%t zgc>8NEw1*%zGmBJ(}dTmv3ZO~#u?b39ue#7sb{=W=F3O=p77+J;*KR|dhv%Fn#VISIV;hGwTU02|lzcey4pKbbm<|9hzN+tqgHDgoUK_q%aTilf&dBwK)~3g9y%JwFp5Mo2PQ zdAJqCNKiOp;_$xzEIK?aNbLL0ydDz5MJYq7LmJceL~15rmx>_+(`#&+*s58l@#KZv z`;9o`F-oh>MtqkpMqcW+AbQi>{%Hc$RmG;cNUTFA?%(AxsC84#FqT6*E$3>B+@ydQ z2lGs@^z6+|KwETTq?m73{c6ezJNF%A$A;xl#@2Vx==o8#j-l~kbV{|(cRVj4lRguZ zabYErO^5QY5f@`d3RZ{mX=jB{Z5F!%3*JdTChqN5F26Unz-cmDkgT{ zF`R*FJmvK0*_G>dsY!1}Qmvf8sxIQ{sz7&Rf>YNHMoeLPFjwB+Um#kfRapUI@0xw} zAIECu5BD3d0`I&1!F2TNnxK9uOu~>_0b5+=)7}NU7sj%OT{=`q-kYG)Bq)xzkjeI| z^-VQsQ@@e9>=xXB{kf(>(0BvI;_t1~L%Q#t9)bUAo;C7^(ggxi@6bfKHBA@xW!w)p zxOb5i`Mq;h-XfC3-s@tw6#9@rY#}#76ENfJ`OTP6R7#N5xun$IyL*o6M)lENBMR28 zy9g$zm3gSCMpffCr)uKb09O;$RC#uU5YNhNt+~iuczhe?{o`ha4!ucm+ZoUGP5hrKmJ`|wtPHk@9aY+EII(E>RLq-+}2M?^F$#ikO&?8(&|m1?jQu%IJO$H~M<;Lx%xrH#!CQ1KI`3#31R|SSB8M z8{GGmV&T;(8f0F!O{)+vfql4@;i_h~^S_Pv_KZsIZa1LSDbAsB$*t9%=QP~cl=LLl zTIARv598k|g+bf3mPe*jfZR{hUa5B*GH0r97~Pmwd66#ze3o^{TC|!To*3ge7=inI zRaW6QV?HSK8$YXdb$ieoJd}2{Vb1kocd^?c3?!gV^tRF=M}49*RAldc5!!XnP90y? zTMhJEqtmR<&uQmvBxy4p{8ZWgB`KY5&iq4*=1`z4yEWSXyMCYSKKY*3S~wZ-xR0k$ z$-i6L*9=C8gXg3{U`9xws#rCt%G}$DEcZPtIR+Xrywo-5w+7~-^_2X+b=nSUKB$9zfzxH=iXbUD>6a6cZX;NNN} z1gZWg1tsg#bjTOg-8-Bb~T+PvQkzlaS4$UtRqbIP4ud2hJd$0w>A~ z?Psv7!|E4UB+vn(C-w#h$A;+CSv!xZyqRe_c>Yhq+|_Tw{9=K>U*6mGk^un$35@Nx z<1HfkOM7(ZjFY^Fy_)h(Mz?F0 zw~lCG6Uqzr$l&bm1p>OWWq2X7w*c5I@T7H*?o_?ftoL)oLqB}zgS!XoZs545DEhZU z-A}U>e@@a9^*vrq0$;Vn=&k;va!lyn`Thk4n};>6r{FjYhlk^ov0m*Q91qf+_W1G z8EyNg_?VMtPyUFBlnlFBHv{6M*fZRyuj+@6DboZwr&OgHavMdJlo9kSJn2?w8*B+`NBAZWTx0e7okBP*qU%Bxxyt9T~p>G2dA5!9IWaZ(hx098V zASPQ#S#z_b0h}M4$%+N?rKULy9I1DIn>qK(5A;dAN(SZmh`rDm*lBuhZrMz8AO%41 zzMkAHxiz4?`W5RvI1QHMq@7W`du82#cx66|PX) zUACvI!{zfS{Y)^&BLpc){YMpVPqu9cBC&ydkEo4FC3?!_P{XQVwEioy8{leg)~#$+ zhpOhoC}WXG4geNA77^*k$V3O+zUruK#ayzx{L>WaYlaQ$$gPGIC@(bVELx%=C(CQ-H-{NgqRc&@D5eszwzX;S>o7=PWc9~nTL?cT}9Aff?J(YypI(| zn-lp~0l`*pa&PhTSld8dZLIG+9{=``S4Ib!Vq;pRhRn9+qf0`Q^mlb!U6ewvUje1! zYtAKxUsYSUOqmg~{*Cxf0mO)m$2y-)N(%XHp0CJq61$62UmGZ;WmLSbOg=yYq83S2 z^*MDwROY#&O5bS=pt~P{?tUEjd0#Y3tM~(1yiwY6+MiQBEuBXIcy_HG zPc*xZmvlRMu=8Kxb864ghY3^{+^4oo-vs$2WuIMt@mcHys+_J!F4Z@51UWB4HIz(w zJb;f=c(624s9Go%A0}}z<7{%Ec#!wHoX`2c|06gmNi4Z~)2YOpIk5O%{`?Kujpv*E zuJ0ez$C5)@(NsAHhkx;%E6hFf*aU4Az}klZJbotso!;&>RqUUV<_c24tl#?ooF%)A z#c^b(bJ6@`*nt)y5?+tc#QuRz;$mjv51-DZzdC7Hk-c3}8Ih-=p8w1aDxHIcoVV$N zMz#UA*gCVBd0F+n8Vg?%9}vxOtM?mT<)$=4$*eifu|^!guiuKaI2*7W?R;Xam;Nvi zp40NTz2*%1JHRS|@+4VOWz^`CWXK-Y`*g1s85W!K2%aP(Cb!E41!PWbwIgyqZ9sLl zG!f%iGawZyj((O-GDmlK!)p{nWpHyN$17ywJ2V~TOA)ACZ5#?I7V))YD0nlh8 z8XJvHF>H!f%<$C6nmLUMMLCr!h3^00a%h>@YzbwF3;hiGNYDZBe?eTPpdhH|UQPCso ztljNieJI*!REkxhH~38g@^MItV^)mGf?mQ&E2~N9851sUGymFUZ`hcSo)r1`iC+%Rm(seC(H1AuG=I0ziKJi0U{ZYax$J$0b`BGRHiWfz z%ld(OwUt@3M%AiSi5tZxVi55H_#`rPNP2UJYP(Sh94F6Aa8cly)X>i+j1iWi@>k%= zF)n%ZS5dF_#Apv`!RwYgd=^j1m$at#f3yCOHzeL4RV-0jG>q(PVnOKP6 zgC@6)`{2_?dRtV3+v$4@uIkUg^QXiUXcn49kaB7&1*Drgb;9C;OsDN{vd!kbEw$9;k1W)Ey>XmkV zZA~7_xyR8Hnh2XbxrO@-VG|Pky^(yk@C}pj+4kmvJF303d!sT zp58?8C`T&=m&8^MiG5?;loW$`+{RT{X73LwQ;%zORh8iAFD+i!5lv|;Fp}f!Kef8- z9AQ?E?T_a_e(t^Ac1<(Y@FsuD-SWYbMHVqiXuCWjgRwv|qC~xjUOc#_@)UhU31T-f zatxTjzE6O<&5}Vol67>8< zf3%)ny4)e^Ilt^QF+6%(n3$WQ%l7j!KJvXMvulh|-|(e|IhyAnqCuM_W&e$kM8Q3$ zj{y2Ny9rWF-QuhxGCPEbwxX0}cGR{d+mj&A@cIn}&Ze*VDLkYdKG(K@?LfH&DHK&x zktmgLB8zb2hZ2GW4GN-4KmUdBFxMY4tQ}CrA)wyVBBn{IK|<^^ej|8mq!q z%5+lBDJAH%B?IaRP8xq7xUS&798n(tgw*6W{fWj&QPta!k25bx{~LS)2N_i9VS5+UzT;@{>$C9= zipNXnR3$t*B4p8ztq;CAwKJX#Z*IRH4!!Y%of;%u7O7^7Q$H5xvm9T6sl^{>D?9G5 z9xADQ?;B$uPr9jn!Tfhq{i|>|)UWAQ;_;yJ5jT&$_zVSW2zYz^@qVhq54O2uJXQ?| zAx?p_3zm4eKI>i;?|6irO|8OD?~Q>spp7@w5|41V$DM9t`1$pe@#B8_i`$3Qj)&VD zW17i2RHI;W+{t@IMX03jx3nOE`-v(c|H4bdYH@x6T8y+`)INNLFl<GhCiGy$7cINZz1a!s}c|B!#LS~_mIt#+ei3yCAb6j(5On?VeET3 zJPuy${^Wf>+@J01b3w6wu&Q9{4POt%(o9`KgB59J?>F!9$UJaP{2uDwSihFE5zKVz8i)gI~3 ze3*KbJ=f$x(r@ORnNHMSve&GAZa|woKR?G|8(GZi71Qj#dRcZ*0o?=G;K z=Zn(p^mY$1cg+_>Ynp7T%H4GH!H-eWo~9OWC9?W9-&{$FV28GIdwG~!2$ivGaoTpP z2}rcDIAa512d?BChkd;}zae+6ovP(AZ(;@e3-Io!&$qzW-+b!qfb*`X4z+lYd_A7H zY<#qj_7`OZJHO-{BB|hApb1^|OgS?yBeAEK!h2)hzoRwNIum+Mq2lp|#K zd!|))h^w|DyJR$-?D!1Z+}x;M>Kg5|FCz9WOK&b+C%wMewYU9Tx&+c;G@Xh0bY4WV z1QLt>H5wC`PL9)hcpY~wduJS>ujLRkbEsw)&7tXUs#rF814H!Bne)}eHp%MBqu8O9 zFE~CHoHe4%#9<>164#+t6#d%{mZ-ei;|t^|K9|oqhp?yl^U7QYuwBPG+^dT8+1`!v zkv%UC;1jSNPx|4fx$+i_J(^d;csW`P20se(3Vly>6GrdG^_mk{p13Z`BPFtc*hLY8 zE_V!6cqFEy-R9L)L3%ye!+f=~&fR^Y-q+8)@sHHy$f^5|Uq5;}7X#xjCRC3cNn+?Y z^1hgvRX)p3YGgj)7}{OGu-{oHKjFD85sh4Po;Sbtv`^%Ao<9H&k)JBp$$|Rc`5ngg zUteXHV0=#$V5z7Mx?gu7%MhnTX=~3+YMhJ*q&O8C6!qTx_^jh2vvW$v>gV?P13l7O zI%5yy_VDZC!{uA9!CxmTZ9-bAL*#VSq5E8!&E2@|MSVTufM-!~E|3_G&SEzuJ-L=@ zk|Ecv!H4xd8a`ID?-HR%enIQ%av4IUujx|?v`w=lJy zFQP1nKIM3+!km&!4O2LCzs2U`!GX~F%dl_>*jvg8#JZ?qk`umGP5Oj3QR!?%B_ z;*BAr+QtZ37G1N&fC@#~IqzcofK35ymH^sBgPR)})r&=DPqFo7v(%zV=-8Tf>?B8f zzz(rs3=4S?f2pa`HIX0O?_&|~@>>J^EMrE4jn}RTe@3O3e9>Mpr*C006NGt;*IF1; z{ye2!JfD#1$v)t#-Ml!@JBNfy1#|!k&C8-vsl3rl7GZV0Ewi+`-TWL73B#I>XRR1x zX=u}TQvZ93aN2i{+UcH><*Q@8lw2m*vQt~LZQ&pBrEU_4()OV99Y2-FVoMxdZ|qBI zO~%X*wqEsHx#faLKQCvn=jp@TD%@WvT;u8}Pt5CX}Tu`k4 zIsb=M89O0SB-jOvf@=lj{EE^VJwl zaab=3KCckLb@qn=-;V(5e>G!2$-S12ouV@`kY&)Y6N}`v$&^|TQJ3jfC&}4`WcOX? zXOdF{Z#oF`nfX~eV$6Sia+ym2jHnP-&S1D)D>8C92F$^L*Nrup_gjEQHgr}x!F3OL zHExVStC)+75G-bw!UPUh#__{_cEk(@C6z-s;U(bOcP2p;vX|CT)SDz zzx@-58L;&QOnu&w5G`W+7l%xe086#iuD)pg?1rR-sIldfsfA8;KqJ`TgO6X`3MP(z zS@Yfl&g$##%(TX54O5p$ycdg|H~1 zcv?&DB4jH|hc3~D-E2oTLEtsMgDwDY`pa@bXElvNKXvNYVY?8uUUyAqqIC$~=;7>A zHFs=ETfi(^PAtoUf7$2$7!LeYnw$Jq9Gs$`88LFA=zL1Qe)&7e#|GCr37}q=MtQVn z%5kr1iO6_274qEk0SjG#z^C)_HEl29iMVy@{d{e6JeRsNyfRwN*N9I2p>8jA1=@*kTKRbC@2#)&e;DR#yKlx-mx7M?a_XS)ozY1QEIuFNZvtl zbm|~Vc}J)6rty)#`=LB=5d)1FL@E4;*6KR&9l>K2z~xd;0GDUtmM@yjY~U}e1h50t zH)C1!;V&KP0;M{SuhDH?souqN`nZaDz&AICYR`dZ$jT(k0Ro!=N> zS>1SR|9#>NK_v4McP-ca`O_KcO;~;=jiv@x(Bk~B+?bnp4EL{Z^_q(ARqoz6s9*o^ zslo=xCBho#kp7SwT4MYkK{e_{!VV!@{n)J zkajIC%gkWwZD;E44NX-NqztcuH&+gC%cDHj43j?1kyk$!=VGCX`t&QtChZK7SCUZQ zb1%1(oQhA+8SME1;DH5z$3XUtXv^`gL&%Ipwsolq#2D_o3GnUTzNLD62o}7M1b76) zcl*;}0vNps=llx$KMd>nME;&I%iL=j%ak`A^LUAIN_dLBB>f9`?bl-& z@=?h)fR+(XoXR4r{&q>KhrXQ)?`6vRMbuB(!N}_GYTw&be$VTgS?{spSxU~di<|ypYAgIj_9?B zcb;n+^73}a1Ff$G?RQn~Jpc;HK2OMJ&ddZh=>3?)myv(Pq39%|i&IW=6f-)MuBy?? z6LD5*3Q5?~J$5@QT3;-+-~Hu7#*S)#=iODko)Hd| z*@w8#N6@qndU`#N_Mo4W7D8<)0;j`&T`}E{{gtq!3HI=%xFsdb0)(2Yy(i_IE655K zz?5!a7B?n(b-Ohhugu^UuKw*l;*wlfHmxlyi91^`v}Pmb-Ey`dILBSP{C#^sZ^Hbd z9(k=?rW7gEyFl%Rag3ZvMN~d-?U29fGmn=Ds~J4ZnW+rKJpB+}hL!j;NFGNfoHZ-I zcSy7fn9hs58rU~*s5@*q({cKhjd>z@7WbZonYMd>FrOF4b|m2wxb}_F)8LEe5%{V@ zObVHVz=|FwW}%9$V&b1J@5alM0NV#&Bt-#hw`iu{{>nX0?pRgvFb7+Jq&F&>sX)n5 zwdedhd#t1cj{zq6*vnJanPgf~u#)YNP-`dR&53nW5W1rM zNX;bM>ux;hMrXso2v6e6ZjOMg?6zst&1{`@Rry+;CQ|SFQ>`BTDO$%N$fdm@3>T=e zRXDlXj~*TRKK?x~?V(+xxJ7g4wwKOVW-FR4b7X96D0MtTiu4DdUALXlv&ajTb4I}* zv22mRrG-=|!zAExKb+||mpv|i676J7t0oGR(bm>p4D`Xy%)zYt%+t#rWw#;ezJ|CC zK(rP)*VfkZY+soBfTT~8-YsVd^mB@>^bhvsrgTy@zy6|vj%JZ)z*gtL+@^xHc9XcAY z9zHxQkAk)eB_?l$E8(bukEwGnqF9A2tv*C=n{-N7QTXwO|Z-2+3h zzvCYarH>o-@(Aw&HW|wlP|JiySc=r(Iq84YyGSe3J%*IA%Cv~Mtw=i_v;GEFLDOIU zKAa?$Ehgt2`Z3C_h=Yb@%u4?D*}~C4;K2V#@U24!{fpZQMaOMirDY=>2B08-Nb8!< z`Oj|@`dTiwKeCT{=}+1N3L@)!8Z^II(K?#g6o0nT$}9~P%+{{^|0`i(XkhjKlu)4AVI*mUXGcPPRT`)vA8>_qG57UQvxcxEn68E}x{jdIpWX7yy zme~C|!YQ77#r)#$%H2vY5MbNNG%V*vxNeNvO4=hfW-23qqr?J^A_88S`SZh9AJ+}g zU;pAirEgaBq=>DU0@q%sI|7cfEYHl)_RsUS)c}sFe77DoOG@KGAKKD&icNqMMtJ3B zDi5kjOX9})D%I55>+ZIKmuvdAyto6OmE}J!yR9bs)|h!(f5kndbT0#cp*6q3?6$CK zJ`0B+kM`_og0|1suG)Rx8x%uKyMTQp99Q0+y*Hk8WlUClf`bvpu^;7ufY06Yrmz>2 zD5?(Q6m8B@PbgrL5sk0scIUa&b@!vKxc-8{VY)m<7`+&U`0dhRv&v^Oh-s_)lAD?l z1jXw>b(j#M?5zD)l!wSxThEv|Ss^8xcWexAJ}`1JpFbm2q~L9QPlSKfWsUp@W5aep zRU_e&P6Q-gPdJe_jqN3HoBE4q#`m$|qU1*XVISfaGC{e^KYF5hT55uZ<$qC3$-Ozn zr4vO<{k}X|bdQrES=v>OHnQDWg9U8grPfO!lEqjEcFcDD;SyjK85lfqi(5p~P_~!J z{9Qsu(VzQ2LhJ;&QI2vy9iRZU$C*doPt&q@j#a-%bl zS@jc`imU7W$yy?jJnVM|x?JCWQ~vd|kPGjE@gK}L9th|L7&%ofLVPAn)r7ng{LP)1 z1UM;YN1~| zMy(3(XW=I}DryH8Vav?B3&xmNqci}IG^d^K=KPZHzF#B(wW_)vfxIQ-59-`p#EJYI z=PFW$`(bATZa$eoe8ajYXS%@df}07T6W7KooZ>K#XmoM8gs+q96H&_!=@T7N*#umv z{DIRNdg*?$T3R}48EC>D433Yb>^1w6O^YmOoFfW#_tmy2C4KSIHeoW;Y{Ho789JT6 zw_%p*$3Js6Ek&vZIGSF~=*HV(Rfl~?A)+($4;e+#oum8`hx_T|i>Toi=?D>b?(5*; zJILphY)b>l(nY411b`hGpZdIpj0H8cNs0&&IY8nQYnp zbC<3HBi4KVy72Sf5q8V}kEsS{UuNtsNUV@jBH0e58#l}^kNi#t1{u=xPLjk>G=zD@fzmC)m+6# zcZ+ibf(D|upWHN$Ozcb#{Be*o3SQ3jn4$i&R=hY?b+|)xdUx$VQ(6BrRlp)A-v5}2 zXz@=D*Y84M;&i3SsgHHMM6kp7pGzM<7L}9OwVl0n`!c`uFxL>MWoD4DUn=oq5P43T zi1?G4n*nw}M5>$GJmCNId#esy;aoBL`DKNHD0%WSypV}|S($DJvMAI}d4I|^{y?oD z#RdLnjJX1(FfEZzBnOssy(z?)(e7IlFbZO(`yoOj;53FBjWmMa+SKieg)a#GH7A!0 z-VnR6clj>;R6@vl*x*=WiKY9wY^8_%Yoi+Z7%Y>5Ltc6pIyR~ zFTbc6mwxp?nG;Mc8TOB^=-%tf7VY_jS`YaAbbJJMNq8$Zy4uXfPk%C0UV74EX4dUu z(ijq3K$Jy56kBptM}9xx{+MA}ka9Sjsu=Kv9YO5W6+z3W$wb zv4=>zsKczL{^*|rcG|M^PEwMKi*fs%2~j=5kq=cv!VNgr$j3S>OAnu|csbtd+_34? zUOHe@hfCwI=+4|#AdsW-ep$ZX@%cp=R1N%$L79f7Gsot}0X^W|)%289ruYF=OKDnI zYv@&uTzPK5vyj+rmk0hYkR(gHzgM32a4^%j`ofyi*JX?7B^hLY*mGdn&3Jlcf~*6X zc%~ZptslFphLkv;%ocBrMpu1X9jjcpnK16dWYl{^J$^H)Mf2Ar-!|5rII{c60hpwJ zpbW(SL^ab{`oREEkZ_cM9HHO*Q4k}|O)bF=0I2DB7@$IqSag#a{|f)~i0u_oWC7Rr z0&-VceeU?EDK1d=Cn)8RKaI<@bdD3DI+Qb=SfT1@Wj8Ppa2b_;blJ8zI!2{Hl}aNT z(K?%xvz0YweR=MO zIn97GSmW){d{75c-7?QiLN$nqY@t7k0dnaA%z-NuMXT2gbtd{%y;h3vC)^J+???Po zC(#m$1gUH(j3m^&1?O8nSsd9Xw?|f|2f$a-g9!bvw|z?irI!@a(&i7%gdif8+8&*2 z%`YcL<_u|j6+Zs}a-GT^5s4e(H;l8+mtP8fFLQ<3=<@;0^-8R`&`FlqG{=dH7cU^O zf@m*klw)~AQ_!v(rNlhh#cM$6nU5NGS&RwFh+rz|dy_uxVNBpBb40uk4Tq7{2ysyJ zGxq_vE0v!P)si_vMX9&u)qa~4lom*)*3*nU1YBa0uMJg`9zngTu@==v2nm|^B-QF^ z4SKr7A|D&7C0#7n`_o!m+h0b8H%mXzUaCP1IIpFXUdaQ!pOlLVlWP~{jh6(Nk zHXC5$>euxYrnsb(Go__PdWb}XqiqvtTpLx$BfyMY@~2--q+f6r6qDYmX&uHLeJ@%b z_3tW)3cA`>LbWwr39zGk&)!e~(hF9;;^DO#i>}#DvvTvfZr?R|*sb)M7(Xd$Ak0tK z$E%>>Q?HfGDj};NRNFL>z3@-3A*1vJU0|EnU=io1&!-FOJp55gC$TCo>Kaj6t###s z;4z(zd-+-Iww&Ao?;}~l0?Z?R+09Rjo0H>;&9WTIp81m@`GQOq&H+`D86JN3yN|K ziA5esc_I|$rfJe>TXMHV4OKr$9iM0&CiB`>t4Ce6nU;+u9k+}`)%NRi!8=WWd!JyG zXzBd5`ZE>2%v$2fogKzFBXAk0KOtt@=u_*i`!)Pe(&&wIUY3JoX%l@HnG-&Ji&lVn zoIi!gmPM|UKoaYm6AOUsNUC36$0)Nil>UTT_)D<`yz1N<0bm)%1 zJ4zb)eDpI!uY2$!1d)dY*!#f1+4@}?SA0gz+vuL9yeA_>9Q zA$@;ktzWE_Tnlp%v*JfK6sh?e>pUF&Px;28KJ#1lXCDhw^J!Zn|MI&Efat5L3FiVQ z{}MKg^9^fZgLs7D#F^Wyz}*@V{BA z)viNb_%Glr!gm%MD)N?=4K0*N#uAwCe{+qm*wx{`up>0BZS>wq38k{CeBd(S#U`;m zzo4831kzN*6V7K?5H42!;yelixY&ICHwB2b7`l)MozPsWZ92IgqMw$`*R)_Vhl zRGIRJDv}J?3dqoxcKIn$X5M|7@%|u(zrZ*1Ddd3bT!wGa$I#C2Dd&J(($s*1L~c&2 zQ8{4`=A8xA=37UJxa9VQTBrmA{P8(sfxv#2V&qNx`3Ye|ifX-bXl3Q?bDrl296mVS zd-o7cJ9oyKTLZf~0c!(hSH9)?h`@!w=k(<@L=%L}I3<=Vt<7(VkVcMlp^Vc5hv$?E z9gqg1EyzkwuowQ(`A3hp6i@_q&f(31uZ!zl0!C!s@@|6byqBXTbkUXR={aZJLoP*q zc~sAz|Fm=)xjDSo8d@f98j31<75I&HaZ%EZZs67_ETXHx3QxuT+YW*Shcg0221aLf zO9hOJVLtPCLRd)Z|9l`6@PQoUOuc)Am{F9qx#f=cFI*1Szj zQu8k?JYacrq8E6zhG^mB@M5)ieSXINEy~p9r(2n-EncKNfobj!<}o&xhq znIIr(0-;XNkr|S@gGF;i>Ik~InNe9qHh|<&*;MQqD~ot>;D=fL*7k26DcVisP|T`U z=8=s)OnNliGY3+P22HQ@Q=#rnM-uGNG27>ntFm$Wwu%ySXc^W7Hm;xS6YDdm9KPo@ z_x#GPZz&7>P!&9y`Qaz*{=Rzh34U#DP*Ceju}V!qKpjLFQi8=9jsDe2l$8C2?YUQq z1xW(%7r9$xx>|W5ILau`Tyv8tGGCtCu|gV776a|?(U1b1r092f_w15 z;u0K!dmy+6g1ZEFx8SY;awd7d@Bcd&=UnVn&s0x8RrQqgOfMsngTrmw=J5B>42OTQ zyTL<18tjhP$l5r>YCh2I@A$RAtTMw5B|P)56^s3K1Pi5QfJ6#}nT$M|*Pr#YrpD0v zOf9%u;FbOlhZ7kk%~J|Yt!ivlJRRdHYvPVqK0pobuVe6Yp63C4m$__!B}wXESfP`F zS{4~(5+x|Ux!CRMw^253Ci3J}H)N4=a>F5Z4+p-F={z3m{@rEh!dcNxcS#D8)7V2r z;g)rtH;sU4IC0YK@wT-8FsAnkaDFFipuQb3XGJ-!6{+T%Vba-#SxIlf_cxBCxhFpx zNi0bbxl_mz08R{%^Bvj=u&cwxF9ag?JP@&0Hw!pT^B9kB5()>-z7^?opTG@Bd?s&q z{{VX$_I|BtZEN;c)Ux%|Jo>Q}t0+moeSYR)>B3iVm19O%dBV|pd2Q?_x=Bc3aKAmn z5ux0=NmI08_TAz_#j-({^6ZcHcw}pb{!c2D_l>P`Stf(J0Y66gZXxFpE<&-TPDG_ar?LqPlQLLjO<Z$@sFX@tqH-Q)JoE_Mp z2G5$N5e4{Qv;7J~L_LH4dGTga3#dEt2thy#1pSXygq<`py(I=g<;fiM1T10OTXmhR zVUNQ=rc7i!y+|p9wV||T$Ce69CTwX!G;@|if(Y9xQ4JXcxe`m-4YL|YQ@hSiEG~Sj zs@t!9@6~Z<;?BXY`)lx?8}OBJhpGbgmt@DiWjp&bLiJN8=C>C8%py)n)B8Znql}@V zwn_(Q_F!=%)-i?mw|Bdz7guP=X%LlFB&sGlZR9WK*T^{-CaZlsf9eKr&X% zXubvwl+3)zG)B@41-7AW8qG!%(p#n_PJQxN$4tpLzf|}O(w=ICV_)34=p+7iee!8E zh@`L@iM0J^|FqaXIdd2y{=cf-@q{R(sj|Gn*8#AeHjmaGRCKzRDNqQ<(nbzrMwgA1 z85O?v{~apK4hD}2*8oq|U)O*XSEGKuSw^6>|12oqT1dcs+|x)Kp~La;t_vck5+S|P z_|am*vL%zITB03uPH(=5-GkyC3Tr*S+gFl{&Euat8fz=!zsC;s+uOIKx{Vb1`;!W< z{%9<*8He?DQz>#X6qG%3l&F&-BVNOTE4`?fkTgWq=iOO(L9)|rIDHIe`36B@Ybvo} zt<>}Fi4I|9vPpfW0*W%U2)7u#uxv!MBx7^pI44dtba+!GbJ&0+*b$tl%QC z@WR2V*oMOQTwI{!%6R8=iW{o;rgk=lkI5%l5RNi)dI157(mGB0GH(e*6P*gV(-!y! z!XS4jh70yb`x-GwvL-YT9mD{12%>|xZw?|XXFjqv zC>X@Y7Z3=jMFcAkHSBhxls(8cDV{#W!uqvHeFCV0@}7R6NqZ!!$+aH6=K0xHXF&p>G4m0)nw7J!AqHftYM1xQbs3TX1du$(yMQu#ej ztCuK_=GfY%-C5|* zQRG~)yD#G^u}F>}nXf--dDc_!=DN!Yn&!Bb%1_PfpLv}c^DqpRPUu_`SjQj+KsWi7 z<%V{oMB2j3nQb3bZYCiDF*sQD-z>d9R6b-j57PbE_*?h#Ht}*Q$AW?C#I!&fnm0an z?d6GPo>U#szO=s9z$_n6S#mNi#^e<$hsDz@X&^h1g#u3{Ge1Z7f2F(ugVM&tFB&y; zQDZWH|F2FPycSqARF@&9LR^UUUDL5RyT~Y|Jn!k zL>bFIZ6X|+de?uui-zhQ_fxBLM9b?Sr#gH#dERDTtg7XRWo>BHFxx2{pdnapDiFD3 zr7f2I*Q)hr24*+7nOc)uO+_N_Zc|YH*I<}0;`Dg9i8O71V6zgjp2WfQsZqNuLVflj zOz<3mFGr}Si!c9VQ&AieNn=-!gx=n65Y@D=ndFnaL-m(5T4|ODDu|{&OR|DV#iH|^ zIjG?{qx+7oS|x`?P+M>dh=wztbY6s2@Y1CUc%u^-ysBb@W&WeXXiJ}PN+Q}>?l%g@ zEc*v?xh>8H@k6fs;izs$gtw%_9+gqA!MuW{# zvsy~N+$8o?GND2-ZSV17c|rRbkXt7@V#=e8%0p|raKdCWfO(T-rlqtqej5-dIt0}}LLES1ePFVb&&HTw6nSK8JDZu^O^D_Lr?J*TRR&42?3chN+cjGufbjFH6XPZIB z4~b*#oDZ42x|hA*ew>e`xV22OMNf0ksAo(w?W>W7Cie8QTGqW*7W}-|HAF|UX2+o< zJ&c6rk%@N1V>PbzxArtKtZNI4DhC?-rFC>Y<@i?4GfMiXWf0i`^P*@Hb-=lph$WB8 zX$}eFaHopc5(%}k8!Vx5J-z0L;8!HUd|M&2S_(%zMO1aX42xxhmctqHt?e`1`o>aw z-12t|fY_uyD|xWCje5KW>M#`($=H{0hIFN}>?ntxzk>}H@?aUO3){Ri%8ZWn{8g2X zPaa^tJ#63nkO+b&G7OyUP`jB$ua1w}kG<9jzDx>);o34>2)8&MK`cbfK%CUVaX`df z0@zoLma#V>N`4@(pa3BrtSyjU#m%7yq|!{}K*#K;w(`BvT;G&+NPWW4FcsU0lMZDI z&}T~nKr>2WLW_tV>Mx_3Rw22zkB-`hV*{^r|D!=S{o{v4&7IydI?es>b{c18k*jq| zAhz=Dj0W7IoUzQI;+8i=432Akk`UTFY^iM{Q37G`wreBbMG1-yZ&CUr9aa;+s08AncQef7KsEe zWB5jcBTZfKzx7$E9B67urXdYPm5mhC0@0kVz?3cDmFaI-%Nfa>C=L&nR4J;2w*V(s zGSk+4gUr$1NWte4=YUQRc?w3~Mnt5Xl$vse0;T!CiL`&xhSXA3)Y(?nw116cSOoni zNl`Om%Z|B@vn;Z#*c1yFw68W{4m|RJV#Hii_dROKWth$KPepBZRRZRJmf=XCi8Vzq zD>I8x13^J__t+N|TZEe$mPm$RT_eZ&T7B4IaOe;;hC zJ=|trE_TFwG;2bql2%Jq>oG(t2cT(qi>t52$A!as+twG+}1KdP=RkYAii zW{*vWijBV_eoWO3*ixi};cGD~7KXBBcVqB!%jVd()M7eF-Wg3->ac1f`zUrX_XUAp z@U-2Xz>QcEs^UyCr&!HI9t`K8o_%;1-~-q{jtznHh>&QyK7s?#u?03Pd>!ngvX{@z z=#H+1_sf566!?ss$+AEZ8)~@`a)0ht5t(nVIN%Jl=qFhf z)|^`+5kN=6c9U=WVnYdA(VZMrFscaZHi2ea3$USb&{T3%4sW6k&14_Ej5&OYLho$B zoLW8{&wsht4a7syX5KY5)*GXW^irz)=mCHPiLh1|GgH09*MV)TW}pSX+Sd3jXfk{S z*XZ+6W!2JU$y)4)cXd@{7U_o*7yjmPirZD)kr36!WA5^hEToeV-~z`lk!pzY4WxR2 zrCI1tJ%6zqwBd%vpZWzhT3nldw@I~6Y6J|q>1#ZHIcoklH1T&xm0FpHZ%5ev4h458 z@?T|hG)#*{f`n`o`)R95V#!D{Zv4S}J_zCK)g;4Yz2`lFMsFz^F<3p;lF+0 zNjAoV08J4LMJQ>IKn+FP-&&BrEB^v=J7O8DsZS3TX^? zLQdQ#JNARaNf2@qR|z~w#`L;lf%VP3IjIfJau|RwKS=F!9#YY+W9QBl4{^&HYdK8X z8R#Cfh2gh?=XY}f?Wl+tjqL6GgOes)+NmJP1>q+zv96$%s7Tp-b)m`L;#v$H0Q|tp zuy;_FH-ppU26qVI2Dd?uqDq>pL1*&ym1H4b$7O^6&oWc7YKN0OA&t2`jGM)GJIr>= z3x$*7exzwWoj?^_NVj-ns&>E0{Nt^ETJp*Pvl#qlQ-St7{v&4>ZnE^~t?+?eA@M&a z)~EHG+8o>t8(F5mdhA5Loz%jToPLVeM0cu^>RP7g>9>S&c3=fc(-LJ^yxOO*sKFWQ zWIGlGT{%?J#)a!(MVSEdTywAri-f?dxw?d0i-1+=g^eDHw(2x<*|V@ewmOWW)>QW50PTg z;VVN766bH65&VQIhB=BPBXmhf96XZNCn&hAsp*}0@uSB-nH~hxVQVk;CKA*jzn>1^ za@o%~?;)~9N1Eq^W{3hO>QE7D=)(TH7bT_SP7G`5($&tW?eAAO7~qR3=MDl zIV}ZJ%l9R~m40P_fRdyzb9pe1rFx}CZwEFL$tVs-9@V_4c2fbc?d`h`)-EG_ryj*< zzaU0(TdL-<=XsXgo)Q1H>8wj?rqkM9pXkc3Yr3Rau%`#8$U=dNgM_sJ^zzaYw|r*Suv`1D zlB*Fd1OiPVkfnXDpEY7H3rKE+ibhg<%MB!DfM_v;f49PL0=JSF)1}KeoPt{IpGVeG z(Ke~3?ws`_ubvy;@P(9qNtH!A#MU278#;Tc#L79;1GcTXm=em=$gK@>zC>A9pw+y& zCi67ZXlp~vX)88+Cr~1zCky|EciFFVZ+SZpbys|(OECSq9TU4$XLYE7Llxk@J^C=oq!UC+|Rvh(L{|V4xFl4OE%uC$1uPtIs zH`#zo38Mpo#=C%u!eBLS0lXs+LUjyc$pUZ$4$iY{jM&qO{sTY-!$Rd}yydcI>Q^(w z=MR{meL=eKeXDX17{_)PrEt|48LXSDetA_#SWGmU$xtF2Ac9%oAx1m&%Kd$p z!5ny(!9rb1L#vC5g=9=*AYzINnD24)Y*ZwLPmoLmykLzfqmMFE{)&757q=@8IO;aeiukf>lFEha>2;!6#? zZkF+9DvsGb_KNsq!N5%2vsdG4dpVF;xj7F>zrXaO+F^I+kLPm1=VHO{j+ueJ(Gl*i zhj-o}vHEB=xfsOng<;KL=jLOb-inFMwP{93Lp(Gq`F%lAeFvvO*r)hZ(yPTgP67Ga%&ozxu80}g81m25n zmHtlQk%MGX*u~aRRgs2sxIby&rKo6>ilSWki!qU0I56!p7ovL}$gNk>KWuj*rpc6d zHVB@Rw#kPe{Hz^h z1~NZPg=7>NdsZajIo_XmVfB0mgom~zQEk6$y+OX18c$TP3|$~uoZ@f|?D#1zRY#b@ z5XB5sf?C-|FP$#P_}b59eDeMT*1RBM00fWyovy{%|WvejXNKiOxmw8hJ32Jd;;#4)028D_a^G{1G0tqfN zHnGSxxl>SOla^I4u|xl!C`cYP&WfL8e?kEeQ`DxmKQ6AsEwekn-Lx*VD@a5}H4T zjz@dBC@o(wiwV5hLetka3&F$GoEM?=&n=>dQocqe7644#<+NEKKNxMY| zqS7tm``W7Yf{aQ~Zo6*@FY7QMQ;)vY4NS}dJX_4XC7%aO%m}X)n`z(Gye^+<-+p?c zcO`d^!VU*IqQAMRkO#fUZoXPJfgJW<3&`3MFvqp4?-4L}gQoVB>#*j5W2lA2quB`x zrUCg;XyEu&vvlCxrinKOzCZoK<&LF&Vkr3Ic-!lcg`mf>JL+cK7cKilJ?Qh=_%wQ| zg9`P;m|+)Ayhplv=^%*wM3^M5^bE4mf<>?4%v(#KnN&haGha!^h-q#Q4M6J#AGR1Z zwNH!Vb3$3vq@~QDFq4olUHRl3glUM1RNG$eDNF=)F9I_p1U**rI_1WNrKxB4yLIA<+QzXJwMRf1aAeg$`Y7$=i-50Yv_y z)mv{kil*(Im|y|Scpa%jdzXkUIML;u-zkIL0aS>9`n53)eBouo$|6mjl~fHm3-_Y6 zrVav=+Zlb?zSNl``AF^7hGK%tDH}?9%9+hB+zaaV2NPWRM`4j7`v!7KnMHk*JN#qz z^-IqGE~rhNJr=2#v(I;qhSzKM2PQR(c(_2i28g0>{uPI1b~hiX!+-iLWZ$2VKU95(Y9)?QJPbf-ii&+O9^Rs3-~ke)#B z&(BaWR}&{ER%rSdF<4kQ*l^BJ;xl}-Scx(r%L4KNA5|yWbV^khZ0%=3FaqV~z)>^2 zqNNAZ{RO(Ni1JNz5_Rotu@Xt+#I4?WKgUiua%xnvaA_a(l4(oL6RRl6XX`*2jA3szW|wLUXHjFvRFZl04w3DirOy^kk@XQe=hD@sIVo*%Wgy7v|qTbPE9+B0nq1h^b(@)L;8r$NGX zr>OL}KtWobMVA(^tYaC-u{@p8nCuA~7(vRR-?&MFFkKFnGP+)u#gEDRoPXW$ zo6g&HA#HctG6W$UE95VNTc?=}in4jVM4rt;%`b^=Y0tqCp=OtSL)|Ub@pw{B*(Y#3 z9ap9fg*Jq9k@Fs0V!ai-cOQ{Y&eI-K@w0GC1{txnGQC@X4`=LmU zTpXlYUP;KB)gugmy=6(8HK1R9c_KBeY)UfSf+Vbq8s6Z+R=@eK-uVj!B%cOMz?6`2 zy8+;6neg#3UFYl5xDVKHVWdbZm1hdHHKg~aq=pJuGQy(Pfe?WC&yFIA%)RtS0m70j zdpG+Turq$uw(zKBU>xn=II`5qUkMKI`A_|rSGJS@qHmZCfDl8aodiSKLR%8umJgo@9;PPR&!i(mSNi~OubH;)kC*5*_@qqN%zTb1VIFZF z(Wj9rkvTO7>%q#BTYJkT4fW>hEF7I@nyG1@?rM5fPD-sDDh(n1t?Dlh4<7Im|tSMOlS{6~gTf^|r5tf4#mwo#g7kI~`L<^))`eXm};42(1YJhYp z;3EZg4(IJt)J~E@|7Qrt$D)R{=+6w?xYl;pwv+&n*;Zhu@G!jyMNNQ{0V+uAN3(-e zQQ(Zt{-<6}t^iUN9C|zo$%oyey_ngPcG?H!YMK&{cts29m4;0`-f-VW#L`Dm*;& zwY$XUGRLjZ55~%R6SGLF#3Se>8AvR}nH%vgxk76Y*q93NkpHrZEK|idXm_ zqL4N4<3F&T4E_g}TXFX+ecjyfaqK;c4EMA6zw z&8`riv(f)dX*Q4gM#fPm2TOThIHPqliwhVWjCN8RNm&Mkn3sqeBy=vC8y_8V^a;^t zjJoI8h1egX-Q;$yW)PoSv+~2^+aEJuKo_U;cia8WoWE2Nt!ft?e>*iEHUA#3FB_#fu&_CHFy~*%-vwH+K*%4 zWE{S|)3>>9hKlV4<+_~KV!*xDCt1ov~IK{H`FaJCYPTd(n7aD5!59Bz&_p=KNffDB6jR+%93- zJVYwCcYYg8uQ)s~_1-?(tG~25!OuT#I<^;bN;p`%as5t!O9?lhsLleOxfO=Qu(_R^ zoyyNk9|oEP@wn%4UBtTEW6{rb@ut`FQ!4rcoMAIRqCgbY^$UoQta~d}xa8ifD^O14 zdSyvRx(gSXIK;y7pPVN#biEWjfgYyEAyIiTwwo6l$=#2xSBw8)E5x?tVjleWC* zZI>L1?u=91u^F|C-d&5ADu}q5eJdj1iT@te+2QmFDcff(SWsUMGTG zs^@v|`$1h9Ur6j+yQOa=o#1FqZTooR4E&qL#bw73U+Q=tXNFnarm)`R;5E&f`b^~_ zD4U&MXkJe_r|v!syz%NY8bLQEGi;8pR~(JXXot0$sbP}wRgnc2UW|w*dgk*!e8*|( zh%bv4KSaJ8@gAu-)zmV0=Y(Y4lYWa;TaeFkqIse6>b=oN9A%e%a$xmyYMV^63i!CQ z=0W@EnRVI!)kX&vte+5wHD>l&S#(Pe3zb!C=haN)$qVJV;DHU5?nBl^R$Urbb~Wd@ z@WI(tUZnsEa26o*}`_NRquBsOLTWLa4>;q1?6FoZyffpmF+O|!4-2=FA_{9UyasCK2c zqnMy*)nUZO-g%kRnsyc;sEDdEpudZCXS>PRv2&!sYDs1e&}l zBz{73;bf{SB4Rkl#7%|rQs&KO4wf*VNEvZ+BN|XH=pbEIAq7cxl;a zO@N-KqT(ii+)GWnQGQoM)u(tPZVmDMsjk5g7J(m8ZD@}*C&|gcfcJWh=e;5L04Oo$ zsK(%X4XNhNsGjf9{U7*Ck8M=t+hrq@upesZR4&ZC@*|$i?0uq3zWrw^c(ZDWsb()V z`~L(Xi=DhFgLEK%f1-+T_+1ts7RGj)P?))Zv+(`8QCcvv*N!USH zHe-HUgveM+Hy2aAw3>hspD4BuMhkzeQLMzkGVHy6&N9ZW$Jk+z51`9#LknlDt$D*3 zFWskGq`g5&86RHQ*IN{?S;?m1QQ0r^k(#!Ns@M+0=gw9>GD4wLTYLJF;WVJn=6k6h zi+tqXXC&*QzIksaj`;9oz&m@Gd+3xSapP@`iU4^mM-tBWITkCIq7c+al%3SeM#erWJ6FG3oZ;Ld#?< z`>i|NqF{L4loavc(|$TAY8|vN&@O0x3$WfC+X|+N53ghxNva&_7a1Ed-rEb`pWAGk zqWt>Ai+E)_92F@0s+X~R@mY*FsCQTUBV)*S8RywjT%U&By#a*<)7G*Gx#;S<+iutS z&7GPLeD2&>ji;ku3+;JwNG>b2zh!(tjH7yE_2_%`a72(9k5c82OKBgx8hU?=7wylYc`$wLlE#w2BFPzPW?Z*4`3FX3X(^;7#p2)r)AAOp#gO(<{CfwP%2BAMR ztrT1))*1OFa{h_&*L8y#Xk4%8FX7&Cb`bXWy}czD6s$&c{h*N8s4Uhm$SVD%Hg5{< z7p~alpx|$Je2&C|*5)Ex4d;PU`+7)N4WEjrGM6?Tm}VFxUzeJ{JC&41O#fve`(1v3 zc6!b8aD0)nB9!@INM}Kyk<%DXL8^lrBQaCxtq z^6;vzqgshK|9kVjz+X(9vfUXc%CYU{wL9u#H7#4!lZ3Q@FN2cu!TPR?`#e#{{WQ^> zmP5kCNyl?@o0akvuOpEnL`ekb-JeM!e~`xC+cf{8DHTlFZrjmz zoz{;yLLkpD5L}NELzn|6h#H;EEKIKezeP!G?jGyhd{74g|$Qz$p#Demz$2ZUVb7mqh@j^0qudF$>sFP7{ zse@L!)NYy(Zw`};FZE3d$(rqCN*)2Lgpw{`buL*Nz|}~_Nrme%u=JnVqY`I_>U-5D zfB3ife1CyOiq|^Cs5Vh)o|sf&2bwdQV6?D^C><$UiFhs1apE~<(~~LJvIm=N(f)vk ztF61ci|g^N{oAh*S@+F>?LPj2_m89X@y+L5xNn08+waNa{&=i2NpTOW}Xu`+0K_UiR}#_jvj&r%N0Q0)HqTuEW$w`b(Ohn-NAK&}It=?h$Ki5Zh53rZb_wioMxfuKr?Y}3*MFU#` zMMTzDNpr-1zufH%{#Xrsf+KdK-0**VJR9vD%=(k+`}p#@b%yunpu#9IPW-ldrrO{0 z`tt1Mz~mf6t}3A_CjNZzdTH{eZs8C9|L2K-duqGhT>MZ_OG8lqzb686{XG#d=8NG6 z62YYN4GibbP|C4TKeQAk;4AxfJbl`f4|Qir=%Orn??)ZY97gT!SA`E|a!o9gGAt9o zYNy{;j?LjSB)PW97oJ~!yxxx<(2JjU{%Hw(c=D&u8u!Xs{rIx8)%&s_o_lU&?Bt0r ztQH`$9`NG)`*G`d?fOgL#>?Vk_1>Qs@gIL~FJ5xR#n#qD#e#bl$S1wTM8yJDHdcOL z4wkmFH;Y?iY@BsojSohgn>dj_2LAZddcU)B-@bzJ65r{+K6-HNdp>&lvhXFi=k@+i z*g)@K{C(gmsmSwXHM^GyIU?1@x!8tS-79(S*^ie+{nyv6ob%n_9RDA`AN)&4@7fE6 zR+bE3*C#)I47^{!I5=0^)p)(UxKMlCo{KmTcC&qM`R#unf%(yOG%#Sj>Rc=^TpOAH z)h5pXrMn}s;J263#~JbG!+U!2GqLs8%_NTt{MTF9To$;7y`#dG~z z(?}P6uJ-N%bI)-uUaEg%#OLOmH`G^VFZj?BU!G5%boV?vJ%Fb&b1gk;O+T&#%-tN5 zmK?wR=nTA8{rvK~*FrOYeMf;34Q|p1>AK}oS8UL5Ru8$`6M2jv#^A4mPJ-|Tjy>S`LZA7w zFK>Um+|M|$GY77Gf+qi@-(NXW;nQ8pQeVKff4b###(uz*%{03Inttr8yv{)PBRW>Y z-HFNq&rTVC>H53V3%tiMQnA75TYNzxpEU->YV+h0$F&{*xCowja?MAZKMDJ>1{Y=y zF$U+O&dN>d5eGT~bk)p%65kCDl{9XWZ{#oeH00u2-M?sM^33-Nb6w8h1g&!*qka@x@YPeasrY>ZE+UEc9a zw^lN9TGAmwNMenSPrj<%4~w{H0Y`Xd&Rya=v7XF_&5UR6sEW6kk1X~tY82OPZ+kI} zItnHw?&(NAzn#grNu{+DoPF2Pgx5_`AYk7xqCZ?cP(A7}&*!*i>0@XG&TkyZ=NG89 z+566L3>G!fcFbb#{NawMrgS#B`}MFrUP-;n{N35!WQG2_6Wl->d*6It*f03p9mP>VNs`uAF>txLBV9V{On_baQ+_N%ni1yLl)vv@?QcLH~B8#(ld50+3zf#$dXDW_%az~t9y}wh= zd2IfX>jHX;t-Ny39mls?XFCE5nppmPIh1H}J2>cu7G%GlJe7VcJX(LXRBo)B!(OrU zeP~5!vYzWJFHIZKue$_>JU^W?6aBW^iK|1iRzIWHCNHN*X~G`IEL@$>_>P8_!HX@b zQ$N`5t65*HZG80FikRb|_GOJz+?_KEfHF-n2&&ej%Bv)y2#A4Rezl`y@(xa_=0FZygZ zXLDK_Aq7q;=?kM7U9E@)Xf#p(Tz9l~Y_tWAhZ#^SH3t_|A}ukZkMm~K|Q|e&vrCnsT0Yz+hO5vL0LnXaCB{FM`HD%DB-%10)rKANB0e}d@9l4UzeMh^gNkM8?mE&AJ+_1|@OPU96`4M<+H4_?qRwUP3%WUf z5XD7qa-hAZdCK%+`br$|T49igZBjR#ohn|&AJCAFdhIYY9CImi8&^MR;+e2URlW;b zH~~jJMce%W)3MPe^NxIYyvfM_b5gS|Tca)Bd2A!c`eHwT`Q33 zo218vX3Mk<1HS%X(=%f`BhyVEcUA5YbjDVhZYai%qDRK=m)K5I5>fg2tHY9|@Vz=O z{1a)0E-PM@l%fp?8F4C)8$sstcx#HFA|`7Nzgv~^#FyN5dV{8l`??n+Dyb;_)JC6q zoDlKG@Kyr(KK46sV<6`{6rNKb_%;G|c=|?L4kC4LM_zVGnAbG{&p6x!1ii zdHwDg8|x68170WEbKT8?y>%V^@fcj8CghafxzyG$;@g_iysC9~Ms5k~CI)F4_b(LF z?bt5x6BSI=M|J6Mc`NXF%fj~B;bPY#hr83EKa8L_Ms!a#T=U^Xoxjmu-g4<9f!%-W z(DmJxcoDmD&pHpgtLPo}I3kznssDZfriWrXTP+Tzdf?7Jq)J!y>3gs!!v{w<_naQ+ zL7rmaQXv6j&7F(WfM&KM$pTlIVC*?EXLFJ4p3S-;1CTQG=cVHy-Y*)$J;a`H3T0t3 zHnU34uE6D9wp+>|%&@$!3>WnFRS{0BI<7%JtQBnWvK)&n-6Q@XdF})(Uv!*R^RW~a ztqA9q>)luX@IL)n^d?2xikjJpwuu=Sqi?MOC?kSUuEB9LS&7rg6a}wP6o`tJUv}Ux z!IEj(sIsPXeJK&%mIu@jxz{C05fs1b@70_zH3N_2OBr~U$LwCBXrQ~!4SZ@NFE`G5 zeAW;`Sdf9fH#A1m&%;7S#M{?k+#124hrm`y)n+B-QkPD|JmBr7fck1?{ zH)Jewjj04*J>ZusY9TL(D-QbVe@tan&$e;5=WzsyG9Aa4FYdm}CvqlXXXOu=c0r9Z zUubDWAy=??B$HJ+5&rlXd10j_FX62n;RYE9EKH3Xp2VN*7v=F zCNtmhPazyKHGz`5cReP0Mv8O6G}(`4P^8slkbkq~pVKo7%{u5AInln_YqwZv76K^} zmKtAtJx40k21_x8gqk$sYYHziDblVPxKCIpxY2|Wt{{R8x5I`XuVa*)lKG`JDw8oA zX#6c@_1Rezals{U#9x^M&eW$?39vMR=d$r1AY5^KB3fu2e+{@(W5ZRPqqX+)2*R)! z{Wtuwv{4+=!mcSyL1DvW^j&A~T7_=-R>hw#rYhk&J@wl1z+b5wSHICVG78-Z@h0UL zpB%l&Sf?#h9-?E$1J_Et;*5(-N*mvbNm|M9QHYRzvOt}O?Sx^)9cd#hD@sHkblexx zYd9`cV(FLU^KPl3mt+BdDq0|DyT(Bs8qf)G{Cc4L9xqw4TDg1v6lPKt)fWHLMud9G z?n#Ut=Rwfgh1ViMnR)h{TArgP1S)b7}ZVO~5l*M)0+d(9~t|F=rW8{uu zaqOcmp&^J_p3p{S=vJF!8J@&`nETF5GNc8YL`GSPWFCxDVla5Y{;2y6**?+$u&rx6H#{e(@;PW{kYjyl2-n;K!?lkb2>LS z_P3nz71?jS*+W|ITv%Z+Z>Ycn5CInFQTu;&L2v;yWcm2li*WVE0Hv~`Vdzt{(+Ft z$`c?{yrKj%<<$uK#)|u6e;~zH>ZMri-wzfnP>3TH{xN^#1H^Lcv9as|U^2_4O08uK84Orf*uF`9o6l2S-YCuq9z;|1E(Z7ST8S9oHX2`Es7l-4DWqM-eL z3r%S}_L#9^v0hOKWG60J4^JQ@m`Uds#&L{ptweFoVPs4vgv=sZ1v4I7hM}*to7|C5 zs)wyyQPv>@l~%6BG!!$H{udER&P3wL_SdY1Fx$&@)6JcrDVM#8H#^(DjDqQcp4Ztr zu66#<^TlwF5EW+*^Ls4JCUP(hL{df*=V;kCmvz3(YVJ?qK($%(jch*BR#VDo9STXyboHy%)Z-zLgO8gCK93x$r#u z&@6ai9tyV<3X42h!JXtQ9)=RMR-D@?nz9%@Se__*tDI=ls7D!W9$7eDY+)yOYxz64 zUyR;4_sC42)xx+#Na5uYuoDHI#wB*~B?^0(kD<^#Y=ID&glxN+-HkG8@Z3Jctcmb^ zJ@4}*IbAw?&zNGG4=-oX!~cl@29?JyvZEwhVy*jT$o41+5}i2&`TeW*OCDHj3%&1N z;wc@e8MD_zL4`vKb=Ysv1)(w92=Q|N5dJreFM?{>(Dz;cymJU_#hl+X5k-=jylF>T z_I}0OVWP2OK>ScaA5(uh->@pLm1c;cWv#KU_fIL;k5oUUUYCOLj`H8GFVLE`3i?fA z!K#egH~u&_b9VQWv!$fMLzW2mTBdXJF)t4T+mfYe@e`T>YA&}}X_Uo=bL?EJ*v&kf zzIOUH)pBjo6pz?f{zwJZ7K-a4D48VeB}Gm&$>dG>4*A54B7%LWS~pYf$TBM#n2wuN zHtWiXV}IUQf)`R5dN}S|gNz{McV#a=qA&XgnxcQQ4%;1_LmyBj8Cux9C6lYD0+T7s zwq#`uFc(RqKmY07)@Hh^k`DQv_}c1qj2G1H`ul*1nT1=E<3z4%YmqX~<10L|{tq}d zQns3;q0H?*g^)04VpoidOEtCp-MjZ8eMo!;b+eK}tf|`J7rNO3Zt^Xr)LFy1&8DT-8Kf5P} zb&ui@7QW?V!N(0J#h76kQecwe1?-5s0Nn^XJ$X0YMv!xh#ofn*zD)UEdv%$F-(N?PkywjEpi%{n3c*t$(eM z{1Tz4nFt}SgbwQnL(s3*M(4urDP~U6Z4VJsWCKuBtI|<8mJ{TdmL49$EeCTavRW{a zxU@Y?flNXhLeuv>$Aa-IU{nUrWMNlaB;lf3FhAq~lX4EtK(e+cm)CSMOsF-M@umnZ z!~+w){7~bNe*0YYd~T0sNI#&*Uy0o1?DaY z^DY`YD8rB(bD+nCY5ibNUl%usae&h;dqmGeuu){)C=uG=%mwRA9D*V9+!rL96qjfU z&&L_Z%ykQeV2L}2#UI}MBx@>GF1I81CFSk=WaI7NsB{}UoX=5w%ElwEN_XIwfIlK^udq6ufKqzHeE{Pvm+Y%PPEZhBqOQ?Doy z{RQRiwHVks4A;_1(M90ZU4iU_6xjv=S7=f(l_au8#Rr*fj8AFZd(IcI-nr7qum`)U zFdZ+b3jOyI*69&Lw1Nf`a$n5te!QtSfD0}UMoGvvx_GOleuY`#`4tWg(j`|t!Gyb8 zULMmWxoJ7=|UIT|vSzaci$&8&j!|Y{m#r6_|;GrphoP6?}iz zIA~zLO=2;{`g4G}0F}F~D26N%uEk-%n1~erNw2850Umc{FARgJNKAaYZPUB8Gy0Pd zE%P70JKYmmh5v`HcZ`m#d*Vi8+h)hMZF6F4!U-m}&5mtnV%xTDPOM2X$t1U*|NGwi z?SAQA>#Vc;RPFlhQlF|S!s^heqHO0bJ`$hMled^r^P!LU*Ue3K zG73(n!cX>#??<@37`LyKE20)a<_y%F@T*EMfeY42KplX~2IZ={_E_C9$YA;DQBhGADo zxhqa?!0}C5KHCtLTI<|O#lS)xNO|FRMKDP6P3?AarnP(g{k}`Z0cl;Yf2Y$Eeezq> z_fOr^EwsL|BtBng-(dKx9@fI(&eT=|JrP_G(F0>1K&nX`x;lk1%{l z^dm|p2XjE%9$F{XBZY*jRr&QoH!Zo6;-cBy8-@-J?uy`yUD$qccNsIcD}_`0>KUqa znm5UFkS%SZR$ax_)Oz@~U9FZcl`|6l${*BwfC!u5GhL2fx=Ws`!9?sq@D+8CyPZ;- zj-B$3Y!BL$=?`b2lDaem``Uk3XeDu@`2e+3a0uS%MeK+1S%2+{#4L=>;wfT-N4iy# zGM!-2l9{M$p=l#uMI4c^lSp>sZaALb+`nL$M3%QSpb+G}!u7RnrD15u$GK?9F4P&0 z1d>xCUSeJoHH`|CC+gK;2};;=&-16U%p`x?mnD$oX)@qcnp8)7gcWEpSe2zrziT%% z>5W8dJZLOO4lN()I>KVAk)Vi@KS;H3z#Gbk2C0XS#TX}{my*fI8DV_q4~Ge6<%P{< zS-c1m6)hdhbiy9e`n8*WABgoZfZk|=eF_i2B(vOvy7heu!(3HR@QgppJ+#ZRw8?a& z+IG)848gkii2+I1`ZX~RZc%u5LjTxnoVXzs8yAVe6A~=N-?J=6i3MVa(xfbG0ycgrc+vPEmQnzt+H zp@*qM5e#h(;(`RRAN3x=q5L4ogNPo&vu-@25OBdolTy=vLGfN}>{U!PH0lft?EJS- z*Rudfwzd2-ijS6K9HLWSSlX*gfSYKF{iMk+pHv?REklqM5g7Lr3Pw+R@w8gnFxfLDNPivO~;REO&-pSs|%c$WkXK?nM=VDlqOs|qHKBuY$2@5^q^zMv>jNLGE9P# z@JH_*3FN!gu#nzGLmE^O*GfoXNZ!Fr>|nEiSf{Y1YqN!~ElU5dS!p?cCYazLPi!I|g1;Y*`C30=jtUBHfFFVl3ns zW!{GpC<>K!&UL}gyq8}RA)YoL0|~ie17=J&fu!p4GDhGh2fS%3W-98OvCC=i7tC6P z6H8d|J_2&miT!ydGO@;sOdmpmKW#jFF*flma9rl)BkuUSBd&RK;1^ysXASAM$YAM7 z{6t}rbA;qv|JWFStYMekGX2D64YUBHHqO1W9uXAqnO$z|{F}{MD0e9w9(sZu2S!-C z`~q7Bqz7W}jI`k9YeFc?fJ-e164T^N;`8}E_XNJOB7#Vj_Jj`gCBStao;j1~(-Yqwt7z$rmKk#;* zPskda*WS{>IU7z2xBjp6So?y2-SLrl7fb{ zEzqm|#A{Y|78M0JoCS^{#7~JU^?R%XZQJ(mR_uWN2_7hYrO=);)o!?NJa1i=Ce>wZC79b zBb0ZPCmZ07P^D4a)PhgE^Bqy3gt2?>v_Cg0f(}UFn@C~q3_B92jxDJrC~B~cebvZ+ z7_obpL}Rw3AVKn5KClFV!vO@G?SYM=?8sx26EY{8L!9x@|Mb#g5;vUx0H0_}t`p}X z%SmaQca^U5d~%bmi0yM-_d?$&*={Qgp2c5o-riNQ#sbOUDhYaUu-!%0IT2o&S#Jme z>5_(*Wuho9NEP_Nh)jxE{I;Jo=$p)d8MG?NaEHc5P(lI||m|O6+tKBG)L5pqjWT4#&-Usd% z?v`tD1Y==rOpv1&P#VTlT<`xt%H)(K_hH{51GM0cv5C)gw(|r0;HETje?h932`G_t zXS{0_O$1=)!IS`aZN#E2u1q19@MtOagVnZee(D+7j0JzgSrBT%gLbC0Otlz` zA{Jv;Yqv2;83xkCitnN^v-R`*K$+k~TDyvICAgkXiB)C!#IjlZ1vzSh^@3h{O=uF` zX><`h1WZK(D^?tm0C!-Ee&rnB#W$SGva?}xl++i`c*T?Iyc}VjT<%2Gz+xCmk7Y;< z3sL(^B-qFh*}Q5oh$|moJ9B<6tRG8J$Ujj_mXH9H{4mk$Aug%Vi42Y|;h^mbgQp-* zmF<`*Y;%9;AEqL|C$#xc0E`AKD%olws+BO9Cn(nI14apha9Dt@(tI=<%b_(Rp}@{S z)!)5O+6fxbD-1^;sXV7^{li;RU>S;gFyB|fFdJ*wV()nlaRwfVj-!b9F5#{5OehS= zO6efwIEDjCB8vM^9f=8Y#?OC}3YZ6bG5#r-6GLn-h2V}kim-~JGvksj?d0Lb4F- z&|+j;3H-QUuerQ$&W?lMyJTPP7Q1K_j#|M(5!7^T5UTArnbfE_syL&h4ipqQJ*`m8 zX?thP*gKW7jRA*QwE0rC(r$^>N!LK>$f4W})mrkECVLe{;(-(>j&r5x>zGy#q;7!s zN)OrmOb?$%J3H>w@QdkgBOQ4Ig>uH`X!&fP%)QRm(B*4pXf6yBj{Ulnx}Bc(*zurP zj`bxMjFAlMEqYP39GG=lcl1la+=j1SAsXs)X(#x@M=iIk21-_PaO71D;(VQ|lo$e2 zGYN~hsGU(7fixvUSZ;w;H4KH6ce;#bF;`kygOgE9tUXagoCR?k+@k+N8vH+{RL$8g z_qXl0PP=#?=BALwKAh}%W-+ht4RF!E!3p{&(!9b5er0Yqk}MB*7c1wXhrcWI6Z1D; zs@Day3AYRm_skM=P4-M=Q8|RD5kk>kHxi0J)mXXrI86|W24qAj;|8FlB`DN$f_^U! zctdnj?JNjydo_%nhSR29PD4Pf@j;UN9SC81_g}2XaL6MrZQ`nt7;KL)zKzFj(;h5< z%(L^lK&Z_6J(1*|m?zz5R@wPsI1c4!MJp0(P@NuJBgg8$*Fms$V8+TIHbg=21})~8 zwm2`1dM2`ga~P@7gRGLWE&XF4@7n|vt}4_lg(UHUNI@!8A^b12^z=0BU#|SAFkb_` zN#cjK_*B!Er1x`4ugJclZ*)dIT0>$Cfn|M~7hHBWlA*EY0=ZV#(ZcLiEk6fgR5qce`Ry(JH7$5NQ;R*xqL^*VtR5 zY6GG|+shPV>VS*9hP}@eawFq>e=QPAr;adxq$Cz}e^81t+>DZq0KC3W8fe2lrM{H( zNi#4zxB&hc`W~SnD%S-uP^~5o7n%fd8cFu*ubqnd(;HN{Fq|Z@qQ;9J7 z-+s~4k!tgL7EFl`Dy5B@)G*Z`H+vBeT3`0V>rb&hZ=f1XCiBqOAj^?sPhD+9%&|**6i9QW1Ij zI&^Plh5&ix{4***0a+#b4ZdXlzSa@ORyo{%y}6)`%(9E~UM!lkBqj)}PL24U^Gi+Z z-{paH;-YFKIaSa$Q|FMBsC<=Neo{b6u>3UcJGcTei#tACn6gjKq3{!i?xEU+n9 zA`C|BFh`A1@JU<5apTP3q0AF*bBpezTW-cy4Z%^gU=&=4j9I`5)GU3a24wbPYbed} zgk1{j`{kY`kf9b&N}K*BD0ss`6kLAC`nNjg$;XO2Olw2;1SsL!pp@_FaX%l=Ui%>S zKl1HD2C5=M29|@vC>Eb*NvjLTfxK|aey1=n0Q7=FCn`AjNu%fGV!cY2{+~HJl9YXf zyLm5Fsl#=u!j?KIN>7VO3&m-5<>6#3k!qU(rBdQELD@7oWlp%(%t^43YrA}oJ;MsjD{TI4@9T`PWjp|XPHs)L2oS4=A};)OsDr5)xWuCCzMy;k$c)R{GWquy zRR&=LX3Rg%+d6xkZLFyr49IFEIiZwwk-&3!JHyu1qQjGn+XwED%;ok!6M>@Fp1zlh zI)kapA*5X)&qYj)=SvIcK(SK3w<58ydr&q?45v@;sZzlle%2Glhz)UW;(=^^>fH@# zSbh9-`kiUrEaBWrxe2ZY_vk8#=bJ(t{b{mb_~6(XGx!XY&*Qq!rmQ?vM5xnXoxHL! zD6G2_2u8-Rx(C~@8{L(%g_(b4m$Mos*w#Uy8qQ~7>d8{=GA=z=)Cr+wgpK-8d7lq*D%`fvuT0fJD~+ytNoFAqkO za(@WQ4HN+I7~IXCfnNk(O$~D*m7XXI?PyC+8G9TS&Fhc|f4D!YhgpJ8kpM*n>oq>A zz+?2`(EUaA1vak?eaJ4i0?Z@ng3Bu?YSR*m; zRNgU#(5N2Rg$Fa8`kPRC#{*^PGURHKf~%Yt(JM=@)v#Xs6&8K%vl-;Ji%Krf(u?;W zz>=|V{d95PrMoA8C-yp1BXjTBI#Oh}BZ52j*x+!23CV+ktng7VIf^mnq!aw0n5LW% zAzJp%@AuTKfh$$&4 zndJ9M$74Hj;+Q4?`}hY{o+T@`yCB!7GtJwGhz9RDbU;=N^?rJO(2f^v0B7q5z9fX0 z{Su9}=>gv_kk!+sXA{2WKV^C@Z3K>tOOiz z1HFPHOtfT_i2`_HPY!a0A^Xf@O|6$Z0XbIycBGk^*$<3}<)04fDLEnIa*6VMVAMg9 zA{|?Mh!Bet*PI5~EB=iHTj8U)vOd+H%>?UWM!~*epBJFf6nURcZWg?~|4uzOG%M8PrJB{F><6L|q8weIQ zBN`l``%Y~z3^?k436gFq9Piy}>aBQn69f?~;rmSJ$+m{|&zPPPX!i1N3v_le z;j)uej(xF~uTheh2$Yju6ceFcRU9!thbwQ`tus85DUO{8{04vRGb7yn@naV*r@Cex zy`Up*IBOOzt==XKoL-(uN}L}`1XNQA#1pBR;ieEcr;4@7zmj-zs5L(`D3@Dt<)qo$ zDpQPWZ?j7Vx!(A;$uapKa7O^@-u!hQ#a;Q# zZ-075D*?Ztad+hL^0>jcP>h#dUZEb4^Zd`?WETu#s`CJcQS7%=ySnb4h zpq|YdC4)raMCs z9hx^bQpHk-sgT9HEr}}lC9fw}MmLwtLRV=Wxg|oiOfS!uc*T9&+^u2caqa8<+=QH< zP~0mPwZy@nnO3jAwa3K9w;tJgY0THcQ@NIH^z4lG zY%1QQ#JY-rn6u!N3ia|7lS>EsVT{P_vd_I-rqwm`6I8ObSvA-Xu6={S!+I@RGekBD zLl3V6oNx?bcB#|;Y;0?+?b0}W^gRl@K?M~tdG3=Q<8j%m-s=zaC*cR0a-|P45`?ut zviPcRlOT>5*Ot=JKLIsRQ>4J^ij-tL{0oMM+WHLqiy4Jph50@|bLo$0iNhLL`yjC>M71^xNPV*IL;<+>nQeTr%I?1Yf>Dcb*c!2$JI9ZRSn)!A5jzvqs_%WE#}4V^`ZEXYy$|gUwBVx|SMZT> zP9K=SNf!#HE_R1`0ORmaWeCMINALcpbrXUaFb?%+GTgCb@ zJ-}#mr%v1&pwUsQLh4?+o-6pPjNCYVh`V=NCLtNaJEQ~jANJv~`-NYu_2WA(``HuD z>zNSQ_@@BE4}ZQ@CiGLJw;{j5#|V!>NsTHeAzE}uftN9FgFh^aj4XmE6Op2Z0Hlt( zQWV+nLl3Agpr1quU`AbH!Sj;(_3%u1%_Nzz+-b?$$wb%CxhvDs2l=yowx45uTF-QY zxV)3O+-|{7Jf35w5|uUX=FlRL!9P|W3DXp4kelT+Vt49F**rYKN}fe6_L3=k+P`$2 z_#2R4uT&;=JV{9A_)QhjFdJMhEwMh7CCGN*V2+*IqdRI`9`Qukr7Vf+$r`{ENv|1C z3-4lt5;uo|N-My4@5EY*_B>p@NDQXX%x(PNYR2)UL=rW#J?E%M$k5M4NJr|}XH^lZ z@+@YQ^)MhVf>G(&y5ImNDujR_KH24dVmef5Ak7V!XA$;#r(%#1rEY~+$!^eZ(!aSA zmz3s2&SwJz>X++)^2}K{Hm&_6PTPXL@ci17{3NEtwkL8&RhyOv7?ZQ`?*M2QWRVg| zV7HX>t9i`(Zg!O3i?OU8hoC=qIiv*o^W7htJ0gnF6>s5?R<8NC@t!qm#kb*u{)l%m=b@aLg$&NER&$9EPquh!NuYm zX1??bw+HVjjj=I}>;;WJ1nU^m&?dY87DhuIrcllh2J8RfG`(ZFg?Yq`l;G;b%VTAE z--CxQiC^qV0_HlLd~toIeDYKF&J?OXg}E_Q0vzfOOg}j?<*JpaZ(%si1G|`eqN0jf z&M++n%ihs^y8^j5u1T?yOH~pL9vQGfbQLK$?rQK_a09|c0aterGtN|d7tE_r!zl>{ zK`!rV^1Zl3DQ(zPm*$`DcIsxxVQpBX+;Kt4X_h1+*QKINs1`pi4*b7v=#4bytWdhY zL?HHAsk#Lr!#Fkmj(*>#XYKolvW={?_F&>1L^|Ef7#Tjx$`E%6JWhT9VqEAo8un`H z*E@XOVz#c-ZJ%rHf@KsX?QSAPvMg`s8D>C)7jVne@*Z-+9Cv3POGSBCDY?)`(3t2$ zBsFVG4EtXqap@YYxqw9AB0w+7cHoPHu0e@|O%>)8eWT!?A`J{CIE(`j> zqIOq0J<2G{AxNnxqVJ*LM@ddb0p3`mpE4VvceRAOSH87x6M29kuH5}_fGNogwlDL5 z>k7|E#T9)W%}Q$6)#TlzP?Qt9NTS2T@=IX)t>vWk_g3T?w0coXxCGe@pTSWya&LOg zCe1|YaC3i$vK^i7wuH*}>Y<&%v>MXRE;+}}0^W$|1NMQLposEcHdfivZIcCJ$uD17 zLI6u`H+ZvR_Bm=-7dIqOkzD@V_n3Gc{nycqB)3iisESoWQOxB;nlJEpsR9$Ks4o-kNVsz6{lYM2dzWL7y%_}s&M>oNa>v9i<^u$=?l60U4B zqva!-=3#aEB011X|IYTrOwzL`_4gzpm`Zc4!G9-G&suto+z6J6$#VSbYVQKeJh}_# z@NmE&``BPf>;Rh0v#ivi+*Ru_r+1gDvTc9mbC1Re$2u{U2dvEcsg)aYQSqQe)lJF{ ziu8*!C zUL4y3c6)mMeV+YWBUKUJ^YiuX9Rlp#etmF$T;CrMejVD#rcfO|kfJ6epc)_U`E_>v zbCOvEqzDTO3Zev1AyEA^+!p%0+)8$A1J!&PZ-4c5oeAWuCcNwg2rc)XC3h-5Z=^s(HALqBXq+`fQ{z8pz!NqdF&-u~SEyMMp_cQl(U zaw8mIB;xxv=&?+*^U2%(b$|VM-FFM>xjWSMF7VlqpogNc^HlBY^8WTYS9g0uDuN%L z!R8Yn>pJn5EEID=Mk;V?kJV|s2tV7~Nv8l$Y17X=^7q zisT6I3Dw^A<@MgpyuU}xd8m9m9;{W5)uEPmd4!)omRD0uWmV64koFnqpsb{ zdrxpw>3VPL3lR46YE&dq&cDe^{JI|+t4qM;VcGLL7Py#?iCB8q#;tq2y zv-M~<0j~NkpUy6?H>a;LMDG+1U*lT~--k;0K-4C0W^pUA*N6xR+ zo(^=F!PB>wI_t$Y{pr@Oq_H~YSHeomiryUyXCM7{X`4R%v->um=U*6qT3=DvX26KB zi);QMOYP8p@4C+#>xGmbj!PUi)Kmwx+NJfoldqusaKQ%0bu*gNf=zHBCtYm4NF$TpkSO0WUs-Hvt!+V2KD???1JS-d zmj09yv=3*K3VZO(5-oYElz3A&dNYH5%Ke3?(gl~J!7Yb>#t#hxRL>PF9uuT zfI!l~#-pfOD(l^}GdVqjn4VDhvQVTT25{*^5b^iOOyT{zkZ`y8)WNEe8 zgJ?@2_B!>_)@GP81Fjg~=bJw5@R9{3i+)BwM%a`it$cU0<_l3PA z^j_e+oVYv^Ze9Z1@l}UG?S>{6g%*0+SP{?&OHYNp!dO4(n{jy}en0SX@9@~IL>)oU z*mPkf(8^m^!$~ExMYAqXn@8?WEhlt!C#8R91KK zyuo0MW%+VndcKrayT;V)z-}{Ylj2ltIF|^PFz3rTq7c*2A&85ClDZ847M!M?uarN9P z+vLD>Azf<2P1iK2P@qqt-l^Vt%PrkfN;~0BbJQu{1{3^wg2!jy^9ax|% zDjRGjDce$;#d!PP&{S0iVlW}K({8JFLVj(7?nh+(;+%OYkB(Zh6D5mC2sVRI~*YvO;@VO=r>Mrk+W0_Y>R5P+^(T zk;7#t-DEer^EBs#*)pT0vwV^jp35n?S!w*(bqDFpQ3nP?CB| zxAa>Ztg?&zu4(+|KT6&5pQ*IE<}Q10AY&YQG@{4YZ81XHL$jbJA_=VQ^11NNYpNR? zZ?Ojx=yZu~3A!8BwXS}qo;f5b37RdB2m7ILaZ^<{x3E>#Hb)F{SRjjOZeYOeTQ%pd zg9Nd>%tu}1z>0|+IhWe9Q|cL8F|o==8QJmclA9sMJBvs9h})rU9ycP(Ur9DBVk!$l zi%D7_4_rb%-f}rscNssV2SiAegi@TT{e`u0YhX7SR*a=knZ`+?lHRV^@bfs{KP)tl54M8fnD*vQi$;hp7}%OrO&IUHwHwz z186%!lrn#ftWM|^**m3p^Yx;7ZTH`weNAcue|$Qo+cQtOt%7<{MdLxqwq!|2jFTx^ zPnj^9Q?mstWXL7PW=yOpg*C?HFiHpcXn($D09VY*FvnKg+_W$?+6DqgGLmBVh^!16 zJrKfUYq_Z>x>G%FDW}XXA2B6(PYjDRJ>8zr6GE3(W6RK=mkhZlK%%Kn%I@yqN~!n-@8QW3-}|l z+zq*v_D&4x?36!-Ilq}N%j!9S(|4LsErnpe=mM zduK|jB~uw-z0kduVZfYIVp#)?spXYrA36WiJ|KY99agr5Kt26UFP0ZRoCr0V;d(X` zi9GpM=35b@LWO)Hucj%lu0d)e^>rl9BSrr5515+_jMgR}Ojhy{U5+auHb|Q-|123c zcR&np2yr$IihYKScQOqyp3 zsL2b4q_>}c>FMvZ_PM;_S>~F^wgd-;E~@pDd#C2zgSM)Da9Z_@;Yp_cf~r3+7{u6T zSsn&?+ex;x8py>~@4BteGk!nvjy!PLbre;`wE^t(a0{KIo2?M|XInc(tqI< z$ACSKL695cc~`(LAkwhUnO#qyE;A`=l~M?m9+Tj1m>f(wIo3qXZkS$ia`gN(c&Icy z8fT3Q<>8fbD(0_82Av-@ANI7N8u|L@SGI>INs@-yh{OR8p9ZW2;2=gW@ps)JMoMpM zpH&4hk1Shj znG118TX5-TM)1;CRwh@g-ds}c94 z$bkPQJclUAT0Qr#v{A*qw1L(7NV8Zvc9(q(uIqIunDQ92no%(wn!ahHQT+Qx%hhD{^Me3@4|(m0n*Nq7@}fgaOVK>##w1VoVfUPi;#>cc$ z1vDYbTt-%_lBO75hkxM|4J5j0%wkWmt{BO4vNZB#Icm_*5=n3e>7YAHOBsfO!{I#y zxfd^VO^u8*3St&ZBlD7e2qQ2#VCm5^h}`+IAsGJO^-4K*tsaiaA^P)o$@9~6&uV(ZYkBY}bb9j$pE^MAwExIC@xp#i z5VZ=n_?rcnT{F*V1Dq*NW8~Mh^mqPk2JTbSbaEs5o8r2SCywXMPZo9V$@E=%hz(-| zk?&Ark%64+Q0wgxg>2;yuG_;ko;ND}v==-NrIk|oMrsc~z8k5bc=9|(A2#NDNjc+N z8L1ikcg+BWqmGt&EK{4Bc_Cx9unB%NbEZ&R^yKB=?-^Ycg^OpW?%+q6?k@wNk$4Z+&%H@DRM&?|id`-SE3Jq>*KRhv zddN)#mu`N2>GiuUwhlaHdDJ@kUB2Sj5ChsrZ3ehL^S?a*tr`FMLRaYxaTIF?xA}Nx zd;QyeCualwFv)?zvdw2a@h91H= zX!5T1LY3%*@zk>V<{p(BlEB9#2h+hmf?6D;<~;u+Dk>?;vChLku>M-~0HZyYJyoyl zABF%d6QxGeO+^wuH1KQmh|`mLs^TE`azJ4;3p&RDq7+N($C7VclrKkvC-FI>NJaVi^JdA$ICgD19+Bdz^i1%k3wMZVXYNV zk_}%lS$7&gxAS<8k^4tqh;ZDm6y;H5gIQ!nAroF|US7r03{OS1qET>_1bS?=?xeg| zYg2Yyw*5g?0jQj~Bx+;Zm%~d*dqIfWqjB~Xe*26OybbCoq4{-M>aY7%RESlI>IXKt&=6&<9!i3A7-qAAP2ob%Fu`MNkDeigwbL12|e z7pMEhuO7u9Pl>lO5f4)*j-nxG3z3J~Kl~_iL6c|vCK%e-vW((9JaC{t(f3P3Q81+> zP$T}VIk&+;KBxmhm6Y2Pv^}Kiy3#wOQ?5h5I>l!^JnP;)WU& z^TQWqMPOlJsg$X43}u9_tX)z%`2H$SvpHuRO7g#tLt{?axD(9cXeQ{3=n^#>v0DlLB2Ltg9H(C@PoDyx@ z1H}_XZCrJuoYm~I{D4srSf$P>Nmke`14O>IDY-;~$(FJudkbq-C*d z0{Q0DOs!*6)#(36(S2eOMD&AlJeV^OjvF%>Pu(<2Ff?T*S>O5#WVUrLBd2(+}h+?;bR3s({JOQjFb1=z-hC8B|(RV=*6tMH;B zJD}G62fNa6bX^^VS-Z3PiyI`f0H}Vn6|hBGMZDwRjNgT5K;z0 z2ndqSuE-O7T03eh(-TeZE_%#*D*uTJOjO~UGZU91RH{S09iBP8;*ao*#uLQJX~*Bg z;R}&;%9cM_b6qG7dHJ$x+p1bYIMf(sK2;A*15$VwAe}N#44YN~%oD+XC_|_VdHUb{ z%(pmX8`0&AuC9FM!cUTxV+Wnv3|VtqqNV>s3RYP~x-{jfXe8F%Z-wdjUd*40f@S>_ z5cm&YnRy5sRiuB zk`RLZn4RUi0v(nT1hNsldUdcvrWP05a1d~bN=ih5oq8SaA@avf5(FV<4Y84&MWf_~ zWh#`mCHascP3qXDRBE7tV5qf5`){Tv3m#_iQ4&~ED?+VV#V3-fMCdoT!If6znX^B$ zd*cr3*=||v(YzGVkufIKdnT?iiS1f5#<(YjB%*DdI_g6$ai9xwL}N4mN6ay2(5sSo zmvlUqwMLr?J3je{7{l)+1x2AY2G<JGF-#d*P)M{U{tv zZ~#UOX+}`!HcwtCK!~%0PyV|F?MfNkJU%2d|GuF09G`7ixF2u~iY_w~;ztcJF6ga1 z`#VK{EOm1|-%MfT$|Pa%%3z-oTDjSNOl?d#5}rI_xvN$ zJUJvfx#HOpbb@T!{ z!0w#UX@SdP2S?B6k?OpgY4_8N`5lms{w+t;THqUuaGh{Wq-YI;($RpGdtUcC}XlwJ*u zUO|bNS3IO)QV3-_Vw_>D|4!a@7x0RTlE7YqXdAmatf|SlT8Y^+R0pDei={da#h{2H zI?xUp7M`$_#2#aXJC|p)qGQV=m4mz;Xwn&#B+xLw@yQg9t4#7oK|#?l&=E(I{1F$z zFaYC0yF53kqB&6$LU>G!uBQTdklRLuS{bAjng{5$SN>I0@s6Tib zOE}^Z*0p7i+rnii{&_BkC4J*IKHfFLku0*|Nv=ajv#?-eg2K`8d z4&TuEc*-m`v_Eppm}xq9D*&_OMV#3sdQp_T33h@-Yl5Y{sV5uGxTl|@PS%I}Jv!DH zaEC8C*5~S9#kV6w>F~-HXuO`<7+J}n8E9i{c{mSeDc|uhOYJ{KQyg>zb5jSef?0|e z5t9u`xeU?iSCMu7Q1-1#0esD68t?~dOUpw}l^Uq1Y2=M-XdL+6v{PB~cHUTKnZmy= zlKhorjFuQJ?n;Po?K`^mKe|5`Ud-aBDr{C!hrL{K_~&#bq1NT z(Z_)&c&QuXGnCt4LzcFhp5t0>H4!~@>rMtg_VF|072J7`PqBQIpf{$CX1w)p$&aUO zWviX1p?v-ldP<8=|F|I)?+D{&*DL-+=pf0Hh#yy41q!LI_~_d-bA~5>9{Y1JZ|y@U z{dB7)9n=W`3gj&1&yZghuLx*lm~9DXS4#X=&|ho>JgjMnX*oeE(<wJ?dCq>Qe!|^hE z%yLMckE+kjH21F_nwpk6??sK!|6SVELHpm{eKxm%j7imoW3&tOLv6e2A~gH770wP6 zyAJz%TYh9&-+M;4QG+=;Fvd8BEwvdm|tGKZGc0wi~vo9^8-!L-w zDkoGJMHyrN>!`&~QN5-fRGu1=fCW9V9t>6TH4Mo*e7q8^RF#-RXyDDo^TQnIE)~rI zu#x*&x#1TnJLwz7gDMNCKf$Ql$3*ms9j~_kW&z%^ZHfKtwCG$@;&oPUa~+=i4Wm2d zO5mkuMQ*n+xv1-q%4Zed_jk{ZpQM^ab#14air+HaL11saZ6w_T_GN5hXeYj$mJZSZ$reC5A6CYe)!F^Es2bsm?N%iUJ*$) z;t%ov60K`Jd4~~lUwpDx|MFC;;^g(>o(8mgiGq8d!R3VWg~Pzrk`cLWKP;hc-%Xsj zZJ#LqQNJ)FUGiXX*?mhbFbjoaD>q==8W$>D?tZ;lfA&$_W}Cz zbgd*Ae^ML5HuOV9Ay4Px@!c_d_2&1hZcT7R?)&aVyA@6dpHU-y(Il`%{VvLKXKZ;! z{x7$hMl>Nl*~$`m*^k0exwqDa^qSeSghr7zHn%p44s6wAV>2~$U$Y5RbgtHl<4OKK z?$6K-Cq14dfn;tH)V(2z_G*Y_!KOPH_l4Ls}horjI*X6=+D zd;e%J9#)n8!yTCjwP5BW0p@`bX2We@wO`4oMi$fPJ}sXNOXCD9C-L1i;Qi0c{*}46 zF5fY_P!!mr17=SnS4i0z1%Z^xpd*ELh#O%tM^D3T;p?>HO+1noM#F1FM&6sD8@do? zj(5HZ6Z#UV`Cluk4j)OCby@PS<)EeuOymHCcL&M2xcUqtph;}Z$8~l>i^#7Y^Xo05 zp0(b_A6>Klx3T8EX2-S1(yt5r7_y0yIiHHV8+0N?ELwOk5HOTp4X3jA8eo-y03W zKPo1q{$`LY!wfPM-&2>>X>Si|!pvYYIpNlSal{$cywdrgG3=Ht(Tr5@TdZy1cAr)T z7Tw!yW(zRUX&o(E{1K9s7&Y%(dpfSf5}FXXVNKP4sB~MJswOX!c>xd&{!xRG;tXGm zERep{TGDVWIj=MoyK%vyNc%!tGH)d~b(jyB#)%q}^R@Jd&&rddT+fE7KgLZFhq3+L z9fglZg$@XNa*48)6&YZG=}!TV21m0BbjqQZ-?)FAGUvV%k`dA-h6huwdd87wYe$o<{3dRZ zh<|Mn@8wJSZ{5H%2o2=G9vSK`ff%3ed_vOZHgRdH(rZ~_9^}<%-k44{HcL3~rV8?e_heI0%4t2NpC?o08F}Uz#<%`L|K@gv>fqiEmo9|1P2TtYZ?X+8 z{%Pl_S}Gd-KXiR#kR)NV_1M_4?H${;Jv+8-?AW$#?2c{Qwr$(D_q}l=zKHMMKOJ2i zRozvUdGa}VGCS)y_gP;4Iro#F{|4uH4)?md+pJ^ayYKca_7-E_?n@6)ga-Ql1_e@( z1_eU}f&hX7Y!dyp|+dv}GTvaaj9=(g*YO{k|IJKF!3>_HNUZ8WpMibH0$i7xZ5koC&3v-N*jh&D2aAZSHQ@`#(lY zt5)8!J*(!9-9IKnKZy+1)c=_1>Z4GL?7Jz3X2~fnTn*oN!mT^2BWVTXMT}-GEW_Me zY?VZ#tXKr>iNzV(CQK!w?;8f@BGR=!)~L*P|a9cp;}$nx)l^`I(@m zDP%D*o?{)E_0?PR_D7`zI8Zetsc99O8nhB#JN-NGr=Wvr!;b)LV-0Rt<-{86PCva$NdfeISLp9 zmxdL_sK{%JxhK%9ud&x_2&)RqmT`knY(FJ)8havaM+v-+CBU-SPYb9Vt$la10d7YV zQptgu(SjVKukLlCx8VoGJ*WC84Je#Cb1%4>d(&SA+F-!UcL0vT+|h(j zlCA(zU9hxJe7oP09S5#@B)mCMm>@*mPV4sAXdv8CLi#(v(a7Llvr9$1SgBu12E3dB z1P|kp0XiRYhJ$0GiE3X7Bk8aF10B)e?`8Cu;d+MBpng{w&08@IWIyT^=Fjb8+Y3{p zRP)WP@7*?U^S6S#_Khxy*-lm_rJ|LBVwGk3i7RCps-<}&$cu9yYucKK_+Eh7z5Vw+Cp*Z?CG{yUl=ItP+;`mQhzC@96CzAI^=))Ka;~w9~j#N}}guScIlbQlXv0G}b}+jC@!~5tBkOQ((x~bQeE5#+DXgwq!6E8x3s?bhba{TuuXS zohNTldnwH{&zH4+xjMc<^eiw{EuXu1HfH4j>u*EKR?>)OJbsB)CeG6MUFn}PrQYByntFRq_Tt11vZvfUPPsO(JKsPU-%gTweM^;V zxZOgaGGWW7&aCBs`bhDH%5bdH2HOF76=w8dP=xg>*msMGRXXuSXg8f~c@!`SwgUOs| zHj+N~QV<^d(MAq(JKc3hxHWnK{IPjDp0W3$6c$vKcsnzbo`< z4h-H-C8w!L3xY$m+b@AzN>JV0O*dn_Aj1-K=wlp%10cW%Vmvx2czfadpX%-$k%5j! zhH3+N`d;co?U6>qjhz}Gs?4xb!%v%W9EMlSxYW3DX_Q6BFG+F8msg5sD=x8b0n&Vm zC-|axGSae4MI;n)=#j1#U_R-or*KuS*7a@}E*#YJze91`BqX3Fq=E>LkJ4_ra;R{V z<8k-G(BOSg%4=jsdbM9fwdH@_I16BkcQVG;Sx?#kzoBROfC_j1ba}_m6sJ?7<-_#7RrK}-!kwe*AZvWle*B)qg%jd7Ix8=UI zxasDy?0J5E^;etEs!<13y{xm%qsF`TG@&qA_AZEtO~FabR%)I?dWB}l8*|}&0yzF4 zw1hNhxS@r+ML@qE0=kN?;3sYnhd+M%kp;28j3gv7nRegm6kO`ulKaVgGA|a}LwfHL zX!s&N!TPQXZx$ZBBa`Vk^u#N(Q9~7UR`TjwauQ|PC)b3fW*M_nIo7PqAE%bXpMi*} zs)4;588g9zCptZ2vK$3gOZIHNQBjSXmk?R4gYLV;I;6rp?*2JhD0V>L`cbp zhi6U>0g7a$p#Ihbo%pQ?vm)UOPqoBOi221z)e}=?HEJy6rRwZzAhJHyRZ^TZjfxa# z?-e9wO^(3Oq8Iw}gt-LSmO@5!hTcB8q|&BjV=s$b=N4pq=YqpjGHl+lT$yFu7?#~5 zYg~T|X3yWYxDMxVsyagQ6;`PjbLg8{^}z>Z8T{Pn5}3f&5nPN*Zyg`w=Yc|SLfo4- zaCG1wydSjoc(C(7RP1xDzhE89zSpzrS!6W(|H$Lb071jN$HRaVy(^^1JY)-1q+IEw zkV-?Rhy4trMxlNR!$oFWV6FM{?1~utvU?EoSE`)$zXoQ_-R^{W>xj_cRkO#XJo`lxM-&8bR9?X-6oYC=Q`uNo7U?hvHrNQu$t99|8-g*jU z)DZGj!6A+zuf?A}?t6vrJ12N8d%28cvJAauWd8Y&xM@6o2hF&XbCuoy>yo9Jn=rlz z0tEB`3j_rJ-%FO0vxl{b(?2RXp=M*X&hX=lZ^idVfVZ|ysg-%?WgQw^U?p5eZ`WAu z1=NF~busDtV|ya*y5xStIbj2Vl4O_X)$Hlk-gxvRS^(NOdQcr#_k#rxnZ94|+U06@|RUGVdy;9ZdHU64+g( z=vCvKWFBMM2D_ct(S7abAmG-kCdP>B)#o}5Y#8*;CC=4?egQ@GyaxjKZPTSYF|!(? z&EK_^z1`S-sITC$9`V0$bEZjzI186BO4T6obP?m#MvMXJGp{ z8C5FQP=b|5nIfn3$`xt>T_i}q`u(|Yzo?}L_Ee79!$|nC4;6@?YCmjydiw!!Q<_w; zOgSk>1#YzUg{STaz~>alzKf^##di~i@VX&X3i?eQ)Vm~?Yl!5!}sZUqBJoE!=7`3uj`9j zD8&zh>ZRq}Y+BZeGf85+uGRfdcu_ktNi&|-s0j#3_l>wo zpi(Su{gVt;rM|%b8)aMM;O4yn_`MDQ1El}$|Nl?>ub!ic_5U;h|A)TO{rjLIp;ro& z5s+a8T>m(-t@}erJo%&)q}#|RFfnx%VoOdGzSz~N4CW#|C~cSiI?7JaPxFhw0NHb5 zP@E~x1QcX+aB5zE$K>7J39&#$Iy;*<-yalRy>a>1I7OEAp}fh%AE*)qMuw#f{G^|@ z1NxCs(BX-ENBY#M9txvv*?0=H8Ao!5+i>P)GPS302eNLkhMp2UufDDqp4awxn_2>Y z&BQ1%`Wb&tGnifMrhI&jOX|&0naHEv zGcS$l-os}bpA{|LEzT<{O~w>_g8grI?DsklewZ^5P)Z8$|J5-4KMy9UCt*+6-p1R# zCT!NT=1iGvOT<&M3roE^+#T#lJMN@y6pO(7L!qe|{k;C3S|)cK!AE{rU84_x1Mi7^~O)@%5Q$$mD%LdA#lWaW`Mx{eAh)zWjZ^t7mH0^}0VT z-~Ih?dadX4{qdRk{qZrJ>FfQi_dV|R{c-oW{rz%yf6U*V9|CyyHA(OL^&0DDxBYdy zPoL}i{xEzn&d>LaaCl6w2iT(czCYjI`nrv+&gK6^^?6v|-cFgfczYnpniROz0Um#`sVj}eI)Sh@c7=8?-oi#@VL}btAI&dHb4FiRhXf^MTUg^!Yq0o#yv_ zi|zjQ__~|+eg8P$_IXWopr+7aW~q65I4*tO_Wrz^wmVVkefiu^gj2Y!qS?I?_jm`b ze$BRjUw&_Uxw_PAcqv522;pcPFp;V_N@-ylNGGd;udN?I3|Z0K6Bo9oaWD#NB)fvE ztsCehN=b2N5MdXh5OyYUmJ2UFKOX$Cd7}eA3%^}Y6tmc6QV_aIXE*f}u-tE*YHQCP zasuII73O0P*x{=8$L7wLov?GDCyNMs%QRIj=J0fskc$&)jyrFZ5MxZ$tA+P{DgS~& zKI*0QhlaZNdd|!Qxy~%AiRz-sI-BheH}Cx4Yy@VsAHV46_>t z+oc&pd-X(#JNcKlZO@w**XvBhd{Q(^6Wh{RT~;NB+dOofNx&x3*qVnM!i~<}8cv`O zjh8r$tvz81byVstG|)wv?b;o=ns6XYmNCkYg9+?*jd8Era(cX3GZ*KZ&W>!s5WQ)g z*pY_6To|+EHdu0l5@PrNc)0yt^TCZ|zs8tc_r9m)CkU;zFjdaTU79bs$j~?++TU>6 zlsDnF_-o0Q+dLR`T0xEYM|wzv-}i!&$!M;pqw2im#B|5zOzolZ8uxImE>pF>iYBwI zYVCAImAQVd5+_r-oSEA#(rp&ScG6njB0`dz8u+v$oBh7v!G8O3FinG9!*iE3ebrKF zGNQmxa><0##gCuTmkIo|%Ps19RW`EC*zeGe+l7)xl973uX&~6T+aN4cgRwfIjykRI zw80gV=Q(R=_2SHsi`uG9a|GKZn4Uco=1oxDS7x@tP;R{~huwyCN=Y4Zxr=|olv%Wh z#Ramh&4QI+Jbm@TcG?ufY(BcbfMO$U(nbCc`4vXym$$NBtMQuR->QrzBLwSRVLj2DM4znjiQ$Kq@yqPE3~v7rR%@?QQe zL3ur9Ps*7N6N~4i#FGv8N}K*DXxXr~6ft6?Hbpyw@%%-_wET3m_H4>^s(C<_ISMzb zi`KxL#B83l+T}mwAySw*E-GI}z8S@u%p-hha7*`YI4`Ne6<1Nzi}QjKuKR@CnLeQz zbOFcEuxYKSs*2Fq^<}yT@w@OEI3P4bDK4lYwhhAA#DD4dt@%6>*g<^d*-N}^Qrg%n z(74(ZUik!u;7v2a7z452G3vTKJTZ#r~pV+h*4JE}oED;9bF5JA0iM8{h>4eWv+I zznM(T6NhOJi&KP&s(8DE3h6=Nh%{toPuE_SYipOz)~&f!h34fp;H;CC3aOUS)^ffc zGiK;gGTG(eF7u1HE!i_CGXIvxw^D}a%5$3Y1}~4tfEt_~-cZHq0%?RIlX2<4AX3lB zO=)1^Dh!!27=g8?z%T9|IJW-*Hg#EtiR)FT_H1e1u3CdGN@JO6AS@PPlrbreHv}(v zlP${sewJ{`*0_Pquc=gXY13(op=rczf1j}K_HokyN5|hoh%BTtZ7f4pK3dE-udJNx za9^R!H&MzSS^s&;c-Js&F6(OeJoY=uhB=_^%}n*&YLW&m4-`R z3>G$wX2ULWYj{(R&OwHif#L&d5~WPffkS}VpToH7Xv~WJL`hDAU81$0L(-%y@81uQ}LCg6#A&8l@``@LaOCTw>&%R=XTO zGQzEPQ6-*x+38nttl$O_QXvvAeSFj)AaC*&4S5^Dm6wx!Yysyg-7~D~HxF^xddAhD z#f|;za>$vfKRd8bt)a|1tj&|n$YFi?3G`ZZp|!Y00fsAHk7N9$5E?uF&S45p-?YQ}nC0^^chs8j#5*zdrtM{@@3n!JQ zueUZill!wLHaOzB@7-Z)Ob4;Um1!^*{Yk18XhU7wwwa{|!F^vhy=f3voDrf5h3eNO z@HO&Vp|le%vrjTBls!fTuqO{ zBy0tfcKAsN)?89Q`LBcDQkwzp;~#42zoQzuU^MERLOSp8Yrv20UTN8V^3QX3L%u;> z5CYMheoa9A^9BfR>Nf3QD=eqnX#U1A+KnrYW!Oh0l00iz*y5ee3OzRB28a#irLdaE z%Cc+KmHsWEiu#gxr%J7&^AX$2#R6I5RMo2^m+~TrcMzj;8#DJ`w~1O`uEJE;I;+Bx z&RigRC>=B_)vBt-Q~H%;fKf^Ul=qvDC3-$kzOM7Jf9sxf@ zqH!SC0>*=IknR60El_K{ zIkwjVyQ3`uA(?~R*Zqu~t2`@r4g6G@(J)NY=P4v5AL|az38y8UQKskcR~+97xPYuR zz$w_Jzf6>-6~D`9-uy-6zZbvybDrWnowjVSW_r_p%-|4@M9T&X4?Yn58;|@kDK1t| zqE7lrPKxZR;Q4J;W?`3^)1*l{gD;{I999$1Wf)b|)1mBf zeH{jps4HAu@MnT53BJ=hmgKM2*`+W_+yN*g9_*KaW3Y;g>FQdH-p%Q#dJlQvErqe3 zKP=15ZVS)W zx#=}9MV=#u5B38!w@3{}e~Wd-w^^5H>Z9X(bR$fYUNA1LabkU#*6-vE#V-b%-b7cG zZy*ejNnwX2uo~m8N?uJPEXh@ihJ`9Q<-V;fser|BlamEBL$W5 zosikeOnqoWG^PHOPz8yyR$M8*u+&f+A+w_~rnvdqEKbM>L)(8ZT(ZOBN+k{zZyrpH z;vvHU^~w6^v?NIXvWSElZl>mb9jOt`zkQ&fyznH(&cQ1a9eGKntspf|g)HI9z=V zGv61O>)HPGM^zoACk!#cx7ZyA2W_LaARA)D;Y*7n^%!r64jErfh)zrkxMd?ENVSoX zyZ@!NU9wW@9t?PmJF|i&v&uySu1IKVClluEBD(cmnbT&JckpV>C0+x5u8h~h^I(!Q z!h51J;bwoT1mcEP+LJX~R1u*@*r@dS8i%w-ZlHTy376FBxV|p zJs+fi`^%PB`EzuPk}Qk8G|-2>)skLcDnS`)Z2wX~tMy!!HX4N=IJ0ep`#MtlCUOgg z)HEYt^725M_7`%!yG6MUI0C-K<=!cAA2pxg>$M0|`C8S*6opvV@8u1#^ge+HzBwCG zqKA@%e*S*eAoQeth4m1)N(s$tBol`%IHhSRu#@_aVdkhw@pHV$v3(&8xV~DlttuZ= zgV{0Ir3CjTH?BHWl~^-tM9HMe)DV`9>9 z{^M-*l~rruKuuWh^l*(uYFm%Tscs*y9oMqIy8Y>sgjNzX6Nf9OO)C7ce5u}D(Ky^G zZzUoN2#~7>f8StgT4|Y_`ZueN896_Gg6r5iTqg4;8*zYKIO8>d$0VxvF(P-k^MUul zni~c}DMIw+4;XJq@lx|6$*2dnupWjXr+2o_pSx<2q}@=Z*pStg54}BAwU<8ubHvN4 zIKGIXp0M3EX^y%K`|62(cW&olNcBcO2sl2n#wA}HPeowk!_uwZa&9q+-%@~Pc%g8s zTA397^@j7np+YQHo+f-tOJw&nv0s5a#{45g9S*zl-s(J;f9LtAh=oM)_dmq-Cg@2% z#7_9_CMk`9(7~IZ+Sh@CX4J8#ULplf7cW8gQbNbJnRPE*fa}&-hBRvljBz8QWk@#< z0=O(7jG6)#d2+SyG)BHlC6=ADGo?LP$uAM75HK_>hBQOwZUq}a{lK$k)FcJZ81$f) zjiT43mew%snLLDaU$+Jv@i@1jrF~|aYd4}$q4)4FY;k2OHoI!)mC~AR7oHX7;2pVg z_2HRs+}BsIai0Mga&lOBrYZLF?Kst3jw>RJn^c!;pFH4*(d#oap(n2CgXy6SjRe_F zJ0Bxsh&SNvCD@W!P>DBhS-q;=ydxW+j58%64NfEbr+ptW=bH%9pKC(QpHeh{IeKf-NaLAdNXR<{r3EE747t z%7i98m<4-KEMk(x)L`>rm2LTa)PYEW2@1prdR~Ma7S_tC>$32e15`j&9KJlF_Xhm- zh0cp|VG(R(*--sxZm_M-==7p|DeK64|sen#Y#Z$v}auWsr zHA^j0VBdf(2I57Re_LT~Sa2i;nZ!ROeTs05eKu;+M=07C6N1i7s6H*4=3)~oNHsAk zMD0uS`L#AgPzTZNl7Yd7b19L93yxf&d5jQ~gt74iuB_@0K182ny!QYdkXES_s zsa-h`>!t&T`uYXOfwaxMio6cPyIGo}gR6XJn6l1LTfFkz@!qooEFuD~x>-jFB0EPL zBQ(VPJb(BAXV>4)Ybe1WjKkqse+G3E`@Qj%AZ_S5Rgu(rhMpyawZ5qou8e?z##Mh48qm*&aIxRbm#evZl9HJOwe52k|zylmcC&-p&}Cx>U3TbG|-ENwnZXYM{*&4k6~#Ygv|($e6cmVX^) zwhqTn&@zCv#ux4jthKU#-5OsN`fi-7M*b~jcy?U#_S#^eZ^WI2u*<6=>;!>E&O^nE zC_}FL@`62iCH#Fca6;bXwQny^Iw}c@Dl|dIWXvgfskSXQ?f|mnVpZMo>=f#Yxvz8O z+7ltn-oWfIqnXgDZq{YyokJy8dJ~CZs!NQ_Do9YlgIeey=dyTSl>Y zrH7q!X*&4 z6Utp)OLOzJd+_d+gk+alm*_JmXY)%Sa)ZeaX#49{Ye@%M6MdCm1d@k_hKd7h60qQ2 zy@zM$nPaa4;*UzvE${D00D0oxf<*Q+5`V1MYkZ59ElfC-68j6T07X({p|7VU5(QJl z&0!B4j-;z>q4p=_!0=%%1iw&gamv0BLOE@Vfv)0JElW=}^iwNyxZHfjcKlNOpNZ{e zMX6Cn=;b?C()ffhAPh<2G0iR%^VoDf?m5pxUa7#PS;RGvDz5kbLgb??h?*qjytF@v zr{W#HZkB_rQg29?jPQ0Ae4QFF_SaqVQKA8}GmXI2Lx*@Cvtgh>!SVy6}k20Y!+ zbOp!DdX=?hzhSI;^F98c%7D@n|BAzx_u**Z7%2MyK5JB)hNrhBvQFv~wemq+6GQIJ zOg+}!>R_@1FhxrQoxX2|O>eTm9OT@ILpAC2ir-jfmo_I6@VsLS zOfwAchQ)wIzdu*&j!2a4uTieM_+k^gB%zuyJK=Q+VvulExh$YcJa3Y1tA<45V6Cm^ zG0&h?nS!eYzwwx8>RX0jK|u45hHY_|S-C^K8%z?0eu%7a32Eu#tX+IhN_+Vd^%yxf zA(#CmuSmG>>3eb=++D|03wEB{I*W937*l%@?`HIUbBb8~#(Y(r#D3<4d8+de$#pM2gK3NE+fo)33Ii$qj?e~^=uF32IcA6O{LaYLBlext)@yJcq` z`zWnx*#mKiSe%w0=CCrN7Dpy$%w6$Z_q0b6Rxb`zR4xFd^I93Burq)S5#NO|SSkwn4yBJ4o z&epXnMzqXE`!0vC*w9eC@iZUC>&L{3#bB?!xz>^ur59i17Xck!AQ@0VqepHTkK;F> zA5@azCijRPVFNNYUavj0Lu7nOpCQ#@k1?7!Z?&tp(M$(Roa4kI-X|=XnCS7#p*141 zOnnYc2e=JDaWZlk{`Qq3)fU791t2F|HT26tB<} zNE4%aB;X0d#S%eG&Fm|qJ-h+JGBx2@%`>V5fA{yUhxga+{#)p`;Hq0@+iPwc>wO{? z<0og&II9{PP6SOm0#PVCDA>;wX%Da&&ljxb)3){H*9 zs@M<(+yA}$v}V5<2gazQmAY<21~nugx)L`c@aF8=I;+a9$N)l|!O(kva6@DCsxj`b zFVwW>KuQFq8f&(*W%v?v-J!-#vwnNiUvmiHc1U7-zwbC&0NV7QHG2GgO@MX$hVn!$ z1`)$3e)z^}F<9Ba32-|T83gJ;lmkGiE=l2QbO-=$^}n{_8_b?yh`da{Yyk>1)%RI;@x3T=S}uwfdiq$0wmK$ zi9cvO|54PO6Php7aKSkJwAz13X_&i11qu$C2S|Lj&a}s(Tn*ePyJ*UoDoGKwdP+_s zsypPtO5@7409kA2K*6V6M_$Y=NUmAC0*v`FSL%TSkhUe~jO~L-b#VpdGj;JBiqpA{r(gx`mq>Qo{sG#Cc*HPGG*#6q1W|c_45Z;B$kcQBmzqN2rL5U z_#wU&h^aGWRT8mYX*A%Y&p znI&=oco3W>Z<>qx24yiZ)R_c;)4{((&0k=?D5Pfl=~&}!(U>3(<}FaoLVgxMtK&U> z^6;l1QDV)5(#5;CD2zf3qJXmLq)v~?50KGuwK9p{L36~Um=_qR&^NDRJ8+h3SlkVw zd{j=vW!{&&3aQ{F_}VXwjC$=k+EVdbaoUH&Htr!CIR8Msba<~*dXifyjxoUS)mamw z0!tu8BK5d1rftm1@?iagB1c(C`3yrf9zcdWPL96kAZf3NRIZ3})z)Nf4S25fL8MPr zsREs_P!K&um@GwB(Atoi_BpqAEZf1r1in;&i3pZvp0Q_w0>v?dH9bI%IWk>-*4^d} ze%7!P(=ME{Pl=&KNPR`3Ypl#pZVt1e%iN!nVe%y9=4h-zU1oaH&?2egoCztA0VhN+ ztvFv(Z3n8F#UAM;s)}|QRnt%Zz2vx~xnS8!1VsXd;zeod;7xI%JX{mIEQc=D8$E;- zd*FcV3aE~B2DKy%S1zL+>IPa}4Uq@X&nh#Sb;KItr8_3r7GB$p8Jrrh;gQ6xE+uZY zuC5@UA@*aFdthLVqRi(N2~>@OA6WwXkzo}yr35bRvA+~{9orgH7|Q!6Jc{|#Fv(R3 zp<;0Q3BEe>^HVz^jUGrycVU!9NIFd;Q_uml@pzdv2w1FXo+8vuJPKC;{Ezqr0i}1>K(s2dug|WmBJ9$NffI#l*SzjR`gUG zV50d{NVu->p~d?hj%V~JK9)3nv&nF5lR&&anE+C~b)Wc4L^2PbE&?JNqS0#qukFb9 zZ6!d+eQ|sxR0GaS&^lru7CS{g0~F4DocPY(IqNOY`N5@@a*=wpDJS=aAIZgYYECbv zr^j>=^{ePGqA_rEDr!hO>o5kIGqHE1i-IB#fw9{_tKLb?v3-0N`GE8|Gf1(Hp;o8D zyN_#CdT5_3QSyhq8JTQnJt_K@2B0$CGH8$fXDb8PO0MR{>bOiY|ZaFpxK2+*!a4>=_;YongEn^ zrZZ0-r3vk~&xgE6mh3hA>XWGUcHkMS7!1 zv(1CdXo$6laZBaT5`ObmY`-X%r(!RrxyNu|{=>Eo^ob{h*p_08sFgh)XbXxp@{l{f zRqTBL@2Ck-1(KkET12FDIZV-%yJ*D_b^@pXDGt37>>{Ct-FKNcnmC~2`!OgG-i4@0 z<1ziE0%J!$19h^2_Ww@(^5x>8)0kL&3|}h3MCsQdDVj#GwpjWq4 zaDE~E?gq$zGg7D`d|`qrdX8;kIl^RCmAR2(8!6q25gdIRx{s(5tE3cp$%vE)vG0#; zYCKYbJ!5j)PPYMt7x|=lhfzCVhjLz!e#DV91P%ChKk)WF>29#d=^DIXk}CLNG@opg zbkwhDe3}@H3;)H|b4DD5g0M%5;Zpy^<2}drO5pkpgeYQ=k(al`jrH?`K~-*G)7eyq zv)xtwJY|{?I$kTz)<*4wj!~=OOf~k?XcqJaw>@{+sQuTMRUxVoeWMq5@k^!ga5kFu zu^SF`z+wTz;dFzLiZqLB4OHdsIBrrIJ?byYEsay`hj$(80|3UGI0uR;cFPp9VUzG+ zQ*U+`#o+WRq$ed+)?s}MjRJy{NpD=B8j~CK9_F^01tGwpxR_z|v*4`_N!^IiS~L4B z#LW(A1JYGw6V49jjQGxbTh{piwM4c6jXM=inwS(n?~#B;{%%Wp5oUBU>{4v(f)*BQ z03!)S@>|wMsNX{v`XgvNqc9WjDko4K4$SLYVv&!UWrvU=T@0kR5jMI%_Ak`FBuEXQ zg(52)AGuv2W4-*c*kB$JB&9HB8w)AxuQ~*HmMKpk#!xi=wKn8>zTr5)EJo;Dk2lgduRwI2%WOyAhFO# zpvD(8afH#ifm;+K%FzFV5pwT^(=kit zig&=cMu*Fs_m%MnnV;$MvT~j=9`Boq^5VAuWGmO!7Y#lK$^DWMQp1w3GcKtS=V4E zfMIdvo6fXJLOmLE_qYV1HGuwvfmhaM09L?IXi_7I1Iz12_ByR92@Y2pI}~A{o+!X` zK&Ucrz%H04M(ge8$KO!@_V)4f9u%fJu|l-+Y(^cO;~Xl)b1 ze6wq~skxDAM$DgFM&Za;Y1)f!{z0OqZsFbXe1B2TBT83t^C;a3k|b-uIvheTScwjuN~A#Sd8| zewAye3ZHEgF%89Y&PQz$d?({=255Zz`&-_XQ_$l*B<$NQ@WFZ1>Wp?K?G=P0Z0zA-fiq&a}G2kG-MiTz)Sp9dy(srB|@o?ZZ#Dxs&bI%fM9E+ye zZO^6Sdf$a_-#j0+#+qKyk;(keVNad*Y8p?JQ*uQkBcBc1 z6SII}A*$acCLnZLpOGX%UokoF@B7t9Kej!&#-rfcrVR5YfsGx2OVFXikZfBVvSgHh z=RLm2L=|?4Q@DO|{%7qTQ;$dXNeP5B{%Vmus@R}Pf{sk&qiVk1uPl|GKcAcQb_cbnNfiFMD7E| z1j@d*B7f*wwo+F&|C|tOLIsGkac1sjitl0Wd5k9Mp@5}Nd?n@$Up%z@`=4t;5bjS6 zt0Y#76E55PYg|o@Z2}n+yBeqLZi_IxaCB_gS_IW%x-@!0i&mu=UN_0=G{Tx=l+8M- zR&O}%+huv+OV!RCS~G2NJDLqiHgI&IG+H(C(}0Z+2vHdV{<+R&3J{SyK?8XL-o*Xohm9=`-l zndD7E8Z8hQD`gKmjr%Q-QgOZj@Tiha2ls3EH9$=A#*CM_z{2Wboi>Ln)Q8p1O=iz_ zlbfuOt?8**sZsm<*#)=;kvgw?XkHv;gx5d|BgnnKIzXcm#wFp(FIk|Y+N{&UoGiG+ z3pCI&qX*8>gLm0+Iyl0ve4;M-sJM+Hc?rXkVF2w-B&QK>6SE4iRM6CS8erScC1`0% z{Ba=E5HES@((jvtr+MBK5^5)VL$w^yXAr{j=KZtkVpx7@CRN`x{C;HW1RzkXnnu*`FZ3tmvSsXeE&PaQe)?9N65L z1N02T(Y^KwY3pv&rZ61N^~NdHBuyuH);B(ivd~&J)48%cDJaX3@lkePs21D^EKvD4^@7*4kG7N=w^01TCXj7tX>5{zsNMlOG zOM$)K_C66&sMoaDu2=fPkT8JoL0>i(@1Rnh-$?WI`U6|$5IJthC4Jk?OcS;fJ(XBle5tzx=;{lLo|0J@AXRX280@p%Z~1X>86J=3?WD|%Ud z^b-oO%l&N$@9`sW(6z9wAw6Gj6(3ROFa{wUqK!n^izxuSQEB`lBa!>U$L1_uNuX}- z8_{dDs?dotd6JrwQW#{qUb={ti2alj$E(Y@9>RADpT$;mkcty<%w*4 zE1bYezK#wBnCG=jIOT3Cx<*_%(r@5)w4&j4L{3ew33SH6Ct*adgjue;-I4=gcVD+& zdlXr0*Skg^uW(i!hJ*zFXsNMe%FzRn7q8>!Ix&Tb{8zx$?FaOpNTt*#g0HJrm%Ef+ zJ9xJ10R-1_afHtMPr9YpjqQvR3WG|#h8(Z{(_TUhL3NcJfEo2eJF}m!x8`l34-IXF@{2;^-^n}2c-;4X~fy(PBhan`hgQ&j;#}W6=hVQv1lvsHUgTK_Vq(2>9-ajX{{@e zusYDEWk)K|NA|emx&v5OO~or$&jyWh)x17vZ*rU%y`PMEw_m~*D=WFvU{(Swt2SAi zg}#KYIa4YHP6L?3S#ovv3nmNOm9%ON@@Yh~Zep~2=ZUDoZg{Rf1*Mj1j1a-4iJfUJ zVbCOXGFzQFb^ol+f!H@6RfUT4m6y*p8Bm z3uE5V6rsB5q(~ReqC>Ws`Z{sK`|0a#F9e{E>(KMB?o~B9B^g*_o6~@{+xqf4TIn!2 zp%}Hi#XX~%WPXa|@5e1QBaEr+o&RF#8lxj^n)W8y*tTtMY}@9>#>CFXw(X5=Z)|O_ zF(6s;jH6s;=(l^jJO}0QBh5K=uXc*MY=?2XXiL1Nogfg*&>9 zI3Ls9@1@^PyD(1@D>3S`DxMhm5j^yZxtfmlW`?d}(ueif&&HVk9hOyb-EoIFuks&* zlj|)|*gY?Z6JNQBy7vGAVa*auOxhcbUYJ|#QZzbT*JlnF><{Qmm6cH}Jf)Get=MdQ=V_7zuC>Vmbi3D|12UMeEv*txm5U$>dq?g_kXSej7TyBEsGc zzVR8~O8e}03tEy_9q4)J0`ZG;{hdI`FW>$|{|vGR{&+vpt^6i8D9A`~&!~c5Z^SUB z_1c~!wP65RueJ@GNXq$tQ_+2-1v(q;>>MJ}VM;|1Xk0TTR6QzhT<@Wh{0gxgI1&;> zE@crL8%d$>p3jh)9&<4BaQ@br0kP9I7OJXk2~4Jp$8RZ3GtGVRuO{iSuufEt`ity5 zZ^k2d&gpwm;y84?Fr2o`loogKHWXA7%(NK5T=vR`pg^c&46ayP4j}-^NM6j2j4WvM6 zr(N5I2Zx|y5kpH3_oxEDjTwdf23?4U!*OswJ%@u9PT3F^4|!}p^8T`YoUMH2C1i7LpZaJ#o?PfNp_512U5}-y;k-)Z)VzhQm^ORBJPsPC7zjUHC`w2Z} zS4C}}p*z*@Cv>8IB!wa8KROt*jS?A9khRG*7enCxBRLk-s!@^v5?Ou1bf8R*f3UJW|SINx%kg8C?6{E^U0Xa7Xh z7Gk3jqopd%xg+MKb{JQTNxATBQuhJ~m}-;L`C<{HA*)g*FMvf} zNTMh=ZfgEZ4iS8*8C5G1w-w>8~(&R zqEe3o@=e%qb}(tEC-6n{VfUf9+lE|v<=F%Ai*KIx<438H%&gfPyCG^*x2=);WTLZ4 zdCslovxL~`S^;fh2CYS)f*fEf5afe(lro$j(?JU#MtV|yvw|t1$>8G%?sFJWM_iX! zfEH(}Y~$U63j3RCg3Y$W!4$)i6#>i5FUyN9?{n_B?_gh;S5whFP!tX0hr`-dyAGVR zh6XL0Z<$g9{I$;j9*y_n6dT$@^s1eqe_ z!uEt6=KI>$3Mzy1-LHhM6uHN=Jez^^i;Q=4q<KKzxdJkO?3 z2=m(ID`eWkwC4vgZRClL+rli`D?ea0qOIkc{p_b=#;~7{mPv_E+9+oiq0SWUFz+h_ zi3WZ7a1+8Kt?AiJL9dSZLPy$(FZpBXk>0Fx27tWB+nhV2>2_Q;vMKSCLBj~z8k>V0 zN_Vx)0n7KOa@7)%BiRKN2Yxl5uI10o3(q@eU?FMgR-*k1=mEV|pBls+$bG8^VHqxUSWtsx;U-oqHxdNUs$VEm-74@SP z^76&pnI$_ZR&);N)~6=(KFCxMXN7lf(#smwha!IW=;^;C)umx$%XZK7(GxJ5yg`{U ztHtk0T0jEPV6V4Q#L}-aW&O8mzDfMufAZfJzI!q>kDBG;Eth>x92$=!Chk-Cu9c}O zrUafTJWo}E_B7aUmaWcu=D8tV&%mR=2#@ZkzZ}RSDIps~5{ayualF8*s0-mEFBaic z?>IzIO80&o@b+03kbZTa9jz^s9KS7S*obv%;oTzqeb>vj)u`~yEsorHu)Y(K|Hmbh zWpeV$bhWJSGdXTaXc8B^=2ICG%q*T2)h(HNy9sx;B%Y8^_!gC#o}0K_De?9VS)vQa z(oj!&S>n1G9hzdRk#VHfS@bBZ(b4vcW)wy**y?zS1rh*wDkWB>)Dm>qlzIG2`=whe|1l;Yj3=iA-<765x9c4n0D(xuiN zRzAq4=#>$IWBXeCXmRrcZ_H>KqCZ-Cxnnn})Sn&npQ;|r_qRbJiqR91Ito7qVZ5j! zSz^fnKQ*Dev#(GIagFXAAg6MZ@U1>asz@Y6JA|QfgTb^Uo;YvxAS3JK2Z%f6q&CmA zH`|<8{!vNK;MGJ72odW@E#*G|biycDNU8k?GDdgRpAQ#!nb_`JwPI$l!L81ua3N1f z9CvS$+LZMi^(jN5)l=M`=(}BV_nG?e_JS8QaFt@af|cjP3`{8Fc8rRW9MLL=(v?%2 zUUkIGe&3Ku5v}Aa{9t>1C-BcEShZrdYfluWZ&c>KmhgvnR)5I;53|5AsNOdPwxx6d zH<~fn{SBRyt@djLCTcZoZJNSU@h&-HE#IF6ADr9l)Xdf2AT#&buRv06RmofH6_y|s zFC4uXOiKD?gEp&6tZHSb*l?zv~$!=#{7AdF%3akDLEY>Fk(()VLV$eYwF{0GY%FdjHMCuj|U264i zs_kEr$RX2sBB&|Cq?um4c{J?+1|a5z+0C(Kg0?=jqSx~B2OUx=tm%5_D!2Kyj~~by z$Yp+%Jl}G-XH$%CZrf{x+8Wg`8=kBJ58OU;r*+Ks5yviF8=vIB|3=U>9$8ER?Rza9 z^g6*eXgFs+dIJxydSq0G%yst!QStl(;OrhRr587()sKt?qf2SrJR7d*od@Af$i9l+^_^$PrP-SJ`Ca@lyv)?YH zTM%)ORH8Hq#j_2pCjQyaHB!mn zy)UK8%8Fci{lrtib{!uw*gvkE=1@~*jBXjHbWjo(JJy2sL!(+6&t@y$%?db-cs zf}HcZ|6f2N!gR?o{Dj=@gv+{i+#-T}x1j{W|ANUB(hVld17yIq@IqAUA|!46#i?Z& zRBn;Gceld#J`B+)<1cv_YY~3$4f@aMd#rP#lYXyEGwbD#eRJkq z?WgFn?<1?ITgHw*28kpkxB%k?(I|smDsfSCn5i;=pTeAf2%2yewZBVI?PIJYi{L?@PGutp=LV26Bpd}iSBHhq$F3vW;RkK_?X@8^BZcKellPsLQb9uH8qD;+q_%73c z^o4KzPS()1^N*n}U{x5s*uDszkfznh>!!*V(9#YH4wTB6BmNML*o3R)x1ogCs#4$o z!n^cLKhYdxK8SP?TgvR0nX9}L=Wr{^@!S9@ni5AA{o<3r0l5ES`x%|23S=Lv z%|Xe3)N}Ya@0yS}9x*;&QDSKfZ~J2FCf@OYtNlLnFC7{w!s!`?qIY7n@xan~V!9ve z_UGfm^o3*o_WNTxQrmX7r}LFoMZVb;GZ8_xuYs2&WYP=k0XFfQqL$8X8n z8RUu|54Ip(;Bfi}dC(V3z4wAy+*U(l&58{nSVx37yf(K*Zn>LCpccr(tSKnF4efzw zk55N(d&Rl~hgDx$-Tw3Ys5vGuZXIlT*mE?f$YL@;ceI~sO3=*28b?d)*@PlH$<*iXvy20lytE;JNzk?+v$+b` zf$U4|`6J=^zc2}m890#XMgJ`~tVnp`MAb*`ZokQl4o#EftIB@_iCuM!%8N)jh?3$uS*0boIBHJl z8OF4n6XP8H7_JkwmBmVm!+=n*5|;gwe3Zr$RZhsbN?=^#%AqZ73)q+T#U5;^U+R1Gd>Azxz&lesu zu1Gt$(lA&u>-iv?_g^3+%v0R5rny5zBIse_tNFC16Yl432)u-C2&@o#s^{l!VDfg` z%zo{!%gj&pjbibTJyW5clgePR3B|0Y=@9Z7QZidhFvOOHVKb&)Qdn?OtU%W-VaVNpLp@$ zHw~_@<~SQP2HgU2C6u2ZWW`g26k7b_W{{*S5B;qnRggg)Rkg0U_0UHBcGMOREM7Jn z2EeKC`hA0P{kXM1m5U%+FaEd|0R&}Wk)2U#KIV@_9rn`pv9q(gZIPP#OStCdX!=Z4 zQmYrMZ?`|A8_G)HnaI?HHy+;Q6}uYGT+sj zx!2kci%lC45~W9R`;OOrzX%8nziAw9as81G)~F{7l90sdq>!(C<=(X~YCBCj@8;&! ztyRN)+x=OoP<ASRs0tH3j~FH zv_Fat14enC$D~?jKpE$RL{IWghe@@W*Yzwm=aH0ZLTp_Srq+KJJ zo!=?`gF%pcU44Cq3Bn=aIv3Kb6U!=9NQzb&YO=QPSRW?1FDUEbdwf<#->LTxzjlTP8BESXe_IoAG|&eJWuUuP}m8omIiT-RYm44nj;PyQFj z)A>6%M=!LbZ<>v-&5;j_r4i#e7ZZ)7H3%!*n|@OEm7TB6V$BVw#N5AcY*cB_pOK4& zrHKTucmzA@je=0l(clbEVE(Hzl0jckLXkkZN;_0Nu|}jGs2WS}vr23Q)+rS5wQwZ# zKFO?Gy}2E5r#heFCsO($u%{}1byLSV-^IY}w`Axod(OMM>837tovnXJ<~~md>O&X< zw_Hx~d$R8}S{MNQxYGRAiz9M{e;l(T(0rikaWxK+#HwEI`(JtD@^id70rILnQyezN zN^dbeH=*m|j@mI_dc<>QxV&B)fD)ctC*c~7-Gf4Y z(^#0TV}xGK04&$coi$-u9gI-b{hBf!=advC$6o}+jvwh5DKt;mtdNY!w2X z59(KH*%(<2U0b4Y9|#ZQ1$9JEU87jI9jxXP*o2c*!SbS$G;G{wwPh|&oUp)YZtB3? z-%Z~i`{?m$$-bztn`KF0(TYhbYcDZ8iPOJYYmSJwZ{Op8dB7JK!aw&01op5A62-a( z_|;zIp7uPSkNn%Ba<6)hG~YhNh=)D>ribXK_%a!KbmM=w~Ke*62A0smtOF3JZB{@NRCB8lKCfqq+z z`YBK51`<0KgEg_&s(Ip!(xckxeVQ%*Ex8IzR4n!fft;~^z1o~J*gkHvCTq#yb+Lqu zWQwyU<8jxATowTy@hjML%9�ooq~NVz;#Tpus6iwH+sQG;PGQaeXQQUofXRw^B#jO@edr*E6s?M*#VJ@t$a0g zy;<=H*q3_3(B~r3vFFQm$Z=+!IQtEu{YIU{bf@D_s_}10JC#zW3!e{`j8c`?i7-qr zOd6EbL9j)!RTLW^Bk>{xZ^HhtUa?(9FE&FriYLq}STs?Edr(|eB{US&aejg~Ys*tk z+tZQ!P}ed1lAD{CTH0xLdHsN7g&bpiH_Wg>=g!1nI|pXiRfOX0Ub%>UDALN!XUK62 zvDbB@DC3QIWy!=D@8#>=97A(Bix5`s&{p#_4Ya9G*fKR|FmciT2#Wsm=m{59Ed*3j z7wrtsUEs9N7R9QAFKYjJvQlQzkh8Al9pv{v<^}|sn}A`^kq+;?PHRU0D6ewM#}ZA~ zx%+rpMk~hcjRw;XmfHgq9bD{#_R%mp-U;(pygWEtYZ8wg*nLG@2Ms(18WDsH^YY9y zd#7!rl?;p{Y@tu*JU{6!aXhghHJ`MW0s23vtGt{I(f$b%%TsaLhUX?~mL~gPE3K+X zpW$L?S=)ob?@e4g{YvpbS-v1N&_3zj<-{WT4XrS|`-jrMV=}%@e z|6W_>{#(IfpXf=!DtfB-@~+cO^Y`f3@=yUYsf5~P-{o=RsB7RHO7|fI4|}qJ4MTzz zl{oCSuLYFdZ;iwJGwXp$_<%Mmuj3|2nZ|#hc03|U&U7PNlJf}0K_OT5&u4r7C!wot zdTc@Qbo&OHRaOp-69mZB_%l%&Waj}~4sbZ7O1W$dDo%C(tyGxYrryCgojxbf)j@35 zIWy5LY5P$uRML3NVQU}DJZovfEN{X`#|dLb(dxHBMa*GBIB*C)UdNRN-_KhqTTaHz z^O@r2iwb!qAUGGiZyxvym@e(N$<%8hd~sAk%-1Qs7L+rd8_m`{R0_d-Ry zK+ILfxQB73oV0B#+j|)uaYvFhjc+&cw?c}ZPxalj{@7;RBJXg%T}K=H1WUC_e?T9L zdnHSV-$&c{EQ%_}P*We?JJ!_Weh zXa3Q_ERgoh7RsY zz5C)UgBb!V@rATEd_QxikmF)QBU<|LM2uq6Uz!5KU6P`s@^Q6cID#?>`Z%231YJh) z&+$HPjS_+X!9MEv1*HOoJrjT3-fPp6meprtN<7Wd6d@$3UiXf+HvG+JvkuX6uqtg!YDc-m$C&>UEM4!z~23uolq*%uY%WTG(3FxvRc2%Y32owqD zLrwHGoy@a>nIX5BMA2$Ksa1%a)Jc{=l*0y9+1=Cn=jAKa5cb7~lc(dN-P9e9j z+r(YRCJpi6qw+HHVddW9CED3ieW(IoMIx;~%`g?<$kdn5L@8H;IYNaSl8A(r?57?_ z&OB1&qQ18T(>UdybNduD`6Q%CE1#_(em#asn%As5AXM+MbVy+v}EE($|{G3zTkcQ1gUa8a5J zVF8*hAx8L{mfn4QbKe!eTBtG7z$VAEc@+&=yfGTkut!!@{%_!XvY*rSEQ1RZu*Vcv zBkndr0->1FLP24W&94{zhLd5z*cmg*%s5lf$AMt4g09I+n1Dz$#SLPJtpj*!Fv4^)7kcmXmqvJo)$Cx%>1Xm zHQNTWmUvi)FBOWn<36?*)jUgrF8Vl$hHZz=VKNn$BWol__HU=NZ1cxZBcgCp8e@6b zv|rP9Fiewm8hlr2FIOG6g$ycld#=8o>l)A2+#c^pHE;36z&ugxN8`}YR?o}8NpNW?$;2> zw$zA%t39)_i~8|O;6BORAW2NaY{Tn~mTHEGH=&gXlqHPn4M|O|mt?APujt2vHU5R@ zt+#r0BZH8W-g7}uple4xF4|1rwbpLqn}j|*-8WN^77~(q#$;V}o%+>xE%ThMbSuN_ z_mn-`80?CoR^Lh1ASpPaM(Wh`7E3=&rH5nuX-JaUVr zj?Qsx&=!%BwfOmN0h;3B<}%y@qI=8MjM|mEnUJw5HDhpdRag_N!hj3^0^7@x5vr&= zQ&uyI4v0g22Mg@zcfkb4nGD9b^(P#R^-c=XBD7?s%JCK-a^8GEo{C-qkOY-ryG&wCcKe54N&lF#0%bR?qy++pLXIX^SZ zV|mX;4HsX`Ck_YMSe*>58>js8X~0`>(w3>iT2QNDY143hmwZbn$jgi8yZr?{>gD$i zwxISGWnf7b-FDLjWpBjp7{|m*-)@zN@8q7Lly2o-zdzNcn){rP*z}(N%C*;y2r{}Q zM1~#09U0)umU90r!oM2hK#=1!*-q)Tk=@G`%n&pvhs z-@E5n&)!To`UHyNUO#lkGswR`xIFv-5IkVRWLu~)QDtY2js6jm?Q7cjW1jC{7Gz+; z^DqFmofCu~nO-XbR5Pmy{IxWdoDL<=JzvYLc)-W z6a69vAFhqDjAb=ZDfM3=F5|l#Ij81^$So0kkyXCZs*^`lc>v*dV9m^ndj36G@m%7b z*${`S9LD-$EYaEhONw(YH!-jL#KIJAq(zO_C@yS;eiS=e5w5N)ri{eEsvr}h<c66%(=>Rs<6hc~>+2aLK}OMmA+$8OvNq(F zw&GAnuGN&=^cSXdQfLCh%_gxfuflEyXj#W2Hyx05@BdyW26&`qmR2CiP};Rr(u#|M zFO{%Gc5;xC9JvSxsJV}FY~A*Aj*U9s`a~&n7LHtS{(Tqveo{~EUhQ^c5BZpal;t2Z zzyn)>k2xbVhOX}PV;FZPG7#d3qO2Kw#VYbWq-Li&omb=IZN=nDSwnC%b%v7s{4gc6 z`<=Vk6p|W>_|UjbIzGFZJZBzy4*~4i3T&vzv3KbrJ1!@%MTs7@|1OuE^SA7b^qgPq z!%ec$Zj1>~0C5h06;XWsS&&foZxAE*w) z*lMO(m{oP!U%Tx`-(v6^j~K~egISN4E({H7wO<~?^+qJl{mPo8@u8)1!3u?mFb*QN0#L;2(tV&V9!m0%JQ*TB#cL@9Y( z5FMSBXBN(Vgtv(kXft7|77K=ukSw@(?Q0;n-e?C!_*+h|9}~hgp(|-5oJCmFMgj`z zH~~JE<%bWyi)?dXI0DH|-3>E5Fo{I!LQ@0@;$A5!V#Ue+lTLgui%aTDvawa3A;HrR zQ^v%k<{Tdv&pdkI+lydVm}j;txwTqiNjD+`gA)+4M_LI_>f!mOUKsjBS6x`UAozSI zl&}5|PutN5xN`{w^zB5;XLpMxDm@UWnlZ^W07rorU?;z%tuw9Pw`wsGc$VKbM@gkd!E>mO+eg6%+Nw8>55RY9WOV-%v18(iPS zS>?+dUN7-6J9?PCXdKTm?A`NJxtV0#Pq=U&V+CJUPd1*l+{B?w39>NtvO(;~blZ{k z8-}zpnI4G;x&3JUEHyHw$Ak-Gq17~r|XxA)-y=cZ6 z9(t};Wdg>a^Yxo=a-}pB!&rV{G693ok$^?W7#h=%p(>(Y98%Jy^I;g+!dDhyElC`s zSVWT*T+Vtl^Phz;cL<7S-O$@ z3>HjKT2d^=L^_%gbm^(@Pn5eQBXpB50yXIt1m~>16;y%`0Z4uyL%1nt#m8Q5@pTNc zMP|v2Xs3R|j7>U_nQN;y%>h%Rpu0N=Um?>X3GU_(XGClAhBJxwt%M?}mk@L*Oo)ts zTA8zhm}Lzcd!^iCakayEs2{}%K2y6kbYshIKAWe;A-{=&QdG&QvxalAlx6sX)6v}S zoL5NY#f3+Ao|-g(zbnaSt<2!ieJaq8PY6WA4(fcH?gqJ(Snx(;*Qd>N&)~<+S4;6t z|L1M$Eot>3YPgRZ$y$=$lV^f0>8aC^UtG5px+=k3x47M;Mke#jWri=Du{fS#Tsa>D zZPg0Cs6Wuiojpyj)?yH4qmeH7i=J{m3J5efW8=~@!k1llIW+FjyHs!^xSXwhX~1n? zrCX^w*Y88w!N%M`FXovOOBTp6wU|FvbsOwoIUd@x0Ay7-|X%$!A zXe&(T&9>uA@?Br^S18fy=0x=>4DSys6~eDYm>6nrG;+z^XBbvjcS4clx>K-EQU=rZ zrG}vif%h5HF(51{iupQG_nFDn#3gz9W5TIUZw^88yp-~>yLYK6w((HK|z z=be-(f=7767j7hor76q2oGjsL8xA$s;_LulV-m1)0xC<|ooJF)1ya~cwe5z&cLE$r z5U$YJrQT1N3zG5K2f4gu%NNHF;I`dDf=}*&s8Oi5U5Kg_51VlFq*PhmM<*;7%U5rI z*qgD3RWB(?7e>%Nh$Jx__Ftw^BcH3Q>v4-T;+@P_?}V5 zad93q)Fh2)1aQ=0YZtIjiC;*snB%&1gJWL_@2%(p#XgWKjj5XZvauUm(v#8^0%F7i zMY(e7~P&^ly4tET;lt8i6R>uDZh9=&KFd>-Et7vo1;Et1b z*_S#EB$D6ycQygD;%!G^3Gby@=lz58VxtMl@0NPqMg3VWfkL2tB^ zIr1bWXr9Ao6Y$Vql@;4oG7eD@-YbKhzb?1Z;7dXq$B>k}AQH;q_w4shL4oBFrGhLEMCh~{YX!rp(s9EnJYw}IExx8dqFyv>F6T)1B z>Z@#NKRE#&c1-vUIe7q?QlHt-GqI`Y!vk+M%GVgRmym((K*3qDf+$K~aC_zCKgo9_ z(RcfSM~uDgaq4mPI67``cOcaQ=ID4XtY6ru%SkUgDS&8s{r4y|Y?UUVptN+2az8Yz zR|xX4OY|*EQ3wc6q{L22($BjI-NJY()dr-BVu-}&JxP~LX=Ffsgm?k5<_RvrW9|7h zSWcnu!=wbtZX}A*_pDf77G{bS^tjE51MpID<8LR!CK++Iqws_j9z6sGAU$1+g6)R# zb&%;Sk#+P!n0GAk#U}5E3I=l&@Io3&=L|-235H{%Y3}cPl9E16qK0FqS-L_m3*E*@ zph6&bh$M^hC_8VpM}(e2wn_n=2DdP+wGz&45p%#*68%I)jy;DPu78b7htFv>y083! zkL>+~P2@#e`@!eq=!s#-?JT~fREOzt6v1P7O!6kW%62WvJ3L`I4C~>{AJsQ1;M|+3 zOZ?ku_1;M|pf9Vv^JXVxC?ih;i9RQxUN<)!eYtGJd@m%#sccRwO`)(|{Q{2l9D&#> zK;{C|z&WRhaU$uuf5$yW^s9YD*G2N5ciOC#(lIxHcTG4kBRhLaDH~c)8fb5YifaGj z`Ie>^3Llpf_q1R+Y{}zKq(3KuTvp@+`fv{!AbH+VR2)5C?{pZ1Bbc_wD!iPF$#q59&An-q%3Su_)M7n+$oY{U$WCW6If zZwP8`en&L{j@E9ML-~crtySW6DBT3_!csRgNqY4%HuPC4Z{+PH18puNVq1i|?H7`0 zCK+8s0JV}S&`6wCU|QH8v=;~9Jaom*4OB!C0#Jz^@C+IKlz>7F2*d~zc@L4^jDWi` z$Hq|+eZ_H?_Wsmf%d8gT>c7a7NB%uFA zY9R-h%5*0jha0*We^*l>@yti#x*Z56eoXW#lyb1k1XQH-Lh9KEp~AtAMu^~zc0oK)ty zlC4}gRKT9>%{%x>ta2GPSIZd}37uRg{FT4{HC$A{p!FCuak@M<>{~O!K1B2u*S+j6 zpMtD=jLNYeP}w)(vwVC$ev452F*O*Ci?>#*VmMbn3Os&;md%x^xWsT|`56!6 ziv4FaFJu(;Od>XqVE7(v)k6|Z9tzseiwq2%tmX=1=w$&^zQh3iz}I&pFoUQEmkkx4*3En?bIV4_RFIhhFdiG z{1{_DIOaY2UBo^mm?b_uv6xFjj642QEH;g<EJ-w%PNk_w1xgFYE6F0{P7{)e3dc{bYw^X1P#L#kS$uhZ$gkd@Y734+ZFE@zk| zkLH9N6TB@_{h=wLhHUCjgl8HnRS4{V!uj(naRffdf9b`~2ognZkyKmT?FkfKBRzR@ z?;mjTMQ^)!9=R*IZHnqVDAr~=#CRa!%M=5FkxfJELAXiO)l}1@FSi)fvXmIBNXNLm za-<%&PU$Lcd$)~%RTzVAci#&WuU1wYZQPhC!c>|LNArIyo*6Clko-tBv_`1;b(xKB*;f1saeedTU+imdE`RY-Koj)J4k#4LXTOzHp5~E?5Wp0gQFsqgcYPd{lx>EH06FfB}}p#w(thUhniAL9_(fP49;WfHeh*b3`CC^!?AYbprB z26V5mZmWE8V}mFuje>-?F|a3+Tprn?QKj$=Lf4Z5e37wDk*Phh7nmiH`#JQGiE*+D zb6-kP%JUF?st~>r()`nV83;P4JknG(&G!@m3PiZF=@L8w3m_ZZgnhme|Bp}!l&XD9 zgC$&Tlal)AP0zF`ec>Ucdzr-UNrLs0q)>IK%SPxE+eB;*fBurw0xNaFpoGd`#iYt$ zahH*BX>~y`4tn>Z9<5D|M~rw4Ub`v>b|+&S0+OVA#Dy( zJJE?d9g7AT3{;EgpcJPh&tmX2Ti+9ACf?l-VqIVLskmpud$Aiy_t%yDA%xNR0*FM= zSqxQ`@-Lrsb+E!_p9xeY3{ee@pji^3rd<-zZiAv$rlVe1DC$NlMRN~Qg;lY&4d!Y3 zYSGFmR#zt)kB`C=50?`GD}{niBFfA1u278z{^GeJDCIRwDjgIPrpM-taXm6YBGF_L z_ArR;6N91by=om7tt5Y%H}9l+E~Zv>Q=Wd3C`S@5zePwqC1Gr$^FyU8LvvuR4hLyh zB-(>Mgq@`Jr!IjIdE<9FL#Hr#K(T?X1T1=K!k0)%Tn+dR zjYQ<%;`R&&Dix+EHC?Uu<2q8l#49I!?Fd)kbBBCH6Ic-pbi~#rQR8KxlKRHx zrkr3c_L~tY)0xd&@_>(2ZJ;tRLLPQEe?LzbXieN_QzumpO68O}`DHw0Q@9ssfadh% zN69OmNz@Ve z#md|1$b4;IW*ZmC7q|WeDZ4keA8M>bR~nXyRmNdwnpDb_O3^E%Q`-_&ID_S|@nZt| zGqe|K=Nb}D#}=G3Te}I;BGn1SZ|HdmGEWOuJHpfnF-qv<<$gP}l|nbkQ&x9^C(w}^ zrB#4rRBr~iwicuk(tKtZg(P3v(j$XnkfRjMiyQWHSZjQ7t44|916>v3hcHxa5h)Ao zkTZu%q+z?5C~`X${Y|bkZjQIpt#($7h>Er(GNz6dB5%E!pHz+n$7a9RW9P?%OIcAJ zE>2mUXE2t6Vz!1r`#E|GhlU9;3rgWtu5$!Y3u)jU+JBm@b#W(*Uml+~)O3`3$o`;I zA*}mDr;4oaHXpN{8#kAxP?Q$PKx?47PbK)}xSd^wayB*%$b{mUbQmIR;Du>8bfLSr zqcu&GcT>($Ymz@OYg~x_POdp%gM!PEaWkhDvArLq0+o78MO9+?z+Y!&}2(&b0JmFBRYI6UbY+|-2WE<=q5(s)+7Dl3nxbov zsqOs5O=q&}ZB1Y!_3R~NlCI2WF}iXeb0bHIHdjS+4@PpZAH$`aG-kYjNHLSpHH&O0zT^1q&fv~f z`I^`R+7B|L!jnn)7W2dKM(5G^$1Zaln+q7PHc?M{vT%FavhwP8L6sPHV8GYilaSvh z#J1QK?aCS&O#nbU0@Wp6YFXBeb8F--yA6EvJhPf)O_&3`a=}mkdaq{ZGnxX_M{V2q zr_6pO)cyy!h{ZnxpQ8^NS3YMgtE3E9dSc{FUg<3LL@3uYlB^4gpRjwt9FIZsMk^gY zwC@#Yi9EWk!skklC86rnQ&pVTF%dir;;b(zWV8~Qz#YhCmSvc_sOD~gPjh8lzk zm8Mg#B@uUjRAFDZCI%90a7QGD@Y2vilrZxGF-;Lszqe4))7e)^G)u!==%{x2(X+tX5E7 zP1bud!~%L+!P#%RdC`+_6ttHzVaIy&$agx&?%&@I&|8%P@@k?P#yNBU&Pl|X>3>nN&kq5osv3XV^@9dA$nwe1ADA+Xh{Y+4fcSan_aZ|Ne3ZdO8^& z@G(pr@O}b1v-joo4q3>G^bBL{>+>f3>vgv8^2_;cKj7)>ebVUb^QA1m&I97rXyVt^ z=he30*ZrW;=PU6?g^=&(?%izulhQ+9wbIAtFVLU7j&6UA9tlx!Hq3uKC$l5!Zh!ro z6%u@#L>3D8toS(E{=AJR4)|=l`uYf;{do8|0gb}gckAQ{^yL0!`bp>mHmUFVe{{WL zcx6r3EgW~Oj&0i=Tb*=l+qP}ncG9tJ+g8W6_3eJ{=e^H+UEevsvaa zs$I2vhu=AA;qyA4^SSYLafJVMNUyJUe1FCF`F5+*vu8^>kAY}_9rM93J?SkB;bESpjC`dwJ9thAPp~||JUxN%zw8& z&eU4B#{CiRsiXVVJ2QV7aL}d$s{y*a*#pn8lC|X$<+XvP-UKUgvGwu>g?1K-Ia;`| z0_rG47J#WFHwu{6`vABZ@pSRHI6eQ-Ke_qzg#KdWd~ri$=S3=o=vk&IE}@YXM5L+_bzQm=NB{EWtV5` zi(~pF@5krG{l_eJE8nIz-=A0fuB~_1mKOJ?7YMh@VC~JEu8!{K*zS+iqrt(93Ky=Y zudU2aS45v~`{vu2_V#Vfq2cK(dZuq)-}O>Hls}!nPVY{}AFi5XzPz4>o!ed>&WIhU z=>Ve?-8S!zE_WB7r(x<1dH4@+O)kINW*)lBgr7KZ;rf^QKH7^H?d*I4&nF|A6!mUn zo}dvj#y`i;zZF8%KPZf5Ipj`+GmDMU{BX#hh-5Yyqv3GKo5*BV8B;W7Pg8r4A(aRm zL&;lHQhJ2Q!J_knT`bOXXGaNl#q=_FUR6?Bj?gjDF)&ECcAl54>@6`)vC?Vmv&YXS z(Q>j#w|1F7MS|x=EzW3)FaCacVD7cwh~Ku^V4u}n(&w0EH0Ssy@1fXCg;f?co8?~p zO)-^jJ+Ki6F4?X~-1)I@)6GMS2^I}btD@Y0&-(Er$Y;qY$z*I!*ter1iK2ewt8RI; zdikkj8of(I@N&J?p0+>A!m5h@2@7qz^W_g+8%?;n+Yr$NFrv=1r0=sk+n5Q&ZP|up zH7~)cR(iY{M|_^i)=Ys)j~%Y7;qHyM3M$2lp(wQ0s3SrW=K}$m166ygQDy{QPRHpj3>wvS1su z)oBV9^ZE#iW@>b#>d2V^Y!md(LfwOzB@L&RjU*V&ij@=SROb3(4-{MZf|rS}P3VB8 zKQ3E~%_{_0{kiPX3XCCCBfmGCxbF5nb4j~yDr?# zF#M9+Oci#Rr@b`!1n=`iI#BwtHefR>=Xv%h$HDp@)Gvfjpk10;8@7c)eN|Mq+lr>Fbv~N{KU;v8gt>w1CO|6{QWHwHe|UDydGTV7g+>61+%52fL8+Wx0Q6 z;7q`5zPIqGtiisxac?(hz5KrW(Ju3V?)7uItV!3u63DEsJj#us1x`YB1c*#Lbl*#=LKLk(F8Xynd5m^=b3v^!|1v^;`814xcF6F&vwlP- zOnCt}SgWls+@G&n>N1Id@k#V0J%}|yAbe)x8)YjrZ*X6U5c7h{iSt;AC{TdRf$1%$ zRxg=9igcA@s))BFKL*{k!2!A)VrSi8Co;+57KKiIjW3fj63A<=@b-diWnB^l{v)AB4`4^B0nCRNG=Bd3OqL71fC$`Bh}qjcFODUK{`O3$DE)h z)IW^6Mg0~*zK2Yh9rF{qXjJyuvB4KLXrj$I8VKTs!PSh@2vB^h#B>M2mT10-?zq8| z?mG>k_I%Yer%8wa>;sAP-Hx^hjkrjSm#hCkISN}XK38A$D+Qhc;I_KFu2_MW2`PVs zfinL9hD`oe>4&C}6E_TIQ>ls|#sW4l3IOuMI6*N#91A&dPOf>SxW~){7v*ArAYQ`D ze{(Iy{t6tK9TwRXV~C5drnsw83`S?Nl&cP8C}jtsKu(^HW`jNo#o(q)!Hjks2@#09 z2mF4O*jJ#d?Rdtc#z8u;l%e71U2VT)p(3Jgxqdf-B1FP7z>QRRqC>9hkM7NRY{7M2 zkhM}UG47uOo|o)$7eM2Va_Vwrr|B0ON&OJxlSsSp@w7`RU(5Sg@DDI+W9CKNom=H0$CGYlN3?nKJEnonO1KwU}R00A78dcQJ z90-u9(n^SjvCvd^1E7Q&Po@c5+RU5{YA=pFi+$TdlN2W%vZZ1dP-0)fF1m52_8&+f zdvLVAx55sv;78Ky<_meAV3s2Y(JkxbL!=&vWYL1rtgI9e@`PK62T8~PcVhlg5}F)9 zbI;*RG*&k3vAfUYHZN}@$Q}ZnC<1K+Ix@k1TH}ru>uHeKcmyl&hOO36`>O4zvVSp3 zE(A-MgTQz{aU=Wc=!la_u(OUEM~*^WgH`&jPb8ey>~8N0C=dN(ab}(?K*H#LhyL4` znrsg`FZJ#FR+S>AWDfk`jM@lv#Q-KS%B`L@vHB>1aCA}A$gY1_qNmgPep=g55G-+W z^#4NHXbaIu$i5bD(U@%^*UOlRiobI^;mEN$?u|@f&%Jj+yE?G=Sc*$h_KCXi4|Jn} z1!};LR-=Ge|C4US+ZTocMLb5`tJDP4TP0en4tdU)H?sPA&(x^X2g4)bP@*$VqrNMJ zJ3w)=s=h2%_6Y{l{;$#oEbMgD4~uJyu;|7EIzBc{2MLTpMKAcI86!+4n5eZ>CU8Il zM6%t*irH#&v;;R)i-b7s_&a==!OarPk|C<3y+mZC|5J1?URe+$r2&aQuI9J%v)s$I zP>fj!F|M|nzO=@>Vm}KAhT&ucm5mb#2U4MF&0=zUks6S=O7(s%A%hFEgr+SL_+}Sd zfG26FKo=6wn@(sjX@gMgSO}K8s3D*X0)My_hYJGqDKK=Z?N=B#Qa{E&7d)WqV-_*uzTcnLJkmTGyiM{4j&Mow*MzA7 z$-4{CEQrxHhuW*6GyR*(Gb1tFq!>CXTqm5985oDU{LZt*&KMx*ml@8}(T*@gk$I6b zL6F$wYMX~0JEQ}G9D#p~!OSA#s91=rUA>OcFp0RcL7F5hbAKGX9W%{xsE%TakuQju z$HnselqVjzo={A7+u!Q5R?rW`cscyJP*D?El$GjE>`SD#-2j?6_Kk?s@~^wl5g_MP zv&c5~2xdv^rCw9@4aOm8H$N`!)ns1@!${C(?QMi5V|B#j~_9-}k=D$%iA_!A0 zj>7$o8v^)AGE&cuSL)z!VX!lwf3DAn(;X*_up~dtv5|YRCDH){%3o1e-NzC6q&K-{KXd&CS>b>B zojeUMYK|WnO6>pU3cw1X&iagcXt@`FH+U_rgs~?c9EgOsP~3&N0hXw%>bEVCFC2Y7 z&Z}|2e_3y{9l(0${DqHxq1j3Rl_AI1xev|EMQ@sJ!@Yz}gOqRQxrO~3aaHXlTDEoD zUJ(@GsK$T&h=s8jeq#);`JybG7$=LuItg(~!tA%#^^Ro+7l0o~8gEg`1T@x*kubfO z0MP9kcYp_JXm2MHe{GGg^Sj*Jvyd1jAlbk-8^RGK*zW*40B_u=&f}g5>1Va&PG|+7 z9d9i^G-;lFK)$kA{{`E)NeFQxg4jKS<=-!TF!d)mr!54DpHOFBe>U)JRTwhTlX;PB z3M4iW!Q;qD1)voFChR!%ugXNPeZz6r82}hSUYc--o0{)_ga09|Q-yEA-wCONrOa2D z0Wssn0U4eZEY=qOapcAL58VQw_Hyo9@CYncNoVzsN_p*~kBR|*%dXKb&eElV)NHci z)`s#;^n@EicE52X?C0P|`d8KCt7}2wN!opdw(tI4TuOp(`SHSe8dz*Ov1ki|2?<2( z;2!1pZ-HhS+?Ok<3ja`XGx$H0wF)e@2MXU=%mb)x`r%sgmpv>1y?BmWkz5u0@bX{4 zeblUr0+i^hK$mH)F4BSKwuNmq7-I`ShtSYw;MuY8tryBgu%aCyQ+o^cV{E*^WFbQx zzEqD)00w-*P)q@!638>SS{Dz$zlfj(1tR`oCI0!EKj!t6n`PU%E(Qf2N;6ClgWe7G$otDlgZ*spm)@_QS4t zi08@z5w5Hl0l)^?H{+}2%w$6POBi*|FaetLwV+3zmHJH+LHB{u-X;-1yodsc1*Ftn zJG>qf&`*`JIeYpWE)O27v*Vl~wulT6dbfpaU1YbXa#N3)R^JK7qIsY#*y;js)58-z zV@eN*-?Atcz=gtIMgfHf@hn8kVBzPmn4|u!7Ttu|L@C8yBhPq~6*s(250EDR?vW(m|AtiC30ZhBDyXJ^MBaA{8C|LVejGGIFQJR>Y74X79>m=1BtcOnE>JMayl z%IqyS=3Yg_Ra$RqLStZY%Fwi~(l+}1OzD3pHdkD{YYARDw&Mxgopv9PfK+1iQ;~V5 z_DzRwzo(zV9t7l~j-7bJ|8WRjaEJLxUt#uiEMa9Tq67c6u_0uY2-1!mj5sH&r0#wu z#9TlDHhRzNfcv{-{yV66?lG4D$bQ&cQuQGb((Xj;SJYfI;fefb&;sB$@=AnX_k#eA zAQ^CjWwZ^Oss_Oz8L-k14!i;o)OzBd1NXPSUcec^*YOzhu#)KVakyvxafPtD03!@9 zRg+*@-BYfF|JMkYkWtrwM87FF$okb@SDgZ?9S2)LWfbJ?!g5Pgo^Rsf?1K)LtI?U| z5z>PvuzJekY_6(!mZm#FHdsga>h; z!R)#)ALl@Xp1nl~h4>baBC8#sD{iw8Jk-^ZDhwoMPAGgA6Gx9IHtIqRtdc{%k?!sjl!{gcdy@MRcA0Eo-}dbvS0xeW;Y*wueHSfXLEppw31+ z0tUiMEpF6{6M)39Ft?}(s%`+33&z4YgrX8b?%r_}Pz?3T%TGvd0`*v02KaF1Bp^yq z3RUOyf6+Wai`H1aK{Tc}+qVO7`gS&fvNVNiCc~uSTh!%kO@NFT%iS?w7EiGvyv^F3 zXQQS;`Wa})83NcFcDSR!FPGwID(ZinUn+3|$?sHH5lyF!;Tn8S{P5$+T)-C}tjT+6 z^&{}@J-|`48P9^;eMCA&tyCkBf8B-CsN8Dl3blu1hP_NeM0*m2{5u%s7lu3rMe4NX za^%GY`LloI;05X{z@OP0S*#Aw+{_7jH+B_!5n$OHEb^FU30y3rfx{0kpn zCKSLpT2`2EBk%46k)eRK*z_G%7ZFk0m%aDa>Q`V-9pw@+=6|jq>2BZoW{h;;j1c*6 z*kLF@5eah<`0s1G^0?;cJ<|KG-d-9{mBsi20$t~AtA*ym5M9**qs>hKRG_-EiNYBU z0A42V|B+7^ihcyZ8Tjtq7W26JkUN4>e1d(MfO-unwQDEw*m_lCF|r^JlmB)>zV~;i z7$EH^EdRa!^%T=+AMzNYkod6>EYA>bn}HM9H!JbJrC3=A%*#Q=SHwOr1A#s|>VkPV zkXU(!;aE9#R)F?v|3v-QwxG!dV+is;m8_o({9<(E?Hp46xf*6zM3@`NVN3IS$wK~n zBouIlJSc$6U{=J|HPPj!I#F1QwW0iQS<~H#fgZWUk)GB(+{c8ybqV0~GM*)@(r6v;Lk|rMqjOD)ug2B8$IgMP02-pMD6AU=6 z!y^}-H~Jpg#;AbG(vi6Rz=6iUzN*rj@m4q#-bPKy@~<8^DioK0X$v#LD*PR{LEIGs z#RnYJ6US|d5xrsnv>ZL<{SmAJ9fHLb9Uc#DmOmI#Rc)bQ3ZTWegpob_7YP>Ub_+yf zKR)#TRdbNFIPoiD_)b+`oD=Xvxjm`~DMCy%>3i$RFhmZ$eD;XHc6EZbNHn~2paZ)9 z5?mJPP88@+xA%Oc;0Y0~QO|&8d*ZPuyLo3jRZ1^W&}kir7LP~M<_{Kf#rSZ} z%Hb)Rm-S6RD8Bzvfx&6#N=Vw%x8EdJl3aSN(mMOaSVcytXP}di2N3I!WVp&anhREvctc01GH%8I`OSV!9+BD0VpZY{>MUk5n1_{xMqOFLDP!yt{;f z$VEB(+QLS#`C4e{j@>R4GS+GVp@%Eh$BLy>5tR(@{r*Mu?L~*Kr0Qm7_r*eZoH)ba zEA-u^>Vv%ENk;qY;`8$6e$-3mE$Pek$+fL>aI-)k_p7V@<0IoO_dx-=EAZmW?e1gO z@rwi6S4PhFB8TtSQ!_hYxs)Q_9BY{va<#D%?j(1ho%ubVO|RFB`!b~mw5PBT|6Im)Vzk5$G%_o-#Q=p^lm2ckEZi=K7Rh+pMiZ) zcm0V30RmF|1_Xo+_=u||y`jCHi&mJN`$M|KMoxE;)vS?&C~aIC>bdRPX+ch1@*21;p2C)-*_yZYRY&0^S@a7!6 zBQHz>PWcCT@C{%IKPUSW0i}*ritpyF&NN|kQweGp$py0llV}lxFB|L5k}dIrv!0NY zMQe$vbr{iI3ks!?vA7W_m38Jt4fY<&RD^|U%4mIB{bw~c!9Q}i2`!48fU(jevny}n z>||J`mQ_!v5XC{ZIXUFdzT0Z1#%0RChIwemNdj|$6q7s9bj)?Q3Y)7mt*{}B@yWa6 z45$=hGu*OJg{)}^h>61Uz~;Sc#*V~V410Qfr~e@+pSLEIJ1x|`hH+SywSR)r>7~hO zwW{jO;c~9*LE0ezp72!h?e}L{&KH+$LAm%^ZS&07^jK1}yaku;<6%tcx=pH$l$;`Cp$u-EM6pF-g7RZ*fRJG~}~C zpeSW-RMLHb|8Ea+6%?Td)uDla$Vh>JQ2qh2gQ=dqk)eX4{a+;ieTW;WzHW{E1KA7k z5Z7;}CvA$Nt-(sI&ftmQaV3q$lH9gqq+cKZ*jn;Wv5in2sYSOpLi+(pslLITe$SwO zZMYU-vP;(2r{=zXLFA&68)NA3yq~O*x>1{^7VPJXE3-Ompi|w1p?1=#evN|jwa4vK zcb3K(7=ZZnYn-ciGo&orl!F@f%9Tl#lanY5`@4-Me>i<7D7V<`X0coqiyi zEhb*-Gh}4J3oD#vC#MMwXF7;Rk~ZT%VPc>2flPyAgNx#K`qUZQygli(dz_NsdE z3=Wm55u14|WP#(2uxfvaIQcJl3i8nUo5(m9Ni6E}qF525%+G4a7KOHE!z*p=iWAvGzuaQ$r-4mgXlN!*MV{+1zAYIk0Ir? z%A<#Am(Q71VpjzXR2LR)C@1m*^CyY49cYa#`oyarqAn*&2HjM5hjr$2jVxSE>{O1~ zdl_msFdFl#9H(@?v}u|gFWeGF(v9bAkjJkuT5DGr3hq{p+;Qat1%tk;5?FT$ZV1m7G=0v*|-!>jCSRQM)~T*I8@cf z82S7kj7|HHhLaCqq7&qI(OqvVCiPeVu_31y5*Q<@2W$?L@=Y8{^OQ z-DTgub?E1iw5d?qLpxNK+qG`YD%g?tupeGo{g}hhu#HkrgoZwQQT5_|u!m4OF{d3* zLe?r4G-d%N=u{x9R5akNsH2kGuhn=4YnK(&me>Q)iy)5OF&e^ovd&~hNGhh{>3LeL z*yxNxI6;>0LQbQy!_sP-MLr%^Y;Q7CTHqeKva9Fp`Lb)hhf>`z0-mh0H{zh+rP%4J z3gGYx3l}7mHbitQkm^N!2QsY5pUjndp_4FLTRvLQPHPKpN9O$^LD5U|SHpo`aNrq0 zqgn^?tLNv)H#cSgMe?<a=oxE8<(~Fp$IQxl8c7BWN@Gg_9VW%DvQc`m&(Ik zM^z{mUOK$Y=VchP#gpIZd>nAhez|+uS^*yxo8-_KPuY(bhLdxe?$w>^@{mar$S+4w z+8zjc+usjrG*O|X`0P1yT~{Rkh&CmJ8(;%T>426y7;)l>l7p91b642tu9VMXmGC3H z8Z#**Ji9nJn>ba=r1sqMmABE0Y8gP*ivE~F$gQk39!67Cts{Mjde_#)K_Q- z+ye_^PnYH?mo7aEpnzP}EYQnTqMOkZ!43P{cUwGy@dM=JsmroKRw=epRy@X#UXNO* zCal+ku3y37w~N8maW*IZPqsb@JVm+N!Ntj!r%e31!1Ji!2*vNb+(FN`Y6G>1%Wr*n zD0W{)WUtU4UTQ=jpos(1obbn#1bECu>iKfqe0p9!CVgGSMe*8WsE!xy{4WL~2rOh? zm<8X?0#>r_a~UToloJ0Y~2(R|4dgYopDm?%OOu6kw5oD1gVZoaZ@UVS6Pdd93fR;TaM!J)P4_Q z(a}q4cBZM~JW;81q5Lcoc&w*0pWwt4N;<*_sEdk8k|wpu z-mZvW7S3t7^%WE0`|Y-)Q|?)m;a{hX&RVW4sda|x)I(C;lsG9vV*D*tJGZOY0ts#0 z+RV8}_tD_AoZOqv9NLJ56O@W}Xn7*e;Dpgj&+fiHG9-~vAOHpdD(Ti6nmVrQ8I3O~ zkBa@*Q9_h44`~N-02No^JH}MtN|q4TnWf3eQHWc#F0NVdXq<#y+O*}UcuS|A^&aaX z?_qb9%@CMn?^CUmdc?4&PI1alDPjgX6pD;!v1jH2wu1MSpGMRmy)ShmQE#*M1t{)B z&OhWHEAACoZ$kN!e$vB%NpBXxq2s4=9yDQF{z&pWW)L0$J4=Ttj-3xjQL)B3Ybcm%3zy>7*w75{pI2AgUe>OagTq%$Gp0TMXVI*_QJ0^{{B8cp^D;t6JiAP`d z-c3TWz-G`gm-QGTa`R2eR%ZuFzdJ-NdK#H?YnijlGWX9qJF_H?Qy*08@K)1O-fCA! zb2a9rzthx)2OmA|!@bwd#o+F&tK9}q{dLpDdOPxKMpZpA8EFavKHj!h3;90Yg~m^z z>{wMbirU5BIMUa#4vbs}H<5nY&+&jwr}L$eccmdQGMR-3g;&v(f{^`Nd!Ylgs^GEG zt?ws=MXYW{NBlxcpZA|l8&qrFgH`c~lgyh7UPH>R8E>j;qT8nMaIZ)IG-Waap`}o-|Mf(Qd2xm|6N88hRk82ep_lniH zdd{7pBH* zNENqFDK%6k_}nc(TsD8XyAD`fsW>`RU#2~>{>m_*L3a%sV4FE|$QND7mC9Qxt{-8b zW`U0GUe|=|rhGPh*Wmi;DDf^VUSplhw&=4aCNq|OR)i(dfQY5^qtam}fUm+5jDlt+ zHR?H+6vR{gvK6T(?Nu-4pwc&|oir!C?3EsTtp-=*y00tbH!}j;#70A3OmI^?sgDm+ z2cqj3|B4Q~Qu*XoWc>#%m{E`+tcDudnKdbgwpqfN3*-0qDasdofYbc{Pbv(L)g#`4 z0Rmbg0|LVQ$BVky*jqT58W}k{(EsNT6T?4-)XHXk1nE;d_e)@=1Wn-B%LhsymuOV} zVeZe2rbiBHMtD#Ht%`i+Pam%wQZqXf;Vj9Xut_hDcCNdL^NCn|pVtqwbr0I7kjcxJ zCVH6JtEB0t_K?ZD<@L{Q@3antkFDJncW+fIm+1qmFEO{{FP7)K9A5A33m-1-)CNJEQqz6D4qOL8zd)qr+F9X?J;noOUHLm@vt6nl#|p0g|;kX3AW@d>b5979vUOoD$U(|R#8{d#yZJH1*L{oV$+MX zUt}+u`PXDb91ZBi)A#udb(Q;gM_`|c)+X!vFt|(o7fqfEaz76u<9;#VMpCFA`x6g= z5q8q(Tb!yhgXMKn5-}eXiY^5E+S4d(-N%q1MzvT+6|Sd=u7HF**jB_LCdn~D+62LD zfQq8f3L~vJ|7}g1+P#J3`&d;YHBczpfW=5*mCfBWK{OUgV0@&*Q!1qQ`yki`lCV8)bm~Irce%)DD@7#1IdJLfv5bRT zWVw!%DN1_1)!bCJL)z4p(nARN*JZ!>phkiWS;-X?jw#pc{6v@3x|r9A~wSGLN+xc ziNL63l0tzIB0+-ejo=EHB7ieSOPLRZ0b{LC(=`>JD7n>ZW-I1q`cY+xkOXqB?%$z# z#sM>g`Ljzthdn`Za8or9otEl)p^#xb*EGG;s4eYK!$L~>zp7)uo5oQ_g88mY`Z{tM z0Kqi&ySEtm!r~pWuesrqBIpx`Cyx-O@(h9bk?g-elR)B1>tTwKvE~~AeUoBFIuoG% z(>Wlg6J#|o&Ky^-X-EXTA-|^>*~i6!5k>X46JSjYQ>rn;NzlLUgq&u>#YsZJ6S1_? z6;<<6;gVUOp`qlTYbXdiW_9H&nEHUz$}^%FWH+Z(drbK(hcvJXrNME%VBx2R>nR{q z@=cc&4#W+@W3L^m^0}aA8PWV(=L-EAqC{UwIj{}~Ts0(YlqAC~Z z4l!Sez6St(T5dNFlbQ(8lfK{C2GYoptBb% zLS6EZ_QiHgEqeD0Vt*)%T$^(75M;q}6BRIbPHNfI|778F~g znH)zz{QS*N1YZ%L6WjN095?FQi}SuV=4*&Et6bp_u(;l;UlZDsD^yNJ6Mhm&yr6r$ z>G-PFwjI3DqsW=~;A+7D_99T#blpt*x%&_;)ve|_wQJB5UY@JpXQ)xI7Z z5q?ZZG9F`#L(o`O3Z|FTt|=%Aw^3&SB91h;&K>{{1N?cZItwKwtpg9bBo|!2_h|J^ z_jM-xOoVwi&?qy(6l^n}fpT*H909N)!*Xf|hYruNJ`4G0ae^qpFBXZ#KUZL22IL#4 zKY5njYVKDmxo92(3jsUDAJX!!1jMm~g|Cx85?kybGHb)sR~V9WfFm4k_$+n{+$o_g z*}yr6BjHOo<3+}xkz+ahoFz?ZcQL{d&?%-?3DD6N0ZBG8J9n)=k>bL=+QI|O7m;jB zs^ef&0GzPpiUivF^+TILE)1O|i;#gT@nQvFJphmFHJ~%rFtl3EsI2%#BENvleVQx# zP?{G`$)aP6dq8RP!!ZNWj9wg&%at54wQ$;kx zMR7P8Ma!vuUxt|mX7+10mXR}Js6Y-^d*kvtf0IZ&VqWEEL@Yj0$&vp=Xcju<0Tf}r zU(kC9oz1Fmb?T%WNl@8PGn&@Lc_oO`pM{PSChQX+!q9nESR$zMR<)4!m=lZQzEa=&{EMn(Dg$!KdZXk@r4!f43C18zI(bR<_+-Q@`*QD!eEH1W| zoQ~h)ZiCMkeiMxoeFsiqrrh@+8OCZt%f>$&hxiz75&|JD6uttM?V6fGLPXPTZtUnPjmDQFQ@Gs$H3KXZ;71;WNL7UsfT2lBecxtlQx=;{kj zg!fm)Dk0qh*OZ(umjUNo0njHEmvO2d^Hv?O8Tad?DKh~SDtCM|1~GW3K!Zt^yI>)hnj|rs#xgkOrrm6fP04yhkT7RRmMTuUvCRmR(Nr&CK{1=_Zx%Fg$ zwIIdFXh_M!VNwvOep=8{N+s`e*V=zMR8O@0XMm_DGRNbL5$B2DK-g)J9y+tBO%(fh z@S;PM-V!L{0j~EJu_p^9s{Csx9g=ott{{X!8ei1yQSE^)Ow|fwP;LeS0*_TbJPwL~ zA!sXIkQCO)IwLaJ7K9Oc#OpuFTGJtD6$!K(sjeKEIx!D>z+PP&q?-ekb~5ru0VbtI zw!$+)cN|KbaxG*wH6HWDLs=Jm-Joc+sG1?p#|($XhLfvcF^^AJGk0IeL0-f^==j~0 z?4xthZJmwKY1R5`8)i4j;qCyDcWAY92R>4WZa-MZd3f)#%;Ovh-yrEBh4*apQuQnR zDc-DV`ru~$=atce{3V~wXM{}THI;7XDts~T49IypX@IQZB>EU6ju=w<<5|JPg8cDn+B)Px}a&tU=M z-(f*wmYRbmdwkPXcjyZOw5ZNXC183sO#h*2HlOFq>&YEHpG{JQ{@H2>-{;Lsij2?u z-BD$;O>}cerHM{==ht4!Q@7XWUjMYl*WK>fQuo!z`q$fuPEPmx(XtMo=kp^hl#l0! z+u5?s_UFdt>dR}44&VFd=h^994*us(MhxJCpP$%YS1CT1o*#GPAy3^>e6JtPS>+UM zS=-w_uLc&xdQamzaW^k}!!lpbw$Cs4Uk`5~d|g(7o-fzyZ#I!%XVp2M?`@4w^Yl5- zzwnM%0Yhw`E%lW4GZiB(%Zu|57N^h4`4As3xX-sV?(wg$_ZPl{2=wmv4p!Dpi8VZ# zY5RwRReF5huCMCtu1(L+<&zMZulEP+?<$qA%AC)`N85;#d^sPV5@e2Nt5;WFZ%38x z8}5(QGTokU4@Z@DN^Bx3jZD>Fci0M?E!$S!vo#>|GGkSE>BByYdsRin*Yg4vJRDM; zd1Y7@m;Uq0v0SPWuYHI`OWhrCJBg)g#A>VaiDQwgJzdZ+T6%cMVkHkR*{)q^RbCZ^ ze{570wT58Q%2r-|*ATVETs=poRHAr9v@FW=3V2ICqCzS|*=*1Wa2TG^AYG~W$7!w5 zTq&bnGeg9J%+P(LQLes&cZ5~`XWLY%%wjpKR?a@j$t9Dza-;d^(hpSg6xN6);jB&M z&2rhN%%ZJKSbjs8P;k$MFl8x^Ha zg|DolG=6tYxc(Vhe4hK12*hlullRrzgW*xh&)3iK5S=DAsXxD0c`62NeUPJTnzt?S z^VAedjM~lLs;H>&Dk?LYR2_8<+-X~nCNEo4G^{VO*w#%Z?@}i3(ChEbl~R=E7x!cn zos^u-BRZiA?;P04Sl!SC3ifB|(l;ZJt2=Y!py<}xY}%U6GO)(c z_l}E5U+Pvn?-5jNE;{XHhKOIw<`GJo?vqGA%2zw7-X>czDmyEj-|UmuRR+r|)0?VP zW4mw{wmRYWFF#~?Q%pW@u9ok4D^0mhRJIp4IT8&R6;F@Yd#4jlI?SAH-i4YqJeDW# zsQG@Em!B!oMsO@4Lh;@hb~WvHSv%{b2#%^1TU%T?wR`c7(+=6O)(L;w8PwXa>63dW zz&=UWzYSG;cQ?AspEnrv6Uls+`+eGlJDztD-eo=BwM5+2D7?+q-t0{Vlz<WqH~zw-RnyVI_;`RD|k4{M~x=Cw&) zxBLxz7dz5gSu0GY(Q|=J3m-ygb+4K0Js;D=x_z@cwV;dQb+WrW{zQJILs@*Q8U?X3 zrvI0B?uWA)T*b|B)``xqf~H|5tw<{cB_YOz4~9ggwM7X6O1YH>iTVgs7hffR)mwhY zBlps@$U5AiDubBC#g!uUM(1F%ZsKQW7q8PNVJKTd&ywF6s1W^D5phaoL+IRZaM|U*>!oeR;<=Svvdu^uaN}J#; z#6w|Dra$N0e1hIp>OFIz_AO-|FR4yJ)OW!ZH3UfWKTEt}xE2Jp;QiEfB- zEU}KzA9FW(O55T5llhOm+XHZ)R8^|Ou_7%(nl2)&DKa=$okINXzuu~2^1t~(KX|P= zx%zm`BP6+>?&Ve(Qbw-2QGid{=p)w-}ikT-6J8HjK5*adPJ9b{^vaH(Xau3}z1qW3WsM&SZ zSfL%Mv<`0+gP?*QF4zSve4gdbnV0iGWQtmK5$r3C8Hs#nu~JR}Qpbz`ZCMRfYE z+8C^bNt7N13Cl|j41?7xPtXV?(I?UlFAT;4t;}3$r-8`gca?%6@eVri^ZhPk=g1we zI24Pqy!=vkS+&25{xqK^k*J$Z*fArdRB}N=^a@{4`XD1J6pYD`wOD-pi6>7$3-lP4 z3A2U1$UVL}W+c@=)@FUP88xrdta)xy8b&6~#iG@}sBY{-6^()Zw|-r~mfGBQWBb*+ zbrHIAMZ(v6F>y5NrLr&Zi;}{!(Pk3&tZPH1^Xvt&*62!!ZqYd~3x1Msd(sC`tEAoS zR4kMG#d+#bovs`_?l0%J-DUy5N5>T>5-awy4ORQT3B))~8e7l?ODkN8KJUo`=Z=(xOqGzQ zaC_wYixS@f0QWLwT;>Irx-Q}lZoJFhVmogooGxn>>XDk%L2IyMwNn&Cc>Fl#i{O6i zry6H(Pw@3mz3zaNk7s<>>pSmUgu{k!L=oi>WFD`w<*q0^s*5|C(LhQt6ONT^3&Sz6 zrs@zOuj|51D;`cti0*pWktcZEwF4X-1A8a7E^Sqnq13QW3W=jDGX1s8j-Hny0is0* z^nF8WxlFB-Gzk?1%2>;foMlV#h{O+koUiH9%ArJqA`?HVbbK zhV7UcC8`lQtEGf^CQQ!j6B}MtX}O+?1=UO6M}#L-UJ!^Lb4STfS8vl0nwW^Ju~!8u zJzNpANl%>Lz?3&OUT}6&6Zb6y?zJBnK}1F*mTHd0lG<5mpv-ftDV*pi#Ty`L5-;P7 zU&b82upF3(5ZwD_IQ(Y#kxGiV69j3coCL>}i$a_yp9cdL8Ly-@Y^(Dw{rlPqZoJ^ihy?a2F^;=kE7pziA9po#d}ompWn*-*ozp)3QTuwLAY&eB>HIg{ZS0@vAvK9?7h$o=rhU* zo|J(*WhojD$&)d@*&3nlG`t#7>`+#HZ&(~Vh68@fKOKNU2Rn|C!%T1x3LKWQR}W0P-W1iVXtAx0 z@BB-gk6@#l1^JnWnp$9d3;j81@U2wmgiD=8cXCIabZ|(#mcli}INo`=_hX2R%vn_? zIeA4&aH(V`^=JITBaXor$oBJ#Fw1)Ni>&(@DEqPq;V+wD`uCm_Gjo5?4Ek(Afj9*P zZqz&2geMeBXemC-@I6xh!fOJu6rMZ8_ooOIvP^?g%iU7!ZW;V_w8>y(d;qB*q&w-- zNfzM{Gj2I-D0wtLFdqKwCG>px#8@Svu^wk&RhnW4CbH|XCeguEY#l>ZzKv~dDfY=| zQPhd*B^+h;DdJ{;gA(m81x8pP56;wYKO@(hDWFATXMUjh&%o?ta?h_}LQXrq3YKoY z%VB$2se>$2Uk|0TfpSX5XQ>h37B3m#W`Ka?w-Lj9^0b?YtA>M;&mt18OOHV=lYLH~ z2P49lih{|RBbRe(H8e5BPDJUbxi$Ho^;T(kAEnTQMC`genPF zEyqgPHSC?mKx9Pi{`*JyePkNPHhx%2!yg0WMK1L~hUqcQ`*%Yutc$@Wx0E zsC~hqDS+KDDd>Y<^!{X&88pV`!-ITxub%$9j~_qc3&b&CFs%`SzI{<0a#K$RQ)M}POz+6Ln)!4E4Ww0$1d!O zLluE4BFe$LfEQsTi+!#{pnv7KBDz}q{}J_7QEjl%vN*vZxVyW%ySqzqFA^+haWC#} z!Ci`!Qrz8Xf#P0@Ln)M-{^y=`9`llwHJLp#dw*t~qFxpQ(1zzPlysKh2&X((%*jQI z%;>U^ZXii8s=4IEKq=BSWUc>p1JlEGIf=a+hsMh3oo0AMMgufWYcsJI(wJ~lHN&rMob`VYTZ_G?wnXHRs%{b2qtTYh z$(ev^mYS&%PTB3jXkGN%q;0|_Iy3M4ffuz?PBJ&g#)IC>i9W#!@Hd&0c*X&k)hl7G zI#tTk0pR`?1`7*o5*juWP3m}a+CV+|jk~LjYOZW=q6_ZQv0E(ej-YDnhyK>1^@Rod zE)KGV6bT)2W2wF?yxsAqlf6+urJalhL)x4eqAwaDo!OS&vX`xa)6WvI&&Y5^G9X)7 zZ7NDv<$Ep8@+u2y5s$vf=yfbloS)(ib9<}u%DG4_k(E{n$vtL1@8LSDm@y=HY95G# zGPmBv%s1@XS28E>tIO$DoUzF29?Ze2YtybL_qkDhLqwJPjk#QZl9Bc=8Lka4;hk}L z%vcfWY#9!a18qJy#$JorY-k7E6SmhPM-ZVxE6l4k4dbH7Qt(~|P-zjwh-tsPb z@HCd4gDs-J`m^i++gI{B>9RdOH)jos(?vA(h(c*~2KS0H7FuTVw+TLDpZu8xyTwn$ z&5w38GBcl|#c4qEr0lKwk~93r8KZ|3?Ws6(QsYK{^O}n31k?_byDh6#$j}5zfJSkEoMaL^L+#L&=TQbW13hP zw>JX)#6?Bpw5V)i6{oHD1PI5Ys-$3@nY+Mt=?97RW|4dK2Ps2;JR{lskJ%A zG!PzC!ZO^P-m*!mL+~7~Pv^*6au*4y5RgkPK~|kqW2Ix-0&b9?o=ttG#&7c_7+4~V zP5M!P;|?iu!F@7s0(WP~C+(dnufWfikvxk;zY;tX{|fIwyf2!(LujQBme14E(Av>r z@M;%m38~}(($-eDAK-=g(rkbe=!2l2Fh`(TzYby8r|6m&7$a6XlfPR*5$F=l> z5S6$3X8HB$4`xh$+(0Dm6n^i=s-ymn*{0|SA(W1tQx$@^Er8Z3V7-)n#EYl~DP^6p zD3gmAk8Yu*9DKn~h9shj4_8Gy-o!F@vwpUcP89z}>Wusi?h=*`r$946ocmBnZl4dG znzRgqO>A<8xmIr0iSN0{18p+^76!t~S+=^dms2vb)RNuYVjxZ#R61DX`azj1N6axy zkdSq#n|=ru_$jcqlCDwZ9+sL&e%T_5=OG6;W>J)vlyK!2@PcU$c+r|-L$Tq`u3*Ib z-PLX@1b4gq)Wk+yG|*gZFih+W$F=N`ejj&yEt1iqmE$sT>RP5{^LdbD7cb9^$oaNgZ4RBM%)6mXpdVX3Sg%1 z?o&2WuCVJ+M>Lk?I}Jb1r|surbPKZ8l3DMWrQ)Gf{&``d2v)x;;*kO#@Kwf|5~tYI z8P2&@uO50QN9I;pb}S#!wLoxn=P&9r$qFG48fUOoO!}=38vDDt8*%nB9b1a*D+$#d zdsUp}oWgdStk&KHd`f()yu?NTR)%ASiR;OvCk+zKqDJ5Cfsm@i535Xb(s&of>0K$f9_8>!?~x36G^jdd>?6@-(rMAB^h`}S^)X= z^z^3_2evZ?ynCk4#KMAOt5o#zwdxMz7N#^Wmq_TlwXq(W6-0}qjI?MtXrIIA(~AZz zR8Emm2_>gYRbw3lQ{**#q#rAX5j5V%^ZsHJF4{^7Y&7LzT3Vn4NN19CnySwB{)nsS z7yqp#PP0-s5%RTdc={sx+hF(;SC_OAjjm{byYfJp5QsPP9S)0hloX{fXDP$)fehRf z(!Exlkx`sS)cwNouuV3Vm*A%TyBfUjbCi&(lzjEu`e-mH!b@!&!6YhyT{W?9l%>^R zea>x#U9I<#n?z*ree_bw$Z-a}qHLy&tZU*m=p`u6JxR!l`w#Pq2={~cy|9iO3aEO> zQ%YfAFv6TnzWhL5+%NHtk8w;cHtnLgViy0bNp?Lu1=A-ktu1n!>l?!24*!%6gTde} zi83#bi>i7h#U88fZ0l|IkW zWVi?$9`SL)s!|IH4_Q|uD~^4PpA@{uVZyBy8@F&n$>i|TPFRZfeolO*vM>(nN?U!0SGmbGZEdf`R&{WRI~` zj7&gu*f{bO{BZSsH;VkJ@%4B(AqNf`8R%@sLnXw#SKXBjH7RRPk zxNE8)zw|HmS~^Ua&Pit$wx$=|GE1O=27Rig%^M^5dNys}3G))Kc`nl98k;d7KT*`j zWg^!JGb^GbZaAr?iXpK8{dgA0yF}J)1bD5wgOy@n&Vfvy4>KR(<^_-b*mpzRS2RbX5Q)T|BsGDA-YF@uO3k6IE;h z3dP6~%uyl5oxo?1C9H3P;%F=EZcYf5*2i@LSl%US8C7h}Mmo~!=!vM$z4+r2&%i-y zCgtH`-Q0|kx(7>#SuZ4?vhR?#iY@K#c1P zSsN#}|D(196?K6;BQTx!xRL_7BIo?T9mR~-1~!{|h(K~OpDW*)$Gv`hEvU2d;sXY88c|U{uxtdM=`R z<~X5xVF{hl>{Mk0JPT(W*XSQG#8jDk6wSW(4eWY7RBXy4_Eq|rz8Q0uPDS-ecVb88 z(3p}wGD5_yHtIm$u;X5vIEwILB@OFgEgGP>$^h>)fcupC^lzWL)by&?7u$Hoc zM=>d^)g>zyxK^6TWHvNI4msv3p^4YjkrFeUR~NMtEX5P2E*jc-9!vnZ%0BO6_u&2R zpda!gf_sp|lP4F@EML9;n4T&h9yK)HA$&m0L`3bHe41Q!&_F-zMHFYIZ61>oy(7ut z*qXa-Y%Lb$RQ)}i%9^c$C(op6Iib7bpz8|;A>)tPPe&R^VzmP4vprBP!;7w^5w;&= zCa~@uen_k8=^SRmQ_%RN)QfwM?8x(&B%TAZM;(ID*8Jpu z;K4iu7q!7R=Nwzb^^`RnD3r<4$+m}retHJ1NBINcQEOcMLt*wNPceBmIe_q_TvkXM zg&?cCL*sRiy-OmCz4|T6C659=0u$#OO>rh8cNP_v2;J_HGl@sub1BqUqio*QL56DuF)0jt;Ci=G zVzP4=jil)1B~7aSZKgg+tooM$;_(D{5%vGH_D!kxTfO~o2cp9AgYSs%0jq>nK2rz(?X&{ zhJW{jo>_!R&eI3@Q1_VbAcoEF7Q1tV2+~WG6}8FELPwU+6dTN>ALOOjLj`3D^wT2~ zAT`uMsTOs{dEkv^MdG)Au1U^&Udkl5=LGV@>n3BlxA_TnLAkDvfwONJYxWSHh5M;|bzDe4 z+D4&+wy7swh#U?89bj&5n}7&bWp|qkHY&IEF)J&)4`+e6%@ini6NTQObRXx7U+m0i zrvvPaAXF6EY7GV&2negPAomViB+M|a&!swF6(Z$NAcf-*{xl<$C*rG@F6X7Q++9uE|%{P24?Zq-~yy$td z$$;XituuNlf(RQ9F-~36G};yu6fG~CWh#rj+az2?R})oj{kR(#S zKX$i$x*d5@=!d`rr_7)JG-EugXCX=se9)`H>2cw@NgR_Z&$%9lL+Nl2670G&{}fYbTe;jZizznMjI= z2Y65=t%U_k$;26pE=ztL{F2sXqn4=FsO+r_T=lSTgSWm__thxcC};Kt@1LyA~4 zDfcCZNT3Anv@JrA&h^WRS#Z{l7<#jf#?TVaAY8wJaVqKTlUVpy|yBAWB-!bKIB=z{v*}rNIPzzx!gcWjBnkw0#i=+nkE@u{FV6bD_GEI%BavvrE8P*O9Mj zp0F-^;;@G;&mbjkj{=!l<`&@!rUa6o6)@>k$<&T0Hz_c?Mo0m4kJH$&N~=kEWU47+ zOK#|(KbHK)Gb~L zY=DDn-1UiFQnUF!j=1ZfbuzrpH27e9fNVeRl9tX7yXj3LH8=EnJa&Rh>Xr#Xt{gv{ zqHEQ78#xajsk^B8fQHqJjJ;BN5zrWCk7#ISNvtuVy7R|XL zC+7U+2~==qw?O#%#_Gyw=0Hv^jAl#!e6fKEY3d?g{-E^A7ey8yTxiNeW-u5I`J|b4 z2VzE-6IdNJEJa_}=v2Q7>%S2obcJ0kLLQuA=Fob57x{JNvy+urSFmngIJl!gB=*l& zsB0eVQt@Yi{gEK{hFR!y;B|A51B6U7jLt(@M=a@FOJNw?m7g+5F$Lt`}f8JRv=^x{6cWnBzg}gKq^WIcW2SlNnR;=qcP{k6v;@hqz@e9;Crz>JmJqdD@ z__I?y@Sw-83+e3{#1H{a{As6O+0dam^~F6UJNb;8bLUVl9#JzDXLWF^Qd1~$$T}sU zxr}shmlBB*hQ3>lEY#)s%sZdb#9HjUGzEQpZzZIQUdDzeo0DuLBKtcy?sw{L8BEU7 zpz{?}*@6Vw^SXZIV0l^`U~13HccU;?;vxGK1djbVx}Mlk3E}hdnRDWLNDd?-tw~7x z<9kdr$MxzY+)z^gk|5Rp&Pse&M0cHp^TL>lP1{j1kfba6;4}vx^W6mhR7;|lYBbi3 z2W_XBZd9jCVV@8|OCpqej+$RF#B(&@x@ahZ#DkiMMOT3DA|=;ECwVEUD-fb<5Pf4P z_o<;GNA}XJzN0avds5cPsv7MeVXHdcsvaPqUR_4=&qjZve=n$4{A|C+JN}1XIr+CN zR(#A>WZGRlcn_Xuj~MtB-q6k;zXYms;JqOqdu$)KV^5Ycyn}y{E!qD~z4L=d3@fAp zh^%%w(h>gy`1Oy;#NDCwqSew49;w-7yX zdb@}9ei&Pm-IiL!2f&m08JK9yI=FRz?i_}G5&ywRpiTuHzxRt@-g|$p!|7?{K@Ixk zO;;AbS%(+X9L-qKv=s{t{N@Dw%7Gw(nKqWa+~nS8B%m}+I4U(N3U8fiH0y=oo_G)I z64?{HkvF}+va`QZ#E@x=Y&STW`y}c)a5x$d- zQ-!bSb@8pqcpP@9vGNYSD1*~LYnHUrMgiuFJsf6n7unyaD6{OcdZ!7qY zh_+xYg-^G5jGMVq0_0+q^eop&49rdp3;7VhUHJ7ORMf%aWt?>&u#1{oHdtV>H4lZn zU_IjCAZ$OAQNs-5T8sJQnR`$O>M5IH(Hco|z|Cx5qMqp}=)g-8(EpcG6x*N>4r z*-L3!*jlo*<8NO1WLGWJf-#=IDOtPvb2wvvJ_*%b7y=VUx2a)#m=gZWi7UY3voV^P zYJ44dcGqJML~0|c9ER4CCf~@60X()ior6nYIzl=p>@{)4t8Qpy_|<9 z>Sfn|Q@AcU)yt%mTH5YSVKBwndJ5jAO5^;INE$8$^KtN;DpQOe8MP#$xZtk)y&0GU z-da1OnJifQ^(&NYBtsqatGvCQJguVOO72h?5k&g*3S2ea>zaSPrVUdYt)?6m;hW;+ zftvcLsA{4Ew=1)b`tpiLQ4|#^b^P$%rU}TNKsFC9a<`rc7Pp34^WRu4>j^_lJE@Ud z{Njt=SweCypey z^pD4pR7Xtu(nbmNj#lh=)+r4L_Hn+9k0}EtgUZnzDST3Y4pGUI2qr&PYs>oreu0Wq zP>~Phf9O#uZDogZ8corNw;-Xpq?(qF*m+R0(+`3^O7Xh*lZ9Ka(h%Z7*KWK$ssFHr z+ywVi1J-wBRq%>CC@Nr#z8aiEC$!d?4(ywU8vcnD?b;t2nW-NX-gHaPyCPhxlkyP=$I8(7apL)G)>c3++9?UEPM~zlW=Ex(I>i$wivxJuD^qt zbK$Uz@%v7ZSA<9JYH^iHb-PG8H;y_UNy~D_J%rk~#HkMkNn&l_^rkcnhr~y7pnPyE zmk>^=8;ewHQa${>RcGLqlxBFuZyLxIbIgS;xKCzzsKrdpt(m>7XO29$v1)cqpn0f% z70i=a1dmPF`3xqXT$e2)CG}xB`nBEl!|rj>`cWQDm{jUPUjyJM^0W#Z^uxtHo>c%x zm?bbafwBc97+GF9{{7-NY|XbjftMPEmi|>Q6f!sLFiQ_1FQJ=RVB2~?Eppdrx;4L; zBc?4Q7RWsgB~d)7u}c7N#=}N78U@-P61Z?)l z1$#ZDrS^tE!G8`JHpTY3`E@iUyv)opw=9s2^-*|dWh|fMJLNaNmRB>tAWld;7T5c4 zl{hW2`M9OK3N#Z;C{FV&My_v*VgrdI4_t2QneEqG2Q1A&C=p=kwZrI=@GOOsK4q53s-|?lvXO|I1>t3d z_RAklf72EVaFy)TZnap4v()ejaP>J;mz?9|9I=ztj+W|z45Da#KVv)LGY)e9stf@t zM@mSWjfc=bd{5*4{);ivOpL*nCqL+O;KJm+g0;Z+hA-!}>wS$>Zyb0st=aN}KeF=m z*2%9idxF%uV)HTn;L`TCMp{D8v&-pt%j$t=5E4^`Y{h`1@<`Ke?9y%K8Kf*m za40UjU+mLf{j!Jz$;ueHEHs>y0*u@^rq<??Rue`lf*K)kRLU`SfXIUG8t&1QBZ#>4Z8NgWfa+_qO0P zIxVb8ir(ZJSB}>qI@>{_taOeM%HY0N5^?qu1ovPH1^h_6qry;}r|nNZ(Cc7bNA*W? zA7_w;AQ`K!LtIu87MBfo9^PcrM-dX?JGl1AN z#$-{s6O0${;Dniwou?6sq(7=tJu^|f-8pjyL6-{5^3vs68!Wzm9fpRG{jaITP=7i*?$9@fpM3qjon(TB0(nBf=ea5DA^q!NiR_ zYIr-L*vh+HAjlPZ0kgk7) z1Y=EYEHq25&aGy?6LfBC%O5cC9yqWk>me!B%5(L>Ae1H-6r%~9PX z+|gk~frph9WDgvIOgPC>`}>UF#`@US)r7^Xo*~%Sl(_s0#AEPlBBD#Y^o+_Hp6J_H zt2vn0Z@BcL?FcjLtnNQj{HCl{CxoT~g@DqE*H8ZMm?XY#HqA5`USy1DsejsEKl4R; zw}?@3yddwd*;0V2E_>@B-8u2eZ%4HoXEl>NIXAO2_ap&*j-8kys2B*cLdhM-Mj-W) zHbQ>W$K0xP)T9}84XM1E(cKj_lWaD?`TTbY4=4CQ_VXA?E4zaq_}WlBZ0EXS*Z|J5N~#lZvEg`fs+p)lijgC?6Y z>=Q^54_2;G6{iflD#`jPGte5e^Ldk!H>`;V?hlnYOkZzLY9`gV5(k!{MK%Gn$=j$Y zf})YKNu^d4FA6xo$F8xHfC9gxib9eFLqDQyKSHEmW(UPxxQ|K=We4FyONWYKQiGer z)gdP3Vy>CE3|Hh*J(cI;PviObtv|(|Kp#ao7gKDAD+K67@xFiYQXNI_(*!`Nj=Hlc>27z<3e(dbIlc2|SgDbX8tqAkexL?3DKb?}Q~1e;O0J(UxZ+Z!R&9VyBY2D# zjN7hZFc86cNyB-*`-EgZi8hD7xg|nuoQc_QSc@3vp`EF$LT!iZmz4t(R3n!n<7y!q zDy+P431xXGr!=lLQw9sQ(q^rkBqfyQPZ}L7X&(EIJPhpCHCp zJ;g7p>cofdLv;at1QaHZ8K0fN&cI}V=UA)`lxgX`&3@Z;$H|wEu-TIIXlUaVm*xJY zerSgL3vT#F%FRe(y0;^WwLQaHlp{=HmbF-1npY$ypK8_x6N%)~m%L5=?qXuQmHM~! zGl5X+xXLhiE=6X)39@-%v>tV-epzleyoj-!ShSgIR()&_w~3t6ClqSJtQ44dZcWf% z;x)O%9v;-}EbOmDd-x{FUUn$EpVje5rrP%q1gsEcob_(%gu5{#0eD`7_zoS){W#-g zn^Mfb{^@-balC3Rj&$HnI zR>oKz(i}*2YDVzQoZ~b%aBAS049JOm$w+4q-xViggQ2O;@rLDxL z)ki#(fE6Ybk9#v}3#;(s@y=!%H~a~%34En(gx(fuo>2j0 zha#;=9;y-yn-sp8CEfA?bRmLG1H;m^TY*>TD8iPeOZ&fq4Z||P-R(rGpk@*VFl5_@ zLhHN-R|1-hYi2Dds~V>MCaxQM1|4g{Fr885G8QG)TlVDtV&_H+1sd%h;c4i5jKGG~ zl7+hY+C0=`;SPg?Kv*!0YPJdXlff|a9;R(%A5~yw-+gQp3m%E~^djyCm6hr=XK7F! z@L$9YQJpAXX$urrhp#k5h$lU@owp2~ki5~AWDjY|&JWs7h0|77l$oiNpKlVZrk8#LeV*ZOvhcNx3RReRgG+!;=29-Y%wj zr?E6_$mGxH3YC^;gjg^9UB!i`Lk4W10G>L|GF5Py`@9&M38U!RE~B4XvpGu4_^DI( zsGQR_bQ{6`vF<;Nt8>OQ-A>CA0mUZq?5zB0s;aSLb5;K^Hoj_uksSFz&mppfLRh}x zLlxf+ZD?yzhGJ zL=#4#vmT05)SkieT`8nc3+(DY8ZT{4gRzMOrIWB}-?}=lZ^Y$g)>x z=oN%1KWoxn#qmEO3dPwym@&nSjJ@BPP4FnQ-pPOu5#BMw{HxwyQxx(Q_3N1a$l;z+ zMps`72YHVOR4blEa5edgSkRzTWx;-mEXt&S#WY#fdGvzbBvqL@BWjL97(rg`W+;EL z?cJUS8QQvQD%3bEg`wD*uEH{|5lrB70NLO^FawfS4mW|jp0_B(gjtE$0xen9SQ@}+ zHjGjZ)@-qam>EVSkR9f5n?@xpRYh4O3EKs@f$aKR3Q)Z<6$TeX*UG0eQL8%R7QQ;s z?68b*83)0QVf3RD-T`B{6(-h`%r+}?$hn;#U}x%8I4CVaCs<+XGRj(nJaEJ1IpK2I z|G4X_Vr`%i9S*37;JJK@U>>W{2@+@CZO8cW5*8M=&O1OI}c2VDwke*xqMyqMF3M zT8F^VbTq|el@JS0*eL%E`%}0f7umN6e%0m+x}Y^;mH*h4;6W?jG#5TPQR&kamyb?e z0+w>_G7=~}lz@i0ogkI*D0(_M4F#UVf*N9({JoB@_DJwSkTacOR!Xjij&FYh@+K9v z{I`sI*7HDe0IUcE8*viGp`s_Pl^l90Fp3Fd-A-w`j$>pf5BM^DBC+@tstRXTFomJN zyzxuT0>vu-9u?9vglcTxM!XFw12u;1;i?|9au7v4mnPQX^IQ2#_I3??E4?TBf{oXL$Ylx2}Fj})vt1h^u)sYAq$3p?A}uJ$K0R&-)y2Xa=>q%;u=UC4M}8X zpq5WUNI+wTyn(Mejq;x+un%By>(nE$Eg7964(Tk2Wi9%A@;zlIW;E;@N%wl;}0!rHa71_#zyu%yww5SYWIOCSI0#hFQ@gSLh&_=4E zV|JuQics}UOf9le^V&*qr?IMz!{q|q>6fSsnRQS%nb~_VBVlqodU?HSKc^J1vT+s- z{3iyyw&9aseEbx{#2WWcC13=ZctV>K}@+(s0<5GyNt17Oj!sYFA|zl+lhs^xmM;gtPC{ zLWe)C$mXd{IZFLu7i^=j*rje{oU(&y_8wR?@5zq*@<~WC7`1MAP|OWLb`h}>#7ltv#zQen#*9G|0kD) z-eA)6*xN=QE(WpbiZ!i;VZ-PpIkk)&Fktw%RP>47FgO<052BX11265!~l{JzwkKw4ITLqz>Eaw_A&j!qzhznKwG)}VQLKr1A+7CDF_!qq-KsQ zfbOEYXiT@Kd527v(q*lzBkb~3TW~B1d>bxc?GlI_AkMHMIKWpK5sPyAZKu}?T@nPM z8v1c|H4eLg2^suz{rE&&k*jnGT(pe8Qw3w1onMq8U(sT6Ude_bVI#TG-3B?Lpzg$= zqd8y#o(C==1$;Q(c**Y?`TAvn4heS*yMy5T0>lQ~k;f}|_mph)IKcsKLI&|HPq&Gy zDFO4b_y6*%+|`f-gLlHCdZm{54Ak|biy0}7CxJXeSl23xnFp)@2JBC2Wl>?+JIM9G z&k?&gFIHnC|3AJCU}f7*xe)*UVymPp3;Nfic}7zTOR06~H`?v$%fG2^bpISrJ#c(B zKdUAAsG~et9%%s^58wWI@?&CRzL44U49qRy{^idr#gQA`$BF6sA_M*d32!vseRr{! z3i=h&DiyUDN*~IxAw2~1<&Rc`MXcONA(7??nL^*Xzfv;?^<;oVUbHsU1h^cxpVtGES=K~td!a;Hm&vX>RY@WTt60n zz2qlYvH0P64= zbE_?jwf+pr??jd_*iEUXouEjY)x#WQCndSn=OGXZk{xdZTJK;3nG_qaOA43KD9K zSa>ow4TkGR6DSE|_M+)V)(clId}dg2w^pXTB&y(XP5dM-tS@wXhEnn`@67%jscN|4 z*Pa;=`aes&dYi-%8AEQ&u>4!@w zTF}9=&MnpNDfr&HfvqLmq_i7`G9qVNI7XI#Hzsx{81stL3270Q_X8ZW%;odEF?)y` z<3)2iWAu%*k}bdJAgKJtN&h%I)iR;vXRRoHV}Q49-B)AADgVWq(sx<+9i{-{0LBSB zZTF!W#%L&oHcsI#O9l21`}OH;omsd5U3^4i@m6din{G7cj-qI9j(0EYk(RJutO@Mr z%kv{ZVa?OIYW3jURiPRwZ4^2AtwOqqVO~;cBBp-5(U!f#s;E? ze+qe7r_=iVTf|TJgrf-N=IhM&h{2g=L4W_{1#6ph^{#eYT?t)8Rj!U#7BVRB7=71ew{pcN&3DJ_48GL>m#mU6Cvsk0nYyu+ch|as zHXfSyB62g9L^{_$-{;t0m>+Y$>Wll8I-BK5;2c0t+zvy=*4xm^6beF~rF!;Mc^9o@ z`&;^b8H4(Dth=$Ekry{Or7Lur8{cpRP@4^d*ZL`hiOo1H5uR>+(__S2+IiR8>OCzv z6K#BOi*R}N&2%G_jdMd(yx;mBO%`YJ@iNP(2hm#Iw>B=jLkHavn$sW)TZ9^g$!)&nmIf;^8iL*|g^B zvaG&cloMW1@>vL{1=ClQQ+y`=g>;0g!H7U5nLpIn*BlQ~M6slaDL=N{rXa9_ z6|YzAUf#ja2q>BQaJ_C@LD~{Q(SoYOKis@PA(mtHSir(feph0I;}puT+93GV2^(6k zM)SIH4A-#H>8sA>D#Baqe`=@bY!PP1H%S8$Q^Q9eHk6u=4!n5Lg z1!XL{jTo=)IS=aeUB2RCC4l#+e8KZ;mXy1{WBkNa=$w|$@aqO|>= zUmpvz#vhs6ev`Ma5^5OT zGh_L(TVEeCl`p5OD%~`PeYf!7#WQ)QIX4n;;4F2L`=dG#n53M|_mAF5R;5flF1fz%d?Mw@QFj4=eQzbsW;-~I8#`FjX`7`D~xuXV@Y zd%+*?i@S7{a_+?ZTbacrSVn7J0GeNmvyy{e_mO{i?EOYL!w2}_Co^~j&q9KVLL@nF zP$FJy$Vozm300^@80bamK(3=?y&3OzPamgl@Sp3-9gYl{Vii*Kd#%#6K*-2XFdgi! zo?)u%J2|y$gwZ2;4;G@7C-kv#EPYgroCF^Rb>Sv{W{)G#Y53pQAWon_9CcfqR(@>o zu6*&SCC{V&oyocV>{+%R@~g>h(+k++%#Vf(lmR5E&1d)o2Idqy@!sD3dA1N!c0z3k z!ucy$cehrc@tk0fAct>Nhix=86?wvScfa2I5a)zKP@eD%m<1rR?8bTiva|2%c~?oA zobmnGyR>Ppr1I;Gm=Jo7#P@*By4DzW1%uENf-|CXo+1_M8RtEuNt4OOjKzyi&Yr+H z@=`Wt1KsI5@ob*F-TNb@2S^6e$ldzqXi??v{_nqmpEbV_QNO+P_m_*~p((0iWl69e zKkg6oir2%R1UBrB8bvxMe4c^0MHbnZAGM$me>!dF&L?R@o&TgaGb)X|OI^xStRnpJ zr7{3M04>fs=9cq^8%&WGbJb5L7~qe0dIs2PY^~DM5WJ-z7*2RD?e+l!@`KO_ z1O6+qL7LDADAXtgcV@|7-!`Y?Y)UlZ_G7+AH6=6-MHwJhyCCUPM{>I(s(ka*$||yL zen&iBkws2lBR3MpXwLC&HQO#A15d<`$=}Y8lZkjbZbcoe(H>sSqn;wC`|*9;+RvX> z50yU!MJ@RT8DtB-wh3d3>^R62%6Oay>yZba+au^u3^k0Z<=10#y5RE)RD{Xt zT7IubDD{huWf30~s0yPg)t=(?QQyP08`1OgjCW^%2r`E8X}w{MBfRlRgwhhFcBubyQjA}|V+c1wZ|81+)*Oyq;NX*UBf5H!2kR$p-2WBTo{%^k(kQNzCu&!aGC zD=1p7Aajc`pvv*6^#VT;s-Y9tLp2KX5pi2WS`LIPWkYn^^QAyjUw8E@5$|>Z$D*|| z7iL;njXHDnKypCSxjjrP@7lrXYgezSWYD^9D_t}EGFKArI_s4C?L&zt?^$Yq>=u_Y zpw4O=6JxL#irvK*dOJgv(=J7KQhV)STuXw@=pVOcsJUUk8cHuznbB^xa434l%#Q1A z^=(Y9pcwuZ3fYku2tO8Zy~creCZGO3B;$QDBsNO555}kVjqN7OPYDwAJ+WbxsbN&X z2(>Omj}K%y^ggk{aXh$-U5PKvq5h$tezVIqUgZ+EQ5?y|7Z(QwwE*$ACD6(u{77hW z5{xN{cFrx97o+yH*mS1Ky9ztgwNBFz(OM?d zE$nOQcRr~gV(0Mu$3ozSKGNRsuWx=;F#z?`mIW%;y9mB6^iU&fH)upi0A92eEubxNt0{< zEKE?yY)=5cR~ITfi9-h_$0|V_jk%)tD{pD(%N+|KC7F8QOwgwuR~Y6?1dfJQ4hj9A ze6iKIjY1;d&ZK$`2d$=8);F>#KmcU{Pm*rtW3>1eH}_*w*HMvgC8@UxvdcO#J*F?hVkkEva#*lU70Vu^qnc}hTTBBr&>OkR&M3~GUC~VhY{*%VSR+DFrICVc zHk~*RCW1hCJP})_I=+w$;-8m0Rkd*}#D*d?rBoqIQ1FOl2Wk2gzpq1{xoZnuoRuN#be+^u{o`k=`bt*!>#C^ppEo+JPJL zQg(w{C4(Ehr#E@(A-E9*HUysudWh7sXnsOiw$kofjz~DGM{{5x2bz%kd?G4UdyX1+B zGsPKjjHXgjvLo<;1y-kI^Dk4f-`)oYu!H|DTaeV#N<(1Md$~9IUDg_wq(d(0ek3Ow^3gZF%7p8_#G=A_r9DNDOTLJm99@2z`WnpTj)k^xos>^_Kz21Ge22mU zrXFLU`|*+d*VUsQ`cNg^`%G^+kxY=twpGe02Pv>V)L}2YNL85p7a+J!gQR&+Ps6SI zUl+P2cE;FYoH9;}EAqsZw%zXy5X@O(D}3@v1S8kP+c%caP7Uu-eKtUL8_ADj3Ii zt>;VOocfr^8J<3@8f+tr!LQKjtBrqT6v^ALT&p!N1WRSO!re>HuO`0{NRkCtz!bCc z+3o)^hK4i>y?UF%G{1xCcH)U-fA% zC^o68S#$5kgQtCKYFBp2CQgNMNy!omFMT2AVCO0n8L?4wZzy_o^I?|>gYrEVNcoBF zMjpIL>Pmh1ge4Ip5H+k>M!hU6u%>>VBi!>r1lSs z-reRxPDlZ!*9%GazyaE|Z5l^nf5D0i+fU057%wP#zg@T#DXGHOq)zX~SOt5#IB`7u zX$`f5{YJ%I#qi0s->FH(g{%J1*xWA?+9JL*b{6U)40$_S6?a&cJNX?(G{NVT09k=@ zPr{h|QRwrspcS}QBW`=Hz;|I5cqYwVQfyRXOHcs#T}Ol3E+ zbwutw85SpFQHAb468%pB-=!|o8_P3=2MIg)wx?qq{j{PcI2j6jiS$8+R>Qz5=IBEU z%7mXyjKrV}Iw7l)xnWw@I8^-xuvQ6!69zQR7VE)(%_fcelglGw>7-d^aj=8$u>au} zVnmR^aN_w% z`$-ZR8Mvu%(vXZXT~FP~+=Zl8_;uw;bfBJXfcDf3}TJ?I8LZ{l<$2o$+2bIQu@DVissSh;XnPhp8 zlVMu#<5U1x`XzsmIU%^!D(0#ae zc37okscs-3BlF)xvl;5lvHp+)OmA5pj$ zX+-xjphz5MxLl>9g#7uxv^{{CTqM6At5bW+ptkSDToGX|o)OFpi69rVYowD>Hbxg3 z4>7Pv#O_Z*TPoq0q#NNgkVJobfCgj1MtXRnLd(rrYuEpNO#dV!{TC|_ymd;7h{HWy=@Y~{2}~9 z2@)&EEPffIF7R+5lG6(nmzP zgkh|YM=QEec;2!9%XvGDzJizaJvWwC2=^bLT6a|!)5;0)zKXz&8=#{RYFPw0K-so4 zwiSnN*s)llz&O{lrD*!C_PHb6 zt=*(eWLW8rR&k%k^Rf44-W%{VIV@;ET1swL_PAqeSN zOh8SR_uGFVId=h5SMeaEtaIL6fA&|*4KyV$T>h7mdB3IpKc2ohx~}heJGO0`jcwaD z8Z~LqIBjg(Hrm)pW81c!#z~|1q@VBa{p+rKvR3Y%*@I`EnSHi6==o7v(0*9FKwywN zi>NT)$U}`t?pHPN;1D$A<$wMf?W!C-9~z8>#BG0TaMk$+R2yEU1?z|nT)By!VDw~P zIZB@z=8FxtkSfA$zDEmJ!^v6K<4*3oV>OdQLyw25H}NW?W)s}s0)S;330;W;WzCcN z{)(GuYl3bNQH4y%uglSd6U>Vu zh%hzXs&|hXn7$f#~TaBLf>`(Rjii0@3(hG3N**5`=G1&fa7qU zy75jhvtW`a@5cNG;)`~hGaqds-wks?$LHfu`FQ*Gm`9s9c){`nu(~ zWEK0jWO|(3VY;q=cx<1)+Zl;#K@WW5l0%gjxBEwy4dLC`7Tp0WcQP`k#D=kV*E;Wy zc2nm>BcxK4e?e@=bGXruF4-j%WbMi;0LSuQF$h9*1>CkhpeBH^u#S*6Y#DAtXC3OY zC#0+GBxTaQ#K{QNZ#9QPDTFk@?OrXW^_|!FwCY3;>N51N|HdEphSBfinRS;JhGn&> zZyj1X-w~%rlYEebviGQd+C=(rXhpa$0zoddn~%4^bP;u|n}+;1ul!UohWVebHpqkC z{VBfLY)~Fe-Y;tv;L_-NB|`zO4Vz?JX-&`qr@kd*6z)dNlQy8J=&L}2MRIRQG@va4 zCn9CQgd1vr8Vnc_0u;9OPhnVH1)w0==!Y?_JhA-`_<#Fho(@By7~}pdb3~Nz@xV8!y)X zzAA*2k!(Y#Ay)?ucztL~tYr#`OmeBiJTK(xMW0J#kr)0CQ!}*C7e;pXkSG7+dna zJrLo16h`KD{Yo|;V#t!q2f@?9x!>?pv-BdS&;2XlhZ$Kk0tteh*vJVm0xQTQgJt*X z%UPDaKA`cONi4;uEKL>1{P?}Po-|h=Qy8om$EuT+w5-sW`R|NU7$_1t1HBtpJ`jk0y}3Jv;-39I+d{n#!Xgo{)A^v_RWUcm zdZM1%r6BR1m1Xq`zZurho+)(t00EC+}?m2fjnhAdT(VhKMo0uPuY*ySg|iQ5}i&vkzbXO=TfU zl;wT$C8Z78YrvTJk3a14S}48nSd~ggln>Wo~>45aCC_ zHJkDdC-dvWVd(hmtDN;_EE(P?F*It@1}$o>02P>=hlmn9Y_Q&PnD~mKLbfz`(X|_W zNAUrlMcB|p75BLdmf{IO7YL}{K8XO8o0KRL-iS(H2;`RUfl1xhkSlQ0dK_U|(6GVk zo{yeGHZDz{arc+Q(eg=>vaN=@vP9F|YOK17J`iuM%dxl-*OEcpB3E&9f_h`u|(4`r~FSML0mmydH)rIgoI)&oXB{O)LD8~Rs zDMoY$uRUL1G0jk-o=j!s=+k=-dR-ZjJh_G7Q794WYziC!>N-Q5f7f!pOP99qg}4s4 zcNr>}vE$Va8>gc=LBc}z*x|Q~wOpPNHhdhf;Csj<44w@)^DjqViW!^w05G|@*F&g3? zcpOTglqbHX-rfOxL2L<=$R9U#*l3c&P>!Ltx6<$Y@OvyM;k@FbWa=UQ2yK5=qb>dT zIUv=?8Rel_zDNdu&{s`f3kgXUJ3VFL{-I%1_ku*?jW!Sk4*O>;iq*T&T)%4kr~oG# zmFJ=LG8ks5^l6lghUSm^$<|f3W{W|+SFNQ+{jiK}^0$;-)sc@yRyFNP-k_=J2J+mu zgp&rRu&V;;u`tzB4K5utMu!|b#IC@XwMl@gWScYcosE+YRdp)7qM+3HTG_=e+~>6+ zAlao0oB)Kc5uL{wvLQgq_1ybCJrT*>K6E)P4>>>w_85ddXMiY*u$4rLkI(-)NzpHr*=v7-KEjuZ)cVpXp3%Fl)>*EE z+c*0G%14&5s)w{CoheWo<&s{(7=u&Qk<`!`0jhF!^$95h zRmp=}T6KuDS?So%q%kyPgqESE!$YC4!EYxM0)tDv&RyrKi(u_c zLO>zGvuVVZJ2VdtB2LluqP)9hBEnTf0!~BV;cP)pQJHvrc=c!1+x(I5=DO63P)V9w z_-w!-Edf*5!5`_QU<7T&Zgs6fRxt#MKvJ^s5hG~? z*QD{q0G_>_hbXtZQU(rjJ`|rlFaTn-NA|Pn>x@5Gka7gr$rX}PTTk9>`3Ch)SqQ3{wXeiL^Je;IYJ1!)t(H#B^)sNdGpU28ir@rwJ!c@zc2v8YVMy<~8j(nfO_h_~^|6J1cV7Llx z8Fz}yto|tjY8?cAlsO&QPs{w|*DR>iy}EM2&(R$tU|4s^j#t+Iv@z|w^YS)d zQ7k_ABe^OFhx{R(%ENPfAb}a|vO~jGEOH%AgW_LOLT$tAxU2Y^><3+(j6r{O5!QGr z$~fWK>=R@u`1*?GLh^0y6cvi>cz^CpiK=`ER6apw?h6Jd+M+qq2YHT! znAuY}nwtUQ=71bR_#wKL`xk!S0E2jj9%b(`Kk)C4!qUfj6OyctZse)2w;9Q|D*lL& zY^`SC5`ujo#>jOFuyEI9M4#@KNM?+7wAb`nb1y#Mx;I}>wuq+ETjjmUC%Uuub^hx* zj2VMV@-&Rhj$@H2A<4DULgG4i+4czTd!w8;P<*TZHAq}YJ7%yqdy&F% zm{p;cLY$rUk+8z+A(M}@H;%MN=EBY1nbJN{pKvFfEy;i#TR+w6{r=hf<1I26fT8ik#FB#VjSV-mm zaZnj}Y0mNWrdT^3Ko0gWX%rDA8i`o+upTHE{(mt^LG;&WbCGNR+Ovv?3@VK;iyW{$ z?6Ts?F)e|$=~k+gC12vd+5{o7IhK-6AbB0DzExJreC5yPJ?D`5UM8Qw5Cf+GH`~_g zHc1NZFob4kjE{O2zEA$quD~%!sAl~G3A=7(z~<(o26vJ!E+6*{%DrKnO?xOLzuQRk zo-6aZn4I1RrR)I(MIQy3Po}}T@k`nOX5#0?2nDM&2Oc}Rcgg!s_sf9eTpf{L3%hV{ z;~{t25x?P3P3BdllyFEnlH=iLgeaaNHQJKXxKwfT79M5ka7wotpwkdR+N~vZ9^SP3hZyfjX`2%;4;I)@PJcwq`Cf-<7 z-=zpvwq~V~Xx|R4Oeg;Y`(6T%?fxt{inV6C~L!S;yzLk`BP{MGC8<)G%enc~us_86Y!! zi6@S!Ubvyd`RF)AyP&~saPvHtDMmXl!(J({xiHNe{K2Tx9KrF5YohI=qB^AFj- znYJrh-$V@J)F)yZz#*f4$MMO`|1n#Q$a<B{{+NhnracnD({4PCjgno;xN;t6{_F)T#d3YQO@e6i}N_4jKsnF;z1 zg-OBI7E7E?_4eOoePt~Q4GtA?5tQ)d!h)?&QLCOWpfIin=duZpcO;;i$$u%ugXcdM zuTXn~WbOaOw?ytU21tqEW2h~ zM6*)nxiUlhA2W2ppZyfTs8CGAA7-DI#{}BL$`2Illce z)VVsQr|xjl?YO>+A^zSsvOGFEr zLOjY7dWL(qvWc!w=3{-I`5!Eb5FYk8;ccN4~VnW>O>%_5#+b>5^o*R zZ-FLlGQR-bH)ejN&MKLr20ND$qnmSk?`fm1m$}m&W?fRyWPqD93IkJ@N$DB?vYEPK z=`2Crqr{EcipG(DlFK&saxW%i2ZU>kEPW7pc7BheUo1#%%%9u!CeOpWMBe&vqx}3D zeJxp1y?|H6SSYb*!?hiE=A#*Mq!Czc4N{qD&%+WXgR3Qdra&#jCY79Q5DE|l=z-U+ zzO5cZ@uxEQjB=`8CcYG>WN`GgshR?&-f)%ZXIul|VGEPB~C!b&!Z+a3;h_NIYN<6r!#9`}wP5W}L1DF` z0_S<$s0Vw!M9&`;)SAI846a#!*K;AObeY({R8+C5f#`)na3Cr^au>^5u1i}|fk*20 zU310CtYG^H@gwn8+I$k+cD|~UmW>_5t-es%(?91AWaRLqMH+MPs5kEZ5wSw9x1zGg2&0yDiDe-ShI|U-!PNywls^FZb z3VeMeCPr#9uPddv)#yrtzlgSTwOy1X)*YelbyqFnWwPx#NIOt_I=`ws8S37`Ot7ol z?Nf%Wn+Z~Qst@bjmg2=MlFN-(OC=Y9;pTT@>PYrfljkJO+3|~ zV3)-Sm{j4Ik>C!D$kRu4AI8Zl%9Mz5F5$w3bwVSd6_cAg;!S$GJh4#+R38_=w(Mwr z^Ioa~a#tF70p+%Z;g zVJ?uX!KLh{yjFYnV!N9FMpwumCq7oM$97A*7xzZHFN$^h5})PfPo4wAfkscdBsIpY zDMeJSG6{%{u&Mcf;h`of`;IAs&Z;>xGuXy5ldt%j&Maz+89jEYCAVHc_=jkxnVxh5SGJhBkaj@wP z{tGCeMR6GOTUaS*Id;*wk<^-L_i-q}BCEq#P=wGuZ-0C(<{!Bi>-|_dW&T1+M<)R? zP6-CY6VK8Ia1nQ18CIBr3=dbN`D`A+4f8^cJWt(*76)2TfU^O^Ar3+2fBgZq&s)(@ z7kfRZI* zUBELa;mY{i`;p32WRg#`pMug?SJXVYv6ZFYEp&R zB?w86`=$0zFlK>D;a?s2>>|mlqC>lsgwqQ<}=@h`& z!Vm!Pq7XOt306xL71Ikk8s5iPH$7K*lK=CR}w_KI6u@-d{bpI7p&pAsMU$Up;puj=Ir)uQmPX4yR5mpb9 zN4oxADaRzK_7_llI)n_0hCiv?I{8j;5fDRLsZ>ZMh5|fIZZo1{t!7;4ZWNX|%5Y*9 zDT$TLrH)Q|j|SU%>9$28-_kyT-R+sD|A-Ck{&hG@_* zAh~a+7Myvy79BYniE-a1+VxLR@8}^anzit0A{o6t%>6Vj%Vp$IXc))r)U+o)8{Wzd zQ2U*JMkkCr| zqoKNNqIW4rdbvQscNthDodfU5LRF$&mGdBWH(V(r{RA+3bjV{X!!;X)~)mAeT3UL`TMNsF~y<#{_;4v`My3PruoLRE|;4YA3RXn8y_yA z^-*467=+csoKQpRB(>+KLqWQ^sKK$y1|CLsg7^_UfL6|uSUu-m0m!@vt9zLwBERxi zY)a44Ls2Y%FHx^2k$n%)B{FNzk4D0cuL zdFUL9uPGBtlteL+rrD{F5rI#&sT+{?#h6;OD~yiPtd# zDQyur1yL+y-0%<6kw&g}jbjwKj&A;<-DZ{$SGArmwM05QUiN8X9)-rK+M9**Z3OXW$ELN;4fgEWYI4YM7z@4e=+W-uBcua2b&VOh3PxDQAl$uk}S1Qlm%4sdQkyAykfS*>*{o z1~tm7N0oS#=h8+zHYwZj4CEx8nvZUXC&>v*p*1;w$9mgJE#=7dq9MFIah3yCl3gHF z8+i^!T!H0aWGgDB^-5NOlo`p@Q+#;#Mo zrrafePg-l_iF1Z`aB%3<_FOsTIYL*uDR`2r(|-Q^wYX>+6(}683zIxg9SCI z1P`)}I|ln5U}@~~Zf7%`pt{TkG@($Gc=t$^;CKLv`;r>pkrupM&x?n(V0CAe<3o-? zv689!-T1%(cNi!{8iTjxBFegc%s@y;jhX-+f)|V^uAkn=Qp_gc7`(sqFD^B%#wED^ zxqYtu0=<4=NM!%+83*q)kEAP^cR<0b?6H$slj-oDep_s-)~a0Jq1%7vuMGYUI{*X4 z{tO$k0KSp;vXyVlwMC`CR7y^&C~e#Y|3P=AyF$*|!7_k~bH~LGFl+)+VMg-9k_yIK z;W#}O_l5&G&Y(L~R)GL#1-9H;Ip26OY|LlT6hV~C-G$$<+b~arf5n*(4r?qj$?NT0 zQHw>i04*m``btcD8pv_P^(;_NS8EFeGoX-JQoolH{eSwGwU7q4++uicRuiluNBLN8 zxWaLkb=eLco1#9c?J==T{$Y6epht9N7FIp?7WR|>O7wKunq0J*;zNt=ew62hRkHW= zv#`kWaL0o`{-tX6ux6r2L-veh|D~H<)NcUDQ`pgRxbx%AE}tO&z5OrlHX<)TT(Eaz zVR}=h-!kC^R&IOP0g>0-$6P8&p{YQIG_cjPe$oUlp{`&P$t)Niv|@^R;G-f6o~8&2 za~K=)E%jLr{Vz|qz?dg26CTC$euo$}`7eMaQ8@~tec63?ZZJh?IsaeMc!cK`r%R51 zC|#)W-ay``##SKHlIa=)coNF5+!a(cd1fgx9HbI@XzPHLcRIQd$&kr!#IK@BF)oW#B(xEpwLM=f*8|Lju=q;0*N`c>4gXAIYWsm zlFvGX=OMmNcM(r3E)xD}CD~;9L;(t~lx!DtJO**j@Fh$1OBplcd(!254B-%zA;N*4 zf$@AM;$e6WQ*4-Iln=)KM&iGcs!MTV3h@8_N6Myzft^LO#%|bIp_blVVJ5ta?Nem*%mLtvOHC5VRWB~g|ILIx|hjy@+Z<-&@Dw9|%d4H6>s-slt=0}1aWASnOZh&)g zMcfY4W?Y+~ZC4j&2F4f(jR=eFo3MFJ#iiq1?VvS!acE0J<*tM1&pl z;8}=akJj*f;B=&&?i~impru(h%qfPgf#$=({rjKt4Pu<1kcp^@>dQB0`M09526 zK-SeYL53|t&iM0}$V4NaApY$8(mx^mNrh#zW6}HJxuxA({*S&KC0jv$f_jsSgERS4 z`u-sTks~}(kzh66&~|l104veI0+{F+=rqU@P}CFQfmZ@Gq!tAnUWvabSr^<0a`pl+ zNkkK02}{8doYC!x@{ZTo1wgL8ZNE3JCY0OR2}NDD|&Xj{r8+;t1o^ z4a`5j?w;|ZDeQSk{4YPXF||r2-5CAyC(%Lw1_R?jBecvR!&Rqp4EZ}meW}aYPV}1R zGQICXqDr~lA4df1ODU(wBE=Z4L+rKW&Q~4IS783mdIs?q=zJX{FL8$NjxJaeXd*DO zT`AN5QUCU45XvxxO-x@l^`B(?cq{c@iqwL@y%vgzWBO?SM6i5`=dIkrrke{EC|+6H zUIbjXj%vFaRkRPfBroZR_c-k~4yX;P7};UJrJL6dAPqyxjVdkw=eD~Yq&F~a$W-t@ z5Qd;7n$G^Yt>=ZmFG*KlVdSo0^0y8vv_zK|-B#Zo9aC5~g;peiO$dVo8h)~Gd1wT- z;m>2u6?;IuiJ{W~UcpD@7zNJ5NKE zU$%jm;W&Sp5)u2hg&D8ClO^RsrsDN`D>yGx6b; z2~KLTt#0s0+N#$%Z(x8_FDonO!aHOdqrA*L3iA4>grv_AocPQGMwqmuY5Vl~ zZO&!d)4ih6gddqvl-%a9rnv0bCSp`o@GFn8IiqEr>`xV@63;msikm2w!N1?StmbkE zr9#gyrEZXe3PW71dOJW9#db5t5T(cirJJM=Ohg!V>e0`z0!^saXj528-R@mpKT z3;!dVXC*pZEALr|5^=4w&&eY3*Y(e9R8=%W2*-%<8?uZj zo$5~Hc9{Eluo`hCwzy}pndP4)ORF!Vlkfn~TX-14NuG)9`=^Mc0z5d7h&J8H)Cu0X zj%~+<;;33`aHpK;L^n&KF=$iCYt&Y&6?OZ{4 zD|ro`DPeJvt-#%UlHZ?dJKxqshOM$mQ3jQ2Jap~x@n^GIE9ji^?_=ZSClcO}F_QJ! zHsM_-p}E#!oufXST_E|92?-maqdCl8I4Ec3ho9o^}pV>sO zvnYyR>8wKN_<cYBhO4Y9}3>ukjl<7~WGLkS~&+l~9#SiYk_rOF#YTL*+T3 zTDWYcI4Z+LE~Oh^&BiV-)+KNi5MA*)Q09<3MmEU{$5lJ3_lV8dKwrC$ zWk`zVfXw2zYZIRP8{y!BS3ZISoHW%kRUXDV_>%NYc#@gJ1-~hIkskF_{XCC}ONN%O zhV_Qx1h}Rq_#sJ%!+a6V=Xs35dFhd3eN5o`)z9mROYx>Cu5i&sCwa^R$c*|eZcl3J0`8wSa3b7hIjt`=q29}dYwDia@0Mu-!?UP&6ix- zpt7NDL5An-!#lqehG4%?lo=QORdGVfocXqIYq=RP&$t1iQFNzL4na-%iFO&uKk2vJ zj|9Y@lBSA-<>d_^JdX1{qw-G~*_`19k_Yk`BowrNX21E&I?hQjy z;rT|9Qd54dChhOy#cK1813e;{-G1c|d-zBmjH1&z1ZZT+GXC>`839Kg7=Lz;{4_r_ zpR*S#9zWr%0;!n!?wf?(=vFSkY*SyubxM+Q@Gg+ z)lA&&T>UKBb1ia~k^qgu@9yz%4dqEH-RNHvSlKYqhv?2%C+vq!hcH63t-zlbyfNYc zKaSbyw#`d*R&;MAJ@8Xq0rC3@*oh8ouhT@MO*K=a9&xRtKUVEp6Y6jFD>3#|5M2d2 z{ir_MX5Nh)0WG(fpjde!jGXHNszCEa5`CU?xRb;O5~MOs@yCdm$5-l@-H{|=3@Uyc zbDQhi;!@8$*yc*fc+E=j=n}!8A2Hj&s1>tb)?WZDz>>CXW2)C@5oaEp&+#AmU7xm$ zh~qi!6+21H`+P2tGF3dVA*a+=aY)Uh^`$Eqg{aJmBNLZYT6ap~U=P6?^)i50#TYtT zwQojC9?ECrj{02x1&IJ|#Yw`4jU0ij&8N5IQ?yD5l6KL7?1@?{J!|rWD^ut+4(y7* z%TF;(tt-(7jPABNFV8!?#mc7=s#6Owc&!C1lYB)<^(C()D*uYOHn08g%d~5Yw9y7) z{_rq!;8w+d!lXt(hFuZuS56gTHf*AO1Xlf|1F05OZ>d~kC+22igWPjS;9OO;q?00a zg*2>oJ8OP%yF(=QZIG-Zw5IjueTOgQgH$G4M8MbubOSV+c3oly=g+m?#7yJFjLBb6 z)UJRxfG0=AKr^JYx?pzar3TS=*CAyMKPf!oO+pLPGlFRqya8LXkONoo*xsg%xyk>U z^~1gjwaaFeM4M%0YWVZgQ*PF|&7QtdO)I^5mu+N`N%>5wRU}qLTp=d?p@0@^VLoC7 z!KH>}nE$+;A*g1N2Omqyxoltv=E_Dlq_rp8-fc4;EN@l?*?wE< zK@ICoSD#VLSA}cuN@|wWXOqEshJDG(qd&EHKR{aq2yeK7+}5Zs@ig49;@Z^*qJ=&k z&4K2;RHGj!o~Qaam8C*}s=1sDm>r{zl$Ux9CfB!=U(4^`mukxeVDwg@(DjB-90CY{3tOKDbKmj5ddH!y|D0`8Uu?y8zhAxiXn!?lybEFCdk1T3$i)#nbx5 zsVniCZwIe&9B6g%pC6_^6&3NgSfSOxHJYy%zYhW7HLWEUbCYf}gNAAq+DlP(Q{$Au z&Vl0SW9dtf{XY8x%)BuT!=zOnO!Xt1Rz}7lSoWY=4Eq5*l_Fn~oyc{WoMnheNN{jh zFP54l{avk|iZhu__eiGOQ+|A*uo98;wx^SzP|@Z@3;=P-*X76sBoI5*j-jjHvA@XY z;LAt0(ojR!1@y0r#Nh~AYyRoa`5=TY`QUvx7JhWYeg|Y<8b|Rn6s$uO#4iU}UHM?K z{LC~Aj3XO}<%X{}U`v1qWgbfnKVjwLpGx)}>F9NS0hYcbpnz5s0iQHzBu$OC?S|2G?)tL2w2ITBYZnM}Q2& z9^CdtnpNfE@}I!kn}zVorvc;THIR@^?7`28sJ!M{!7e?LrOaLXt*(VCvB|lfk&sWi7GLPOKD`ilT7IPKRWAg7 zaomc%DlNCDHu{?wY2d-j@utnwmsED_>K^VyRv#(Q!0|@L(NBY{eFcq1%Roi-?f7xxcAr4(W)Hvha-;sWJ5fUN=Sq4z!}o=W zZvAD1`?S6rM}9)|6vy-M4CwEeDSwIC@eiaHn2`RO?VzboVRA{~GwfW@|D+`FQSCiv z&xrLsne9(n!Q^_@9xW*V4=*}ELuYS+#sAgUAHW{b_Mm;e%cW*o%){lCjAdOuQgao4 z6y+!{dRe37CS-9FU4J}@%=QR+V;2dk57+1x_Ip0%`Q@l;B(AI_PginIpHULgO_`Yx2Drkx3|D1>jxp?`@_-G)6vc6&fh#j&-*Vn@wcb@ z`*$x@JLWe(i6^Vxzdua3)wvyN2^qdzzO3?X94$svJS3~?QM=E>{aNQ>=i~A9dVh;h<_q;Vt#{VD>w>x_?9SJ#>z%*j*CNTBIq!$p zC!4d>Ue`XLARr*`@8BTHa^MgcAW$GMz;{xRVeiH)8gvklC}R*1T;PejEwh`w)0b~n zpFcZ)WB&KS!p-DvXPaoCXOGV_^TWvaJ%DtqcMK}|dEzVSv?;lS;-0wE&x*ThU#d7W z6Wh^POiK%&SFB~*I1P$XTxP*@$&eCvzL2Kkzh1AGLYJ3{*<8;h=NH=w^k1cZC5-o` ztS_GTHgWx0c6QKhRLn*?4XHY9TkkzkIIS92JKbFOdE32Sh)4pUKyzx{|?Hi&u@fi_3|48oG&##nli^!o0fo zG@Q1KjPn!)pNIYD*Mn_k=wCE3{Nx@hczQf7?4fuy}pFaA)p6EW!`&9Gl+5BU+e8mw9Q-%ruzKYLkRu!Ft5*4vb zdXzyPJ>FH*vUFs{hABL>=dcx)?gHrBXZB2HYjB2}} zS8|?nIz5*H5n)262-Ki{uKR}m-UEBe3yx^gUKX=L@GQa)Yt>APJ-LJ}cC8L}7DcwJ zB9?j0&)FU`eU#B`4@G4T=|RkhVRg4fsDs?4_=U;evlu&5)=AoUn8;^Ze}E+*;i05f zPvS4Bs){GxZlnay-2^a4m6g~$m?TJQ1t#9+`=#Z7zbzt_c-oT_3unD943lZ7`fe?q zX4%1B7p#>8Fa%tr<`sm zPDxWFyGZu!(r#O86t3tW*3v14e`iphzTX#-UZ=5JzsP2zrOsJwbh+9|%K+jO_bW^F z$nTy@KfOAxp`gaeP6k^Ovo3WFNRN>QL?O5q(0R9Q*mpFZEdQY3Ef8l?ZFJhW$VTd~ z0Ih$Dk}}fL&!nGjvDxYSbzy#gtOfI`^KuZwv2Cg#ZaLE@d!j8i{p1`eaU!^Hsvu#x z(kFYW4L<#Z63($}IxcRx&^MyHPVdNx$UdJ5&xW1lflg)b^1L(8jbhOqq!T)k4-0;p z(83MxvNjUv=P|ZGu3D$=XNmQlzO!jg9%?WfQH_J`|F1N7P9Gj8*?FRw8|l;BiL1Wr zfC4?-)Vsvf3Bdqm&Kq+Jcgp9(+AwhV;Mth{iU&XLoEGk!(TPJUMMy`%q$)v(9ev21 zq2$p0odxSK*j{NHsN*o&Ug_VFxV=N|Md@q^4YUp?HO4qWTro)|H1Mf5Wbo>s@I#l3 z@Ua}?lfd;~IJU-S=F0f2OGCy&UqFNN?nM;QjaU&Hww-Wta3%N86X}CdQ9kuffl-}v zf5y@63S=?E0R?4?^!3G+6z&SngRrFtg&^n!4Rk}%@})GXWj!Iyv`GbrhGFk7=OQBD zuIPJ)i+){D#43F_Wnloj)&6!xoJe%O(YTlveNv`MaKGLc3O! zgh3}#zh-UQcZk^yR@;dS-o0ql&~`U^%`P?)3A~SjFO?K*c;U0TA8AX%*Z=_~g`1i? zbxQ0SuB`M0g2ZUn+~=No;G=#ivB0V&fhg56QS#!Po76M)8#|+iY7V57HO1vYeZAGE z*iJr<5zUeIMu#~cn+74o7xK8UgqgoF65w zYdfN0gdcX>6^uEBbI1^9`M7k|oW5^yHU% z8;Os3u|b}#$pourwv*%H2xLnOYiQqM;&#u2~!2j{=U8FeMn@A}Onj_Uh=X ziqb=LS5(bQPy0C)%cl;zfGIcDfK2j4UonW{V%c&zDXbIr%zJ#=qtpVc&NxPSi{JW`FC>X{rn-g7c=x$P~8df>+Ik8w$pPlgG3UK1!1VeH=Ss)m})c zX{euDtTLz?<5C3O1QJe$x+Z&gEI!L|`j!NXp*;FLv^%?&ic}GpBUn^CJEh*UWKQVH7QL*bLeE}RnN6;F*Mh(R3md6UDtMCPp~ zC4L@L5oIeZYfg|GssR+H9h^@ncfz`T0(@lHjyTqvStE~gN4wgtFsa_=^j(c-!WR(A z*)(s_tkej_-ORwlcB@R8jTrwk z4#1dP(jo&dxep%HVLsvsbJlbH+$_8BqS6(Z4mZw}lm8VoW}{(N8Z;1Ib=?eqKxxeG#c$?)EV(N>iaS7e&>iIb9^Lyy9Bw+RP%wMjbCj{_NPv~;}~^HZfs zR3=I=D%W+vNICAA^H>BGyj4I&(KfnG(S4zDb=v|1|GZ3F7I2M9dDM)I7f0M3fbpv7ii&C^9lWEh}6LDw5N2%ZThA$=pfM+sd44+#*;aMhfLJ{dAK57Q7=Kt9(-702Y6|XG63A2F4W@9MOZpN8Lbp>w5YJiXmsMF#oUg6CwyK$~Fl23{ z&-5d^$MXFl4mIZXu+Yh|1oVaM9T;fufD2*8CS#(dtWit(9dwL++U+z%5zMdb`QXB# zoP7kbX>GWo118v?p7L_k%@!s?V`?S) z*)FOd?HLmxgC1@6v}<;U%4sr(wwdv5C5b(i1ac;XF@(=QZy&zNyJy%Mx5q7rrGU`{ zs>@j7mkbO52S&R5=SKdj!@T1Rhj%e$=^kydS5Y^fl%?FvzhFw^&x}Mr;rhpQx+{Uy z{ll#=Kx}i4h8IRGz1-vTAbOc@2ov>q9*ZbFx^Px0ABaBx3DuD2!sy`#mFqWVMJHfB z?m`kR$#|7^mR*@zLJeDO4;5*?mvo!;iRLgN@Til^H7SqjjNz)Yc*5B+I?cX6K9DQe zh2G<7#?vutgo}>A-GM<4gJ7(_yQK_JY?VKChAfev_X#yYqiWXTcp0%r?q9T35nMp z(`FRCV*=1PIR?f=6}e6_?os%E!zS6HtTTvW$0K!*?*X>;EGGU@B zZm}>t{!b8O|!2Gc*}IPES?TKiXl2QPSs=d*tP`V#gd050(UsUMy3 ztWqD|pHhf5^Dsp94?+S7G>t-aR@O&c?T-;a7Dsn?|6YA=?u|BA?o3L z1)mmFlA_WmjGtOG+g#435vn8OkK`O;`Z#95 zaP=VYz^3)Mj~7RhfY|au#6IxozGZ^O$m~d;WoO>tKx0*vb;irEO?v0}C-d3=$eJgJ z!cgnOzxdeBOoC`3LNW^rookXUGYf5R9*p~?M!OW%fQ3)NN#M;3m{R)N1L261+i&;8 zqnQ*mT6#9=pTjLlA88dlAWxMVKEZ_=^I6r5_qU1ea0RIc>aC*dQEWf8{?n3Qf7^I& z$tvJ7=d(CZ%%h+5wPC^SLCh1!CjEFUQX(c4S=VJryY{HuYZPXG)@ni+^{CW%$MI}e zIK$A~LER5boYQoOt;4Q*__?CL*wVl|wZxCYQMxNng2&-O?9*R~d_Gz=XjwD?1Qp~Z zG~qkcm+pOLr;e)R0pgPoyJ`}~o$9Wqg91t?7zO)(jUSY62Qs7~~jTa0C6 z@pkO~WX#wox^JkQEw26YnL(0Y`EIK9Hbh^D@SAZ9I_C9SbhWnEKF$a>CxAIU0pp1Z zkyKH@z&xxU2YJcL&?HN7S(>PS2Cs7xXVB{qE~`sk8rm98=A?y~b4tD;qQ{ean)aA$ z;WHHx!tf^UMrZ0bGtCl+AUceK zo;WQXQDF3A3+6RiqWsE(viL1mP>WdPhv-yz&Q$bdTC%Sk1KV-%p3SWF2cALHR;c~* z@nE1q>T!AY4!|u)$1}72*Rm;Vy?GWjRxYoEFx~8nd{0T1NSC%Mv*=enr|>oEZ)Z_gJ2#-o{BWt|Rh?H2&}_tVCY? zgd$06BuG#(eA89rUC*bn zrXVXAJ?0snJ^Xx77G~F+)wVl+>R~ZRmjltlh5cmtFgVgoeVTI{xPRu`EZNZSB2j<8 z-Hxrv=$lXWSmx*FQXgU~))NtYkFq^?-!gFZ@OKFTlv<1ORbN$>c`zpDM z$;s0=d3g1D4e@yGT-R)Wk2IW??R9N`t{$cjEB|xfKfOd!S6;figB6W{y|`Hx!r7~W z{_ecxi2c5G(Q%a(eCzotSU&FH`FgRqzxl-ZsIkS_ zJ$`}IrzhI>y#`)?D*blz?)UJ=z|LjNg&wZRfBB*j3Ip>{hR{*Gud2(=@{_RG=xC&(EeGf}d_< ze@ec+oPFr)y?t6Plq_@$zI~>o41K-c--%boe{w*GDhde$Yzi)59{k{DY z`hKxEPB~5a`nRJog4W-^6fcWv;U17^Y8EK z{@|C$$M?5Y=z`DnfBGJ;?L(>&gKvLV7x(q@1K)yzLyz-KKZM?^`#uRtH|UQ^C$ni--ePQPbd3OHd2U+-~InA{tSIQqjcWz@I5_; z?T~!CzV3Dld4BoXXtWrP`SPrIF}M3OHhB0YWG2-LR5%EFn#b=D`=6Uz zV`z8BcF2z!fg6v&v$NtYLc^8tT4_!Zx{F)^>TFJBfFHD{foJ1~&6kMmhgD@B4 z7Bz>zH$I(cLNk}wd!d`I!tHmGciqF++x?GEj4q4*z9Qd#l)C&H-gOuD`EegA@=I^3 zrek_LJNo5z->o>LhyM$V^`@&x)qN}0eYfQ6?~BlV?CG4)zb-7aL6Sc|`?~)AXM4># zvH8WbS~bul&iwmr(q*1ms8hD*tI1{2q|fuK4oAUAaQY{WT|?}1!|@RQ5y#h>SO(u? zLrpZ#6gAh-ll#Qb-8qVGvth{VhtxowgQsbdv-{8n%>$I8?`DDSUtT4gFL<+mZ}V+= zrHkHQc=mAh6LI)rqy#wjixlRQ#rPd~sv9kTde-l^2-eya|sDe}IzcWprU6`Jzc|osLx}hN^LCv9dB^xne^(vie)*4={C@$%`;)|keAUCrUj^74o?cbV_sTKR z^X`D5_J`YipXRW#1o9pQ75BH~El@5B~cxukKuD^R+cyf4Pw7%1lwd5>GI90E|;~aM>&z(~;0tL>T7(#^#hgur# z4r1Q`@3ZGGb9byl=+j+!g|fM>JlkK_A9tHfKAYVypT9JH$kz(GaXvcQw5=S=R{co5 zy1t;p!wW)(|_~XHyC=-%34pnB+f$BN{sPJ&YWLfUH5%k zdpo)_G5>s<_Q+Y^OX)5FILP4_y1X@+%7fMT5@!vzF9?sS-fbqS<$7nC+>=xl{L7A$ z;K?HOhC9Sf(gK+HoN2rOl{VC z+9O_9A9_1$KEqq$gIL9DQ+&i@W=R;ik`-uaPI5+cS^L}Y`2x70lv*&mbZ&$(Zw>d65;Gg(u z^6&7heN0#V1$!?=dBCpN*V0XBgj*d<`X_gq{PCd6Q4{0WM~Aaue^<{1{2N5yHM8&5 z8wXIU7UQG{M)mkH%`!fJX*_n%SQvC5z*aWc~Nxn>K| z0hQ%-45Hzu@ww>&B~Np_Gt|x8b$fsQw>7#CjUGD1ZQ{$a_YswAH*Xe)a zk_+Sc0K(LMCJ`6n{Y~YN3gghcMG9C$|pKd{mKy;B$oO&k?Q!++}^ zhfBvU+`9bI!4e*6SdL%rl>>ZC5jD4e#;#0imhXIOI6WT~J&VVwP!3<2wCwh^gLe`? ze}S5a)NoASs0N5F$6ofnydDDyOPp#GIGNp!X}MW(!R>uawiM&g?Wm=ENUS-w1B)k4 zK9I7QCO>GjXG|t>Q!v%_Ni=$S$}O7dGgp|DH3`Fg$ndP<5w)bYL86_wM(OU@@f z)5tiA0pT)qI#iAs-ivapkp-PV44R^E;RueTFT{N(Lmq;#c}T-3wwon1JBugYLVp%@ zFzD9$kcd9_ln~hKiC>nLB2bhe=5VC)iz&3^%xjemPZz$aozHz2EK!727US2A<2=!v^?a(%l z_h3mC_{et`qC5Yr6@`P_?1oW*unL?BTY_Su`_uh2f9R(WS)4DN%n z4*bIlXo-&6BB-qt!I%psMToF?nadl{L#oo`d(LA;K1g0_iOW~8<99UiFNjXJ&Ens( z7980w3^(g6SzL;07pck)TN69sVqCP;DwG~B@>KwKj-~FyYKgGnFp8)8bC$UC#ILee zM`~ULv(Iu5vyJj8c&+W`406ZT|)C3b}{X8~2qzb5n zWwFo()^g60h!t^cHS)jktiCGj*(f9pV|6OVH@CH42o{OMBbft&V~ckusO4YB((MO? zE_Mt`*crpJ323LCLy(d``(8Hj@#W;;M{TJv&NR)Rm+&O={;-~H8Vmr9l+Se#q8rMy zCC(1aUr0%ap(}Ou@aTQwbK1BgHousny@0S+5K;Z zyjVUeQIfqAT!YoX5V;glhS+~}Rd^m@adauZs}Rea9rWP~ZJ|@y_E7p~&z}&vc`{IH zi6&yFJIlQ~$l-KO%2OWmCu|#q9y4EJoC-ZU&%;p@H@5oe#_p$*<8zuDYw=b^2A_yO zct#%vYH?xf4=B2Uiwu+=RwlteZ&o}t)fyNPBXEZPRYY*t_?>#5v-u!C;3QETo2T5* zK;m+^Lkuv;og;}tE_G-kjm&)+$~1*@h!_;3q?Qu6nVD2ajw`3F-0Awd;e$wsfCkS~ z5I;g{b~?Bc(I}YHZ^}4*OrB!lC1`(#9Ng5f8Uv`2=*Obm0pX4JkoxJtA0Chg?*g35 z0QUP?h!AZ1ew`V-m=Nf`Z|XW9gz@>SL$fYhGsU0CNt}ME?b7FTYxMa+uAGt=j@(Wp zij>gA!9}j`J2IQ1GH18xu@N}*;bBuadMze!rnS^opJL#U<(neSOIfd|8Pd8o@9!M+ z!f#ou;CgIK9F4;GKOfKFSPwl{^{iQ1!brF8Hg)nT%EHq##f!oON6YywHaSJY^AXe! zrQnz_*pg#l6Q8e90BC}SHufJekx+BWRX({3&J%glimhpdr%S=3QmCvT3E&`L64nr1 zi8bp9c_K{>x`z{zg=J81i?v2v36;S{?y&+L%>AR522;b^lq2&AUJtawR=5=5krx=Q zbVsj@S`r?l=jNn6x+KN4mj`#kVS=%nWxMA+{xV#{U{WRwrb~|Wx!(v|TLYw9h}cJJ z2~u#Z5ru#lv`XRWM0EA=#mEfcl5n|Dm?{E84J91---B9kL^OY46d67;qysXCEM@pP z%2;^BJZ+8pF&V$3Pk@L%?aCu)c#O=u!+ngE-mm_SbV>f%gD=C<3H^(ASa~S|9_^wf zfD+aX3Y{nfRN)F?|6s=zhEZ-{>tiHg{LXzg&gZ${!sz8}LgU1(20kH@VN$y@HdW!Z zBlhg~MNWZY03(480{OvVWE0}CIGEJL$X{jfjBvR9^GdA{np=AWzQo{)(Mdz$ufvHV z>^h3@dOik+jxHm{P^KwE^1lUe*h#3s7F75z5fM@w6vHT4Y@hNvPz(SDF2u0a19_8s z+^QY}LeR&<6dOSQhADS7rPd)Zkk^c;VWE$y^G9}J(&0jd| z!fa4iP?2g6DO_42C45$lh_nggNye1>{PoN#2HHu2uMH2*8e){PBVROtL3qRH&e7zl z<6SYmb`Py&G@5qlsV~8OiF@bfvVuVzOAdl<98KTVBl44@@QK0j;|^Hb2coG`u>zV7 zL}bSt6`hm`l9&%^kEbx8aO&ED!MDDe91=w$kVmdz)m4|=Gk^hPQ^~`s*@L8rlMxs} zYb=6_*irx=!c=1LS5hb6Fvyd?-*`0Z;h~x?t$^k2ue3~&5jiT9LUBV};|(5Aepw9C zymXdDzWQYv3k6fRy0hd)H{EzVG3O%MmJ+?gxpbCBKL z)FK0YP9rA=HLR-i1unO^^rYuN5fVKr@hdyJyRHD=uxV;HFrPY}g4cp2Z&wOwI1*3kEGzeyDiS=xDVQ!TjzTF6Ka}Xu zAx=tez$CstE?D_^gqH#Xx2BGLTrDC7^{TP#&Sn(_{$Cstnw;T5ZiS@ALwB2#EaE5; z`Y7m0gqSUiJC&XW0};!;pmR3{UG4!ysd5y1!EIUcBKX5qXTy6X1|uwgkWeHS0TXD3 zbFJDH!$&Mq!c|hmQt{D{`H~!iLMcD@;tMD3$d|}n`0z#*I59mx@FFY{KxM+f%PPw; z5Q7@!*`SI*aDxhNyU7Rx9gWPDSlZWYR2`pbK4Q@F zyi~-cxL2$DNzGPy_y}D50aqC)83}JBA3Yn~!dE_sP}6&(;|M~+tNpbS4Y-#lC&OgW zk_s^ohx^sLbun)#qxM@rg7A^bflJz_B+NcIXrKo=nB?aIaKBQm$^GEIu?y7_>VD=&cFW_9)W)hb?RQZM-pn3K(>6FrCgR75f?>LZFX^ z$C2drszfLTa1}8c=K+sNIbpFI%(8N*7QYKm0Czl%pQ@FsI`;8_%Am99E0<&<&BRZ( zannR|Oo|$~A80kYsCVA{?pkpA+zR~ZB}<0z$eu-sR5bPXPCM>GOU+f0SZSBb1F+xV zI#}vaur5Sohe?Jy*D}=!#Uh8}8Db75F9iLrFtEv&J%&P~M?CwbbgO1~rP^*p=ep#7 z*`p=5%h|_;#c}xJWfv+IN=INl$Ia|Z=s<~HM;q;KNJ&K)T;G4PEs4f^dS5VuP zP+670R7FgU#qnyTHs|Ih4;ko?K@9eke`ragkDJK0d!nZ&e)>!?gUfg6|#Zfz+{nvY3+nnR;LQ=aWJ9jJ;^LR zB4CWPx)=-xP~&)C--#anK!3jo9?lljH2WFaM{)axY$592$=|yiM%gRLDm(Y~{DK7c zmY;$4P&tkIP{?7qal!YX-a&qvbnq8)#l)O$r!hE8o*ro}(|t_VH!!G+5xffVKFUUK zvP9UWLHV{79>~C0Pj^UXw}!{0fb6~vnGhcQw6-cv5JKf4z6GCMZWlo9pEzs_;>PuN z@Z^(A?bQbty*StENO}rCp{a-zpW>!q{tR~ZgoG{Y)}VlwY|O^-(&6il>!_J)->#O1 z@0JeYmi4d7A|pBOh?&H{dP073J6{#6S0Hi+Bph)t0uQy6eltyz5pScXmshFW!zNj9 z6l9zS6o1GAiVThI_FvC*jlX72mU5a|m$FFZ%3_k9U0dWABuD~L3oX3)8F~ZuJ(qe) z&~Mh6QOS<(S0H@%I(y~ob*S@0qUmt|9NhGUa}l&ezTGoa{}%TXRoQdmiywSKPA}Jy zW(EaGeqm!$avvYIjJQE}XO4KM-=QrgYq#a1)4oLeCTq(i?vinVo`HXG^4pIE!xitB#Q{-=1bu)yTv`k9k*;MA!E|b&A&rtlk6;oI%_Wyo5%<9G|s-K?GzZqH7(3W zREaX!a8h^}mRvSe9gVCAQougqY4iy$V!pXxn6w?hAYy_Z4j5?|Df5Cvzka?Fj|%45 za%bR=erQQpHJ!^ID6$kDomv<@Ivj$lT{TK9HW#d#Dwl-0g5nBIjZyBLFzRP8^+B*U z26v?Y=#<1G5QSURPcASvJ1tAAPViw5wM8;0q>$JN*ud@rP3ijNHEpF?eB-Ezg}E zq?a}gXBQ-xj6$X_OykwF7n2|fEYw9*qm$Yc48a3D8jS>;0D`eC%g<;gq zHp_P{E^tdu=-T+a`^U;nm!^Svtq7EiVS`mtoN|>Bs~<7A2)kiy%d{;$H?>II!zhSS zwHmF--(51tc$0PvOKJ*yuOF?%WKr1C;jIegvgAm$Z53rvz9F#wEn~ziNKv$ZkRr&o zMgldn)-fd8KMb(eIPf01iS!Z8G(4((NqW%D>$jU#@1n!FWDfPhKqK&Fe^e4`|- z9g$NCe*)CkiudLY=ArcvlSNKALy-O+IfS~0xA%ouWWWejIi534b)c#ZUltjyg_u#^ z<0@*;50}r|vbXXY_7nAjQivs=x0GRSNdwYeHS8!f)W#Z7Mfkv$6G&gOAK=vxgV{-7 zj=Eq@xa$G@;&_&8o)0)Im&vDcQ;p!s6 z_xneR6l+gor?Wk?B8qHhDWn}dw&u`QZ7faXFHm!Xf$3d&b_qs#g5yXiNKtjV26VJBZwYJzBxDgPijxncPMAg%?Yc;)Enf;KJM@@4aVKI(L-;N5VoJ_!T#5RV7|s7 z4fN0Ez#cJTR~0F!nFkE*mmepQxrd0!#@fSNQ-_w_yg>+kD*Ts?3}C;P)*(>l6Vg=Uy%0Dk)C&LO-esb>lK0ND&2x*UU6u zdOR91iERd2$b?;GdkH+WtLGjH@l2R<_=q?k-+W)X_Ou2;@qggg zX8j(5)&4M2aU3{T$kyDNT(w!vp*V~N!9=E^O9H&kK%`VBSh$6>DVn{EF8;A7mf?g* znNr)zjGkE$aGGh1jbIJ;G%p>mf5e1NlI)sFYK30HMi@zzUvLP9Qehhu zWa=P?(---jfJmf|3PP|XoHGgPD%Bs?V9MZn=lD5Dv}09L1l$Kwv#$VIAJ?RI&|zd9 z;z3J)@e5`xcc|2^Y^x;}2j{{8G5FAeE6y-)xf<&`u-;VomC7XfhnfpI7?es^IF9-@ z)x11xV=ywX9cUMHMN5GE&+~wYV{j3%PA9%gSAH4-CJh4bMwK=#s-AFhn-zk#7HT%C zayTRkn(#z`pYQ%baV?3Ei{lNAif0kD;dq?*d*EmyCZRb={Zh;+z2;adueBm*L@K8P zGZKvQqS@EVPpZ(wOc$)|b~+?lj{J=rllJ>x2`N{f$o94yc_0}kZRZXe{jdp)8}tnF ze}Szh3mPHy;10>4N!T1Th|OM_V)a_1ypv$LbRd=%L4J?(+HGcI&UPNyzE3TFzLLRm5B!Z`tp(&y)YT5Ch^ghi0V}F&oznXE#Ye6;T5LcffbzT z3dCxuAl=@|fGCGosD~WR+EUpQhCY+XokP{3ED(W5z?*x!mz>rpw#7IPO692Uf z6Y-Gu70aEffuu!IdS)kl2|bv!b_(DDksJ1jiREoHUnKKF!OG~cq2w(ufZanVkD{+F zQ>c}0&z853JN9+Pn2i>SNX-Jy#T;YcvUkk*I8w@v&L127t>IOx*_%#R_Gn@AZ^F!z zfJeOFop%RNEL##rDMDe8#qtzmx<1%b9062dO;|VxSJm*$7x0L<&eI#gk~r%wogFaw zFlZ+9@GoWugNRR&3DFRqv|W;T-6tjyBzlJtlVB~S_saj1Ndz8g^*XbirPuzP-L6R9 zeo3nvR+z(fXP1Hsj*LLD(4)LsG4vyDnDA-Y1$Og>j{?ZRO?C%VcnQX{gs(OB9>ekz z(Wu@Kr|$OKs=fcoUFZ0eP)Yf47yn~Vtbgw7YXo`nzZB|I!Tzf^69l)ii=0{>gBw9G zWs=~jtK0iywqN%T6~pehuDBa2SD{(UZC^93@b9>9K!iKu!dr8qrRlI8h71~Mklt=* z2LNFxJ~@MaRlXA@=-wOv8=yl5?Nn3^@ zN8Ez0i$Sj@yNgFm3Q+{4ZTjqRK&O&c%~wU?FdqHX6W2ee%zyJUC_;{ zR#NFcFHy$t2%%GR7&?wUSP5V0zrOh1ayPd!eL{Qacu~CJR5{`j@j8J?bsxT$OchtS z-og=AiouTu9zmbgb7C!`8`lQY$5Jm!^zf?OZlF@yzE3c8K!xj5U7!DUPh|c{*m?& zNg2hpp5qmYVrroOn|4GKnq8|o97Vl%;vngeq*_&>*3RTK$~8EuHxwIySBIxN@ZkA) z6`0THvwUDNwod_M-9RA_tKf2VZ<^aQNCK!0&&=IVpp&yt{ANDV5@DLWt;ckBZ`!#O zHI@5~dLq?}N&`CfYliE~K_Ulo=(XEuE!z+aNJDn~N)wQ4HEL6AzaHY*orFmn;9(H? zL+Iq+A}VMV{JCR0lW^6WK|Dg1mMu;{_C{@LS*kJ4cjBZ;Qes;aqbSyFmTm{Bty?(q z@|NmH*dp~YKqNhWVHpI2qL0}6)NuG1SfqX=9E?-{{t`9y3ssfJBoqReA)U4v^S>W z%93(YkQ+9uQI$Ge1Or3?Ik$AM30~v);yG6_KOZS&@(sv__vAa-wlN<`J8}VQs)yn5 zsAeq^kjgqp7{3?i3;4OVmdE=8=0t>No^PUVH{8CLZD09Fc<5$R`f0o^7{UPs*rHhc_F0Lp??o$yLom%y*^5-NMXHb{rt^%+W zcJ0SLg`%{gXgCZ_GuO;t%aW_l0T(_@bymk&d%wV-OlYzq*Ubc;{sEFpE-4^>vlSKg zT`pbq6A}q2>ALdw!#lv;aFd&zzm81c#*+GCq%Wj1z$+3`69exh#ZUYXC^U9_4BLP= zc%?yx8$Z-glMkZsVQK@7D*o_3-+4i4n&MX&ItYTwnZ8f~deAafWML8bd7>GfDr_Zx zHKDZ!>u}!w!{Ex-Yxaw$<>p9-BF8<>o2n*>how*QSiLJnU_4#@1_Ht!57_>XsMNKVA{e622UKD?>gnVovo#z#8FbSExsU>$P8Q8bu`( zoCuZ&^j>HvV9nuBGw&DLYiUC|X^UujYqCsJK{mEo^+KLu__e+X4m#`{`3JWNbbz1$ zB=>w`T!9Ym-wAX_6u=W=(jx9}U^&0|8+Nr_KZYY^L)FS(-Y^^`t>Hy!Mgb z4aLF_hf#8(on{bZ{Ff3Kd)i>PQRB`q!)s(1E(tUr+TjZ@CgDxYm%B6QS&Ig)t-i9< zfC(bhY?O!bTFdw+--n23u#in4)Q|H&en`eZWZ$yhBX+)_Y$^Rk3|G7>?;)lke!RGl ze5aW#X6UYtj4sj3KCDiOBlmTFf)RDm>(OfnN}X-JU>3V;KxYx6;mel*V|N}!Kz=M$ zh=z{9?7qpQ_5dboZvd1YAZ#?g zCFDGU3l`W~l8If`dK;%n7y%(hZJWqErbUzRk?x}CJ*f(+AZ)Sch+Ebr)iI5dpkWTZ zjQCrDe|n~vvyYBP*8}^6VsezSQ(?h@u-mMr&ba~;R;JVADV=#54O&#hn6T(Ban;nl zDU_ISue-laMmNArFZ=Sxiv3{)@$0NcEg9wOETTUp%@(LA=`T*^UN1T>AX7!-k;p*XxRX_bNP6uwD8!fn_#05sAG-ZSQ!kwB_en|nVKB$75 zoD+rcaSGQ=@o{2g4OW&2v1Y=dL!*}>Q73gJ3BSf zYML*~>oq|ozE*0nm^FQ6KEThYzak6Dk>rZe(EqG)Pzw9+G{Jf;-_zqFp1|ATjd^cS zRn`NN*Z`EL4VBcxWLt8coI8gET7oEtoq8wPa7WUChW`$jwTd?2G}_Z}7xIg?y-SrDTgc(|l+4(rL`L;>;Uy~#j=|)Mez8NL6ByxX;eL5l)cRoxm%wJsK63s}G+99pFG>1nj1{UeaGyo87=hyS27Z6Q#; zffM%J*Rz>IMov32ZH^Mf@OBzvufpaD$`v-`JF(2~X-X)YziHO@Y4j@-#N)tpd%EILDFeeW9FW^EYQUREBBE;^xY{hPpg<;zd*Nm~(=LGCqT#CyA+ zJ#{@kv_u;OtfCxVniQU|cYcrPHBa18S1ZIqGM}lm$5tdv-MhQ{5SmuAsvM5D6R(pm zMc~uSbxxiyp8OT^8rYV{VVI+x^J-31VVXq)=bZXdC=iNCbWa$;VzhvS5?(II9k$GQ6H4`CPO{&m$*vYNBW^{3lEk@+Z+Sk|L~&?z0&qEzo$(N zZ1XKfaW@q{d5>;34fAM5UPv=Q?>A6d!d!_ZF;=mkPdb7_RBVe2kN+qWeMp8`1uq+Z zqD>F^hyO*yIhC(m23d?$#m7T3qNs{iNdQqD*$Qy>pdNhzJS8BDblV=Wgz`R%Xmtd6 zw8|{(`^r+g7D%*Y?hwJ-?C+Cu2-cDHv(@nkxoe6r*bziTQ42+n-`y} zlLH#7XC0Ncy+{MYllz|D{>6zOt_0XdcM!Lqyu^UcMrpLj z+gAu%#Z*{JcDEmMs7~f!)h$eHe`$_m72w*Eo96*6s_%d-f7@xS0L-tBt>7=ZX@bg2 z@P^1lBZdyNLt^9-dZOc7KE3^Ie&es+FD0!BI)w=;d}V@RI>d{x2!^VRIYUC=T8L+v zi%9YaS;9oE$e4%8E+6$N1M{1f2%{40&U9pXL~VWrnB&p}TtSP1_znEK z;$h5ncY5_xHI19~DLW=zVi%?ijlgC}7vM);BdN}r;< z9%X3frGl>=Hv^}53(~9V;Ar=9Z-ul18V?NZNQ|_*@MpmaXm?d|**NLt{V+G!!?@(V zS<#r9T!qbx^kI!j0ph?yM(pZ6{oxKsgyJ~B59wD$YE2K9koYEd6sM`ln3nPachm~) zf)GB^E<9k^;ZM0WN>MaA^LMARqQ<4K@b-Ht5V*}g>l5v0BM^K@~wzkIf zGV@mzW-f&ss%hiE-wDJ}=OPOBW1Th=Q3NN11H$BPJPcu`Uw+NQ&)IRZ1|3`yDPjkl zAEQ@OhDl{7sra>9BL`T(k@Rq03R(&z1^>!N|D#T8Q7CA-s?MWXw+4&Ncp-zCgn$#> z`$HvA9=lIEBth|r%kwPpi6!I;>7E&>I;5iQ&7iWI21TqO@j8GU!{4BDn6RUP7!JGR z%A!6UidphIyCGVBc|GU^@|L^2wmDVZqjjvHfgvKrXbHEKgX;7hFq|*@uSdUdai<@< z-i-vRmb(Z>#IboY*8tPyy99o6#btg z#&vehF+QHwhPWXjYEQ*@tifC{*UjL@oFT(|_K!Vwk?UktIfsp1{{QG*xA0vlr1!X9 zjW*1L5#Nb={z6@-i65i&HA>-y8yuLSA%V|7`;}(T>bUp<=-u<2OUu6R@LsOn?CNJU z`dNuFR^MwQTz&5bK%#C%h(zk+d#npQe!NacLD>Enh*1DJ9&c zS?pM}8O0aCJ5Ep8(Qyel*CnFk&?$FQwyIV16W`+{s<=Z5w0A1O_VD29IpUZ|?A0G0 zP(Bl|vk~M}OVyJ5(Oo-&Ls_{WcoGo>ctXN-$8IQQL2V?Au+?>N3sX8`wP-ZIk_&^s z9zHtdQBP{!>MVg%Z8>(vxpqID4?TJqHS> ztt*=H+PpUprI|Z;AikD}WfdPed+AjpIFS|mFH^W@T(C;N`kx8U8mI4!o=7L+al3o4bB}$~6!Sh?Y zoSi!AT?R#5OefZ=(X|>I;`!!?IGIP1U-Z-reyQ%Cm!@6RTCxFm3xgW%bf;`|8+2cb zVGWw1{XVB&u^4YL*{g*6#QKYvZ|PFz zh=6%oO0Ou72BU&{nIC1=dqAkvC8=TdRO~(Sa^&m=PO5wqnv3%hRK$NO87+BKq>Ttad_0@3xZUh&uEHi@r_X->K!JJa@VY9H0{i*sWPB z?&PYRz=G=XQIR;THBp1}FbgkjFfI{2Of(mf%2%t^(!Ispf6=!ki7n<8x&H9egtiUP z;I7?>@$0IF8kOL>R>&2u(A|O+t_76>M{zk&*&?l4igJG$@a+~p z^E`Z{5fLwx9T1Ou@U~0+Bx3BJwtOzop|U}sZA9kCvq`~T;8Z?gffLP%5@rk_PrIha zHpZoay>BGYrCJ?*&tBd3WLM;kYa!65T4klESoB%vPj>B>EB`H1j{R&o7<+OQC?HoK z`u3BOtCy((WoxE>k-v8#0kv>D=Asr(1~FF@EHu`mi*XER*XM0w zANBGjib%i+H{Gn5g#0T)|7&E{`AY#ul|J_wUHZ1<*fn#@u7Je~8tM^nO|h- zZwJrfI~7*^A%Z6k*Y?Kb?G$2si~lFY6Fn?5mbUiPRSqQr7@jY_NF`EVTCT?ssm<9k z={f?sz_Eed0J=QAjD-0x5^d_OE~=5l8`x|hnL!2*@Q*oQNOc%K+72f5uSN+qrJ0to zU+-128Mv&{@)E!6OnbV1AYCc7`NAXN$|0TB19SCAjmZ$;jjS83*iDB@v&Ial7YOr< zxjJT!3%Z>ZcrHHf$4^*(e-x0lkXqVUhv`VI_glLhp@|_WDEk zTK*^`7_~T|6WNaC<3oZ}>CZ)Cy0g?mo&ei2i5kQ&v^sBASy;fb19YmS4KT;elXEW$ zke}w$h_npKa88p`x?X0%SNsE46cgN8919mPBr(&SE?4<~0qQ^%zg{FcJc`>UNkWfP z1lpnBBJ1lF!K+OYw@u@oQbE(($%3R~2cB-}aMPHM9h~6oYuWvcc{+B`Awc$#*D*~V zKVlrk?K)3ji!3j#G$=bRKg`mRLq&byfIz$;U66C!z`YmFpzAYuv#3S1qSq%=a?p!a zi7}L|Pv{D#Hc2IbNTcfYEyNIMha5M+YK|LLsn$(MThL(&+cu_d?kPC~1nYIX!6xC< zRTBNifS94)W|pp8J8G!Ym}C|2tAbc`Au^z-ZR1h$pyY$s;}3+yVJ{suC{gHjgP0HT z82yWJOver4J~mNBa=JL;Hy%;auFo#~9B)cR7FCZ=cGRF_K|nWL2+rk{&56TU9~1y^`2f;Vwy(J_I) z8s&(dY<`7u-`@W7FLLHOE0wW`@kA8x0V(-=$EJ_s5(2^lU^PmZgmvCs2mp7aGYz`q)t*6X>y5L31rttDEdha^J(0~b`!4Dh0Q2}CXmK6F9#M3Qr% zeh0YWch`@8FZ@cAH{d;RljmUoD-EUCLo5A`tV=7pz25>!I&m9U61$1#dPPEfB>Tx>4{$K ztqZby0G{v()k%)=oeKh<)WdXFpC+wTzk2V2#2315CbiL9&4P3Kun^Q;2hkjqEzc3o zTul%%hzF&HuR;yl5r%{{o20tDxpG8E0)(cMfi+i2ARCvYmjTm2M8Y{74XoKDF>4No z3Ba-S(vN{aY4jRmnizJ++>MG16N;+!rL{O4Im5vnxxb$>~4fworU63>WM*9_> z?zlm~uRwsCHbnFoaxgY{bKOt96;L-O^u`H=Z*iWE9CQ!?lW1Of8Cjm^OCOWW3n42Y zBg%s^g?T!5K#COa!-YvpVx)0J4jv+q%DrN2N|`3DbNrxz08dAmigv4fmJT0E)S#Jc z4jp@m4?B90qkul)Qs~vg^3wS@e2`DUIl&9b;%zi$!JO-^bG3A_pwyWGb2dp7Se0W) z0GC=4y26}I^8fL5Z@qRLNp^t$iqTItV9??rMN$Lz0Oyd+n?zE)U)~1r4D1)fm@)kO z{jI8<8MPyek_I&mDwvg(mlbP8MCLY)oGD-C<*=lUCFMLVbunQLbvxn<64Tf7Lpe{& zP|D=rg^H6QY)B&`JuLURhKTqox8GNsjP$fr9KnMFL_%_DvCzZPFgb$Ce6K5sS|1BL z5)q^8^NS3rsq8CQHhR8!qaq-a-`J8et6CaqEtVU17VF1QO=`H6&sRlD#C zlLD}-BzI5S-X>9OivbVh5!Dn0S=$`o@xX=QAUH<>au5)9ueJj|h+;LE7D+Hh2yV3; z@NwVGvsNWH4CEy(R?7h&B(dTuC3U&W4h1_C+5p z4k&r3G9Mz!6xoB@PyVd7158L_3(?sGgMfr?fr%n)*W&ll&&2PeUHo>yy1)N<#4iXq z{8KNuB#dMDm*Uqx;XJbp4S##jv+X_0U;nB29lf$XM5C+|0oeQmR@Wdy-@B9}BGyW1uO2JxAWHfAiS%#v7xf7FCO{l5A_*EG?ZI?Qo0A!S7`|#HX!w`K% zN|Ipx7bt%(t0ZTvx745{{oR`TqYODBT3?y1MJ%$_c=?+$IHWDS1E5q(8SiB|^5ymQG|olp$;v z?GkC=g0Pb|G#|?lw-zlyc2Z-olwy4BmolV0lZBMQ zOBrr=R$t3d>@K@n^h~62`RZ?F7@=?XQ)(E`60G@NhH>|%IU7*ItCQ;=WvHAOgGm@X zlDZE#-8*()meqD4U+&sXt@8C8(!FH~#1tY$cnfm&xuJW9W&DnP%0&>sC-vDoQtUrC zwjK57$5Ea*;r8}_RGWxVE^^|~RM{`#BD#0J-Ha!^LevqA%WhS7U6#b(wj@Pu#Ht#< zR(Cxu^Q#|HNt_h8@@V}mtl)G+i}I6a37<3`E>}ET3?W6e675KSwObZk*wc8MZqj`s zX3Ja_UIdeg4|!rkMN2pKC|5k+9zL4*TH)2^qQys?Vs!I7*P&l*uS_5w%10f&;zh4PDdnpl&t99X2FN$VUt_w zWtz^n~T26E|O}Rz)dXy;NX=&P1Fr7Rv=Crg~2%>}3hyh5__@r{V5CpRX z!$Jc&4MMuKk*9pe+d+(Ilu(>_58>T+y93eF5)YW@T2*(UN6LzF7Mg2? zwMzt)_ML6|;Y9H*14;j^)hmud56kV+6p4R}4R){9$b}x$0rKsH)$;9y9>Yn4rCiz9 z_wQYy2T_|7Wy8i$+gW8<}~q z*7g#>`#3$i$Lg>zPc8r_fOlJ>))p#SdL{q|h7h)VHC?4}Gv)Fpy(NP8b_rY6pqLsr z%gI{Ms|X!9LfDQeH5u{VtL;D%(srl!;wto)AzN(+mbk!*q)$n9;xxaWSPm?4`5JF1 zxQ}xS*(<4BrR6{q(w0X?11(u36j5Gn2c8hOTqCGYIt9sEEeE2Iwuu<$c2s!!_$1pq zFom?W0{tu>4w0W^JUcu*aD}wZeMvc4w%uElk!`Z$=|Gl9TjCnSO`*x7ljF-1StgEL z3*N^E!TTgX-?hor+xw4qz1!W$<$>ioG)!ID{%_yI&u8~}Da$a4%VLJa^xa7++42`RQdyB8i zFqdJ;I9#6HQ@<|5;4495cjehB=kH}`0ZJ1>rR_OqdYj5W%FMpXl@Cc7X1_Ei{pMh3 z?e7D#J)7a%GTbOJ+Otu!g&e&rLj*2KK;9y`^Xne|S!T+gunp2?d-gAWKMlncQi#e? zZO^`ZK9r#ZojOPEG0#Qje=NfkGD}raAf8K2@uxDxnGgw^d3*L(e=fts*T>}HZjEnz zDMLa2%hZ{`MW}r(!<-S79^9Yk#Pv9SI~anx?Tfc(-v-~yFqBq!fufVxS}I0=l%b!- z;PZ0&JkQ=D(L1)FG(D!XPoQV-B+)x8lSqWH=fJ)6jVq%9sXTN3CTO#+=6@)1{R4}V1Xx( z>B%H5<6dY%kBiyt`@yrriUR5RcByOh0k~|>EJdu`I|)Da_&DIfA}c&;Il0uF9)4v>LbzPylwSWrXnVg^+_DKu)^*BxN7cSP?WIp<=JCqlD*@LRECT5 zUbZ?J)Y>F@r=>uu-WkYbEEcav@=nXkH13nRR1lH8!!iXbh1tvD0mR|Y}yPRrDCPfS<}!6bX9Wg=x_e}Zm)xQ0>6OM!^YtY`b~!Va;B z0~EGh?!NBv)xcugi(^N2XmE4}~)xVcv zGD|qkc(%p(M;TIoVx_5E&$Ii$H)Sa7k}{CX^SXy`%S=qM2+C3u{H_dh3s!wg7sr22 zLji749QAsaXZw`*WjH&Rj+&k8K7J@eV2xs`dDx!UW*-k`IV8zx8kyjE+m~-{sj}{k05J6a#lI&+f>-m7yXB$S|ILiG43aHH_6J zB)cA-9|yx^Fr|X`XJ0uK>ezy24j~i_-JXlyrcj5aiOFdSj%0iG&!JGKrFbQhgBESi zg|Y8&v882gs>>v1D*Lifjy&5$Ka*_)M=@XPfC6~TQ3Vg1b40+TU#Ae>TEF)l-eE3 zs26@9Ei#SrDEqUc7nM5NlzliXkA?{}>a-ISxO{XzeR+4GN6u81D`MNeywF2@Y4lJ( z8_l9o$Gg>@6v@gVjn-mehcNqq!ocD(Wtd0Lx=9m$fzB8##=m1HfFOdfV` z*ICO0x%0nI#PI+OV)HmH-1X9~v%Gt|#OBdUiw>{012l-uBSkRZtL=ad`O@oeJ85?S zhkLwctPU;S+HKSHbb!aBdmQxcrnl#r+#K-nKHra9^RVSol)bh)VPr1#YZ3a}Pef?ar~mJtmwkMH z|8pV~_4~`5X$=2TkqRIRuK+c%++W&`eYU-4`RhMbq@!0<4^(yjlON4h0Ik{Qv->$0 zh&iagL*3R&(-&nZyP4V{Icb?jv}=yzHg7M>knGQahaB$)sXZ$EstmD8|2YLdqIDvV z*Dbz27&?%PYT+>9g}ue!%P>_t`j`S9jH7?`A7v;$LAS46RfdBp+nm3UId-`@IYi*f3fC zKgGY-%kW2;<+_F(LQdh$+CyS=>^}Pq*_4Wt>5<&+E1MWCOM>3C2(K!fTW*>mMyDnB zVVf8t0a-4rtqJMUX}Mi@lEb#>2V&7J|528LQAy4_vTcK{DcFLEAiQ8y4#+1*vb0$^ zVLyX1hi%m1ry{+r3u1KkQ^~)zt=Pp)9n0-Pg%cvA_KJk9Tt@0T8>LbsJX_2KGokwX z%rCtxq_7u+pOr4;SfP#B+bpP%kjZ&Ud4zDZwNAF+g7+m!lD7l`xdG#PA(5h^p8}V( zgVD)6sxfLSlN6nnItpwBEK^ad5~j6Th>?v!S=eONci%11G z?{HhV;hXIZU;vQ#vSro_IutqN1~Z^#2N}@5GYUIEMl{5JpmD8)ye;q`#vEA|)^vnM z8AT`O(xqcG72sL!Kv3$?MR$E26QaXXl2qnO^j@+d_3jNa3DIfkoB3jC$nDOk>#-z5 zr=8hD%MH1>x1sMX7J4N5kaHTY!~~1$fe#QSC$Pb4vl*PM)D!Pzgrf1pwZNm8c;Xg zC_e1_SGshxDP@x6qRHW=`>`%EblN3oo8woYJ%=y*s26r@qzZ9yP*a8AnxZc3xPj^1 zxIziiJVx@Ay&QZ-(ASDWv2nPEuLfEeFfhYa;S+=XCb+oGq?6ne|I4V z=A!6S;hr}OM=xy_awL?&v)~91)n+#wcB|ArmcRMIR?bBIFhBH2r2Ir+4&->^2ViUn zu_X1;dc5c?QgmA{KL)fv21QA{%$$2gwn*G_0zgG10wRPA{=P)&>dI6-gV8YRs#Yj>T%!+ zrOCmgB6hRY?W@WoU+Kx4U(WTUKi~9Zb3J#LKaZY#P)+WVc>8aQ20WDABLAk^-bE80 zEq5%P|Mj0q$k`DRl1ClSg>XJEL#vDVG#zfybS*+1q@8HVGjwA`L4 zbhrlWw+BOfozK5KyJ~n>h8%Rx*X_@RNc=es(G1>iJeOSH`!alz!`Y4?UY-qxKa^q4 zebc%7Q~3M(V?LH)j>Opb`?HySDl>_zi2D7x+`03)4AG3#7+#)zxWAMkuecqo+Mdg4 zwXbD}+bHPRpSd0A`cu9g40Db%BskCIo4=PKSD)bg<=I8Wk1`Z@je@*9yW#Eav?Q7Z zmrUaRTr3MWoL*ILGM+07ep+qL7jK>DJm>aVS&BX6@{!B4`}^B}lx5|2ye+)IZm`So zT=M+41sM5RTc@?ha~Y#T44erO9nYm2{k9-O1P!9j=h9|jh63+MneklKM}Y=V%NgU# zbGaMmwon5RKyT)=Z?)Tk4ZB+*4HV4N;lHkU3pXqZ!-U#y&m|stTfjjpBpfrIi$*K# zNcixOOkYN+z#})m;1;%d@Y|LJveVr0w!t$GzY~ zxmM0{T%I&tTknM*vaNW1VyoM;f6ravhhu-ryT-FIz`H^Z*8sOlYm~f2WdbfCq^PV?~Vi zCj?*Q(cOR#5;5mggbwn=&sHgQHvoi0%(($tVtXoITH75U@<2M!9flD}+w)8!4j8#{ zZD%$B=|N+SPY0|JiatrT!u~V{-EzXp1g2{NdH*K@^8PL$JD%O_e@;M(E*}$; zeMUFKzfzOXl}}GP!dC9!_3Zqw|5QzmUgZu~3k|W6?~_7ly?Q>opIqdYhDqRCtg8v- z7iB0|n03Qlf!ZZ4@Uje1nN+~2^e}gGw70o^RaOGHa7)_Fg%~Ed0n+O-%qb1$5L|<{ z#lTt+?DsOXRm5nL5wy`4&;Lgmh8787yH^dPSzPLyGEAs0*ZrgbMs%aS`fV9Hy(20O zxN@T~fV=+cchit;R|zS{DZFoby6^k549Sc9lseg>3roQDeHkJ#&P|7O;3rF+@rQ%q z7LB&VWc=*Dwjw^3AwH5&vt4SGR2yG^%%?Kke(r>m%<(BB-(DbMZ;8IKVl?uX~GM%P>=nWkkm&W6@sytqcDVC{~Ef&XH z)X$GH6s6agi56p6)9A$H*n`3@7Q+_XmU&SzbN$)3cV(Fyb`p{lV(?Xcq1`?$OX~p} zp(N4vP}kPxju%^vtY{oLn=mU1<-?lgKdQ|{1cI}IFk%RcWr4*OF_(^&A_wkUsRX@PwB*zS0om> zrW*@1OmxEf^d!KPmF=Tcs3F~$I~BP?`6=qA0Twwq`k5*zbQIk)MUp>#-U~O3Va`*h zmJ1Lr$)DQ-4pjm|_*%_Qs99Sa@Vd3}ZoJ0ycIo+Qb}WnbPFcsPN^Kbg;5V`_&qIJzzLNE%7P z0=zLz&Z4c4f)A7t0PEwvMVId>{BUcn?TCQ`_f)X-U`GLn+FiFx2~}^QqctE@2m)dF zKH-7fqG8Rol|)XC(ahyO+<+KvQlo8cl9SU;@V1=fD(DJ7L><-OUM=2$#HF07AhA=JyL&j;l^ZG(8XkS&vI9| zk>iXheBjd@Fn4XJ}`(14F1o1uwNhmsaV> zeYRY*Brv~K61oT)g*{2)4IFuNPi|Of5jrIsq#LV_8%RPO#tottShr+<^mOxcPY0Gz zhxm`UNA#K1uv!i@p$>Ckj&+Jr^MX~!4LqR^H@;#k2$m!$y4nszp$-AQJQ&`TgS8pk z@=ez|@a88v@MhP69XM|GKaUQidJg|o`CEc)GTg4-imOQqYatDPl%b-dB#;nGF{dT}_@)fi z`a^JlLjAIAAM>^h6O7Ws1o^0r&Qjk^L#sCxz`08fqh1uppJfP`B0n#m(=q&g8K&w} zp%n^rc5%yxGW4ZFF9?W!;&yGOKOPK8Hc@gL7i(EE4xh?UZY`%ev2KiJVThm0kjJD{ zmDMm*4$}71momfw@F~@)DO+1gAitI&F($5OMI<%CFI_LQZ)KR1g2A=?^e5NR@XChV zw)iip#HYMLH?^AVT63>I4u<=D{5C@2>jas@`fB|*?3NT2(*{0&A!>D&?xh=>LBdGmohxY+0%*gD; z(dH&fD{h&d0u3eY$rPa+Sx)Pq7i!RyDh4RU9a=kT5P{>1z{;@7iHv1a6mF=s1?EW! z<<{z@TI05WBR3POyQCm;ozfyQZVNebks$G+tb?e>_WOb>=y05!q9lS-4ZeaA5jegG z@*b8Z{J374WZ<++H6tID*sC4igBf=P9mXh{mXAUSx=fc-94-3AryE0LI*}7nqoFk! zI4wmQ6xDNP%7d2UI|UqEZK^~4>HwdYz-s%Nf(|2%v?tyb60v|Q5jftx{pJS6Z|)=R z`l#O(bmXiVjwP$&^@)D8w-n+2**XCCJ6`Nm+vXyU_|upo&vfq zmW3TS4uDhlldDnh_xUdD$PaD(d=?8iQu68DxdcrVvN0DDaEzm1)kgg!u|p8r*bLP8 zO&W{v*HEq5R#27I+0$U)kP8m5eMpUShE(}5kNomj#gB_42X zcc4e^0^NCz4hvJ9^>^S0aYs?B9($6Td1=B^A-InhaaZ6)+pRqq2twLjHafILea?C? zFod+*4rL1b^Q%wR#NXY(5Qjj^`8#qG+1&7k4BY!l+9er;*ih_P?wMR0IP&1$Z#(yZ zidM`fhI_jMNqiYcg!xd}gbQ$5`!LYtvGLk>eWJ&yB{_<)T_g=Wc}O@P(0QBRwjQ4j zOu26yghnT*T#LJrQoOA3xu&m0--Dlsz6ZPL>s#<<|8t^mTO^hKYy05oW_Tsp{{3J7 z?eBl{=l}Hd!NXm^>Dev{{n_`M2N8u2uS6jtXh{lQp)rr!8=kFi_)AeZI<5jF*)JP1 z5uznZ{Cs|)qCLS%J%AmaosPaJLqw3V*jma}ma@HqN5a97n&z~ zUxr{3mgE$$F#9q%AIdPNvqXC_dVXNxLm$hKf&%K;t&?%QV;i1N2g6h(iGJl~d6K5} z@pBncPs%OuHKt~33$427;u4SECXa=h|-z`vCtrYi16V#+Ex zW6}C(Lrzf`_bs!aEW$GHef%*EMS&nKY6)wV0QMb26pkhni;7V9H}aF7o!JqE(-IYk zM1agZ^Ac(%3a6zFnDiv#WW<;6AquCZyeRK1ql7UE(lmS}3#TQXVX-|nkg5dK`dkm@ zZJ|YChdvy6$VnV>yIB@o;9<6n^})+=&&wzkUeKdL`=hJ+(b_D)fMo*W$rqw0 zaDI{Chp3c+5=v*;+bqc7uQ_7z4`LG;Uiw+6VS+5R5KAH7{v$_};dr;?9A(6{M^+>Y z*1o4uBOyz3O+n@tjFufq8_qTpjZ<`y8#{7QR{x&D4JszufI7*I{;NJJ;Mm+hGb`8z zTGw152a@2Uh0YVy(RhD*L5EMV;6ahJxJbnE?S&n3d3+P8Et4sv)yAlxBZrNhfkme= zTWRe6?!pd7;q2Q~ky>^Dskd3+A*A9ztA?Sblq$7%7j}59$^uhPASs6K*g+SL`LTR+ zACCA!e$!?t=({cSuoq;Ha{`y>gX^7o6na>}7G$cU$W6PwK^$E;-=6HYn3G&YuKQms z3q715kQ>}?zZ4%_DqbkV(I!o{MSe(E-n^kET{!I$XUrXG90uyWd{1FV^cVyFS$dFP zZ9Y=1>1Y#&l?djT_k(%Y^FtR-J5fUnCl`a8AHdKo3prBt&edbG_GIFd&9ab#97YYO zVn;Sn`K6bI94UwsTuq2KDD*11~BL2f){)jI<_p7{NV-?$bfUiR?K ziRHkKM>&h;vjeO`2MEgA>OhZQX#xvf2;Qjb>sf+q;0Mho>n5<4@)xLlR_-}4gy!3> zW71g|VsoA*3imZd^I7#ghmf<)w03rY$bG*9X{Fe7{Cjexr}A)bl;pEe1t}?NLgwrW zoVx)fL?074rp_UO-xDE6AnxrxBEB&Yp=rBF^Utp|Cy(!0_K9Fz*l$#NLsLn@y#o{ny}G6*o|Y;>&#^xtu^v zO5z07>b0(m#QHz~^1uJ%?|-}hPlsRTxOupdx|?6xV!!-(be(wP;h(l6pKgX%x-P2g zrhb{j22j`|_w6WxJ$?P2XXk(YrS`uK~Cu1RNk>Q&%gvv^!1esj=+9P{!%Pbi@3CXPBC4m2K znsHdDj6G(H+YBAM|185C`ORt5{HiBZYCG|L8G-<$1|(7kE8G51hMXIv4Gi@$zVmwe zK9(WcwVnA$7AQYTd2RTq3{ehcZV~*+BzAiC`Cy2UZY0HE_D}gzW@HG0;-&`7EUfqX z#b3)1vST}ur}lK)ZQsf)u?W$oEnCcEw)Vc4VdAXV8GpqEn40Ss|CokwRK`iHSECVv zZB~f2vH2h)hl1>+>NJb|x=CWKEH`4dRVC!sjYf`$wP{Hir%+Lxfj?Vl2eCFS6>Ra3 zNtMw1%Lfr_(=w$l_NhQPioFz+6Km6wH$@^Nkd4$@gI7RdG2*2;n3(cEW7fXCkOH~R z=~5mVQmrWnS-kmntPDH20MHV&C)S3gr5&~vX<;2Nmo>=ZO-u25QFg+Ut~;qZEwo5> zCV_opMN=;U8FFp5nQ}(49ZVaISi<&FdDAkNm`M8x86_IKj8cIH_5et|Kie@V)W)+= zgA2Jr%5rpDXiF+@zMYoF-4j6Jd6rFnTeyKi5VbaLv@+wqk_$MH9a0wGvigXO#j=pY zoaa&)Rlx*VvJCBu3OXFkv*c9@AW*QdV~kYZ_@a~)SVuYcO^Pfr%G-jEC?$bEF-3V{ z5sC&NQhB4zl!8-M97KYT>q;&N$*W?@Kb??n=XQA1`Ip)8d*-<}hh z!k@M~^|DA%l5JS}uOKOOJL%zNHl^~Wr3p7p^pHfi99)Asl5JWh?wP_h%ryrU+Ab#A zrX`nWrAN?X#cLw5Fa&QuQiJ8~g(1=1)`s+{e!BOejVIYQ-kuBF;H*7jbFP=^N#{*V zNeA3A)w~uGoVZ?fsye47KEe+$&RLVCq~oqI1hr1$+5l`Sf{G<;9M;@>} z?&b5e-aeZoTcgpmQZ8pXigkM!zM|Xq-qK>knx0yJ)Fy;pWE0)C+tOkj6CIRzfW>{H@#wbQmK@{40T3+L z=hI}}KoxR~$3xtYiIkp8x81fB z*R@dl^(R8@*IlS}u(;X(oKV|hHl@_sj(NHn{*_R(i#SWIIFW3&uQ%MY^S}O6p*DI& zs9E!{Q$d=s>7wQN>^_Z@%43O_Ajv|(UX&rxb!@SH=gTrQVW}TOM6dwM^7@Njm7!gG zXz|+Yb(z7UV-MR*{9cBM;|LB>Hv%ckH~&$FvUJ<`+K$N>xA^y)GR!#vn85*t%Xaqh zwhUqF@uORd@1|iQ`SsCDK=98p6osqLUgB);%kc0el4jkfekj8nJlKXNv0%*idcZ%H zA&eNGOc1SNZ7i}BtEDXx8q;2s@#kt$>BnJ!dLO@(AvabdL~mU8@oO2XSe@Tum9+u? zR)$d2z8cN;SAQ?Vt1h;|`7zCmo0X90uQU@T*H$;VHbzHPS%&4ZBp10&u1!k>JW*mw zHAgc0$B=8&5(~Yb6QSFNSPAJ47u(@G?0>6ojdk?u^+=LyvrYbPe|3VZYeuB7f|KKw zXR}M21r~Er>|ftEj-t!?cIhw3Gn!p23oZ<$Z9Ui9GD?LQ2>WQy*Ed8Z*2cS$`#F|6 zvAnwwV>`|^S8!V#q}psz`bk_oq92RlaNDRCV(^v)7zl3fWkE)&P?C_iY|7SRAqJOz zn8zhFL8y&h^8bfTv1SwtGsMx3gTBmofd*1hYk18y+aNz$}ZFZSh$RUzfpe2UiEekqwc~~vXCDkvtHu_1S9mcbv8<{rj zt~c76k16cfjwMc~w@QG*4ifeVNFBMzwE6Z;@(r9@PFIj=!;-r>e);vNJ9szkB%y|% z5F71dDYG^$h3O9Ked%Q(2Z~&~Vm%vAq|G*qjF9LJ2}!hJ7d3+|jlI#=8;Le8cWRT? zERy!w1sl0s=dduEUBN~eaUoVCICljag1ZG+{j~!zp5$))pwI4AHbUNQ2WmXJcl0NU zAWp=_z>QyXBWG=LN_LfU135^pV;|^_)plS9$+fYo;Zx5f*FcXOeK_Lg+Uh_Lg6lA( zxix9E9r!_T9j0AC>NKsk&%Hy1J$#J&3fgz7nQXcpFNv4WC+uMD3?~3kiHKGl1 z$g|y+;Jz$FNQ7ewSXq{s zUNd}EhUAN=R?=+p5lf4&%TSqIYX5}YQheV1^Y3K{{Y7C?kCi&%>w)~^V5VEr%8I;< z&*GuplwmSmAZ82jt1WCR;B6UhzciF2gh5=-6TX{<;=qCo2_FhQtx1?a%Wx}oS9>VT zoNJ;Q1ivps#SbbYF>8@GBj2{&hce8u8m|`RG(=0v;A0schEV9K5BH}s6xJ4;Ly9c5 z6g^)L_~(ORg6a~WN&TA0*2gbpD3?Nzibk1j8Qu2PU&|075Iaq|Wqv-R6XkDZsBm4T z)aazpb75@X%P{xonZ5+}MVWdZe@w%qF@zbF>)H=V>0W;|y*0L=I>MalP(8YxgY7$k z-kO#<_TjUW*0s0#%jvCYDV~(PWhw|rnLatvW7ATk&Wu~;!neM>4LZFwEyY2T^AT=I z1<%sYLJJj&QkI^|K6!`b+Y2rrN*GCwg(oDuyuI*3rd{1`?ox;KdfLac00TaW!>0HU zFIo$r4FcOX}Ri&;+mE@)p+08Ad!8%av9G;4f$zf896FArKYg0O`2=A2~;RP zlVlkslGav8;f5eIs?K*RgM$l;WdTR343vE1C8(q6>~AmR@ZDl0xjTg?PO))&dqIa3 zxS*~bjukq7(BVybYA%ARS z`v$%(@W_3omS>W@l4(oyj^-M@OvG39gv5u0em}t_H8$;zGu}~4Vr<%}!2&``M^o4% zOxC`pz(Y(brzH(M*fO2nvd{zg5ozH_@%H4(A+;l_99oLnn`NO#Dmxw; zPlrt`<^?q+#%7xmDcdzc4khP4=-y_bhoJSAB2lU3V)FJq^wwz6yja0Xz;k&&22X`DeJa_WSJs=-*Swk%I#^F0K0{0r2+Sg&W31!XUYKEM8`+&(6S& zCr%A1#dUHhK~cWyL>&y|cziEPBgc^TRdS{}26oU>Nd_sUQf-s!*b{{^&_it+ALIZG z7bM@dN|^y3#1zFTAq$gogydX!?SoHDnIeos09XF#%F^eS23b?~ z*MOPu+DCzy%E|p)Rwcu6-tGXD$4U=V9Sf!&rsg=K+uRM|wYN)5$+tl$=f0J;^4_cM z02N|NMHaTNDk1j)Ukk76Jk{f$$fo_*-EaD5-t2!K*<|q?{%O$hbTj-**`$kV^-v8( zGyO-io}K^opX#R3E4m36v;B=`2ETRx`RqPl6o%?#gDCl02=bx~Q?4P|8y<=kbtnI_ z3{@e>$S1wYaW4m*UX`KcrWS6?-HTmy(0yHo?o9A@o7&owfNB`^dl}lsDdd4GxX@CC z@yEe1r)xR6)N5EAjfcD`L*CzBMw!%?0P&U&d0U3LBQ-|`a4TmpI_kZfhS5$2knc#o zxPjxJWrlQG6fz8aN9*4EvP!O3Vh4n7N~4X;hcYCa2xO^!bjcSr`2JXiWK-@B*{Vde z+Ft#s3^Q(&3s>z5lcg@`^T80fML}R^C%1TfDMLOT96O88F#yB%F<;A&gRyGm=M_>| z>Fr~_m7!8pi6zlQG+{j$^1TcJipos2HeRhBuub!iX=t~o?1MlCF(RU&6xlR(AovBA zsy$K~f>E`vA)BV9X~_}p6aXXf{pDoSw9GHEAzmW1PW>$(PBu-;Xc4qR@WNtTmLu6T zEsbLeKF~AoUTTL_6;4a!M1oA|y*IB%NZbuFEf3J+{*vX}3oN)3N-%{^@oVcrn?eg? zeSnMguvozbj0o)5Ivck2%gep}=&2u;eHZ3hnm32IXrMw>Vxh>d0B;)49qI{Lz)No(2YP1=z zZ0}Hm5k?ZMS_=V!e+A9lj*_ryTk=JiU(v9A0Sw7yW2e;cM^J4?!Yv6@*O;$yYYdq+09-#3AiA)qBMZQSRiC`F@ z@z{m?e3V6=L$)FqCwZj-8^7KYxK4$QbpZ)abrc z8gD>|^KD3(m*-9?Y&{oC_8A*6LJYYi+PqqRxFlb^+72vv=vqGxYx^}LWw#dpYCF(` z7!q3+smI9Sty$|m7-;g?@v>aUi#O~?u~vB_U$u|!Lo*D#A2_Fqf`wzOQfMFwDTHxC zr_`?HZa*W|!1U?Fl)2xpCDN0hNTkbexVPr+ZuUPXk&1Ozs5=rPPlPx2| z2{&+mcK+9YDv?I7IKPzcq7~dqT=D$sEqnKTcHh>??{6i%n1d-qj36fm)^~d~PhKY38FNw2> zCv?L<4u-UNYHoy+b1Q9Y@l6@p2GN8M+}nolbi=o02rEJ!wdZdv-sr6dF&7Q78+cRnA>Pyr9^k@L@~ zeC`zUQyHe{ftteY1@jk<_qhx;A_^yqn3cYWfG-C_X~9%Ek(mh=Hdp$!3=^n>(}JYQ zBzD7ZWtidz>=r-)%H@iI?`4QF!n-IR!N;W%>c=$9@tg1mGB;I+{nb>`*o5Ah^D+T3 z1tP0ufr!P8TICWp)RJ><5{*ilZBnDUm*NM^eu*nkNz;<>N^Nt3k2$o{$Oe@(EmO&m zKsR=o`uMiesHAC0W#^Een(f?}v1p2di;&9bs0(H+UsQO3QlbYGQqFPrn1Pd5_k)~zHLp;3@T0pJ0S%{H)A0#cdAEiS_ulJ(F z(ri)S#gs!T#PuZkSBT*RN`ie>rqD04-rrr2vE7s~SKU%uOCgQ7U+>&?CJQv?3K9@l z2E9N7_6ZzNko*%bzbuVH4MbiT!fHcZd{}oRw*?#KCTAD1U@(cbH9DC9_tTzmy|=J#t>=~KwTEfbHaFFK&JJxkRw+_ zSiOQUIVr@oHOs;d5etDWdfaA%T}zvV9l}%z)5`|^mZ<&GW?@IJ@{mPV7b6?hmphrX zPtTKkiO~6MC4Gp$sP#(x2YL`d0x%>U&zl=C&WQiOk6&H)8=ae&Y@z~Zm-7t-$*CCQ z&s*i#B-(KzJ_d#mK*%>J3HdV#O5%`bUpAnG z{PAM$K=g{&I<*~Oa{rzI1yCl+QaS7E0Fy^VAc>?#Rze$;Dq?$6Y~35fX5O@ zyM12`K=Ea~E7y=1tb(D{asUeP13|@SlIq)T0b4|h{L;Q^h@VEwSK9$9#Lu-8(}(gU z*COY)pNO2x4~I9pb$7G>Igz8J!#K=;8b5iu8UCfnNvR2*DnOs|uj`Ha?EJ6)ROF0a zMdTns<~5#~Te)ub`Rsl~P7uNan_eniUX)=7i=>kH5mC0trk7<1c$~VxmL!5Sk(4AZYA-)_8qZLz6YH{=l{90xTDN}Y$zLO&mEZ6Ui8Jj|gy5BMU&?;vhXoeYmrY0v1sm5iwDU@%O_}PPpv@65SDY`w0U~Ew@_fJt z;ZDv-VDox{h@5GefB zx^uL2NOyO?dw%bK+wNWWwQJk?p7_LxvaJPmiVN+13o&L`w$qiV#g{51G2OE?*=z8m zz752QV6N%pm-sA;DM3sBlM=S@9(Ve#T?Os8S@#RIhc!^Qxot6qF0D~lsY zcvnOGR_|ipwtV~INEF=nVi^t;gcySXL z>txzo%RgnBC5jInQ^*iV1JWz5?vW+Z}ClD!BtM|S zMxDwd&y#;`gp>9)rd47m*%)MjCHH1!xeE+Bo!ac8U!#9NOW)MUaY;HmU~QL{-UBWte>Y; z|IT|qEf6hEF4qzd_{R?14i-zVP3q!Au!(63dc7%4iI$vqdOCe365&Ju4k+SNQY-<_ z%gjaI;a~WV5xk*LdFKnqNNFTnFd7)eMn6kc{dMvmgtaBU?6~VW?@t90J@Xm`J1qzx zsYxQLOnpU`*(0&AfNqW54K61Tk0TIvu(043iK2%T8>=SsZ1Lck^a1Y-o#ITKQ})Y3`2`Mwqk!*IldLoY4(TecVM^XOelHLJC3<}rXk7p> z5PRkB1b*DiNH_G=h2(wSiLWumF>rr>JnxZq@tFiNuN*d!&#bXt~ zEL3qm359QLW@mB$zOf)OjWbJp2>1lo`PTDGzV-t3c4rpgjQBzQNv3MMxbCaE8uSwjG=!ILWGNY9tD(O>nxpy7sKm6?KiFQvaS-Eo4b66<0FbVqFp^Q!y0Mq(zO3p5;qaN@j5wZz7m< zOn%T{-niXMoh)V&XjI<_+QT<8l9M(n$7cbP<#or@cU<$k4uaA^*rJ5BTX&+P9|MnP z;DpwNbFi88I`*f7J4a@Ou4reMHWuQE0z-8d<|j4&{ ze0A>v_L=xbVkn>Kokc#eFMT7$IeMA_)~=BFrfzlPFq28pgY4{e_Ns}iY3&P#gJEr< zcGx0>en_{ql#WD^>x!*SHTpMDphpWN!8ZfunBnh~8qvtPS<$dU z!wdIMHk*Bf(F4O2e#R6EqBd9E{QMh0n;%apGK7`7M9D7A&d)^URL|k%v^myUc5-fQFnPKfh ztGq26p$Tc5{BHpXq0tCV%oT^nc*2h8TuZ^6cNE!@Zvft*a>J#e6UnH-8Z=#@DJ8VtG>u)6iB)h z>)@gR*e7L1yd9Y<@&7IeI=H`iC~e>UIK7^O-`f7uFp*Z!#G5XQzQZJlUZD-tWAnl( zgf#Jzi@a6AIci3Ci2-wLI19f0?G7o<_!n`L%7yt@u$Gwjhn%+Mw}e!61?1L#Bo0Jb zFW2>b+1!2kbXd)y7VFo7h|uTMHnyHP_TiK*MYYxh$eRq~1McN2V-qYzhs*|6F*xU3 zJE14Km4;_o7G5iS*ijT_`?+mU^0cta89daQd0GX*RI|l^Lkw4RS|Co7F$xQ+eQN-r zEGlq=N4l5H0{cl9uv4f}YSX4cOpv#E1Q-1iMjC%$){-a{RDV#1%w#@f3sk__7E)9w zw+IfGNB8vrnUEda0@Hvz=JF?f$oDHJ$*M-1XC@F}ggvEaFz}LN`C+L2G>`xw^#>kSrO&GEegcNb|XEoNfGI|4|}SzoE+1Yg}yuqfHB^-2Bwlc*u;IjBp{p zpXM=mki=*L<<4a_!Y`a+joF?S0{w-kFyWm^(H(#8a^H89v z=XeC0*Ho;g1gnIeF0c`eJf#~qNtYR?ak!?!36BGtzq1o@nM}_BOJL9wVUeMFTW?l0 z9+g61)kMkoFTphY0AO-{iye>Ii?$KCKY}fYPaocnq5{?2Q7foIjwOuNTRLXb8KkX& z_4oZ%l&E}J5NkvXZO8tlj#UeFr~w^`Q*to9kX+?dedicTl@?G2_eF!TJIFr@O+`E1%)_U6TYl%6c>OQj0?Zngq(&&W6UcOGZNP|4#P)E9#D6SV}5?43LNiT-}tu!M$5-kgOJ zeey#XFm$ULF`lG6vSU9oua`p>>;-)P)cc(7&NV{y4{D45v57U;BYpba8SPXYy~5uz zeYK6K+At&WFgYphHi7j7J(xefW4}VAQi}~|+M26)7*oMuvViN&6C&M4)RBF}d{b2t z`;jO%T2zzCoYnN}0b(M*_Ji{kd#-e$<2AWfQPGTj1Emq&l(uCiA1sf#b{m0+6bU_% ziQ}e#U-Ze;@a5P)A@mkW>E=3oP!gt!r`kf9N;iff9#-_0GhkIfx5jvw_cV5LAV?@b z_7L0wqhDRsV@p&n2BF?8sXFthlJCUZ9z?sL`vK2eRF{mY3(429dl zf5<)B+uHZ&bpyQv{Y4(j8%}hj$Kb*ebtO#ktxjSWUTIGq2&Ry?lG7P8l5N8I-!Zj0 z7L<6xC~qDY_{`DDWI}!U?-qeu1IbzSkDObIeH?O`{C2CrCu1%YUraBh*R87(DM!)d^%`dav*Hgi)E0*DQDOlp z1cmW6`W1qJ_|-h!EJV4k8cu+U>CvvW*l-&yP+$KIe)j_4A#cXvvWb290vQ2u z4*-dNPK(0ef|BO1bs^{x>DTVM?qb7gD+(vsYD>gre;%`Qz@;L2RQXB5D?rcJMVz8# zZ$7><5B{mo8S5P*6Ss>)i7=fTeaGYh9{PuOBWk(}C5&=%rd+aEsPuG$6xe&p-~tut zr?;}RTIePp{pkS?F`AhlALg^|E*$O%`PExXjEQ}0l8LGJkxls%SDdWjlL1;kaWTFy zvqH7X@jOLDnX&hp=_y)~gehq{q$XkVELi!FlX!^(O16i0r~5+KSBw=8v%iLABc!poz4>CNI6o0gK73 z+!|GkZwge@d_ed&>qd+0fc#O8($K3XF#1su)k>6fB+aMIdvG@YPh6tN&$pk0A+tOF zxEy`1g+>49sSilooe zj{RdZycDD@I3N)+9&W!!{bSLs`p|lZ2IX~O_Cg5KN&%!rtKx|pC>;w<2w|y6(W@lF ze|VPghzT^+esq#}GN|znW#JGHq5k?JR6gMT0i2cgDo*gVMo}X3+;iiI^BJoTmHF?$amOR+$MT(^KklV*(iV3?o0L}s*m$ZETBC$TgKKcZNWVd za&h!Dei}tF+vqyPlpUuB>a5pd9QA5%6FsS(IWc>yKtqx9l0W+MN2G;F0KyjElW#Lu z9e>F3a`lAQM*Qz#_;#8Nm@*x(al(83kTV#YS=10UT7J?;6S6>i%NAiW?5Lsa@RZsJ zwh(Fz#w#6>5s7@Yxch|zqu}sm9|Kl=bQ5qdOpfK8#DY-DYw>MtO!k*+`nl zMvtdpkuaeqI!~h<#>s;r;4Jw8?W3?;tYkS1FO&|ye}5^Ny^@8a$84WcSt?orp|>PD zI@P$g7hS!e=s*B-lq6?Z8%GgH92Tfg5m7$3+XTNjlYsVqn^C~p)v9(v@{I_7c%kQ* zOGdW^N6)O;O~#>gY1gN*MoWqry_DbcXbuOa&s2DD#BMv&KTa$+T8m z@;oG*_1f{O;lW*izf5zYx~(ni4?n88S$g4?aV3HtGfVkinx52_iwBIiR)xSwPmn9k zuWQC()(cw)19I>W`nNg-Sl z8noc{Pgdb3oP|yXOoq{?!)ZbjW<&!`58tYFIf3s+xCwAT@L$(<`V}Fjl0X0_4DsK8 zB#XC9a=B$5qLwphaUPq?!!+BC5FAeMH!=$MN7yQo5h7pYLf!FwXR+}mgTgd7UDdys z$%Ww*SveSGAv)k|>c>1MMs)l)(gb^j!G|-X1qM&Y(0!m!IOlgPa8rix_CEG?*1cijUqhKFir}DY# zk1Q_3t{0Vdos2CXb1I+v&i4EGfg9eE@^^zJk z39nFs(xOOdc+~hdzhBDx12m2yf4A-u)Aca1z>rBZk0MmFNeo&d5YI?pMAM_cd!a$O zckRbQx$3NMESjUON3v!Z#0`v$+3d_l3cPl=`vrBDwOee*=7euGaSIbY-@MiSccmSa zniU4bon~xSGp>_AC#O6)pGMMLtkYoyeta(^Dd;4fu_GA*(-@0nhpdzgT7K!pW|!7e zte>c|ulV9PZILhq(e?KnG>LZYZ6Y=WvZP2Ndvx;sW3dg!;-Vs4#Ldf71z#%#V{>}G!fl`Oo$bddB|c!`kw4(n}yN=0@6%TRITmkpK0X>492 ztZ{rWZ%aR;rx){9oH+`5K9CCwmYHoZK`Sc9w+j463{k3Rtm+wvOJ}+0JFj1$)q1x^ z?=MM03d8;m`8jY(@WCc|mGC=hhfJqMt$uFR!h6XDPs;<>fNnGSSqaN?vBMswYjaX3 zd}BxZa3w?4)*KMJld$^l_}a}+zD-j>37(Gu6ekjVuGd0!TYf5gubp^TVjlnp@re$- z6KOYiPja7yC1yBx*f)NwEK*_wzLeb2?9QJd_wNU*yup!pO=2qE5F?jtZcJG26DPPb zbRw}~!~BHVnc#*VllywWHQWL-YpKhjR)_SmB*)4X;|D~x+Y!|##a#Lkdri~x0_@$r&;LC+Q@WM$zHsr+Il z%1A~_XU9Hl3i&{Wg-3j+L}|xIPuS~JU2b~_V&NN^6#jvBH!B& zUb=7y$GyJZ`n^1MysWRi?oJOd+dOoG zORqccr7OP_CDJ>V{LuG%|J%_+aui8?s|`u(ei`L2?xR?eaj9C`4d0U<#L?ZYt5`52R?zo6 zg|o%?XHq8qfyGVzs6WOO0V5d7-N5ZBbE~w zw)d%ycj%Q_{l=M#`&W5l4Vw;w4J&T#yA&ysm$Eo+PfwaO*2}Ntn`>Y+NKweSZ~m{d z#^~^QBkQ=c%Ah#xv4px+hJ5L6vvBQ&HBv$niL?0?x*(W}r}!z$g-L{wXXHmU5LiKe zJmZ<$U0vz%on`Q3{@V^imX(f39NrP)-=3{W@qt%(3{w~x;Ng@{Zw6DqEFY}aG?{39 z4GCqtDI1&vzI37FGz^sPi(oUxxrd@)T-Ds0h#D*JPkN|I%EEFRh=b8GbPgJ8+*3>x zP_hEUx-pIW?XJhWG!aoJM%uv=g3ZJi*R*Uu&$gsF)MJiT(})3iT^_2IBIy_rrH{}* zcyW?JFv3A>y=?(;yF?hTI4WuI`#}0h`ZAo1tMtPbViTakxGlN~rHkXQ%?}e*#M?R) zMB;1?ds|n>A!O}jt#RmOdPWs(-~b3a;GB!Yu^vIU5i}FGgCFO>WlZF}kUwE`1^t^E z*vV8dhL{>O+KtPjFl>-ygXJRKq-js$;_*q|M-)k!r1j>Om?ElV7sUi=*(rO<fCUoQ1X0i>4cdjkb`rD~ztL7~f6K&SCubTH!5^s(?yvJLkoj{}Eo<0nBZ?4o-H-d~?nkA%4&_^je{|!V7 zrV;O@b``G}GCmTc`3lqIXi^jLIo}R7j#uKLblrkY{iF7YR}Q02-@NO(ZRC4@$(O#>9Sl zeD%KJ=L6)Q1!nlYHk!ZgsHVvMTO)6OX=}5dqGYcB^Ws9|+s=j487DuR6T`tajIUAj z&iXm+>3)Q>FoPhSefB9eQI-OZ_^bCbiMh9K9&*;{Y2sGDXiE&h+jrw$UyYjwE=z6u z5eM(nhnB}ZcW|nHLQBr<`ss+nJs6Sg=OpkZj5|Lm5tSEr#l)s}TY z_LZsUxv>5x+3M3Wj;2$GpNsYRS3rars_}P|E7@1po+IP=qn~@5LUdQi?1P`qJajRi z-xEB*;_(`DEN#>Ct}?)!I=UH}MMTYhwK&%e5?;?~s1r!oUF{_W2Xi^R0dWtLW`*Up z`HoOq8t4NIz8BaIRATUblf1_BIrA4dPQSPT20J(EC=Tkfh zA)DN>a#Hz-QL&cY=2s_P*#TaM_>Q`zPTsDh8C@4BPb+iuAvAJ*>CidJRFRw(-NY6K zHoEcim#|}r;3s{vyYvZI(p_xI)_0kc$RT10p=zLohV;v+5Z)L4Lq^e&w3Q^W0EOV| zcGRIl24n4@nDftdm=c?7M|L;#Q^#1W`GC0z*A_$))sso`hW8dL*;>VKnmWhdX#0NQ z=R(*#7f~_391!l6Z$Sn4d|JVa5+86j+SD#Asd-uC*t@ecW!WWK3LxC`DBw1q@v$YP zly%sB6`erDESWq`>$VX(>vARa;sZ(N>|cmuxZk~v_yiM%PN6H9I(Pj;@Xcs+Zb4>T zR?$8b7-9?%&q+jPrdnBgvknX26OBW{TzgW^Jymj9t1{93AnVlLQRAgLHn((MYz?sQ zuZ-gTJWM*L`j}o4xt=rl1B;tZ8`|0X5X~Sg^m-Zk5&m=Ec~o%AQzs5E*gz}Er99i) zd}qon5W`4u9h?H$hS>u|S?Ew9;k4vitstpYjlxgv!~>HJiv@;BdFGPEK*P6FO7gHd z@E&dkOu_@U~3De({NZ(ip+@e9snoZ@Dl#`(2>WhQ93o-9Sg&!pk=@688mIO`;HIC(w__rxxnteNqLo~W5{_> zAdDl4{+YGs{iL;y@dk66g)=%PwW6BAUzsSI55>E3Xs-E=y2%GBHT&V&Ik+bY+Yz)C z-|S>c%T(Tm(ba`7|8gK0!FU9q{_l`~E8LTRwLF_fuD(cP)2Nas<-` zCrjD5{D05Dn2&DLlWIWuMc^OeZ@K)lUo||X_nSBWu0-*s)E*V~DC6cZ)VpV<9@z1Y zQ1GN%A?RAWJY8KO;q)|NC<}P7cKi5^OGafv;)ku?BadA3`7C2|N9F0oI`jol7gk$x zWAiv6*x_YyvUQE1OetIqkPlD9J%1KWv*3jLSyQ?ZlPIJmu zyvS7e#~MN|Un?`EN;$1n4e_@>zK^3cQs%04ka8~DG91fOPvEJ{MT+sZ9`-OLW{D8E zR~wW-9__z6O4J-zYOr@M$VHYuJZ0)4U@^yRuL_D(bggN1AYT2UPwe3#LeByn;VAF0 z9cMkl&(gtzD#?#7NV(PZ_RHF@s#?m$L}(L}j5O+yxNYgR+lY;gA@Bsj>}UoOEW*ry z8Yyk6$)`$0=x$FTS346WHvQPQ(He_OlzRc@=3e>~ItQ+(FST$R*F?45D{*}`(KlI# zm3U80jsq$F3M}AZe0vq{y_C6Z$(HL@6+#^y%jC1=19AL1av;L@r9n+0Z!;lwl;bhl za|D5sl&rrmI5^EY8lIFHQXPf1rxUYtj-NW|vC=$#{P`o^_E&H2xD%?EpCw)JIp@od zq6IgaaJHrI2@ZLUf^oga9(ArQ{DePCU&ZK$krgLSXQGB5bzYWxbpDQX5}`aniMP-4 zrg*)+`2iOnBXe%0z1qT$izUvEVNGsO;2O>A{>9qMVC6BB=Grcok&|kY7(8}`ny)>e za?1h}QsqfKnWZzA$I;Q$I#BzNr~`r)Mh|t!e8Lsqc%G$m2ksg?O=%k!F0=%-snnOi zO<8BeKF9wPnj_^_^VElMmIP;nGNV=lcEhOchjFav4;Kvc%bhe{SCeVK6rR!Swr|Xb zEmrrzlhy;)2)R&PYr2BLT1s9#H9>N}o*`6Y^?M{WuM}0F40D8}=AJ_qjWvNpJ8h3(O zG$kbnk()xkAEjPDU-w?$D}ZAlYa?n@ezcW&W9x#lJ=7WNPTi4Kk?eF_1>>1;0|Hu1 zWC43=H|O-aj$t+aSJ9+g-q|F!XKY_5oYa8 z`AURHYH<{r0PKtx?0hI>M?LE-D?iZUSN^77lt8Ur1(h)h>7~tU=6#y^rW;JZgl%i4 zqU8_u+@{b;_<*jIuS$P$b8{8;h8c}OxI!X*wU&mym$vywK@j(Npp7w_mOQT0@OpfD zR(q-VcTj&K@Uni|i^OUxm&)Tt+6zkmt%KAC!w`8xU>_wkBLd)fc)tB5HRSu;xKoUz zvvm)AXuka?G&xs<+K^%YpEOO`eM$oIN^qEZ? zy>yt$9HePG&sm0+D^`fmg-G6+${s3xM0aU2a}zg`iT@+8gm>m~RIX2mJZT+r%(a9_ z%`7-e19s^8GmR9BNP}_dYn=XcDTIR|k)~{HD!`Z(9&9#(Nc-kQ9q*XFv%>X7XMfZm z-=*0?r9mr8*v}uMyLD{yP)h_G0Ec@vY+~s~s#$Qm?a|}5rnV`5`-ChPbrvk)F-fGp zJq5}bv^y~C@52q-^@h;WiOVarYn?~ZS2dShAGiGzWN%}9_mx(t`~x|E2SZpH5DWtY z&=9efeqXv}l*oQ)>oD+8Et*qowIc&GwKW@@ysy*7qHnwi+=1q>Lj1P=28e^kyNT}V ze|fpR?7CkZoPVJR!4PmVNIjEI$+7=UZ20;w$DG2j?7J!uaRZjwubYg48v60XVqn@T{MxlR7t*>(1)r`jHxdpp_*}-F5S>r{HG)*o_cDc3T8#F0pZ&KRx{cpp zhO%@)w|q#Fm~xdpm}#oh0YQ5Hix=G7i2g@deh?0xdMehPpAAGE$=RW=U^$pKNA|83 z#}RvU7)?E3*4yRZZ_ZwCBL5BEU={59c^){{gHX{HWGIk1h9yKcRWWc;V6It(P(Y}@ zZj=)iA;YWqwCwIMD!Qs*t4UHpm7Hi5JZWe8LK1c}k6W<{s!h}2h+x5+iLqQX`I`YY zrA>&6dtbty5=g8P*Bfk4j;6F`AihpcsQR4@`lIA;#OK(OjCBFCE}RRUdA|$_?Q65N zOZr5;G(e{BX@MkGPBn~stl>>jJhbvt3mK;NKXov>d|el>iU^3_mhi8-glnTtv+WEv zD;;R=RhhO7{yv!Nf^>KO73{JAp@+-yQ|}krwB8*!qXHlh$w9S>GxURCx{=gE4sSv) zF7NQ?>9bC$1lMT2Tl}mwe47oK$Mqdu3kQO|=@)ind{4M6oPev!#qv{=XH7*-?xw`p zYOc&~EAoNw;cYkG+4mRWTomU#C~gKg0KH3Gxz3JQNxheGL^AfQoYJU)1Y0<40-?)5 zLRh;+^Eas{Lc!4`XVO1)u^Y5X1Fs9r54EqEwU2pdo=qz*nAPD<ao$odf0 zp+WVg%I4bP{Q#P>1yptc23}054I%6Xchhj|9hYjgX+&L`k7M|!m*6p4~nFO+4G6X1Q z1T`Y7I!&L}oTe}5*b>n;thmu&b%WG{b%O|@&^>SiW$H#l)gJ#H3A;YsO&a?fEs0b< zwuU24q4#r#AgRrNS1B%bPC*XxEq!OH!oU#ki9nfQVbu{jL&YhP(#; z%})RmO8J5<=bQuK<(>N%xhs!t02-sQq?W9LvnBkr`N|ckT1D!vIZhcv$)Pt`GFN^5PM|2E_ z9UMIc3_oX!zqio6hs!rq;-s0WF@1{VZz^%NMPbq^U*Ekyv)H`w;o90K@FZ)a4u5*t zqXvg@lL1u!%Ks^^hlimvjWp-wpfue;a{t|DNFk%c?@9_wfwx!i{6}rOF}$2A`DEpF z1t(Jt%Jgz~e&o$~*wvt+W1(9gyS&@k8_lx&$y7sZ|8E22Y!@eQxj<2J2S$zR(-=b= z8eWH_^}r0it90e^8o@Rr4xVUq2Ixu79Qml+w1>)vkl()7 zm;dmN-GIL4@bITUeNt`N&+6Y{-=>by?1Y<1X;C%uUy4Hpor_)JBa|Zfor@TafGH}* z@^kT+0fBJ*!ie2?ceETh6e*;^H6j#2)C5L$kg-Mg6qfFTIk{Cad|k|LJr>93*1m~b zrPYeI@RV6Xhvat6P;x^%6gZ}s!R`4NWKq@*K7t?~f|A4^wc9u6@j$|YLs%QTL$Ab% z3lu2$)zCvG2t9twWT6n54ns5JZ40+|6Qx`r3fqI|3caP+=N&bqtL__lwPIE6AxHIofaFq5uP-UC*15e&VdaI!O4%e@%Z^AR?FQ_`5^n?7padj zAFdb$see~eT<38~Wj4H#q%Ql#g~@rB2$-%gu)mLk8#4GZ{-v}}DuaF}`S}QLRPw6W zT{?^;thAh#?=94-O=ySv>j^>75#H|K8LU3njNa9c7TDDMYx{HQ@fq?{qX;M6VY-Za z(-nZWC@(8;Hm7*Q=dB4Li!co%O{nJYD-iS0g$y%Y@%(0KwtwO7aR+0_Fkw3OM)EFu zOg+Nlm|AV5zc{5LRh&eKCK?Be=jY{SaMK-#wr>u=-TExflhf%#UB8`|;Rx(kWrJ#d zj`B|BjKsal*Dx}2Vvs!y!evz7W$Q+o#{`&vrHFd7NL`c6@b92;kba;L+tCG>QMb7l z_J)TuUOf450m=U{D1_k9WFD?u7T`c-v$Cd;(n4vi9B|l)S(>||6~^S&Jfmlg$)JK^ zf`8Sw!Kco)SlaxSdU>XKTn|H@l#UTX&Tk9MgG#5W$supE3X83P!~Ozp8o7*x}Y*vsg2Bg5!R zEog8eMiR?;9*G`RCAgTq=i!Z*JZ*iF^J03x}n*7UdN1@TW+`TJwimz;6PKHFB#*+|cl7F-F{ zaO|Rz)Eb*Op&{`>s6vElKA?SZ$NJ@gp(36w=f9?~-Rg57&m)P_1e_d5y?5w&(ep5c z?P}fTAcT+N14C_BgfZQt0mn|+*-?D-d+!e^>d(xV0_a@yURU<8-$>8at|LJ8q!J%K zQIH9W@%gN3QB#xDE%W)$JmT`nKqqM!)+TTWuge33``s)f$R^Y}G$v^WV0*wY@ti&Ko=K zaWp125?s;|Lcq01!)~TdF>z{b5=Sw2bT`1{bvR# zI!L}{@9}sTXWV?xigEI)eiMiz#@gL9jN*Ir(s)urPI3m`zZ>z}ZIn0&^+ly}c7HUtbyk@o(c_#vyXFMu$hI zV2Fwgbs)US_BoB^r2o5RW5%Usc}2YS1d@`D&NiYeTsDrc@l7&DNy3;E$86rOJ8=gT z7XtH=m^b~DTMuev(7E*q*@fZR%@ZDw=uc2o+ED8v^^as*hFH8P z{{*~Z9Hf7X$%BaPFv_pT=se@8cgO;e@UZE4q`Ji6?xCx(br&A z8+-J?!sY3K!Y?170Hw^uHp+Jwam(18QpA0Z3qVddi>FyW{Ad=m=w>41uoaNN>g~M& zY>mnF=}twDH>wZ}7YoaNkLx^p(n)B;L+8mP#FxlJ>B)%=}a0mBqytfV1A=&@$@-#>TCfEsxdGlG!# z2q96pGi*eo#}Y;n6yZ^*{bLV^IxM+!*5u&%&X;ROKv6!VN%e?Fz5Wf{0Pzh9SB?Lh zqU%2;kJ^yt1%wECP}3FA0nXGngi6zqB*JD_=HNJiqJ#}Cg|=0cAoimMa(G4Nmx=$44fRQhb%Bs$wMJb{!bMgZMxcUHRg;sPeTSHiX&M7WWcaHAZFqpZ=J}v9vVR3FNYN6c(Is?;i1)@{$0J6-jE>B@oGq|U^ zW6-gN5(rXCH}=pm(}p6hSaro4V7y>9)e6B0-C8rUov$Y?+NiA5)&$+eR06p+R9`k@ zNBZPIWg#oTYA`V0&W)K%29&(sv-f!WB5~F(L^uw@&_y-tB~d4=!C7ow*bGe6qe3E9ce}? zWnY~uB_ke4Plj}{a;hq>HgH$yS+{t!soiOOQhc$6g_+PV>7lRda?IV2YOKM7*``u+ zo`OgfYYS6tg2LYE6>5K{(~~<`v>RsF_K*Lg+FNu#L?W+mOQ0G}CLi>{SAS3^<67>( zD$?VRMX;i>PhyGyeI4>A{P8NjUOE3#)6*y=JPHY64q~H^eMt{h@Qeox+ciYu-lGw~ z@*1;2Pu_}12J?kxD~c=u&M7S7y+}7%cv6)zF>DzUkX1DXKc46=Lsxa>Ty?)TBCAud zQx<390Ox?yej43^YN+Q*nCni$I3RZFTT`dM3h2LRvitdlH1PdnD8hFqjOH9G4iRF5 zuVQpjsDFJ;683E(7E%(lni^pV7Z>Jkj-{&_saMG8mU_@ibJ z4b#2}1^IZxTR7>tZ96BA78ODPYFs!Oo^@1WUQ~*t*>!t~vuD7KdZp`Z#cVH&n8O&X zXsDvM;{#Z1t~njJ*@H*d_oyROLe_aDj=c2&PA#0ErlQ|OH8=JzT9EisZmgAfC6LXQ26W)7U|@d1mex1cqs2qt7h$! zmo?F6W#%NT9B*OFRvnTr6Wyh>@@lLw6;-yXFmn}D@$9zI##ytxPlU5AD(MymT_JHI zpWEkdGe0+UV><+9;q;(=jL?_0zX(Ortn*Ei_3_4Ht2wmDAU&@+w#H)rcY9J%GD=kM z;>DZJdbODRT?)r)zp7W4$$v=+PDo{!;!n~n?a#fv4vVm}mHCQryK88WiYQGP(+p5y zA+bO>b9MdAFQP+YrOgK%w8_+Fm@?I=q75~->gTf%jL?A3LU4n$`F%QWxBYQb-i3PF z=lI0y%gWA)dLFrjlPT5_Kkr#v_{&BRy04ug!l(Lgh`GYI&(-J8O(SD|o%)+#5q?$8 zn+r~?Jr*Y*=E6BU=s%tR=w?gWNBj~6ewx#3b`Wwv>FPb=b?5O*QSiUkccvfQ(cjxP zzjC6HKe-mFNk}um1Lp|j~AXy-c&jpb)S?NPfqupsRHARmFALNza%mK5o1mK zUyl?{(b!J|g*%_;{_4muhZDqo?e^;>OVZe3wTKT`e?hDkzaa@CDoP7?ys;!6L0ffheD8?8javBz= zaID#qiAj7|AJxlbYxBP~X){5e&WpAQDa;53{$w=Kv639Ve{<}fF=^OHqMU{DVS#k> zw%4#D$#|@Dh&jlV3(@{IXl-PoVqx}ean{<(nJge?-}QOrX=I$U4m|KMTogKTD&yj3 z3lUDTl$cBTdfkwv_{=Kx_p*FcdhT9CGeS`(KG8|#4JA`YEOL-^3|`4wkZ!;)%7p>4 zaEfH+?bfmWrxPiu$z@Q&uSDdeiVLp~wqNA_=#X`a`KTI)w8?=>EsB(JB6chivK!oP zFT57FOXFN>6IH7Xqn;X{PCka_H|zAjN?j%nOw$Pdn&1uvM>LZrA<4Rs^v;+e%J8zq zc@Oc7oQ6*joBi_&cTdU#bv%wHx~*kr<39){My{^)x2YkY6X+GS#s<>RS;a-j#qiSO zvm!U+?V0K{(cU489V{?AYT#+Iy>*C_LvrT~J&R6+9|$~?T^8kcyo^G1e}p6rTVo{q z9+rlu8OK`>lPJ93mu<6%1l(jnPY*kQn$_1c zb-KG!fd1`MoF(r&Z3uy?n^?4r_XjD=odeZW-%Prk5w+vqck;g{0GlZ={GDU3LULc0 zo}RC&HJgo`z<^`O^Bw#MkCOhHlV1`85gTSl^;oLQ{J`XE2a%6FUOY}l+)s%;N zly0Ka2I^*HeuYKKSEMXbCD)ighBlI5<8*^wW@JOqm}eGm)qD839lRO_!F-a(3n6F? z%SWR-<#Upuz-f16?r2rSV8N!9-MXYOq!{-^u9fR8rO()Gy#$Z#nP%#UXgh5=WYhd4 zCelTVernX`fjGlbxE>u}mK*NRMW%{cNJ^smw-t3Xq};~s3N*tc$ShuM{evqK@VFk8 z_Q~Y}Mve_f8JfZ=_0hBo$?W*7QwmLy^;_+qO>FGMJ}}xiA)v9&LBPI20f09rl>fAv zL>D%E4$1#HJwgd2U=7H8Cz}Z^mOs)Js0IUI$AYv@eWQQS+?s~|-8tv4;ax$7HQ^{Hnz=U*%y($yj1hetirsz$I?>vk#?t`JmUlZ!onmC(s6Kr_X8G^!yom z2t#|;8eBT;7}(YL*zjn1cl}?7+=ealai3%jYxQBa{(r}98~LrZ+3tiHW$=RZ@H*ICmhVX&^7xYN9ssBPI6JnyDgG3Gt4ZcU(QOEplc7P=;ee(x zV8Q>UwPNotsBu|KwCXG)pQ7K(L21&9Kz{3d&kI_e#%VouQG61jm`|3CA{UK1tRaEr zP!=|Ykr{Z+fqkzCi?6r+NF*!p(b&)4R^eKPg*)^u@Dm~b4Z#Ipb~^><&U%?Z$OoVI z8i;&~8f^B3u@jxd{tdj?EWd&v36!FBh zZFtyXOjYpn$BDSfs_wsym3_^XZQVGs222ul3plANk4uHn0dljY)O-rVBa?8VtSa`N z{LccQo;bpxM;{z)&P2bD&M-429kL7SMvByRC#r-DPHXo>#0?b&tIg%YYmrwcsy7R7 znkHRBDB!XY0es=q?8Nv{3COrHMLXxg#Oj&zcu(TzP8cej7|A=|eC9F{ z01iHe#N+NoO8qwD4E|{wWp;YD>cUW;n;KB#My8$^j~Yss;zoZ|3d5H=kEss?4p;BC zNo_~YIYyvw7@bzclt3MESdYjw&I&P=N;-BbiG#* zGTF7Y>ZY-vY&fEl@5ozHHp-3;`_kj8S3ExU`lLd}XXmVK7LSQAP8jBjb>Z#hBP5Z6 z8{9B8^r*sd3a?ePP~KquR5L4>nV*6CU<%-DUsG!WRw_8RcwnQ%S^ozILHNGL({-Qp zx(xq6U-#B~HdUL=cFY)wl#Iot;4a{;qQJqa~I=WX{l{iT4eBV>%r_J{deKyy4> zeXcj!ulTKiHXW-9(=uAu$*v}`zfa&^dbMpF89HXMU-3r)Jw{D4kAGZWKMSa^5fapW zMEWgu^{)cbC0gSMT|3-O+_n%1xv>b-9Hw7DabLyId+Z_oaUsS2>#WtQx>$&W+`OhJ zZFg)M_MO3VAGjk0F)GTCm0#Cb*2Xg9bOp{|-xqgUbbdrIysZ z{raE|AB0I$T9Ra|D6L7WOdIUsi;uVQ1k0@0K_I%f z1LDxh1`z(U!P5BxG8)pX8Hn{DghSZJz^!Ovtn=Z||@6?0yHI z5Nh>ean;E^aQOE7bwa#=uDeL(UlX{%u!^t2DNcPiz%f3uFEB^huh_vVoVX%!rgxK=Rq{+W(Zw=-%m;J-^hG?{rgC`L%FaUJ5M&?Ka+6!qeNjT*)}e1=$@Yc z>vu}H@ePJFn<4NVBB=FCjxe8kd#q>k_NfUr#kLwDzbIf% zRipGYD`Cea9K0-G)YJT7cY6HkR|T}fax{uGi@&x|;_CvU*73xu_Wez~nLtJ8n_JYY zb^PhK1$>kq_A!u)GJ99R5FDjvano^&Bz#}M_98yie!ln&Okc(+|K6$rjdm!Xkl_q7P0uHfH=3_#L}ntwSXdyE0JO$4@v)V ze7{Ygo|yDkjET_a!1n^)yjQ{bc)cG5ldfG~0kyig#Xk$E0a-*a;Srq_x=F=f6PV*X z>Y8hp{@@2Z5No3@+Gii*ZLG~4y*Jhe$=!dPUYp3nJe8juA6)z0KqfQDp#uBA&?cFh z>%<8G=>^>fed!lqyG8j(Q6Ya z`r>~|HS22Kgj)2FvyjK4L8E;!(`)0JI<;eIK z@4B=pe#nt?HQ!dZvj{>6D^~0|4q>qQ51&|dqzOb1@vrxWZT z587)B9M{Ehf*kxodEM~fNojZR2ic{ct{!W>(Lo@NbL94I>mt;t3cZS>K_Ns}txVZR zoT;|pxo-PgCAumayP0!=wqqSXIiqI=;m;ExHHd`h+5-G|zO(Y@AQPgiR_IogxD{vz zarNN#12H$^%HQV$F~7F}@%Z}pNkd~C)t@$dpKQQ?Ca$*DOPv|Eyk~dhaq>Ss|JUyl zSM#ojE2~*GMmC$HJzETZR=}9!Hpw$N7!pfS;CTV{fJ>&-5!tBrMznbJqJZ(8oMV!t z)4sV5d|5y=lJb|;k9!sZeN{l!F(|l5RTF2_mQA&w!AMOW7km#a$!|B;lBYt6fiM` zGv*GhPCnFeUVNND{sQf+^yatybPvFv3Yg|BkwPILr_}Wf|8oJOp1Jj@yW0)ldHYKN zoowJb3Kq%Qm!7n*1!OCbDL7lVE|;^dk#7^|%patYbbza*UeQ9v_X5_FFrb#Lqdy8L zjm!Zdl$H|naS(q_l%k6iGDdACn#pqn{wiS3L+Pv~>; zQVf#snMnQZ4)FS9)@_zub_&@nuYIJmt=P!--`=@m!?7mfx93P7jWCPg_-o!}jzwSq zr;4&2`PTA`OA!S&Pr->rrRKIgckx6H8a5ME1=SmS^TMTQ!fuE^iz)i=7E5Has>F)l z@re9inCwzCVN7cAb1>WFxfD;B)rXtx$RY|WIy-)yK@-PkF_kaH6|9XLs#w_UQe=T= zZ{B!+i^Uao^U49~MM5JdD)qZ8vdH0NH*0o54z}=ZigYAgN0VX}zq`pZ2*U^Eik#U< zD{?S~dX=iTf@FMrhDaiPzv>_j5(;1at{&*&oTqzgi(O~uea&Gvx67AXuREyYo_3?S zR&)k-r6Er2w!t1YK;9r9ogfE&P*LP~_yuWgwchm(28lRo@ODD0Ml9OsGI+#c*DgBg zm_S^xj|YbWZw)SvFQs_DOKn*NOS``~r9Ct8rhhrYDW?6G+9}9x$HG2gu>c2`g!Lp-Z}U zd0s#XO(G93WIOMp1^gEUWcXm%ttBQOCu*uw+T;yzdg#k0_FoN{8-Mn&5Lbl z-WM#TmTZ%h$XdBQN_{9`ygH`1(v9s=ORL+*2~4{8kUP?N;fR%_}3 z_j3Ws=X@PA$8J+sbG2-i=a+&B5cCq?fJV;t_apG@1jav0Q=x1q=1L#IZv|vLQV(P& zqE7MZc*XApWT|5irZ#OLurw+3qkz#tifZu{qiEY(`8k0S20E5^n0@lpNc-tu1=u${zNZ^}gX~J2ngf|3|&X=6{>(M1H$EPN(#)8flDY`)OOZs%ZJHB& zF~(5d?^i62pvm)v21`m}XR3ASP$a>D73WhU)J7BG)}E(Wf}g?@v|_{p6~zTvG!ca# zcU2Thma`y>C%i`8PKZKjfz)chT}0tk%lmLnl2r4kKTk1*%)yOH>LS-3waI%as!-$> zR9R>`Pt|(bFAt{hIRty%b4rb^+SbFFU>aoM;|-V|JyL7d5ZShhg~1pklQjV=CM9<} zYqlDs@w;!(W)HulTE+YR$yEn$5KK8VQ5{c#pHe>aoCb9eOhUS{q=I;?)Ae2lcaTf0 zEVEJ$XO#%YD|XNa!6e<$4=qvmVz++tK1&CKY)9m!IY&aOh#}cqAzHa_4X8&lhn)s+T!E$ z0^&53#lOknUJD<*D4-mezHq`s3hawJ^0I&;Xo|Dm?RKJ08@pEp+`d8hTP&0;;U1)3 zPhhwo_ln;6=Mr(>6wtO{QiKJNfV(tlye**ZI!KMAOg2C!9*5^$0TaWw4qBx_(Y_7% z`vS@Uv;r$h6ZiUfS`7a%f!of3iCuE*j|C*VRQ$?>V5iuEg&SFZAEL#z1M#DTfvOVKEa5aBwoim z{9Zr?D(5E75cg==GW=r#`Cnc}bc=?mu*C6-KMN?z?Nc^iGh4Pf{3@XJM9;;W75Nrz z#g7_`FkiIV$AvcjV=;R9Q4{Hq+%evpO>(?TqG=+tO(iodpUsOJY{;E3BAVumNZT%M zUS-p`rgJCK29uKm;?njpBAX`CaXuzD1>vH!MteVG(?k+$DaUwz>CnOE;!y! z%{QOqTic+DF#IHSgH>c39QO9)#TRBTb1_>9B%@0=d(lNbvnTqK#B5hAzDT`hA4Uy8 z65IaVMHo2|-^Fr5nfbZUBu{EQx7=#)xygCPeJ4KIwBsDLukc2#sRLv$)0q?)oZ-^| zNf6|elu&w*PO5c-Hq>A|9i5URxtl zcRg!V8vH>Jjkv>@ieJ3SoIxQup*6x@gjZtuu zJQyd@jMWF-@Nx2{P9@oOm%L1mWYg^1I^(^N4s{-1=Cs87N zQEoqU=JkYa`xQxLatGHoee$MY+4DwpBO5EZNv*d9BN41aX%b!7Qn`195~T%IOAK}2 zYa#W0!PKB=CIJ8yOQ>3``Y?gXFycwsS|g~b$s9-dV*x?z07<)II)S@W@~MF8@Kg~B z;MKU<_S2sW$O$8z#^7{j|1yErlbDkOn0PB|z42=SwaX@RGg-osL`6{NyCq;)xU##19;))n2KzKYI~{1di*(S+RwV576$in8G`xA9!uC z6qY8Uq6++!@`TXM*?rirS6q>yj&92?FaObgcd$jy)HHz1Rm#Z#oe7OW8IG9e!p2Nd zIp8Xt`8k6%lv7gsiVy1lP@mx4R{3QR2LaAQ_PGT;k#)ONJ?h^1EJIc^0Rrz87cx2 zT}J)1CHuT!;*s~1Z)56JFbU_tZD!Al0@@j4?K4*MFDwE1WdW5K>IRpr`PBrX&%*VC z!(JCGpO)I6Hpde7xc#PpluSXXz2l?2EnrNUiCpRy?+S>{ZlL|A-%p^}Rf8BK_xRHv z3aAKKFJ(~z9}6h2xxHlLu}=jQ6t;J_J<^h?f1W_cSk(LT!rPnvQb2)yn_L-gxkv+k zEg(|5y~nl~zZDR{&Y8%xYY+2%0tugee(e*oSF?T;ur8Nr*?~U`STFi)_WYW_oZMXF zxVWBV%~*n430`Esj^^=I6Ezb@Puz@8A4d+(KuQR2po>3B)J!BY+1B&^`-`mjtB`!P zx@eQn{F`yb9A0w66n*NFG!r==IZw69q~eO?00r)GqNqZks)?3*LL1BC3Q2PsU9UH~ z7PE>jl4Vbtdf4dkQfxt0+ze2cXM-#p@EG%()a=(KR1Pb1 z9f3g~PFuJgEoydEAA>=1L{_~7#Uf+SXVoB)l++4LsGO>rakq#0cXHK1BoFmb*ZiXx zVH@3XaK_jk-|d1__}Y;rH;yXh_Q>~Jm9ifW`k+OZ#}D?ur&2Z<`A-~}0PhwpX~>f= za7k4IxjD@v)`8m^k3@yWai~t6H7hm)dZ?{$ys!s3gkpy4?M36=sQ!q zIhHRSm=f=i+ujsV7B3BvEZXQUYiSevZ2@mkN(cR6-W8Bdeh$bu69QapqXKp5_SrSU|phP9T#1u?DnGAAz4H(84swHkHh?IVn7i zxx*NvJhlDdQzedWiF~OmDg|(hv}MRvrL%37d@Z2Jn9cR9HnV(rGv6kVo^)?Xb~yd% zBR)RN_X4JqQcA9uNdac59sVdFd*x>S^oRL5fu1<6L~{nUhxt`NCR#FMI$xP#EiPON znFF}ePs9g%najBpu4Zee9>wfzN(5Pd$9EfeScs^(-PbaprQ@gZ9#(r@P^I?9sC z)0P4!X5bVyxR&}@bF$5e!%l5|i8C2o)8hJf( z((h!2v3C}N)(O2|({YNbq468j=9|W=6*~w+4xWOoJ`}wrS`W^&z~Bs@SyA(zuYHT! zeIgCoxKCrq1vLZfe%d-3*LxVuanG~mFfdkm%$`&0W{}5r+74IEc>SrXpQpQC_w#ie z=n)}p(wxU!v4cV!ETBM@lD^!T()o`QAd`nGN}Ndj0*FVsA_}rAlEEkUG*CGOGk&0&ni}ZpoKP>< z**ItEQIp&rD1NI+_G2r1vGVbQ>v5JmCSmR7Pn+FOHsB&D?*GfbXTz6Pc~rzn)SH#g zh;ww_QT3b^f-1*0*D&xH3qXfN0_V-2|o+In!UwIA_Xq&U|0M6qHHr z?1l5o9r&Sutln&`L~e=(>Ql#u`B*?rhSX>Ll$02|5c@QNw~ykt`@?)LAlj#g!osZ6 zWlDT0U}8NZP(GZg)5HDO2}~hF%+acvwy#CId@G(8TYAm zEStzQo484Sc^e~c%0$wCMw3{Ml3AMUxG4i^v5?)`WR*ghJ&^bAAxjxMBxyzQQ1UY%_>PalK9 z9@GZ*<)m$TXWtdwv4cRUjhsS5V@nUM(?su%9UMY!$aE!qLY_r`;^_<$5!lpNbIJ~$ zqql>4E=GyKTaU7w35@8AbGX~8t_vARWIjr zx0Up{P+Br_XW7CPj%dIy1=QuEew%K|B=)P$7&F2tKl{C<5A$Brf8XZyWPzEf*GaL2 z`tK7MU#lj>l7;^$U<^gPMB`-C`<(q*z{EpQd%x7#{5a+X!A?VZTe($3P}OyM3Y_MR%^)RL0Hh)?#v;IyA<-;?2zQObu5wk@J?X zOJ9S_S~Dr0$axJZ?(Z{gNgo&=3x0m^osYfU(vZI^J}8a0umah!kg4ldsqJ;3I8g0)!Rs@IJ;nn-fsdB*)-cH5${8vSWRC zZ4YUg*CBxumtr!?oOws>aC^S;cG)c?ULNen3ifkd9$)`n@%LeC2($a4Bf z!*tOtsq2dZnlJ=%+Q-QMrHkX`1g1+KQuT!YOry6v{8a&?&oO(f3=VGxzAhkLW0R~$ zv0K$Ww)yg=fcPzEVZ`6n2R*06_RilnQQZb41@ln1OY)-)xz?L!mR>1TeOKW5GWM6li ziQgxX9Jsy^7O|RO1O6zWPGL1?(N+{stNrmFe-<$9e5!$*SweCVBflol3MF?rrpZrK zFWO>fP>kirkx3IZS(m2as0KEf^beOor`0LC_2GpOYSVC)Y8q9eVUgEm7k3BK2nJNgHmum2#k0VYvOq3cZ zO~>1^@OyJO*)VbJ^y~(ec9XsG_;$s?5{~a+8zmU)Z{?DnnFE6;B&9`+W@V20Xmf*f z*zdpx1sD_Ru=zYtvh$M=I|$>x(h0@Lz}f$Kh8>)757veej>988oM(41Xe0Ykb2xzt zSc;<-`Fgj5ImiJ`<=X*T*|mOJWEte~rw>MGADPSe158Qqa3*7tlkIvfp`4~i^tc$j~p_chk?czU+nu8~DEb2C4^JZw5^{Rs??mLkxrh8h8qCHpSV2XP= zTRyIA_Qw+>XTLwlLWIxhG3m0we&^W17b3hgKHJ|-6C0Axt~*F0-x&8MbMl?$0ex!5 ztF1JSBOzWr_zNX<)*4s40sspZba4w2NbbolqVX^)`y#o*0c|P?P4xbfFfJ0W8 zTtGxyZP=a{FsDhV%)!Yl@#OJ}FAA80YNQ%b0Mhv$H(yR*c2$w(W`nAr`)ncmRRPTu z6&;mfuw}Nu~&|EJlO{Fwt%6l)TjjGBna*8zAK;v zK8JA$+1XLl$?|;xb>!qkINu*6lq8tPar`iWmMFC+b;=nOBuM+|j|EiFOm?iRMT)tc zZ~m!(oD%KKAe@kO^ULQ6wAGPY5*HJ0wGh4(&=@Nf8n z8_2f;sw!}72vVkr?6*Dj_W~*m$0riFv*LTq`7wb~4jv4lWTBarOUhqBMOizc1-l&1 z-&pZi!4ki`WPw(XgU3F;z{_PKV<4neLzc=FSzL)rk;v9F;i0pCN(S5?=CZTM7P-|? z*b-@Ni(|C>`c4-?@($9bGSCb1uX&%bL(;e_%;_$Wzj~c6723ur@VfLR>^yFm_hq`t8bkg&nyZg@*`7oG6@U|H? zIZm3CPR!oRpbj0IS>GB~w)dseWeuK#J?sccZ%M2!Y^b1hlAI3$iR}_LlvkFS3(d<%RtcIW?@*WUu=lMQ%R_|7Js*e_nQb>k`57yb17 z0(XY*ae!d@M1)z{F>X&DalEf*^8p-^fU%6)Z_=IYc|8K37Z4K&61=T=^-H*YQ9#E4 z5VYo{t-RTAaJ=Hn3DoM86JA(xnLkUm_^N<1E9sC}fd|(_^>qOwPI*NLIClK;hu=(C zstM!;c^t1y(clPtTR?de8uXGCDstT;@Ld7bks};f2NvN%tM4a}Bani^R`;;Ld(Qo# zfX0}=kiE#86lsC%V*#lE;Zve2apT3e8Te@e(PWNQ%;^UrMH`&Y1;e;(9W)+eWidFu z6wojWp~x>?)yow7I)OqBA!2@!;@J=0Cd9V_qFTI@qao1467arHAm>0^ks~yfTb!ZM zC+&{{#?5E+lF0Gn`%nKY;ARPX8VW;y_!_>)!V(y)Q+=@Bj?RvLMd5oQO>NOThm@tf zb(}ha_r%ez6c7n7RXW){uye>BlDR~JhZa09aB+$*J6UW<#iLpZ%hJ01HGh5Edy*uc z!JVemw*D{06!|DagiU(oR=Z&kg{^c~DxoF01ZSHG2Up0^bV*q_gn1f2&o&VZx^O^% zswP^ox;Vz%sI&0BkExLChjZ|?Ry`cJA_ryM*VC1qRe;< zry=~h3g+rKhUGiXy?nSIIn{eU9$)`nSdKw(`)6MN8kTc`yTh_Ns@^2iO;5hHzII_e z-F|7gz@1@vzh5PEu8UfW@3y9B=rR2!*HPb?&l<(E>k96?%Z z1+YBYXbZ{%>4D=23o~({7Ar_bJ(2c#rn{by%t7wUHFv7mg0kF~8$)l#0ysXlh&(UI zrB^0khUh=Vd>c>Y_c&ceKu=!861(X&WhaTD~&-koyFKe6SlUemk=+ZCq3I| zQEM>8?^>&^0W&hYnqw2L_b|vpl+78e37+J8hki5gWf@J{ zg1l1p@hNt&h8A-bJ7Xm^FrDs*$ot@G?%Pa2)r*|%#VF`+YcPix%h$u?rj;a=BwMkA zJj7UvNQRmMat?7ijmP^PI63_KYTc^=$#wfw7!)GPO7U=vf?7&eQAQm*d1TJIW1PL? zn8k%P8Y4uXc~GCopT;Gb3}lMi6VM*qZ|K^+g(XXIk3)TXW)U0_tr6_a-Tds7lT{`7|eVth-~u;7j{inYcFntH6 zPI^q7588p>CXhm*JF-;`r~1$KX1*6N2D3#Y{S=g!r~Wa4h?&cwQG(he9QqZl$*qQE zlbQvX{pc|pNSgkxe-%*hkjW!l=fs^`OPahE|D`NX@vTrSh0gXl+>vQ^G{hY z_EbFiw&pH_L5K)zl5~tbu}AbQ)D996YDoeqk50G<`ZMg{5r;Z*hFF^PHS!jl*YG*0 z#P0d9AyYNpj(p)XEMMo>oOj1id&jAN5BF1e9@a5D8__<#{=HDESIv^2e_GP>WCI>T z?H*jWz3b^+U4NWGPRt} zaIYuOjFC^Ln?~)4&E4$1HwBbFm|NL%&dFVV`fUMSE8$xw77J*}Bi>D*C5X>;&BtoS zO^q_&7w~$mn2IW~{mp!sz#NEyGZ0rAvKBx5V*y#=RtYJVwY}J>p9+{C%w9Gq#%4Fp zKTja0ynTl~?0qR9Vr3QzK^gYtslQHO)=7$oEKPCW44Uh3TTtH$nEI>C4XL2iWtx32 zAPp+pPb2vse>7$NW1_Ya0aoIQ6LoFQ{w!F!kZopsPB_pbuVy0J_QZsvthaeNM0 z?O1{7eNZIG>C_4(%g~6S6IqWz3H8XhQ^=O7YMhY+Zq}uIzWwsf6gd!sY{2m1QQVr7 zNb}eAm!14CBGIS%G>G4A=S>reGTZ$w?G(zMY&4aknDu{h-N6;U9eJ3K=VtSM-TSdE z_X)m5{Ij?;7(+#|?pDq83_D0eWK?*`AuYUqBI+zQ58eSMam>0K{~<^%9&?z3jo{c>xvV z9GS(y(A%Twpsmao6DT_HX17f@IjpQ-@nr$iFPp_ir!UO$YQnM!wl29;o?aI)!Y`Zn zQBovjOSRqz-N#5R0pjKUVBq}w%VDv?cwC@TSM|O+zG)^k9bDC}Q=zRf` z3F6yT0Ca+FS*A{+2q0k`?$26GlUmS~jo zeFB}avG-$nfehs1VE-r>Q$0FP_c)87{p`)kY-#@sy6&`!#{ev*Zd-o#Sw_ zM_*VRgP7J86EP0FRP=Z~F>%6Jw=#2O5q?MS8IV=(INdY*5Nq=x1I`m1$rWpbOo!rA<4ACxo&zOygGv_(upbh;#b~&Yz!*k8CfG5`-%%K## z&$y&0R_2-q4(brc^Hp{$oa~9Ge1aY9krQD3kvOYB3jXU=2YvkEi!}Kqx6~6LPo6MV~ylzfOv$=NGs$){Xlj{}6&TLhb8W>8ktLe1NTZ?;W$k(m~#V z&nM7KWM>=W*d&~;#t1J8NX@X3vR}v=S`NB+SwM8p=SkzGZ7hW4d^cNwcr}64x!4s0 zGA%mGS8HAukRxQm<{&$3mo0O=;+p~*^i-1djQBT}#Odt>s&}P3DW9uMtmyRnu7GLu zj7&BUxBbM&pMF1q*`pO_!-DZli)Q#x!1RP#EwpK}+CJbPCs4}m#zZl0p{*i)96uE> z1vEvMtre}$>CXj=E09iHrdjlH8^tdZsNZLw47?Xhu>bJa0!9T3j9#|J=cPaB+XS+m zup=HpQp8$cPTvbS-UzFXoq8PX9|hAnE=z5O11u@k2< z#2CRFD|Yb4Z-TT?t_ouUm?kT75Jz^DZh|eT5Z+jkgE@4@n7wAxbr!@bZd2tl$U}hU zjhF(~5#4c`vJL*oQC{p6Dp+?r>Rhin2*ek3Q6Qs4^@gWu=C7e?aEM(ugby|4v?HG8 zRuNr8-gVB*>3Ixex5s1MhOz5`8|~pAKivOb$|ftCm)zL*$@bsf9l6q_Pf8gu{*;R7 z@)n++U*OKjHEzWORJ6-3fQSU4=6GMv<~{3C)!tw^(2H2N1D{VI+0GB}h}%^ci|0iF z^Bpr)mvqIeZ+7B)SwOa=6{R65zb}Fx@A1_H;uBgjn?$owbLnGwUBEPKr=K_5>a%I! zc*Qpp$OvWcWS0{ApFnTGw*|~OSKHNcLf}cBHU``hCUv#&u>Hljp2WVNSKR6c``}0) zg!tnwTR-d2X^uAQC(C{dkAp3Rp7{=`DrD?*)|K6t>;rj|pQaqb?0#;?MSCF)KkzsXWYJX$Upw> zSVuDRy8g(DvyWfwbn%bBJJwOyoU3)~p6IdYuj@Vdq=l?wTUQw=9{s{X;?{n@N=3Jm zas>{)@aZjnoFzlqTev5AY{cv*2yCK*`iYZw~LVgJaL3by&OWr=P2sR3T6%bah=Fm!v;(rp;p zk8XI_F8BE1I0{57cg`r8f7*+GvH|akNoG#^LUg>@H7nSjD3hn_1-AYdfB&CPNB@fm z`)~jH^k4n<*7EXiZOQ*N@0L-Z_=reYDOx1vSZwk0S-})Ygevv`X+w)P#(qA5_U3B& zp5Sg0z9?WC-5+fsO6S4SoA7c1@mu6-`nMDWmc;2*0m;OhAMXL}bpZ(~>RfD0?O+KO zZzhmPlsHk{x*rp#+B<(+!1yd&H60nsZHs00ZUWV>7+j(RCxtuJqx1U$Cfuo3ri)&O zL?7@E6KF322_Z%1Dr#!#aMvWOh!lr~dZ?)auZO;{R6w8`ao8c~1AUOpFai?f^9 zj_B@>@}+<**_^4AB+yfJHvT$+k=Pu&98E%*EQ9l{fNEw8VVx6Xz5v+d)%OWZ>aNa4 zjYq>DANfb24r_p1I|6?ePyn#g(B^u39XWe#x%?{NVGP@15vX>qu+vcX&dH2-ns9YO z{exE&+iPreGM zxAEqB@IhO!j~`x-4v_NknQ#6ys(-Qp?~XT$lJ>(A3dx>{hGpoVo?qbM{sDtEvW)vm ze^WMb=A0+CPM74*<^zc7ghkc?p_nqparr%;z-_CLjcaHk<$*P}jGqn-3PC!+vj1q| z?U(b4*j;Nxj4U%+0jI_4R|PcZ5d$a76zS*6zMe45ZXU&_5hYEH_AcHO5Rcs4iMb>2T>({q$osf<67|Ikd_RFwOr0RyGf4|s-tX{30Tm?DS{%br80cL0v4AFx zf_dUanoaua`!s<<9{$AH6b@SGgZ;UH;++=gP-1$qJMhZ{#vPXUfXJ5=L)&nFEudm( zPGQPsE3Fd!VZIeG4c(Cho0BG=I}Z5w35-#xX5e&>jC`9nKMF=K3CsETRQeJ75C1G6 zoPAfOq>$yyf!vH-w__)T%o%csB9Cs5 zjJb&-{ywemy%hQQ`uEH;v+pK|^riG<1Kt%ya=@?|WGS+Wl)QdlKiu^6`~r7Hk$GR# zGPQ-PlB9-;=5y~EN&&5I1{ryshMA>o@_Yha#cW9Y$i}(0a$gioRPs8=>NqFMA*e4W z5L<{e^Pl|=Ulq_q5oM%X7O#NYe){zU;zp7%Vn`M*Dz-WBrht6mv@}`Z$}kJNyq!Q1 zK`N2sh%yHquyq{8cLj{GV+gHS0&>|A_I?6sMwo0yO`^R}?}q~B7_$_=va;7&!^a6s zx+{KO{{y!j@9|Rs8O%AxTUw?YcaiI#C(silY-ahsHl{d5ff67SR&Jp0^ZDSdDL-meqLc=8@T}y zr9fuy-$_TouPf9ZF3K#eZop{zY!BDvinUKV=9g;s_8%wFVGxO3(tLE+O^`ArR~p}$ zB;kQ14AE-W$yS0Dxl=}vbm3N`kipvObVm7qUGG#?LwS`?v~4dGsZOr@?21*_h%(P< zPyU03IH`dQ+DOz>NemI-xV=T8P0-8Wj@uyG7X@pC?(CbJ_xl;aM z5KRiQa=MMSO&#(W9*$w)_UMt@FtG28e%SQI<45z{0KE_YGzMYMcK4 zFo9?z8@je)r}=(-l#d0IH|11f0yO7s9$}vfrq?c|8v~^FvKUIACosLnvas+VgG`gg z@rqvxsAmKPM|*ZH|8;^G`um;^x*xNw@gU)N583da4IRgy{a#lTAyTtXlp->Y zupd_#ipa*OY*^H<$R%0D)z2$bOEjDYzo>pQ{Ny;QUstG|LeZL04R*Sju_sFYa>d#y zl=7s9ks7IWouvnZLUQ;;ikj4<9CPm)Zo%sE)nAz-C}XK==*&)YP)4B9~KoQ3RvQ!x(5 zA?uDE%%Lkg9h8z+GC=p{8FtV|`s!3*ETJ6rcGl%Q`D0FzBi-K~X>m*U*R98GT|R!a z|9!p?mrl_7)85pR4Y;uNgWdYk86i^=FVZ%d(6~;_r{@>AlkUfTQFjWz7P}T7Z8i*CbJ8Y@zHtr#RTT4uf&cVa;2H0mvdhhF!gmJ$Lz_8 z!~Ke{CQ!$y{dn0+ZHVqSdVXCnY?Z_>9XUEP=9}K~oHrAuVFW+xeMQKcv4_`~lD=rkSeX6`a4vMu(_hY1WRGu?E+@Qwte_R}8= zn0iTeeVTcD!gASorY(YBS70T(Q~k$;*_c(kVJWPVV3`XvCIJ z^~!A6q0vbBpIcRByw#f@Ie^}+)S^bJu`U*YbZ2GauXz(f!kzVRs1B5IVq16etTNN zErstJKOeR!|M<~$L#Tw$!npl2ufGw;lMQ$mg&U5vnM$v0l-|yzSYFA~^9$Tb;p4u@ zVM0J{3GY#`$GdtqZ$CZHI%4wkXq2CE1U@ey14B~9MoSUXYCHm8OkkRyQi6@!stni3 z;$;D4=PZKksm}E6^z&*0)tiuo$4RwLuxu0Ybpf-fLu#>Y0?7`F<2}BaK!G5NT`vxA zBvR=Jd^>?#5)kP{QgUy4e0x_wde0;1@D&u&ZhySu`w2{;-xNiZk|cGxMiw6m$gIb= ziY_87zG}da6PRd)$aADf(xeXjR6t^rO=!3&Llv=hkDm+3t|SE!@a z404pm#?R|Eu%B0;?p0b@5JC7H44Klh5Pw~v)MC6ZvD&1hc+U0)UanYs4!3gy1niU_ zMA7B4XnbF?+wpQN?zrJ}7N*>5^+HmP*602dvov2m@kKY3|`^o6pXn&_+r(n_qR0Ut;`ol)~@et#$%IZx#&QGUc`L%H{ z`{zT7L#?l7G>*TVg5HJ-uBwD6H?&IsW_~>diT(H;rp@)|E-GkinAzXuidOz>7fq&H*JkmnBIj)vA_?|= zm3hJxG^aaYaxb#kEeYQF_DqruFM!3}1V1uk;V8Dvoz|$?F?|AcmP$uoXv%c zY=4Y`_otxrHI?xFk8z7V9D>3;Q3c1k{V_(GkB4BI8CdZ2>iI*Q)ZgRNDX6VQ&M9=w zA0XKaJ|BXK8IjVWt@g+Gi!XwPTF;;$Wsl zb4(7D_wWbl-u7^X*Im5V@;9qm!Ot@5hCk&UdbTBfJI{V8b+$4)&wDk-b^Z&=kSM_V zG9YcFs z61Vinhh?lJ5wIJZQ%QRicpGRw>~e%e#Qy(lbF&?ifWdB1Go;zpIg zhbG>tsQbO`Ff_A7sP8Zv?PEQMJsttkW>$Y{zSl?GtBK~QAxp6hax=RpuKzQU$S`w)vlr;JY(x8J72wfM9+KMQVq+;l*R3J%=(+$>@tTce_Jd*uS ze`Qbzd!jZ8EV3yAlD3{)@aI%W-$WWv^f+Orsh<`ompdo=t5CI?ULR!7j=EHOVi7#O zI2Z+_n&z5&Rm0V3le!%3J2SYj`NjE|RQfz86EknEUINr$2Ld~P=ylC1{PbJ%ztz?E zGzZ^Y^KNkY9Xz$ZLZ3xe@TrNX%CgVc1mQ4D4W`L$R^*&vw$BEwR{C$1Myx{nMYETn zKDw34CFUobv=RqiX+<+au?vMkAV(nwABL*>q6U2WpBllrxtK$7KQ3wO_z5R!Ae*6fE z*AYEvzgk7?%{;crF~#u&f4c^a{Lm>9NXbzW$7{GgPEvn(#O*sR0oLv=XAS<-eXou3 zjruJA{O7nCNQrc>JoNe<|CLrcD4$wEcsC8@gg@e~G0JZY3G+6kIO)g8h}dgKRFQ1g z^K{9)VSu~n>oIw&)u@GJR6)9t(07 z&yf;yftC2lYxT4Hpki-mPxN)IQV|ZaJCYf;j4aFDr zcPTPuamfXG;<==;=Y4+jQls%d1y+%m>kr)Nv>ueDKv zrsPKhjaDo?Gy~8bc6$p38r}UDViQ2qYpyJg%-jvPX_Bk(h7>gJ@^PWHh5NReVn=S(bAfsGWlI$Ovv0rs`Qi7z%DpiLrB@F*k+yHf6@!boIm@!*0t%cO@L#O) zZ;p}V~Xd-FtTvg9(Vp2EW+Mg_y z?VoSl1Y*?ng43g0a5J4jG1|Xx8E+l($0jTk>&sV2LrjgQ#1Gm%6WqSu<|ZQ>O>v=U z6@>q3pF2V&HfL2q{kdtl`t&UEy^=S1M|}^$t+lajj;?FI({Y@e^!`_KIDYqHAtgIY z!E4MKX;8!?S6z||IME(c+1(%6B*$5!p6v7BU^cd6l$>OwgiRUDpk@OLD`YUH-lgOaaK4XbV7>BB`v@hYL zwF}=A5uNH69f~*IzMk_8s-acwJxfNfB!-ndduFp8UWmrpP;S*m+^Io?)gR2MYPz3nrKgqW96Tw(-Gn1T_$)la)>`rhU-1rBO&?{k z@~RW6_^{c6-|PjIH*|LYl9nFq@W(@<=`{s^ro>e+nKlP*xT_XVAipT3u`uTNliYhT z=O&KmQ@&m|d+F9YG6`@yiF70Cd^GjSU=_!K`z`9?+jOrxa-=h-S-B_+cT&^rzuZAd;2LJf6Kt>27!JL1 zSng74GeOTqHZ*8nI8{BC7;Ow?88Sld&OsMnU`^;0%x_(| zVLka)AGM6?)Ud>fPLQ-Y*-AlX)hVDS4EG1xq+^uT=1W`f#HWVm@A!(vHrbLSWAGLQ zE-ir@ZmKt$*$7qZek7e-2*A#Nzb1ZPVK+VZ#qqxRI$}dL%s3*bHRGk!`EqVP;YNzGoGt(;h`^@`m@7}+#@hgwV=Pjk2yH0%Jd(j)8$FR35qq|PT`8RSyw)d&` z+m*M41B(;%?{<>Es}?q(wv%-^ZM)$0ZEk%u^R;5thxqdS1=`e1)p&@uDL5^f2pDZKO#v#!I5VJr+w`h*$;jy@ynO| zk)x=8SRQ1C;4X~Qyf?)-fF{52MBcsP%<&}R1$yzk!EE}9$nv>Cn z9*B#}l#Nj$aXyVR%fyj4alIo#4?f)Qfq zjU7YPqhXw$p5jrb8!C(%>>V}z$7fLp?yVi}!13>xLP~A0s^ND(7pHun?%7>Y$mc2?f zTo3JNsALFp%9fvsOj+j#>WbmK)4B-HLtGy~Y=sOK0`wl$$IP=Dbs1{f6a}zl0EXMjc>Y^4q%%&T znI^1MJFsPY;YA$`1xU&%coa!COBqI2ny7dBk&|}4e8F=1E$Y% z#mZx#9cqCf4u|oopFt*)AJ{9>f}+<%O}Fh;#On9E=vVX8yfMK4gq-YS@Z^$Fa+7>2 zPYry{)PprYz7B6y%X=hP2a>lk71VB{4=?@E6|yw$$QDExj4FW5@R63HaxhwI^^!Lt z2`R&-8n!ShzcV3jbJarLAN$*vN)`Ch1V_l?;7J;q9IS@$WoYno?9uWHz5UNb7K_8c z3Vy#<$+c8Da(eFw09cblGE(uDPN9qWXF`_AS&(TX3%`I0#6& z13ns757Y0uu~!)ieCVP2UEy4ZkfY+X!QhxFb`VW^#h<4XC!`@pQQ*#_*Oz3>LRC|A*Ld!MEO&NFVY1dtIySw@L*NLf5^GuroVWw4*Sx4q7Z+o;BfRu z9r<`H@FL(>N=g`-m{)oqmpy4!dER#K=Cq;oR+ih!OCfJdL^nw&SLh&n#^;$`13ghM zJ+0z3sNMfEtM248`sAl$!Xt_^7M;*iZBzNH@5aks2%%&Y_uIf2$N}CxYRFy%ERVKB zE8GxgS?9bEQFh9y$2jLFbaS{3frgw0=Y9}cSYlATzu{(>63o7{Le@-L{-7%)-O#0_<{k~vqi=%?`TT#p7v=ZQQCdN9JZw{GzL{$!!kmF+@{cXos#EiD%QVbk3 z&&d22|C^>u$hvkv+mQA$%a00E3j$8|3h#*R$zC7=B$4v2{CTopm3dlG)n6|bzI)jt zbJ0rMXIpWdcD&|$YZ)Z5WfhcBbzd6uT4CrLscH5wAyDKS8X1{mI$Rt2tFVZO;*Fhe z9r&+>3ErhmVZSRqj~zCt=QWq&`J-0V*~wcp`?X zvM{af0kr@s^dMko?D{6HWM9~l9Al$-$YNy8lDxJSR2OHL zFSfWP=kI$Q@~ho*K00<*PWVCSMYbz7=sHeK2_!sw`g@zMuRHZACRc=HEJ##}DURKHXU zM0sc06?$OTNa!WSaXFX!7F0S&GxZe$hOJ$@P?h2G5Tu}rIHJm53= z@X>?&t^`m|zLInm>$UvDO_bz!_<^_Fa}j#reTW-SxhArakZYf;AnJxHmZ~i=QCjhr z)k$4!Tk&pH)f5sm3Z@QpX$ z{@qK2Fpt3R*$!8USk=qr?~)@2!j#CNjpDB$`+ts~6?d~+?!KaYWlT|ufnnwE#yc&Q z7)eVRAy(6npkxkusWS2k&B9>ou~ftIDeJqkR{=iOb21ON`+U)%Zsm z#?!`MeIDON$5ThbPTEG%Q1v}Df3AKwa9UyD_S0UGT`jutzT+`Ma;i#XNlsuOKCH~7 zbmF5gsAB`&#kXg)9U!#+gG#bJnr6$5PuCpKCs_<|opCL%ey0;QplOBjt@DpUSwjh! zMk_5(YBjFd24S}K=&3fnAu~|Ig6{eR!a^oN@%Jddu|GMklGdIxDjcUxQN~2}CG}5N z{TB8w(sQmM>e8n3l{fOk9zTpBS<@4FvGFNInEEc;`-bQn8^-S1J8RmgXnl4L<#Wdp zx6(k!Ff9LAhz|6iR^wAC^qg{Vxyx8;0IDTl`%G2)0N-N@-cG;sqc8kP8?t*oWZQiI zral|G`!5Rqx?@4c{8M^-Z3Sw0t{LKqWEG6h)}aTMAMdmAx>#I3qF3^gX7>-q1GIpn z;T*4+_&%Avaw;O%OiU8s?W!%jn$kV4YYPv3PWVQu&N>xU4K-f3T-?HfY{s?5-2KoI z5!lS@u}QY$d!v=V(o_;{v!q{uafOO2`>GtS=?Ni$Calmabe?Y4l+P zhyZ$=rf>3kpm94Q0Vlzy!aEU3O&>&7f;*x|r|HHF(;`)T6{OzMJoZe7T}oZ`#f5Ji zgJIxBTkzK3S$GoVLVoR2YSFZpYu8<^dR#@8<6NDc*h;{*B z7A;rcs&bl$;^D_z&qme-U@v=<@$)7AH75YfmSf&URA+gXRZOS^(B|O`qUSc|nOzF` zla7x8@J7dqq?{>8-dCyuRNDY@6Sd0IwUT#aEy@rB+NB1jXSzx=9g`P>jgqzUK)+Ck z)9V0fQ%f^JMsqR|AA4DI3aVMp0*vOYF4RS^1DN6!xM(-|`A3q97bjf^S{v96ydt+N!yx6zgH!8+oG;@Uvm zsH%JTz~v{Tnx=65&Fo>T%BIWcsxu|xDhWA57VfPS@uiTTg&du(pLOyQ>E)IP)%lao zYTbN-03K`?BU$qZ=HJGyFYDfd!xmQjTjIL;Ad6VsY>6GEd58Fk$Qn3S$^;?1y?`#= zzC&R1y&ona7QE*2vJM-g=LnAg6$94YH$IB$g@6y9-q956_H%BOou8=&y?%;^0bPc0hUNmC3{JdSqB|(CWr*;{ z(#R;*4dt9uK3(zl1`V0#+;v90;^K9S&HDeGZvT=N=i@!%| zVlq*X6tHle|JZ7R1hX^oBVTtyeo2H3km+N>+3Ms=ZfP!fxD!o9VOD-edd-EUsKU!k zCOWKlV_zIS-~uwX$de?vDuK%L@8HZx$+&k5>e!v1rRb!7+Ff?r=)mXy>I$ zq0J)}@093alFhtcs)-oX4p|PjL}Vbw8MDks3%Eg8VT2$bnv>1g)^oX2m+=Z{ z`qw0jRom?TFf_Ja9#QeC6{~4ZL08eKp&0Tla+V{FQ|vN<4pdih1$+%o6o z0N6_RRyj@aYMX#udG_od@J8!%^{db|>0=-KBWI7U$_juD0l^_(n*@vfY5yGjNF=ss zOHYEh2krIqXlaL1h6pr~P$yFHchq0$S%x*9vs$|nP{*+V)oOkuMe|1I;6jzVp`VTC zXJ&zpv4>!>8a0aF14d|=2n$^H^*HVGWGcB=dc->#uK(Q62S2iz^e}<2vaRbvEu+S0 zXv?X+V+lso4n^uR%Lhp!047z_5FvQhyXFR?MR>7tqJXr!p&#?k5+t9@5c&*z$H7h# zQ8rHf!U{wIi?%?s;jbFUj5a^zQ}uaBR^s8a1PW#ZTZ(L}As{%Qz`5(DBe@c}k+%MS z7bLVm5aTl(*bE8Ef!R*FKQ93YQlqkVA&5Y z11cPiFOr$JDeP7XVSjUxJUYgZ`M6i8Y?G_eGqi1E^cFdNlw)=i_TPVU;l6J3X>z_{ zO;HHuv`up{GS zM-*k;2E1xs4ZWb@#ZU~DHR6HWV`)K_Kr7-+Nm_#VPbT{!OBOl)gtMQ5T_&S|0<@gC z5z1rqX!btE?olg*kEWUZlL6i(UF_LLT&W{_of#S>Drop;huah;hzZ)>77WQ?uZNGg z+k(M@5L$HPaxE1QR%}V%1)(*$uGg-(B!3kJWy;9Z@yKEixE&GgDqf8yFK!*p&8CG3 z8lN`yaf+ra3mbTRxH4Uk%ddbX>C)OX)JnUJL)FkgtP&Yde%!ugw(IMngct~-LcY=T zHDY_@J`l+4RyBk#ibF$6ac2$}0MAWb^1k}fvT{bk9YnuViUhF3-(!d9{WL?vwJ+%X zsguNZG?>V_E34Tn1U20H{V&Qns%`yYoq^RO2df$NDK(*-{nSpg&Tz(6SfgWjlqkI- z%wsT;i?$)|5S?2xOb$4B_%dN+Y=uALq_XZl&pYHhTOu@qH8d3QIJb;DCnFh3ACRe z1O?Z(?jKA1r1-Nob$J4Z-0Q?9-i)U(UPYVsJnv~yI{GRU+O zNqk2*Nebn%4slN@OlTg?%2yIL=YB#hbow!A! zg7Wi#jU@vxW@NrPLxFDCTA+wS+J%|nl5e>3qXyV9}u5ds_ zrR61=M!V$Tii?ce@XXroR25j;&^cA`ad#Fw1Vo06Q{j1q=Db@FhC%^d4v*)Ok9Dla zuRxwm28vT2?vML}c-qwTWo_8V(70luVGvou+q=Ph9?4KnBu0N4rx(+yJ>afjJO_~Y zlXlIb_A#^~R2-?tu(vpf(DI1s++jH3zX(L3Azn{MB0u==z8bbiT-U_GUx+;RmLyJf zHwwubQ3akR7t`Mpk_iV7)i-6czxjTB4*JO$*u0;VI3jYCZc=Z(90rVaAKhbF$ zO|$x?c{g2^DYW;*f$S7tx~T`dS$LWLvz{-_ObShu#b5uz2DG;&azrr;De4TzW}Kq{ z%B0}H`7G*K^4=}> zBeX5Oj}}|En+$^;WnDi^H)GWT6LV^s-beF;e zVLPx-QmCvhwcQ3(FNEhiUc_saYqpO33xt9xFmey1?-G6WV6LL+7;h2#6@d`Gha$`E zY&#OkdTO*r*)Ao|=g1QPCOD@7G}#P?;rzj8(iU(slHa5hqY8VkA&c^XfnwV-x=Ssj z)%05d2Ul(%l&QccyqECj+PL^$s|7&02S*>Zh_QI{7?j0=tMbV5Yy~}Q9`;b-%OJ|Q zG^-|k_+zMVRB__sGoXys&M>s+)D9wS$?G*-|n{IT&P za+#D^c;_|HF)i()TEnhA5Gwq!ni&}JalYHBE;yK*c=Og&5{IaUY_JNG9j&uHWJ{BS zA?Z6lfuK|lmK1THo1*1 z3cz?hH}OSio&X&($mJb`&}&pJyJ|yS64DcKb7%cw@}6ivl~{$AeuM2rNQ z=MJ~V`q(+$)RbHKo2)9BaP@NpAj5d8KM%M!88F^L|n>7KTlWnLVRz*ESwgE zQC~Fyn)PHMjkn9CU3EIu$lGf3bd2K<-QMmB!=IgL)$SPf7Ku?IGp5IgsY zehj!V9O#&&79oI=UrEn6)!cGp!q?^i$M}x~I>9&h)o5^L&~;E+t(wHH$Lws&M!Lq(8cif3}wh zz_y<7NHEL6Zbm3sELaGA7qw}|(WC!vY9GOu^KIxqP(9?78rgMGvNCAdJy(RuBahvY`7nC-*QgghAa`UOoPET2ujmd4#rsc~*slaAfwx2!q6mVkiIcYshQIw4%3c?3eNH6ftXstCBag5kb%^luwq}Sl z9PK|uzPExNiT_JX8m(cT@&2S4&mUESp>B&NXU=a%qg7)GGlCEr+(yEe%`8wWI0WA- zzHA_)!1>#14RdRquoJVry>C;K`H}s>hoC&) z1rAsSNyl9W{p`!|F^T&)2@?*Y3L{-o-Zo~42-Vkz1A3!>R^HQd|1#m2TZ#s)rog~3wT0(l7~Jioq84$^Q8?gi1M{acv9D#tb*vn6~<7K5~u*gOjCMAbB!EYzL`l z+$``=SUT(FlFi52u7GGS_LNQ&QJY|_#ob-Z@jyZ9Fi27E69N1pi4)HtB{W%#9&Gg& z(o8~$p7g^8czYsVMEy+YWuk^Ynu!l6gJctjJ#Btd_rsN~^mVGDjF2Tqv!M+eWaTVe zcq0mA&hLHtfP2y2fb3iYxkYsv7LY~aU5y)g`EE<_>p$78uAGRtol^EZYp10L0ksI9 z>?vJs%;asMwn@lo`C5OR!TSqEJ6D@Wf=xFei<GjVT_BVoQ^^> z<}c!GYBDeM+^ggkSd*$ei$TZQ(+o7V&pFw!z%oP%+FcDKS;_bvrTqgyzhN*>-7uC* zqkU=oERR@?O#w^|^jrggOn4}w9uzk?L+oKyq$YSQ*Z`5BeDUf0E+3&J=SZ5RUU5U0 zbTwS5)i1u09%1dI%qEBDG`LMy!-JGo=2%SP=d)bV5?E0K5T!j zzGZ$swGgkd0lV|p$M0NJKHIgx(%)T?(DvrX=VVvT1qGPQ0abNF#)_>1hDI~0U?STg zJqAjm#`wXTJh){8mO2hzrXH|iux#GO(93MP3A@skjuFrx{@lWd1W}nEWEpLnhDjh! za@z)&RCP<{u|DW#uO>|v!Q+-m<)&#+prFIOTRZLs@XK%se=7ZZg_3i50O*ZhlP9p> zONyi0T2o*n(DV|{!5K^A3NGv#f}OlWM=OK$4FF{(09bNOy$ZD2P>_t*_r~6mQ5z#6 z=hQ)EphV3&9P8dMk13b7Eu)zYL$=;({>B8v400_nXAU;qLTGTs; zcS0C+U!m+d{_dmAL%l$ckPBMfEY@R%I|1P2bPvz~y<@1AerwID@#(Jg zm10pyN%}!x`)_gGy`3h5+t3unDR{J3*1lIR^~JBtv)h0D5eK&)STnQx8IQEJcj4-T zuHZ*`*k};dQOwE+Lz%UV&JsDeoM^aKom}%rU8FU3#^#6UcBzvwH)=$7iw+M68#|Pu z$(W$Cw0(Ego8<|pu}PzMq+0$Y^Ujk z1Vsg)zpbP&48t8j$>b(R(yXzeZ><*>Sf|ArDHY8Gl@r0_OD*7<-A3{jod6aPqJxFK z4;yH;Oj|3L`Y{(!8Qv&Ee_Z;U5>M+!;ELwf%-&>YWh3dtT&>>`sgdyQ`Ck-WHp$7aYapVwTr~SB+-=r~=QJf#y zkWG07ts+Q-ea+vJMQdQCxcY0mTQa^&+R}4{umXa;61I^!(PdR;F*-@l??^R-JF~Ox zveWJPG9N|ff5rnVX+KX@d?0P3@og2O*ZyqC@+t^*f{ywOW_ex2ANjexHvBEG+p)BW zJ7)AHY0?-KGqh5QJ*1;7pTDb`^YpQR66e=Lw$ygCkV4AtNePx(=vuNvk+k_`ZCAA+ z)i;3_4)|heBPlaz2;I$UosTfD{H_xQ=r0YtNXTP!OB<5oJMLKuGMSS>kAGID+qXL9^+q=)o~E8mSIJn%rO<;$_88Z}C?gYun%rTw4<*sO^Qy!ELXj=NWDXfP z>lhw8+)C=1+$8(tyX%y@jVN_Mgw~r14fl8&169E_kYwZcc(ws2(=1*3N01f(%E^X| z;EjkdvHMuX5FjAQX(_E_h8nOzS_9y}I`%RW2?X2_s{QX^53z@ljY}ElOEhsNO-mLI zJv0%eC;t{=iBb5&<6Fmn)utQwpwj9v4>_7E&+fqL1sQQ>1hMbWBx3CUu|27lVQPft zpo^s=*^K}HQxVH`cyh{285K*dC$tD2Xk5CDBBRUW7>gzC2@@LIl~s^oG4V-MyYFIC zp5Fd@a!o51E|be!cg$WN<3eJdt$XGfG5sA;k;m-v!8PSYPnBZT2i!6UF5Tb{0S|-Z zQRE2|Eb*EJ;AP>pkxRe}7?c1QDD8$E@74tTBHKDC<@^v0lB^sLsFzh^wp1%U5`a2F zZkLlPr{#Opz3vhd_>_m!EZ{=cC^^^i(k-yYM#ia!(L8<$^28sEk6YHJu<}QoFeiD= zoZHG!ROOV%%u>Q3o$5miJX@JIPe7_TSSdGKfFZdBCepYkRb|zNiG1?uCR@nAWcBg6 z)A-HBIrT;7I{MI87pPKBL{0)34!0mcZS14J#)g^!5X2b2s8b&@>>PPSl)Gpv_RZqT zneP1{dfQI^T zW)2m0XxnYB0s9%Kxlwjcb4Kl(*7mZol#@VxnebGu;fs5UV6Oz!?+5V9VQfv}HPh09 z|Lo_&5R^%E(Ys@(rwtaU6Eh<6LvW0GoXTo^gxjAHVw1n#pSdvv!c(d)xX(WSj7D&R+1AtJcJEU0EW55_M;JeIDjj>^QFfg(LBx?cj7jprUvpdm`;bksU{JaI=l>j z!Taor4s|sfQJJ9u!VrIhuNF`bF1Vc<52&c<_~ZxGa7jqMTp#Td-wp9t4LQ_FNvJ7X z;?>xr^SmsHk-|a2@^NhO<*014`kW48nl%eU!!dF?%x;lNf2B-QuGzexS1SoF)Qg1^cQ<)Rj_Q=!sR*n?7(>4MmJYibYwVbL01 zSUyvD9)w`=pZ4XaRf#8N2 zp1T4Uw}VbWI*1r$QeLAwIWx{tD~A1q@!C9z_SX&NUQEws}G zhiTPVv7W=`E**;W?ZWqrs$VHb#Z(OI4&eJsyTb)-+b%0Be+2%vmWL`2s4vLD+>jOG z_hAGZSk|`9dor*cge&oang?|l5YsixuV$|;Q~;ERMDCXGl0T;lZuOjULWQ-meufFh z*bpB5#S91Ksi7n#PxN-;z$FLS-*vzp@1)0gPOOnDtEYflf@&067K;Gw%x?663%fF>sr84Vzth&( z?CK$r6zk8a{4BQ%#Fi;1I)fu><5aitHjDQ2(u!ZSt=9M!NFs=r0y0C10QGhcZ%HPE zT(SLK_~aG}h_Hl|yd?u)y?eQ!B-csJ`agEPdwDdhz zRt$GUtn%8#XcUd-{mrpkZQI;!xIbiIiqKOsZ~845!OWtxx4c&q>QCClp7{L*7mTxL zf9A-_@`F4}R$&#*j^f2>C-!?ntH;fgCpPlc6avr=Z!_1DqPIj=^1LCp!!Snciy^-c zR6nl~A9?Tc_Uw->jmuYUfyvhRE=s2*j@xYLz0P>zQ*_uPGCU?@SneM5s<3b&uZt_j8ltf1b?uiId$P{xO|RQesZoVItRed^6;c zW6HlDsV*a9Mnl29Bhsr08=isgtz>7R#MO*x_LD_=r&a^%Dqpc{?_J6rbtb%9W-)BI zXL3V}DONQKw0)^gW2sh%;1TPs3EoS0r4d4)X?#g9dE7UGU@9x*31*tweAR5nk6l27W zP5$179Vx^_>NTW_MO^8P3(GfRrlinB?@I2Y4eEC5KN^d|2ych9QIZ}Ur7FaoqA^3^ z?nz`O8>3!^=j%}afB8t-!yR7Q58;`{(T?#(RA>}0U*$snY9a%>{rDe-$v_D7yyxPh z^i6I_pnykxr}Rc~8(Q7}A9Z!ydoj#xF!Ai|RlGnLC=G;*6NR{={YoodAjonlxuBtF z!X7Q=YHVBVlglpto6Z)tMfjyMlFt78^x=%3kqC&$;y@kzA&0J zlN`PZjgNnB+zTD7-KGLSJd0AA!U!Pv*j%S&E%4kZS6=!TtV_?)vQxxrFZ3ir6o2eT zYU^|ZOe+vNkGweAjh87}KPr7Li06k7XH=5Q2keOo0-mX3o<)5b1(ZhL1Xraj@iLoT zGm7548NujZ;TB%%xu887{?eeH0^v~i#_*E=hG$6->u11+qA2~vwgH-RVw(YZ`dqF= zZxu*8fC`lrc`LiUL8dDWX!z3A! zv5{X%VWyFh8K3pxmTk>A?SMw5(Rttji%aacK92-H-fwt`!>6q3#vr-52gJvu0!8;UWX1`z z89+*DLO3fN5rYYbq}D2E&O=!ePAUV#byO}Y75tk>J7xFhOniz-IV>1_#KWmT;?To7 zpgwtyq+JRLrg!FspczCM6`Ek>z{t;mLtolFCf1ANZHdXKYBs~L^MQo&2d=sT8)IuRpudMVHySMm+1>dxA%zHytQf#n(^zdb+2_))*O#{I#jy2BoZx1E?o?8}clRw)!stkx5>g zXSYJ4LIZ5f1joXq0KHohA7$NoP<|4+uTW8A(eBIbqE5WNsE4N=8XZiPysqm0qNO zh&eC}o*ww&+_lleJ7J+akP0mw(UWOi;BpqZyVXQji#IbWNizj zzfHO!WIVvPkoEFhr`s8jF(FyD$#K2<1+%$_S(yC9t$CvApUncolff&nO9GkZ-j)!h zS8mVD!e!P@Guqdaf#96g`{ab&_FWMeZYv>**g>{`$cPP|#yvlFpUZs)$uaA5plT^& z_VKq`I)m2jll|#_YuX2Hq)<(k!JLB(D`dBiv4NH*HW;q;d6SQMKV8l%Rxg|-7nzODrQrRzvS#61lDDn>v}RdS zfm#dYy#TkWCL6P?89U?Z&@W07`isnL%{B!umd==y#+i$EAD%byv|?PZ%_JK9h}A zJjf=e#&sqz6#8ymJ@EX&h>P36=A+W%NcmuTd|3u5s?RFxy)5$fD3d}9jGwC_5+ns? zWFub|;W+K#v+@-71lFffyF%^%tIbOrs;#wz9t z1~NaoBG1q)ac&M{dyj+kU&5QG{SvW0&_AT|%j34U)v+Kw3E$}d(THg^HNCn}nB{A` z5c`eJMmfEHrKY#~>KTwJKli|Hgdo#kaEDxMEmQd~uk$b8!nWjlyvpu1N~k!;#9gy= zt=-;x?9j^11khqCid^T&uJZ2s$OfrBZ7_L#|LcgmAz%CZt?2tf=lgR`)BD4L=-bJ= ziw*(<8Z5^J(+uVV%;l#aWV-Z)zFjR+2GN-`19JWw%}gfVqi9@7?8UfFZCohYPP=s} z9^7g$zdpCS6b-;HO<2318yD2D#&gIPg5wPP}5|K%slS z2UKy+IyW`}b~tdX!kAiQ(W@@!Eg^#Sb`rh9-yn9~z_&n`i@2td$cD!C(T)wpy zzx%#F9(A@q<-G5#h?0GNy?Q)&ejcQ|xwyP`SN8Ywc{$sQ!q4%4czj!E%BdprYkij) zZVglJ?C{+c6@9(gzIMnt-*`JDdVSjZ+P-qj=I8tTwxhn$JF2Yr!qsaJcx{eM986!|O5Ch9JAc zeehteGiONU4LXG=ToV76^CP9w4w>Wi=De5N*(CCR8||-yVT11;4?E{?ugapLL3+MC zuGdJF8=pITZ_kRuM6=loP+$DKnE)WRGK^!tc%%Cl1);pVdo9rWS=7ekHm0tJHh!$r z(rrt5X>0S%cm3soLOv&JoYeJ!!teTC_^Cvtu}(+8Cf_>NGlkjNmg>^7=A)eL83X;N zgOd7;?HT_#`EmDm>{M3j&HyK_`(@_)4hNA9NH;}WYLI)?-5TE*HPDCd)NZA$vf{X? z^0?;g`8Ss82lB%b& zj+53>R5QY3BkyB$OZ(c+^(UjUGUHVq$u&)!or-9*jYqjz&_?~v-_s`>K8#ii%TiL` z21tiVV`oB;yS>}%%iZj2oO1g|kJ%2NS=Z|8c7+SA_h$$HH=B(P;YOn{r}(KR{%dBZn2$JD%6VAN|B*Y?sl>R%(BU(1D_j>$crysHY{)!hZl@&-C(5bKyKJA-5 z?F+6ayf8#vZ-258?SkB$gs0rA~WvLT3_)iRZ&{Yep|Qu zd7S_KIw(y%$My;F(+8#2X8$v{UO8&|<2J{!Qq$(rmd2xu^>@N(;f_0a-J_v5uM_`@ z$}cgT%Qe=SzwO;E+MBQE2Fjd>22j2YSZMLJ4vV?m%n`+Nj7Xx6TumF!o&8;){}Pg4 zM=okkjPz(#IrWB@#?X|)CVj=RyJw1gRTG}fM_nMcYwBZYFqeb}tpA39Z6~6%)68Xu z*`W?!VEddLK!EOlChD}-Yuv;euJM=Wy$&0l>ceX?vpTa##d{d{(Tj4OEBjKB+X83Y zD>>C;mB@EZ!T(!L!c9%tfYWJ4OFCmdE>y)>XMFYS#x~C_nWe)TLjR-dEu-3sx~|bu z+}))}aCe8|?#12Rg1fszahKBK9-QLt6nA&`Vqf~a?=!wT?zs17#yQ!0?m5?)yqXWG>K0#H7}o8opVhVOjaM_iKJ*^ac#u9+Qi6#(=P@)No{;^q9jo0=*wxw z`ToYm;pjfGRM_lMZ$nTD4tNTiN&Uewz+b&T%+SbAW^!PL7|Vq&OndkV>=*@sd! zU?cE=*~UzAD8hf{qzvUkvfHo2DLcRkls0x_`&uUARt?1jRBikIzhwkYNQn5Rvf8^_`{K}W6m4W z9qUUTLE3)SJa?T@6G=?T@pc?Nt*r9yLUZ+yAt9ePm)h%h$11k|yRMT}Z_VQ5(2AI| zLGZ5ya#G0zNDr%HEl|k$6~m_)nslkMgj5+bNY%mZMjB^YzO^G)r&}u@?+C_OwXc(K zDIb$=O+Ff4x?#UH=@o8^0)%{e9g zjnWs2_w*er!cvMOtctkP$Dl){QM{;LWj*P#KP|PDh`SWOw!b<-Fa~;s5=RhXTAsG9A`sq2rz+ zu$*ZuN~vk;F`jIKcdaA5VI-yLge?VH;VkN~v?J;R*WAI2QwV=X@_KgMFO<^~ zy0XLbe%pWAQnW?ZypL>+S`KMwCq!nGstQYq`&0FvA@epkFSm42^pj@}!y*F@8;7b? zbTxAXINFRN3MuSU;whdJ<_G;!YJw1~A~@f(dF_somMq z;qy8kBp4$5WUAb{z)bp;!OG;d$k^;!H25hvrle7Mf0r5?J=@)U4i9K}Dy1z(crc}f ziMH&v)2YRK-3J7cpVBau`v>QjE{SqMwj)EPkdhms!y+hztl|aiDxS*3mR!;c*vfw~ z5#|zi`Qz;gnOkSQ*-`}VM-zOCRi87RH-U7O98`K<5HYdA=?V%YPofz54PB%)fhF3O znn0})X(MpaN$;%TOl_;VIAn_pgsfxB*ZF$fzL4lQou}Q-M-(aHgj7>=&kv`Zh}$UL z@d=%`3NC8WX2AEv4G*fVCQpktvIO0`QqB1~WSx|-i+mK@oQ{b-4Wh6auaN)EE)RUfCj@8;cB1K*R*~@{A!n5#%}6P<7_@LN z$^M~Z-1nKREm^m)2rkAR?BX8=r;E;}fHvV;VUZoXl{=DNTZ-X@70r<0-| z#xqm#i_OMPON*b_(GQIoNmMOus;Qm%{s^9gLbo?)+^U?`OOeP5b_&6p8mF)T7TbFHS2G-DkKNY7=0 zrda`Syb~Lax!a&fnsi60K-=vh&_^<l7*)Q&;TLQ$AG@}xx3C5*^wtd!POo>>_!U^S!%l)nPo0I^v*n;hO^I&f3Fc->NsIFWNrNwHT|0i5q*Y>zvmxqCUTzZ*t z>~|aIr`#{UrQ`5EAC?U6&Kn2t=fjen_FHkz?JJJ-zl)Bb&-d(5_lrf6Qr-T#FP{uY z+<1?)vjuw z_P4uh{h%V01eHc$P}u}gtnK=dRU#QRJCng5bvjWRo>U4BCFb6eGpmPV9`oT~>u5(&AU^j}1?4WlR(WWP>uq5WN*2-8 zKQP!pQ-4Q3{ZvV|=SCWe+^OOUlyI89I9+Rzy)!pT3=;Housj3*h?LAjHJd|Zw?!GN||bgsRN zj+)l06|dyKr_mDZiS`-&5}0_ru5PoD^^%Rs+dv)>yz9u0Qo{Kq0=a z4Zev*W&}SH(GjvrGd7gRY(4&|aGVkHDR+TTd1-uEf(#Et(l^w`;d>e_+lA8JYLeG#kDyKYiQI&$Dy{gwrrI@{wZ$NEydbMTPrUU(xhuqlB-`d8 zdsR5B1Dv0vxb!I;q+|a<>SxFycI;mdbVbVVRb`{_-;Ew+7-Fz4SNSS-w&WHA&$F*P z#b8-M?2jn7HL^0FkVzt;sVR>-quw6SP~$fe`gIh#5b;PDD)xshE(sHJ}x~qrdt}@A-g1nP5bORWxrPF|{a1 zjL6s|oIe#~m_h}%AWjI4Q5!}G8cUP$jo-N(6@%|h5nK`4wuwq3)rH7u6kcQ#&y+uV ztgR+9LAc!P{$u)LZvVmX6eM-O`47a&n9$kyU9OftM9n`O`!6MrDfR~Rw1=3+UEAlQ z&%|Uav5^IanI^pN@A7^vq#*GG-^$QksEjoPZxuC3h!|O_*P|!e%xYaBnnVe<##2B+ zH)x}w3FxujHJbj}5gr1fNr-3y3t0KSsl3krLs#;BJ_$Q|oliAWmG|mi9HmHoGj?a? zK0UVRVZ=3kK5%wql#G1DGinY^iruhPr95iIq>m9sr+x-lfjy!r5>?-i&ffcjqu1wW zlX7b)wR-+1>e51p8n&~e&_#;tZ5)Z4P+g)ue( z{)No#(13xkz96HauoiKF@RZY*;VYbkOg(fiA3-skdXsRe>k;feG2hwAoqx2XX)iAx z>GU?^b$~WRPW3H3xj2FBeS(}6`25A z2f_5nMAiMC(@72!Jt^JmL8nU+jBMFpy-U-*Y1qxnobvs_zkny|P87ikm7_Ogez1Ef zU$h|LqM_k4{wi8ohf*hbT7A)EwxXYO27a0;(bomYMoWQ zzDRHTOZmiJMjyj`q7gLIXZ~Dhabj*j;`C+a(4+-9#mL&9y5aZ@ztK1=#r{mgbUx^a z%H#I{2&kQL!yOod|6%aQ{nEHFY4PC0x9n#Wfo=P%N(PaVaZ0`yEXKpGbd{!eU-c@B z(~dF`cdy2P6_Iqe&Xw8=lP}&QnoFz;*`5m$6ryP>fA~A_Y%1Q@LO7Fp&j#((OjF_p zWhY*#dYA15oYrIcJ2hjp@FD2V2iE7K#WgC!2k3!HHi+T*QS+}2_#3h2_LOFUD0_kVF4`fQ5QsvST%jH8l`D3>Z|mYfxpys z88JyS!vw^y&1M9ub={9!jv!IrQ5>Re_tPQaxwN4T+j8Kg#ah--Qe=yYTNpi{WJf?v zgwAzEjO9$i)N#421VCd(-hzt4SuJW$E17{6-^NOreY89&0IffNtnAb{!NLRniy6xri)55a#w+MqFEL(3D*L? zg77@hIwN;4t@a5221VzRO}Byd*M!}@ zt8DpaFYQoW=i2>(+Dyo1*|?c8kH74hS~TFN6SDxWih?cNsKriBA|wSTZ<-Y>uZHTKl-Z#JY&wUq_t%d#OOIpK*Yos zr_&j*DIOSeeQ(T+$WsI@vheVde1eR`Pd*?~bNTs)C5)0KY;3?Cs}TH0d3b}lY9;W6 z4iSe6bH9D(~tJfdy#bC1hI}w@{)s z)_n!sQT{BD8LmG6)~RMQJY+Jbri#4uTxqBCz#7Xpw8xMc=dgLV*H_2eND&eI1R>OJ zZU%BAu+r`(0v*Q$U=!@m}Yh6QGl7cy%G>teU!-_FGF#G6~slI$Q zX`%64^QXUXx}0b_U6)ylGX?+nG|46;SJnn0jd43c{Dq{i#btaHgCJwxc{-xef0`6i zZ$}24SQgkDcnGQ7ISS!KT&_n=EUk?Wcy(Ff+df zDf|$3Ah8sJ>i6?;I&yG385@aUn#*pax;>de|D^%6hDFe(txN(@9ic>QnidxmsA(Tn z=aRfauhR@mR~!2XkX-~EqMY#u*B3^exWAg5e54Z3ScR84&J{i#;QbwCp;Ou$r&*@m z=P5f=a{^BJzkhcWWS1o}8u@%H&4eR1{!7&8Cvp&RHgD}>G6`!z^KkBOlKaMk6 zIjze+`Agks3N(T3m%SOFp5N)efB}2Rw!b@~9$C{U_yK>eHB~I{HaqHPsF#3qnH-e|BuD4^rQxLKQ=9 zkT&B_w&k5(B;x7b@lCuYaA9P8Kh98?zfR3%1w9^Co}n35D|6b1eq}RL;4tmOc)V_o z38-MT>tBYO6|vPn_{P;=o2iy3ORkqg6r@qR!@S%RTiAx!hyE-oWenPlSnWtN{gt}= zEp0MW4fq$7vUS30zQuXUlD!X-+qRyDrHY z-4-2s?mG+{bx!hI z4c}eJQNYK6{t+$)a+`J_V(*hPx|}TjW+F-knDN&9a?ED9ZX5OFwua5-q@q6sp9jG6 zhr4I`VbkUvMPr}C;Sr>$+PS{~uX-l4;xH~Q9InHQV-^C|(u;f+F^GBg zo!Z|5B8_Vf&ZXCsgFF6SgY3_=_aYGvo_*_Lay%B}+E~6q~Oc~5yQf&n_P!g{23Ji zJ(Nov?d<+HSm2iKG&Dr`w36kz{luH@M<;DubN$;1fh$8Y?xgwoeZmnLb@ATu4O2Yj zcw}va&xA{4Y5Z!&tRu1jW&RZ0!rHvsOA)>kq^_{lU{=UYmg&k7V%k zEj!t9>6Jv2?V-ibTVXe}gq{*KK=1#F}0pZJ~cMd#DS` zbr$(`>;Nv}SU|p^cF>OI=}!OZ_#9f^hjIHxV1!oeE~7%ws|qpSjq8bo=>)L2DLe)9 zflbbm3^!eW8=M`^YNCJgA6}M!^^U_VCq!fo86Aleg=+WXbS#m=fSUMy0XaKJN_<~m>duD7lT)kp@b!e z2(^AQ-)oDBh8!=7b$DI2OmY;I=hY2C4N4kTb0=j~9%L`v3U(=yTZBFhwuP5kLPuHn zAXv5Ure=+PLOapl6Ip0o9}n3IO$m?qQ0Na%%)4DSnc)qG*l$Vv0cN?-A_`RR5y)o} z7sD?E7BW-7B?wBZ5lRLIrF5V-x>fnArhUtB6=@C(IX;x4ufBCkz{rtoUJ6|F{H3|p zemm}}_VE&o<{oi}Qs+6w1^F@)J$0xduwp=;R zwHCtt3_bs`@wbtB(K(ad6U_{!Zuz7zdzrwcbW6sgCk12~{-`7RisaXggAtwCM>0}n z_pi!i*Vg4| zDR}{d8tq`m7LP}db9LNt=VG$Pq`8y5V7u8bz{6cS>e0!WPfM)Vg3Eg3GwXCFB=_ny z(naL`>`11Q((eJTRnG+uy9Os)sEu-KB2(R~Nd9{cUV6*`w;D>uV-_H8XwFX)pHKOM z)!?IldffzHYIdDEpUaX3e_kD>lZJ~}D3pDuzu5aok|B(oFzwFMlFaKa7`{JEJJ z0NhLO-Y@zLB#mkc?_qA>5^ZK~seQdrNFB6l?M!O~0`z(>^w7Twi2`Bv!KF#j=?P`u zQnW(>dx%5VF225Mo_SnvhWp)6z4IuyMpJjInL8Da=k99tt*faMV!ZViqPf8=L%n373v0*8`3;C~ek5UsC}ei&$6gy4O?0L3vmps3*yN z8fGu4c|2a2eeNl#>1)KrWOk@>q%=JNLOH_tv%AGc4RpOil&;&u>F5*kjEK8OX$l=X z+aKn<{hW{Y7voa-R3AJ>_WvCN_fkW3o0Tlgzrik_=w6~}i;0R_lPuQHSOLkQ=lHa9 zEc_^oF$o<0t+d)Ydw+)CAaBl=>y5nGHBa?nxK9o2VZdmDvd?(}$JDj)4goT>Z-_$i zuPGG2Bbj9Q&D4^!vXF!%o3~o-dz@`?4E3->n60M;LecifpeOB}sVKB(eLKgFEQre{ zj=++;f+ar!ajK_!h;^3KTTaqL<I zhuXE9etLC38>$g&jAHaa;&f2I32A`Or;ZQ-%)f_1tmlX>I#Ij&X|)}+K~?g!`g}Fk z{q8rO9_+GMG1n+GQiCv%&e5SUbWzS9G%3@vhxb>+r)5075*3umENdChyd3W{adIdD zD|#lbPO5*T^v4a<kPw5I!bN8<(Am!6X8q{1;sNv=x2$v(b25>He95>e%$=G5DD zL;I)8I&x2Y!@;hB99&&JMq(dz_S^{eE^L(>{%R#ANF4~7%4-MKWT}n8`QkwB1k}Z)yOiWT~go;zHNB{LcjH)mI{*%$sd9i3}h4egnQdu%heCQCVF_nsGf2P zyCX-RWAC3O{J-LZj166Cna}Bt@J1>ARa_t1)yq>Bg?X4?1j*kI@>{G!&u_xufJL1T zMY$Gk63isI@I43CR*_}!F1=)H)8@8gZ!`axL{HqpoL=9~A2kP%0`6)QvAuBtn|uZI z=@rgINyUGwuTNYZ!9(@z4tVL$Rfhbe6nL4q7xfL+^8k$})3g7p(b}|y|BVGZg{~~A z>F`KNPSg5#+A*Oa=cWp>ZB3n_9eC!^K6rZ6YXWl}FBs zIg`h#YHZlTuXbXXE|s?`@!T_QHSf-_^+=;ksZkW<_Ekf5e&61~zC$&N6$E|gpxhjl z^PWlDR`i^#lLwzzfRzcM_xSY_0Bpe|OvTx5C0xZ7t_RZ-?gGX1HFi$apZFu<-=Ws+ zY$Y_Sfux2x;&EnItZmRA4$8lyPD4%pJm~c1-Vhn@ZP3VLwE9rYw}R8!5tYLdu67$Z z{MYS<*xPQRVd2*+twaNMdRvXD_$UkLm%VaSj3jPDm_4n>mlsttM5WIAestwqr}B?na-kdx}xAvc=UPIw5I(x>0|cVKncx%4o&hJQ zBXEM6Nlh_PR=69OaU2%ry}>MnbycCIaI~-6dg@{Bh?-%1vMT;7bkSL|Y3TQ|1M4?! z{YAFFM{+TFLfYi&q$O^S_mc0VCSd3vD7se3^b0X~6fWGk2JArKaIVF|e=w??TNc*txhXKj46ars?<10Z3LXo^nMO&QN+0lkjerv@4;%*}1CPNPU+Et85jaT)rL{-4e!-ag2J_qBp9*YQ z&2cB_+b;vZ&YMD^JgG7P&N58mlkfNcNz>&2O|jsW^PcUAVMe;%QK!eZ8RM9z6S-@U z#ljK$iMam^J{-I>z<*qDnZw{65;LHS$n`?b!+M`DZA#a#@<7+uWX2!VaD~jpcfBR1 zZ#z5RX>z6$KW^rp&AX`zIRi@TVW>eY#rbOigp=3Hw%V`Ti)<}k4dhxVlQq$Kc=|DE zawv7FE$Q0+ZEOqu%Ks)=Sl4T2o($&6^x{nzH6@1(_&Lb7PzD}cQBPf6X3~Kp9N%Wz zCx?f>37u(Zbg3_9yd9J3TsgOf%S+M!qb#*8`~O-5guWMLsJ;gVpTJv8;r_62t1-^Z zeiRlUzY)@2&~^%ME%=rT`f$P^6|{)qMVS1}n@NytssEx&5ZMoWIwbx8{yPf6G@o_s z^BZ*Uiy)BC%YM|t_g9axC&VdQaCbK0n^-?WXgQ$a)BerA(- z+xIV*xc;^GmxM{qVPR+msd_duWzB8~La$k-2PI}U|Lmj1m`cE~+Z+)>j49S1-xqA@ ze%Zk<7WrFiwo!UdGC6t0F&#-geN#~(h5zErZS%h#N;IA7V-1fd9h^U%-|tQQOzGOH z8yaD*5^jA8u0me8%5=pCKPpvn80)NY4GO{&?I^4UdxRe!F0TSuFd$ zluN8a{GedMz2oaD5JCX=!fU7Miz{$1KS+Z~eGi3}{SI#_IEBj#SI)cE#S!ab$60}v2 zq*o?c?KUkMrN=&|(_JRXb;s!ZKL&@}guhzva{wnjtzA3tv5h5GurV$-!Z=a#dZIeW zD0)`v?BQl5$W9fUmW>3L{`&B+YiR)KryVtNPWASvy46Em8Nh`*vVo<0z6K*{QQA3q zgjTK}x~M5{v=r_5qWk6N5B$llWd35)+SZru+#g75`rlD9oXw>} zQScbDmb&$vo>~?tyF2V|p)>r@d$86poPV^|8y{A~%Q`)9a&P6hO@ekS`z@R&-8;AB z`Isv@P{^GX1W@3!HFy>=I1fAOA&vKY@N*EmzI=konUJkVl~^MjOkB>K7T{E)IM z4L{kHg3MznSar@rU#FeZpwG;M$=m-e8x|cE!fTStaC>~B3opjnC&Z-(d2c5#@OEbh z%IiTQM|Ags*uAdycArm6Iyy?+@hOYYX|m03)mg)&fyc7lz{vtmF9s9FmBY!Ihu`LF=#7F}xSb1Ll zgU9**;yGxk5@&oP9Zyc+vDB^U&usl_#BA-L%+wM|R0>Z+sEhU8FG=9XX!`@uvfK`F zN$z{k(&B2M^Fsb=d|h(Z0MF`ua9u~ZqDjIRQQ*Na>UIvpSP+HD9D;~S8sa;7jOAA^ zR<&S<2Z@_t4~Yxeh&RSX3MyQ}poW@Oh{MW&W@1Z9t{4~4DfXm5v`8N4i{y=6=a*jX zoVpVH&fZ#iUy2Fn%Oq0c?q#ih=?3NKeoB zay4!VzALFk%da@Q+tihAjU=mlkl`Q2SPtYoGd~%G4rX4et`eN2&hwg#eHr9Q zot-MP#D%u>BzNo&uM)^s-jZAWn#43)*w)#Q)n>4*xOVaW_7)B!M%-W*53_k0SZ0w< zUlTd(8H22HZ+D*3W}AY#a4@3WOOthYpcdvxXsl_6IIi4m(k_Km&@O2J4|ag#(hBhh z)oi9-QGLh9GP@=zO`7Ad%-$!&b%dhw&q!}ZhP8C)XQE z;=!o*W8P0O69>n{c;8;m*%OO6cUl;0#^e|0OjbL=8`;?mOe;fY$Z_o?6BdIEz@OWeQgoEZn|fO1(aY4|h6mnOe2m>Klm;&Y@1RN(v0mJzgSK zetG?G5nz6-%bu7S!et$Bj={r}w1z~btFCLEjWB+b0(pgUT*ERs-<-?c5Iu*^nokp* zSWu>qQA~BgO^8%8{S0oQj?Qg*N5~+(xpeOHc8~dJb*UB3BVK;gn0`=iA7AN z%%N)J8zPlg2OOIpx+WvAJ0VvHD)TP%8ImtajL}O!q`!lm!^Wc|a>5UfTn;2#6(fAC zxJCpk*X`omHPB}0HG z*WOtRhm04;@HZ%>Drvsb5_H1WKmkVT61IT8L`@wdoB3ru8Ub$Py=QUgGgsV(VrT7PNT1^VwPB-6yw%XdFQw=^u?@f7(PFAN5oo{c!AMd zcYvH_zbgGG7w(RrQvP>E!z6)9Xe{tMo^Hs$enBbe6FI_b0Q6J<5uqh*&ab`Rq zgV$Xob`mU)!PCi`%=m;)-Um~oCx7}0W8x%?2_{oXyDnnz_1H{vvFiposf(bvRlKA| zD~o5sTPC$!mhAV77dwIPLx;SGiWzbnvNNq`t7Xx1ALfq0bIT-hb3gSDD^s zAny0IS&&;L2&=9C@s6Z`ga9lJQF&oOdTg$(26j@)LF*ov7JbuuX(%DYSR7l)>aQ(d zwjA4zz>Z(uQ80X!d?->^-)(&`B#$}W|2NQtMtcr~1T9?(jS%8V z5Zv`Q^&A>)DjQOj#p?Pl_WBlskp)0_n4K&R+vAyUra15nP=|pFtFkBCVvdXqIQa|8 z?7t`fhuQdH)C`YN!W`qdK8GLR*tPG>8{Y|-+uxbBP-dt!+@^HiD2x?`h+<1-i(;^~ zo2%dLeUmej_<@-1-s#nLRdQc%S}V%hQHYF|*8fVsB;s~U6ScP0=kr*r%f^**T%_+v zU02%{8c_^evG_o<=R$MC7qKQOq9uj#Wk1JNpg+X%1DZW+DCU+XeBPXG2PMir6IGDtBo_jaGI&vwXbG!jpytUoglUoba5W{T|KGBF8EwI$N@xhVT3toHpLP^jNP z1?1`LU7f*?G;H_VjsPjt!)Llq&l}7;TPpuE5(6oCq+rbiBp^;1CE8JZ2cZ7nL$5j8EFLCLBl?fJn}i~q=EhVY$LWPU2nLF!^KhB zXnpi?QMWBaa=c@fX~Gr=INWOC71ZbV@35Qia?*M=jPzK2h~ZJ_pQ0=maSU)sVS-sT zZgI4wfMF`HiAT9b6PQ^;4>vR?E5WD6mU8cYT?MVJd4?#GH??fI3H9@x(YO_~rKqqD z)Xv~Ft9%dO*Oo7GzR>U32~Cr`;5`!k4gnjU6Y-}2IpNj53CHUfV?q%VlP3^9+7cJn zA$o`sk1kZ@hEiHJcD3(_Sx?WijzI~0!=Cs+{#TqSCZ@#UxCx+G1)!~7gHR0xElxZ1WMFQ4uYj;iS`P>#e2en`_&(n#Qam zwkX3YWhslx{*$qTE0vm+f$3o!5G&N);xxh&9WAJ?_>KE)arvR(sC`4I7_nmPH6vA! z02UlgxUI0nNIgmy7}O9{&egs2n!1)8%wNn^keC^_D~IYE577o&=YOE%s_y^*A5N)I znjM4Zs9^dlnFL516KPI#CM5iDqaHPp5E4E8-IB74J!z1d#8Bwo$7Y2d1iXl8KK5&^ zmT(uJ>#CWOjZj(e#Q-N5|9SaTMOM=-Qw3A^c zhfm{GvuktR`m8x~-)$+=mMz0O7V=I}Vb85S0`YIO&$Vy=2!Qqg4n=$J;KtnND;?@; zVIqc$y>+V#Y(9RIdR>`pa=byx7vQ&Aj%+U&QvU3|cF1Ghku%ENH?}b*YRSyerC*+x z6;Hkb77m+J0n3DSG$COY$b>D3FEI_;4n|Z@qBe0ID1$*;=89R&xExEq4evHw;mn9? zlYW_1`T|5K%-0}JTV;_D=T>k3agh-1kWBsT1_F5p$-#K%tWfFKzXLYx2f;9NFMmXQ zMCfCmJ7D@)(>e&^pORmxQA5)P^`?!y7kLZ~N==_`ypRVUIRC~-lyBF&&i;~ZOW|+6 zwSq;q*gY@sGYD~hhOeMFg?3+;{QA z|LH2haNp|cbu2*Ob^GJ?ZD{H-p9Hl6;T>0P`{H*%`^Vk(+mNAe#g|LrHQ|jK-DkrC zjr_8!zTJEh|EK+TsUMQA-F?&;v7|fa!X#fDHUd05KK9;kn;(A*3%nn${tjq)Tz^>z zczGgom@3_HbPQ+uiM}xea*t z{dkaiCc57g3`~Ea7VLW3-JWAc8PxnR1h+~4e{@o6swQN?GNy+`Mld@9Z z-jR?u`Q5+!4Yn`efm*u#dDc<1XrNIidMM3)yVhs3Gm4FMunux{xApDuF>&HR&P@dv zh*`_8sD^4-enMM6Y;)4L`SJMjHgfuY{Csh}y<0{zI+ya+cR0lCf%-c@;O$VD>vDB2 zSxp&CpNbyx-@K%+$ZOx1V>9o72<3#56P_AgUE$50I~lr3OfZyG=TUf*ffEvZi&FW-dN{|&f! z2oRJC$j?Z6J-xn0Rl8bEPx$%c`DFR5osd6yeQqTEZE;oj((wJ|y5{z6{c_WQluMf< z)zPTMuT|gQ)BE)liUI>|GeMW)OC1^~-{Z2t8+Jkvd#;~;bp5l_Lo}6e`>c|+b#9u& z-0Wz2UZKopwb|ioeAeW!(i6S39jz-=H!;M@0)oc|MD@Ye2cIoEtPZ!?+FH`6Ym?RyM7*% z{lxFPzxvwJl&58nZORJjTnaz4t8L3A-K;Mci@RM_Dr7mE2Jy}#?u`2$jf-)!%TSf? zR~ikXRgVoz7({Vb+8E7$W&b)zITh9YHrkw^i1y(mKYK61(Ra4^ zELYW>Oh=!quysqh($C;3)!=9#%!#c=G5zo_aal86R-?h}vRv1OTxUzpNmzTwbanPn z`RdKQ{k;jl`eF`K^E|lca8MFgyjrs~evz{7#J20ewzCCi-O82G2BeycRTV9%ZhlAR zwsGaQaWoLeg2}|Ql*?3e*WS4DSGtM6YbDpP9S!MojpqA(&DcT z0h{JsDd{y!v06_f0yTMbIgYt@(^jE|o7kDjKyX;5zM;su>^D*PvJ;$l5o?)g$e1(= z0+NDcd(9D@sPdTtvg=Q~f$`p-K**d;&Y?T(wfe=r_gyufQRnalf-4A)BQ{tR6~B2x?|ns@^n6kIP6} z@by#F0VTVi1<{pr8B+s@YkoUuIdKQuB2Y;-n)Vdra&AE$g*sc1Ti{vZB&Ip{=iilX zecELi0|KmGvEOl5N3*$;ai8VCWlBSM+O#7hAE>#Or}6|f4y2GB_@U{6Bg}K!+Im7>b@;T zMEAY&Rs7cR#lt-l`s=-5P;q7rVB;hl+6PDsbE)M-s)>`EI3^#4)LJWqHzFZlzzwYp zG?t~yE>COY;;Z4`ki`!20UGgPFPS!jr$i3tY{U((!@LKxwKiBG z)yKR`h#FTniaK51l4)nuQLC1E(fBGJ8Ww0i1K&D+lS+o0HcZhP$$z9E60c{k>DngR z4IoT}JeBVq$3{fivmun0i;_gtCocu09CQ~6wwmci!~FTK#XxES7}raHyoTMt2mzv zdg>;a*y?Zi#FiAI z*3qh^zzy!kl0Whv2_|lh{}*ma6(<&ZY=-&ZoBEUFaP+~zEPeaHSIa53h!OLK-9F_e zB5qnPhaJWn^bg&E0AtLRrA>B(Wh?cc$9}wrlsjJM{tV_^Etym)>&qMO{F9Bq;)*Ld#aJmJ$@z%nbpQRiCr92&U>jZi)pz^W z6xK8UxD@X^6Wlm z6XkY;ijHg;aAl?zao*Yl6uI0(9jORoBv&<Go&v-J( z!Ra~Fy17O0>dan^)T_pKX;MmNeN=ws`xP=!$Gf&&1WF*j+$HHim%d`bWt3tM0lq{= zM5U4N5IKi!8YexjrBpEI3?r3>M zFn@Lxgmw~XO;Ec{80?_95WY#S+sL_OcIx78xGxm8o)h)!TtdB2wPzOxmQK?xNngTbcZ<9mh z2$BF_t%5p_VE22}iEG3$r(3)&cj>MjyJ>#h)r6htOrE`48}=+lyO2k&+0x*`>GDE` zgzHlG_t1fV=vEW`(E4O*n7kS-|3e`^$oj0KG`cOzEK#WIpyJw2?RZZTr;l4;r9r{i zAyTOS#vME#n8)QbnLzYi=PoOq9SUzspnwd|DJE<358?5s`p1?Z0W*;WYvlY0SQf?hn&5gwItP*x%{v((lOio(Z zPuDTC5YhO!TSI(syp%Kw6o+4-&P*|?KQXLLPFh|pM*Kz1O#Wy!$vMm zO6`=m_l^df$oWzR1_}h%QHm92aYFKrxTZd5nk7abWYrALRmod&?+pFZm{0^$>i6zU zkb}0TY_mKaTzwePdSnWVc24Y3>9Ruhbd_!0vjK&-15_rVLMc_qgKOV`B9sG-F$@XG zQ7Ir<+6gP-Squ~m=X(z0mg8VYy(!O)1CA&17r>p(U;PZo8PXo}y+ z@Sj`d6Ej$eiBdsCZsd22pJN)(pj1f62`@bF#M>dSzPo1v(DzjMR?t_^ z?MD{PnO8jMgS3ZB<(r2&#g?%ARAsiaK|)Xu$oRu78hF$;*_1iO$-U&*;t1*~UXFrN ztKwn;hLugrJ`(y=D-x*k<@MG6J#cz8$R8&#gPeYmDNEz@)D>eFUl)bqtW2ja&vVQv zq0{rKX=Q4ij#U(TKkwW^o#9gsR`V}$erH?ZL|GfTQa+N$ zZQAG-m6A+n=;zSL4iX5CD{(QMEg}^&}w^hmg#_ z$9q#}6*(9)YY5a6eOwcC&bv%_3=^U%qMGcIm0I5PX7cvqqi(Qv(|SWuhptb|ED&xz zn^6D!<8&7G%LA`9ldj+sKgKQs+nek;T}oCUmY1cbcyBE=dx1H#+!D6M_)PUz%aS<- ze^~3Cvh%HMP*;7oEscTK0jla7i$*>-TOnV|S{a$im@NtMs&182hVXr$)>C+d6evRf zHjs*a#62D~+Iu^o(Y6RF&j735`G~Vf%>L~s99nvwc=jV6-s(+SSwc&bN|L5Q)PWn% z%3!=BB>&g=o>FvXrQ!KgL00xm-r^w_OA9lSP%mC~%u5Z7)#~C*CY0TN13*6xCs}+_NZG%f7zOGo8?hq$$e5j{TY1f@`B%Av@l7 zq_yU1Rao@BR2wFj4f=`Wq7mz#KR-I@t@)1VSg@Uoxse}NiYg#t@aP_U7FbukuhbM` z{)l#9r)jhth}6~F0M@)u$?n##oS2z%Shbz08Yoc<48ZxvKm z*ldd?1PBCocXyYCySo$I-61#x2p-&m2X}W5?hxGF-QDga|33TdU3KnDips;9J-bJb z9^IeJwPuMX+}%(W&EzW~P{zD~X6{lOog}!8H+lxcY|xhNpXC7|??!8_Jxog^xF z4(GJBS4DG{+TAuXHmc@!^x3ivaLl;w{*g-ALJ}T}#MfAe6HrSJ&H$0+(THk#?_MjZf5rY1yCV#H5tp{fr4a{A1_pr|8Nyw$$fWSdFyW+1LUP+Ti*Mp( z)Pu(JOR=rgRZVEy5gj39rTJkn+jx+{!3_D-1ox)?h7Rkvon~Ps9Ii&aeI9uzbk*Z-YcPPwT`q7N)&%5LRV_3q3 zu|FIr*VM=aB0ud$bBx+%WA5^Y@8A%kt{24yKbr1svn|ptT<%L&)tqn>>(>-?iU89l z2{ca65Hy@t^WymtQ!Ib`0*$W5)x>SIaM!ibi`VO{)Pxe?lE))irJFzMCkdc-ik+j3 znD`aGumsIe${(cX?;aV+hu)x(rDID)Ph-#ja7`&q=M`!>GRClNX!O~dS;e8)!TBTkAW&!Hro8GA>)=8Q?jMV)Kya$9|NQ*B6KVQTmLC?*1#hzF z1iAJziI#non1d;aHkAfnT5XFhfACF_W@jmq6bF>-rY1v{y3nF9wF;3=?x_`S7AJ#_e;3QQW%9BJ!u*luG@T;GDuieNQa^*atzw0NqozR@JK_AX1 zQ#K3Ug^HmQm|C(Gj7l@OE!7d4si65N{rxotb)_H8V zWaKP)!xcanNyG0VKP`GjsZ=^d<3rE(?z`R1Z&_!0_I{41$0_K`;wrDZ%xt1@LEBpQ z-368u+GwS*xPO}4+E*LDJ4Ahl--*U#BZk(BK~e@$Fs6ucixGsJA0B&giHk-~&?DPL zJLS9?Bx6OReQiR)lS`b7hEQ*8`YM;`_8FO5-M}ylhYHBBVdg;!a&p5{0;5FD7}~f# zClqDeT(N3aUt+P|BgKPgPZKFq;Xd7p73k7MFf4xEw-xO~qu$0Si5?>Ax;KN>pDX%( zSH0ht@cQ9Qr*|B&RAkG2S(p-_YL9nM6A8qRZF59F&a9A6@$=|ed%Ynhl-i8XmuwK* zWn`{wYD`_vgN!kdh?8TAgQI?s-w-@vMELSAZDE#e(#1>I31PI`Xkjx@b6jzgh9g<9ui7SOR`_q+5PM`7 z@j|nHQC`yA^-u=&l#$w*S~NxUh-=TWI=Zb1&b969mzA0xEN0-RHg9SPv1yN$(aKrQ zCF;2r2a~zs0HU;xn+^C#Rz2gOjcy#?KV}lAdsk0-RP7Sn(q+OqE z+G_2Bhps7rGE@5g1C9QyUP`0Z%=;3x6UKie3ebEkNfj^Iav+~_ED zWkyMKVK_{+h=TQ{bWWqoidO;#L2?Q>C|NvT<nj>ROYmeroLYptKbS@4}aD=#ggFa6X9&;4OY zzT%&V!a%L!oM11fgpF(0ZWTs`C)(|ri4KdqdxTwrJH!H{5?)Vl?@hb<*ja{T>c*CJ zP5tRE8v;B_c4ecdf~Cdq0G!o$U9R5r#lNK&QQqQ;U#xzsGIBT(?lGFy8crZJkHL4# z`4H*8P#&kjI-Bot(e9mURHNy1hr4Vx8r44ur3}uh@C0)&Q1`4ga%*j%BRuqP;)9x zkjgTsZG4H5BP)Sj4o5Hlt?afZyGd-^sw&6IV!W4fXVY(h zmvnLwazbZ1EN;Ch!ZT~#9ku}6=18WwAZ4AsB?WUYh3no;^fxX`6%sIqCKdd&=Fg_M z>aV{crophw!{~EIo9h@!gZg=XTIXifc)>2(^Za2P!~ywSTu zq&=w*V%<%W%VY;|Vs&rCOWp+)7(+B$jmS9cVmNvS&4&nLG=v635|#+o_HQ{{^ouzk zm$X`KdOusc9gieNR|6Gd!f+hM?Bl)Yr`FE!r~Cabj)2?PUMleN3lz6E;C?FVMPs}< zJ*-9yx>zWCl<z?+8)EXxxW<=-*}S zY8{a`eRzM%rG&;U#Dh4E+}X-U6?S3B6Or&F-0w{E9~b)mBB9Sy`J4p3zh&!PP4&*F zddn~K=8t;sLG6{M!6OZT`C&f@W-OCiGxR6jx~e6J2HiNc2`a5y$PdbF;7^-<7Mga* zJ;v-{>8H1_6O8y#K~}3eA?`Cvv8DD)LXv*pVI3&gF_yj} zMwt<>exhO2(YILMC=<{QQme1z;Yt9cK;!vM$l!>LdHSDT^XuPsCw(s3jb0qSvyKmi zu%QQXjmDwoO0%E?87;WLDz4?R5FB*T0J2Yh6=L_uGmXY*m`8#=(ZILUl*7NsVbj$$ zTH)#%?3&mFCz*rXxsg43n89fba?jZ`E+^{F$*0PbDwGa!ljSvo?iUc)ned z**aB{Ic?o^yYMfg;5?HDIOyE)-)=ElyxpJYr*x$*?4;Chn?1QQYI830^NIawiiunM z>GOQ~Q2FdOBKQ!&AHe>ao%|wNyE3&k{95x+R~L6tu%h<#FitnH5MKLf$t-bJfY?z(OINiU_i4P3FhGLID zNA1$R$^XBXPxRt-3TxOtd~m+||6M*|e_uX{Pq(R9?u*=8V_;k(V)XA#PjzUyp-q?N zu_w3-*p_3&969z}+va52ya&H+8XId^Bgmt!3oFh>Mz95LF?;Eyei<~3p*>vkee><` zzCRr9E*L)};P<(sT{_A1zB#|>@6TNIeST;$dwbC<*gL7I;Nx$5xu04>h$0|p_q^pt z$jp3s8uoqATYJ5@KbRZu;Nju%hUn@aU*mn+IXJj$!C>HfyC3ehv*SO*_w~IW;5ftQ zf4RL4_4Rpt=-pf6=WTtlXx(o>V7Po~_qkYFx+BPxg>ub&h3(sFaXs_(a(lVo;`jBu zzi0LH^0+_0g?`|FyL`PHAJ_GHn(}Oq`{;dhu(9Ggu504TUwcx6!O($c_u{+8|9s(o zaaUnX`sU{KtlGZs`*^yb>+@)MvoysS`*wdlBad*l`g+wp<;(Z#;O_Qz#UL-E)oxY% z09mod*XI3jQqa%eZYY8^b@!x|oOw)7gLEqXaQ&xWo1)9dJ=x@@fuY@gm|&&hZlgi< z{^V$bV}OgEx3>ccUTce2MnCUe9NVGAn2&Nfbr*!SunT{;bQc zqO)Ov@A>v=eW|yO;n&Lp()NV-`B%QzQ%xp5{})@|)SdNBVxKCnV}^3q8NT~Cg3L8? z1_7EJ^NJrB=f5qcuefCNP)B7OWBBf-_T0;Mx9Zk??`S`tu1I4|t$jvZlOY?o$8h!Crm`kwg=QR0+@Ndgt={0n4`%A^ z`W1n&Z7KD1cYAet8#zw>c4b?Z8lLipQ_F3y)xcxV=zG3X^R>;@D3 z^)&u_$C1mxFsw6Ye8X39E4ykKak~)vXY0)O7r3_EHv#L7p~aClp~%qrFt6Z)aI$3) z>xXB&@j2dQw(cD+uzZ`*R z>p|_VTiar)$M)13Xg5^SC^z66W7`l;-h9&1JeX2CI@}ySVKW-_-BvcuHliTa@f-XU zhE?<6-rrGWb6F1HK^(tPoVA|SYKTNRwqi+F#FB5|Vx3t|qjOUoWW#Lx$Sj&=<;lja zp6@+6Ft*e-!z{aG=Y3=B8^Xo95;W6mh7w(LIZWotPnJ@MK5iIuqgUCLQKZE_FnU*! zr+L9|q}VZEh>8)T(YPwvqQ}DDgCC%G%%n-gj5YSelz*kG&slzijC9VsjbrG;<2hhH z`E=bU8tGDE1-X^NdXjGzhoM<@v`8M{D7v)y=%slKQGs%)N4j!COoV40Fk=IsH{7bN zY&#nB-BBmaF})zoQ3(NfzoEfBg>oH*a&1L9+g-{Auc4f^%jOo(^w5s)!hR_~andS+ zE0*lqeO_EH?mFOBoF3*nJi>MtsusUCFKO^F+FUJ~Rd9Sj?1z zw_v(nh>Vsft>tsjJE=ryvtg>cR~vp5#&1u~u!NU%71cr$O>b~XII+W7negk7n@86v zS!p*dad=WL#e8^y6TPQl2iYyrTP>Ck+#RjGRpx8|S^rt6Hez}Cu#H}CS^N1;Ho53x zB}(s)p#(p67h6DoswgE-)wg9~V+gHsFDB@rIKHo#V<~D6^vWO8;#`s`tQHV4B-S2z z;21?$#?YS)B^gngzJmopwLxrJwD~b23(kU}I~Z%sQu&7E`YXZU2t765zd13)gNgh)8&rG6TWS`H1UWbCF=q-(WyVe68}G;Km`WP7=TT>+fra-0bEu3@ z6EowU({(uQu`}ql- zlPOQj>6rdBJ#biUjNQhv0IQ}U;Zk{ zPgOlBr@wW3oyq-7L&nJ1iafv)r&H`}OC9eZG@VQAP8NM{sET}w!ki=VWs3(+J*o>t z?~*T;rLqtBnnti(MB&uP&d-f({tqTCYz4SX7d^w!7!J9K^6F1zKjc4)I;+zremnZ2 z8WrGEwM$Y8>kGoK)K(Mh_!~o&zGounzZ9Vn?J{RH<#^cF`iW8G+R03W$wCU~bxo$| z6u@@)aF;nsY^MLO;UtFCf)SZNU+5+R@duvh3F{^qNF4j1YZ&Uq}CGqS!{sBF0A;^gO(@z z8g~rEw@o6$BR9UMVj38sF{_A&&cTLUtHKYlTOmDCeXPfgUkXK^*V_$35i$qf-$LMG zIV|bChBV+s>aTMtI5^&&%^YJ=LhOdQfg4@nw`!cBBrpfI1ju$;LdgiEQScB!Hp+dw=Nm(8*kp&UXzBP2{WjnG(meyL@MN<0=!?Pc`Z zPvwgpld2?H@mX{>tS}|J_VQD?TP_8m7q$8^N}WiXsM1fvBieOFALosZ4-=PSv3?$V zr#nke23Zm!#r?vTNk*OhXcB_ZqhXBnl~`_}=^|X9zrS(BTWw_}30YHo3z|HO-Zot$ z7`6X?v@bGi)D={MPru#{%+=MVdA?%miXQ5$m>ySMBx1J?nC1~HuTnMZj#5vaF2Yl= zGB~U>JC+eM%Xd1{=J4cU2O7@wV)x353L$arG~A*OloGS|=^MDAQH5wkQyXAN%LVC_ zUE-{LCyJ*!w|7O8Z~N0bRy+{7k$9>lyKGYyEn0-mLDelYTUECS$zq$z&3*vR>AvkU zC6Zt)d!Qisqm79y`I4V96#IfGwLO$F)T;`6S;MynybLU3U1aVj)n@XHYlXBV(Qi%g zCR?KM*XstN620?tKqbk)Q9N-#`wjVC`jR20%ovc?l38}M5XB{8@FWYBUH8YsI;vMF zzzsuiEjVk2Ua6>m*)le83(S@)?%DcI2!Q~TBv1jGD7rG3n#Awzjn!A9r1P()1Lz6O z@>9S;6u(mPm}XXr2M7HM8dH9nDoc%Tvd#9&$RfnwA34I?+ zsOzI+E+fw{7%^XU+RXybLh8{=dFTJkFy92k*-5@BWc{dR3QW1wqKsd(!>c|>&Ewuv z!+Y3dpq!3(2>*IJX4Ag}i6HfD3w-a($vu7yX>qKyi}}J&b(3D*{O%mlvaUVXYDQC+ z?_l8SlsAGEZahHFj}2I^*KqwXnlC9~NCdCpich8z0y5s^KN%0NGE+G?W}v0X;ZjCJ z41mt>fmT`w5pA&A8r>uymzBoM6kDhdJ@f0D^dvfa{x|>DBiKCc7 zkY+Ev8`MmA(D;j9CX~Zj5Nk@9-MdD_xtUO}lrlzF`)6zJ97KJ0b&-*>uFH07oi2Wi zi89W-gkjgMb#YDWShbwyOkChb9Z|oNK1r;JN`IBi;o{5{Cq+q?rwt)qHLhsGB%~24 zhmC%WR>*G}IS(t$8uoe2fIudzPdLb}1<2lnmLU;eLSIeOzSQ~!8Z?-B^1MO&y1Lv| zqk(k?@Xw(k>lNG@v~|BTEj@hMy{l(png6|tv4ut)hsx){)81)=q0KD#Ax(bcOWE^% z@w1TeGx&tO?xo-x*91*FiMxma zv@q--p6zDR9t|3fD`SI^l&O;tDQDDajC)hjB6jG#`@d$RRpJg+q`%mLmz@dynMVN# zv6+1`s$^{4Rgs~5;+4dyY%6z8dmH6M+YHJ9ZEur4E23}P&&2Djw6U`mtS?|#k2s86 zay7@(qAbirngoZyFm1!ms2;Qlh+c|xrHuE|7;h*c6?fmu{w9{A%Fmuj;OgdAf*sJ58{vB8c72W2B&AO8y+rjvTqOwi4Q($bK;bXrG?6)RP! zx5vqAT^GyJ3HF_GF%C!Ke>VuU(p&4pq6f`E$V|c4OrzmF92HL)WR!HzuXEBfe=8D_ zFRr%@@L!Iu4()L|MHx?D+{Ep(d;MYpVR7@sY7)_UDWiEPeW6Zy9|vnz^pZ$IZ2Q%| zsN#^is$FSzGTyT4z0}s4R0-SIdsUGfmmQ&5)AR_Nly0~Qn+HTEvztpfHsYt>~2*~bNY;*P(48p;eL6((MY^AzUFW%E(fvg1p;lW< zXX*>L0C)*)WQm)*G|q4m|4b4B7iA~QKafJZ2ea=p`dq0?;K)wqNm`M1^H?mrGBQK; z?@N>%C%ieo14ar2LxXjref%m(Ncj^WFiq(un$HfLO-lA-Sy^4QX~j-n#kf`%)+37A zw9uxra%O(9#MkH{W+#yEwQ*MIqLJn@jn_s;!MO+C1(^D7VAGH(VHbhV>io~#YA z)~^aBU!(Oq)z#&;V$y5|KfT+&ipxhFnH7yxsNR_x{!#;Wf1{G6lq$pZxa(_FvzqBx z!UG8+Md?*mnr>_T#x}C!WmoGbF4Vwi2tp!W`9$1|O`V3E+t_8WUNg{YX6zPjCbj&< z$iKpt?asQu~d8o-KTE@p*h0SaD_tOGVhWkJjsv#83R(47o2z{jiyrL{WOt@B$*fne}sG*&}huI;g7b;3dCV0>36-21JJZQh}l{ z3$_|*`Y;BLSZv0vMy=&p&A7bH`WLAph0;fOCh7-KR}t4cxIqp7xN>lWeF!G@8QIm*#?dp(3R`q+n`LSb<;mw43p)`=Vh zQ~D=xa^0;-XId3c_eCV=f39dtdX)b~U+0Wu%Yu=UJ4B+)CYl$XAXTjShSp!n$P?qR z6#8A^eu!kaqqiw|;1x`<6`(IdNq_!^o@Gyc9?GYnYMWW7Czn*`z}6qLr* z3FF&t&HBdJS7qyv49+A9mxhG|C8Z_Q?NiOjlSJhnqr$NwP#t+i(=6~0v!)|iY+>&- zV>-R~KLLUj2b)Y|31>o5Mt*gO$X+NzM;+?noYl$xxgh0}dK1*7OIJD5`D@s?4LQx* zS#%@e==MI`qzpT=ea0YZhDnsx)Q=pJHeG6@s4b0#U&{(0*`T-paL`FuB73Wt}H(p}x{P%QzMy z%qs)_UJp+!9>$5dq70kIBy0#%Nz#zbCNV%{)qiB-dZ|lQt>sA=se@230E<-%VnQQJWbzv7uxCwhk;9qIDefQK(KHyh`t^JbDlX3la#VGC*=1Qm}sg zBmd<+pH06>%~H}Qg0m!t=4-wa4#m|!!eLepsm{s%A;m&n9imWtGCX5o9j&QtQ@mn{ zU8X3XIwlo0sZ`j{A2l%{{t$^js-KYFPpq3rsm3+{81PzgUh&TEFO&J-9H?( zPGYkWUEqTUH4=NxkKUGBsekN^cNt;O(sX7jx5P*|vr7kY@tR3kG^_PdxkA`nPGuz+ z$XB6q#f%U|>0}3dADlXaSTbf6|RgRi8^{%SDRV+$4GkC!N8m zjHj(S#fqgjCdDtiv+^2e<9p1fa2zITq0ArlpjTn2U;RmHb%g3o3U%g__F0x;7Qw_m zf*uPYuY6^eVqy~|*kdGODRr?~arrX~e@KYQy$R#3!VdQ)(F9}f9GP1+=XR0_$E-=f z9tek?3dOeEn!Xv0hc-FhHd9S=POIq2Af;7#>ng084g5_djLgQt6#imlOu4oSS0`^3 zS09kR_FDx8E&mgwpCo!?m2E(i zz7SuQioURXw)r1~Z-AJna9l=Y92$>XPzWL>US%o?6)*b(a!*;Onie(6#qq29KsoVe z3X~q@^hL^LC3gH${vYTrB4=s8XvbZUfkV}W4%#wEJTntB0+8NrjU0-&a}5HJC_TI~ zRH2(a=q4Pj`Y|;s8^E2wm|8%s56efYh9O^G&96BR%wDj)XB zH)>9zvxgaB*OcS%A>n82waHZNS*X1?Ryhqr&HRs3jbP6A zC%Aa|4Jc@2xS#)u9lV=m4i-1;x9_&x8*c!7yd0U9$OENU+2fNjqaaTn$gAsnAyeQ~ zyoWk9kBbYTR$3yx5$UD*qi{_Yb6XT$!1KW$=&Ok+wi*h6{ z+y+H3_$~3PaT>sdCdwef+yTIzT~;ho>5x^Ci?r1bSTcxrtTCAMRnEI*D36qIDD* z3s-$L!?hA(uuUT$>)#ZcQuC*ACRWBj9R$BfE8li5nHI6%*Mu)GLE8eH)PIoZV>2s2 zpAXAYkOxsjBx0BCCTI5@mONyS72O|9K%42YY9dAX4ypy%SSwdE+)tA9`uh*7#aa%m zV+xGiu%0^6Z-|1KM~4rT-~QX0sqMefxPsP2O4;%8hzX8MkpMGujy@PqCT~wrnk6V9 znJCM>KfsEPqPN#&Lx3bQ8Vp21KJ0|eLI5kW5EV`pu*d3+DNHmSHkC>lIi*Dy0KEy4 zMO%uDRiSRU;C8c$tVU7)T-|F?9L#vh+8Q`V`V`w4%^b6`eT6A%*B#k|e3(2CFNc&NDr)hbVhMF< zY8&--ap&{ZJAGFiSP>4m)?duPPWey%7FZqt{1^K$Wnk}U2X`e{G-9#SCMdK^fZ-}U zDIXdAW~YJz^y8;*$vl{UCV$H1at@nAIvV872y>CrOR#Wx1hD2rT<03GvbE+4aYFT- z`u$lf9-T%)YB0iQ6K|rlNqFthP`~8L3U*-@G!=_e%qsbe2ZCbWl%c8P1l*%#p>+G7 zP~}*0<9gA63rFXj&ApK_Lf;2jSgbWF>i?*f2~3j`5@APd%#v@LX#vkijz7hwiaj-fNB zV*RU)xM&V4cW3;p?NhvCw?{~S_4pLYs6$1*1d+t>@HOxv>=ff8W8{MH+5q4zVad1B zvb)ym=HQ2QpuoT!xZ(CU@3>3!_&J#vs?G;TD?khW!wj10cBcka;docY9KywWmRl4R zF+n;qnfwCD-rOre;-Q?%qK+THMR$Tb$j9|bLM(kcAQz=kvE-b=_I=OuU4h`~Y2~}V z&M|MUHRf-R5e{4_4_fmUb>#n*Q6+0p&_z$xO)Yj_LSaz1Z7Q4*?$<6PTZ;GKl5N71 ziuhd?N{)f3)x(N;(K+HUM(}}uCBH*Sh&6u?s%M>4Af!MsCg)OQLdI0-njDITM6kpH zQJDTkX{-MHZe{2g81lgH{h3tCjD4JUT!+%{Kuij1t#S&XdgHC8B6n(u^j{mXk{*xR zvU?3nMr+Wbgo^S-UEJ2&s8}7pE3y3x98MoGiS&Ulk%t$})@QmLu_jq!ezumyysitE zkf-F6871sp5aO+tWg_i zQLKD+JjUVLCw_A>Y;IGFHmZB~==oQ{ekkdnRd5HXDnF)Qm~s^Jfv&k<-KpcTrExHC zGysrEQ&@6AD=2jxscn~qS`hHYB-7@Eb_brQ@4hRwGUN-KT-7cKnrv{R$AIU0QkNY@ zlD&@K&Jukj%(h$y$L#L>%HqQ&s6XB;-yV(q-NaDrk`7T1&+SX?r_{gk@p<%{Hxs9R zY624QrztxaR=n*kd04?U2&F?l)&rH*z|c%-t8JZ8A1}|3hQ5B$3Xd*&K`w41K9Li*g0x*c zQORM$7}&>7?&OyvKf`tLNvc8khKoXsKMwoM1cbQ5s|yslB9Jpd$nVq-*W_U&H|T&d zZc0X3d7tvHQ79!J4~=^O%*Ui?L%IZ(de-_5)~u(0_PbIdbByz{jr&SR7<>bfqt&_R z8mtz}xT*HRBf0@OQunTz=o#Cn^jZpKMMA?Pdkd~xaUsf4?Pn~uPP7BA8DSP3%LG&F zeO#&6Wgltw!O&%f45GYq7c{s3$5z_Vxg`5*S&Ly1({u8HbL#xyj4+19mc|b8=NwW@{o364%hlCk$v@HjO%)U?E(< ztl#d_iD=+;2&T-44LO>+bZhMw;_d#?m7GTPgG zWGQhcLU<&T?X<70(#Rs+yLWzgj-0lHAW?jep_^LGFpP=9cqt$bO8$w1niOV=FZqOFP+_`RMpH%(kl}Q5YcfxD@=~&XK<#&^-k66w30Ca5Kws zil`1WB1L+I-pgIlAQ~hyWjs)WbN|&~dCMWed9L$IW6)Phiy(#m3V717P>@YBN;+}f zpQAUZk@a7s4NY6n)QE~3fTx9JiRc#{b;W}rG#>5CH0Xrz-%ZE4&h<>y8$59<<16yv;^M9*^* zsVa^4Wl_Zs=>YahmWF_e|H4pvpRkeFH6WajVeI~PNq__6xjf#T;!Vel1!3{ z7G2tktXS?IGS+j-T2K_|F|nj&<~f2!4|*g=sZ-Rn?Y|x@68ZRb9^AuCrm-U@u@n#? zr@It7ZSLc~&8*-?LNyIq$kf)N$CTg2%U^!e-U$UzJZ`Z|AT3=%;BLSL0Tw0?U}iLT zcVCDRxlX+U$ot%U*qgKS0ajg8F z%9TqCEmd>xW#VGmb8=>y0IU%_1gyzrhiCOrl3w?vIHM$lXKl6{a^WW4W-r=6nNh0s zO5oc;{(_+MD-L>7Quf{}7*k1(vW!{v_bF~>8BT%wTq9FtI91n(#cG!IyZ+9Y1XfB6 z-NbTcl#Ya&m?S@beWJ=dKNP5^lr2!7JfCci7lsw1_pxTch0*C}3E_|``Rx6Ha?=kd zKJqmKBQ~Nc)+Njlm30GVjdJuf%niRyZhkxT3cdQm-0waF9|G~3DZu8aK4Ch z?XVta!ivO>(tC;u$7^pumjvh$ujj1Lo#N3cWJ|0y}Up47htJ+JGi3Z@>$}V zoVBvE$m!)`$`MLY3Wy(gOe4KnK6SBWsd59FsjqyiLw@N@@h{y|1c}g<>o@A!lDPW% zAzt3Egf%bZ77`HtxwfF(Vea`E6iy(&rt#pQIFCfMrF5$YC4=po$3izepJXYAvEMbf zDI3t?hQz}yX)wCFd<99+FX%2vV}orb<-C4a#9x!W8zi7K{N^avo$Zz?0u;r-tu;8WZxVuLW*{c*m_3)&AuB&zu!QwuEU? z*UrBFNY^V;GAUkunkOfrDL)t+Xkv-&?n**sLCp5S3<2p1HAMF(0e@qZ)Ce~(cg8yY6IplM>Bo&xrVvxeh~CO9MJ{SC!1$z6#O$&P6+ug_A0juPH{ zZ#Os?Ic>I~%;cOdGq0+_i!SgAQ>VzT`>V8060^w73HRpnNXSOCHJ<<)2FXg&&R|a7 zrAnYvXQK*ZqloX$;aCo}0_Nb2OnY#$MJG==OT+(AD7UtY?1}p?)VN!rWqE$>cNmE0 zl`qs*M%fVAJ3Zc2QofP{L5YVzLsV)>I&nE*#>!R3fb`}q*!cgeOVqaq{?~EjqA`c_ z@|)qR9fPDD{NQ?GF<9Q#{2IGZAk$h;gKIx%?Z?EgX4hd*&&Bhn3a&pygq@;!)FNa% zXnZMgp<@lM1z71XJ>DxmS1E4}TCSglzB8V-`pL`Ttn(ZQJh}7s=d64AxMpNI9OBjn z=b^>1(O@Xswzsv6tOJ*>9Q^l8O8aYxM%Uf0&i!q9=9zyx|6aT9E8KRGmBV&X$Xv0^UKCIoPmLppH5tDO<#tJjYvIA8QS*H%z5RvsdbBA@M||45Xq<#>n;oV&hMGSsse~;bh-5W+y@nC&IBu{(eK06-k(hRLZe$ zc7Cu_(J_Tyo*W}0J2AqOb_(Tz`HuH;VLQ--LqC+Gk>u`XHY!jJSZn1{-G)CX!i3%{ zfW)O3dahc(&OJ>5Ta9HTIX0tQPVaqA_6kM_#GY>5VSaK>3^~Tpq3BuLW}>4TEM>*eWO?xFps}v zU7^`M6kyks6-0)%e0FynR^>umAVtpdvemMzt0e$Bc1^rCzfMb%V9*l*rxv#qu|&PY zWDIVbQri~iBAoK5JM(RoF$3shw`QTsL>Tm@CS9}Oe&CJT*g-{eX&TDZj%LKsf8Y^SK57A522Akelwgg~V4I5*owz6Fl zRysI~{hP2g(N7^R;5}dt^(n;yyT0%SqJNB6jegRW5Zv^|Gl9)iUor zv^1jEkU>hAO+#I45aJ@b8xl5rM-;se)W6+v#c?J|zfT)87vkhqS;>A2{E_qS#Ej|I z0^=lU7E^M)v8dvMcV^V`h*Z}4H)bl$Kk@(9QK|iFH_g~|2t)sDR!X1Xv2oI<$;-RO z&B)UCFS(TwAFNU1sbYDeihs>LZyL2U;muueI0hT%zyoWKdRx`6i!o2r93}efzCeG5 zPdrDNdS=fHGz%-nY#CfcYS>;|x|>y2Z@u6SrMs2npPR9zp7RhTn?nO*)3&-ZW!X*( z{|j*S9sh8z+4k{$xH^L@oyCs>_dK{f^pw?g(D*J#QIcZ3F*mOLe;YiK@c>&82KSg^ z$NJfC;5RGV^_}VN({5L*TYk5>e!R-+xN4n?h@QjTQne`P8_*w@q~lSDBz z@rc@jwPs4k7oz>0wn%ZMrRbmU{63V+zskTI#EjXBCK*%U^{U;wKj)oVAp7-iqLaUc zE?n`iko;V>jhF$sW@Q zOmz;z7=!O2?71gyDK4H^OCq*&%-GImkO}Zs$npNP@Ht!D|C=#Qd{zla;}R_ud2=>9 zeJ9VAzhRn6(JJytPMx|`1#h?nuOpU`xElWnpBN3@`!dh}=_5kRDzo}jjabHB6_Y;d z;0=(MP|@TXtI1IhCnp;}SIQbQJ}jHo0m}vV5RmWG*@{f^z*&>>ZMXU^Zmiomes|?8 zOOg`^n;{!-sd-ADCxqq;=fdytkW653VQKgo{KFvLRvAja%IO4%Pm85UldSZ;_cc|T zGMMEdM`rIZe*#m;$z+TJ_g zN#v=-ZsM(vCjNdDn1BU_H**kW(()qU*2Wc7J{>YXg+v*u`K9NJpt79lx&^ z6=Fo4_^}Fp@w1)@5~Uj{g=4>f~7#Lu3_d+ie!sE|a4R zeX=?uGU6!VFf3)qk;m{P*!qZEuTQnf?953lS<*uZ7QAG$z=u$eJGu)v@ursbYg^5N zS)f}5l5|nQpPZ|Xov~RUHmM>Shv>&IMkvZi}9!uf8MLlrkJ4-Ne7;^-Fx>lKc5bP z@AJ(D1x3UUP6B@32*b9Qy{WB(m*9e6dElUt@7vDBLC5OrR(Cfzzs}1V0soJ=8jF{g zlW~N#j+bi|A)lL#4LtKdJ|4i4p{cbDeBV73e`{J;;Fytz$Ft4r9s`1%Z|u^=lWWw- z+`T%Y-t+shCp<^i6H z{{&AJvmA$^Sfqf`fl{h{u-u(!fNOCSfMw`dgACRku=@#Rb` z=i~Fa@9WxGhxgT7_Z|ZQ|I5WzoGH8SU4I+0uj8#S3u%;p;_Dl0A@v%zQ7G z!~L1~^_f18duIr~UN?bWKKCcx>WgnXb5XuN?vA(J;{=j%@ZMJs8%YG2)+tk?Ee0>! zPc;PED|Y;R&qva?XLh+XZ+BA#z7kzC{B~}uOhM8|HlA9@&?S`haWZGzypO|mjWln~s?@TPU@@-X;uoIpeVm-=Z8LqZ( zzUJv-6j|1?_kJ&(F}Kl0tp)zB2vcGEnz}@+8Zn!XS$@O$b&ci5;#JG@^#L^cCdKwZ zEU#U-YJ1g_AhnDq)jEPQXZd(5nw`>GLaZpeGR33Fv9Fm?c;ux^TFj+~8d^M-%A+{< zKn;AFsGS~JHQg>uM0HOmqp;xECZ^DI$2+Ew{OQa+JL7niTz&>`B@LsfczslmeGzv% zXLJod(JOkC9U}9cPL~Sm2=6J4F|1VTJ#C_>C#;c@W{S^ zYd7{NbX_uC3-)y66$wOXGId-j7@FfaRt9xk9oN!Z&*a$myx#imVi^Wg3;sX0-Z47T zE@&5yla6h3Cblv0#F%ixjwi;%nu%@Owrx8TTOHd@PCxJa{rJvW=hxk<`(CT7uEMTe zdsmg$XubR3W74Hi&0F}7y7~px>w!SMV@X#J3f3vW8nsR-d+_?QToL2(Ie~9cY zyVegnZdN5Z2O}26rdHV$Dv+g0_1?EqW6SS7!fwe`G_FQ4meCor6jDKOXg&Jwp(W%$lC9>h_Z^zH4 zJG#X#e5<|I7{2^MIz)6ZzTft^xAE1!JFf4O|I|F(_9!V_m_5$2zi}hz^y7}d3FziH zG%*ulwt2rrX=#k55x&qtGOmGq%gG7kB5G3;IakiPnK1X?lOuX)-Do&`KfdMt2&Xew z@)UW9)iawc%Vrrq!6xgfLGqr>?y~4hVad)A!s2EcBQfmD(_L6jc4=jKolCA=Ux=^A zi!CQ(xENx-C=%%m9jwgG*g&SMHVPg0DH^&@Ot@ZJu`m^=^07&NYZLL_s1Tat`VvL7 z^v*lCf&4p?mDaahY->5N>sV=vvyNDbfa^<;CglrzMXj#Ht6^)iOKbD{u}wYlKIMkp zF1et_W+oXX^rW#LZoUHL@uI>~1A%$sI$~Puj{cO!c^+)_uJk10ND z#@E2Olu9b$H559fU@YF}^FLDC?K|!Ja(xG3mrh;OdodxDn^oo;85H`JJzZUML(5av z>ZkYfZK){XX2N7p=cN#J< zGX?55m*+*RaMOO)&Q>arJbkjA2yBr-Q~VIClMw<>u3js^Y%{HgV*R0%IQ4CLV}{8* z#NL*cfdQ(wnH(|TF6c0}3E8<&I#@@yuzUOh!&LjZ_i)y5W$k+o`gtpxFW*wQ+`__iNf*$19U%(>#%ePqZ`*oo$-FUMy z)~b7MzH_jv`$3Xwi>gM zS{e2<#yFKa#644$*w(=rD(z*u*(O>4vohUbsxKoB?7KtI%d89-9D=Rs&yo?vk zfb@2`_HgZ!C8o63c~Zsa?y4BRuJdK89Wb)mtQ25?cdCvWTeij`zZ+0(BUADFpIkie z&M6SAU%a~v%zqty^kp6h4JO5;ylmv=R7-DpxSji!`sbVf_u<+l0@w8tkbkvcer_L# z17WpeRbfl&k%6CJ9S14na8WBIfF2oCu(J?on*h88g+ z9Mqoe4MK(er!HohEEQC>+0`^840k9NR5Neop`qzG6udztyJAz+lXWw{dmDeNc4mj( z-=6=UcYZ9wpksw~L&&NJUE1eVt+?(BJWa zlVGb+fo!=OAKgr!2l(wk)Q)TVNHjd|gSG6BAy~^OmZ=rd*Qe8<{BR5fZ<#76mKnK3 zS!GYrVbTWxe(7;q;x#fEEkut;-DJcn#js{?a{J;ny*vevQ?o1M;^NZT^kyz1) zgF*7!?w<#P#06uZL=%9)iVyG{=Beb?c7;v56vcW|p0jZO`OEJ$tha;pg%%5!)A-`k`1JeHHLjYe z|JzK(b4bc~PWLPNlUJ2p*O=P_%iJ{88J#0bqV{sMQU7X)pBBnwD0~0i0&b!(sEw(f zS;De=#(PLOH_flQkPMYOf)KAUN^BP$7|XygEyP|CFKCu|PJ1C)sqx4ulx#AEGqKXN zfVJ$;32&^N5zP-41@OmcjIERb$c13%z>~O6Dd+l_kdt$3J;KE>%`LG1>I;%Cv9mep zIf+);dj7yK5l*}sqazMH5oUnIMWWs6yH^{Zsq)fSqtzCTdmkpzUDxHRa(^jzz25D~?`L#yk@HuX0m=hNj z+p6Q72J_rlF4eVt+7jDzBTt3M_5c2sYieNKOLJ&IE}j4HJ@5pqM|oU2Ph)Vd&sHr> z;X9g#ZSd8y47%6v>3|!UNZ!%UM#Cnn!4&5S)^jC!1a<*8_y#dvEovN8?Fn26k-xF9#;_GeN$(lNPK zY&Kxi`Yk+N@LWG?tRSR>N^wxiZdbEIPZ%@E9}uUyKs1|P*>?~lr?YEhc@nTWV89sa zzSnK)|3flWcMSmk#`^K!&R`jZtixu-!o-F34Mry*0YU`&S{HCos34U0=r|QbevQDe zJM<+Vbl0hn*^@p9c}}C2r_FNILU;#83)wBb-;>h~Y@QwMj-JZH$RbFQoIPudJbxdF zYezNe5!>{asgipJkiBu2N$sNvkRfR1Wj4O|Lg`_TIORU}g%I9Z2xG!=CMT3_h8&a=TGlL? zszB#3&SJN=i;M`GMd;ixnw@`$r|gjO%t`_eEahQ z9y)0a;j3XPWp^gIlABM;+f=O1(HYH2H3y;cNp)m0E|g{Hv6_rNWbAxpTjgtXEA&nTdG{oKC$~w2CoCnb=h*G6dKDEsD{`AeD3;Rn9 zHDD&8i^$^FJbDjNaR!)F)N+&K5(S;ASCLB!Jr zBTeX5*-v0Kv_xp~b|`$T&NvA$?alRv!TnRBxC$b;D?#pI77*@nx)@Qw=AF$JQ z;(k#r8*ZZYIMO|dKLy+XsmjDzvI5do#XpC>zJGI&pD`MdQ|@}guTi2|oOmF3R;}%# zq4fK_s%V1^5+lULV>{dn4^OG@mFoc{I?&3I8YS*H?XK-12R;Pm@Oj-}q=~a@AfUE# z@Mu(=+~y~*z&V%l(V`ka;fXqxi1N99Rqu3|U8^YohD+jZU*v400 z*{7ZCh0{iTuOxiNdzhh_oJ|19UUoE;#vky?E5Ibvn5sC<5993NC)_@+GMmj4+q7~k z2lazpVgVm&{FY)2-K0ax8}l7t%W0*&nN5_f&-+PlCF2V=fxJ%c6SfAWDGm_}k79O7 z!WXPEm8ViK?Zmvjz7#Da(V0{o1C~MV*m&*t35Rtl#&SHH^uyfm5oON7n&jTUMUZJ9 z=xAklH##f^fh^Lr0Q0S$I%bzE0VssyOe7A9zAl~Of6u|2(%AHqWnFNXiaaboPy(#R zb{6bt_}OqaktKIlOR3y9=65<&%mA{hbR^Af;T$!(%(&1*=ful90Sg{B#7qeLW0=3u zO^0Ml&b9V`^&@bd%b5<5>Fo?=pvZRn!(;!DOfq}so48HY{E03^;(4Q$k~pq)JYG_) zeTvS_X?tYiN}lN9vHP77zSKWUqs09}wai0WNZ|~9xRBD0LERJhgHC9pj!KNza*1(y zsZ`O_nyw^2Pu~$2^1RE)7vrotigI~AKa19yuoSr=O`XN&L`5mwbTSp{8e&)4I&Y#ibd1l!EtWQ0 zJ}GQm7c$f;kWup2=4&P7Zw2<`D0;lGa((-yA}yqs?G|aQj5=x6o}!{OJ&u#5>Saee z5}&038k6b(TL}0?u!UePCo&+yRh@y>VwBqHF8VKTQ{me6zSru8uwU$o&7XR6HY@E8 zp$+~?r=~USSKf$~_#ue$m61h*(x=qFtu(f^wDB+tf=l$s$^g384LYh{ErOJ)Dmp#_ z$15*8Ga}d0k;T)Q1Yvc#2<=}Felo6ssXt7VFxJ8=iJba;m55|cCe9bbt>QiGn(1&R zI#;xsWQsNNMT&3J<5O3CSO+d!fbk?9_`4X-CTCQQyWdoJvjNe4iwYoR++sO1b6qMH z%lqt>1c897!e2r7sflvVAsJa&qpnyS7@U4uwi0R)6|AyyrGMzA^uq@axOX(hKmx8` zao{Ck<<*ejM)J`7bBv3atxx_?^YYbZ6NtF1Nw6qf zQ3*Q8aO_z;?TsSbSEa7~*BMNd>0l%NO@|yy0ieK3hgy%`IE9U34Y@C7nYQYG_K01x zGLnx|BSV67l|xDY+v1*MYmmdX96{_IKX4t#B;prTKJK@Pfl?y(<#YIMe1zM8`npW-O2>6e(3VlDA{B{ClF_)eAQ@r)3RT#7PHFD?X5rF&v*?L~o;c3mhQv7w zr=Eb5ws9#_Y38=K8H5f!<;#t?+#&N&o9$Ko5!j>KhW-1grg%YJ%Z&^GbmS>er8AG#oVu<$mLjn zE-;Lvsb|3yI8ezvcXBj9VGshGAZ8a;310Kmo;@u{`Gy?)jRj8x&PD$xosN7-d%#+P z^^-=Rn+h*-PuKD?6zk(kY-ZCk033+2-S1|H5)~k|vN>qg4IYWehUzWP%Xm5^I0_va z5qw|qAPBTF=w$b1Zde0wS2tKb=X=mzkBbU?@Y3eTb7nwYKrAf)K{StCF zqaWM3k(Cn%NdB20Gn}`8t-mm@81nRfR~GHVg32@l)tXaH)>R0fyWn`cdc-UNP(YmmnzA^RDo9KhuV+T99$kpx#%{qn z7=FlHn6~=|oupZ5Tj5ZD;7VoA3HSs44?b^7p9UR#`PH_QwRSae6V|+nzq34bR&ax* z=1tTA=7ofR<*ecCZSAf}dmKKd-sNG2(ug4`g=RapXS--VqH(-*gyM{rBu|VZ&PB8vRCVH-Yzexa2~`fgQqxJTvwi#}xn!hvXD z{sZYH^xr~J!N5XMG3|P4YJCkgo>_8XW4)F`iuu2N!qZ=-Op8>rg6gyu9W-2L0;a|4 zw(KgHt`4bMkCMNvCvF7z{#ez`6)zHv)9GQWKrQ;_zYGh5(nq6Zy#H3tr98*swGmVx zI!1|%vOE0Fi-LJu6>5!K(`XXFFX#W%F+n%QWh)$uLgf{M=*4|W8?^1fnBBq!X${b- z%Gm)&fmAr&p{z)RQMZMVI@nKOLjjEQwMs1mmf$&eHy7akfdfHctN34sGVF1`ojwcm zb{EtnW3T50gdukLT4`LBZ8=3AYzWV&lsl!!iA~!LgtMo7?U{kFd2Ica`L{GypV`3{ zBYI6}Pn&piw`o8yC&SD9je^4YcI=jt-KzZ_r*IGlNTPz6$6lA{EyNK)FraRpE^*)1 zTJB&jFW1*(cH8_$Jx$X6^Sh>_l_u0gFh!y)WjIv`oq`rpK7dZ$7`&rG z9auS$uVSSBq(`tH$?N)cAp-USlm)>IAoq)}|2V1$^ikO9D?D#Huu{nD_vk^?J7s)J-0pCxNGJ01VJf!Pmf!xVPeG8v46gxh0u<`JQ&9>r z69uGgfj_=0pX>;~SsVWNUK*(=BAjIU)Hkb^kq%VY{H-P0n1#-|6VUeO57!gCH0`bd zla&?MTT90|CDfw*zp^iW0u9)PU5F&+WZlMd3*jr6)pa`xJ|s6#@*M=25@8u}nw1(n zcB-uv4*B{of7nM1v4uD<-@yv2&nw$`d59Svc(g@650G z17*n-_}ui2zOt*(6hf!riE`5u3xNg;E3z;V9TE;}gRMiK?bvmHRyh5jOS zDTmuy7wYH*q%yLO-3_ox7wpGV43DHut)n%O8%D?QxqtGDf0`M4bMX`0L1O;Y{l1X0 z#pj4+&}Wh$?o4)@EYgi8vSj}Fak1tq6_q1&BG@5ht}#^Z^xO&7;_oY`QiEX#qrBo0xwpJrtGUyIMp8`6;P(#Gx`(V@DC?` zlpie^LSy1*RA0|OZMLo|WZcS^{qzI_B7PBZC@t$M)ogsU@ZkLx&S35IXJb#1_4;T)E>vFxfZ^1F@!MxyS z63Lfkav@)@R~*vIe!G~=ZWMcVN(Rrs9AC)@$Cm>95cdFw%O*P+Owt{3USG0S6qTh- zfC3p`jveY4OxTo`*kYpklNl{<%YWWyUM4%pUy)lvo7**8OQ2NUO}rG+-i{Sbsra`< zJ7~@4=&ykYtU(-k$=%=#Y5>Yg6fZK-Lk`?Bda)Rg^y^ByQ)7C~4xcj0g7-uY{h zu;11oCf>NG7mw+2Co$0vEjRMz@3#uNY*nh@Lm(EJ5wL8WNThr5hAm3!cG;&zaLX)J z28f+QRw!j}jL1Zbn$)zjj;tcHkDl3{Ak$zt9$OBPQ3?9|Qp#d|5`e3P@w}?G@L%v~ zQA@lWyTk)Lv(5{^xRF&~)Ia~y`5RE?uRADh~HkZ?Esabc?jkP!|&Bq>IIR) z#INkv2zp+L?)7t|p1T+V_X8?bfVMj)BM5f5uSR*ixt+D3@s^jmB)2X4Sx(=B%%=&x z&vq*WotMnfv@8hTv%g+M7)4`ikNU_4<*Lto;EkCGUjGUE!e$OtNdFOaaC}YwSsHKG zeaSJ(Aehn-DW4OXRxz(}#{|-6r*05zq`M_Yuo%7i$1~|j>9nEs#G6FPI37-pVEY_Q zHP5+1j%;eJQ*z~Y$F$CCtWTwi=sLSBq{8bx__yR0h0}a-ZYjk!e3%%^u-REx>clo( zs9QhQsE`%vUMr!h*HK#vJdJY&5P^A4;lFdyqi$05L|0{w`f~Xgq&XT&1CwLk8q{x zz2%15G`Pm&__Kp>R_a;U3s_RH z8=cRA<@k#jIz!|_Q>|VR`#G#+|F!>Kq~-y39yXOo(Xhz6B?D z`--h=|HbF+Oy!j!9DDYW0B;vPnS^mL#^OyYSn=9gxeZ3v--og;1-*d$rfdZ4G``+Q zR6DiX;zB7aE(9uMN@SVxmkUM_d**7g*Mg0VeOi1gr4zc?lGp#wq9$}JSd8oAw8{-Q z=!_&wUdJPn7Y>u)k*!eXJ>BEr$s<2}ha2$nQ$*7?{8NtZcbLl`VwIccQKsyQ z1E`wg_Qlolj)1wS(JpUVxh`)+v`hPA&Y&7yGkS|WGqPt?NqbJ8 zNeU6pENPO=Sq}TsRk>eTAxt*joErUe{)K{B?Fs(>Iz}{UXzs!677zf=_+I%Ycq5A1{hn!xS#F)~jYgqOLv?xyA9at~fO@~fQX*r73mUNc~u5}B_ z&Pbv5iR$d}+?^<6#S2kO5`iJg&k;$=&)5Lr#9#_HP8nv8h5&l(-gI|edm5fTkIcLx zqJ4r>!gL)3bsh|}kxNm@vV&|eBVvitaOH6S?X^l;yaBm!v3p01R9aEjU`7Cm9Zx;^ zxQ_6ILE&9{F6QylxqYrf;LAL}Z?3@A8--M^CBmphXgm!_q=kqf5f5l(n)fGQ^BW8s z#~KbwtZZv4<*21U(eQ2~dR4>qB*V14mH{L_Ei;V{!tWL9-HuTyHBx?)HR4HE=A1Q7 zk--#g{8<6-rc=8;beq$S_`<=CJHm z#FvxQ7P`#mgN9jf@VZ_|oRG6Vq&APo?Hos*m6hUjjZZcF1MLhtdE>wJ3t-tg@AsW7 z$__0<8l+Me=VcyG2Qbd4S$Iw( z7LxTknog%cr76T*U9P3U^gF`T_&1>E0j;4GrcqF+0J;{E{ixw^<>q~CnL(qf4Wy13`(8j@zsR zJmui#BN8L#4H6^8_6ZUB7AVPI?AdTt*46d0l3TU_OXSIl=z~jDErYS)9dce`6oYL; z81xElZ=*2DD{QAlx4Afi*7-@<|Lqp9j*hUa;iD^x0o4*CQDs*?W>B5HXq~%(vX3T^ z;o)@xI_c!KGjXVcPSjJ36e z2&lk>Xy}4HiYn_9-JGlX!s`X*6>#8*RpRA>-L_Ro8nwQ={GZeiM{h%Eln&(0Z#WNO zRdwBv-U7eN4DQ9k;#sTum*L}=!{X&>PA5?+b)h5)J}0;Y(I0_enacKTEGu!9WrU5D z?l8g;Th)SYmDopU;3<@9s~iGk-N*L49o=s*03-2zk++JfsAKW#Z+Ie!f~oT|G_@ZI zoiy8j3n{9v5;s;>ouh9C>W-M=J#5bBu)NbJknOHrlF*PhVpULt@C_K$HXL zSop|7$+pJ+R*PaZ&v`UW5^?)Uez0*xHb@d*%+$Ew4k!z*vH}P zN5|wzX46Iyu!-Mo_)tTXE37i^RReBD(sTpfl7uJ=*5eQLaO$>qGoIh?ywIh|caAWp zoiHE)J1-ylV=P8<(3u{S`nuSR(a zZ$2Kes}k*x39lKKR$acy{38x^u?9TTpy=eAU}{?nhZ3*tceM+oL#Z!Ne+Kf)=0BRM z)+PC+h4|>0W%~dv=l(RJlK({kh8+FwTCb`=Oz|VUdi5u|&bk`r5w376N}pkjO0ImF z%yH*ymnbL!+J!Q~_|rT`8U$pYqxq3WQLYyl@hW4n^H)|K_A%%2UuaNEZf71}m%=rX z@)azQQH83!j4Ah5g+LTIVi)9F^M*i@J?!GYyq{vDR8H+tMXJc)>`#tKb zWs#^m{GW#J^P`oH?yp`BE_u0a%E%TH#+uk&)B;A{PxEP&nc7mwl{mTvTJ|ZaT0cnK z<{#bcY;FpO54CVe1Oz59*0Szjb-CTK^MHf*^ZBU#nDoK7|6<3dE<2DpHFP_x%N>@7 zFN9wcuS2Ymrqoi7cB{n^zyx7vQ6UY<4=F|7pSLhVh_n3e$_D8OaX&WTYa?q)c-T|Sv zMS-YVpX!$G$tQ&HRS9E)|7enByJMr&%GBrG>AnURVg?(%sHy&nrz;(3978357}-c= z%o&feJ0HteuF__-&rarLY`Kg8x7)`5FJzTnyl}7Zu&H|y6}=foLe-NV*SMf713dn# zHHJPYfMoZ2J3!y3)I1X^VQb4O5hA|A4y8YkrkL)eO8y2=zj#eh4v$*d*8M$@Ka!f} zK76XE`$r`TFK-VXmk!spE$_Lea{FM_?QY`GL>|WhBaEC@l$bKZ_fQ6hbg!JcuO59Q zto{$tbh1SKm{Z{Tak=c>gyYD2igW}hZ;z)IBU9yoSS!;t?k42O-auVqPWCt0AMwK& zqnk-pKqdi)o4&8)R_b{sWa4O^7}iv)$T^0p-V47^(JIwZQP`I5cfjPl_<%#6T()=k zPC6I5_%lY_k~1}x&L@shq!mb&J%m&8_tQ|tgSvR7n6%v285wbx0&PmQ#3up{w6U zJ1s0v4xAU{>g8qKY9T-g#IhokF0NU45&WQxC-QM^A6}=?R6J>w<74DWJ+Ib2G4c}} zja*M3OG02VtW~QFvbBnrZr$OeDAyT6VSzKlThw290v|i?2c3%pJY}*iVfRNQZA~~h zUM*TvOK3+??0BNb^H;U%N1a-=O*W-WO?21hTbHqK^R=$LkMeUhXc0;G{TZ6zxD8qp zk<%l1UmUOg3u(G&HQt_LfjUuP>Ql{;hir4ya+Orv(D9n29uDREVYfoXH5a}4vlvDr zo`O9`V$GvY1CWEe7b?-_w@#4P0#jdbxtO!W--SXm1qg&bEz@MlWnXO^+}3vU}>W)AlgS*jf z^Gw;x13I^D(S51*|)+`rZo>XQPO~z1@7ec8r*&|e+0*) zc53jMXYhDL5O8s?b_cqrrF%kvibFn@|X(Bj=7pHxC4lUtic_!65Rgk`wQr2Qw%q7RO1nn-YRjmyemPd^Xf~ z!m!}Yl;Edg9ojnQZD3p{*dnO~F)yO0o72D(n^^ZFNstl zyOE8dmQhKlBDYDuzsm~U=KroqGf$63(h3dIo`#>iPoIaT)?s7@tnFnubiyDK%(Ao` zCe=x}Ocb1@Mw-*I!D@w~bM^c}(+;fF*4@fI<{Qo&{<-bEo9Ve(W?tr4to@Y$D;B47 zOEJkjK=xY1_3Qmpz&Vw@o_xEE)_==koT%4QSaCd{<4_POmd5lPoC*Cx5TG#<9+^=n zT6z_wF4LKwgX-7YkKve0OzL!S9sxpiG1b&CvSwK&|6a)Z}?4onII|5DQU@X z$6P|6g|~wH%rXiW*&vbz-=#O-(9rD0OKVR`G-@cpKYBAnXuHqTeG5t;l&{R&(kBkM ztM+ZQ4l5Sfd)ae;K$;TSkooI<2gzg|x4V&cls+VMhcnz^uea&G&Qe9&%}DKc-*J3& zgn>DZlq8(-)kNu}{Su@uF>9Pqbr|D>4qe6hEG=Bj_3VJeKMa`v^tgRQL`mH=ysQP2 z{m)m%lfC!i-st5=_XMq6Z!EHK9OqC3XFp=iV>KSqL}gv1ugDe*FT#gVqO0`L^Qk>w zmMe^h;&|v>_B^|JzG^lkiT}P(wS3@B<2gTH=t+kOzkfQ_D!w7-`}zH~wHd1s{@^U> z1`cWBZ{gozG&G%+rwtf)lPT1LfxcdxK6lC%`B($R82AIw7*y1uGf6eWHClii6Waq8 zD3ni6p0bbTa+C$+H?^){55D-p#(9PzoW}D$q2p$WCwNoDyS!{~bk;(>vP^&`6jOfA zx~N^8<9;}D9rBIFPVr3U(I**wQw`edLiGc_@~ zjA1uS%LBBWXO2?)Ul%M;EKlfC&*{iLnpnHpj|P+Ialp+$`WJUnN>e-kVx46?)r!t+ za;1*Y;3U`T6;%`HWPnDa0pE>r${gu#e(Ic3=U|3QZz$iso)x#*vb)sdwx-Izz`93C zr&6va;wi-l{-!K#rveA&R41dQ=ErtpBMq9qoOzmk-<}MxbQL#4#K>d#`&tZR>uxHo zH1ym-3UJt6l*?j9mm%aoJREqyqN_LchF3C{#MBIvU1A9S9|8@9ff0gvwC9JCuXWe2 z|B>8~8ESbob=5-R$wTuDHme|>^ZyUKj$dHxXjROK2Y1bAYw9%-@uu!z!yV(oxt0@P zed;_HWxFPL)Hk^Bqh7hamkWN5a;&xLgKwd5SrJ#x6mF*pUemxMu}Ovqm?cZO)mL~6 zsCXL6Z`P0tMr(P+Bu55Ye%gYmB*6N0Fva*#h;Xh|(^z0~IM*D%Nn2otHJj5I| zUw8frI2lNWv8P0ZscOA7Tuo|q1Pxym3iV0f7G}GLvz+@$cMS|nKJqE|hw1V*oQY%{ zhYwxt7(oGudeEc}usn@jKuaR=@2u<4x$*LSnwHqo@< z@tdL=-0XQvc5}k@pX2784np7NK6*A<+>OW|g>=EIqBDXfVp2LzcXR_`JDQ{gJG!#y z^_9Jt!*)@TR7X?Nq(Zg89Tx$G{|JJ&==4X8GJOJ%CAEi4XJ>WFM5m=T7WGbgc)F z#LNwsNNadWoYm=1kT-#*yvpehr&`o$qU#f7H#Tc{3HfYp1~Oq%9Ad=1!eL@K@u^Mk zb((%K?S!m+BY9Xry>#*br!OdlQ z@am*+2F86?aYD}pb9pG%QyxZt?4+9boo)RW&#lD;w&Pqc-|XL50S8+sCbw7+0*}f! zQ+Puq15Qsr$3$E!b<#Iu9UfDLRE{mCvD7)whe5mygm?PPV8@DQz=X_ixE5wMTSp7+ zEHB1U7TOUkr#iu5=yPs`<%GH99vd)Rc9^(>UAJ+WTGaSYvmY|<`@@!A+X^{o^Ewq z;P_DMvkFf`J+M6UvTn3h7rInNNwPE(=hK%|Wz0$#R0OB3E zp-~)_F0O>z;>X?o?6A*ic+W$MD>@|{lofqi@{+|0JgmD=Q57pj7jSd8?r%O!zH5M& zkSs?O5jI7)WfPrR?5KAbo82UPawbjOB`i*0(Huon#zAL(ZSfLmCu^tfL0~ZO?A1%f zPRmYgN7u#bp&=mK%atZu|I*mpLwX(Y%J_9TI$J;8Cqv)My5*$h8+bN+aETp!I=@2I z7g`r}>Tg+t#0-T2CC;V$@i)Sx=B>38TOvOA~IU~hO z?QyC4TvCU`&J7SRPsfeNb9d}KFqD7f13Y<^?D?eELSOn}{7EaGK@F5T{YMKY%th}o z?>l@=YhG?q?+8B^EA@V+80Yap?ALxe?X4_Eo(8ba{I(naHKq6d%qh@(L9m~hBa^vn zG={UCb=$Yv`*nDDC<(np+zmBYqH)lLO_Z!CV-1O~faZWU*x{wg?D!nUJIyg7rQ>5l zbQk@&v-r@V1(>>JK7QI1OvJ1-u1$i*ac|LII`i6Tx@T1ux-Y2E(iNIpL@_Z(pG{}l zI*Nj!;goNYhpRIE;F>R5BmJPTNCm9r25M|CSr{mLlC6V{Nox>Tz>k99ew*{`# zevxjURqwa+(|+^EZeO3b)45MgneRrbiu40+Ar~_p#A@$7o#L>e$E97NlE>eq=|KfW zkP6U*Iti&+kibL`9)#o{E9<{Bj;cN~GCs^1>9J`kP<5y!!c1iN`i8VK67M%}dDix< ztN-u1&ja1ai4heD2m>}q2m)|rsGBv5tDU2jlZC12Zzq=jd9d;Q?}R^{OKQou{VmPa zOXadhMfQtWCc}Bqd)b1e>y}lng)B67o@H99ok;f{M(VNIfi@JE!nDa#=v8>DUR3Jq z=c(`Ow1JP$Z8ez7m#ga~yG@Po{WYFT-}jF_G%}y}Lms=&%g>c}8?V=cxkK0PkE@Hr z=-AA%( zHZGa3=O=@b&)d^0%cbz`=f}r%web7H>#M5>^$d%MuR2TeyJmOC>(%MnF^cc!`*g?N zUbKkM)5rV4-s9)>_^W}463g@Z`}C#o+^3R=_tW{@nqBwD4)io<4o`RY=XHAXXUT_8 z`OCq%=9W)p*ZU{9#CPwU*yqdpBpP^v;3Js` zxayVclegpZYC2n(!|vYbDB$H|Z@MGRxBGeD|KRpK-C*;b?sKin`*t{(O!)I|a%~~c zGTD3M*U!&WbF<$W4jg{)SOs=NEIC2*!^cjg#p$luTi&ntmt>!A{em|eO5L4vWoo{M zYj@wfKg2~&{q2tGXip5bG$wCOt3L)Uy1{L5E^YqJO$o231Xp^uaG?>s+MAOuB0cVQ zdRy1R-`3QjMIYo6O?>rjxgiruFMeoDep@+;)x4djw0o}KxjtjiIH(nLc6Yz4*UM_F z9Jl+%E{jx=eNI&7q3+`kQ$tSqqHQ;G)4rmsG_7&0-LB=bH-kEER*|f*)V$U$)Sgyg zW1QZ+v0U|Hd-Rf98B~UJ-rV$FW~tF{xuW*&sE(#?(KVj#8eVoe9HcaF+)aFHhH(Da zkl;SsgJOs6tvIlJ6O1epnIu3;RQ zBd1RC;yb>^g11mdINU_^l7vw`^brVpG%cN*b}e-x@)8nim)o$+ky|JueA$nKB^K}I zc7L^j_BW9Jt%JycWZOOw=`>s9#{8LZ>sje5CM@;mPT*tJ}1fNiDWSWs0mkkWgwai8HN; zC+w2)9-g!5eqYsMYNv7f8LfUcJ=k=qxmR=cq$%EwFRfK>wW-fOe^+k1Qhy$7$)}-+ zX$SSfgy&NZIH5Gjtpf6p=MZGg(PiX&KGn{68;x5P6!9Pjd+PCRk z#r7UkVPpJvgm=cL+@`*&n&#OvFf_YSHJkK-CAF~JE|M9je(b%`&}rr66luz?VVr-y z5dF@u$C%t|_!HdR9hBkOkd?I|S!Kgk@#H&B_(QpR7t`9>^C!wA`DvI{Xb`eo(@>Qh zpp0B>7_2GZo*z*NQBT8MYr-fU#@4E5^3T@Od^Jlpa&s1@o8FfnxY9zH*1?@~N?MrR zJwtT`X!rE)@d<=M5>t&;^bePoy19tdHBAmAd`8Gi34k7djvI`9hAzI|+z{ut%p<7|YOphj~U~ZI2 z*QRG)R0iTaxc=aGtG!b&8}c+ai!~iW?3#OofsbU?o&Xp`3}gTF(7!0>(eAGfY<0l4 z*iXjvrhWqCb0zoJg**ZVc~WNVDN4&PO(JU#7uDw$NWxsda`+prE%Gc84n}9IR^xMC+}%9eQaR%2ipoqEZe5BULUrE1 zT~Ro{TLzW_=L`qJRRSQ%UBFFe^R`%i(DR#G1IVkDSkg;i5tu@F(_$nWqkKL zXE`J^uP@E$cfOq@YN1f0T9eND_2|`}C?dHEE1ymx$~G``jQ~Oi-f)@SZkfRZMg{FpCiM2t`L9ouIX{gspbhOH`tv9Z zMfCyQ2qwqc5X8uTv|^em<&OxYrn%AnSGw9yrF>d4f<^*B;~$ec6R+#=SS;GOl>3zr&)v8-$9;(PzIOx`e* zhrIEGt;yiaVv%t&wHG4pAfz*mMs~AQqf+Z|hU_jkJGYDvakGT}wSl*fOQ-B>i>(ek zKEABNNT}7|=0#q>C96Nck zhisE81ThN4bAP2+SV}IWV*%)r4x*_Z2QpbKE~ z`c`=_Ox}Kv|FBQb+es?iF3@UiTXzS2t$EAK$%Rw3*Yg;$YB|3Vr~4rAW$x1T_H?MW zswi0Ly8qZeVh*OBB@eiQ53w8EJ)DHk%Je1H^zN(~l@(oYG*GJ5MSN6!ivVJG2}1O2 zrnd5}o}Abd{+s)fwQa5741A#Bu^~hVnQV4T5(y+S4rZ4u*_jJRA$#s-ayC{3NL3) zGRUbP0ToZ7KFoZ+SWH4Rtn}HvC652vbaD_R{_M_gTL5+YCTzhvV5}M{WD%Blh7@tI z2&w$NM9BTCV{qG-9RcVV@CXn8O+#sNzw(x4Pk6(^)Z((i!XGY_C*%H*RhalJ~5;SW87zvbhw|ola>^Fw^!3 z_7wWj(6!J-JRm39``0jfTmn9=;l5ktajv}`Y%xO)j1KPq(Xq_Nogd2{If{EzpuYb< zbiHL%RPPrye1@SJx_jtufdPr3yIVS>B?m-69D3+hQo50rQjr!A5D+8;q)SvpDM5V? z{{GKe?|RnzemNgzt#ilT*WUZO_I>6Y!ACw`4fTZsUun7?6JKdKLTJkS>hHnO`}d!_ zF!l%aX*rve_xXU?$IuE9E|jZuf>0W`PXg5AzO7#Cvu?+!^Y#T270d}uMk7iP1Vw|i zB)I77$~9-}Z7lI)0Kov9@Z67nNzsBRVM}~J2AO_#sCZ2-?AsrWC^(}~3?^}8=;dk* zvX>XKn>BngUC3NrNJ@ytcG_{usrOCoa1)VGba7SJZJ~W_!@UoqOcWZrGV#m_`8u;Q zUYvUX?jRZ5f&Scr*_0c{qZl-TX{h(a@35vw3b#a%*K5QkBbR|ZJM((SexLR@2a$Z# z&CuGMGVZab(41Lb7(+m0BU%;qp5-9A15KuER_62u>sg2>&_!!J?w+iwLiM1d90GrM z!b)|!40)ItUd#k6llnsEBNYj`$Irpgz39hjsaM10`}wHhLNMYoyY3Q`=ju%Pg)->5 z{+*^jU((BnBMr^?nslcodVlX03{GxFW+j+^_ zJx*m=QS|0(stSS;nW^Z?N{ID7s@A5*>_yD(99eq5SA8l*j?^Hl%kE*|Ev^b6f%!X` zrMJi<;Z?R`(rylY?oQ~(OLw37V!F?u3v|x}9~t-^F87Q-@bQGMM;&YAInty8g1TQu zAm#|NX7;Y?5L<*1q*)Rjkug^pu&i36I>q&);C?O7B>ICPZ;XWMKHadhZ*R#Z*JKG|f}+A^?TE&zKmfpL3cdR@r;j9oD? z603_!iC2^%vgo>&w1T`sE#pyuTL`bgO74V}-%S@a& zgK`Zj_v?KRBc#EeQ*rj&{j=d0xSuZ%Y$2O>6CGWw*8?7B_m4opu6VuUFpl%n!8_i> zpkbS$e1=zjkF5y%cc&mfJ!Lt68x#|A@rOa-3py=vmZ9c2tYzsF2n4{y;vtK1q_ffW zoEy`C($Ui0wo$)(mv^#%J65R}bdjor<4a6#-jXZ*{Z$Z4fbjr#2jx70#i68w`x>Qt zspw*WHi3eg3kC9%%@S#A=5=&oTm7?_YvF-(MD9|R3fUNXI|TYP=}6<(Z#MLljO9Cn zZ&;efShn?ZkpbCUf8IgbX++;qJ8R)`Hw=FOcqQqq#O5mNDvoD1H@`3e8kIDXy4qx8 z{B)zQAaL~dj3>1{`7TDE#8wso_^Zat$7+v^b9}x@q5-d6!iF4_wcSanZvi@UjT*oMqHK$y`iVMvT&(nHvJ!2s@j*cf~rM3zS?N{#UfL`35qQ2;XaXK ztepH$*B`BHt1{8CrnIo#KnY8n3-&9cy(LoCqlUd|(n}6sbjx6%lkbmD%~XtdC7B6q z9Hs~aT@s?r8id1fTl3diNg`HB(DI_+5#NlX`R{x#Lwo@Xtg~~yEb=s`x#2qz9$w!| z0lZJm;dMS3kT}2}CE}WRC+4`c4hR;3S=nTu;Mf#Jz1&>^RGa00aC{DLi>D>BPRT<~ zj(EJv714A^pwP@<;~MI(Aroi;+0QQ_Y(^gCyErwvU=l6xdS!?mUctU3tKdu{5G5iG z4|)ozEevaZTCAX&J^`=C{lpv4ZMwDxU~p$%{w$$jz=;p{0x6mfoHU$U?_FO<2-KLj&isB7ze zrw#||%FeBB=SnPqYj=(+eXE*T2J^ek;@e4a!A@Yjr$zS8pmDGIJ^?3I{~YCKQNNQ5 ze=#W%B;y%ggt!#$JF%&G5ISONXZS}BoTCa(dxP6wnUL59v9b=A+j(z9j);Nfd>7_j zDptJ>JGOfPen2+vRQw!kyEqqhsg4G;WH+suhSeM=T-7W#>US0d9+_^I{G>>=CUFek z9&sCBpiyVKt22|V+zfQlp;em)-wgdJyNwwT*OB??_+$yrZcM}ZBq`-XC!iNbhYjZ6-#%i6&WRhF= z44ieJyVBA#AicS}^!L={Dz4fbnANv-4YDXKL3`XMzsckwpX`hM`H zu-@<=Y%-(a3vO4^zqfGz@<2-tO}S{vM034eTACB4NYH`Lvf+QBV&<9!Ho8}wkEY2& zzO@SbY4_t_$>A#yMkp{+`wy_lqn3~GdUo4g-)(pd%$_$T0-tFgr2o89`D63$!;kmz z*ZsN1dP-+_TZBn8ADp&;?01JX(9m>UO)KbbgY1dMgJ?~a3o~yoo1>yj;N>Y2A~F0r zW%~)=E1K9U-Q2_Jj-5?X8Bxg_S{)EVqF}(*5JGu~+ggLtV4ctmcEi)fUoTeK!1=*oWa9>iYU*JIo@S$7;eA zQ-N&sh=*SCim&RCTuqCN)BI!psb^kWzyTVg>;UVam{%(40M}O6L4ig4G%0Eo>wZ@t z5Q^o&!H|7o$P$s%*zk=lGNJZ0?XL?6^ z+g0h5y%B+@!_zGN_vFAP)A*U{q~_?>jyYc9cj1G+1cKtAlFv&$Qx5|4r^}|A&lc&z z9ds>o>r$XKt@Om0y-HJ;{$6il^kC+Z*MXH9$24N5e@zB`=x}^FHl`I!lrggg*H@E6HS zPB)4?yNNM-7@Popr&zPVp>)tU*!A?VU{HG?sGdq`?=<|^#csh?kJF)H^N+FYR%|Je zS+;}oc*gyThw_RK_mOg>Mb?#e4VgKxz!(0&ijXpPQ7n~}UCq5U(C?#|oSq7C%EUIm zao0V7a|}and3)ZC;$FP)7iQqR=qEIfkALd!XDG<@HA~L&Yi`YDWt)N;%fW{10b5vu zWDYDlLGAV& ziJ`VU6ZTlA?X8Wxs%Ps!Z@0etJ{hSoiQi9%+ADzz~zCiuOnQ9_45yFBB`Q&v_W|h%0IL7 z-UQQ5_1VDSS|xRHrg^f5?T7CT_01QhX?<%3o|;A~|4ye>dZMHRHT>BZF|FjH`?kDW zY;ZCuTN7jkQTmEaU}+`iY`puqMa1t*jX%lTPJdujG@HwjUqSSWqwyTf@J{mt(v~&Z z?eKjP`$ZYxJK?ele3oV!25G(zgsQ%3(yk$>(tdki6qqV3AK7pgU2XndxwzvFU`h~! zKMB6VH^3KA@<5T;GI&stgo4MZkYW69N5D8*pa%YIP%B2cFIWuC8HN8WwevtX;1ovV zN-!ZI-0rI4u<0ko)ofTmnvtJV;??*=N0)z_n1t&3qP#n&kCr}z`yFOZ_{i#=0V@S2 zu>3vx1jh(I6LXIVy(Yn=OHLFeo0ilf32++vFqAKllVW|y#NIu?Gv=)mibJvOl$zdwq!VhD$F{K+AZZ|m5$gZ0e%&^V9j>k-3fC^5X9kqX z$%_wSE%)5P?2;LYS^u%6Z*&{%`+%q?Q?RY(6037bAzV9If@l&tM>)=kWp`Eif3$_c z6C9j)f)t}eU~cA3z18pE_;$ zeO|i$$rjlf;_dCt(rZzw>f#J!QzYg&^lpdpy5QefU)#zonOhi|LLxvH1TwQxcIWyT z)}NZSv&XTopnm+!l8xkKhOP29;#?E%wuw@v+DZ`;hW&B}R<5xgm6zWww2Djy-gtOZ}(_h!S&n z5lVpKBj+?YSEDuz5CF4VkeBU_gLb3#eh{* zR(^0i4CMe8?JJim!H9wt>uPvyxVbS7g5L{5~A^(aM0Z zPjFG#7DUTjtqNy1pwrY--qs4m5ENVn-G5C!^%V8|gOWxWk^aI52o+J?D5)3ZwUr^> zZ76!+Ly>ZbZG+63MSm2SFQcga^&03Bt4kC?RSs;b)VQbd`_3S^AQNr`5Kfnog2B2> zL!lKEN}Lr5Slw1;*G6FKa+jLpL2kqAXk_Td&b2(i(nE)&K<@mu1jd7?sH_uue(ffz zW=F={A4>RE%r1$?ei`y0jNe)9`uM^3thRhSfk=@6cD<*RV|{JdyEYF50%+dob0=Fr zD?tv}+}mA{=OlAY=-3wrIj=R~%?!BF(^q$Bg=RJL1Hrh!!*XM{MKLU9&j&=Zf!}}_ z!3(MMKG_98ixKQ7}XGo&>6c{eqouc3Ugs=tG|s_KylpBC&oM-f$*M;gud`s*XJS`?N}e$@G&9_Wl0{=ar6Kqf?~E^hwGFe?z%LLOv98W8dmkhU zhNvg(_Yj}k>e8LjJZ55mV5q%qV<@?FjOgi`G03*+h9*)3s-_n!2FhBVM41N-gc|yc zB{gNq_An%crWJo#-LFS;{rj4o^}fQb=zKzRy}Y77TE~;xqE86L$XMZbdf>9sls$zXAjnSP5EW`?0viV)I^oP>w#af|w( zL`3_S)<1AO7*$#yQlZD|8-t*lnonw()Ml(s7c1L9id}c@_R$EbI$q|NyaBQvfWSs{ zsKVsCWHjN=$pr7aFR6$H-frMbOIK5>vdIRFhAPfg=JbLYG4-ovj9+HdDcScR zhnubl))EcBCp&{uY_sCPs5A*&$!Ux0ugZoa0Cq*NZqHX`;ziL7IwpW^eRzmrS3ZBC zI{R0!06@rOlYY;)Sk-YM5}0?k9DqW;{))^1C;6JZJ~2Xj1Oxi3q!VQenG4)c_SG=~NdHI;L*nz4P==u?5 zEN=m!m`;weW$!Zxk~J~Y&|mm*S`823C0N2L%Af?o+Y8jN-)rp#Ii$wXKh@RNVmZL3 zR7r`M5+=1ggHnlpgpG+9UH%1C^lW?;#ni1~4TdZeFpoEr;tQzW$HN1=BfORU=>wzu z-Msm&70@4rIC!7;dtjZyIVCY1sT-cX@C>yDvegYZayI}tU^8uFoBCuBxa5UG6aE}a zcHL;m>8I7okTOVY|C4>gKBJv5i>oftU1O14u(s#m$AA%sCr`8GRQ}@ieE?*o5N{*P zQ|c%22p@;-0f@AUUH^GYnwN!$S7A`YO@m?cx_P%{ULk^;{tlmvDK}x!31pxaA8gSo z^NLU!D@!Ug_xVrr;GyB{CFm&UH~jr{Jt!%_jH=2oy+oTSxF6Ds0E}>^@|7Q?vSfsl z*mp4?DU{+*2$0$PBetM7}S&T97bP9?rm@F#1f)lyJ6oC*`C((Z>4%-A{Mk8St=q)0lqn$Kac(ous1$ z^}me(cQSg)g}?UQ|FGKVe{2nfC%cMevdJ;;LuK2=1-3WeQ$zhusPot77HvD7> zKuOd3NDTwLL7Vjh{^%qquYxh|ofoOARB?WiU$~+@4Pdx~1O!jj=-Xhww(;Na2I-Nk zNsTsio5hG^a@>2$H0J)r3O8`}<%X|A$-U-hvdiODDU5y+ufI0R1clHfMcPK~#k?Sj z{=|UZbiW&>)!u@>lM5`$AnO{c2I%OswNmXDZv$@>D*&s2$LWhA;TsMB(_3fk{fF7s ztq?By3AcoN+{dY1@sG#?Uj90c&AN=*bVq1t3Fz~%1%YRDkPt-$8SyCJiWRksfni{@ zs*giiUnOrV!2$e#j3+>$eDv73e(pi5#Y3vVACpGtiRu9{X4`PHhUH$(w2DvPwo$>q zKM2OikgpkvM`@$k%PnMgS=C&?^$W*vzWd2)X>=sOVn%oU0n!{k@vO$z(ugDsw{Hp% z{Ul0U5!!;?H9OP;Y8iCxXu@>lyAmax4+z#<_xT-@jI}doc?oOF#1->J(oJb}s-gh> z*O&mX3rde}994a3wxT94fvv{`DtG*k#$63WFyjj<64xqGN_9I9YfZZ zC~3SyqAh$SajT7cVo&n}9RwRv480HL-4$7 z75QYm*4WC((H`vdE5y@fQ{i4(Q)klzugw72^BiZ~-;-?BwrHeg#~_-N?~Pkprf6c> ziuD4S2_2kFTk1Z>@e<>slOTP&WaX4U)3r6)sHY@t^uj=Ki9?VeS*?0*&~rBv`KhoT zipo~Gj)aS}4y`5$YJplZQWyYZ;2Q;|T0Ii0LpSEOe;D1>2!x`xUL~_@l_^fRMhWU} z;z+gkf^!>T7CZg~lrk{ne9xb4qZr>T0j7j;pGk?}i40>YNq%C$ru!yQ z?cIT(BB8`2KS@9fo~gG<8&*AMXZ}!9r{uO|)D@DN^(p0YvE~N7sU`CTyVmTER^}1I z`WV>o1UK+ZW$luQdiCPeXv3Qc9j(AW{(eVMHjcr~%L|AR?NLak%&d4u7aI9{Nd}l= zp2D+2W=Fnkj)LuGD`;nFGtrQWXsGSt2!)B-!&Bq#49?7bsbLo>_XRtKhF?B^wdibKKS5LkvdNR2D8?fY7{1^UFj=I`Tg{*kB%VR8!}bL-TXYkli0y1MtJL z+ZKAKarrLW@$d}AWJ4)QjTgkIHAl-KKMQ@4MjLsQwgW;mnPEK8zQ{TI7wd{JmCopR zEBS&mY_ax%7wRfWxA@&VlA!w+IpVBT<{84g`1A9Cc{-$rmEmuyO?jgPp=}R6x*~la zpESl4o6O}rR^@`-YIbKVQ?Md0$5B7=NA)7#BTm@#ckh{qe0k3Ozli8iT z%qchR-Rk?2_^Uj>3LB(jIb#RmjPH9(y}DQvsYQo}qq4vV_U==s$f{j=y-%`B_3&+; z!7R=ubf`+4*iq(emxxMXK(;0hdyl@XvpE6}3Xdg*MnRRwaC&8Q!@w8X0P6vC{Brd3 z4@?WGxDQ;GonKa-2C*ow$Vl_Ykrpx|7dl!$qNJD$OuLS^oj^!6Kxc?pWNZL$m5YIS zfHz_Nmi)G$FqS04&@jYL0vLmT%#)+8A6Y4@v~%zOAB+^eUp_5fizPdK=h7d`Tj8P; zJ9UrAfkJV(0TD-537*vf$#BVDkX zJ%9DFW?SuP#oHg8t0oa{Duq8bsF!@r=n__Q>i7jOTq9O(UDcS#a`>PP&Nkq|$?Ivq zCdPBT!AE2#yx$m}^-YCCmJ5k%7HL&7^d9CAp(MXP@3zx{D+3aE8hMAA4T<{e=B9VJzz>y++TV|bC7r@zL~LNd zd4^DYh+%ZSKUL~`J7VMmI#t4D>T_H^LAq}R5O|D>;IZ6#vZ*&##<4PKuVyytLD>*% zkv+&I^6HM0F%8)l{oZ~QHB?#KGSLhM8ab1)`v8wJL?gH9*`@Me;^#~wDR{BbC?jwi z&(KQtcJ#ygl7@BgBTVQr%Jyy_xW*@%va4v1cS}O-5U)*aC zK>@d(Lbel>#tShA;mrf`v+bfWMpYdo$cbm-bXY967)@w<-B!#lKdsVd)(12ZpS~UtF*V5*Xc$jFDpi9;K!QV10-&rr>KBFv`t>AeGCI z({epdNtc8ih!?wcoraNR6jg*!EHIU>B&*1iNQu@Up=DERF<-GOl zh9H*2YZjm8>QUSGM71{HU(r6u{CQPWdDh8#bNr=-&r^O|W5}T{PL$-)7BHQVZ0jHA z6pt0%DT&T+px}z<&neTjO~@3rzm1nmA>}S`XxdERZ+%3JJbMbLoUWQ??YsC~4Dz`H&?PD@fIB(JY*P|-M$2ZDt3IL&BI`ucr4-78;-Kw zdQ{Jj6R_y(gku_~e}H^W6^fDsm^IevB>h{oeNZpqy0eo2XRL0PlW&)&X+Ke1^P>!Y zt=Eb%)74-i$|9>%H;HL$%rh1{J@b9%%k`>TY;vX`fMV!pzrbd!T4kFg8vLXSp z0?n<0%4#IC8MU$o(tUB^1TI&+G#u^*H0!Y};TZx4KWwxfdq4I54%RZIBML_WC4w`{ zYWAEleC1poZvM3Ay}dZjOz!@>Nwdp&B(ni z)4=A$!&*+8%9Ob|Y6?nFp&3J^vJatfgluJWj0SZ5SW?DmN7U3xXM*wB=P>~D>Ok>N zd^`Twk}^C{3Seh76=Y$nHo#}mjEPgSXF~dPVBwAmR^}*Q)qA8}j!bVn+&@9?H$=U9 zO%F5#iw~F%`>WaqkzCRy8!W!od|dH~weI+VsPE%JzMKGy*qSsd98sni?U=^`{wotr z1wcz zI*rp7eQCIa$NIw|SI>ypslz2+43S=9SIfxepSdsxm8rVsXq!{ZVfTTX>CO35A)3=5 zU2jkJu?@POLm4q>xYbNWH9vf7!TzTSaa8yNW=#RQih78{s~}`Dk!cVrB`;<9uPeY# z?H^+rs^<}7+<2M(jI4Jw=jVgQiaBvH5z9m;HlK*?Jn7UglFo>cOH5fIzUTfg$DZx{d>L) z<+TfUpu!i0P=A6q8YE!0SI7h~C*kv_)KPZgknDQ{JxTHC%yr@pvTv2hIC~gc6E}+H zRg)O+Fbm#8N#OS@qE@MFXr?`SNyG>w-Wt)^0lFGCd5e-9@#YP7F34YU(AgKT(cp+s z3p2|=qp#k4nNy}ixZTV2=v)W6ve;OnE7ihi<5 z3pvn(FK}c4xU(XXh>bGp8bPClhy(kcnLRyEaP8yLtJ3`tjKH||Lg!W!KeAtY_?5pu zAV;GQ-|R(4|4K&JL(*MJH42#>lJ+MwBga3KLXSpv&jeb5z9ia8N zw^yB&J7@A(%ZF4|PMChn|Ip11xPE9ll&h)Pxy?f&4V>Y^Kj~@kWIu^gE#u`E1Q+QE z4CV0Cm()3l;hW+*iwl`4{IOGVe&>hwR zGT|!u<@ozsUEl3Bk!L1=4KeUVrIyd1y`98H^?-AC62OQ)s5idMz0-Swqj;c3Q~ItA z--<@?0Q@({Phn1c4x3v2aEcbBBh?2v148)EeZ<+b>=*l@A6B&H`@>5IWFC{&c|~`b zMs^cX2H!&Gzi2U49wG$aU2k~-An1|NtXcZM2Bj#x-gg7wQ-Ty7b&I7A$nBt79a_9; zS2crDhV28|@XmS&il|6uj#+Rel|51TFtY%%Z%D3?79v`Cb&Ng{vz$MU>i8D8+aD3x(SIQoCW&3L4(;LK`xY1(}z>=hkQ%6C%d%|8(P_YPTBJ%kKp#7z(w*$Gio zz5})cU4gFh@!ri}WD{GLi%Ggi?7bzgt_sh-+71Qe7V9VBzk?@iCskMyoNi9Z=bvFu zW#{l$zIm*%L`@OL1FfMa5zzEjVa`kZSZ1Wi2rM(uP^qZgf|N(TAm=`E0uV{tk(y2v z6$j}?Y_q+xXl)l&SHsWz`I0`T1rS3L^>}=;k`}gx=DvgTu(>5gfqHJ= z2NAMD3H((4P)iy!wdU8Bl$~)J(3&B=lF0Qprub2M6EB|hf=|Y_=ji`Yh74wMMGRLa zyu(G)qJKKU{9BqkkMTB$Xrai0fh&Q@3@Jj?y&G7((~amNw5auo%SdnvkN~iye`mm> zG>Zy{WyW4RENtWO$?87uGYRI^X*I}qj|lz5jX)Ku!C_oG+Ge(MLEwJz%g1WrBYeW# z#_w+CmqO=sdzS~d zAe&!GJ5UXzX|YQqN&(`*VgTV3YKB-K+MG*AB=DQ-ktZ-G-sd9D$tzt)q$4f-2?j4R zjpNZj_ZB$t$nGpc(;EFv*Z3Ws^h@N&dk-vx8Sa*9Qi1DsTgJ1J0j00W%;ttADt8gKMUZ|$|@c?NfSHI zxMnG2T?-O;N~h1H0DJRL6k3|axWK{@`B#XQAb|A*esiv>C>!~0;ImO<;cGLXa zYOMxeR*Gv5!{$2QDcc57*pFC62!akR9BDF3{SJ6kw9Xw4%Ew2S&|vw1G=A%}mC^u( ztNU9&k9%3_l1)|_=k1*;%iMioXk%-+a2wy1U}_|F=CU=k??Jz7lGS@wA`ZiZfNlvO z(RcANTy!A)RCUd<_v{fh_)LD?12ecrt`K2SX3qX2CgSzCwygr0w;h%exBonO-}@=$ z{oqw%O#|MeOaP zh(z$2>D9@jJpNih@Sy9dxw z9q5sXIph<5)lZcP9Wv7ekYsTvMb84ft$L%o5X_uU_qZm-T zq9N|@%FPkXM&qx2iP2@owqkv|gVH!AqpM$G$l;@9gG@WyuXiw8=l^`sc#gDg*;GCL zNqm<97i=Pn+#hSyeCj)9&S}uu)wlU#hTFjOQ+?U(T>8z6D6>TbP%UIuiA$LxfGxtJ z-X;l{$F$*Z&L2;&n-L}-P62cZR=Pz_QCqP>{P`K-ut!*aqV^7I?WZMLnxjVV4M$g4 zKzG|W3uL}2T}oUToTiewln)@C=3cOSPB_FXJ6T8hE#u2dG7WNxXphK+CT}%!X_WzO z9)qR1$*PCyt{DVpSQ5winoEwTDq|jd@skI@`+>8{U7yMN=PjD8n3(VBt+5%P_ZsH~ z`-9`WXQT3Ga}|otQ&wJjq^x&{C`in-oviTMh&Eg4h0vb#zn>cs#uy25z90(Y#B*1x zpeyMjfVYtNPu|}pf)%HTz5ke7qkveO@Luur#r11e({`b(tt?Q1KL#aY^=(<79=*O z{$Hh_?Ju%TD6Eg39AN_bAOYy*H+%}ryiD?#wqO+zn<~G^L<3*2#hsNG!_KR#@ zk?(0bcs{(Eg7nPRbv|{*UH|<&k>6R^0`AB?_t~gV4;P(z5Olh*q`z-|O43PRvRYY~ zx#<2HRsOrIeR;2%N1H0OoavdMtt!51c2^!L*J5m8Ue2qhUR$G_V|UOL`jV>L0gJOV zlldCAU-xj`@AFl2b}WmmdWsN1 z>?aKjvU!iQ4AeStZ5Zc29V8 zBW?@GRP-@v^C0PZ`#^y&!zC(rQW@ zCnR@)tuD`v|9O`2>l2@@CuWO{yP)kum~~aLK4sgBOusz`jbRAydS&XPvqX1Vq38ne zT6t~cLeewS$z4v#UiRTK9r-MjqYGdF*NW-5#}jJ~eRRLm!ve_i&60)Abvjqx67pNz zAm(fSqM8h1)%k!y3xdD}DYpad_ zgW~g=826sT1Z5vz3FHeM87^_hC#D+=TVpiW8{$?SV?3K>#|d5e#ZP%>@X8x3yn~E! z>t$ZP0}RV9hQ~A#e2L#TVKIpV*$vM@tGrYcE<4E>5;ZCbdSz|<4=!bLb^yY&nLqQA zhBp6@+2_AWS~H>AncwA1j2XT?>GpVrWN#G_uqZnTnSXnz044M6-x2*$l*1C1B-s>N zqyhr^IZY}(T8Cgr$Z4D4U>%!$$MqEp&Wa1LnkA~TJ*w9CxK-5jo8Ldn@NPsC%V_=W z&HYv|8*a}cLWz?`QrJI4Q2IEA(~LR1n4`;ZXjn52@l~|-kiSm>PZZY@QrPZ~r@X$M zS*FYsfUPzEK{jZD9L5Np5U(zzU{Z=Y-umn~q?fuMlJ=2l=Bt^KtM_@}%h+woyvmK& zatav(={nfu@l|1qxJhgBe_!zbU)Ikh^d!apsxtEa?ZB;3h(G=V5?+c1(~fdgptB?n(%Ot1)Lb z#oGmIgiDV*kXJ~QH-TP+;Ahu#Me1p+%VIc~8lwqAa_7*5{c|X6@5WO?Ddzqz$H}pB zbiLNm5z;7bQVH8zwroq@;XU~mJ8JI{C#cNJ!pT`JhX>(KCQ+p%@l5BI?w_Fq-c^dZ zWLaCdy?HCd&7)2~W4&dgjQY?YwpE>-TydY`Hy_|H+I*%4fAx2U>~*ML;$SH8QBsRc zs(n=)vTIN&X3#wSu7ak1Tl?ORwTDka98Ee)Cv;<(D1<1#i+UAFNV%%``%MAAbt|YXm`v^R0j7|FTa*LkUc_pweOpv=3!l@*wO9!{{mR@u}vZ z>#t~{0`JEzp~J(LSVT*A_9@tWo$%o%96G)y*Z!Tz zm$X?sM1G+?7slW%izT%Xic^s4uyQ=W`BvmJ!impq?@&IsAQ~UE(3>#O)yuE=7n4t! z3I_@&ji;?xiWjqmquVH2zFu_WY@nMD7}Cely^brW&RRjN$Z=e7D5~}%v77|R$QU2S z2y{!|?te~ZWTnZt*hgN-1s1cm$Y4PCqF&;GNL{TjoJ?xsReJwgWV64+IBNIJTV0N? z`t;;hReo2I3!YSKZOnSb8q!Y19LH}*RM`fjDG164vD+@!F{Izl>IQGC-SKM{LE_=ncaf`;boVQA>+GY>YAI2 zwhz6*=so3L4}bwVB=E^6;!UH2FarVef?qZM1swSg`E#=`$i(tg6F5tJ1=RKjB#A4rXPu0i<&appX;2MOwvgnV>#y$L}yh*%~#2LlDsg}N2 z+^-UX09{!m!N+W0>MiqX+}*pULH!jR`Fd2k+98-+-Ke1nmr7jQF1ymud?vh{TQT${ z;5U`=90SN8S*h^y-(G@xT<_SgNP0}<@eL2~SBC{uBfa=$$X%J7Ho+`+ z73YA@Nf1jhM|M=RIkN~*0js5UV&HZ_+k>S*in)~6btQ5~ApTiJVDQlYmvykDzDMVK z-iN=Uyf!;e@BX(S-cT%0%e?GkoV2}A-#9&u5?0;wjqNW+j(~ZG=gR+U^vFjPj3aUH zGNYfRDxES6YJa{dI#OJ6s@~j6POfdn(ZV)O>-yLRQdKRo2tT^f6L%PEkmg+~TpT|O5vW}KVe42Y&|iwZ?7;4Sr& z$V9b=h3sZHXZ(E=n|$I3DX?NpE;xJmH4^no1vewq;KkI(edNkEKE>Fxl=*w9?wv-> zd@1a?1qBth72Q@`vyKVP8Qc#AqV;^E6ML8<9VqToC@}cU{mZf# zWLI5@B;PMhyUQ8v0yaNcu3hSLdy)aVj;;!edwo@%Gm$s>DH*JOWvlA_Ri^Qn$qMxe zZ*$q{kzqm<{GNW|7h_($a@&-Fu-SL6*G=r8$rFb+C~(|lV;-j3L>7aYP1$E_=r7-H zL3i@FbztBG`Gtd6LdIXev#jUTaEJHcMsDip2w1;oe99e6T2+QzGdWzP1ccnTJY(D8 z)HLhY<>AYto8e(bLGL~IKajKu69mB=cdT_5KCQt)>x9ne} zV*F1q0RF3TbOQf_Y9=!XRVEOs9!iWB0u?Ol6nzd`J-i}&zY0hGt5<#>KX5v)Iis?| zISugTF2^OLnQvyGj{Uevty!VoH7konkn=_PTcm#4eRo4L%KsJVmZ<-VG~W`Nlf)Rg zL_rQsyZ>|Lvt1I13XAoStG{t=ug8BF>Dt?pdn?3mG0z*;6>1LJn4{S+n^sNQqfS)k z9Y40fGmeTLf6+IuJnH6YWqU}$a{F=r|7QcuhJLU6f(JSDArQ zq5JcG-Do`xzp9<_SPuG#NHT3*&w0=i*pKCV`H$`}0T+Z=kx{iWxM&?bR5F!~Y}rzE zl(q*6d5%_6Zf!$MNs10N6EnevYOQg51MFq!bP1SDb5fBjnWux5G^NQ*Qcxa)8WeVd zW{$o3dzi0*YU#9`Kens9Isx9DKhZUk^X&X2kNm(e)xAN`|B@*9<_OwkmODvQ*iZfbEU{cB^ zyYSt2?)oZmZ;~6-F*}3h+x@)G!6Y9<&@4NMAU5|cV;l_)*e!itPOi;-p5yoE2{FJ% z7WiQmC9sCVG!_=t8@by3`o{NG2ZkdccnZt8!}pk&DRK!}7Qq$b{HK21;Gsj*m=doSPm-(GiQ6F;$g#7lRi%eLvI--<+66=4Ds_R-9}ivb!OOdIKx z7*m+2m`t8AgsVhc#qX>?&Ilu8lz(wwognl?s+rz=Z8Mb0FAFOB3su0;EH+cI$eG=E zziwgso2@8cEn9BpM^2>*zRS83NIt8GF8?SCxo!e)7k7#Au&PzCUf|mH8q8tBvxstEDm*!>B7kN^BexXCYNRo7W&S8;(Ex6iHEC*yY@L8DBn$SMx}dCU5QsdliSF^7zzuwCt6 zG~PD-_3ic=BR})Z3{MRzM%ZHUYxnEn=yHA*dq2J)woUO`5{V}{+igKcQA8>aXtxS} z&C71zpjtg|}_ae$75{UNknJSeW$BxD& zU##aOsJjy9th;Vl=wKy>Y$(o?8V8e{%{9b-6x?$Y{GSwZ(Y68CQTD%eWbN08{BIo^SYUJ_X)U}rw@($%iCiyZz^Oa{XNwC}(oox~~$~C4OJAUt|xLH>KNM z;M2%dl?$I-ISwgkz~7Xt-V)$o4N%pP-*>)|pr4s$W=23U%I8(Y;kV&Kl_9*CJx(?; zX=}_nyCUc%H&~TK`FSUaEf5AgA#reRoEM4H(Lhn%1FxcZrgU9qru4#~gKus}!&vNPFnG4NV*)^09D50<7Gu<(~v*ZsTK z!34b56}(qU;QPOOA3FV)d#A-0_^H6Vq_(lFYu|#>YoE8^=IRcLL?yOMX@r5)Tb;fC zn1>|DJP2->$D`mzLsYiZe|i;*AerpK)!+Gsb7_HGQdML4?#-1EBx&=#cldORpvy)4 zquFz08F`$Tyb0|;OWn#dMw@h?ls4L;6UQS533=+B>6`2MP2z2b7ca^?WucjhJ_`9sd>1bVBtCUTJ}e{jQ^1 zH!KI#c$ieF^%3$fE&N>>!DRkfw_@`OwBIdtZ%-S=(fcsX7{$~3;F9}gadaK}EY!yp zFe&wro7ylfy*6iN@Cg|5Wc1s@oLN$@XcA+(wD|icKvI5Wqq<*1Ml225ikw(F8ect> ztiMa9>^IAB*Vswwh>+Fxk1n%-(JA8KYx)m_Iubr0x&$Y?h}r2nm9V#VF=t`hTW5y? z1A{-mB^?`nXzDH7rXGBSPs)5+^NEz>Os33sAhgF{o`l0EQ1u1beK8-|9rI6&O?mpS z!$-`!dYVZ{zc)?k!_`b=qs;XBm1OgG^r#h-P`np8^KnnrQ(ICa%o@Z|w||+5RXec# zn!og=7OCdY`WbLglev5Ew{c1}>V5I!%7^>*p@N_CNxwy0eB5}aXu}$DG5P1q+iz#S zB9FrAV0y`lJLdTC;gqDXixIA$0{4byZdVY?zEZKm{6BPkV{~L)6K;%2(i2Q2$;c-p{)?Vlr%ZDW;vPkzN<0 z#HFkLzRTQ5E~hqin|gJ{5?&?Rh!dfHiZ^A7mrtNoGYdMd=PZnE1)oUT zC^G5Gti}U#(+K(DgNtE0D`6T z9*Z3c@YluL3$!-UvvEa8=d8wd)55AlP0Yr}gkP^$(Ulg488<3@8iYerQsZ@L+3fun zr0eD*Y;48@|Bx>N{Ysg+6oCw{BOMk^k(MCVH}3zjo=d4bfT$6+FS>xSqx~Aw4b{3s z_hw46kjm+*8^4cB{_wo!|9r#`6q!MpMdYC04Gs|V{=|7ZJYH05T8y)i6ArPD;4Z$i z8hs3xN}VvW#rf>NYo3cxNbt}mz?5;YDn#LC7p+15)NV<%!Uno4U8(3sr5)@%#M^Xv zbt>Z-3?xW*cpLxK%Mq)5f5xu8kHxO7nxoz+n4lnHzgu3EWc%uHN16)7sok^~Xvye7 zOQ%h2?f~?v2Pkopru@?Jo{m!Y)Mg#*RU~z_jX0O6v)oaWQf7$I+D%f8N+Vk~A4vG& zg;N`OAC^o@N9y|NF#Ufyn*JL%S-s{EXI9^`>}(&dI$>>XnB$Yg*mveTI@D9OpIFZ_ zQ+Xxb_I+{p`|9ZS>hk*cHtoj0`L%m>S`w<)<$Ztp2^lIZ?&JAM19h>`t$sBL| zH4J!)9X>uD&fPa7yuSAB@XPp|3mqOle$eZdvH3XseA&+Je)0bI@_EYm{j2@!6FPD@ zG_-_q+Ap8f@BQEO*UaDWe-uf7cw^CKLqm_d`942(hmT|L?Ot-(|CI&m6Xp_J`FV7C z`MSR!zG3DP=H}#H5#;E3-%r2EOkN5S>IWDM7#!#~ zG1%HhU8z>Q>3*bDUCLp;!N>Eh0?!SL)a6<$eW!4xiu4&HHKS z^5pLG>*9O~VJ>JNz*X>8{ zbne&f;c`hys+#`u!(r%hcUQ;z=Vm6mp6~nPX*1|dHr>td195kMf4sfbebb%m=W&1d z4>T$5cc%w>cIJ~i-uC;`XMf2uc)we2H}vrRG{4{T?dje7KEI#W>jP?>x9{uoC-iIg z`|IvM#=qOXU-Pi~wnBgT_&?tJ&)p{7{Pu@+yFK1Izb?Q2?Ve6Eu6FCSmc4(xybuCz znsa^KFGIV^hPK|7KQHeqa&vrrzouguzdqlO_fPv7ySsXtpMD~pf7jmX?(lp2I6mgr zV=99A{P^5rDt)mHXd&DroPJOK%W3%KzW#9e&+gOx?IV*A+LI9|1OK4~&s#mi{=WBG zU-eS|{_DfKxl->@WK-%yTj)zws03Z}-P-Kqg8MV$CG-7Cx1`XY^zX=ab$`(Y7Rk#rko>-{k2PGoaBA&-nu1H8;4if1~~)O|tvCGtJ>7-)^0ziQyJ5o*oPMP<)rhBO77$xO1M z@C(#nul>vnPV;V?KV61_I>lKkImJ#`oOGLl;TNJrp+&gme|4ZaijfXxH}_J9_DUkk zq>q$~InYIisKL~etMQLqdDuRFI#-cLF*_UM_?`CyBk$_CKd>ws{BYo6y6Ac;+iQR-5OlJC{=Z1zzQ$e+9?;6F$(i0Ly{lLp&*CVrHhb$Q1Dv~?A zP-f1~AQb1c626j#6?Fq7lam$m)@ZO6Z8{_1==f+x$fwTyz$ne83+jmd$(w<7YAbJ> zO~@J(1#TQ-sZ3`AZAy{y)eu24(5M2-HPT;L>!iZbvsn1H+QP)MU=4;cAS%>iNETqj z&Ngg-MaP*8>}OV0CH^xryoEP3NVO!m#2m*=P;m;sV^22#G5!H2 zkAh9HH^x8S-$2r_OONJw;JBjA=KvJwn3Gr??JkE(zz@sVBXX3y{9egyy}V)Voi#63 zcwwRp_<27y%Q+>*{V?oNHp(*$M0(?<6suY$kKtw&W^$4$gw*LTWm^XQ7Z#3&@8yVQ zdE?0=W5@8P)8zvk)bzxQyKF;Aks!O~8#@v9dhJ#>1XqJm?eAY-)wi&eMQnB`_G!h2 z)xmwVlvZA%GWJ4gm2;t#0YnllDAu*$O|F;L-`oY5UFQW2TH#V|XJmpk=@()yOm9O| zEbC?!G{;6U*z&Wiuh==yFZ_0O(7e$oDxhx2kX2o++l?aOuTq9P3&klV#Z4$)#0K!<5j7Dka9*&SGuW5ifR) zF0r!qXDs+iC+)+D8a~wiRle^ODv#3d5;>3XL6aXEJ1tXZTHh$ARXQ5T$~+iQNc*nS z510?z;>7wiQXF$QmvxrF86IPTtJKoe)$PKT6yzUJa8N9Gv8jBfD=A7hO?H;CYJB2# zlqtaPND$dJyUg!3ZFpO^4P{g!X3I}{nvlZTXq#Ues`MG}=K>%z{e_-Ntf~1x) zNsQh~QhhFA6DSrA+#jivJ=xE32Nm(h91SXn?IJzE?8r@3so`IMMU7xBD7-d9!X#?AH?uOic2rM49?IPKYe8YWKvWHWUJe1(mBc zu|LTGID%HufCCy{{kY>n?wK$TLa zs{xK*qnRwOeaKEDcZC5S8gFdzL=BanrFX?_av#YsU+6qqhJ-A{W^L#+FnLl8v#u-AzRa{wQkujswl1GF$VjSivK&O<%5!bUo?LyJj5=2SJE9RH zE38Mm?GGLD7<@<1!<}AZY$2br(s>^On(F8 zskp{x%C5@?%%JdJtK}(!+2TiG6pMjtg%BKwgG&r0X6@otTB@lIvjz(iM5W2Wmn*+y z*a=F8P}lqo&uUtWo?75yPIvkX8#=!+n>hX{8au1zh!HKV`BB`GRenj-I4hWuRKy1l zW#>v_64p1!ZP`Bb&C>W}VVClJG-BDQ$3j+#7pH94YG95wWRnEUVnhKe;)_8zHneHB z>%G6<_i6Y$XxH-l!~D5D#lUvA*Msa7f6IMN^Vh52^%nw z75O-z|PAF&;D7|aH@W(y{SlKIBHBbKM=JH!=xhmr_hqG$? z6UZd3^3b|)*AUj6ZZqp2y9Us5keHnMZ~K?G{xCfvQ%142*Re_zM&!rVn13S~a%7)! zq4qe26B_mxT=skTt(xEHgtNDm92mGFd`_d5)T>dXDmKEkpyGax>rfh{ZkSL}e=jO0 zAgG%hEW4SRGO0Y20~^tc>08@%;F>h3Zf=3KWlBK1EW14RILbR3@n&x^Z!gkuma5;p zZXT8(vUeaDs=oex47#!-I3)9-Og#$6^}w;TTCx?j%+XMHiBe;=ZX!IcZR)+lLkLuT z+EuW1sz22K&R=YXJtAT3k*`Q&Gu<4Sb6uGqpD3_n7T9^3(nMTY%L|8n#-rC*#DEfX zto3~I*r&ZeBRKg5(jgGp8g%GS1?ohOSI+S8SZ78H?@Jr;?;s({G*yBm{c4N+e5|xS zk|0vIo3rBmW_vc0iFp-(8B&kv%%jY~fO3!@Doqo8unY=r-%ol7fKou;&HXiVgD73> z;EqdyX9S_|1{?pbF+1vLeso6bc!D;$unl8Zr0#pxLZJ0Mm;>TvTxfvNP*<+zyn5sp z?~{rE#j^z2uDmg!l*Ts<8z(zjz*6P2GRl@t2w>bmJ)$?G=&HF%gUi9XUxLO#N_eVN z&a29}44>ASNp(i^i!5%pC;W0EUj`q+?xMOLk?i2_-3W>^QB^WazhX8j@=0LidV~?< z2Kpj3hbPbXNnzNvBjVxuEI8>Z1Z>YcyYpr#f;DgnOvnU{k249Po4EV;qTHA?Hn#^w zF-bFQu1VzX&$iqp@;_NkBdz8ZQt+VZVwp`}$;nW-|CiZ7ZaNhS8o0Nom zl7u6U5RobSiv%UDx&?rD8`krLB?)B!a$l1YOYA*I-WSJc`M(p55JQ4;9wjJz4*2m^ zg^HaDL~=O|hH-j`u$OxkCX9a!!qkF-YG&OfmFNAj>qZulVm+hif|m`(k~R7kc4A!b zoFZIK30HYM&_b&yr^mIz?Cezq^(oQyh@u{9B`+u zQEhskPM9;Sx&Z_}9EDTl6Eisu<|Z*D{tv1#eRVg?Ny_g)i-rb%9_Pqd`e0|IVBV{s z;_LPzsi#)sLVT!4COA!JWHRJA)@sv}mFc9J2P_CFR>*|bDqi^Gh;R6DSXcwDg$Iv(y|`G2;;`mnEJ+wkl;QAFq+>GBSaJMi zn`B2|R_(J4^N>NfEQcgHIHT9ZHMcl6p~Vgg-aZ3#qyAHwT*eyN*pzf2yhWb06GtXp35}5WNRynHChXBzjYU z=`HV^I5k*FWCh-0ge_wZaZpbpuBS*TX;DZ;3##(nXpGq_)-+vsH_31CJ_})V?(x*4 z{sC%{r?TXiUx3LDC=^n`*v4rnhreXa&Hb>SbhK3|dvwUMGH21qT?2?meQI^m8HkH9 z+w}ST6Tt-zbR9v4NHFVK$J5M#4Xy@AP|Rq#Wjem$L{mEmFiU4=IH9UqoDik1^hiC&de&{0Q?DdadKr(7POCAaL^1Fv+SDJE0TWjpVYob- z(%@|sXLTveM7{WxQL*{~Qbh%-xr@5{@|}}*5L8KWob2lrSOXPA=at78I^@M2SekoJxOVXrcMB9U>a)V;gCqrT)4;*$gV&v}#MP+h7gYq`9Dv7{4{pr9K0coWw* z{)B1&^5zyh$Vv7?OTW;kcCZFR%O1L}XlVC@#)xW^9H3{Cw{vCQ&icOE&RW>EbnOwq z0UsnR+VOfNE<=@kUY*~*Ma7(i)&A|71XRsp<@Ei#<9Cl1rgbBMXy8^D-{u7@c0Bqq zy5qK-Ml$H{ZX~oEo&3N6?5hIY8hmIz>FAUJa}q>wRH8Hs!R=Z+2NQHUq{6A`Tv?99 z44@p-n<=GcV^i&5uHu9OE}vk5BUP}yKO=d{%VQiGPL?=SYoi$>E1^795&F|B`?MG)4|XVdu_pA?NuzOb zYLPED>P_zALn$-}))=8{g&$7)Dt9waJi{j*Y&4K=sA2m+Eo`jOLn5-etza|kh-+;p zrk&8pD_4W3GSkNqw zjlA8z72{@6M`egqaHHD6hD1S2h5X+@7|%H}%3uAMrr0#G-4A&1zVIVr3ZwF7Ri zrFG;Rs63AUA&Iv{9dt>HZ0Gq6KX2fjzz>O&Q31p>G&G1LE7-MRZ%5keoX(_<6y=kS zNBJQOidn&F@^BJbE#oWhxit8QPB^s*qZ5ux-Z4cB(C-xw#1lxl?-m84^iTh+cQkXu zjwn#yb9e8-_@0e6N&Z_lnX|~OT;oxcI@Fbjc~GEGMe~>p84(g;fS#-4AshlOF%;EK zJ}o^-Y^Cc@aHN@uV@DI18ur*@kK<=E+zRi^4Zm9|@cAt$c9qgbmj7yZ*rq-yp8>)M z=hdEIb$_N3Dw(cvKY@CPJYDjp+Y=QIJzsftHmb;mNkd)(VL>BgZbZVaObQC0j{Ss2 zUb{Bg{A<4%Zl_6!I2>fJarr6x$5?(I^GpZjUYCcwlb<6SRg(Z>siD=`ksk%|QM-LD zV89lGJnmrHm8%wJ(+Sp96 zFXS&x0_n)$V5<;|_Bls`6bmwg zzQ8wzDc6p^+`;lvUT0Lev4e1=Ii?r5zq!x=v9A zWigzBRkcd2@G@S^1u1{`u>Xh{m9I=&qWjMV`BKB}-jEgn;S&ONb>x_rX(lmDky~Pv z0W}3WE(H92pl-@aQO=h}h~tXdARS5&9(t=%e}A}e#cLwmN)`VtBFKjupH0-XHOVFMmw>F*`9uxDV zv+`kvihuh&-Va0lD0fg*F5$MQt!;$i>25+88Oh8# zE((uH3a|}5&ed$*2u7U>q1BrO*)fb#IzRF4dLwulNLWvM_G5jY|XH zY!CZQxh;36>v9uK{+;`w!eO)>{)rz)a6z)rn{R?5%i6TM-Xl@hXH3PYi$!T10JcHA zVt^0GVZ(fCR2}Pt%$3MphyPE1X6ujjLv#k)^*Jy_WNQlJcm)_b(5|R(+6OVY6@T*u zBDF)41LJ@kaGsbtBw@HFqAGd2PUG@)NlOuqmiP2qhFD`vUN%5{^U%mkAzx_5&^MtZ zu0qM1ghCxz*FPlh23~dD*jB=dRniKV4VgazKJS z0z7PO_myaih2cxFi3b)2(`rN!;qal?nXja9G>p-J+}9Z0gsQ11$xMxM77zJrFn)v4KQV zCN{)mk(to#DpEfX_8T)H2MPkHZ2|NRYBP3|H@$Sm9;5cAF97cz$G~8=yj2TP-JB!w zRDHGL)(L3~qY!oVO(q~vzFAhGXu9G|;@|2M?byI>Kg(dByC)N+0L4t0X*fzW0|`HT zP>x3nKP#DQ_++#t1-7N6MbEY4mtL|WcE+kq{9Kq3L#z7vM!USwoz&ms|KSR+cs>9X zegv^|ko~C*f0m9Zf0l6)bT}k-0HWsb@fFg-u`}~BFKA>N-}AtNIyj5emVI;@Nj*hJ zhEe8S0g(n&D3fE*@glG*yToeX9Q8J<)9N=D(sfB9+&LPCJc*)-pP<8WZ;_yuJ$qs$ zy_<8D8S@nLf`s88o9Y*x7VgnXAoTkNYzUdA*7yao173M6Erauet?bE^))OE(zv~F;=ERABV%yk zanq62*k&x@6UAMuN^&r`a`fklA}{u3L+!bXCy4|zB9Um<)(-aj2aR+UzLRk5=yQ5W zAwmMA)x!5FI9j}wMUs~UQxJ5uqsLS=*KZ0!|Jq^_yVzo>hv60(F@3p9d*v%Al^ z*diB5xDPR@Oz9d-I$QpQL5s;VGF&*jH?2zOVE`&tJsuSMU?npCuI#jk;a)@$M_(~R za6`hu#Ip!+oaTwXm1lUTVgGI$Xqo%>Q%T==D6-y4iLHO7T=^BF*1lA4?OHRSf5Jcb zzI@Cdb_KvvwnNk@kbHT<1z|f@jK3m(MfRqR`#lX?ASNAeu4M|Jj9h2>cnmxs+u%Zo zJZ!D7MoIs{hT65vV0eFpGt#lZ8U}PNo*rt$enP)Qe#-%t4)fq(+r1F39Jggs3xKlO z35lq=kJDrQtsMU<&zaP2zWkXmL=QYDd)}Av9TlqqGr=fA4@)a|LWHg`&M>oM6bN z{ahi2*9(7FsEdSyMi#|TY4Z#=2tgQE(*jJCybma_dxY|XA3PTX+)#p1-^}ci2<_{y z(*awCDAhRW-9CoY7{zY~08A}OgdPb$)RVBmckNpc5buc9)&2Uu8^;C*bm&FmPG6?r%p^HKXae|AF8XO+Otgtz0UkfHR*cnL2r7!6?498%?-IKZ{5&93ng?)3+ z&kf?ZBlE|XD}|aIH>9Z+5ozOqttKOTYv$M&ze6!O49!O{aHMj3hK|)9#Faa6`0jJQ z6J}g|=`)&`ge8KGm9?qnJ<+3rmr;=*@0zXgki_VawvYP(**v7P&+*=pkjwJ}+cyj? zu}(^$>h{`!4l}#)&>d<8P*S>3Vjg?&or`<2DT!9M%Da(o?xb) zgkf<>&p(IzP>Grxb4N}XW?2W{7Bmscodu(d;2KRD)=(a)pYd5kGW;o~#Yf%APaJSlWM?RVI$knL>Z#rzMMTf{~qn-^U}k z8z}av8^)BP%(KduNkVt0I@DG~G=YmcbB@9O+JwXl(o(8-$&|=4{TI2vD{Cn6Q~W4iMqPAzDS z52ctFy~iZt@Gvhs@lo55x*xB7=v)w^B966&g9r27I;#n75$lQRbZZJ|FXJ?? zr|4-2^}XEJrMzZ3vj^?WpnmCT2=RUF&82*XDS;Y47V|e4^!9kA`52R=y`y^^ z77y!x7&?0a`Of_@i*noOR|ZcET7|4DOn(T`F$Kyj2AL%{vj+hM{$jF1`sg_ciUct% z^no9F+H?BJ=#hWt9rRm4TUN`WX%!?5$}9X2amuWSlN%yH>_S#!o5&^6Io&3ZLxPy8 zR+JPhHETqu-9ko`>ayK!67~}w&m-odiKczgZHkna9fU2y2B~&s{$O}mYW629;w_`3 z#>pHyE32+oQf=1gJw+OYD>n85l`k-(iByY4Bx&CcjeUz6D8=UIm2&o}x5y`G^w5iN z*~WYqXcaOFC0vs_kVB#s@?ev-Q$pjZib?|#$=#3x6ffri@=3NURBx@7BA_o}#w*q; z92C>!_zwP_Wt#S&f8NL{FZ7@hVwXBps6sd|u=@9dOfs2j%fq6#!iP2A@QKu)hEtQB?^lpD<(=Jzh)b1i6V)b& zn-^EO;vffAGErnE{kh!e+IkCWQ8h(I#c)!c%aou-ceQ()LEeR#rK)7(cZi~1f!U}+ zM>%V4+9Gi(Y9ZsKks!LIqcb}!s<+2f5sN;`G3A_OAj%)bZv~^yZainT-`=|V)7kPr;CG6c_ z*4mo@ij-k;qx$y>-$m$JxRgjFT^6rx$JxNh2Q8_TIH|A)!L^LOkkh*DAJ~SnEa$hV z>G;x^wvL^PPcoS7^Eco+4o^Xin`djiPWrfKZlE-8g^XzfNxb1|zDh1>h?k{TpmxgD4ckSLPXANWk@8ESMV_I<)g_mYu9fdZ7 zj`wq%%%lW2?c33<)MJjB)L(M{3TWSHreHUCU7z?wLWJ=Q?$aLw}K61{f@i#r(1NRB11xtkDm{xi z5?hUc;F>zZ#csk8)9C&o43p|YBaMx6lB7y6OSDFB0kagI83An>i=}!4aR_IIF5q9O zg;Y{kHJMSr?@RMfS2EJeaB+(oz2|qyR>3lhZqy>4%*}SQ;}aYvhbl)M2@t-0+{KDq z$d@<$Xs2Icd~#6~bZAb0qE+B(lRbfIXfbfcmqt?oMe5(zDwtGiiHclP0uP)E%yISc zn*Z3bV0%n`D_z`0_Nb4@!~{rlHtO+-Cl#k76x{_u==!0u?t)OMU;$mMU2Mm_!@ho* zcyu30axzLcUzz@Plh|=pu$onwr!kjCo!Z52+)*jYi4x#6Yl`bAS?`-!Qaq_ay=eJO zQus!+Kw|Jp3`~VNmr8V~wjR%J?k`vOk>VIN@2!obOlBfg)kUiFW{D&*6M1!4IBh{v z)OcT=+_Pp&uoe#pw_Jr^Maq~JZ&;!9jDc2?lRLBuV^x&8{ksY9XSuq*S|9-#+i$({ zmE$3cdVO1C+|K1hb5x(kPvb#YIRp1yf~7^M=%VI#)n`a_U3(R!BrPs^^ty!1LekYb zmF>7b&>oJnlLTx{`vVErq?uJNiNe1S|>0SH5SXgQUHT>tj3@<-|k6%G&;zT4i_j0nDw#HC+y^`i}~EIB!0X}hLG z7ItMsM44LFRc%`v2__>@?ROKD|I>1De%-nurDF0{2b!z<;WW&Y?cPXrU3^vHo*0Tz z3$0k;Hk((KgPwQbf)965eMKD3#gFtzIw@3%UmzOC;K9xxlG#5cq9*HIGuYRqH=C8X zE&}KDOWdva)-gcwsgb|12`((QE2GeuxcQr2G}(2Ot*qEVW0^mZa#dw6A-#srE0#UM zl0>R7;hX)mnY`_;?t_e`e0-Zh*@f<4xN_s@Zh0a6?ANy^xElIUu*wj{r*6o2?5 z%hjen9_qEUnN?D4^EjFdD~n2c?a0&@!l0Mo4wc*5(XK9Ayk6n6$H&=6ar_=BGE{m> z-gs#9b^!E7pjen-u+({NN5nf0ju+P?@wq=RZf5m|px5J0$R_w!O);VD=?}Ijl`q0v zY&9FYYdH7r`XVml%o-cLxGp;;VkjRB`Wlxcuysbgcm2ntA z2GfMdK(8P}Z`v#=Q>dycy;iL#oy_S*0>)OS5~QGf1vVsCd9{l=y`t zNAjx-XSe);ZP0GXZ9$?T4OIPQ=NIj#a`PRu=-*c(O!C?&%8b`1lxOB_Iq-Mb^^_&E z4aNPZZ^u4S)Rc4c0j8urTL+i^sMYLWXl3wv2jwg(ejP<3MQ6i8hWIN@HhE9!Fhi_Y zK;OcV9a`{}pGK~4V7yu!|zQIhto6*BxNAcSuc3vLyCGsn#0t?<3h4ay2Wu) zKC2%*h-{r3-<2_}w}yaLKziKbQ;B(T93ENH6{acOisJJJ@J6-`yeN`FMaEH$z6l4$ zs})lf6q^rgMVa|TaTN%E90b=19Xgc|NG7&;a>dq%sZbV?Z{L_KaUG>2c@mY|U35u) z?V?pnqVb)jT3mF0riq6}%a|AG@Y92Bd|*voP%n>WwJOG0h?vb=uH}eWnT!;!W_!hm zZqEy;%7E(Gjk5u!o<|Zh=}(SJGtu)9^7_oqs)n<3JvUvl+aqvDEnYvws$yy_i@|7M z&CIfeQ@T+-RKk)4o1V;hqIs3HhV}FiwT`PRwn@)G)10IN=Q<&5@1x`tpzwzlyL9?> zo+>uTFeYP#hd3pD%Asm|mZsm;6g}8xeknOjHPh0{wxCzx4ozHrPcg5GN`Js9fI;xl zo3+%ePgb?HapEjL1~N_=-L>~bEFn1^;W}U5{0jF|h9ssaxJRG06s@qBR@EFGm^fbY1rt-GcRiXOpUc^dlGvzu|EHmQLOKj@~ z`=62baM?Gn1n?q31;}3WR<_7T_&?D$Makzl#`ii>yvt&al2*mW`k;@xe`KImS)?O) z6C+k1UwztgG{Wnl-uhoprt0P9=rUaEZFPTaecf;K@ptolJm2lU%va>*@_#*j9=<=^ z?t^B+jm8eXa``{+o8?~gK0jWjZ@LNjd^}#?9j9P|x=X=hzdk=s?}xwVexh_e&d(2* zq?WvE?J}M>cm3QMPWAKoyd{+5hyOLD&gg(-%{w;T7n(6b{?D_Bueu&+V&+jwTY=8X=G*SQmnzm0xN0!+`1p^aR`TtMb zGyiYeUfU*igAMTM+w&1R=zBfj*{DNCZ8uB=)<9I){ zeYyYij;5ZQHxm%e`%qpv$jyX!vx0IP}ek zYxC>n@Y#7vRyQWr%`EKe@xK55{PL}tkYHy+`sC>F`F8U%_Udhv_48@+t$Doj>)!tT zRrCGJwD|7r^kLY0kC1R{la1wJ66S4Q=rA=k^ZRhDn;&1!m(T0#{q64jF-t=xZ$p4> z+|`uZ^>$ZQ*A^H#?BzdicJ{azJ^}lG^|xX*eI`ydex2-0T|W1i8@B|Xy(-RSe|67N zBXQb{9XO0D;+JYIWmL`!t4NaMkxY&tZ^ttMt7~{|Co+0?RRhs#dvg(1K4_VHH*?z! zdtBG;drdxK9D>xU)PunZMN*FErnK_RKzbc3$^R%L$9fxb%)JaDvV5@-6gQ8y10%MYLsc;hnc^D8;@bSp~KeCy?;k}t8 zRqb=lD}mlV0gKWH#I$1xe=im@+>8M6pVb$*(0B-WX!F5i<03sXoU>=;@CMa-B!9Hl zsr-3X$e5HUO)=QLQBcQCZ?2&K=48@SW*g`S@$3o@X2M}ehNbe`z8P-d2cvd+{sruIr2I1^oL2~Il;1D|AJ zN;k+-n1ST(ZTk~m-zQM$8KUX}%sO6kysFG_Xwu2n|ztr6?f(&#GO{lu&f1T|Fy zrGE*M#Dc$8PB6*V4(^NethnVJJnu9mOq_k|JIJ?bDR4-t8pJboWuj0%i#pM_g;4nE zf<^`rqAyzF&@*D)>2lEt=6Eb=>OySbNX>4Uk3Yi)Ydx5!|8K>t5c(;TD1LZHO95uF zCmRmy?WmluVjLlnwoO5YDGxs_U00fjX7o3VW_olvJSun~rp%)Ct2H_{iU{Sg;k>=> zC|^YdVj@Dj!WC@8^hDvOlG3C)7*HI2IAoQE_|Lg9w!&FB&(KsInnZCmqcp>5$lpGo zXwjB>JancljlZMyC>GjQ87I{7>z{|FOx4)hb7k@H{8E>WVR5;g+xE9PFwq| zzHO#Pg95ucxW@*$U+-{nMBrr2v1?Bu`aj-XiJlrJy#oZG zKIBAybIQbjFG6Fd0#d4(Xyu^H$>R<{7QtiGp$FZnBwllhw(^8mieN7(dZ;Q z?R)DZd3~Fyy#@Z z_pfb$IV`j4Qkx8WRT~jo)d|HQSG?Hu0o!57>KT*s@1N}pGA`h|b@KK!G2oXhEGvxk zF-RHiOgqc8(kiRPQx@U2LQ}- z)3KT4N)fTK;WC>aIZ~P=p`1I{>6M{^@MXadmQp9q_WH~mcHOrI__T7pgKYgOpz#IJ zdT81w@E29X{beu3&OHA3gPSJRRbf%3FAfGzCu^%sgI^-s)BgLb91UWtnMVNov|5h6 z!?|nAYZ@!dC$X~&as&|NUZ0gi0LZk~9K04kky)80)x=GG==L<73~U;}C|&oWPAH~) zB#IdrysHm#{`Nr?ej_yb*rikVC*=ZLaxC7c+=V~M-{4aFFKTzFh12I!LsWINpDU3% zK=)&~L03CEJA>i_bTOnsppu8+NGQDNNus~QQkMt{1G8VdjTsN5J)OwA`b*d36Xdb+9btj%-&kUxpem`x!v%lIk;G12 zr-X+4*C0?~=%zAPS5tUnKnBBTKoEdDFt0cXyn+G?yOe{HYu{h$ROoOIl$u5!+1%Ps z3gwqk^>b*ek6}iXX8_99-Ki=dSEU3ZsPBk5XrP^PjKwOpM&-w;3Ai zLuRYumH$V%y1A1Lcf$SR9m)&J7W62N!T%&l5J8?ggI*UG<2?1xQ2adA5EWc!f8b1A zh7t{2@HV^?9w3!aHXa&B>pgP^epw?lLmcB>ZZ%k{REP#ne{qkFuig<;e{dwyV~97h zbM8oNtbx1`4aye1>>GIFoxk~($2P?ldq4`x1tz%XJL&RL?6;3TpXU=9E66YCWi2m7 z2iaZd#GZhK{o$k4O55+5?e+{R@iZI-s>@xV=t5HSI--HVFdEs>1u*sjGJ$^Q7}krn zGY<*VXXDzsYWGj(TbCP8G0s*e&5^isNumQG0%dHx833`^%UGG^etZDYk8uuVQZk6O z7OiLsh`vl`HT3j0R5%TID2BE)({tB=?v-T(dlA?fC|w2>Wl(0-oY^*cqS_JZ@tCi( zu0Zg?IPU|SsQ(F9P6LV+$P~FDWjs3s? zK%wjJs(*CgXxwk@v$aFt!K#jjCq|%oFx#hC+H>mRN0P^WX2V6}YM3?H_7m*BPkQjb zY^>4RTO14yIa$=q7`NJHV{lm%4*q5h{W=sb5sRzBT!9dn7A&|^f$^EH~&dW7Qnxi-ER&f7-GT<5?dg|^_8XMo!_!=Zm06}iiiP>xe!;929D455`&VX*fL!GFdE~y2+V{!1`$22tH$os#YqpzHS;d$WEDo!MTpJ ztU;X3d=51qpCoZvSoIpSbDRi_U@5%)@gvXY<-keuw#9M~TzT**wca$iphFzOUq zx`|E~tb9|g+8MM#ffBPA8!g6%d9YB)@+|=1oA4#WRWanhjjLV1zOsnGo0e*<6#t)+ zZqV>E@b8h2oo>wCN{&$>HU;_2D`h4@`YhC|#5cZPIQLCG_boZ+Tk~33KmiYx$%%r? z=2raTBHrah@T$o~p!`2{ePvV~O|&IW2=1=I-GaNj2M;d6FA&__f_osiyK@O{!4lk^ ziw6k~L8r+#Yu@~MzhG6}?y9rTsUy3(tGntFdAC|paeg; zF}f@BJ@V~zSqHK)BZE7?FG8bG)TQ6w8~{5LwbiJf&@balM$HA^#a1E@b7PLR$YM*N z+OMSsv9i418sQW5XGPzVb*aFAVFgaa#Sdumxl>n>FHhonC-KhrcRq^r9*UJ&7qRcC z%ui$7T5NAr_ERY+DhKNR?_>uqALbPSm7#IUg|d9bxa4eqgGi`Aa~x{467q&>pnPgZ|hVqFQ zaqhA}!(_q&Urk~#c|eBx9!B{97Y6s(u0H}s?GHudVCZq__rQb3z=P&M-IKhCfi2z> zL8@7j9nE~(+TC`-lV(ow1f8~Ax=w{~H@~Uv3*+kdh)w-JS>BA37IJ=)qSq>PnhOb? zJf&!8_>*t0m72*aPN~QbHB!gQ>#c>R@0hn{+|S+~7#fbI?T>XIlv*jknB9=;xk#zL zfbTbte~&p7=w6B_U7e*?K(b?7&*?#TMZ}nDJEOc*xxnAvUsuC(Z}{Tl76N^ugYtlx zFV4d@PPQbhlyed2rM>1{Ab5%km+9r^HD&EESsB{{eZoF&$-ENHMTJ9q!FiIX;f~(e z9}bPw)> zC81@6Nu~Rzp$bx%nHv(_=K{-TzTFGwF=Hc@{q3j6-Je;Hnd9eocW=lmLNUJt-b>+9>~>v{jq_ zXdF5FSFg=)Mw@n-7z1m$`!lNO@%!(5C9$7<{qK%GKVP5T4w<{>);^ycsvDsjU;1`E ze12S58>4%3v3Gvw{A{s*@(bC&1G{U`%R5KZ|E;kMxbyGRXOY~l$=uwnE5gSqB9bdbf{Hk{hKU&NKqKG&7Tc0e~uD`9o&bnQW0+wy&aoJkj<4MTg((kBb54JjBlwTHqk-rfCjcYT*M@h8CNHg)4=cL6=X*XwDmRWx8Tlm6=W<%98h$Fu+4*orAh z>B5HZtpn!si%7@IWz2m*H`d4JlbOV0Uh~-Sf4U1!VZuU40s|6|>_c|g_AYRwm)zfEzd2&`*C7dE5>W$o^Wqor;p>{AWx zkE*GvM?HV1&vgg4myAkGy4Lo+yzL)^SjL)^;{SHPxaKXd<5K5pi%*2{!I4g|ipRUH zggY$HU)MAH&|5=^2@s{mR~9v^ANt4s5EqeN z739zoJJZ4vKje~Yrnkm&{-kyrI=pP4H`FgV|9R#1$v-#T&xbkQGOJZrJKz?@?E&Yg zyR|Q_G~H~Q^MuJP+>cb96>omSCS=K0lIhsf8;N+&hIrnAyu}iB#mw}nn*X4aUx?*y zpnCi8ee8<)^660rXCk&HA@Y&azW5(&v7NSJRp+5g#Z}Jr2nSN~mG6JzhcIG}LVEJl zd&=E~d`G{s$2|z4HMndOjs4#Kkr&i|SeyuJ=lkWdYrWLX;56P(xuhPQG~`Dd-S=;< zWxbNjFC45#r0PfPUv4>O?T!m&|AGr-kt6r}$MA*(WkmmsHK5*_%3EAdna>_fnL+-Z zCB0V~^UEG`&e^l{r*61E;IO^=q<-$}Ir5dG%ZAa%o^(%2n_O5XmW+il2c1oCrXiMM z+fQ#nP=>r#hg|5aIcHxXCVIbLaXwgoObEUIiyJcs41W4ZZtCu~EwLofHKVxLv6eZo zRo`IMkK?pg9}j$PSyA`Dj>xq?ce?%CU9omwqRq+qM~Bku@C3$7BiLIOTO65s_&~!y zS8&L`nv)B>cDXrvT>X8-y4C&Ryc8kW$5(D1VDeAGXxEDO2SHqQBJ-JzmRTjjMoqHh z!lOeUwExYlcB=~}oO#g?LahkMy`4W*_^tnPi^h&@(KPRgTWR}i_Sbk3@09pTqyI#- z-*K}b8*(5ZH$V0fx<61CscF#H5+WC|JXxe9gAQy~MPd~BpJuX#vw%Oh4ulAX;8@G7 zZQ+{(AF|zT#!BhI%dO%Co~<5AX^^do@1QKX(Epp!e3#>`!;rw9>B!AO;VT}DWBHK3 zS6D4u(4qrkWV$bD1b*a#WXmT6z`(g8I$xS$1m^v+Tb<*Beox5)pRy{}LnZ})Z6w^* zy)*w&*hh+n-cXMI3hbglYx}XUf0X3g+o<+O!Bf{S(VG9TFsxh#lpSW>y;16wo$mbI zx&p9)=`Pv-l*cD}Du^HLOirHnK`7SmDx>MoRKcrpG&{PKe)M<@8cMly`gb2UG~lzC zaU+z-SDxjyeAiQjzJ`{~Wu77(7EuP?L&m_{`}RJ^-O7Gf^yE5v|KWMpdHY}vC%lKb z!Dv(~;;l5)yc5~j^xrkxF$xdt&LJu)_2uXQY!y1M(_xGm&b-rl+yL!A<5$i_#2ub7 zji0F>G3KbU>0QF%sBD`fM3j2A?TNSmO4CQfo+wq-yZn}Qz8ssnmxhhjNWEaGuD8zVy+|<-}X-nEWl zgR0b5y>9j^5TCKtp|}g@)VbG{lJKE`Kkw-*L&vwmIr?_-|Ld8yGh8%_G&^A*y9>;D zSo~)(N- zX@v73`(YEf-n%*D6;qBNF71i74m2fmaBjMYCm?PW9`;1U2Rvw8j2uDkEe41ghZ>9D z@hjNlnnJloeW%;NCwi0w;JZI7hhEp4PpL#m4qn>e(&jvcQevg~eF5K{Gv6edPZ>qT zyy9uSs-w4*gu6~~b;A8kChi8U9MXnXkTNNV)|84I2# z*kxoOs6SRQ;lK7#+kXxtX%lw%L3ae(-t`#7_CE$t$z1chOmYu4YKI1bdlWKM&|3%( ztPL95zDr%Jg7mR(#L^9herLK(`%}TMCO0_JjNPzd6}5j{&sBHR3m8~w-TVGa)71Cl zM{>IERD#~!$?!<~ppy__N~5;o=f1j@s7Ij-w4YR|EV_nV!8i5)j55ztq^d!t;3s+< zZl5pKN*wyn=GPU%I2QD})MU!u5K8HW3&)04`yJ4e8}}_AUH)x)`_7NswdUBR+>e?L zdFjB2tj5=O#5QQ#SKl%gJyHGUyr+PsaS<`@gGg8CR>u1r$ls1=>_1(rGyK1(2e63E z$pz>8+xRFJ%dLdtp$W4>vE}uhJE+4q5aU0D{HJ5KK1b|zR0gCPa}Jg2SH&&p*;4`{ zNSmI@5$xh@H;~yiU*`h?NH-?{79f@AWJIGBJ-3Z9!2Vym<-c|dhYSHVHucZX#!*Io z2a8QBQxcHBb)!^Pe}QuajuYp4y^yOxN0I|V#U#9Ss$-whI^8B%aDboAQ+EUA-(I!Cp#E)j*-6#CT1khAU6kLc?}bFSgnF|M$F zRHGXh$|JaD$u)d1__x%oSU}mTxqX4O=S7i7$8cq4zwUeLZ8kT*|It42G#cExVU;6B znC>MG5X4(Rj8_&UQ)%AbqKWw^4x_L_bhSM!313Vk`_h-kHu0S5U}; z4aS*BQU8mO41+TWx9#a9V{G)A2f>0hCWsG}jzx*AFb8t>M~|1&!y_=PQZtgSzZ0E) zXy1*~pr}gqXxX`dCH|YiPZg73E;`JGA)Il>W_K3d`OL9fUf(a{$U^!T%2F2qfo^QA+KKB9~tP(oJr^c^t9!N&DT)y?~d*C*Q z5+QON-x%UT{P4E0vjIQLeTxma6pb(5RDmp$xkk<2CAf8`e|winNK@6H>aMa%`U3M8 zZu@hXoy=AX$~#^X0#-1+GgLZ-PG0^GyohW%+2-hEL7d*Vk=RLEau7u|K0tN@5|h-V>W1(ubj>=z2Q!EF{SKN*(A_7#rU?b{{iPVKTf=sS zt|Gvzl$zC#pJCVAC+?Mkn1SW81F7e^e30@6L3*T)M665@dX0D2N?)^pSMur9+0XP* zvgYhOpeE`UFk6#f0y$Jzj()b~uoy$JgiinxoayNaKfYsB0a3V*cmLFfkziUNYW_4sP0xQCV*p##fnqk+Eu~G0sW>?0Diqz=%9G0`Z={6m+z!5(BH! z?=ff+$c}{ELqhv4K?^H6>ck0A(#x&KhQ2m3#F0kxZ81szNFB{)hs2@I!SaxLR-;0JY^GvuN3fZvZ;a7|}WOZSTA0)o9M_@Sv%W=8#bvX)$$xSG!c@;r@ z`Qo;>i7=p3;Re_NKPvDxt~hFEa&n6PcT5p2mmdhLIs~B#*^=YoPYUn%sYqzbT}>=n z+yN7O2JRCMC1{?uNMkBipZPNvjiAoLD8-$Oe`3h(eDm7Hn1Z196uVTQKDEc3gIhN~ z8x<2z+_1Cm*ATZWg4G2~`kY57|H-eaGugyGQJoemX&Zgc%T1lL&|WonIO0d z5T6qHI`K2Y%Qgy?Yi<;B-e7_SsS8mWv-S5ow1LlJ9A;jALZ9{@tYb2IViefwubo``>r$E+j zqf!t+u)GMSsM-1nas7T`;@Mb0nZREMFH3Fx=&zgqgvP__sWU=lVV>@%Z%QSWcz#0lybfq(>SAPbfSq9)OTiaH;IA z1qooPB~>JIrAZbPYZ~E7OOA;f72t8(Utz>+tCwN{OC5+72!P?ZU z*qRI^%V>23kZME~$bl_q~9v6M`4O9 zGpc8MF69g*_H0Mtp)mvaTuE>9Tjia|8-6&zHv z#Z*2_LR(7?;C_W!g~95bl-10U=otuu${XO{v@Zh>3ec&2Rgl(@I=`4A3$DFhCe773 z(cc8}84IkSzz*6~^h3OsANA1s2k;Q?rluaRFW%F;U=irdfq*xDJu7jrL3e6Fe6cJn zpx5l^Q+nuzL_yHB?WkVk$gw%{`$*f9+lt}G z&1W^+@b~B1&JZ9?-H^abf|8w1?pl>k{0Y{9#WVtB{V77aaf?VQbe+!hda5Ojf9gRs zWrMCgdgR8HvQbDK#tfr*SPX5WF3_k~GvMH%L!Glb89J$%a zY47YI`uF)o_|(y3?nCt|_tFr_>p?lhporglhk$FWYRU~6pJi^0c+$B_LuBDsdmhzR_pmddFb%9VGj_id>nYT!-j6^Q~ z^X(sAweij9er3u2k51F@aj>Kmg`v=0wqLTs)K<zCempqGU%)${!;-VN<4;Nb^8OOkq@(sH4+E6N=zY+x}|ENcqPdY z_t6_{=b#z03@{omDyB!skz6Foo9!-&8YwCkD7^lDw>q0oU_s0P241!q`mn+gD|-9o zxMl*Pnh@pw-p&mQ&h1r=011pJ*DWNJ7B4@s9{A!37Ip5`e_@;6R-Pisi3G_;w&?4jf#C%5p%FB^EN{G5s-d}RAdJ~ZL~j$u^1M>;Z) zWD7FTh?guS}Ty%8ZH+BN-ogrV1rARs=;Y1|n}1&1EO)H45~CWQpmf8FP_o8w7KOS@{`j zpVDNrFJ|`MS=YG5Z#jl?>vR$=YEZtO!x1}2!{waOemN)no_2>~1_bgFM*uO5Sh=WY z+ak3htFmOMozw_8ak45im ztmwQ=r*CLA+nLa~P+zn`_LOT1ox<`LEO@nI9z^!Q9%5+P?lNw2AF=4-0SCht~iA{U2huED+Er|9UmOe|-QWhpx4LHg1 zc=dD)?yF^uia!|St@Dnd8OlqZh zbF;+ub=y5gF@*b%VN$0ac5uMd;&Iw*=xscsdWwAooQ!6%s>(OgrhaS*IBR zSHdvyO{-ZjhYVuDbN-3u@mCa@nCQ#*HP0}Kl^~q{4mXfZWa~pLDOzlj5|Ud(=oZ!s zKgGI>o~GTc;a$b@`IVZ3`BvFW54Y)1FRKcqpSn9FbG9oQR;mB{8t9Q->FwEWi&7-( z`3IPJmhsle#KLc( z0yp{BVb~15*)(bR72`nLnwYo1OhWuVlZ^Y-zh7wxUdin1f96 z!FSvf8g`GRl^&i2sE^Lm9>aE6%RpA8uIj4ve>M#R1cA_-rPSY^YUXKkf~XT~72Jm_ z*90ViXO5&GqG=XP|HXi_=g=tGAn!dI_#%Ti-1nJie8kh$7(>*bm_B1o(=08+F9L!6 zwUNcp#?Syy&1fr>Eknr)@b90G0vjpUl4?s=jo(`EV>cM8^|XZ<;hBb8+6!pnKV!jw?GQ zwD3ST#krubD(Km$CuvcaW%=sDA~a|&lJtK`Vjn%YJ;94oiJl^liai`NeZLIgo;WJtCA+&gYkPTJ3ZfSN2}klm5gp6JJkZ((+_ zzauyh4urI8`9J}L6tEi@_`Oy_0co=Z-{~x*MEhoVr|7N<;xyGwYHDvWs$oH>%6MI)aOTO)EVfi_(IDvu@z0ZHg1St#KGiYRU@e( zm_CdwgxCLlaO?9*FNTve)mjywb#W(sa`K&AnD~mGxMaumTQXMVwIiv|W!FKl$c3R- z@@BaJP@y{5K=C^1s3+Qi_=wAja`C;KSw;Jn{q03+u#Xkl*TzZpjy4YNUH|mM^^7vGEw}-Q!RidFMSq z6DjaTB0dH+ng7ksVOD}GZ@lRTvg?RGqcp+Bj(kcc#o!gJ;h8cR`<6W~6kmlRY~;t? z2n%JfU@5|khd$`d9nGAH{vyC&^H zKx#zT7wa@JUyII6O`huhI_D39^0oP7Y@M65V>@&!`RFV^qp=qHto-x`ry5iYm0P~2 z4AZ8V-T#D7F8`K>#}ltUF+z<>L&FU>&{nCrM`DMM;V7TYaFT5au&?eeT?&$#83TqE z$&-R?P)Byw-Wx5iIjSukA&QlT2GKxSauZocnOJr>zv*}$(sS|RpI9nwOcaO1VVb}l5KyJ_rL;dY{>xr zbGdqUT@lfp3IcJo%G8LA>T}XtZeI1sF=q9#TsCRK{8&jtgY6oMWLLi(TEW47I3TyUn`_ZY^&6Wgia#b6YCQa zU+XcMzl<9tfX6rsvADo-QZ2*UL<27_qzQhR&;ppMXY25`%t#Po6UMHRyBFY$No@Pu z0R|Yq%Q<9ewk~*P zd*RO=vfCed1KoSo1dp@nspH z%pFTUjb=$9sw;3fTZZ)NaW&sjroUJYAWZ=jrkW==gN;+A(vloe)O!VZDJO zmaqIuHIR984RXWe{LgVZ*L^=o7yHZONXPxv;sl^Rn!4N`#?Kt3NfLq|C{X?De-22# z&1eYN76^XrMLmqHigZ<7cWH|q(W zt7TOrd!)&JS~U6x6G}#6y~Wzn zV|IGk*XPCL93CWi^t3%z^CNF5{?z7dZ32k{wc(Yd_*oK_ly4e94!&hIRj(#hFUR9S zMQ+VN9-()vw};1xy_FE_3nM6j6PV>DF$@f|tNI+Vi=}8q?@9%O#;W5>GoD|Pzxg&U zaWEl0$h_D@(d8{Xj$xc4%{UObHq)BlVasXZ#$o6IwKzPAAxxn{c8IcMx3pje(y{X- zwgOys5TJS!jw=JitZ;uONEt(+Jcd1V)GZyIky!U`L2Z+3-4b^fd@=vqqQ(?Z3-&Ct z&@!4W(M`3aa(@?m(fJS<%2`~J=&;k1750W@RjxSuwIh`a+MTh9m2rkr#1elg&`740zXQLaTif69GtI>D*4(Ppt#E`%;Hi%J=)7=;5mwXg7GWF`;7 z0bC$WMo6SDhV45vqC7lkuV__Gr&<`T_S0Y%FcxUM?=e`x_}&=x+tlo8;3nZHBHa$~ zwvBM;+4E*h!%X>RqD1F_0BrmqI|zu(FszphvFf@)Sjdy?SXdP0PbMPGLl6_dkb;z9 zvOJj**oNzA+_0qFVQq+XNNjyV5+#I@6rW4*zB$qsx$;ovR9g_mV>Gb zW+|jZ&o#}J)etD?i1dN79f1`>jnJF<>_M0fSI6-s2cS8O+P7^6ZP3stuq8z6(Sx(2 z+Tg_T`n!Rg<)D=!vqN3lXj;lD{(}-pL!kdyjQ*S>sAmb}vjI1RWvzEd zQi5e+!5F=Q=vWiNdFu_w3WA7PB`Yl9!R#uZgUvPCzZToPjcF)j){6Xu8rWP zI^4qxSkWxh%QSDX45TIwj1m%^1J4!s zUydWhOwQ|T+-r`#Hsd<-6cU$#e96+f!H%tlLCr$=4|a>Ko=j&b#Q_Yx6;<-oQodcS zt=Lx|hGDHGyNhwTOtF$8?l8F7qV|(P7CP(aUb_;JOYd*5?(u6*#7vZ24lhnMM~AkL zFx1H8W>pklIVC#fI4q>^-jfP&c0oTf85ULFVpeD&FTz;+={IkyNKi)ZTn-;kHHbD% zFi>ogm4v3q-NRjR4< z$|~va0K1n9aa@sgEDj|jj1*j5W!MtP12*C~-haaVtS*7?H+LW4(-XYhTszXRz z=7-XSz$h9D${pl=Di8@V_rr-2(+z=ifT+`sZ-)teqZBrbYy0CK{>q?XTVE8Bd4Ict zJRQz^k~4Fc)FWzaq>cQbG)UUtGbS4qKHbcGOJkZ4#xv+T@zY{AW}=WbkvDvN=?8J6 zmmgXeX>xq32~-eb%y}I8vid=Qv+pVPPm$u9I~xi}{zZlXLh55YA#ve(G(hS!Pd6k0 z*Cflz(*n#ku>6K?yw^4QB$r^6aUxNMS7fld!yFlVEo|-2OI(EfYQA+qRCMDm(7LtS zp$t^KPkLDaQhm7f6Jm?FB8><|ZGnOjnnI7zA8?#UIW;1iqSeHNJNW`azvGD|={iIW( ztbnS1zN_<|;jqeepg;1y%+Y?};F;5)eqKodVYB4ww`7oL(X`25?z+J2aS>E_{HRIY z0aMI*wpgkpB-B;BnY;NT4=B|&Uqkbyt-h{7kY|7f6%dOhdx4E40! zN4jdM;Q+*$f5Dh?lQVtR93zMhKdiUMR^_#%1+tYM8~u%FcMA-!dW^r6kvNA|Z}JA~ zoPbLArn;y=&QPH!qX+Ra(^DS$0nbC_1l~F$+|OX(B)f+CTfV*P^I$Szos)blkPY#n zKBQTorugf+z-`LYB^k*Lzz>@(0!1+DgZ2RCUEqeC8i}2}LUx>CDt_bDu>}t+ZZq+nJ{{cC(Smj^W0ez7<&#J zLmn(t#uS`V_4UKR8Av5N6Gwoyh zv~0S!_vB3fA>n=xs7fmf9Y1)GT>PCKqb(N5<^nJ;zr2ME4c;6AdwF)1hb>F#IoJ>S7kmOv~JSe#IL}t;WH_-NflT3n$e?@pl%VTRCK7Gzm#mBh;MJq#XJ2Yw!Ub`_ zOs?-q7mCd*WBj>6)Cprox+X2u!&vN~^SW8ze;GAo=LyO%BCj;5|0j$kG;}(e`M(Sq z$a&IKj7~;{!(w!&aii|U12|D(7l2fIW18xVtu0Ep#~NttXS8RTBkF*Sg)?~R%xRaA zX;;F~l13!mPzC0h<>yC0a9&`qIza-Lm`&NNo2xz(yvb^D*9xT5FKM?q7cM9Y(0o{t z=vKAqJ4vKUds~SlL2p`5h@M$?3<_G|s&+oc-%)ea;m|r*ZxB9L5B&-cRNRz|7Cl?j zL80|Z$4p!o>xAVUXLQ_mCPFyvbBNT8^dZ5$TV-yei0RMD`eaJoJV50IJ{ECACRxHDMXItI^6u$_r%Dk+%m#K={0BC6-^XkD zV|x8$m4Zga*Qmw{($g z0L=oGPhbomV@gqW>;cqAksCN(SQyqd0bo;?7Zp0)0m=l+o_dLe?c=an95gKcAKfTd zfF}V*ZV$5jq=E2FHWrxs;~1~>D);vQ6&XGFu62MSZ>TpX@$Fg>I(GfvE+N1go=dhi zT@3PQkPjWaHiEULX!!6zps4lA!z=Jo0*D`dfHWkMsaSo40|x}MffNloTeQ|KO@i`K z)ew|;(y7^*Uj~F=iCB%|lMaBWyoHtY4)+&-=#YHnU!`6sJrv}HEi1`BmP8r3Zg%!O zMvG@3u|8m<5|Drxt)@djrpDN%nc6W`*$Rp!Jmd(}NV%yXi|3d&z}I%=>=tJ#K(PrU z2P8GwfV@Q3qj;ZyQ|e$n<&jhn;SBq3fz5E08EB6ZNcY)&u|~X|!i9({R)DVqqCN`j z0zj(uq~;7Z;RiOjcI>m}{0s~lqbzB1?O9?6A$p1%hL8H>@8Euo;)70za}N(b3Tgy^ zpfoMT!rOE>2~>o!fJRF9)+x?G91jme_R`d7&`OmHleq{+oD`Z=-HryD!qoMrFHXawy4HxZ!Kz>bH9D7uUHY1e%z-qzeph9@!XKyL<~0s&w? z^Ba+x(##^}_KP+<0jeGYxhMby5D3ZEEVUy6k%ucIjY6-dx7b?)Xt&`5zsQAhQEVkq zszHQ6Jj{ltAE&_t3vZ&SSjv)@04eK0!XO@QLl_IsKcI!hofLE$=OChAKSvUpRR`3;IsC@$Cizi6ix=bQS8S0KI2u5V1qT_>p zh(c_sP)#FEL&s#rt#sPAFGqOk?MS;6k`Z(!N^mhPWijOF7 z%Mt6d6q!dj!Du8e{IZR`7ged(N3v3JcHMV_*oaxZPY&qLiVXKs%~o~CADmofGb?)E z7Ji+2B8`$PkQJ>B{B`g=qAdJ{>}k~q_}6NStUwlfx^1=0%J;=0Y`f%#Y#;0%-7LlX zyEe`0oxmR>OT`GXqJo}>g36liGy`w81ZQ~S=9;itloC!>)(d6KGmbe zOw(rIPJFid4K2VZ%44#^x>_g69UFROKq}nu-*!V2U#u3 z0@GkkOnV(3)Q_SOg33h?{Bt=K@=u^og5FKx4U>JS$g=VCJb3zG%DIE7<>9)sPvfYH zGXKQ#+^YF}{8P;c7!eMSMelXQ5>h~}^Vb_PPlYsp1H|#9vaQ>Sl4^9&CHJm-l?ydO z5`EqZ0L9eep!c6xaLB^Tx_UdsID3*qN+`xuO(4mD$%gkCrdwN0QNq_n|By?-ZUX&7 zt|aImVjxLkwGdPXiUyD*^yGg-Vcq{Xf^stRtNcw`CEKZFRlk7QBnvKtyiW?_{gpI( zsv9LA7D3?1xuW0FQa{^wVUY73M|86=w|EI6NBLCf$)~obCeNoSPiyCYLc+!@a(EJmBXZSzE z$r|VKu9E>^RHUsaZRBYz4NHfbim&@M4mDL->tqzr+w^in`l~#6Sbs$1T8hBHcUdD< zo!pL4)rT$Mh()^U(_e$;x@$=f%H(GzgL?`bXAN$^g`bJ=? z%6HX;{mxye`sSTwfgcc%Cm#Pi^!(I%{eW&u9FY4v;PTJ)ZB|>t$*dl3@}pTiFISw% zkVwZ>eh%vVSBxi0=_JjLoezFjU2C5GLSYX(b>lA?_G4`&dvwDnZAlt!#iJrc=cN$I(Ov8dZ=mz1kRT|-|={M^hu14rtET>PSA z-%z-)*K=kQT1gVCn*6(IY~)IXp&7~IC)zb{8KW$DeEowjEtB;Xz~${zR0(mk7O`ay zp=8C$j33?!o0Mwua>oUcm>xFx$Mb(_f<@t;W?x#w;PDWuCK}11|Km@E-4GrKD23 zZ>Z%4ys;y|oxQz#Jv%+U6!TWigX(K`)g#}i&Rxv)1cJ04G0V5^iHEHsZgST`yf9|- zqAw&K!j``|=tqSn?kj$tUzMW_vK~`51(hN)Y-4FZi`W%*$C6v;UT$aYUoGTqVEg`v z9SJfCc=CgtY_k6Se7Al1_1wYgCgT3;{+!#0E(>)iy)`mX!3pYV=>9hT8~VL`{L_)K zqJj|0Se$3Q=@b^b+Rz=Ws_~BQ7js>fIvBg%yS$r73;s2F)J}+QtiYz)r{YAWT9uGF z(DTyLo%_I8{uh`>v3Gu0j&H^Jp2gX>Vrem4t+R3tz5 zDKFP)UQ95=8<535n zqU>p(Qi*9SFQR4Foe)bgB?3J1uOgphC<%7m0z*2^;USr6Q+bjbTzL-!%k!zXj5ZTc zEBy(J3WBvPsiLUjg*C~~B0{i-Tz8MTe}gOs3?7gzmicmv2CnY7+}-I9-ry;a|Ezv+ z|58yxw-S|%SywoQZtu7vR0S9?dTP;n+C1kpqAK6C_jsj(_rUlA{*~w<;|S$3I`9M> z_g7f>{+V%TND*JO$gjH59SqK$sfr|#V{v(g?45zWY(AS~CJ=BPTsYkaofOdqyIs_D z85wg=Kg1xc_m-ZqFTo1S;wGtl>NbW$Fz15x!o2&(G*5n2N!-PdrXuLzj)=Yt^$#O) zz@uP^1@YU`+c%EWWz>kDol>uQ*S>>#KB(UXA_^&ai>r;u_hK-suTRcv$_J1OO3wB+ zhAbhdEVm$jpb<9fR&J^*omGfN$Y?+F$gNTPcx%DHT15ozRnW{9GrHqtwy@;l-K ziGh>G?Tx&oXOa02qn3K#F1y#Y)JNhraZ}+~ijKF?8Ycp63)MHp2zZh%&y;-lR&m!q z_C1)^3kmtCQ1I@4Dtbb^5lBakDucq{8uZyi%yD1%64=A*>JiGsmXXx4O_X))MAM(B zp}uPC8NsWD8sAV7w#TO=_*GqYdZzrEeDOC%U$H%I@<|Z*FVZoM7jXto+BSYKCQsue zb8_|+sps$pw=#2&E?Jeyr@w{^d>b|&Em1mu!W>zAgMLJHM;6BJ5mbQ^g&AvnM?aN6 zhl^`EOK^sU$AuiL67*p5_0UUn;`5BT(O++j++L*iK zY78K9rG60`Jg>FZigVIZpXEFR-p_6TYKFjnpRXYAL=!Ju8iOrumFuIpg{v!st~TZtqHotEZwfSogV4j(Dds#GKhPW@ z4kMG6i}i`|t9Zeu=3LskyGw<&!FV#vXSU8A`4vq#{MiEj`(wCY^j7aX)T9Q9k4rbk z*o-l~DSx)OQYt1m^rKT5p*RDcKT@1XokAZ)V@Ho0`>ZAT2p1{8G~HhN9a>7&Om}5z z@(t`HL)+u5Tf;k}Yyqm{S<&S2uAGQNFZ79~ryYC<%7~p>@h=>m_H}-{t~2S@7%MnT z(csW*T#r$HVyEsU6&Ep&alILRoS`1l=92cZyJ`(vW@X&n6MIse{`)4jo{yyc?|zH% zg@s~gO;(>62vX%n$W-?Du#+l%q@VcAo~o9!BMx?)_DcJbuyIjVvk!$m()j^63E`8ES2`I zr^pw64~dB<3z^}Q%p1bbu2k=2CYOJh5T)*9pDyMc4*W)$_-vMH0)x+WzaQ-5LUF@A zeF~+C7Cd745hLs_JvXG)v(Fao0!0Pz7!n!xL8UM1v}cHMT~sv!kWhZP#J-JppV&|f zy%}xrgUk5#IWK>Oo6TUue}1PXA8&&7$p|6AwUR<6_90)En-QKh)Q0{jTWCfVj|n1E zKN^}m^@I8`+uVca{w!E5fGhYiEhMw)W8x9in-savYt3kXf) zefMO0CIZMCVeETBlKUGY2_YLM>WjIV zVc!kKn!^${HunhAv8*Qr9;TzWs9W@EBiZZKxgIUM)r`FeRJYN@aTBzMTR95%4@Nyg z{QkPlSUuw3iIc3Do)ixP^QF0CaKPx+N9!|wphNwcrF8P)hnW$}xqx+Lr^!Q9kk zFJHMzB*0|7jEP^op0lpv`h}6T<#Vsse{r3J@bd;CYV0)Ggk8;cz|@@5JcUt^r3+Ln zBIylRN_yMJZkNuvjiNVLeS_KWZKA(%%sEtNzQ}MvBQTAegp~WR+Zc;k^{%!*jRr&9 zLp!=dZEr6pj?3Q9sf_xtdDPVEI=B-Yd#d~C$vHoma@q@ADluSxkkif=RbWmDO- z_!nm^Yg8#6?qkPbv6ElPT7&DQQoE%Ip<-W3D5m_)aMxC0MbQ&9y*D)iUj~iBnC1FS zh{*rp>8rz{`o6D8iIHw$=@1C{SUVEK$`BMKPDv&@Hh>#bfT_S`GbJ}{k~eAe5C z^A?JGnq0nx^WWzjPD5EZzolrO*iGr6{F!VkRcagJUl!*4IlwPstMaa)!@iN;*po%p z)&E7mD*x&Pys0a{5psW!1g2LPr=LVzZB_hDIDEw>86VoC6VzwZwiAd+f)7UGb^b-B zCx>*wFrZaM8w(S@rWZJ`W~62)sEJeCplPH{OrPbAat*{559r+JFzIfN)mSEoiW+M# ztotp^uP)t|#7i|zzL z5`9nLR%)1uzg_Jgdv^+|+a0yaiYtOQJ(Yi*iXuVYSjSa9$2|TXcqv#sXo&i+THo8a zED7~_Zctvfhdd?FC?jpPnYP-v%gYm-bm*tc@P`cN-@T6%9#D4EY~~#b9`EP_vE>n zn41H$Yr;TSjif9#unIj`bDt%E%_^(}my18>m#oCB*|4w9fqU{1wrdN?y0L6A@)9yd zM=`BEM=T}RrL}H-PEzDP&S+-e8yqOEVp7CXR4S$9&oM<*(STc=6bSI#v#&sPpr2mU zn&(QqGMV1f6g5I?%g1nmafy1kWZzKIyqUtzI6M*CiB0L|cm`f;=Gw6fW{O12a1Y@~ z3YC4}-FxknX+c;;-y9om=ZJ4>NkO%UaC#NOv4yH)X~B3U7)cMP>zlulbxsBLP&5Os z&%Q_riiKx^Uz^Sefz?=l>5}`aY`yIac1%;W3yR}WMexcK7(E!3Ig$xtft!4b z^Ym2dbwJ$573_<&^gC4jrg7AUzi|$yS5%F!L{C^sQrvKIxzv}j9E;NqE8jf%0FKHb z`ZXh&(13^tj?t*@#P&~bCE;3gzF^)R%85p!3nuDM?HRC8l3=LHmFjn}V9WiRT_)XX z;eWyIJlcbBy%ir6;FRz=_gyKOa@xvH4u&KYjP(&*S=0<7I?X%YGw=V5^v10d0rH~j zG`cT>!lZhR!);CKiv;@FF6y@#!TeQ~Q)3?9Edh09vHLWgF&D@*mCGJ)lPZ75-oIh( z6ME%d^Q66zhJ`AMT;teO*S6uurpEz9xyN>C*Qq3;L=v=+nYPTxt*~|Lnaq3*a zDn8?)`8k;7m8p5X)XgIh(|Nrg{c;aPf!{7mG8_oEu6)|GDBOrsjfYk&gG%jY`l(b+JzDrKjojQ&9O_?E!WD+`%%=GRH`LN zE%nDL_~3F&T#!h;icPuQo!Uv}zrX~0B3e4k;Js#d3E&!drC`elTT(G$|FKG;AUZHJ zX<0_WH?GPvC|vvlt8J~k>+gEu7Wf>|jY+bH`jn^d|_wcE#xSuBc* zG2eWmPf{~2X!DjxrB*jK|FavJ=N86JQc#AHgn3TIzNsU&=8A^0)brYl(9__1XWJV& zHyuc-{aeV@Fxu%x#{qrUraYl8N6L{vQ^Qpc$0glDNl$PiqUFFGxJ_w_`Jz7-CAcwk zqO2Y9Z{*~02`{AxC|R~vMfN4-1^QNb3A34}7S~O+7?LpWso3#!fvaVpw$y4UIg1%4 zVD_<1yY1zc6a5k4d|*yM#NkSA7S)EwiyVr>lq6_(3zY{W|5YR^_jyF#R=g|d zc^Leub<#b5PTqXb>~R9pSANspoNIOk@ALG zv3#pX)GWGS5lpmTBb~PocNlDLoEtA@yC!b~2Eo|}%|=W{n{D6KRVWs!+biNu*8dxI z4a5>RZZzvSJR)X{B&iVQPbKth2L00QO z>#zm-9%^uF(L1jK1h7&xQ0}qGG(aO+?8}=;H7$xcg#;KwwDHA@y>LmNL{;){!?FLA zSf>@bgfgPb7OX(!BhJTX-T#I3xHS+fmLiKekS^@@h$3&_mBcc0cw6ZU>O{2|=;i{i zDj~Yv6k(kGAfq77amnQ4ve8q%wGYDI7!7v^!!qrss zM_@BYQ}wfu%PN?7Ak^o;%g)l1pbVVX%psYS{n z&iX8Ai=Il?{_|PCA!A{#kssbsf=>crET5szjz75<=wkJFt-izAJ#y{>mF z@;temY#G!75ItP*x-gqD36EsIIl1e3qQE&DPhLw{#$Y7;$ojOp)ewBj{GehJyNleN zjkAJ}gJzy=66Uv$5mau8#CC(Dk}DOv=26*;q*SELaahI85xp=)?V_f8Wf^92kXcaP1dQq6hx;+f51@Vxoa zv{KvPCrMGj`jP?|GZEUXKv{6aaxA()Lzw9zMNiDYgqcX?(5x3^Xkf4D^t!0#diR=% zFR-N=jVRSpJK+823&Gf6oG$F1LkGPlGBA?B(Jpr@2!>tZI;Bbg=O$>zv0M}rk3;4m zkZUVaiED1h8n2dOg-N_Qp|8UYC3w~sp89dzt^LKkjH98-FE94^GTvQr7;O*O$b=3b zoou39C{i%aNen+Q)xDejH5xue1?9_miCD)+VxlM`_9r$RAvQdeE5@c}nmkYPDDJ8Z zx|UZXEcNR-Q;D3%*JH>bB~^>6(4pOy-FW?sg+i8k zx-OW|H|p~=J^RIn1ja9Z(d?zkn6yc@TUk<|bWr?=xA<0~jCa$04{s$q`LO5__EW}B zB1><#rInyiV$~$eUa?ZcnB|@bmi@*6pDT=0wDci510vQW;fj>F7X50p%@nrOAN$UK zr{$Un%0rOe>|Sb%23*@@rMkkQIpeJ$>~2vvBcL6?6WGjm9wtu+tt3vikD)LJA$Z6y zeQJ2OU>JFT0(;j&82?7H;xhSCf}n; zP;>)iGFZ`in?Ms&jKOgEU!H`+-4ba<9z)io)!zw}6w-v#yn`QF#7Lq~FdkNBEI-PN zsVVB-;0aE533aMgxqem;tV{s724%R3twFZhZ*A*iLTfeYeQ=b5>6b++wYC6RiBj!f zhhxqAY2K2BWIe351h|GK+LcI0;)RIbsNTZ_qpK9%iY;ZqHc!@z zD_FKN;8zrz$mw~MJVn!t4(;4_Ve9cN7J-FAdVKovPQ%5jR%Bh!({nNlcN`K${+e8(m6pOk9I ze@w*KxcEwHe?s2=e8vzNzi7KS#2)?IEdke1qRs8|nf)D2I7ILRevn;)3DdmPr|dt% z5~9-P*b~&1P}m3m#0Wd;31UZIK`EEU8U%bd58nBBs!O|A&nP6^4^rYrG90ox>+j&n zl3BRaW3vku{~Z$u`wDqKLYjw}H1^#STJXw6vBvPG#3i&wVGllbmb!|Zv=ro&lRI(NZBOG#WNZ=RU zF#n(Vuv>A1pwSf7ln+x?>Y~a(w{1FP7Bz`eAmoSxPsbaQz!WB0)p^=Q^o1xjnK1cl zobAV?0rLsoL9TS80CF}P#`p7XEpBs@-oy1dE(625=*@SOY98yLagYo&MuIKc$$an~ zpC#SSA=cF~mXP^K3XMp-2&XEFSKFBp=i0FUEORbCh5M2+EYMk*PGf*Mk43648$x z&MnYTyC_%>;T@$)Q|JsjI^YN6=*%)DeW7DxG-sbX<1Tcx%0z0Wk`)%uZ#jIhemj`e z$YH2rcrHtr-|9WVa>h2?33A=Niml^b=@ue+01=-X%NqZud?To7zlZ|UVviq+qd-3$ zLY`gC>uM@g_$mue-K)9z{NlFQ@E4cV0dMCST|ZS6=dCJzBm2ae*TC?6h}yZ&XQ%g4 zU5S^`hrwdW@I&xhRYmFKdlr!%TsIrYnfL1DAMC%%m}cq7Br?fDfZ{SL8z2drJqhq-1~ z4_6(=Hls7&Kxu^zxNRqr@g_1y%fwKmq$3Zz)_;8W)?&t3`}bdomov$njF<@;jglnfvVqt9tB~c=%ts( zTj||M7jFsz$?|A^$o%s&!ey{zgPE|HXH$oUnuC16%R_FSRx4%zAr3h~*SNy94F&ZL zUzr}%X0Y&DBB7$6#domrc1-aMe}46@qIj{ipGROV6u!`29jAspYKl(Sa>ioG;d8z0CY8B%mFv%v4CXAA6YkI+Ym3_qn#1($T=oL!83q=P$?GGGZ%@ z!2QKly|I129{h9fZ+Yzre-==TuCZQ+tglUmuuhWtX6&O0Q;ANJXe%DMQu8!VKvOTA2I)mnv>0^GxNp2VV*&LEKQ$;$^%^fcO1)j)&WgUPQ59=i?OIS=Xr5mK~$&( zWJ-F;_vv?QF>%nmqww<$_`iSj?+M!?o@E^L0P!Fkxg-h`pN5OMs6CEU0E2|_2ofgd zWap6iqVMRcZ5cG-|4eG^&`!e(A!Tf%Uj{2RobF8BM?XiDrhWYlql3;B1jgXcVMKkw zH_rZ|Y}QPrN}-BdV6Ap*)>)Bs9(MNp0jh!Ny`S2)9e&{--`#Z9bq!Lg#5p6s>B&#+4$zWT8l5*Cutt{k-L-4jm@0TX*M1dwz12bj?#K>Ip6VjZUa` zw^4%FvzK(OonIFR*E-U4X1mDNX9B}daij#uG26kXr^;FWo?;&s<&2*U=J2q5x+w3o zlw&C;t|v`9!NjziD^}_0gYE$jxI^xBZp(Q&?pt1rMbVXe&(=*;>wgi7vkxbsxsp9p zkpP15smd<@XWJN7@=1q|+Endqo^Wzo8(&v+o$}Ok#%eCx#<%9ZyfX--5MH31;-o5g zx}fiQeCKPxaWC4NY=srwQB$Mhh9ZFzG4hkW<{yotD}SjE+<;H)txx?vzC2OC^FaFa z22=<6yGD=XyxqtUd40Ky$iY}#?}z`|W~rD+BepZ8=KUJLB0&ou)2sk!K*lVSXl0HZr2;NykP2!5eRR$tN$$0)ey**X4x5-3kkQsCYfr`7hvLq=i3=f8DPt3H7bcklzjXVxURFOXLr!zBD>8s8auzvozakEcA=Xo(+Hc&2SL2~gw&7u3V zOdCH5z<2jM`#SPt8Uf=|gAw}K*sg=+5mr@YIxJ!C6aH28Wxv~95|eC?VH&HGZP15M z$_LgRtG16Md|b$e+tF923C8iG$RtXBgHnusH4C=t!576W0&jJa@}vIz7EMV$a##3o z>+kX^v;@%?wQGoAAK4PNq?Gi%zlN2+?z>{!0AhXTXEVQ&2r}^dr*txuactVSx>d8z z5T@j6b!yty5T1v$1HH8*ckkaDtk74sW3^{Jw-xQpIE|%#_`@xe-_;GL%S2*CCy4`P z%PU)M<#=JfM@q3T!omjxht_)>?6#dRK!AmM)U&!J%MEEq#JnpYwOt5n)?DQ9rFwtBhtGjMs zWj>Z{p3{*M>_xZ|;w#6EFc?HbfY%V44#7_5KY z%ym3hFS3wKtG5^z+cgeLa zXUKFC9~D_MNje9Xjknlo%`ixcA49!DBh0#C@j@QkA4IGM691M5$_AN1R6w*LyAUk` zZm-8No?YX=9SHJ2YsVqro!(5h0{?wf)F$Ts)KIP7&_s)qh2KyVGst5{RAXPONjUeR zPR})o79*;`(i^3%Ad9vdfm+<1wp-uNJ9O#+$Qg@*dk^Tk2&+Tk*G(S)!SrqKPD@{F zez>bs5HYL!ih=i!(Z+!FDRl|>V8*NIm*P)oll?y@!@BrCfF) z|BeM>)JkT`q25~@OSiI?aXCn1AMD(IKSZUu1z%3GyX7XF82&{^rWOZwL^Dn%$G@r1 zUyS=kIsX6%M4O7oGvqyFA=-Uik4PN}vq$MKje^QDg`$(a8FBa}e23cCF38~k5nh&P zLBsv;^>f5BtPC+2wPpl)ACPX6OrQ~Ho9pO0_UCX(xL6-Yah7T$LEDak4|4DH#&Ei+ zX5ht#@0H~Jq>#Di2+l1E z8^}zpD(Kn3*itII?9PC=p3(1ylFY*}rddTlbx(gICJ)B;#TU(#DGSjc)2xI)^0RPg zX(93ODfc-?-d~N4m!yRXe1|k($bEAjakx_p$o*0GQgbA#O4NlGxN=%dRRJ9GF`m5=K_lKL4U`UGMoJvCPz~cY zb5^DXOJMXaw;-Jc^Um~DvX(G~e)b$N*uOK1-uG)fFTpv|4K*RAwiFi>r7)Qe0_NRq zVSjId$-o#PfKv}7?{~zh9_8(DmtRgOvLoF5b8y7A~XRl4hpixt3JXCyhy;HO?8{q5m6Ct&J(BQg#sXej=VD>)9Uk zx5#Y7Mk-Bdq(?I+$MMJ35fD<|sB4gy&rR4I`yvZQ#X7CZo?#&~9~$3#gE4(AhPUZh z!xJi1*u#f%N&xsbF;bEB?zIi8ylOMSktcO9C+>U^riosbacZrx$eHR{QWV&*{-gb@ z&EE}G1oYmHIM4`a3!;yhT1Bl4%H3Wf=iKt5Q(4vCi`CmDC8b_=Y^$AQ~NW z6*!<(X+6jZZ#y=kG&+~@?yQU?rOJNR&}R5UXc%C$8gn?OzIZh9{YNVYB5Eq4KmV^7 z%!^$Kveq{el&!(lVzsXUQeswtd?MiX$dI&7)`i<{BtQ2wQuBd!;c8-;ino%wKGPS~ zxDzx3E*C~~H)LhOcutDAf07Uvx=Sue*5j0oac!2%gcPM96&^T7x<+SqZ;7vMG^ZVh z(^$6i`IJtCWSzzx{tMM*(@;0*2b3Y&P zgm&nuZgqMa93;jA9ef2t?^RO~DPhE^RyC|35{c{mH0*AZ2e9#fv<-{wlKE@p4~b^q zfH@Q(B*)TEBODA3OVT>UjarpfP+1ILaKDKqf^`YD2@sa!?Zp#GFAG0o_!r$w*m>T} zn{~gunr;w^@rn3H!Lpmb(l@r$>GU~8T}Gq}Dw&A)z-}j_Sx4q%IWNPG=Ksj)GKr7v z3YVAvzECPTEg_O(m=CaV9-;lU{hMuEbKsZBD%WwWK|sFly(O|keBx?kK*O+gvJDo2 zRMX?ktkVbSyJ3#E*b~g*9MIz$x4M!#4ko; zF63Zvz+d2&_Na?ZN_f(rp`Cu?F2NGFYuKaX#Db~({tj&q6iLA1HZudyg(SX>aD1v9 z0r_;9H$R24=&YctEhvSKx;5khdxx8%3683^nrBIJk*c3Nsz{FD@{`#2!=+CGniy#B ztdE@n1f?qWyo%v>U5<0h=a~aCmr8DeZIW9fvbt)alxp#e=)@3tUa2xrqA&I#9A)r~ zGrYSv&M1M)H%Z#RZ1@f&RMf8KWPh$xQV<>ax9n{8e^+@OoPd$p3*68?nIY6J-_} z7_V&6D|My9n*-MCu)v@tg{^dh*vHOuHOFLIRwIh@lTkGofbF+&R<3M2f0LsxKpa9w z2YONUY;*z4x0!eKza<7~D$QlemBv$^3`W5^1WCo2R3Gk%TBqVoxvj0U0t7 zbzum3Pq8t{G7Ouy$JC`!LHf0=pcoT{+bC*TQ%SKqtMI1hlO$9iusGyyb#J5UkoF2F zibavEw}UU~7a&YX$B}<=HMi~h$T6Y>-`y)f1%j>jtgGj!WyLyyFUF|N0AuZUfU!Rz zTV;gPy70o0p^j;(_u`n}3JrY~dC*FZ$$$)u)%6LmPf)P4kKT>tiLX5$a$+7G3~bq2 zqOL-lZ_&u)j!fW8BXdxO>^TBRad%N6#x`_9! zLfi+==CzGVO%`!JU6jaf|i*3*uNW$8C+L#}eIR!BA`VMqHZ&{oY(iax8MDGhu~!&`&S zZnxG6nWlAVu*N%?s06g8AsJ}f#0 zkxOKj-TBI5`U)#W^aS3t-1d05Z%I7smo0u8O{+;qMC=QQ#TU(G{na2|^(F?^tMiGT zra?3E&@rjG-JCE7B)G@O-zr4n+e+%IejJP(UuZbYPN>!A`8MW6NPZQRy$JK!e4~5% z!p=tHUSJIKKm&JXN&hn6-oRu{icB}c&GP3Kf1i|G-9sUfK1eS-qk&3cmqZF=B8_6qWIGFF+6NVPOo@to|R55q!2jKOcufz~WQM zA%bNrklVs%W&B7>={y_`7`) z({Dl#OP;T65>q#f3Wa2wPNU`8{Bi?d4-eM=WBLbGyUsyg{~DrdJ)Xkt)R@2atCIzT zDRIG!3n^a;7?%HV@Q-`Om-SKM6jMugI^Z1808olb%})w6BC3*j_FJ+~(0ifPXIYZW zY;H&w+gO?jn#)=zPMRqAgkC^TfZ3#ozQ*%w@haE5L~6s|v81Hr*>V3oK43kw=8CNf zK{h1gZ*5y^au*#5QeS0!yUsDIk_vAp_G^kSmXq<*N- zr#AC)9{G?{=@eyYPD#MDOg1{sfl$gx2MCMvKf)sZXGemTw^n=ZY_{96tX#BC3Rf&l zyz>2!{wXW)yIPf=x1EM`>-+2NJ{F=*yz=%_f<0u%oiJo<$}$Js%ktdF9LRH!6m!*3 z&VLx%e}}n((;rY}vR|21EFR9&gy}NbMTT<}Ry{(zK=kNG5H;suB_1+sH)?ybiHtH8 z{qa~i%@1wEDC*MF_|+A3n(lev-2EL9Rc54U@=F1o z&Tiw-m~X)-0#P)(>xScFoy+%xGP^hU4wXcX=feL4zyF2dIB0KVS;=LniK8P&k>EYQ z)R9vl1Xlmzit*L0(k2rLz#jrS{2$*C!9o~Ez?&LVK3g!l`_~0Jg1kpvy$E;FCs_E= zTu22_^yioJU?3|SXm~T*_kaS&lv$-$?)0nCdAu zUdx`CCRiymIHA^b?t)ZTfR)^j8&_ERB@_^SZGV4cLM0>024tCW#Ho#^KPn77G#uZO z7|E?M4H%>)O+1@09U$x7B-5Np%KuO`u@iM>82EEU?Iav)i4qo$seie+e)m0j%S#47 z(u{Ctv{K98y1x|1mFduP?;xx6|gB?#Pi69<6C3#Hzj91O$H_Hg<9rU)wyULD6b55_~^LIf0x5H&#H^$(G z&3tQ%txIzW)dV+r`3(T+R|u(eJNhzMw&9bfn-1r27==#pi=R1%;)b~J64ff1hUlHu zKRJc5H2ES)%aY!7XUQ)`0p;8YPj*dy5`QAs#w;EGv&uDcgJ#HfdYGyp9U+B?5Q>bK z*orcpO~uIwJOS2QCvoL zf!>*+mv=_wY$AM8dfK5)2XvYQN}|!VrRLJO)?1cd@M1}q*(Kp*LjlMz7B{Pl9H&l>qf0|*G5=z5{qV9rL%+NB&R zztDlX0Hjs0Av4Bg({Q+A6#Ldt+%!mHm@XBFf~gQ&${^nTwl@4;&72>p0nof*B?(PB z;qndnD=Ev@44m~VR2*9#Euu6+{2L&5f1oYc{zMwA))3G2j;*5Y?X62gOl>=xk#Its zFhz&sEGLH3LuLGa8`%XHvmZJ=7(69;DZq}~DS;*_JD)o7`irQ|lMhcxn#AWGZc~wl z^`m|{`nu;Irc)6p(8d(sZ=vjOE0YNGs^@i(Un;=~ z3}+7As$7sv$+%X+1w2@F0_=cy@Vc6&GqbP+R_{}+^^iUgRW>BHa+^Bkk3>^j>!abP4)g*wcxyo?_i^zTy#1)>98ck$M>Om>J_6%G0!DK^E zn7eqcR$#3f{a^UxZAV`Ot0gPMCcVEN8(vdci2(=^NLi zMk=DVzLD`706PcRq4CYnTecyZGw`Slvz02(L=|BkANn|@`RT!QE{NOv@kO7=se%y6 zXA`wHXU;-2{!xW^&;Uqnlwu<;P1X0H;=we{ZTS5T`0dk8gr91!PlVf_cNIbpAk4)% z*{8DRuiLf3{i0aZ3{p zlgt-hE3!}8e25<=*ab)!p8qeQZ`u}QZb4&8CGp538a5p5 zMIUKagId`&ZO3rZ^wjrQQ2QswumKzL+&{7kYAx*8$gB$6xql*>wdEklFnH}MD8(cn zp^cO-x=W}V=?~uz?E8C^h7%l3j9~Q40?cZO>La;!qDO%6oU0*|j`Zh^5Y29O+V*nE zpaiKgcyAKh%w_W}yS-D^nV^qqdX1SXl#Wp%NQ)NLunK1c18F~BkE$4b9I&!Rk`pBoX{0>GW)*d2uDF8XmtZe$lCV&$OTNJ{ zX7$Q~U}b$7-%19@D_dOtr8ZbUW9BB(Q|m2|+A;i5bBB?4kY_ETG;})!WhHBWo&f#N zDBEF>k>WnvRA=nJI&pD4tFl4sfkA#zR)HFPE;%L4PRS8TKau~HakJ*g>q7a{S^-Q7 z(Q^pg7UokUk*4UKAtfMT7I;`LNF8r;RGdxwFK#^zzN-ymSzg-yg&Yx-gCy4&oc=j( z1?r~34KPb)&u)zJ0n+<;GXf|7po=4kQU*HUQY!y01)=AlE5B?bemmBCCaf-8%Nx#A z`%ounLx+6KgOWOTffxl#XGLr^bVel!6R}H41`N0SR2c^LP6|e65&W}{XyAr#7jBYJ zJpcQiHANZ`nJuD}?VtRv`<E-}iFn$s9;3C)PkA}3fe z8C85?G-7Z@08x~eivj@tZvl!7iigG&VwTQ#BWTLwIyR-6Y>axxg)Pd8c~v27)^bT6 zvo{|%o@1VGS|te=+l5%n-03>bN2?Fh1qydLRsnwDSVn3I&)+iEci##4F3@Fq{%Cr- zdVs=?J+r%$*^mgEy9&`Reaak)P?J;f;58fti-tdvsSWYdIlTF z0t;sBk^8XZ&$e8CpOkEP8knv+V!{NjuIwgh^nqoO!&+y%*f4<1ge5KS%#mB~IFlNh0@`Ej#y z_`RCISoQ4>_v-tvPgcoRiZN#ZvD*Xqv^e+SGbQyVe!V{w4W%?ESCG7{iQ%Bg3HRsV z--dE_AbKd}n&2a8UQLp>>I48o0=D=SQ1xzPat8@p^^#6ogtf1DUjS~#&}W!nh4u8P zAE|n#%srd63EJGzLJG^_Hy~#K-R8^x9YmX)sh)aARO`4kI}&fXc+tayb}qvv+_WcV z7SLOt>4Ky?7stP*hl!rIy~7U}bg;!QT6#JjXH6+AR5jlaMEIyq)0>b`y9tZIBJw8z z%TMGFGfgKWl$jq-chE0V%%Yv&uvP1!P!=;{`7r@F|A}2RR z-K&WV0mi@5wn3Ay0WwMJlX++^qAw(RcyOuH;4u+}=PM)QlZv*ot+T$-`H#_}Uo`>0 zAb%n0`L7aC1C*$(J9Q_^uMac~XqX?V_`yU9M6hHymE9E2IdsmklHo;+G}pRwUoK*~ zOc@m~X_T|PeQA3C7DEd_XuNiw{NmvIpcQREUzLAZ?5X1ZXcg-TUm^HTLvwU6TK~f& zsd^&KnCHjiaxy3T+){Ia5HIZV_FFoayLY#*uj~5sqx{J431UJ!c*C-d%?IS^j}PDr zI_J0(OxBArDcL%jy&n@m%I+_Kn`#yW^TDvA9xb4$skD2o>WWLDRSTfxi6gkyQ>>2< z2TC%iN`c{`!nt_ZABp<<%(emu`Xp9bRJR2FO?b+{;`DTylH~6!fGQWl!V)oPY(o#BJzbhfo-QY~hIOE!2 zVGWpMK~gwg*YB@OAq0EXS^l+o#~?1}XRpSA?HHA~ykk_Lyq2mcoVx2KNzIg6-bS7f z033w9{~Uy^d>4_^SO^-mWd^Cy2vzQLx4gl96UZ zx|&4iA8&Dh3Nk0wJ%2RT$zw@eCrDmN$JmO4r^|3-)JjRk zJV5AuipK%IBk$pTRO5r}Ce8w-XP~`#6ZmVrf|r*z$>Io$dy6X44{_dWpp?m~b+do@ z_>_E1Uvc1=Xy_;UW^nu?Qb_?t)T zAW9ho|3Q<)-x=Y-=QsuSu(>XCN45vBCHA_AKiXU|sc&}cj!{>ViBbB+^G3PKEGF-*`0tX8zP18)t^bY}E^Xv4cgL9g$e89KrT)9LUrY<=6>@A#|?~MK!O3W}_l?w=;NtZz3R3Z=xZ^ z&!h~1v`D6kq)nZLIr%_A2YK{R__qv(G7Ts-6XkHD`WYYd!xd0HGH~%0Vg!gfYf~HV z@V;je=Y~TB`s``Ee+9e%Fx2s&B)_^+%gOPPu38w!x7E__Aj09VLg-rnB;KiZl){<1 zS!&^ycW)-zyrYWqGeltyx7+-X838!KG6Ai_)aYE!TawMe(`%q5`?Ps5$v5BtI^U>c zvx(vi!ggj*kH_}I=JkG!-TlDU32;2UVL;}nx2XPr^nn1OlU--ou@njMbW2l8*Rs`} zV!J!V=G|tXuAdlLW5=1~Avf9QDRqyvw8U}OzE>l}fbcE_YL=jx@cQ{7A{O(iu9uN+ zY#}j#hGDq z)!G`e>iDIE^;MpRCMW<z?#prDk2Rx6jl~}ZLaoXDJOVa_6{>m9O|S8 z7qYcPUOms*NR)9v_7(g8!*i%|Munguk9>ib_PyKAZ&0nGyEKwwpEID(q@oHmtnl(} zn4E=e=#p)Ez$3V)VgwVF;=_`g{$mbSA-FMeBpQC0p%!E+uNYbnKzRE$$py(X*rajn zTk$kQ{0=Y?UtszKd#e-)lKB?&dl}4sHLl8MI+Zt7W|7{|7Bk;cKK0#OFHQpycTr!| ziAv4)FFLiq5On~q<3W`siIe{x;uP{QGjY*5(N1v#Uf*)Ow;01g=8aCRQPUlyU)r~y znS~cd!rB2kpE?Z|Ge%0vzw?*tF<$eVfX_fe>3?+{;akw~?Jm5PipLfs3UnEp4Y@&z zV88t5-khty7qSxaf9>=6Ghh9E{x4-q-_R{n$2`6=Ys#g(wNTvs?^udRI`OsUBBEH} zmW-w*U^79NlS+Bbv;TY+G>oOoQnnNe@p>}8`=qINmEIy^6UovYL^LkD;7Gc`-LDYP z5XcB>yniDGzp3Q`wW&2SI%mn#PEiqVDn!%#(pH&B2`tmuZ%CL_AoAIEI1IZpT39`v ztv?Nw9&faPv3+j+tk{cdgG&zg)1CroCQ~e8btFdzeN86>6b!&HKT#Yo`*U0=zo%R_)}ev+M|ABU1$ zt_KZe2mc*t)zWyJSP75kzP$+`?>Lg41(p>E-4aX!x0Gr=N^sS>12V5uogF~=%YFF$ zYY9$6pcx5K@$g{iQn$IVvb)8SOFhl3akAy!OMUo&{}BgO!=PMMzpg}irSTTigo=?Yqs1^0V)m}8 zon_!=5V1np#ZZRO$m3c1SmW>4LPDnsxTQx>JWwYIuPyLGHQ2oXQDXi*1Oox8ZiI$n zIUDTMGf59@lIOW*J_~#&M3xgHI7CyCiii`31*kiFBxd;7sXMpe`UUa-)O~&rw?q2g zP0(Epi);y6@dlaRV7zyg@$LE{Be3RM3Xo>5<3NRg_>L>kG6x=U_ib{szeT2_BXpu9 zkgj;|>!xGh?>-v|7pVT#A82@qAO&m(9|VidOfcal|H*SR#%7upyUTj^~ zF<6NHsv+CZCj&vct?qTm0_G= z?{dUd7BC194&_bkGSPT3tKY81Z@+r)naxCeb&--j8IWmSZ=(= z45ZQ_CDP!#kO_Xkg#P4l3Zm_Ee_#CAt(C}yH7dmDv~ReLOpH&hNv*}IV#^u#&%nz8 z^ePdKfL^71hZ)_>Tdp3RNDn!=yVqkSwK%tl1dWI;DS4b~e2452DnMlkq!J*vM&a5^wL;q#L|`)892N%+!9po0yzntblenE|9hj$74yiv18*vz>+OL(ugrJ zqs$gTx|1@-PeD2|-45J&vcBVQdV){lJONix9XmhGgg{UET2D!}&-+>8)i)fu)=1li zVv^1gW4{%>_a1MoiliqaZEMQ8Fv8&6_Qi}VQqnOGs38Az99R--!x)~TgB!OK?<%3v z@Rc0x&}q_!*e{oZo6p)l&hJkNjqX+f1%3gt7YW~u+g*~K7YFH4Q3s3=Q*WxRJ7#>_ zCirN|m}G?wfB#p02&iL?&d6SO!)L3s96_Fe0Trmndm~qLsD$5M#HC!`srJ(UA6@Sl z9@+Cn3&(cSv7K~mO`J?@+cqY)ZA~)qOl;e>lZkC}!rQ<9`+mIlOZU^~Id!VK&Z^pb ztzA{ygGoQFCOQ`4Mv*NoW$Uzz{~Ba9E8`urUSjFD-N4k?JKEkuL7L zSeBlL?eG79YZ>J`hwVqFREW0xr%m=oT0#tQZ*ewCUz2vC>I56_(Ef5#1_|*mYTRFQ1j$l^w@L6) zOqq9&>1G@I6|^pjR9xwMwT^e&^U8b$0|tWuC+(7C$BfqCedI%;0TH=7T*11CgLeL= z^K6Uo&Hq+Gppj=0TdHxee@Ac~!>RChv7k}=YBzr5BV~aXPyy`bNXyc7tYML_dC0sn zNy=$4r`trk)v-G;h}Uv4!LPk7w4`Gl(s%5@-B#c56C~|Q>krnSH)_;rX= zikA-zmDM%X-l7*CLZnZb;dvw#~TJ8cQutuHDIF@~qFoOOSw#e9k z9Yl?QWKvKpveCKE3)7x*9?2d<2_3Uy+pD5D9#)3j(t+Y7(*)K~lb-4jj*7GCDBsh{ z=JkKu4m#XdHlKs)KGRk)Dw){A{@Xu36})aMOwB;T1N!`=t; z8;rJnkvG(jNaqZdq2dei$uRb^F3o>n3$(@lMzWgLkviVYFs$iN|6`x6@z+m2EYf7! zOJ@9oJ;16{pY|?jy#=yx3ifTMPCWG_)agGKHE+F%~+ zi4elY@K*d`z{WauE|`8T0>okdT$GduMrz+mIUpEfk-GQ0PkIZZM?ApAN@Yq^L04vs zr_wVSEW7e5R0^N5H^iAMUE8uU$&H6j6l=DAH(0yi^@78NA+W?tn~;mcCF)%FGME!X zv}CpndJoT>k{*1qIY*va!nVJP(?1WQz6$DBsHbGhUWv!2KczxDY1|wHKdzxExaTnL z*f}UT3J0!RHch#+9j812AXby`La7j6j4A#=J57E~tZwY@r^m10fBsVB=ZF)!;_0b776Qd;sE zZNh^2?;PF^(NH?J%p@(@UV^(@Ct)D5hUBw8fLA-5OH1mBbkCDTZ9>>lFxNY2hO`iC zQ-_{IS@7HGYW?$nMjBVlw*936Q1bX zNi6iKeoB`n5Y&lP2~oo}rq2F)yu(&WnWwx4}sn z99wsO>0b1DGtcxBYvpThtg?S*Cy+cq(9&H58a$+RIe(W`HB%^KYzc4tai@e8Z~GWc zLKaGe9bV4>0_aaI&>z~nia(FB=S!^Bbw)wGfTj;>)BgHVKp zQ+#!YX%<@1`N*QlyHq5_xq>;Qmp?ElYiqD(5U-U9`_iCJ`oX*Lpe_;(7J4Qz zfJrpn%qH0ckz6L$@qr1;h$l~oR`Ms&911VHG<&2z?@>V$Z5L1PsA30YZx%D2>|JaI z>3NeVf#i4XUb32vZwRW)(M&wQRdA+wF@%gNGWp4{QphhK7D@kV8u3&+8WCulS)#>B zU@#jsJw|0=C_?eiY1k?JG)egw(rc8&W3O&D-V2^`mPKcv?dl_!B_B@+S2q2OB=?%s zh#Y7o1B%K$q@MgXk?%%hcGFd#{LUAsR8}no!R^2tJakJDAumU65^J34?v0ie;V!Xk z8^#-}Tu(kIu3YAVy!kbQU>=R40T(gP!y?W@lV(VRHJZxU*yO=EBa8!_bWgIDCU>DPG%CD z(d0SQKF8CZ4{FMi>MD`GPtD&ru@LW80~saMf` z%Cp8yfvfX~UQJ5beh)>;$fy#IU{%#f%q(MS>TxPnqa(bEk0x#GCKL(e*b68JEP1xU zaVktyOYJu$$^6L9tdrO9@f0B5cb5$fg@oEQ`$3ISJzgxzY>VE}*PTD^wZ!ZSQ6`Jg zRX-Y4Hs%d_c%2&P;abd5=+2+!$+Tfd&C)kX23JR5#k61|#jD>Dt4>IHr#2JJ3 zS>2U#A*S{x!^gt=Ojf}r-f%PWC01w* zR#$bG&;b)o)@JIS_EA*xB&s7cxc-d)pqC5;ld-ED`6O7N-}|lx<@atk!oXENX7zPi z6%ivq)?Tly*IX{aEG7{Zg^xMzr{#S-gFwb%RyPy_8dxc+*10jjMdOD|02Q^j+%g*q z_t4<&kqP$STNgNI>$tX2H}WeK3HD;`8o-&8|G0~eG*(tBWp8_gsc=X*d&|-U*&rYz zFkq0bR?gdAFLhIZBY8X;1OQV%R)f%ITDE}&B;A9rw0kQo%OspY(X{tK7~7R0Aik9t=rMa-#dq-Nr> z!(SR#4i=YZ^Sr7yG`(OnQ75nWSGAbjfd=-@JU$(snIEupEupP;aZwE z-H+_EqDs#d{Y_6K=WZJyUAmfDE_|3*n7*Kz&Zsya!A=)<8;$vj(@%QT2|_7qucT#l zwzRqLr`)?asD*=wcg#7TV1;e+uT7u>$BkVyAGhh$gCgg`V7<+rFwfI){@*kTauuSY zL@;}>B8`B#8y7)or)>_S*ZJZONW=3*Iw~^rw z!;_pjj)PU;8Cf<{XGM`e7i??mtNr$Z_{xd81vX~I4F0B3nx<&JbH&Xt55d6v^(UXf zh82;U#P`(iG;L=f3NQ1&_c-eVY6Va1E=J-iLp>1+(td#vrS?#u__$MDT$N2cDG$s! z8;#yOB|A&5gt#kfRE}AT*^);7z$h0`ilbhh8va41y&JjTPCrYjTbUxAWhCtzL)5HK zartOARj#@#Ib{=<&IF1p?zZ_5Xlm!xlX;-B8*>RVerj%dTrSkWRnr9rAR(lb{YAz`0BV$Z>AABUZb|Hh8XC5ssr<8ERNQn& zoKaLl3sE_7b#V$%0T+SOv0i|BXK~B9VpI$uka9@17M&( zq`f~S0wI_@&_G{EQ3rf~Hgtx=Af5-VIqF4N6Oib5fD>ol)%d$*0(kZ4{>;XvATL%P zakIY{JRG*b?;jV3nUs=1NZ^XWE4vDsmB1pM2&{-S(W$ck=rep(Y z@x@~D=AbMc)P3D#1H^6x6H3-R$o5cQg3E&3QlBEfy$++s^J#mCXM%v%3 z+_9N{A>P4qeD7kDhL0m_avQj8{MlBESpah4gkvYas(C0DlJz9dA)O{dp+w@?STL#r zkxq9BaqqTKJeje9reH$JR_&0f;T>s36V6hqW8Vag;=I%ZvoNn1qzo%9xBaMi$B$jM zsGNes$`u4xo*;{$?%~~kcaj}AGOQnCh$8~c-n@amrMt(eI44xrcB~!yJqsd@q<#CA)ynW6=nProP)j;Vt0$;0x z+`FJ}KdkAB4p(xB)Knz$iV~Zh|%oelzEW8o0Sgq2D-dDjPUcLUv74!AS;n650~zuKU|7 zRHd13^MLsYiRlY@VrKiZDud?r6|YvI+ReJ{8MuUThG63Au(emZx zA-X9|P)g<*nwDTuc~O+)={3r-#^|A%UOTKj(`}St}Av1A1!jk%?~ib3OIbHGKr1|BJ!f@ z95!10B!<6;`YD=Ial;J$5#ErF>yn0JMy|L#s`en~s-|HMWTqE~$dy;VJzZoW$HW~K z7T|7x&m-0%Iny8dR)NS*>#-F{4bB`Gt&bcf>KcM8uBGKrWE2;cAwi$Xd)Gl(=LJ~k zgUcit33gk3{nPm0)2hN4u+!Vq6m6vXkrqo9s`I9PLP;W>uE;1ptU$3R95AgcA0CT6 zBs@!iW0DWgWu5`^2;qT$-TfS(HKeI%qy+?%%z;vV+kD=-2#A?m(-fHyS;;n=+c;Iw zjWQIZQ6cwSOc>J|65{8;C@}G~JcPqW!s8!EAg6~V0^L(1Hj`F7D_qwzZLJio{qbON z0(?-=I>^T@tn;nPfT`bZ#H)8M?!JO4Fos;ZCa$W1JxX$4n|1Hj(+KqXcneA?kznz6 zNV}a+%o+D28?9H>s8|i8L#M86|EZZ5@Z_xP)*Jj?*6rH!H)J*0!(5VAyD5i!24x|h z6r-U%lqs(=IOJp-RP&C_6zAbI`ZlIwPB9?w#%BNlQDuNmrWTtiB?13p#5Q_fTrS4+ z@T1ctCKiVzDnl#CV|?_dY4h-e#ElvoWEhs=34;%xK|eUC6e$NSYf_BpoGgd3sibGQ zv|;ZwO}SEctf6HiTy3GTe)2rfAL@+_O3{qC6FrEuEWP>d*sC>|a2WP);NT$3xZ80d z_PcQ`VKK$icv~;wH(JBkRk%M`z*>A3oFI*e#KB-0SIBjCq4{22!+LUBZ{SQiN#G*-(C97N#5*rhd6yZ|hYy71fd)&kD4|^5DmX*inm~t|^NZzmhP(0|d|3R@^QJIN?VYL_1sN_aCN%daf%5k_dR&# z%fBt3BhLn$RmNrr zMp;%N@TN!|7^PG$f5!ML-z1T}L8R4!Q_s1B8P_@E?P^U85sEYqx*xPUUC#pQ9LH*QMeqeQPf`H9n zED58BfuVS3f}Ffd&nz30fPy8o*Ks;N{h`+ef4Hk#bWopVQtTJ%F4zES1M6N|O{z)V zSd0ZllvTZp*^bfDA{8a$0%Q`LX>gi}P(P6rXBQ*ddF8zj^0 zK{)JCBzOZlS#wdl;0A&TXx&xapwBnY0NG~L^+2Q3B}~#C8(R+a6sTB4lP~n_JWt&{ z*?I%S)}R2gGl@#l4)hU6xhbBUi3ElG&y^>wcA_^4E#`E_z~Au4z(RIDvB+(p7HO6=`EgO-H>?T za^g?ggzrC~h`qBSW2f+aKrTw)K$*}4hunM79Ry36urDr(r-W`7p`a2P1x~OABHC|h z2^0L+?;Eu!WPd2S#dD%Y<$R?HnqzPUfs*E zF=wU3G6K571Nl=g7za0wbtA@(XRr>i*I2FqKtg?{+{~_mzNW$xpzNoS5gk4;7ede5 zz5EL(4y?_83}x)ngVI9=J`Mz!9v|-NfTI+BRD!WOCy3HQ$C3|Z64?czR*5k5N^j3- zXYRm6$@4)He)0VZ1GXA37X9z(`mdzRz|LQGK>H(FZ>W3v379{j6u&z4n_aoVRhe<% zLrLsTEv-z8AngSr8OCnVkp%>DQ7a03XIe>sEeX$GwHyh;pN0!Zcw01_a0-YJUsqo?f|7h=p6eN1R z*Rn9bXf^PzfOwLXm(RF(@un zjvQM=RjM|&CSQx9>&RHRk{;{zKA5E59^95GUQH1nx80y?D*3Jr4l*pODDH)DirP%{ zqAk2^5x@ahyC+1HoJu)1sIzLCCOvU7E>fJtIKZzQSFctOkMR;Z=h*1$os~5P7mWAC z{MYc&URO$&0A4p`=AEW9p_j84L6lqT>arM|@e zDjlW%G44kdPZ!^m6C~85a2K&@O&*laXRr7VKbSh;Cgj8bVMx>s?a=SVS(I)xx$VhJn=|4!Nh^Z z8PO3GODjkG0ZNz6QOCjD%`>*)85mOHnGzExXQw|AScHzy@SU3+jnqMP!UNxJHf}~? zXG2E0?L1q%oGH3{#R9lY2pT{RnVTdB7%O^0d3@dtxer@5brj)$7@;OlOom_!u2a)> zkAkYK5f|`IPtE$XCwaL>kL}_8TK4mG@EbxZjltNM3h&>S@48DSMVaCV`FI@4M|-Ot z-f^sWn9sB^h>FA(%2_eOmoMr6bJUfspd+Kav0~t`dKnPxQ%v!;dC(%7A`NI9rpq!y zu%b0n(c$VC7WL@Zem?4up-_BO!m+X@n1piwWZ*MM?>01zCt*50BrkSOzK9e-|O-4FtJH=U(QMMTUIgg6-Mncx=u(=v(;AkX0vBL=L1d@!z- zBZpCaM{+J|6e6{6_6(q#dJ6W%Zg0LV^^+c>o=|!Z3J4-Zkpr}%1PyhjLB?miXQ$W} zk@p9zHYlp3bhhYCxcbRMrRb#Ik~)$Vnxce?v;Qe4ZjB%roG;o^al_E_XIib!T-%~c z0JO1!z!p*+Q;s$8IU34zqB^2RWUb|g(L~69z)c>ZMgVCL|4_ z%hgBk)aCU^XvWD`(Dx+I)=;!UVLy~A+X&84bS>xWoAaAr|LM2y@H?E^yx^{)} zd6mRz6O4~5HQ$csxD!YvVGqUj&7}RVZWrYW*~{oHT{HjFo7bB(Kr+pTu<17L$4a^t zNQgT^s7F?76H7N7FBxt22icwlS}lzEF-a9F zE%|r|q>FGO)qD(lWUI1wvyFtW5}64(q4^g^23s|te^OjcW?QyqmE8Lm7JS_9IC;i- zFH0jL(D5N3!~px1UmPUd26T)ClLh{s0a%f|gPx?U3R1=B6sM$956wxyL!gx9;ypSe zp-}1*_jK<#^uSRl-t0(CObFH6AQ592qj0sZlj^a{I$T`-sO32M?UN41kUQ z!BH3lM?M9WYp`H)oeTx^bxoN%DB{$R$;Nr-Fp*MfHOx7Q>CD-?K#&?$=NF7duwEAu zWR0;#>pbrQVH^OXI<%Ej&g;(;BRtLOnnYt~Oi*QMi@EP$hz@e1p@nvg_n8pAHoSMT z;lyXaUe$p9kQFMQA+l6agNmBetPY@=9RKj7BKsGdUe?+w&$0qPXd>4ocTcr6{hp8~ zA&SW=)7eHwS`830J+ZVMy|Q88+~7gicd+G8cE@puYst<2k^ht|&1{rmgXXgj9k>kg@c5YRbo zZDmYe+ffk%sT!M{SoEy9=%fFcA$2Vfb8}R;e>)75=(L zlEZioU4o}#0Ubm5sFNYQm-Hy@%`~If#QNbV)3+iLG<7_b-qG+)OQHw2wbN(6y5&`2UydqyqYIZNndho z2PkOa20Ra=^U9H#Vd2+Y-OixVJ;azXiSD?5_5An9)Ryjo!od*+6`q(_!rs2#5~L#Z zpYQ>%*r#VTwNQTDsgu>?_(_ zPao7|O?nXZD0=sV$z!brC=YJ<)o2muzFdj3JYrdDlitzSJNG!gXD#NoD(5kf3j-wC zYN~aSJh;rxhajDWLLzfp929&;iu&QeT0o`-pg^wWCs1$Ql;qDB%_4G|?O_@!|wT`5}lE z+Q0Z3j%kUWWWv-B?dMWJjDm6ArA4 z%3`s6!Z`gyKMtzv=#!ZskQFZlF00)asRUb}ak@OdD@k292xb3YCGK3N*gvTw60gwq zXX)phMllP3W#ly1pK||+kJHl#7;!wQWsv}C z;fMi|Q}!u5nSB5{lsDZ#&S)uyacT#FkjvR2x#gP|G3b7$@o5N*IBu-bD_tj$ILp1{_RUs+es>SZEye2^%MhPBd37vevk8av+@&*{;2@K z^(D|2C-3JK#-JNZjf|lbE6y&I%&*sXYjW#OE{$mvXIy>D5cGuO0f(JEDy}LvCBR49 zZ~SQO6wv5wAM2ABM~qyqA{hEfb!e$ijtqAWsmeRCXs+!JxnQgTgRYydcp}gIP_Z*OcUX899IpQoA{pmAaGgIjfll zpDVN?R$3;}U0=YWe}Afm(p`8Hw#q76QMbeC3P~5O(okjp@jV80y)&-8mBfEdbgCml zPwF=_-Mm3aPgr!~-9y7EsqAD5qN2)|l48stWkdgBO{!c*aN^Oo{1tX}80isJ23F-; zyy%i4@h-_?d;v3WQ;|8JU5ZIaReV)%uF7HW*T?dMB zKkSs@z~VQdD!`=tM`4PdE5U9(1-NRfR^h+X5Zl`YMerYa^7?~KV*(40PvK80Otxos zUEm>pj$1)8V%A7D(IzkbSMIFxW%fnX{Gd+hC%zf$&P611jt;M<5;Bp`-OCz*7*3nR z0c*CM@6=P15N;bDG)er3X=AUrS@eFHrrHoDGD=hU;B=GZ_r$Wwm|A08lU2T|dMN9> z*~CaiRRd<6+dlFtx8Ld;$3TG%=xP-OXM;XfV~?T~EOgS+6}P={ll~lEwZ3vb%iTL-ux9u^MFjZ7uiA` zw>}tUWWOwfP=fN`E)T_*O@XG}?VhJZl5U#$#Cq@3kZ~Bh>qT_s3WS5vdayy5x~l-O zchUnn!%RGq1a&h=J_j9Xa~sYHfy2-nwFMt9PljJNE%*~S0rv|ZLVHoZpQ!6!uWvO^0biRfhMzA_>tFuaD0hetvvJ zB=q<_Uo4EwJm+l(v<5s41#ErXO+1qXe56?(81{U9Y({JgecXKpT>J0LjVO{_y$IzA z?Wa5`ehfUN8Fqdh4k-3~{2Ta~`5r;obAR~d`wm(emC^MP01gHQ_Von`rX&jqg#`u! z1_%001_sXiBo>1~yL%28IW^;%Ue1;pk%PYGrQj=F0rPFIFxlPkXymoplF-?-+iD zMqfcYs>wqrZ~o|%Fw}H1*ohLg(p-*+EEv}4N#a4pm!3WTijRpGXGgI)a8Y)OnwlQ! zzuKqu{J%!-7j_n0I&>Wks>AEi2m0;~{qJl2|2c8KA0Gb`8gQyzXEq?lR?N;gT)LTX z;ePjjf9}!u-?9tX{>GH?2F}xYQ5~M}_HjOB)z}fBC&>I`>d5_HaN3f^Tj%P2-a2a0 z=J}5{PpRzOJV_ZiZf}E1!*Irkn9ID~I_;|E=ZUqW&;9#5^KG^@raWw)jezG?|4mR{ zY*gFIB;k-t7k5ry8s;lC!ua8g)03~tj69EvYsln-mZ>8T9nUW(PAqXgzM@|=(*7GL z#OW17BPAa_+-+QamN6eDzHOVn#KLh#^*;KE$_LQX!*M64p~MS8 zka}4U57rE(orHeDjnA+@tzqMsr7egkSyMSy^f>@|UN~{Ue;aOdtI0>rF~g}G*Bw@F z(yl8KMG71gCr`yjOJzH}->Lx&9lR$FC=abir0u+5L`0JQ-xH$5*lH5ITw{VdJMq6B zCQ!HKriOm~dva+c_XgmTxtj@<6fIm?Z+%cZ7XX7_d2zSrOn=N&{&~vv{a3LvK3H*! z_2=s+%g~43^T!Emharrpk5G5)+gNGlGQDG_g~`Uurx?flz;%4f#k%gsyvKGjaf7Z# zV(yLk#=Q50gZ96D4$S>@loquIS$dXl220*FcZ$v0&g$d1L@*^I7v*UY3NQ8PahQ_d zjdN7TLmOz*qMX%7Z=2qzvZwB<6-_tc017nX1uh44p;4Rtv!>K?fMjaltWf1Sej>5N z@hqhx3QRFvhEHDOyK2hVrGKHc>?jDvw5aY`)ZZ-k%=8+xvDR+4CNKX(CN+WC%CCbiZ=`9(jnCMqXLLGK4 zFZ1pnXj=#zMch&iCKsjyy&ZFu%j5C@(``=XM6wmTTT{}BCR&g3JIQn+_ z>6z6lO0DR?B-B8CA%wRncZOXDU;^Yy|nZpr6}20=YKgA=wBKi$VBt%T_)&? zsQV^Q2*T>ULJdK4D@6JT8eaBJ*W;XylvUM4hG1awwhXrn0$~YZ+2YGMVs(sI&2QNV z9X_=?F>}-1T`7g>-U$0yzv^{WjZr;BN_llpPz|%Gni>Sih8W``PJhZK<2cOUI05#d z8?{UqK$GqV5!Ecz0zGRZRelkN-?j(B+$9Gs_=d7y;eUc}$nkAcC5K0q%iYp*=OvH4 zDXq)vuZp!+y65J-#-)YD5(Oi2LK@5*ip!Qek2B{B(ZMW~Mjb^G=O>JKfr=7QX6oX6 ziyBfm;_mdRs-^S~6*47!-(g7P1v)-*ZiAT6>c@3AYai9mu848g4+m;51M0k;Q~0Ji zIa~G#@FY`H9_wHL@{wRT7nI2T%_803ZkgpJ0BV}KhiQO^^cI>!MM}envRE#1abx9e zvcueIJ}r98l;1j@?m7s+=@8(d0@N_KG+8Y*i2s(B2D8FFZ50;gPd-IGcCEzz6eilP zO$`yUfoC#U>SndHYeyam-4FjuwO|x{W6gknz=oNFh*3?ScC)4{YpVpmYL0Ax-;WQV zrAe+Cz{h@dW%9n<5o{7ym6SiSBHOS=p<>w7?p+BgVjrPXux}J)4YC=_gaaLdj}NmG zUo?0^z&MQoMhM=3rG__cT>}_zo-cJB{=JTWk;+|Zoa7sqFpFVBl2(z_k6&KWtT3a< zX@#~#L^H%!32xVqFs*eU0jDX$VZLYeu9M<2(E zBH&xWM?a2Q9wUREqDpmI|C`Jtuj#x!!Vjq)pb|&@xV76M#HDN=@S%~h+)6jNw0;!? znmSgQ%=}&G+HS!K%-ElD;E_MF`~SEpY;seVH@o!U?I+8j8^JV!mu4qn>}S!{LmgnZ zuV7`~%txUYK!&NoxAF43rq%O$Ga{Q84;ykJ?b1|X|Qssvy7h{9;Y@2*mX1IU5YzL zJ`w_Sz>xWHYa&%#AT(9GZ7iyigW6f(B|?d4!rU(-Ckt`xc%Fp<33^9C=2j*BCr;UV z)$Lj{@ndA&!W$f^^0fSxccp2{u8ZEYA;zsANVMVOySP6T{m3xJzzrZMvM1{~JQTOf zT}q@`)t3Ei>l`@HDrc>%V!4rQipQr)Vt-B|)0}a&jMVm%notn$dzklvx?{4c@~$*D zDH^HGz`E2{Qa(OLGAh{&&|)kcVGT_NQwwjUFT>Mp~R@D>Yt}aUfmd%le5|w}YBBZSM z=>p+q+qA4p>}*oV($z7mR@Z2vp7#!NAv$mX?%^QpFoR1>)!{gnrFQnL*76vE#!^6e zZQ!o%pA)> zy{tSQt1*%oTWSrF2rZwQF>ZuRkYU@Ith3{ACfXoFobPTJOhBJn*ZeJK5p|?Hi8NY_ z)Q?DW+I5yN9s+nXx-Xf0la68T@jNjkS3fOmQ>_rI}AnMoU0ADIZj%PRj39&{+$R4F|5rX>V5 zZr%O>EZtm_35Gt^T64U^;X9CJ?5{33^)3=M?!?YhsV))1M?>cNll-?5i%cn`aF&vw z_Bp$ivY*`?{Qmg0_}jZEn*ii;TLVGMUo9-wLPEAeXWsh0TA#J6{#rd3Fp3iZKgaN~ z&)o@j-^nJgp%fU5Tav+pZLYVEqc)#Qbdo*Bb><jv(*4!l|d zRYINb?OQ^`ST656*AJX~FJJ#x>N1b<9hVmf2DYF4|E4aS|52CNU-qtqyvf_!{QcV^ zeK&~frp;&nL|FHRWQxnnuYK!w`M0}{;!Dv@sgy-rI9om+o@L!Q6SGPSf3MA5an&dF zl0=CMf`6O~y^pLg*Z6OI6WkQ?_3=?Aj*ijv*!K5%@%*}cZo&C_HWboB!Kum3b?ou$ z{J6Whyt*9PzRqR(+&%00%rN}&^n5>GIPT~;)_l0RJiQz`K0dy7H0bevy}aLCSuYtF zcD0^|&h|v9r(8bDUF4KeCAV)5t->WrYtr*(kCvb%dN;P+OUvVI7Mbr`!52 zEeOyHhI;B6_~^2BK(*gimsmp9*X6d~J@RuU$Hx0|ULtyJCt2loS4SDr@>rVsJ>a77 zE1+Fx*if)GKd+zX=N-$F=}N}ZYP$PoN0`n$&KlR-pv5cIUpG^n&;$UO0?+pP)9q~f z6c2|yui7NDeFo_zH}Dod=xH`XLQ_M3=~;|3{tyPD+=G-h#!xV|@&-ZFqcptQ_O;&O z4SRKSzTz4Ip<@v{jL6A69ay_=|f1H9{8lLQf!=$0cUFIn zD70R8VHhc7EN4~4vL!h-$9ruqJ8M2&Pq!CxTdVh7HO03>(AoAa<;gRLI~)R3d2^eg4|2 z{l-JWV6Letw#^~WO3Jw3O2%Z}kGG%_+eD%X;HxZ~D8ER$b)lVrvepWeMkb81O3XJ2 zB({%z#oa)&l=$UbsX&+%0trjAVEeOx*f!$4upP}$kTk?^?$LBp&3u9SUoDWyq{mo) zeB?|`b{i$dNAu@XeUd~Y;`3HAQbap_Vt0JNc~X^GSq;FQ>&vMBs}-N0^jLTR8d{vWw8^J2KKLYIJ(w^Z(H!og|CV3SE%Gl$lrbW_hKoHF8N{->g%TOoOLW6 ziMxUBJ~P8i=WcdBOP^axnvcd-{EI0UY)>B77YVi!zl`gcymadt-tf<1cP#@nt$&E1 zI4%oL!vKGP?o!+HJ}Dkz69E<ujNBFRYcg_wj|DD z5jI9ekTOyBT8?!090jqbUSqdhl8wCURsV;suL`THhuXy5-Q8V_Q#iQ0OL6z&?(XjH zRve1EySuv;TA)xUoz3^pJaaR1#|1kl$y)1`>}1DAg{7qV3oZ9u!?8q^gh3Q`jIcwl z*<3XL5ne{F1k+Sel```~368T+-%_Rdgb$O3I~YZH<^Tsvh=Ggq*{obVG+GF>C6A-Q zSDt;3GV33*rT1mrYs+q4XwQ7THT5GuzZ!h0spn(@{&O2Fl-Eb7g34bdcc*ho3F#;~ zqqSCp-POtsB`wY%Uow+js9LJ>Kr-q|kZH}Zw;kbwY+7Ke91D9-9d*WBnuW*oZd!RBrY}>c zRg+i9Yfn)?CnA@@&E-^>R-^8ecl*mG{U=NCv4 z)mFF63V3t*HEzp&w++~x z-S=A#jmAph2KpG)2jwXqZ{GpK@7L}#)c%dFr!@5os4{Z3nmG<*GL-$mQUCWN@jrf5 zRafA3`bFj&-WqU>+UNDyZZM;rry5~>aqwEd4W_QO!MDa{Hl_5xx`M+%O1XTV_3b}m*hc)qAmGu~!$W1y8ebe*bSjt_|xI9C$)%2r}dHQ8@e0|RN1b=(Ie&+K^U4F(5?D|+(c$;br1UVCUtNJyZ zLRvlt@=V)sQy#$3ZZ;RsmgBE=BU&dj#sej3NuD@DTdIdKHkj+s{;4;+IQ}M|!i^kl2|EIU zGq|5#3i^P#wGm9&MgaFaMnul}+hoL)v{`u!( zgj`Kt3A6v+K!OB^^}TU75*Pu8xm0`hJ=w=S=>D0@WYwCS=@}%a_D5y6wnVVbH^Q7z z4<|;gBYAIq{oOipgTHo*v?8*fl^yko{1m@8iTJs+(D>y3{tpZ#3~G*P`q7SR0jOSJ zDV8z8unvYuTs}0tFckA{#EELv!-`LAB_y3z1`|3jHM%vv{8>8s2#)>#w^Yen6E~DySeK7w4Ym8)stY)s=mVuGw828YyppAzUaV<*sM$hL9 ze8pXf5Sdf~DXX>6Yy=Fts0`HVa>lV9WwO<2cVU>%Yg+BMgfN$4&};^Cg(Zkf(UYT6 zc2wC3BJd?G#4j^qg?9cLveWHzs!pz4U?oaq=EJvJAUGOPbkbbjfTAoFM|h?YWrIR3 zAq!Dg0+*l}V0oaEac~LC|MQG7hOOE{VU1?j3f|VCEx|9$R4#B|$q;4CDz-cS|O~a2b0PZ7qe=l-k1G$_AzJP{~}5ak`$og!K-W*(sxx=J2g1#PiWg z>hQ$mmU^Y<_Ew4&^0rIqWt2!=OEjOG;xys&kKuB67(!^IdIm8C%WOcjq)l-B{W zKZJp6CcZP-@*CYK;WhG}gBWS$=Blpy^|J1mqdOb^G zyrWWGt**7w?dJ*vNRfeNNwFz{m-odv9)m#(4tE0_P#=U&;&3N&nF+(l6X@{2H-vFk zV9~I}%_f?IsL$#$AO34Mo>5#wM8`#)Dl|%`Qfv!E)#j$Yf>3Ps6*h9av_iLCYq++o z5;g_{6DDQwCJA6@$au7*x(ZLQgh*a!@Es(InWX76aH(uKFb9}XzxpT)x6yl~q}1WW zB+6&9NwtJckeM$ebdqAt(GR{oqiQz+v=x&AH3O0DB8zNy1wiW}Ym18K<8wlOhP0g~ zJ&3sskszcWM+#FYm6QQ-J6Mup1HlQ4EM|tlDXX-ln2Qz4lft23cWy7G%j!jn%&g0M zP``5D_H(h&R%SNFUu|`R%m*~@J{)>FrEKgXyIsJx-`ZI5AGF9j!HH{i&q`^-D@YD0 zK*^!I?Ht(P*XmQo*wu0ccFhXE(o5`KBym&t5GE{o8 z$g`44P#Q*A7!9_YN<8aFlPrT4SW>yqlr<^W!iY)iBiP~- zI4G*eEmJ@*UEJ|1&INwT0OCCKEnV~WX`S+ah z>c7^+kMkZyZ1^zYS8ipK8f*V+3ynH-jq^+U*H49Y)FxCV=D{*%kdOMbmwu5{+H=A~ zeo0(S8NMS{JL zZi%E7Djk;0Y~z$JjZc;^IoSY*zobiUCU0B3;|`}*vPBB!W9&!)x()RnoIFQ`*wpreQs9hSeC7bsk-4nbN)d(2d65tyl|l+J zsj&`QeA8W0uS-TL&H6*Xj^G?)@L5t|bHgH9}5GM$g%BZ>(f7%Na|vIZR6zCc1t!1Qm8AT9qmH8I&1GgKFO79DZ6Kol(ULcC zw3zDfY`Ubo_;;12Si=?v)1i~wFSLr&Hrc0pZ;e!zK*ZaTFa(*XDt@svVG5_*U_v{2 zz*4F>ZBST3w7CLMCmy}zkH{Z<%6Pi^WgP~U7QCCx)i`!D;42@ou0GVd;;Jyo*fgmH z_!8CacEgr@5R}s{*U%H*haDkYRH=~w7)KgmTY|(R zIi9mvkXm*k!>qpE^Az+)h-2}Lrzb2Zu@+MdM3X7xVv;gz_5N&TH~Ht4OSXT#fF2pU z5hPNE=k=*^1b8tLTk@H7IOy4u?C%Yghl(GZq@APtr%yelBzH(h534=tqZvSp2SZLj zR67&-`DMdRX<y`C)n zE@|{CsP8EX`_za(7%%Pm5hzNf5s)e;29{mgMn8bHLw^hRoMK|gu2z_~K3o0`_bR9~4x}f12Pi`;vo?p8WxWrajxRe_zlS?@y{wxAaUnj6n89LEIE6yqFIlOLcqA|^ zIzv)7WjdYVk0H72lk+DNX!LZ*k!%cCJC4s5jYQweadJTpw8@)PuO?$2>i-2I9*GPb zGfkRKS%b@-eY3G~%M3fF{yyV{W{bo{6)#J5CjzYsT8CY>CkwscvU>A&Mle!H)<7c% z_t732+c?^QfNz4h#z2bXRQ8}Y5ew?`%EROH2ZtKcDSx3S) z%)r$`1_3V=t}@lqX4+b0LoKRx8tc zjL@Z%$|xVxcX5;$dIS^9E1+|&2dsZkO1cc>=P;i891=F!A2l!o0O@5Ze=wbzYbWr7 zo~%|p1+gluD3AttM@09S9>;4k?1#hgW)@a;B9U!}8)F(7LR$uz98^-fST_Om?hOkh zh!oNl#wpsCgC%=xg}%u?(`6aX>ZYMl;5deW626O32Xuc15*oD>>6VR6Gk1` z`)dHw}#(^q|-?JO3UwUaoOK0hFZqF0~%N2%vEQ zaHLdi9zRHs3nKeapuB{4_{HfyZ6<*(U*O|z=I$lj$l;=lhohLa-Wy}OZ$Df@5eP0I zkHPOUnT}~)4%JoQ)a_Z2-qx{Cu`O>Y#Y!>`W03twgVLjW8qi=3Ai8ddkU0`FVS$IZ z0VT=c#B?Zvg_~zj2Q`u}hj`=|-$YnEQK|4c^#j5F5g855T-zuBYrT8!=D#YVac#VEmg8_LQ zx_q##awkR)?!h7?ZvBie292(AU|65xLYMra7?BJJrQTb6v#q{$j;yDkc3fv6Cxpgt zQ4rq$6QXr2GSZxiGCgBq|n5r|!@Z^)Ue*56N$5N^m&jTjGVvsBa z1OT+`4X7Cd)&h+K)@*Os8oq<4ZxKqr@&B!XgqLQ8%@i zw3r(I(r@#&jqDJ6^TxY3+eG)l5fzWzI#rjq7;yXuu!*=nG-Qk=HbQ9Ve9}n=0HTx_ zP^DZOo3-#YhyNQ|1}jszi1OhEXsa=jk9A|+<*#?M*WYIXCt9ZDBDQJM@dPMDc9cxo z99jYPGYLblj}<4`0Aam;pJ~R6C(55jtqEVmEtb-8?gCaFBqPUjz6v^}s_KeNgg1dP ziwj7)JIZffKSoZpe7(u$$_+jGeiEy5*4zguO-Ukh1ahq=FTwh7+GH=A4qpJ+3JD%0dhzRBL` zV>(Yk;+{pb6#s*{OKuP|R~BQq?L+(noud$z%Pnwf(mx$pZSn(D2pdCXZXzPtcKp7v z%KMh;htXp<5ub-E5ZR{j%2mNF#E%Up#uV_)m$y3^$sHbV`3gxiN4TWBYhsx!W2V$8 zjcy64iH1&w3@s?$iRLeG0aP*C1iLIX0%J%{`BgpS*ng}RS*buSPL3GzH*>h3qQ%q* zbpm8A5=wU+NV_y^l8-NzZv|bVSuo^szc4?uU*|@JyCl zDwuG|)c(<;WTa<8!7*uq_{0>2wBsTwfDDK}(l|E#bbfwm6g!H>9N&GtsO2b3JOv$w zKfHb8VB|0#w&Krv-mpOjjSmVDpG|_x9X_Q_KMVIzAI2YoLuWhEKD;>)o%;HAf!2z4 zgSRfm5d|sku$W>^+oO06?Myo}F{2X9t_k&lG(cn&F(*@``}7@}KV~v0vK!Q4IbOEn zlr;Ol=W&>tp^CmJHccK^Q;wi*#A>WR{fndws|JU?K=?!p<{5=-G)6HU=@pIK&IhnM z4@Y7ZGSMVVV;+n=w0;cSNPH3fS1=QGSZxP}p)uoSY{_7xy(Do+Xct^)#f&`=>;_m{ zqxRkYPd69?>04t&{Z{(=qyk+!=$1zsaOeg7=%?JoO|O%d2zow%$OZ}G#n8uF#~R1> zT=0Gss++DA+jg9E}`9iaI81ejrx@uX<|-W^#}uIf~$zj{faYne#?9HQ{y$oR*Q%(Nh;c zQ^OIaL@jBN?QUMn6D5_QOjv^+IiyMzH2>_3X!CSZE^5e9>3JvJ+Z`2dD{n^Jy)a@; zSl6aT5FlJkNy$Hoey=~nfs`SCs9(0Msz;{8=-lnJw~)%I?c`ziYhd$KSde4mDWn@M zN-aG3)ETMU0oCDhMqZ*ibx_HsG0xBa(=i}< zX&%3l75VUW(4S$T!u(^7=lxhaOJuA5r{jadDeKO@(6jqN;igbgk+IA3Di>61m(sM7 z={TjtzkFLxzjN>nM$#@R`mwQK+`@vW9)-In2*1~nmEAUxOUY13#`Y-4#Jwr3uRb;6 zr3>cF^^jCIuxXIdo;g(gC(}fe2l2L5KM`;jdsbMl1C74=EXjT0-USWDTfUP)%E zCqs$HI(6S9T1w<2>ja5!M$%CTz_d6eI9ziDIxaQKz%LhGFdj)<7f^BVC*n zjY~^@(s8Qzhe2D9fk^AZZkzc4`WUk+)lV+vsb`z5!tK^c>Vv|72^>a0K_M?T3o=wE zwd2_a<&R?tXmmroH!lC@I?0kY)6h`d>VKj!D-n$-GD!>2{IODSB~8wk7hv6I<2HlO zn>sy}$sV`cv9AK`v25aak<&jIXwll4*S(m7@f-vup&TNqF>@QaDb`vD^uhdSPK57`85Un3hG%EghVuottfrn2i1~ zDM@4?Gw-LjTyxVr-bloj&Md&#Olf~vZ~d^^;L@3eszGqME~E*4On|om#HsW;k^Y~9 z{5-)lnhO2vVcEs_Ea6Swjsz%$^1N#t>;#u8u}=u)oonBlDdxg!MT=KOnly(Y*L$3Y zYj#(~2#&*HgA~1ZMd}-#2loI$G)FekJOgDpoLQPGUw`{w;t2T3yVtH?FtA}t0_!tx zG|37L6k5aF6T$(~u9^?8zy~USb}r-Z8##&2!vnHNBo!_uu#_n57(|CDjfq70p%Y3# z@ZsW%^zWsM>KVqmsqRR(?D)0dWmHj&vYiG^irbvU=LX5mwG*SLiq$C1qEf~XG+0pH zpm^Engtd4DHd?ZfhFl*9Ys?nPr#4tw_7ux}X-4_`lZn}|F zeqL~M_=a0J_+mw`{B+*s)r6RtKZLBHk$B3^aWM!J2H-2ocZWX^$;@nM9y^e1Za^8CfEI&?7dOHGb8i9QRFcNb<0qU!xNa!n$lS)I^ zE}MUHV%FLh*CDE)IpFgVmTSAZL^_Pi3hAvx+E)t^L!VAPIC$%l_`cL|Yu{ zlU$}?h?Ta59B2+lw>vg+Rtgd@A$)jY-2v15Ga6&0k{>f8T^=>kmh#1w6r6F9Gu3Y5 zdpu_4rBnzJg*IzLthP$f4C8n*3H47hM+u2?#Rhjf=Ql7$?OQwuMg`#VtmQ27Db+Rl z_Gkx|o~7cxdkjr8s&U>)XegP<5$6JrB8w@=g?VW(m3%I0-b+siO^P{B$p&eH3Bt@{ zi?zwx@#Uaa)0CqsorZ09FeZh-Z`27aCbAQAtQh=fG6pg<*gdLk<;&5!^&!_`{ zA{K2@rIp6vAb*r`NdOCg-@&f%O0N~qzgIUx=Lsv@mW%k^>%Yf7d;gBC-P1lx3_b>L ziHq8n$e+r1nUkE>ISu2`4|VJnn+ zIyTlZgByf8Rq%5d^(0g#eSY~Ox8--)WBfU|G&8sb67mW1zJXNtP)OS`b=q+A0hemX z1|)E6pPvk&vsAH4+|Zvju9=YgW%tH`UM71~H0Erq_&)`v@xvP>As?^F9yh|66zxig z)MI#!ss)X_Q;#xJW4_TcCl1++nb1PmHp&`BP(w0`^^>G-?U_Nr1saKN>zDtc@&&J4 z#BDMbsAS6?e1uzrl`a#8P!-hak7EM~{OrAkQH>Hbtx7a`b%99^OR=w%-6m28Zb~|B z2xHh&i6SEmFL-&0VA__nxU5QHbBk9UgfD)iW4PO}45do46kJ(8+3m%mE)1Erf$4>^K#M99RVr!@JUYUZsExt^ z&q>F?#`8<4dGmcxU{~ULU+@<$(rQ70*Co|-t_X1>_AV5e^dY6Ryr9YtC4K+72t25J zH^Xj~jW0Zo?BqOJf*a|FrGG*p=$ph7kq^(#^7!F@rMLS=g(s)c=AU4u$O{7fJc|DM zT_IYhv2n;PLMRT;Kg;Lq>4Y*8r^gcurxMf#oxlHSRm#$|m%UQ)$ubicAdxn^B|vsfuZ64{;5kz_a_TCL^Y*j zd?jwTcy1)G$z*6@4UGMAmbSIig(&#H4@UgPr_!coMLw;`2eRG! z5=>g1D2cYZz3f%m0Z9zS8~vyXJqpRTX9-az?YR$(Tk zUK%=ccRXRW$LYDT$9<~Ew<~9JtFX`VrWg;u|D~psSF4s$$O$pGx4j${B8=z@JeFOh z_A2fAW!G=*8}xcr#23Du?9P`LHMVIaJ_)06XNGw4NfLh;RHLf1eUG5${iX~5tY=3( z5=zvysy*AU{9$|ja-&<(DClmB9B^D&BQ2$j{LzA>IG@9`LidIQkP*A?WbyQ8-`whx z4=nxeNZI~*X=c5(`Iiriwp+qy7obCTPGhJ;S;W#-DxyBzy>0)4%`n@N(2pEavmMTn z(;0#IZJG5;@e!LBsyyRrJ8JZREZI(Nb9Khxx<;W+ALJ?vc@c zeEMeT@$b@a*7ktDSLvmp->(9~NEBZQE+g0`wc5Yj2K;;a@q4a7OGGn!EkIE4om<5H zu>j)#x!=}1=By}G3JffO1N{GcRFM6@qk?{VDf&F|r>~ON0Zw#JMLt-vC*KQd8@Laq zYbW(R)OQ`f>2?Xa$J#&2lKj5y+e;86L%mO`UCuwJx5a?!M-&MLllFi8@$c;SUhm7* z32-md=fC$mIVK!_zhxqJVcK^oxo^7klXq9UO84SamA zK=|MLz0zA>!M~%w83F$OFV86wfBv@rK5^ab{rC6iTR=BHouKbK0YQQP`^y^Xm-GVv zw{LsEnbNOhKVMGT69S6gzxcmA7JS+DeSWI=0?vv2=k(Xq9Po?1o*mc{FQc}VXI`V4Vc`~E)d#w_uFIT{};-ieu3ri=Zw!UfUr2pQY54PqC z-XD?qi@*{B{J9Kt1yi{%f0n$s#TNuwZvI}2D9-nLeP?ZWQz=A*wkJe3u(7HuN+8g+ zKGzkKL-s={aw`hzLR)_z=s*pUkgKdf({&?wB!Y->uP(xcwy!L4AmG=$6!P9f70n`n zcoRes6>HVCvZ}FdT~;P2ltL~8*R`cXo^K9c1heN#?ewZCT22vwHc#5JJzr1J)JG+d z^>afiV#2RL(_UUqvP3S6@3uK#PqOi>IldFtn6E4N>>J=E=-cQ0_U@SQIAr?z+i~xo z9alXgEwDxRZ_90$wZ?-`>+cBg?~J=`e@lI~6liC*>hrK1yG&Gj?JXPykaEh@e>ckr zA@<5s&!}T6LGI|rK=cfDp^%dL3y5WO$e``Drs;oxB31$X!QU6@L69fBgI-Pt-0Pdr##PXBv!gU zJbpkrZKt-T9B;MBreY?R%Hd}6al}q@uCu&mW-oo}uTjnOLByp{>CTgeK+g1J??trt zvtDd!nqW2zRd}bfm{2jY+yI!>Cj8@H5F5?%V%duU@*`WPc0ZZyh$}~3jm4(A{etWB zXM%Yu7voiy$`RK^p1-dA%;gGtVstXk`N`w%% zT~2;NmUeb2cz9fO=Frro5QwT+)N{_Lzz z$Q?BytUv+re5jPAC^u6f#%8kmAp!h8;%P4$Ce8oLs&;m*?BhtO1Y@?2iid&*_RRWk zo7fqobmgkqICi&fUoaz_YVzqL9@TbaU8E5P&F-=nA%R0T9{Nq3=oQ5)YwYFqMPK>D z$-uek7VYVBjkQec3TExT*FY0}0^jX<1XgZ{e%kqz+oQyG~n^>j(aq zB>AHU4h;<4t!aX>k9M1?67TF}@ADEv2BPu}bgt%VkLFu5W@on2_-W@cuuHrD=gaZY^pv~FMA9&70d;5a=VOfhuAJ1Qq9YORaXR$8P;SGfKP zQYV>5>Ycj^)DYC>G{}%qQmxe#@!=g-4@U2JJhoJ_PyEvDa6kFeRPZDe4p+9YRh#*_ zu%rimI(+Lh$Vg@B@IkPFj>eANj>t$BPY?3>Wyp20?Z-}W{8KW*wO!SC{Kg|{mkmr~ zATi|D^t9;Q-=Q`S7-IgsKQ^BmwjTd!@;fw~5O9;v`#RxO#}iy~|H`aiY7F4*uMM}n5QlL7N!|8jr`yfkXD>- zCTAKJ)6Ms0%TFEWmIi+*vlMNipv5NUDYe5meQCF^Qf`NJYiqLvg}^#^w7S#b*xD!O zJpOunBrhs#<1Me~Lg2rXqqj;fc|^pI_i$y8+C~X~(W*4S=pmf%(;Y(KMN(r3-;40O zj1{-JB{QFDJ_U)`g(}E+XSC@nUNxW*P}WypqS(^gNeueSn+mknEIhb;sxh+6*)ddF z36M4II>Ez~GWetrmdBp{Q%7`ZTvpff%f0V_Pc|(yX7w3)(yh+8-w9!~U(XZ#P}e2x ziOF9%&S}Pd<#$^yW$kixwwVW8H@3LHkFuGg|NgClJh@YJ;k05Nab~QD3veN-8VeA7 zRX8!$!%~NO)pBs;5XUc#3#}>%89d z`{iqvQiPnD2qk}N(_uHp z;1IT^Fq)LP9mQ~}CWw~?mYV8&7UU49+CMlSNtpQyB7KH3NQ^8w?ShPvdVIFC^V>mI z%@odN;e@bm6MCE0AOa!6bJte6oy9qL@=^s?o7x}*bN1i`_>haH`%-##Z!(Q2ym8@b zC0X0R5{aJT;%X}^9Asw*aQk873#mSRC-QWaYKJJI!w{lP{z*n#goxQm^GOUzI@;yr85JyEZ=a$ZYNg&Ge3Ia^^_i~i z#AdXHzGhr+xT9}9pQI;}tL3m=(~tYd^f?3b>63#b+=}Ow*H78@=ETaYZW;+=i6V7* zV^HEakzhtT*%%k@H$l;3iS!0h!ScI`rBWvx8tvcZ>kzS|b=etQa^D1R)ag;(*16+^ z7!vMrU`g5g$`&NN*j@&`5qed=w%(eV#Ezid2j35?GYVer?{T92KK%Lx(dl zEd8c8mm=W|%>0_y&P7$t?|9fIIpBKkJN5xZE#H(8li? zlQFWLPBK~|Tvd6gG*)Q7om1beuT@eAG~e|Ih8R%~3-iNPGvo`~@E{WBaW8|uhd3#_ z9e_2q;pr|U`q+zp0(Ylq?oICNEq2%SX)&X;t6+xPNf{O_L(gq9LQ&rYb+#pI`i8Yh zqh4GJC-jJ<@{nL`*+J4nLBLsNIK=Gnv6uDSWe$W$9l4{S`L31Ft&<3sXFc~|5O&fk zRoO=yN#-{d`J@MPn;cHIE1XVI8-Vv+llfy-A~-^Pv$j*gafQ+!7?2Y3l`{OZl=p6J_tKnCUETj>%)QHPOf@$dBYff&=J7KE>x?yj#q5EzF zXK!`I0}VV}GItsw-KHd*Xp#ZeGCz7MHYIDj_Fq}4MT)>}V2mTO*$>#V)IAmV1%4S$ z^F~MXUk~?I#nu(tfYhZGubQ;-XvURA7FlM7oeQm~GtG`VN4JQOPAEO0`9{I)uQ@a~ z*cgrp>_2}=2z^UFWhH=_LY*zxF9H7mo1y&%dMwAwG(CbXMm&xm5UT^hHP}ok0;)*H zZghAGh+l&;rxlq$BSs9x@0US~7w@ZA_p1jZW#AavzGl#Li~(puZ{{98W9HEhz^FO` z;l6U&B(SKhE0fa;swf?DEf7Q$j>kbeiHpeejp+-vd#XE|V2Q~K6DQ`o#EM%nq!X=J zH+Q;|hdawWC1(iRE&oYNu1*FUDGBV>9~xBeg<1>&uw#wF3^q)XxbAt4>#0(LAZIm3 zk3g>l?pEE?d}t0eZM9gwT7rGJ7tyL%ss(depDYsCjLl4>SSvA+*lLv|lg2n@6Aoo! z7k`sol%KM#dCEjT-GQNvx`j=3xg^EAxmR`$~Q>hM{OUB zLtauM^=WKByTruyi=73fWwK)s8RFvts+e2&@}x`j_T|qXETV+*ouOrn;3+)ssG|2Ws*j*6Mod_@aFdFOg`Qz5h9QIBIrU2u?Z zr+W4=)}=Vf7lHjkdU}IM>p9kn4!7#Mm|iz#Jnm2_quK6- z_5_+R16w*L5yZ5)VV@Zy9FnF){Y>G5(Uhd);jSUd(iZKZ7Gbb>-D7j*6;$zHOR)9r zkk=NIWr#|?9Y~B#f4f!|OAIMl8Ptn)s~iEioGe7}{qYz}bKE~=(8t{P?*^XnNiE>#RnvEA~@cG&qNv-6l3X`3WdOM)@A zpFp@QkcMlh`P8qm@z&|P^0%!`DrfnjEFg_de(DQ8Ilc~wBzFSe7DN5TR`ea){V~lI z@|C_1QaET)=+9ON1q$=Z5HEOjGh+geo|+Yk7P%D+pp@91Vu)yzFlJ^l3}hV{W6JCv z_~cMII7j%g%2Qxq?tdaqDn=&3p_$6(ch3b?3G}cUB+Ap_-ww=V!}QJ1(@%Q<)(5Z2 ziVCMF=*QE-_K8{RCHvW8)K{X?5HMA|?>XI!CEiBW`jrzT{i!YAQF$&cGhR;G|&c zqXF^6XnV&TCsduB6%jJGrhlbDLtC1fn;36-_dVop*Pk3LdAjT`AAy%;-qSdzeN8#& zwl@m?sdOa4+O9&4*DrARq;u$kFf$(e$6o&8x`WD)I;_TkZrHy}Q~#FG+EP&q6|qY= z4rv=R>qB91&9qi5u21>wsEB$*@4OVxOebt{Xl6(BPRe#yi~~XKANX^n5v>`~gEp9C zvp5rCIiTw)-+V`~Lbk{CEZwb?e~UC~^qeGFP)3H)Zn%?Tu()!+2@_#79>%|)J&I#L zR4)s=>xB%kzLXoH;I-}$M;7H%FM^qYsArE2$}I`(K$g|zVpt#sV}_8*j2=w83wNaH z01cfj(T~v$WB2LL0N&H_G20^AEjv5a4`GBV;1a3>u)n~O(qcj+lqW ztklr0EJ0<2^C?EdV@ekRG&Q|IfOR83ORRu5r;5NY8T*N(0Jo*?8^kwmAV&O>u1Mqo z)Q*Cz*I_K%_UcmrhmFO>TgMxotlN8I$ev@jNzFkFHX5a*3Hg`$e`p!aPj$Y-G%@el zqfa&(JkdPA7XS`hLD0hRWS_T5lVPK$_JfFOAyHYDC0n2F!(q^Y3p+=8U4)=8cH$3z zW{H2Kq%E{NFg{Etgb5P5rfx!ynn~ z&@`m8tNmuKv2h>$nIa!6<`FVEX?pQ!b`+|0aZ}y8{4%236LRBqPXxO{2S03HwGY|T z?oHf$dTj-(GImWo2C*r9!{?b#^!&NpD>|Kwb;ug6X6%ke^ND zvAfik5+TwaQquL!)9{1vz@0mgEjOj?>~0?l_ZH7fASmQ$o=5BFH!~-6>8UA8j#6sB z!df3S+e3gr9rc&MC}r*u;C{nR^NJ%o!4-!ztD1fW$`gX1W*Q3HnG9x3bj*Eo;)p(u z>Cc*R47>t6i{>$kn04hLqc!>}uic~*c^o^pljP^<3;;XY{&2sQo#v-OwEOj6m2CZF zIyr>fk|cwRO;Brl!JXJ%)sp$KRuU|r$9CzeG6!S*tJB7Z+-~kNrIwfosnNkeK;bC! zl>QR_dm;SA@x@_%yomM&*k?JuXBlTX|QCi{i>yxXEb%Hquj>6i9QU3Y+-L zmBfG!sT|!Urc3)$lSk+8-*`RHI%up)aUd>vEj_KllXyFBh~$ZnU9tl4o?v*T#BA^W z^GWgeB5nuT13KzV#n^7w0K=!EIol#3D&`G{Ev84hS!L~^QB5f7 z%ZZkRbeKWF{&ae>pZs*xoEi+13}GiI9CNX%6;$&40V6An_`ipD@B4eG?VgAQaW!X5 zvtzUv%P=B`&QS#U@}1Zhmc4P%!cpt%0F}}W*dy<-9^bMiWoh<$01UL&2L=*|e7l!A z%I&6U&}bbMoqD84B(O z9wf$q*merYZna)-S~bFFZ2R9~nZr3HuZYa$ClELy&&0;67Ko5_!NJ)QQPLi}XNV<7 z`_`bWF=F57bbvGNk%f<>*rVecXR;6nr zFEj@TTNUvl81Jc+U`W%yMLb~1Z6kx&IvR=EkrQEz_DZ9#$WnpDRw3qDI4jO4iwPj-1nB~z8`{RsP zeTO$ClN-{5Beyz_9dZtd8F%IVuWj zmiE-R#w__R{~TI(8RXZM<{~O~^-DGJaM3r~QTdh!ZC00J6m$^ygL-E13Lk>!078rc zKz;$CAq&Fa95AFBKhq_D%dTBkndz6NE^1_jV!sJf)i#`Y-;#A8g%Y%&Dc4%!pdrUK zlRGnlBXu+uj8*Hx`vPkSLPKdZ*vU)VV-A^sd8N~hs|yGtK6Wx(HmkQ%(U(cNWz5Fv zuCY=@Vb}AM&o1?%JTU?#!r1wxF*JF4;9$5lpW_E-UEl5@(sv+I);#TRIJum&&q!h+ zzjW$65B(%Sr(KLu~-e-yAMd+d}N$WgdVzcpKhRnsy8r()*&~@@A9mSae!IX z64-Xby+ip_s(ZunojPrb`C!E2mTbK<$)5=-Rk`bU2U+oEf4Dz?Tq_;>??Q51=|l~2 zIuBmyt!c_WfQ8E_SA_09%7Ud98teQvA3^B_U6uCTGCP9M8l_b4;zZCM;~(q_i3=D~8=_Yn0C@#&?O&K@*n zP>Nxfd@0*l6ay7hhD1bnG`*g!w1}epZ8weas9mBuGAoU84gLf;2Z7qUV#@xZ6bu~8 zLohA|I{2)Lj!a4{!@(rk_GTD8o))@P1;U!@Jd;skGRE4E&AtI7i`R26CMln?xQGVi z?~iF@Svxu+Tw{?mqIy-VPoPQ(s(@5jy>B6B12x<1GvZiPgJDOy2#O&1YoC-Xe*eyG zoyn}7)^PnrB8jAF7PTq}w@L0e=4i9G?(8jQgI!w`mrJ2w%{+Mq=@V5^URO2`w9W-%0o&^LUMe^ zLFctKDn>WFhKp}K!q|d$Yg~hspl>8p9Y8ONm_d*BYfb5w2B7DpWN&;K~#^vb_57`9KS)~ zY5meLUK|sS({8l7dPeJH869yV?2VDgLUKWT^V~W=(dQdIPou=x;I0A2%BuRgU)qV~ zC2=CfUN%=Mp5Plg(#wsCCBK2w+3mBcZj4Kju8|7`FuMwUKCy}~k8L)^L6HjgnwL1^PgGgzB z363=Tk5kE=iUPdY^aq0-D;f)=#SU2vwlk~2V_M6^y3csVpeY#l&xo1$bcFh{!p7ga zyxC5K!iT0rtpVw(QP&J}m6SeaSL8(WTfp$X6`MrXCgJ=D!zh=!<_<~Nbh#ti@DwiR zi|!>438l*mP1gBth^UZPM$~3}diZaDX~@vnt%vjUyFto`qv2%4+W@w! z%}OJ#3iA_LZ1W(Vt7nL$>9`9~F2)O+(ULBpZV^Hn=7rlar!{Wn+0=zCVU$HhK@<0Y23K_Ty5%o5X z{Kg;t&<(yASNA8U43=l2%qpe{7p`<%mbS=RIBe%=)Ur>6 zJc=n~;TL#MVm(Z@IILrOFyp0F`>emTzB_4>*HPJlXx z!yRx!*6{$oWwp%$W(vj1*gym?Ok$UK+(tfP|G((^#^}hJXzkb&+qP}nwrz7_CllMY zIY}nAZQIVozCG_+_s6%^cmJI3KHaNp*RH2Fo~pBJQ#ev*EX9N$XC@qvKqs)6w|NZc zgHoEcd=7lolpO4VY@=|SP^oMCryTU7GS+9lo}CpBpcmqx;fXrW zg=7~Q6K|wJ5*48#(3#(fBitx|hi{1ESUGBN!6;yGY?b%QBo==;80ow#lgo|s26BEZ zDZkT}FwV^i+KESqul)pCvatZRro6oGc=Cn=ACoAx~Y0If*1>H2x5w}c~ANi%O3?`cVkFCi+g4g_C6i53}6m+{M2%a>*drc}rz39-K zS$To2kwF|ukYsf~hGg6i?SHzq^$tXp_v(3X!lcn2;NkFosb=+X{wSh>rw?Y|nbXo3 zx3bZ;(5o<%ZV+y}(_Ot@g8^%Su9&j7M9bT}I5GkOOA@X)V6$OxO~4+~`5RmZ$6ztS zI+5Yc0os}$Zcv;ca?ixmH0J02J5m{&!75de^_?Fr5wm$GB?vd5dmVL^anKR%kRX*jof?|UH4s!vM^M?v7JQA{atqcq{Fy4`p(JkW zGwg14H$G@!gW-QfGkgpp^pe$XNQCGa@_Wha6bs==?)oXHG@fyi z;$)x}T(5#^;+v{G3))!Df!|Nu{)m|S+Z{b|1r#sp@N-cAv_FBsQ^l_6A4x(0SU=FG z@l^0fmUiUnv<}NI!F5LD{{17OI^Pu4PZg>7@*?n0sZI1rz@@Dbd?8gBD}5{6TR9rk z3HVM#tr{tcQjMNy$^n5(U@w)ZUOl3uu$ZmvbUNiRpT~PX5BET&WH`lv2u<=%zgM$p zfqrlBuT_l=JbI8|N$dJO4BX~EA+h`uLw2TkJyQXbi5%ne*R zog*$G0%;sc4j@Q-UbfRVTTJZ`BMNJ^-fa8;I1S`nf3v&509D`uy(A?5*SYdcH|jVYjE>2_#_^sy=Yo_%36hO{SXc-dC4MgP2Kb9_XkB-WD(D?LR)2=vub>)5n% z?ak4+sKV5-Wg?j>q>P8lyY|rYNjd$;?`G zaAhbh%4a1RHTZ$H2B6)yli%;JvGIQlF_N~Ry0yyLj%vakTaKoMot489mTHj;J22W~ zq-f`95kQ2i(*dhRG6D@t;~o906a`VL#~O7~0AkMt*4n(uknKIOHYQ2%GNyj)2R}1N z9hNIYprdRUvZS=%M1CA{#H{7*5h)`IS(RRL^*&`r@TrhaN8XKOe*6)Y&B2_PO9z@H zv7-Y~9Tef(t9Jod!olmsZpNUE6*J7SSS;HaX)>YdIO_iCy4JYR=)*t>>)bzIkx&$W z_c*@-7lc7$ss?7K`@C@^;H zvzcWPS16LkHIEiUR*-F{X}UF7qs``_<;}i()4Ua?DN|IIOnyMt(VetQiVwzl|4mg6MyE)j84p#ul7 zAjS#^TRy_ZQ#w)#d?+@hsb^v6Z98{r0P(9I`p=-@L*KM0_S2f?zG4bk-vDv|k5&Dq z3I?k$c~@&sPE?%4C>sbpFlZj+E+WFBlT@K+W3$B9V24X5I@64L>4Sc1p8(GzLT&Va z;BlE3L@yMbT7&BTL&H+e_9eB|@(9kg;%!0XRX`%_O%y_FAB4*bs}B`xg|2_d$@4&( z%t*2%ootED4WMVKCyz1@IASv=)l0t%$zzEjDU{n{k+N*s-}=azdEW@O@SFexNt||2 zD@KoEZKYctdb6Cz1C{GaqNfK1)n0kzWCc8owMnQypYACYeALgKI5mfzto@*86qm(HxCqSSjh!78?L?pDaFR z%xC9uyLZ5PP^wPo!|@^Upj*zkl|1Mtv6ZUE71gk~^6Mrs7iM2aum|yx^P-6tjV%p5 z9HiBk1`G^^xE2UPu2i#)B+K0~?t8g{FmzJc_QTvfz~7T=QL`vAd#$e`Q+RVyb!3?( z*LG*|I-w<@D`%?OV?79tFD|><7N<7KwiP(-L3AhB|L>?MAM3tk4>#VuWdG_ygDRH2 zdO-1p68S(Yz(Jde-O-0?9TqCpak=GvwOpDLCMGYMozwM1mNrKy__$^@10?IX*rQm` z{DmG;_XMHv&zoSYmowewv!C{$XS77za@7EHhS7dInUvZj%Uj@d2iBcqcSQKp^dBCa z+2e;|leO!SK0;8YMKrP9(UD{R>|~2OvoT6=5+T!Q)Og+)5hB4dsJHcTeOS_SN-YtY zc4h+9n?ns5%W!5MQyB6Pr-&|TT!;1G)N^-kwWI^#i&_GMK^(iYI;LIAj1)2~hPb-a zlIJp zj;n7k^JKDGB+v7@;e}pTTP5r=j28Ln8LOgI01}vKDq7jjIV2 z)osmqluBV#?OGm*-!jQ554GSU4^h*SCbA01o##+ajOm~5zkuCPz~`EEVrM~!(tb9N zSv3QMb7o=LhNE$_(8w5Va&3r@C_=GtsVXLxT^Iy}87l@Zu(r2z=Wc*mu`heptxw&| zX|azK6D5&;c;6Eg9(e-KEcUAhf(|UC3ZKo;3RpbIBHmCkA!Qfj*)&0_$$60NYyHzl zB1EsAgcHnq#PQ%xr*ci5u%1$?4Z!BaT(|L+j@dCJ*Ym}Ox|eHqs^Tulids%-X>K7= z7#XX3m}M&+%_zgOFv~|m5U_nG9^Z&!MnWD_rQQ|owVTh1g(N6cn-G|?Z!(`2K|yx- zk^QzK-wfP={ASBT&EbK<5rYLDtQ(`F0~6km-ziK+(SCW5MA3+C!LI_i1h<0663$O6 zlK8=xY7iy`LCaho*fD52bvU-nO$=|1G%9+t(gJ?ZTw8I11zxeRsT_g!Sbz_VOsn!o zkN3J2y3&+#q_;|yx8>>ND8c5YKME#F5W;8(%{=#H%e(C~yY1S1dJ|t!;`)tf5yV&n z+keZ-?tyrp>}?qv2WR_^t{h93Q1ZDY$vVB3p5d4t=0rm&$3inA8MpaQWrg8yCSHVR zn^63XIc$41K!mf!I{)NrmU>-DeyaV2X70N0e5=dpf0=$vOdKtNS{@9D8CT({Z9>NZ z87`&eK)SXU0B3*U29(~VD&_#DWAvV<2%#_h-JsB7!~qMrK=M6zSvfoMZ!`V)fJfI9 z9vBBrc@1ri94wWFI0hpv-QcJbG*?*s59dkw?i7RX~Y zmoz>8B=%G|<)zD1KF^p~Wez{`VBjB}uz)lj-VnqHzxv=g;p|A9-}Lr_BjoDvg=YV? zs{^X#*=A+74#mH@U;G1*2%1hPPK=?0;I{wr)(|Tvkkf#iA(2k2kBm0+@QqENqeA|9g?5geSvwbb|+ ziCr>IjXY?kj~z%I9v5V$|a>zh}!q{zT)2t@rz zV;QV45G(}TT%Pm|Oc`*+FI3SpJGnkGx5N5`K!JrD=l~<9ZtQ!-A-9<3N|TeHL9@p! zPdss)DMSGN<4iX&d#@68>$?>$P;ge2W#qRMtTuV_Lc1b7WUvN&VO5j6zz$M#AT9kW z3DGJP{}W^8tvb-?*zB)?_t+e|bQB&^Iu*!ky_f{I2#@-axN$rmaL*k#S(gVFJzF^V z8jh7oYRDZ_o zZwWaa`fszy>VWQX6`Aq>22o(}rcT-^KYdAFB;iR%0ZI^Jwgv?MNnDx>+zXkf01@sc z9g?lD4Ci1)M_3gSxbInWuG5kfnNx$X5v(V)#`j3O{XP;|9|1GD7@kAuK(1UVi!(2G$^rF zdYq*Nj+5g;ynHsc)d1v~PKe1Gul+?l->6Y!XYl>cNR6e&)P;%2%r|4S(`}!q|A8Rw zgWO?;$H8Ct5Ic{S;W3?|PfMB|D$S+~Z3-ZCe*h+I_007N${hW`+t0jgCj8b9d3%WnY=NFmw=%e~weC-MBe zAak`)-0+@-E5vjKy=o*!;JfKV*KZrH?CI}hZZR^Vx;Q8bY|LGe)0?WWoyE!rrpSDt z>E%-=>3F!M3vle{H)IN;7z^k6TDw&J*DfS|AnDd4? zVWD(>c9l__{aJN(TDpB7FssJ?;4yqcM@y~DkfD+KQH!Pg^0~*I7{mjb;?0rRkFS#F zLTJ`wcDnx@z9ET$qpl+Mkbl$FJ#TVGrY7S@E$OgjA9h;u+vJ zV2ya~CUdKT9eyy}OTb2Yy;TK01~AVgAr8yu%DprNXa`7^F<_N`DW6w#9|z9@Y>hve zV->+Z;qO0Yv!6M=Z30uU!RVW^lO;*Fq9YuKwYY-|D0|2uJpD(~31D`(OQ&x`HG=yg zp*f+02ehq<1AjzYF7zecJZpmAzIR_P)bUtoMU!_$H1=SoZF!*8CTotTUUwI4r{_g3mk!kk; zpuX(f@=lvmkyQ=b*u2t~Q4Pc@o!SWl4@r{?B=hK>XU+_#me|XR$;Y{ABJV_ln#PHR zp)#+nads7#F2*`h`JEsV@?1Mi*0RUy2niX5FUPAb$y-dkW1b5e!p^L%AiTN?FMV6? zY(WJ{qYi0NUYI89CfaQ=il|{Ns^>YCALU~Lp~O$UDN_Y`lG=v>9A2?gt{(e)1td4} z%9Xxl;JuxUaK{I0QcAa6M_isZyrQb(pLNS;=SswTVwZ^980g!x#ff8#2W;8@0Rs{dX z5`brpxa|razA)vCz1m?0`*>JCxQgG!$to>jKsh+mjSgqf%7F!YA6OM4L&EJ`tsZf+ zN|*%OFbW!CHlxs#q_@X{>28Q^dDo~#&RqScws<|xNN_8X7sil^Or1c%M75ngVr4zR zv2p2Wmsl-3LQSPU{8kJ;w}kr1EY66SreW$8CSes3UV*eplGEY*0og8sm$bHo>u*n! zqhXAs`>EV>VZmuAd36~-x#z?$OVo1FtxxEJZ%))gItI+lMOPAYplRLc>j#~gFeKM@ z)qXp^NYY{`*HUxh*jf>ZPdc@XnhL`iZxde&w>oAa=8tTZo(?U~VKcKg{0pCurOFnwfoHWSj# zjq%28!T1HEKny)NDODuC=H;pn@u zR?O1?IiY}moT(Ffil$`(HW7CAlE^-2CtEUvH0VXS7eWT^sl&4A4edK%qiXa;`tun{ zY>YXDl3JgHT+cQoXBow+GmG5!4W&le?2_UyVB}(93JCWAL>)X(P9WaIsAu?2?R&oW zeX7JGyYnSq1Z)@22OoJ%Lm$|f8|7HoYIRQkk6&?PN>OGEwG3K?0;2+IcG-d!oM#iX)Xn z(cw}5u%w~~t+kFolitHe=J?*75{`sx#Dd8*s-DD>B9tKdDk3>No!f^%qeJ5f<)0bT z92xq?_g{rQ9r|E{Ps4;QD58#`^rOMC@Q=A7Vv6Q2-lZFzi{ifuO6yxqI3o9#Z&W#` z=9Fy0Q7u$@OM)^0M)oytKVDUn;C%C+qyp3V=h=kkF@OkS!oTXq3~$Zmbw>2*C&n7= z$HekrIuDe?5(Y@`AF{;Ml2FXEkw0WE3VVc~p2wjuwYYYvei#TokH#=UVH_5=RW*Ob z3CZKcRJLKjygmB?D|deQ68gz+mab32ZPEJyAQ5pd1T45Yo(J_}oCFXknRbU#Py>NYh(y!aJk|h&c4{JI6pVg(yHPF6i|5jpbT{B28(goT4Rjm5*cnzQ=JG@x3{Ctbk}t=D8u#gljL?*1`n zyIrrx%$p;bB^O>;ljRGrbdn}|b3)kX$AGj~6g#Y-8_yfU&I6 z>d5;hFwtl{YWo4|U$J#)Fh;=-q#>R*5LVC{ z+%riN3?%*2^m3Ko(vhR#1L8V$K%QM~7>JV2(~E_Y;+N*jBZfPP?3q!PVRuIc)b4|HesI#&ii?@ zIlS{kGGb_Y$Gp29iX(fUua&z}#BgEhhZ#a1cY5bi2A4~5CXt07rnyOe&-CZR5Rm_tI7b~j8Md_><1R8VwmjJfINYHRZ%$C8-h z(R5uCVMe-FeTIDPmVTQ6O~GXiL3uKLTOFsRnKO=qgeBE;U>;NbyeOp5ad#A3yf9vK zYl)WYHWRMu5%iR}Kv@#V)Sc9QUH8nO-O=-JAIYNg1VcyV{T5`_d`!yZ19cy8X?O25 zw&!pAgjtP>+7^E_c7!DQ-4(t#KbG}f8NWV9_0je`LIcIxAjf)P`jNgDUSZ3_}LZBrrF(bQhOV3_ta|Hnui1w7v=947O+78%&{D}Z6b`_P&0 z8upx<|8gtee(fu$eWq1MuTIcgXiFmHkEGy5kR*Dp!W^g^3NLr)#m@V|vtX9YluOd3 zwSqYC>>xCPcwiOEIG4&gJA>c?Y$gMFWiYK1r3MMzr8R{1FNuZF56i;&&19c)!P{%< z1tU_eLOzfZaCt}J$9&qFSGd)Qd|drn)|gpfZ>)lbJ1v{MzR6V>VwD_;(s`}0^~g`x zar4ylA8%$Md|}{kQcZZyTyU#+g{oHDOg~mRhbZm*UFB>AZ{jo*b&a(q{g~Y^*`&ZB zihw-#4W~1ZgFKBMui5EqwsXR2IN7hz%c@6l}sPVWUjh8j-w}qV%Pjl#P7o8Pz5x~ zs7Wjha;37jGEoFkL>tH`1uGPR$K7&gocOdVXgvPga>eO0m8vFoU&2ef)TU?-3^eZN zQs0&vG1M~m{81*F#4nW}Y6NGdf3Yz22qXCNV1(OAeZVilgLaC$teL|M5y8%Rp^C4M zcTpeNB`6&09=|-nT}lz4zbE~f{i3(sp5)4+hWf^V18H}&q3Jls73sah_VpRaJ*=iJ zNoi3l{e}&Iuj%UZdy{$$>!Q}@7K??xx15$cvVs+3g07I#73<%ERq6+a1VEpHmK=Oq zI^L$frXfBTJM1t}tFK>9PcM-%tAt$3?oVUQjd8OZQ|9!zPfw39x&BSR+6oC{==(gF z9%X>OtLIfuWUaES#j7Ui8OW{UlHun3>D~b6&%ib(6J;G6PT5~r1_es`5VXIIb+~wd zDz_&Io&y9x{9`hwd}YyVA0gTszk_CVtkJ8F_-99D$ULt<0uDqV2hxvq($R5TBWq`m z6haB0b3slkQSI8r2LR?dVayoE-7n7@DU;jL0c>SVRJTmR*vIs1 zN=<(9AlDn>GHm4#=Dgak*oWntW|yOP|8E-J5-o@=VE-YnZ1IK*WSOfR$kv>ct<^u& zaa)Nxx6AJjb+F$^3)Q~?$mv`k#k3vGT~4w(N5lVFI)h##m9 zNd_OI_?Do0jaAP>c@OmEj+QHHlhqaAJOVB1Lck~*oGxq8hXQ5Pix>U3f-6(PV(%{i zf54~32qz@PRRArNOP;`qH7Wz#Q%ek;Sv+JN4>d;8@6Uc~1KKupKJI}o@SnJzqbWtF z?UV2lDAC?th8Sm%%#Yp_c}rr3+OSRSfjcJ#7~5@ zo&D_vg$S7kn=|M8X6L&Y<;~xxl+6AK!k@e!wOdMp?VRo@I0;A^OsFzX_3jj0Owb^= zN1_5_VCVv5I4Q~TAteSUI|%6W1NoSG&%8>t1hc%YH&7X|gc}1R1_6$32c?S}Nr-b)xUk=xN}-{731opm##u^>U%w%xn$hx1ry*hB^3J7Fi*pP4WWHx3q3pQOILRE(M}j>1*kZm7zU973SZAq)&UrOXFlKGl2~F zGpQ2r8lz?SnDs6hfED7*PJln5B=N&go|N>MO-evMi5et|+ z@ig&q-C&n7VcqX85SN7~0RmTkzU8%9XUWePo>6P@S5}a>uKL9_QdQcToT&o5to-~F zp;Bw4w&DEZene~S-@pO0p;(dP$9p2KC$Qc<=AHvY4hcm;X_OM+aWh~D>B|TEi*>aR zka5Dcq}s10Cfz6gU9gxzH;`NDfa5Nd>|cA>%;-Rya;TUyC!-~V0jHU+FzI#qJ_w>) z4&aDW`9Ge>!Hj_Ns^;V1k2}cHRMmD-tble%e^8`&%`<=l^Q&alrli6Hy&yOEu9@Fn z`7K6~S@8!rWbE{Xvn_h?`P=UQN(cbq581B7;D#_jtmy++h3EJ3-9yR=iQ{1M1ClMe za{*e&t@9eJz})7;$_tQ9icd`=|MdT_0!4JXp2G$^YS{O$f~p^4R*B2uW~(4!5IT_6 zIxD1G_G&uvA)Kj1H1O*NJ!!;L2_wxc22kuXD^&yGs7Ji(ma_7~kf{UsXmfR8_D-u@oFT3t9Pl1k7X$>t7 z{?;9@0sNUPMR5cS*-KZ_JD){HI#*3R7Vz$l%vy?3VAK?SjPsK1hQ;*!3Fl9 zeiRu!j6@&G=2yWc!JRJ=S|(p<52Xl#61zh9?6xaQy7F|y;SNL=!MzhErSH;?q4NihnFa+63*A!f76Ki42) z9X0DA0fAodD^o??_P^fm&l7b(BDmeA_qm>VeShSSTT0f~kIDw#=ELM~S0Pf_=TSm7 z?_n009Lthdh|p17AZvyllvIpq<;Jl=N1u^ls=$(D81`DqWg}4q%&mUp0*kYJp+_%Y zWsBL2joE{u|AwYbq^vKO#n6hLc`}?WOFDvf`MF#N*=xZDwhN2Fd`m`4HXo2hH3&Ea zWHW-qkwq;~o>)(zXGD;p+(?kY+)Mlz_B7N4?k5P3xi~tEBkV|Y+Z3KCwEY^{CUX?d zAOBr*IVT_vlY1TD&B+&?HY<*?;Ul9~ew&2I4d-?V5dNzd|7rB`dzh#{Js0sU!LoYL zaSEv@B(to5qGg}@h6Zpecuzy=q@bDHSnk5|=mM6kp~~?>>cmiRsn}4mtJ(bYf`**t zq>kuG+=Ps{EXe5-N}NQFevyK>=Zi@2GmbsMgtO_!yrMoh?7SxTBSQID{!xM#;>ZVk zRdk6?H|1!Aiah(Kf~oK=0%q+&y13qsD2M^sN+V=h2`8-aEaIt&;e_$9D|qn(LgSzD zWxPO(6~Orq@|Oq2PZOxD*gvR5r4hYF-ktSUm1@d?|Y;9DNfJ1a-up4oZxPYW4pApM&!Y0H( zKAf5gJ2PHZf%6TIj%I`8Iu-!uW}|}8b8AeSe<>5i_70&=VPdeP2^!$dLR(|b_R*jf z{5S+0p6TrAS3)`pJ;HPN!oeZ=G={`0Ih_+Aln~4&mipSo7Re=ZD!OMUHO{qkme?|lSE!d-7KP93IBh)2k z9SJ*BW$0Xan5Lbce1*DfWTf)ke!P}8^>by$Zb9v$*8VBUZh=2-E8MzuAdAF&?Ze)k zVdh-V8S{0%^E~hIOY`>@nqFcy7`+Jd=fErGb z_>}9yz5z-Er9u1g%Fh)w&y}GW5nt=}j=vkV^Ji`kpMEDJ2Un+n!tQzFPr$?!9oA8{ zk{iniac?>+xQs!*_!6TIaw}{z12ZF)o8`{8JM5<#-%F;QHSK8w#a0*AJ1LcMRi{7| zc3K{Dhe!tk*qH7dkdHm^?$ege!VBlWITq>9r>L#{cOI&|H29J)ZaC~-wQmT>gKG>b z7FJ4q&n;?S5P*Qbzd?Z%WkA7DfgpgO0EUzZ2+68codFRDh>Z9DJ}Q&-U+JD~oeg`E zKS;g^@&1e>XL_q6m$& z=m=|vdqxev-fkCe;t+Tos!r10rxr$_8CFd#9v`gkU%$>KM#dOg!&!LNyu7-+-+Z3y zy|jI^KN@~!d^EpY81Vb-@P5A^U06T1gNBr)#U<6%)$JU2bTH&~*W%yk|C(xDLXlq1 zIvMHE_;~*?dp_E@Kfi9Odw8j*!CdHw^LSQBf-(B~uwZ1rc>F9|a=t%n9a&ni0sq_i zv&~!V+n{^f-#der-=|vwi*I)N-ulz&F9(0mQD&NbW5>&`&iBaY`Mb=6S2+Ih%GB|W zs^j0+gAm{&v&Z^3(Rv<_m;07=13q3LS!3QWl|5;YO*^E6nICTj{vUaH9{hF79zA@W zU%vOBo^Ibq7c|4#N{FSSftyPnG!RTD>3G)V72USY;hxYXvU53pVns zlRmp6ue533(Kp*_r~2aMf?POFP1*s^C$US##X;JN&M%L}%grxa?TC{xTKJ;Sd$s~f z->{3j+0jGTdNPNk0e^h2*!@ z*@M@ahN{j+aa_H`@5=p0V};MQXVBS|#rf!o!eTc%w6sdvyRxg_79W1PZU$4D1)e&8 zXtSxb9;Cy}ur!XJB-9=GkAl8_S!qeW^)9L|7;u?|D!mNC@!wTYo!XF>6~=eiQ>zkz zs~I+CbH7!UZlX@VQLAR8m3%2RSy930sfjs!i1f!sCgN0OX*^>g2y^V9SL?W^Q}O(o zz+HE|qbZnkvW>>4qM$oyteCTVB*m=5XfGZaDttsxK_@4=vogJOJGFqqw<2Q<3ZmHJp9stwd({G+rijA!=>gAk(g{#O z>S&Mi$^{ijyT6Cfl|_ei{u$Q2R6TW|f9S|?_)*wLM-k=1#b@oLrxavh#8huu&fwCU z=IplyG%>a>ERXQbdaDNiB0XJ)ZOEpjJAT#(%pSV8tT}eErV>eRaN<~Z^wHiIdOQ1o zmwcbMadyz@SfWykii}LuEXf|51r+P62t_GHWoFe!o)&Ru$Ef$r`IF|PwYIQah~x0u z>fW;vF}h7^#$pZ_Yq6rJqPYs8oY)ty!niT=GSs-dP+m2GiYPxUNQbN$)>^m17%)g> zl@WWtL=#FXF*WqZE7FAE!D)_?zc7`x$0DpgN476dVocAA2LwpSWu z*OYWy)FzBgs-3Dd#V3O9ei~V#SpJqp=hiYTOK_S@lJ4HU=%SO>qSRrwlQH?jYQ_v? zfdwW{Phj^m-T;wX)*;9#w-3=D`G7cBX&JL6zGWfCG*Hi+vGX9>VlB)mrSEo|C6zvw z*05t)5gA)4m3I3AF66n8i3**kjd7l;7IS5uRKXdAkh+3V8_GPJeLjGD%WjVy(_=75 z(y+3C29_+RZvtBbJJ>`Kb`A-`^IW7~&_JReky=CFk5Zpu`wELz;PPB z;y0~|R|N1=h2J4-WWUr(wfLR>FU<5*)v{5v4Vlqvwowm@BI@;%eu6)TFdxO*pCI4q?S za12#G_ObL_u!Be8y+C6kswh`f1(JIvA|ywVh8jtd6d(e%MuBWILT$3SPsnTZXytHSq#_lWB5SYSO%Hao{bl7U|1K9rJD4?t(Y|O z{Wr!hDXGh7jQ$ekepRdH0(i<7xiRduIHV`K8dLgPeQiwjX-1zAWEf2Su?RYo2r@33 zFHcbrVqR6n1a7C7Fbh^u-E>=?B-*{; z*@W(L)A87SW<5y~X+@C?<%70;WQ2WA_ONn8gD6q5H7j{z6V9BwM6MrZeAo3qF@nsw zh)UQ>*koN&qCd1C3e^yCZSim@dc7cu)Z*zdF|eZZ38OcVkqiGgrVqR7GO%C@3H`;? zz={?ZVwFd7d|?_17WtVISdJ#Tx0t`DsdXIEAirih?*IZu1*MKkiaTH6I4H&Gh$HKb zYsrTcYXa?#6nJKF>#L3KhKmFPjF7E(dLhY=On(zW%1g_curIAAUZ2;Uf@xDS@Y1 zFl+pJ-4<6vh9zAS`Yazn_jrHYK_QNbyJrAC714Ue7*%c28V#vI6fGmrTDStga}q<~ zldJ{TvLOEU>!lk;Lc5120FxljfXH(I5iKDIQ?W%#K;{h6gWrT$z=yQ{>=jNVOJx+M zAPc@h6?5bU5e7~K1}>;00hWUBWk5{|aAaT5j9i^Af~psXlA^iXn4-aY_{20JK->n0 zM(!8wUpLb=va&dIdbte~X!JB=T=38=dz65I>f9ky5G8ZciCQfVwOOHGxjw}Y36msE z^dlH9v6S0DAND^r#v5A3)&~tL;3Sd)KdE+&)bYT@85nVlkPmd!8%#26)^|Ksuvf%k z@V6wyYF-%qdDuzZP)8J6BBSp{Bg8pD$Z8zuNQBAGzXF(M;2px_lnvtv-}z4w!MQrcS%db!$*Ww}DtcTU3Dd>p%T*iy;*~l++2ab(E%}V?Go+c_EkGk~W6bdxlrXlnYOSl6{D%ujL_WFZo6E zE6p$#aO#@Vp^=uppQOr2N|3La+)_BGVUVw6;UKMFP|>auPDc1?G!vi#+ChYHq(wf8BOS~pX;9y?<*a~#;6A*uQoO@;C^nDi z*FHS>dcE%;>(0U3z50Zk*toHcl+8Xes_=|$#a>pc$8Q*xF+JdolNfU8T=K-sYstIu z4j5|->Ga{H_vT#vE&SXf84LTqrL21(sSYnrsd`i1PM}Vmdr))6kXY^~>#zAm=vZDj z{7vTf@Xbb1W*WexUH}~5OCjC|Vj(l8ml3v%U~=#0Uk+%mR3IPn>!3*lP*4?);0WoT z2oOkED;|q5bK;#lCC}Jtl&B*Hu}X`vK0Q^cydyfG(a|(Y%!aMWgSkquzuYvVp_VI6 zi2_$i-8pU;t1P|e&d$=E41VyuHNa<%OBthSh(JNPM>N!9`#NVew8l*LK;cM*? zBVj6+K3gO=wdy(P!J|-Ckh9?+aw_ug_8#G9EzHYRnUY9CZMhisC?A*y)7uQU9g4OI z64?c-bxV$IvBf74m^72Bma@eMd~_~>C56h~VAo9@ZF3GcU_jSR4YAi5%@d>wFyVNi zIH|`_1KF|SYnlrle2y5%_c8uHIYgN+$P>%6*=8V!txa1dGripi{E}I^mWI60M*u5W4QRkQ% z_K95WGLQq9bJ}P&Iq{EeQ%49-7C6vtfTp%74`;Co%b?8nv2*0(3U}ooOlce_F<3^k z;*0xG$-VhJ7pTOg|BPfA&gLyBZHGvsIZ%EF$Fm@NwO!1f$T8luGL2{HmN;!6TK~8W zlLDJdmJ`M79NUGvHOGYL9P4H66dI1(OT@c=NQS?o%cZru{ii4n)L?=`IjCt97?dt> z2ks$0x`1u4;IHi1zvQZwp20Yjnlun;?DIAnidlx64o1mrfT5@!TRLxo;Gt=43r+JZ zFqDHRo5@7NtS1LusD~)i9RP>#T-`;Iliz{@+-gi=bFIZS{ei{`NtJsUZ75fUX;q!O z{$CS~fF?A9>yeR3&@+Rp)FKZ9Ir=(xhAADKQ--~gs@QsQ4%ev)l3cO=pI#U#?~kYT zvXPMHQ%x-75dZ5%49BnjeUZ*P@E;C{xPv)lV#XBlFhb48hU$%kLR%tTIPhy%&<3-H zrGX)z_Drp)R*|5z6RU>_t`F2neO&)OQ0T*O8;*jWz1oSO4AYN2d>##VriZ z0g;wnGnw}7_-!J-o0U>%Z-W(hSjs&Z@VKy-6Jgaey8`6tU>YZ;wnSONOn8V~8s7c! zCqgq-9FVY`15Qv2L@B{2s?!dcgjZ}NNjN`tkToWX7Ddmw*IVMPO#%~{4^cLq^Isyi zLIL2dF!8jP4P-+FeU;p|0=ofpRI&bHVRYDOTe!9CL>Ph`&8E!3`7+u$?F}jP04k?g zCW1VWK2ijteQ+pWW*;*D%&=a6cRRn31`A@FX&&VW*dBFhCIyv&=YD5@_x&b7SvQzw;qE3`+JTuQ? z<=bgif7WDbIgDrh3#btcDcIdBgr8mcSD7ib6drlyS&o$1>2<5;JFn;aDhf~__~HIp z;Oq9CqiO763M0?&Wg>3J_j|zq>uc(s0HJ5A^L78kp!;*L!{Phs03pxs`}o`M?RBch z;A7_duEYQ9Wx@aR13>Zny$0d>y}Uj;59|`);Akp(je%|9fNQ{>=69ai{0=E1ZKW+`*5VB91@+AOS;Ot>4Fl z|M%wtLQk=*-`hj0gMY!7!1v?3|HsGizQ>O5OzUhu1Kms%j1b%P(9SV6ppEo_9e;*D69Qb{| z^ZY+UW3v>NCvYd*icc__t;7LNYhzZV$)O!<>0Rc<4dd%#CF;zy{bOsT zM|s`ga=`43vC7|=J~Pxi@OH4qk+0Qt?F&S?yJ65pmTzN z{V}}b!$`-!Z6!Q~=7Y%J(akSUVDh3G|2|yoa}VKFM8p3jUZ8E-f1E&fLf{yo_Q-z{ z@GkEja^)|EuVzQ;HALG9-uHIg`@7_di*TE-b{PsDQcYw7Q)v| zmv5rZ7TI3^WL!i+^VD}!D`+g!$BvyuEot0KLEiF1iaPB3KmGooe|kTO@_Jsf<;(Cd zNyaPEzo^v1jhw;AszWyb?gFsykEhqOwTIW-AM#WeWBXNWrm>pIc@E?gay<+_8SJAh z0Y?Hu312=9pD>QTLzX2lHRQSIH_CHOWZ-qZq4PB@pFvxQmvBs=PbE)W$v4|&c_+#7 zJT=6tg>vIQ|@|5^~p$mpX?fr^5G*gf5STXzTEMrIrBxkeOEdiI!-*Vjk}vPcTPSb@R4y> zI;a_U6KaMkso4Z=B~&Tp)IwxeVo z9d{Li+T}H(s2Pm&OJ?elBeq(JWyB^^Y@<^;i>fQ@t{i%frX$52eQjau#FKJ7i%aT=_l@fdS zZw{)R&AY}X96W+bb?)wH#j_X9<(wl=j{IPnw>e~fcx3vlpqzkvy$>Ax} z4)e;)8q6T9gJsMJ85wDtvaM>J>g6ap8Mm7sKW)ZtzoyD2&7+pwo7U*nV{q%7V}lD) zm^z$;T_T80L^k9;jE}ij%ts3qhfjFZXWeAYN6FT8zSd-MCctHW{Q{$% zI5YpFAL`F&f39^@L#8XA4v}`)p>;cx&9#69qCqyo9o_}lr`DFsKgeL>sHKn{+pR7h z15MA`nGYVr5|)~*Xh~I%oli!F`ahh#1#lg^(jaVRjG394*^ViWF=l3FX7(|2%xuTZ z%*+roGcz+ovM2Yx``-JjzJF_XtEOh8R=1>Xb+hv(}k1VE-!L%o> zX>`dvflnG?#j zjC3=`ZQcagP~=Zv3}xPz0)~si43(ZJ|AXcj*PoIC-8`b`@9XGyq|XVT;MmQOcZ^Pp z5YmBd82#>rfJ|3xL<4-Iq@FG*W0)@Z0?Q6qVwoPO^==}~hEBKYux&g%^%{LOPtdZw zc>T=`uQxP3#A@u%IaV6bl$wC>4B2LnU_+BTt*X!SSxbt#0YiuL?<;-FqF}+IE{u&? z>_tlS60O)m!VPD9F1}6v(_i{)d*WYg=VbsHEDm~CKsQ{ zW1It|qJMUc)yGPDU@u+oEsa9pwP1Vs)?iXf5QNu{CbY=Q;t>K8rH# znRf%JQDZCyOdsuXwP>ILiP{)OvXh2vfEMz`kEDSfrZvI^mM6pCKgN=ogRU~ksz~~Lmp!LAB_YrUa zD0?WhJEEy0^@m#v8hlfP7>15n;zLV1WLziu%$YC=EpZ1=@T?Evk0mD5?>ryotlG2IV(C6eP=cOR!w>5 zu}oQ?UK<{11JM1sNpTXT?hx(Mo-yIgu~jn#VEDT6d2lo12a5JJ$7lP9Pq4jadnYqe zC;*klhoBQvH$^W_@YV5S-PK_D!g0qq@vy>*FMNAe-X@DLUQC;!^SQD#b;)d6)WnyAvsVdiA^^CS)fHx;Yp7=}`l zUkBZz=-PD4u42|)$ifMf+;h-9Cz@Ws85Pcz&A?`e#-D+X=g~Wl-D>dTdjST*$TmMb zHBArM5A-O8;;{u+!bhq4Zvi?3;1};RQW%a>-8o`%v`Qm1mKWrX@jpn+ih82X#?{JG zg(ajaV6zf)f8;ObfDv zmlaTT4DF699x25Reg%g{@sklEK7(_$X>49|uD zTze7|=53mHBXGv(S^VonMR48m>YJCZZGGf6J;9G`Q0ovjJqypj{EJDgy%}Ahp`+Jn zIG9&wN;dch2-17L5`l!^<%pu=fJ23bwAX0R{N_;?pgMt%uJSyLnvq5Q6m5H%w!XQ{ zRGr)%ZENb|(<1UdtX2C7(rqi!Kd3kfn zy*^UWU@j5l`o1|7>;r-o;|p|YFpQWw&9ttLrQh(IkI1teav24TR6SV~NXXpEL_;Xh zSPKX>M`{X0zSL65k&4ELAe2VUjeP$>B6?v*EJ}ljLpHIYLzhJ&3d0MCD$uYccUKaP zh}r$2M9KMEf!(Um3X?1s$Cs#A`4yxHpB72M7+r}#i)^VAH|cdCxr6)!9+d2<6#C2U zD?IjT2_>_lB51xkd~tw5JQM;=2AjVD01APm3=%=wq6gc8v8Tov3IX&OK|l2eX#SEy ze$UtMZ7OjyE~{(2!k&a2EOWL;OcyEm zoTQLvu@qdIK_0uUEdr`3sg+ApGD@V79CFK2$%_?C;zMX@%Gl&h03o!!wZXK~7A1<% z+*JXz(q<)}UMD{%!Qz&A61aR)p|mLZM99OdBcBBFEZ69zcE%3;YOR@OBcwaTNC;vk zxRvFg9maQu5`PYQ`?$<8j5ObVzk+{Q*bAv$J4b!nD!vP)Y<^5unIflAet|7mu76Yv zQB~2&tY;JgQMJzqUNw1EKM7R58B1M*H!x}24XQ$BT7TiJG@*u7GB62bB`Ar4L;V4T z8>&1ggO7s_Dkwr^f8N0laL}y)CHwgi9Kq)^6qh|W$BIpICcN&au~pX~3-~G{$j8V; zB=6)T<9Ej}y_jvMAr1SEW;{caBv}3D3jD=-R&D9sA>ol40shA3b{Psi;~q@-3wHg9 zHyi&XC;{*qN^^gVSuOv@M5twi3w}WhU7} zb-DqNwf;w%p7bA}s$YemmX+JR78rRCz2v6|)T~y0@$*2ux?#F@>@SqAcGJ{*NPKy~ zmNCo*;Y-)wkxng(ox+ZNi$5 z;I5SBHE6n10a=o`=Mc-3=k%q$RiV>LHEhB_d{3lvnOXgm&;^(Ez#$>eb+7C5tkH7N zRbvbv(qVC73jS48nQj7b)2l`TbUyaDKPYMarSh{uj5_Y6{Kw$C!OsS&%6mAaiZ@7mHjE7$cG)e*i($n z0~>MNHSF@yfqkmwrFhSpX9lThg_}{IFSS`WgHg&YIGUdlTXYG*se5}PNvtq^0om+F zD-x7B_P+ z&}rK`9_om{uIh+z-U;dm;SDO2K_ajo>K!KYjU_`cGjL3(FOC1TgqPlsSs!7N?s0q4 zD>)?ePUTbg2&yf|A%cu1x(Kdnw3WeZJX}IvWA#L%C7BFdhnfCt1hb4Odk(l18izdG zq^!KABDe{1ckyQn0F+ej3%-1MK>%xiYe?^A*TGpE5q4bgZ2gQF$M|I(7sFBa4h-cq3vOk0`lHmPdS%Y@3{OUOC9he zTJe%`kSe_Tc2$vF#cP3RDM`4bzB`FN#cVso^!RwpC3QIbQ|slcGpsRy5ZggmD$^S0$!xp?j5?w~z+#r8e1Z#W@iVuLKap!|+un#4gMlnLM}R&u=}FH<;;J}y-# z)45yW%*v9KWb*|MR_EUS3ehN#JVyAmn`8+oRy}Go^_~$`60ab36 zz4I@L^Wq*Zz3pD%QsMiPuCPRj@&c3?!yF5YCtegPv87J2_sd~i_3*w0%SQVOPwMx~ z(K2w_;TN)iw^R%|RG<%1$YOE*{!%qRy-pS#vS?d{&`gF{`L5lI-Q1{kEjtjxOG(gn z+=y*+>^-RQ$k5CzVT|zO=KDZBeA{rpJ&RMKGr_ekDXySPk9&D?Qhq^0#8#!sz5=4& zJ1dlX)$!r#9!0$qR_s*0cnRiK=eJudz6F-pL)01C1{@|&{<&TYiI^ziMV ztiB($9=?@OB9q*bU=oup;cxY>7Qttum)+OxR&NKN>-g?xFP-1YK%hH=o;K0@UqGUR z$g{wWDsRWE8fky{uh(kp=bM-`ONi~|w?7~HZS@3OW0nbSsr>le-E;(7tCle;UddeA z!BqW9EY+q@rxwoPv_Edbbb8CT9=hoKA3QD8P|mpgF5!&5*3KcF@9O!xvTBvm^k`UyX5P2iSx&TY_R%l4n)#kl$%clRf*_}BV|xxMnA z?WlL0rsb*%)(oHwy7UTGCJc@@W(Ed7vv$s(i;k^;KK(MEteQlYK;ttEku%43QAJcc z8qN>bne^jMUp{!>F*i)Po4XkZq+1dsl=VAR=@cSNa=maDOkZx?J22nfo;$9_{^iWx zDE;oq&cbxE;PLy#+%e_J@0~7O;p#V7&-C-KB3CwvOqqU7jOAWR>5lqiWixy%+;fUh zs#wgyl|*9rf%@%SEIuKIU6+r$cHRxlE=|Cy&2jN?d;acZodJMvkpL-p++$eLOKG1640fIiK|Xk6 z$ZXrs{VoqOn~x(Gst#)#$1*Wq#(ZZjjRs?A-p?Dj7v`ql*LpKl>rcFEw}q1zylWqd zrq|Sc&4-`MU0nE9ed{*LP7ufTdKrSoF3{`qj1q``FPTdKH4cgJJr9!LTiy*JF7ndL z4$N#V&ahrZd&C0*W~HB_t&p`ayUO!NhL8I@Upg&)F4Ec-VP79}Ivv|<<*#zOFH*5{ zsdU|b{Yuu!bYgIJD;w8)cb0c{-LSq<)qPA%?|`gCUw~q*Oc(FnzGnft@9z-k^$K*5 zYDL3ro5)D1Alza;3a0My$wXG81$USr#wJMt(?V7f?<{QK77+So{QDyt_K_Z?y4D|S)P&4VyM=vp(!eh;!yD|Dh>b#y$c_k@ zvMpfvP17HyQianhQ|`nGdq7RocSF*6l#g2iX;UtSeo?9j7==u-j90ktHBuc)b#m|+ zd{N)KhFuK89qrap+ep)nf_Y@#o8Qc*Kx=@Ibd`x7=RO;a+Z0usL$*C$9nv!D4=lsC zFor*GyWyw9;o7!1He6F57ER^n8V#(}&Z@;Xz2-DUxp6tK9iWqjYSUJ`TH|1LX290d z-Q5qc=36`~K(;vnFjDt=N8$+}rYnUm+1vmak+_)D&gU9Ps&j#IV{5CKLeL@DATaen zbL#iAaui9C{|QAm4xShI>V$hTxgW&X8*=mkXH9x`#b6TE_6UsI63}Gbk!Q~N)~UE-~Vi@cX#iLx|SzQrea3jw%HMq_6Tu?Az$b5kFoQGUtZ-~ZW$#C?-`w0-`v zmMRQ#5Ke_tO;7UD!m`?YreC8SQfZ&LVvxC_+>1MCu_3Cpsvk}=Sm_aI`}4!2lHg>? z#zOQU{wbn46H{cP-Xc^eG(LkoOMwR7b4ZSW^U>ZW2eH!Xrt&9jk_g+`9S!_tCF98b zyZz2^*a5KLQ7JRAIEBcRRA1rWlOR!4Uh)gk%izme5S$v-gJWX- zs=#w(aO0JA!(Sj&+3}La@LP-X35;#yokOU>^-&7B znkbyAkH=gK3EdG=c5)NnY}%mAQVuiTyT!NERV3MUg^RDJq2W8OZl=Z-ng~t!!_?z zb*I`|)!M9xMavY8wdh`%lQWO27Q-LympbVPo2_|*lNI;W;v~&Gdn^vQ~ zT+5ctaO2csnp+$kDOGZ_?%JSNX>&$5+2?8h1RRy@r4s2yrk!jvLb{VmDWeM{n-gp7 z@tWr3azqKimXf4kd7VcWtu|~ZEqsd(mQLedo{TE(3A=dbAvV>}9iAHf1qX~N&suG$ zEjgWYAa7HoU~2p!g}83|POE4}U3l9(Py7`B{^*!kO0PdG64T{ty`9 zyvY{1#SF1^0V^(wQ+jn6UU2@H)-D7%Zh?HLIq|P;pAGuf*(|<|l3UEzMaWH!0L3$a z8W#zBFtp>~7eVGBz>nm1E}ogs_Xd1D3ZlPy_r<_xjuJ6$%pLOr%#kicu7d}ewDl%5 z9_AmsS$SrNQ$iyh0u^^o>h{GQ!Ea{%phM%1+beB*B?t|}3TFH;|M9Y&=<#6aNE&?H zAAHg(&Ox_2Q&!$+<4eTJH?eWjMEI}kc!>uKYL+8(M3_~=|vzf;JKwvUhb~rj2sC#q+ zo}+8KA#m{S+932!8}|HZnd)(4YclHPGX2+gi%3vebC|%Pu0Y9H4qdA)G2{rbx7YQ! zTBwJOz(`k-({N&+e}H#86M&;P7Tcq`33^NCM)YkNy!RZa0h$1jZcSOu**OS zqJ-sU=SZ6H)!i}tP9I3{=aj4rsI3?SQ4&RVLzrQcxB6S) za2ps>p1wclo%KQtGArCAay*(l8m8J0Br{ltQta>cvA+PCQGu{tPCxL&Joz3Wh9;fZ-hVK`{95%~X6u-@0t2BQfzVovCIKYgoXRCH52NZQ|t`+}{o~ zN1^y)G@!n1B;pw1oZq%h0w)$Z^pae3HU3(hj-Z{^%Sl+^Yp$;(tXbM20;xaZ@`j7h zLKgCYmIvrb_p)g2pqSh>?b4QEfq+UlNeIVfa!fPW@=KKne4>b9s4Ve7z4=Z^+|NWU z*c(YRCZ0Mn8iBUpOP^E8KO^EaK_j#g`7<0d4{Zju40?yd2B9cQ`CDy%)UT#~Y9p3v zA?THj!lcxyv8$J@GBQ+-aw+2uQt@wN5Xv&o<`;w3#5y!UXTTs6@~ProMF^#p9Ots8 zpmmr(&n}llbjKa%<1NQhn$3MF!r&#or>j6P(0QzJN1g_{C!%yaxwI&td-4ra3zE>- zu9Kp$9<=HSydbIu!pz%xy@we9USw>>Be4xzWOt%I^#;2N%$(oLo8y{IrNfh!tQ9KO zbKo}Y3`?AX7|vS^@RNHF@bRZoD>#;rY%Gk%0L4QNJGS;3A%)<&0h+IE3^vXh26}tY zq+QY-W?lDUozi{b3<4mmkSuROp@Pera`$t?5tp)Z%BW+L>f{2cB_oRJuCww|H^wBo zfEE&ex{PlijLN;;x^B}Fbn;Z?N^{{X^>5_7303c5Tku+jK zu;*+KAe+}>Ryq@E37Va65lg( zqxk8LORn(N+B8$2H04V0`xY6WRW&V`_4@rYY2z8IwgAvg|mVEWJy9=#T!j50Bn z&}5yLVuubhQ{J+4V)zp%c);7QkV4-E#bD~Io%e`Aa52&! z9zW?M;f@u-2v++SY|O$M*8;sNjtOomcoh2HIjGPNpDx2cD2H4ncmgg>V!>CVFyJpm zhidII2!M_lt+#wo^7G>)6xx_9=aP+q0_pl!+zC2s$L!X-gbC4jxo=;es2!4fXCuv? z#QFtHdwH7r9`(PuhY2oBe3+ZSE#NwXIo@qU^mPp#_=_{Ei|}U@=vN90om6_V2nV_x z_LKIoogeQssBuT0`@sReWK_0Tr!&CBztlmker*mfDYqrRL9!pebevo`mJ06@u5+y*W;Un)w!SncjQ zp7RM^EO0=?3Tr{(eWYahir_lRl{+vY@+?9{La1SPXDu;`u=<38e9^vk?kAB$Dk!)I zh)+6>7jqG#LssafDWKCm-5yyO6H^nbG~ef6|9q?^X;usObQg4-?;3Io-&%TBec#+V zs@q~WI&LZ&Qiq40SZ)YPngTWI<~W~D=Jc*V3n!p~fL%srGb_%|aR4smp{^N1VVMzj z0dY?85D%xdesZ%X(T8J9cX_V}PKSeH!Agh}+0Xie_Rkj5_%M#GE~n)`apdaZkV4HJ z6xmin)d`EMl0_76(D2FS*rE1Jf(2~RyB zTP~0nss>-H@xdM%h%_F~jC$qNEKv%01HNlw%EMuIa3u!R%L9~<4)#8ba%6QhP_hlLadwRH9Y)(e8AY8*T<4GXuTWRZ z0XYnkewor(As#6wB#{rsbt8c2tCT6VcL?lC+m%E#D?{+8YT{%S501nu&Kn}$7)75Q zjN=i6vi#|i#<}AzxcOD_tJ+ownw&M(7y^zAcXK@YEStpgIlz+M&z9ZoiX6udp_-?! zD}Pfjz;+@v?)#G}iCwp(3sH9z8&n6{AsnCjHO}<8r~V&yQ)^G?#TEA6O( zt6VmtzGNO(B~kwxlgai)-2`XPD!d_ceTTsyY#w4$i^)DDCPf|kFN8GRA{9xA z(8y{YmdT(#4?6yAU+*e%nsY1N)cpQy=Q<@)YdUbHE}65Vyp6$hoQQ<4q`vrxkzAe? ze(;xrsWV~B{>?+M*LkCv(Lpj~k@jbwA>!3wx#H2c7xM8_L@bgczu@^dvqC=0B-sMS zxS1-1cCaift9WMR$O!~cr^;0H%m)Y2SC-6b@Wo=l8xHOLZF_oFXK zL0t^vJWA>Do;^5tuTLs|F;pnw*?|ah+^MoLc5=bAy(cr)eVF=sc>tQ5sJvav8ra@& z!2pU21FE(A;QIlsI~^!0nNq|GbY#+*C_4`KPq%nYNS9>XBiM!T9zCv<-LH4c4Tfmk45Y4XPSN-#v z$kNOR4@Y-|0<)v&T<~7F9bK*k*UTL#XBK*pasHOn_QCkCMwhFp_~{5S!R@Wa&jG=|G+UmxX5P3-GWhzs@2bj1z2E z--MK2!*HcSjT3Fy)rEi0>J<8R;3XM>5B8Zv;?`4u+8|2iL0$P&@tX`;?scWe4lq&# zXu6}MAULXq4Fqe@I$zu#qpN_6fhig50XQldUO7&Okp(+eAhSnluzI{KB13fe?4;Sc zDTtA$+?Llp;$!d`>12D>9KD~z`N-aZzi5`sSIAE7J4IE441h~Et68%975GK9$ebJu zYU-HQHV%{~Xx3X9k1(xZafx*MhMA3?m8bUWdw!MHrJyjP5h7R99ZPR&fqLT0Fb)S) zQ16W?^O#|pOZc{3MZzh`aDtshK*1MgN979n*S z#Ut}$R&pmaV%s)=x2tLGsWpABd|+zl4Ue`LXH5-R)Kgv}Li9rp-A$Q&9W0oC zVSKJA9^I#C%Z76o<)c$8&dS4f*TzT zDpLZ-IUN#oy1FN;2O?JB6*a!7cwy-$le{R7jw;g&TUu@ z$1-BiZ{5?6o%sMdJuYe+uy0F*^xMgtHB+X%*JFcm&AlbOKSn9sW}4a(jH!{GzhUIs zV0*f6FLLzSEv60A!8th%FZG=wezyBQdaY$dWdCawBdwF=~+37kTSg>l^SWPPx8rr5Z=wqJ}d^Ys%ji4j_|bp07Ys9 z&b(UJU|eI3g-6wR!+h?Jte}e%b*!2kTio-9p%c?a47@k~qR1X_HDQRWs3jGkM&Jz^ zH3Ne;8i*r=9`b5IGwi#D0)^$4GM#rG$9tZdO_Kq^rU|$^MY$y zRoc!Mc>{h9MiM^he^Nuk#x0XM%iT~I{aqU{!YA@9G2K^gZxxvUyxGGeQM2Og8S3w( zpO!Dz4bY=F!H*ihGYq4)<-YC%%PO_3amx5Pv3sAsKL4|YcNwI221UlK2@{Rfk-G8l zaD}1%X1)lF+r$L7m=!NDB}f($#Y4OS6LNQ9GMaplrZ&!}Ylq%z*)q^8DcTC0eM3sQ z;1dBX`zK&^R z#@r-6FUcB{k-=JtwBsTZ{x_WGAX^Gr&G0xY zx#U^~G^@F0pqw&MAY z8>PFn(T-ES7ndtgCj zgkOobjDx*vDXl+4_^%TOUZA(^wOK;n%Fch+iwl{c!q(n#f%5!`IE%EOQSzN>wgwvC zjzVt7{#1azOh*f}OA_vRR|fn!S+NI8oSOtC1`}dRq6X%LNe!llO950bv$r{L4B-jM z3xw=`tmDXEsE!Tb0|wSbhp|0e^9Xaj(v0~S9m>~O;|G280;;RTyO;gIG;9@a8-#jO ztpd_j)XuzSEyWwuEri3lJ5SOP}ig@hb1*ke>17BKP04ZNq{`6pE}A6{MWSxopjq|Ys;HU zpUs4{1Y<|iUnf-_ZV7BtFX?G)XZwD{=7j|~K3wIbggndGp0cO+jJ;-I+gRH!s@i)q!$YGdG|n5VV;@65!h$x&3GB zV+0~H(GO6Q?c!hTiQTB20MC5G*Lm&yAdge6iz=1FU((oRIx+i|sncZUzF4|UuI4Wyu!c57 zIz2Dp? zn2+T|9wL1nX8alxrhzW&vl+(t!yRm<1f{-IR_(+hHk9ls0&mAYQQ%L#XV=QuVJ z`X$60>@;sMs5iCD%sv4e4X!j4!W%xOvayg&#BUJ;1zYsGF~x?!0oPMk`@QQ1LX4i8 z5-tQuyl;bWJ^tb(eM&wY!k(_sQ6W)Dq1Kf=r3` zi`+Idz>6TDyF6o4t}BhHj;!`UTQ42o)lEptJymNF*off zn*=^lUnp4QX{HpBhMxdF#=|7)FaLCW#~^swH5VuY3^~}X z3Y9bq0;r>}gg;{6nXqf^DQS$@A_D_02%w>9*zJ6>s-5xi@g2F8hmv;U*9szS@wcz_ z^$huq_0dPHetIVgq|`w{K4TF$C9;<-Qp`2FgtX#k=S z;USUy`br6HvTVp_l<~3`Qq84WLXf5ECf~kE4raCHYcdN+ZxqD@`eOJ?rkEu}Ch7_b zY1W*`$;Y<-wBeQB;7ZuV|6N;p8}rqj6f4^h%;48xk+??_4Gk>zC$rK+yyV;f*jIN2 zJ5Ci$IxQu_v_{jt`{x}&)IalBac^=KPA?zvi&>P6I3$p&0; zr{E(FlDsyVjx{n0cFDO?48T1ew6UL8h{VjActwD`H@h{B^L5bB&SgJ-UXv%Uw2`v2 zX+|eQpy789E#(FXd3tzLH$28{O33U`^=E zYdJZMBsbEL;2k0$ojM*HCVG1iy7yR-$Uwn-`y`AT8Sem%*k?lHJ^%9JZB|t)sozpY&+a<8fX06-2 z-&+@`!ulxafb^&_uWr(I~)6SbgP zob*P_caL{7%uYU0_B$g`hqjgKUeJMjBgCyZ!oN<1eoYbmzK;C;(XZ$G`T-0Ye^BH4 z{rI5P{k${0^?uUa{rg79?_*)??#9piZ2=gteg=%We|!^qKN%+S{aE<@u~S_AYj5lK zo8Q}lUDxk^yL4a-{u_~>Frv_}`?G4_r={*+FMhvnQ-nSa-Gtt6-g16jeDnLYBa!&~ zp|~5E?-u!eo74S%GUfNO^S1TtzMaVT`3%^lv9;>%U(aJgioI&Tf0b{&?=p4&I{nqY zR_%N9rsvoAahkFeA6+vhRPvsG&DFOB=ZEEe_pn6CMcGWb3XG)RY|-wL)|r@CLM2x0 zl19t8n!Vq9w0rZ)_~N!A6Z=(J=|CM5Ur7mT*^l~T6yT&e2l+?@-%YYwI4@^$`;yUD z9l4mYigKZ7S$x0bA$Z(zrPI(gA7Y-OXf=Cv)I)N8t5ZwCd+CXg84SGx@4nGBC;NJW zpj)0b-=zp$nj$5zv7gExIF_FOn8Z8sq*z*)=4FuA4r)it&%k+!ozM(?`Pl8or5(;29>CIR zDeZ}g5Dbwm+8S9)MKS%qGI#&Uu-g*!nh2OkGQ9~u+h_Rl0LDB=<8>bcuXi{*?IBVg z5-B>*p?CTz$$C(==arJ~>xhDoGooN6fZ?JVvtzy}g4T{PME|a#<|mHNe~7*ev;DhK zPTuVQV9nehFrLv!d#)h&g~|>k{HHhn6V~J!zTE`pn9O2)aC>0LNW;02YFhmj8)d`qNah(?Wo{47jGVth<0o*v}~(9 zes8#L>%U;bWqyCb{Qh*rXeAc$fquVD;djIL^{~=oQ-?f$hsm&?2 zZM&#$-LE_wth$>1&2G*Ou|;_Sek=K-YA!5tD%6%8ZUiWX# z8|$9n>UxlEMU{#!y8Je(6Nl*iOb`u$r^{}oik`wUbsx2%Q@bUCS(>(o945K3q0>k) zf%_$J9|7;BKoSMz0kK7JJ%RCsKs5p7EcDQNd#ZIjwUm;sHsXf`lcH)y zS|69v<8pXWJ;Wy;j+Uo|?;C31&U%RLfseZ+)h3skEh( zQ~b7IGf>*b!>!^V_`g5SOphxva-AC8jx4Vx7dErXJNeYS+^QZgwJ$bWSKI$x@UWUM z*Q`zOR)-I((}?x|cLZwkDOVDdEh4E{g_bpnF0AHSUdT7Pmiz&CPWMqXVXb0j-n@%= zDQ2_XD>m-@a~K$3CBI6XA}}(A8mX+QFL2I;6o!=6< zp0PhIa6%bvqjQ_a7WYuTb;(KVokjOzb3@Y7ZBQWi{P;9)Bvss_uyQQfqQKZX&a0O} zm7(DN$u^PaGUy23=@gbwMG!W26zyBzL^Q7=(3=EF>_{$q97uW`eDT9!XglVgUwOUk33ECzdW5f$^V2%3c~jajxY`kV63ljB;xHRaA1uIj97uht6%&IJ4X4i~C-U0bij3G#JnyA9axlr=&V zHdwAvEw{d_gC>a;nZD@T#s3MtV=H645%U|pjSlQS4yt(U@52fX-9 zW+77qqsxqr4*Qks4)>Lhg0mi$z`S^@%Z!rFy*5_oym+PF=!8iR!s}c<3EJ{{VH-95WP5K|jOKfFFh!jq*)kKECHLH!BJ_uQ1twRZ z2$(E+cb;?)qw3OtR3(3?(*CB(D*{rPO#VeBoh|pT;b>Vo4H5n)JtJN458QqI5X$J2 zZBwhk@jnBQQE5vY{I9{tupz|e-O+VNAq=M4G0hkb`8VA>e4FGl(;084`ki!>@In4H z`8k$DmhR|7U*I)0KkOTYZZVc;=QZ&kgYtD)I-$^I;)jXtOQ_L%b@2pUhDQd@KR^(Tk-=;2$sOjEt|4?%d=t^Yqbuq!muf7jH|=Rxf&ziCrZ z7agmZL;Ij{DqYy6N|93*-(0ruq;gwGyK-@w=cB{kt*5hPd$HPfERVIo^P!U!wlRS- zmiJo4czTwX%h)zA?&hMfA=F;l)K(pND94!2`(&-4>~?K?xzks6d91TB*WOm{=Aw6X zI=Q*f*;(!7rT6sMb$Q{lvG&&1{N!SHb+);=^nX?0bt_UV(_Ft9IQqwG5>PWKu98@Y z{+LjULiQ@o$9v16PD|FD;7q5Anr@LF< zte+~$D}M03%CI(PYlp$zm##+NY!(Ou484aK0b%bzSPJlq<>gkFZ=t6so+1-EZmH=qMobmU6>C=}4 z!GCni;2ZV{yGOy_uA^m!JnkPoTSk-NmE}D7+Y#8Zmlpiv6dr>Trt{&i}TxmYIRVfB0%K&{TS)Yf*do%RqEp7c5{^ z|27c&{6g(4`+ueHbYgb?P4dDx44lgTHiUKW6r+}ZWT9K>b=Cn>#bv;ua>?MHM$or* z{(T{y*K&+S&W20iY0vRzfOq=bJQf%Jn{-6@~nw@K|hS`#bAYh<^nze z;wL3wg(cncg0B07b`GNbV5CHXfzXXFz;fGsAZ9a=rfv;Ly<(Gyl6cN3HS!U?>3U^% z9|8f~0ib}Ifj`x`{)TlDf%3T^_`9X*38Ee3q6cI}*-Jjx{;4$G?4^nVhroTvzK4m5 zEJPioRQsEb~RO(GfAw!&b!H~`$pw?Z4bthbmeUixC9OEjXT`c$=>^%|NZ~C_q;pa z8>5+P%~^APQ>uFPqH1+@LzYa$K$(p&?_HwiqK8e70`p-B6n|k0YS?rOHFQ*d{RS{n zs;K={RL%q#R;WM?NfMxj4VX|v*3CrCDUa!eWUU50D)fF`R!2?MsT*BZD?kh!O#U1U zeyeI1;?I)u~G#NgRXSPI?~Z|VlRVVxD37J=54pMh#IYRQ(Xl)XWS zp=nSY=p=nCc@+6WDisM8FKjBHokU=}fK3%}yd)rUB~TW6 z{zMXBf%A2zeAgB)jLt6v#GhBQ&(^ivz<^ysIG!mfE_{v(0^M3s@~zsD8Hrg zSbcxvA+G@{P-#Kn@n6W}U4INwM0Sk+_y{@@DA>EMdWlkF|1u?j1i&Qv8Sie6x3X{2FX}x~UkYjqgP@?=KfDVtFrB9X4du&NsKOl4?&n)sfvlY*z{Ra>D&b!& z!7hflJq6>SM5Z%^TtC+$V9jtyW1=yyt46zL#f<*;FT|QL?}B~Qe@9Gx@(1FO284GR zTTMOr<}%hvXo7_h7hpLl|7ItN1Ad99)#tZW7z}-xb(_Mank4SNWM7mSuu?Hwlo>yE zqWGB87@g3YGtwMgu(l)e1RBpf@!#=Gct3+$y95aAiNt*}Yu3htk{7X1{^CdX1) zfLr{TUxG-=e7dEo7D3qVew;>_Qz2qs7?Dco=q^6p`s{s^_;~;dn+2pBfsGXc2djK? zDe0|Te;MSi>~ZU7T9lsM@B>HbeNvPY$ut+>i!e>YuIHSpODOUGV>misGC5&E}Mq8{zL9s((%r{7=CG=y$JZT82G4ai9f&s(-gp*ZrqP z|MCvCKJ!WZF38^B87=AK`7s(uFm4gJf%@CqQN0=Gv% z2zf*)ISfd24B`H$;ct!pX4?#nk6HUUAl`Y)I;(3yPrYx@w$1swB!B1dr;~!f=%x+V ztwt!}(SJJazc&AqF)4iPlC8Vj^(xW!G!89nSO33y^S=ii1Qs)GaAyJixuyHBiTqve zzw<&*nzJ5%_;aWC-;w^!Kd8Mub&;-u{67I5%$>828~u+!J<=BGLP`G<(1?mTYqk0R z1XN@Rh&1}INTHpD2ak)_+le5>@u%{h2qK9IwQCGN6lW17_X%VM;&3mXs4aMVl`Srf9#vN ziDEk^8DSASl`iPXv&c5SUw0IR;8)7qP3{^q9UoYriwd}x|5sRB%^ zYba9R{?^Jnc6PU!J>^W-kg&cT&r0~lmS;uXefdd;?+|9(x)4$|j)Q@T?w zdHmbUf|6YErb5~T4;$-go~jqCTkDd?-!F^SP0uNjN?|wK|NO<{b_%k_#v=dT@cSj| z_UthyHbdEbPx5ia_&zZ79GiSv)a~_eCgl9^NIlePD`lx8!SRR7tFMdVR}6}YgWS1` zI1B5u=7YBQr1_a}=e)%VJ73hDTV8s(lvxy`r8&uvxM2t(V)-XK^eyOf-!oYh@4AMj z?AQ8dmRURKH2C*-sv8mVAs7r`^DjtEESI^=k00X1XV%xL*S%s@wqD_Y-~p|0M{wt( z<(W)NWN)k0rvx=;*Wb<}k;4PqWKlkT(@{R01lO{1w4mQnzaDvUuhw^^;Lh#Eh&{-5 zP8^T9kJUY&oT>9&d!W)xnb`|Z1eJ?q$HEsD?CQI<>w-LYsJA*&cSZlU!e;YRH@)#D zTq$CgE7MlKzIHlWcP$&-0q*hU2SdEajL%c|8>&~&hJ-Tr>e*JDgANOBW=sqm+R=fV7owPN zAEjCa_kHmme^pGiJ*cKAN9tXs5{qbif!c8|z{?-hNk7Dg@rtMCaeEAX2#)UdI{Y<{ zWxAkujHo9?%gKUcA6!cr?yESn%fH1i6iQI3YtlZ5Z`ipjox3?}v^IUPP}r8-AfLO%n#$_sqsKM3LL;uI953g261N=jZrbWNYDD zhUk^LJqxkr9?%pOK9(!{7koGEYVeswUvO*+Qp z0zC?WYA_^HK3*+{rEFyMD}L<|`TD$=#FYA>hRT#bi39gI8l6Ld_Z=PQqx#_u!x+Qd z7s0eE+Ybz%O2#P}u<{&$yPEVT&ls>0t7#cNeNv-mzzREI0PZ2;n1G9<$!ixG+{bKm zseax31@!QDIg%Iv`3xm^m;mvDl65Fi!~#eyl#pVNI*DK zksk^*Mz=gBMf=6D52n-~^@obYd_tTmvQUsL;qTTNHYQuRWv~w)O$>6BmG|B}Y!#ts z+%vJ{eC;{RVA(IZoc~5D`>5EQ6P-?e>}#_rrmJIuo{%=1SrbflZtyd`=eA>r`s@p> zp~^y$wNSOwn42^T!a1r25xuv^2&I z>R-sG*{AEH4N~A1KG6ekI=|>C7}%r!ND&rOS&Ccl>qn%gtiAYmH9N2(A@0_V6eoKc zU764Cvpv!>m_Ag8o#Jr68PM~_`l$EJM@hv0=!Jpz)_#{jwIi0X{x8zb4ByxF3O!O< z=J3UA9~y`B{ImCbl_dPJF%5VRL+|;Us%)y&F_f5ptZRsWmda?#`L34H0)f91P1jC2 zMcy-2()@lW*;a4Q+Bt_}Mk#V1=;6@T0`7J+JUzKAYuPmnP7Usyc0`vy2MW*qAd13bSPoQ)H{*Qd2UwI2Frvw7O!bMv0XL~pQ z0+v`zCpg|tP}7693a>QA>vX0C^f(OJnMUSSnMlGJNuB^!HNBTUm5DVuE8*7|qkr%s zK}BvM#(g(KV)HxsmX}Xyt#wz$ui#jJ zR^U$COp+C<&Ntwb2eGYGA7;eFKc5Rlv7#?febV$><{-#VLI0*Y^S4aC87hNDt(eDQ zc5(O&c!sB(`;yWN1T2{t*RMEgf4x4@+Hu%4-hBP!w+ILMf~r8ZtPS6E8u))gsLbn$ zDLThnbgC$|iwel!b}_gqEJ57z_YJ@_wiI-te=cCuJXRWvqhnko!X)37KLCK^&;Uqd znG*}uiCAL8S+q52Md>dbZ zd1$i7>i4?a_uhVE*C*y@Wkr7{G(_N~6v6GWF#)X}bRo_Zoj+o5zUt!1i%jsV>`omEw$ zqYP8GP;L+W8MNqbw=KMG!Gf{9W-T|or8l#g1wc-}<+nmO=G@3__~gMPuU^>(%dARs zP3x|zHeRO$=0JtRwts|+P~jND6<}|}&DQ=~KN)B;emriUiu8D#Tk@^3qI z)gA7*q}aJ9ywQq3x^HlQG;W{b_Ii|C@{P9T5nT5Dc$vMb`)dA@VIQp@rB-qrPS ztZfR<_pxcw*V2|}ZrRu5GJ96H0v19sbDw;!r2v1&>-;F*HWd#0$hhb$V_O%~=_`Jj zJ*r#52B8?a*FM!6#Jan5c>K~jWr6URy5LJ=TPNG)OLm#vr(2;9q3FFQJl0Zpde>n0 zNYy$ekNk+b;QMG(2h;6)eUaU!TM+@FXuY2~)EcC{bG3PlZJA<1dvyQl`_rZ_tJ`<# zBD+?Xr3OM#bDzAgRnB(DYxM}*GL?t%xRb_P)zq-M_yNUN53B1rJQpw*7HpJ6f)31~ zp?5uZMgB7_#(MnwnA&Igdk!svz3%s9TV?%U&E+vl@9mB4g}%BBH?kxyH}{SN7d1Dkcnv8xVwXDFT~@YjpaI2`J62Dh z`*x)lL*T_3S}*m}-MxlIFEh1`E}!H4MM65x#qn1a2&JDUkSswSgv)GDwQdvacHP!{K&Bt1`hS8xJ#byQKFx)o3` zvLch%p;1HoPt+m`=T?dC(}Uw79#KQ+y8@gB>T7Svl*{@Z`9#X^+K8Wsnr+CpEp5on zESnjF?XM-ToA0wtcFaNXHgM!!mf+;Fb%P7+ZsqRL?(E>@bP9Vg$tUDhnN>nav$e8X zcCcZvsHQ=7AuwO|D>fChXWgbjdzmJDOnLY0?)lxDt2ScX%QOOjWw?VgXgHADt%3Yi zvdbb>Ax`bLZ52=tr;Ox5*+IY2P<;t5Fe2n87!HAFp(uiZ+wm8oa^3_!_zxQH-bpu0 zPLVR3dY>E4)e;vh4f+Bh@en8^J+#_IMvC2+-Ppgo$2mRw?~W5u@V3?Ir*Y(+{^?OF zf5_9ZCVnM%1?`7;h}mlPwXGl>>V`+(vs@fH)ZmO)B?4#@aS|!XcoI`hpH-bvG?U3X zk@9N%abDn5--MErd^?Z8465?SDZ|R${fms;zt9X-adv-W3_ms}hC+g33{NHa(Ad?< zDT-=xbm7Y;hmpQO$-~5wKaJ&uuLJn ztaoa-R|vlb@~iqyl7{tWoZ7sGbr#J%ZfyI~{!skVKwR1I)Q-sL8B^Q93s0Ba;@e}v zAA8gM2H_qfnw}#V&U@CGiarOvw0r*j1S!=gIgcdEtlO1%-^Whdu2K5&T6n^b17MpfTz#Tq(^PmFQaFs zPohj#9l+NoHmah_xfSvQE*@Dl9UQIG%bIoWJXQ289wT|laGpiE^iMs=s_0QYK2cic zKfDMs@ol>bBi*UXJcUbl)@Xa^x3q6v>9v%VRnfPkX?vCdJL%XXd^$goC5-J3CQ(y< zvb1M)j$xquX#FVidW&HyIcdJO4&7>Em$gds)){f2PQq|YT-i@pvY)VJKjFxJ z0&SkrA!JliWq_&lC?y2qry4%9X_d_1GD}QNy|I4x0!R4;PB)UotXOyTPxTEi-GaOq zKsi@Da;i+JfR*CFI*-%WpGwKgH;>pVuyrUx$jh6jO0*0dTlK2QPX%bv?%k>B8QS8& z>Uf)VzIy~W@S+AMTeWL}77(=-ck!j>dZq6zmjvf+m)F_I*CQW$O&}2YCZ#prBf{{C zWaf*cr%Sr!yuPw#U+i~(e3W2w-E-mh;s|GN{t-98plN!C&evd1 z%SPC&F}bm=!DS?S-M;z9_bz_t#@Yde+)YIFy$aWa=SfE__NQ@-^q83lXA-RR2wU90 z)E>*Ll7)uR^9Qs{tUPVU5=Eoeq_mH`Vfy8I_zP3C5VI4@(r0AwE8=$9M)fp&==Z82dtx6$gjmUSuAE-45KeCI2soakQRP0V)I z<`KnCWEtANTavF7oLWiLQ{o&!9Vnz#;u|p^D7*tUy=a`c&pg`Mq_20jZ2PvSWMHs< zZjd%E_nqG)RSU7BGz0x+DkMFUIV(GSx}rILm&Z^^WaQ(ZNraN*$j;zzgp>%o$bm$o zh|@a;jTg*;)s9I=8;qHW8IDN`!z1$Tr5UEZ-z<9%&m_4;87tB^64o**^j@t|0dyB;o-cl>xo@eE5l2~-*wjbQ}e;!)ZD6MNU zPi|scCq{h}lckZ=8eG8A(#qaDf#Z9ciza~UlWvbWn?7ClWjNCDbf$fJmxG zE5H}Jxl@S8kEcSEBe;7MP|b4^1mmaDy4#X&hL?THb;^&=D0Ow1d(n~1D-uS6vTYjc zs84r+@3gxbYva>bEfH6`{Est~Bg@~) zpO*N0pJNJxwSoP9_Y^&F!SMzDCrw<$uUdobA2bZ-#8@oW;a#8pY+JB*tp{TH8Ff}h z`1-K5+rib03*4~Id_erT#fC(Hspl;Td8Rv$*ROBZjV-!B2LgXDc%{}V5ij;0Cfk0D z4xCp&{H2hX`fj9W7^mrV6W1}P(sYM8f@s8$q1^NNNx7wSI)hQU;*tSDT(+b4#hfoj zDGWZpAV`h+=w?n&67OL4D=`b<)tVI>r|;~S*=j-;wGPrF#nzE{B-50P4wN^V#HmbD zhl;IL@ykf>uhK+m-)OkU4jB{t%p|m}=7{E?KILVIU}~d_XL3IDWZAg;I54iNK)Q9L zQMoa7$;hJ*{6cq(uw|FV??+Y$R|SpPTGKRq*zTYo%Fs_~YG86n?&{T54TNxYapb-2 zFX#84ttR|k+4<8l6iGWW;Ts(hu2BQaTrga*evPOKS-Q`GS`Sy1&mxOA(#R1EES9)QRoCN(tx5aVI9mSAYgTLd~Z0)&&7P8me7t+uhRkF}d_u z7h`d4h{wS8oid$SJn&8drzovB2QC$iqb$a|k&#BlIB=(yx7Kf4ji;Vb+j`77A%Jxy znVo8WCA!o~4D7ovLcXs<+voznr5m`Db!o;stT~jKu$||}e%W9yqORGh>otoXDc~hm zWTo@0AQSSBpz}1RvL5J^NS8EKu9GXM8BfQcBa9b}ZzEtO@6v?la>=x~rnF5X{kdrM znJ&Uf%OigEk;8@cjm>FQeb!*A_``$stjQZ6&BSL~&->r;wQ)Vx9fshV`y%9j-i1Y2 z&Xa}v8u%^hn;>Xj+k(skR|w7K#t^m-vc+o~+T#?HI0atJECMDBR8{DFO(JWN<}TuSb?3c{7MliVA66nQ&jUuaztJbPhy*?AmF^+MgFjh z%zh4^l6EWt_Te@QO|uXAfRvI3TV(22N^Dft>scc`kpWXSOYBlcl){8m6z*S|!TVZs z!D_f{fOy>~A*BrN6@S~RIa8XqdT^$=H4m{yHkYLCQnrR+O$}oUS4n$^3B)E3!+o#m zgKCh-r{s$+$0cIPS^vPTN-j4Dw-XXJxuO|lMZ^`!GH~R^^~Rw-uz!O1uH}{K_a5s= z<_%mRV=Zt#>Bd_G^t3IEq2ge=He$adaG4B?suB7_>EE)a+HiaoUGFSSi z%)H#sqP93rFN)9Vx$LuzDp`1=hXO%vp{7hd5~yso{=cfiK?=)SDm<5rZ?lTOatFf7@eJpGQMsj+OLSHcbfD+HIRWJ>6^snnI0 zYJARp%N{5*#>u8(?11^u0sNwHqgrizei_=7x@k$Vie~U`KZb;qAU{*u`-q0~2(d9q zoiBUIdHyg5vn8BQEU3>*%qGQpLCtVQ^FkHVCFh_t@+Q+e8I{YN8N;8n$a>=M)k;zo>uST#_r^(58_10S1QjzlWBpk@gYZ~2SzxUy77TPBPQnsTp|c*8y~N8(jz7I0Y-5Vu8aWV z#}fv>qkui~ksP&hesqml97RufT$%r0n!}VR!uqd*QCI+>q{IgjQ0&aF0ep6*-eO^^buz z`o3`?4iPc370f!AcK9qcQ&zTD}pP;5O{X|a4bl=2Fx<-s2_#jj-HdBZvk~9c`uL{KG}+3DYs7=dCqw1 zwqNM(xR8dZSfT3}tVpu_+QAO&E(}FJG&kYO-x-k0{wauv=c&73)|Wjs-RL>^)&zn- z-n|n4Em`H^LU#)vKY^9GCZNnC)^D;PVoDw&WDq-jpr4B8#h_JR(EqFI7;OJk{VZQV zLwS42`cQtfF7-yN6c+pF7{w4;>yC1GuPTDBri3FYc=A*9l@_3Lpe4Vr#Zp0L@O$}+ za>n#<#XsY0TR=DUCvlq0G|Mfff27$<9$l3QX!H@Bw5a+ z3QXv)mubW*rD)>I)$kfrXhvlUL$bxY2=}8{KVldH_Oet`-}+fd!Yb;A6Yorx6XnpV zB5Y|@J>f@7KQvJ$c|-!3PTUr^DSwfL><4ns$>1j!M3J zu%jtbb|X8P?>jx;!g?VK!TSKUo74uv@KX97ontuvY|^HkX=h*`TsSn`|4cvizAK^W zI;()WrX!V;H#@<}rtTN-BCx+Lfe`=C{p6VPcQXSTwKAun!)9p#N`{oJ$#^F z*j8>V&bGT1Sta-GewB)rK)+z2+?cI~e-hNPj>_AGd+0&GFt60;m}yrouuA9LU9lA; zIEZ@r3HK0m7UbDo>eKz*s~gp;``W!b)xEpat^18@H>xx~Us;|iO{B*g4POD{M-k)4 zqIwKx)shQwOmyI(^Gx((QL3+xK{!Xc5|Ed6*q~m|Fr3F7iMwL-F2k=KY6fVt@OO!V z9=%#GTxIZFki!_39yR*H81@-(RA((I^XyQ>Buo3=Ns3hSwTVft%K8TxvK(@Ylf)Z=#Zl!$22@C4K)pR$g3>Ocl&;B^D9V47?6Ca8ei@g)pvn8| zEE4pOdaxsmBp$Zz0nyyO-+L{k=X}U9pTmElsuDvng{%@esL{4y!WhWw2Z%twb^rEt zTs8G6b`kp<{)SedBTQ*75RNRW)NxSB3v6Ay|GlR%P*aAd9hO`3IH+mhPX_--oBNeH zB}rg66MhN~>hMsOa1aojYGhb9KMcTDa7zEq{ht7Ztm@vqzl1+Q=I31%SgBY;#z{P` z(gaFNUeEAH6(|$&pD3Xaf8{vOQGE-mq*JNEhrCiKwJHE}^c-kutp;*iO7wwI#r{`8 zpv8w)Gr;&Ulw{_otwE0l2L-z4@#Y~ZMthSXa-i+uMAu6Ctt0zY$TUW~|8j2J>#JEk z4@u2R-i6_kF#LxXnag%=i%!j}ybA**-FW1DnadCooA(+N9zEWXB4^$7#d{pB_=#T3 zc2`;&M-?$Yb&sohY`5kqI(5GkHUx-;(ksurb7O8i(R#jKVb`ad8`jW`VjB#zgtpv* z@8Qa9b*T02X9Z53E|p0GT$fF-?IK!pGd`0ubLWoM>+uSsJY6cW1~^xn;GYXb)08pAb6z}p1FFQCCT;$PS@PcCb@b%?47+6M7)*{l3= z`Wov7Y3i(r-Xa_2D?<)d?s2B59N{}UU1k2^?v)fwC|Z2Gfc5C1a6`T|Z?IDrmQJsK z)vGJdk%cGxOEs29Xqvyn_@*p>-r{RUnQrkTpNB=hGWQK#zAJn4db7lZU2yGcIG0j8 z@63_`)yqZ+3%lS9zXwO6kSwfs+v&l^b358WtU}u?f&M+jztTrYwsrk|aEQXwKA{pV zrTV83bEbAh5r?F}1`^LFi@SkWEWs=9!7KXU6)o_JGT2BNydn->5dg1nnG^UTvbiH( zx*>MBA%?mk2FjLSGGDbb^R+R%wJ^VKuE)iO6$GhbCP^MRS&DwrF~nXee< zvkbeq^t)*Fy9o8WQ1!cR^|}sz%qK}#aMKkg(pgiQ8_T{EnIHbn@J%rpXZb8RrS8cu zVWlv(BZ<};)MFRAubwG5wyz{0^y*ih_pk;pQ9S+hweT)rJj)plyRzb>smL>Mv{}9e z;{GZNcC(WxD--5Z72=~JU&wM0q1uNnaL=nkj+y(|O)kbskLC$;oz4IVtD#G%&tPqS?al#0EThOU?oEXHdC`%9!zB+&Kg?qt5G7*u>L23AVEUY@@suNq>Tahj8@ta=fTFY@*>j4yYP^v6%0 zwQ!4u*QY_*d$gi!QR7g4{FKMmPxyk-quq30^`;ezV%lbgUHAKG^&@#^<0o@<-%>_CvTr#tLg;Kb0Ho!X8-mS^Se5erKua0_Elky$c|lb%sc5x zjWqAN_GnwT42=A$W~)yEs_N!<=eDA~#!t193k8?iAIeI(VJ*EeCvfeF!lq1iVtFGw zESO$(>bQ3C%0jxuKC>#AwHV)Ns++@2d)yV;uCU{j4~`ew5cy7Nr1{mgd)cm3{nnyr zHipwuH%FNk*lF`OMCba_{M>spgzELHLjKo#Udf+qdk~%{B8tv>Ocb8Zv!4%`*rRc4 z++<+Vfc2(}rT1Es+TZo0Fejfo=bt}UNUk)lOdPx^_;BAfPHai^extfk4$zjvj4#)l z_VnD7N;FXDnPp1u&CJUk5B<=HGi+l2ZWDf{Jftn@w(>QUy;rS(=J@=W;SewZ`0@kBZO<$ExI`ztSYTgGrXSJopkyj_rreEGH z_CTmyQO84EkD@4$L@^J^LmpXe++2}GFnpda2xC0zpFy%hA6H*Ja80;i<36&+xm^-p z7(*sj4vnvletohYL2n?RU0yWJaFn{W5#R(#XOs z$SAthQLbUUA~3#iT2k$WR^NG-s7S71hJYV{{-(XkV%*;nL~}mmBc}I+s>7m;>6~df zE`U922DyMS+s_sMNmE(~gitJjTGezwo(c`#(_7~K6A_=?5c*oFWg$b^y%_KO+5mM{u<3uzT!RE7Nm{_RvjSpY2o6zSg(79HSds z1HJqhysM>u6FK-$m^;p_7B;6Q->O`uzz>#&6@dR33}b!0*4?1C*hf66@DlT) zU__Zs(U9R5p*4Sxw$B!eSJBxya+}n{iYF1&$BM~wRVX03$nVWFS*(`yQH3xnsL_V1 zHb5AWLccUuO`EqArI`5~j*qBOfc{>>n`#T!F6?q4zO_`^Z!dTrX?Y1Pi**0p;m5se ziA?2ADlENu3&c>+YtP(}c_V$%m&}GST)>Y^(BCWlF~v@<*Aah*aAr`FTk?8_!atMH zA}G>eCCRxcyNqq!3(hoV3x%Y8ayo=tH1Mf^X>tbD{AW*DL#>LcQ*@JTznxwt$wY~KVYT0RI8GnF`FV$AoZ=u;I{IEo}zp9N*r5+z5}r{+%U z%yj{M79y?!p;i^k!Yd0L9su+bI(s`x-cV$luww&+dK zqDra+eE+I%6=f&Kx3+zG-dO2RRZ0}g^mW#Gq*!es$rUCfDbL!rglmR}y%{f1A$YcB zoivj1rvq8UE~&?5sYb`;YbCb6xajI$=~IAMxIvLvv7g zY(Q9zgiIpo=9xG#+nCK3;|y(0x5cw7sxue(N<@cpBwa*RouaA=uhAcnP;KJ|c!fyK zE0kp4?uc$n9OOuUxIs7%knw9<(JR(ILR3b$mHq~mAP0HVczFkSPni5hjj`FTLHi)(W2 z=Fq(+S2DFF&^Gv6;Ht8eSNsKdWAf(h(U;`58aA}&V-c;qa`qu}dgAiSZjgSN1S|jU z)sm3+_<5x#XW9#5uhVr>3?-!H))Q}94^P*69Y9;qbR1wJd z)USTLl8@M==gD#6W?@U0E zU)Ci-yy$zHk`Y_ObIk7+oFBO7MnIp}CfSp8ho0q&#(&9Z?;_h zZ|`d5K;a~A0t7^BxbYl-K#xO*owx!JsA1EEMot8sk-EChZ4hZCNB%g&Gz|gSexFrb zHd3PIw7&0%(NFDkuzC}shD|>ktw%D4)I-DVPS@#_NQyBeAR2Xupf4CpmAf$(^mLnv zU!tekw8se~H62W#h&w>unWQpPVoO9MkU?Gk(z67$j*Q8g)^OINV8R|hm3m(D)i+<5 z9^5WNVfgEDMc&u%^F9>vTi|=>)}nL`B8}T>64|ap3^O0}_HWgk41T3NreF z3H}Svb4xb9g99k2i-Uv!*#`<^>?!!7{5JG)^FV&8%)`3qs^NVSYmVlF7D{>+0l*0H z5|otHw!)1KH4<@>xPh(Dlj-!%Z<9_AAY3n~+X*^@f8O`W&$Fv(ROFoXo7~SSVDKHA zecndF&$O%$3IOGqqYlo_BF|Qn!CnS94vQeOeUodMN8Ldt>H{QEE)@D41~Ktk&A8*( zRn-ySruI;&`7Y-s(H+J&T>*D=o=|tzvb?c?JH+E4r)FBwZh|UgMb~)3f{7=mfU}ky$ZH{hKmGd=~)|mvHBBDK68ItUi9h>ma-3 zZM$)vEku6vI$^3zrLk!Cwtd7ck+tZTO7niovX5|Heq>uvt>p3GZ9q$3ger4nDw-YV z0Coa@2Y^-sh5_N8%xmyvR1q^-I*`PRBi!*Fr+XCLD+9YM>%n%Q9OySdrmrU`fJ`@8 zGAjY4iz`5>;2uTro}4|i!5~Jd1$YNKP5A`1`Lgj1!XrOkpJLq{_6DH zQ(WnWG$qEz@6n%T#lY^6OG$XW067oOfv4>`c-|^rl$orD#9u|;&Tgf#w3u#tc+_6`xkjL}zntch6@E84 zfzKH@KB3TuECi?IM{J#Syz#U1%&B^)Y=detQ&9m|HpEG!?C$EWVk;ZL47tslpF;$u>W= zGvzUogmOvFWk73AQ+`|}QpOvoM0(OMS_In4-T!RIqBC{M4+L=7O~9laxWHmKOvkbk zTu{zqrez78rsG)={f#PJI~!SIK~pv#W^w9XG9Ot|zq$WR-&vq$mpf0O>l&o`LOo$v zG|7T1&q{hdV0ci!h*f&My(f&ppjM)>lZoaDWm)H-Wc0rDWQk}gpv5UIOOVXV%|IFI~M#PD}E8_cXI!i*fmJ&+TW=z6`Q$k=fq+nY@R#s zMO4Wv8)}I(`?Sj6$wB*!JrAkzBZ~P`cKyG)2HF>xZp>r5-w5R^uqOU=&R=bpI6N`H zpHVZ^3|by20%R17bh4R)q^J$;+27_sCqI-=i9PI1`2ijL+X+-#4d(QS$*|B}G^U4X z!sN60`)8b>)Q`YeO1GeV{AJPU^w*F9U}DLH&rrWVCdHkAa|>Ei5)+cM<4yv`jP52Z z*`@KiXl$Q7P2F+0Fp=!x&Wj}m-1SU}kw@P7Z#>i7q%Io@V>(^_JaEEYQk_vSpeLC~ ztZMS$sQD&KOfxB7BQ>IglcsFQx0Gp69X#L=$K(joG?h%ej@B@d2Bt@W@q`vx0{3WN zM)}ywlp3#56H(IY%aF(m3@nW(P^tQjwg67-aW&(~s;Q(&>pn2;H$bFHOvAJ`Rmcei zfO2fqi5$QXgK};aC6S=NI0Xrl$iKLU6JTcb4|m)T%oYB{iB|mq1KRHV|AtmeJxA73 zgr{-nHP0qEfz_`Rid)cQ{=+!=sLIoIHc@cD zp3G$otL0s&KDftb+BkW)>egviQ(&Kf%*7we*EO`GzGr!Mm2D4l>2$>`@c9C(ys>9@ zzi~Hbc1#>UKk!5ndAW@Y4^N;3&q)Pt8)CJ*+SJy=xowjEzZGG<|8B57Z8eaa_ifMKz^*2 zib>NgJz)mrULdKrGqPz|FI_R&XIXGb)e*a6$nqA#mS|c4aWhz-mtZFSCemF4Cm&ty^&4eVQY|O!TBgqJ?-d=yGA`-gtBf=yI zOgq*DntdSU4c|kALUvw< zjAcrbN;;i&UlGz^mB6KNut}5ZIps;{W`Vj{Jr>C98}U198;PmJnEZM!`|_B1;8^{7 zu7ghjXza(@5x|i!sWe~oYQUM@#)?n~`gjjj0JO1~IS51@2A9H$Ax%1u$gYna$v1>< zq~jjRw{E^9`l}PWqtx;dHdI-om;}qWSc#XkT`|*!?=C@L(N0{Tf?QgUx_f3@hk*T6 zsf->gno*iqbfXhqXDwY$RA*R(9IPS7>2F{t61Sz2w2wh-R%hjSPx^V#z z85O(SgrOV3DjqoPW<)nWBj}vuFQ&T=i+B&KsBX3!8r^6Gh_H*NFT>Ey0gtx34$+OZ zfM}yA8dee0+QKlp@eUBR7b%^Gp*z4TW?ERtM>k3mc1|V~J)DL`xWFpjn_2Kg zH%0;?i=xVtFmz8Kh>ai01{bUrG|{qbejVT_Ma*^3a|zfxZ_M`=WYI>PXe&pSWa<-c z2_7H<6h5<>-u zj&0_A#RUxnM9;>eH?u~vk8=DHsDtkAoLYlRP-7kth7HTPxeSUB+RBeyeUAt4gE>$k z+KR9Fc#$w>KoZCf$eT=OclZ;|Pdp&{^uo%0lrCie?jHDWf#$0eBIJ_CNCqVpT9oE2 zsx-7$GYc=lcL5obuEH-boq;!jdIS%*cCxcGk`ORpJHW*rAxq}lrJG+;D4u_l!<^!x z_K)^MH`>j~0zKCYx4*XcMreXbn*AnJ_{)Si7Uz3dfh=&%cD^Rndf$MBqEW%WagCaYWP~*b^i$`a9BFRa{V>*@MAk~+dPizqZ2zo#e zqEc+d@0r|lXL8)B*-m;3E=B68>x)xlTQftEm0(b7@Ul^pz==CuPr&h67viTyAm>+B zLZy-!iC34XiiL_ze~XEr;#?`HSS9v^n~^Hxo4bQN$}@+oj3*Ld8T7?LD^y$G8L6y( zi}9i2ya1>eh7u5WO>Y6%Dd!2ra;WgjP;r+H02QD=0)Vi0L9wS_0D8tlX@E;3Wk!6APA-ajqC$MfK7__rV#(ec!tCl9jzj{qcA`1>}Nm`;WPoN!T?nv zLI+f6XOp2mi=IKjgOZ_*xr0FCATCLTFe6m~_;dmC+_5Kq1ank`R|s%a?9^N=YWr0PYijVLX7T%nFfDTvG67NzBSgmYS1xCv+X(?dfkl^=*W&CVW z9nJx%E|dVPh4%S*M4;ZNa6p%rDICOq4-#p*o5KI_hPW0L*i6ND5C13agQ;QaTsFw#Nu;%6M@e?dhO*)#{fio9E7R=R zA(1bs-fy{Xzam|rX8I{_6H8VlZKOS-Q*5%fg4c%Y z23SWA*Z>Jhh4NSKfOZAJCY!i(Gnosw$1wjpnftFKptf)Osuv**X|DS#XY<{>@!4)I zKfbl1qKGR~J?>Jb?@_Mhcc-5X3+0zFQd}pxq;I<$haHYGd9)YFeOPn-z89Q#1L9kOBbM$nM+9a*c4E8dToLHwz+|Bp3Pd>TXhVZiwVEk>4p@cG2 zdy)ZtD$P_hdrKyG1O+!FuTVSpN~2n2&;=RXF)@Tp8IEg3&_>D;(UWZ9SdsIcIqj(S zhqIlgovwGEfIwLH9T9Jd8rR(I`%cdQKNWXaZXwhIWDpF*6u@`5Fc1%3_@SSfp3+fJ zt{9Ity9ib#*i}yq05B8v=-X4tKWFqk`x+d5lJ;#S6&suys{4^W=!>v`Ni=gmVsptP zw)d?gKg3>!rB&GHn{XvBcj1SZhpMjUNU$RCI`zi1#Q&?kw+xG;+1iB%hv30I1b26r z;2zxF-Q8V+Cb(O02=2ilxO;GS4G>_yA$z}P?H_R2r zwUp6CZ#xd}{dbwxhqWHTO-v+qiVMe4!`^Oo*rMFTZF^HT(R;~ZXn?@)DuDH zZc~ed<0miezV2xU9g2KhgcRvRdOtR-ehzKr<~REy0=$>=Ha@w)8M-f$CAM$UMCIFL zV12?PPn|$+*plWMXwqmWiq4??;(>jXpda?z-n;~GfohQN8B_&?ZxYFwfDYAagZ$Ke zArG5t1Ge*Rkz$3losMugMd{uO?1eMz1p@3vPKbMkFr%Ed(r-)Dqd+vGDUv+DT=-8A zp2m6NR1ej89K;U{4~=WZKc0o;15cx}AY+1|#>>hc^2;cMEG4Nix6fpegRnTx;HJe6 zOOoP-!Xd@R$OGczVPSq-E@l$%X`b7CP?&fidVsU64j(@4K7tSlIJF%Vg@CpVs~W7n zSZwnoTo?!a3UVem82`x~nQU*|pB&+~YdweM@DVBnJc3d8Yw>#-LPsf6yY9C4dqZ0K zDURE`9!GD`5;7?Ka5c&bXk}y5kvN`gTGG9KqXD&65Rb?`L>@yjlHmE`o*~QSkDd~z z$WJ<}prRPOA#1DFNe>IYAWxyU^)82C``D2tKw~d{`F`?5p|e`1MObARJ&%?nvE>rD z88Z(DtJ)Fut98HW*DgzCcy?UJ)YcKA^#o64+I6W^%s_S=+*xk646x<;6c5_ZCA(+s z?6O##HAAiVsg~J&2=(eTg5UEuS01&w(je!EtbTUE*D$>&^$O^0T=Br9BPE~iJGwQq}6%K|W z2bDcSOiJ3i8wEDm{BmI*I+7xJG}dzT$aLF zY2B{Yao1L6!>3zV(Knd$5SYcJRw21pAU@gSxX5u;s#_6O6I!^tiG?wY-lHIV(4m+o zkJ-jXrvbN|ExcWscfN{Xdf4X|cFivf|bRs{{xfs z26W^?!i8@~!oY+)GVEP%JLcx6Hx6sTO+3O25WK#Tn}o`r7_Ni+P6eN@r!psyw%`Or zaHR*PHe5Xyy$(L5-QFsHK^~1E^V_$kJ%_XB9MYXS;7z}MRNgKYIb|tua9$#yZ`Ua{ zc!1A|2U`uxzJT-t$444``GzD143gk$_JzAV#nDFKstaz>83eA!#OiOH(03HyHyC{@ z&=`GaCIBI02jflbQvp6rjc%Et2dx49Osqv*Td0wzw+Erwr}qbVfuTHRlq`(sfS3Sm zLH}oRb6)4}8!llSckR%F#z0eW{@MP0_pM3<=~fUkND&gC>*4XyC=Lt0G4UIdW#1KMlYO-nga%j@ zs`>3`bp%OIx9E0HHCCeWJ9YoeKG;knOF3sGO*wBO>u3BB2uCty%J}|1Wcc_x?jAQ@ zo-K{?^kQu2JBJx8CV#Hj_jLx2o-Jh6@9C zA{;z^ZueL{DL9^*U=M$K=KaZPq8KCq-cEAN6y{uvfuOmnv6?p5uvwT}G==vA5#phD zjc~+B=MZA1{q$*4zH!RSo+D@pKe-QBrK5Ic=b~ko)eZZAE!$i)PpZPhLP6CnMsGvN zX5i9?{{W{Y0~u54beqy`#1dkb6eHf&VhxLYn8aXT@Adt%t>xDBdvT6Yrow$Vj{O*k z%KM+2UojTbjqql&YS3_i=c7*bz@x@q5-Ng_$pKMpEn2j({RkK}cV_ILNV-85v3#-e zmHN-ecR#P3o9^+decnM|*8+x@%YcE4F z3)J+sCHMVe@;+I1`eT$y(Ua4V+b}SyeBh91pM=7D7m|RfQh_4gD>rd49Ep~Mdp_E{ zzA2F5OfVm7hF(T)Q}0TKIeLjgbOiz5wMVi}4P&@^oU`v|ml2~jR?Mki;Jl$bXJ`yO z(Di0U=UO&@nlQe|@+8PRwvy3}yqQ>M+OEY;6frAH{#d2PZkEp1U+S0krFZijj_}Wx z8N3dt%*W#kji0`DA;wDXQ8yaLsOBGzP@uJY_UTUG z(;o=!V>bq%sw(e;f#hRnX+JEEjef@xdr(YAtoyc0vZ5ImA8Sps%g<58ULZ`$^;TAR z2~)&x@O&-0tyHU`U_)Gb-(osf7v9_Yh>0rRShP7!*aq8!HfDv(`Z*%x66oht2H~3}uT(?zp zmnLhNS1$DSw;;~Z&gCDE_59C3CB@nPF8%Js@2&H zXsH7s67ysHzU(NA$u??A_R_tEeLv@1_9Icy0L=G+g)OZKlLB7bDz?s)+DNO3+B@b^ z*2-|5cEZR!@(QkBp6%hEl=Zwzpc_rJJ;ps8w^WsHAk%m8mLg#J6YT+}_lvhz}WQf$X!63#?)FSYjI9ZR0bLE|GB-tRf+N|7Ntr>z}H|0o7O zunrohSPBtgn2M|H-)1i4_fCBFki1|tkpmBseqiL&Vz*p(ttN0X3u4ed5oDRxcLXl{ z00FQgYbOd{aHPd9tHKuBQXB7sQ7nOBELG3<98smVmy~F5>#}#|e zb`jM9|L+Kb1X-;|R1tAA!=e&I*Rw9M(dpTSo8?>#>XgpjWnt55h^M*lJ4a$1iYHS-C7N_O4WlifXDHCIdX)Lzbi>H+ArT;)UWEH9$#2$rXo#*Ik}vcS z@(GkSx{M8F;;cMvDj$qht|CHxZE=^`Vor&3XRybgav5X5$MO2k&Ht=@H{Z?8zhX)h z_TkZ${OG2+^7nC8_KFjCQ*o!#An~uUr_dnd*k30sQ}PmLtK>6-+{J|2ZcWXxOpiNv z=Sc_RPb{c%)4;>j3A+=Q3bdYZIRp}Jb#3z79<|{jC#{)?jW%w}XnVcwq8KmMIi|vl zm5w1-g&5z+)Nr^9HG=0Wc|p^NHZGh}9D#d=?<{f=dVgGLXnsv`9OPcra>(O5^51j0 zZZy9>Gxg{i-IH8<_(gG@C+|mb_aqO;WW71L9Lv-BIXFAK{l%~0SH^ifnz5laPy|a2 zi(#@V-ks|_{x_NoTz>yrb;b1WO(b#$uP&F?GZa6j(BJZ3rLOfOKKYXri0GtuQ*^YP zuElx9yr-*N+X}o9v)d!CpZRh9vuwU@2hTFBJUyt4!~(P89=*#ZB#5dMzI}saYWzA& z{$wg9($<~$tDZE6z1Ei$Gs#(>23v7?9~W>|y~Uoy2Q(Xxrw_{Z-nQ{V^#}?&KCoJ5#;kZqSN~`R1Cf@5!WdaI6*S3000t($_AACaGa;$E}2Wc0Q z_OP69R(xj1&lHq=?ZiIg&T2g$2GwbtqkLRl`v%mtPBLh#?B$S7b+_(@<2TQ~=CA)^ z?)EJX>Om_H>IruxAz7-7-p9T~=qJCoT+~bQD*S|w=3IciVLG&m*J%DIpVV`SkTXSN z_q=JP+kP2F<|V?fs`zo<;t}dDw^>{DC)zo}9hUy(&u_&V!+#uR+rB8kDuP>^V^nwe_PJu4t+^*C zOg*C%o72jz=Q%g)OG>{9BlC#X2B+9zh92R<&m7ks0lY~~WuCI+ulu9S;Wk`0Gxscm zRo$A|tZi!QzWi$H7v8EVxfR$3{+C?L33dykzb35tNS=b75shr3#7I%csQdFq^L?jt zmc4C8MolZ87CY-)okp-5jZeml%<JAM==!Gd<=`{1Cyw=aHcd{;t|!p7lK$_`I!AJcORpkY zT+CGJR2l|FA`+;iqS>vaf5TXBL3-Wsw9&wu6QVssD2}S(4|SWXi1j~1mpzy5Pqz$M z%4?ik-%Z-p2pz*gm5})w)5lY@la1KCRiuF;xSePj*x@1#jH&yil$E?u$~B)SP1S0t zCn&MOW8eS15JA2w1N!EO)Y=Ck`%c@L6Wm%QxpgH#=%g#`X54|>g$!u2UP*2xop3>% zP-hp$Q?hBq^sW|kvwAm})T;a;-<)HNdc9ipSVYx*#GTfNRo+gPol3JZzFRB1%tfK%bgNk3CZ5w}Y8i~V*Z4Y_ zYuOd*44H@M@4(W;V5T|h9NqWzS2&TM(BclHj|F?)*`78qBx0T5(>?9)IbHPi8}x`C zL3u*82kAbYu5N=HG54gPeCh;@iiq8s7lvl=ATyv6lJxbQIwk|$NI^;H9>VNdyJqo* zW8na<;oc4O!@-2i(0SP^giDoDG^ljgyz2Bhe98x$&{Qfaw#)q|GF5cZ*NZe+4bj*n z;r{y%2$IbV3`)cfn3*GDqm7shKh{3o2w$wzcUP%Y2eoUU%3^zO(K!@<)7(CvXCjT# zV@ZD!@JU{~#6kC!ze?nRE>0t+dqPjGA`h!hdfP`(K2Ki!Fob%05J0Ce(jxt9AbgQc zhj^sphY`;HV1!Ck_b%d%uA<#Z_yv%}Mrm+rVN7eQ#^|l8#@IBn!L^CtDy4}nVhX}n z24g`VVxA*2`kF>QcZc++;TSlvW5A1N}XazmmGnLs3L0`X!ADTrQ_fhN}itH8k*^onj?PrT5>y&3MS zN*JZj1nb8z1*325JJv6RJUU6cC-U~F?t%gE@2Pg0b2J+?+<}i8VY#gg%AEfk5U|q9{VO$w7KP37xuuQVt@m7Nw z0Eqn*y7JH`g3TGR*)hWbZ5w>!vwj|cbVMDUjPH_x?@Rh6j_zFB}Paqd$MNwhO$H<3RzKi^GsZr z#&Dr6>^N*;rF9=fjg|al^9dQir#F98uXe)!kobJ_#XgTd{aCHRX>U^g(s9 zr(-=$+7L2$`Y$2qKBAaAxjEQd*1Gc9>$;~`9R=jyF3IR1ACKBOIrCLF){KtbOtd}c zhnRi>PT;Q<%C;t04T1Jk#c|T_AL;Y;zVn2RE~HCz^(B??W52ELZ`nE9(n{ zWcD7+EsCWTP3>8$TFc4o)!pg5$&SF*ywiz}z<`SBI8iW=ja)T^zyMb=?nQj-_tsbXeAO)Zqy9I7=(g#<4+9j+ z*pFr*;Gb+d%3$WwHk;N*SRQgRN}EANRBJ<^J!4ViO_P7K0lrX%l!sw}x9q6I;8Pj3 z-7zR5m$cy^;=oj1_V=??%kPYa52B!b=4iTb_xsE-$ix=$1MfJ6Q*Z~-Q$`~15>tTI zfr`Dp54p^P+U}yqFyM#QFG1+*UC7hzW#K=#iCNA#7_l0-or^@GU9$vL$aE3{SBYvn*1DWHWJR5kks|4gT1-*oq8$ArIIp zSP6_5ikc@C^KP9meOW`>b=%gRp&4+`>20tb;UD7NYf^Q;v2``Fb<6<2-QAgYYJ1~# zQDX(0J)aAlA5;{E1tCLpHY2vl=+;qGegEC#7do!`m@Hszzuhj#0y8xB+xM5PqmX>s zWa2y6@9v?W@>cJmqzaO8&G5mMQt(;HxCzfI22FG#mucrZxjDX_Lfl^ux76`dOlw*= zSs^n9Lzrgr?GF;^b_y_CXhrfuBTzogQsvz6APWRf)OR%v|5C8*8pAz~Z0?keB;MhY z_AuvV&iD%cJ)kDzLQBmWh45#^JoVX?SD)y{rGZjI;}<(vJdBFHt26#Fx2j!N5?X{# zWFCY=UJV)~3TeCV0v@NTVH{3D&OZJ){=GmCN^c*{WS~HB0C$T=gAub1rp71s6#6Bm zLPM7b+KlXGiH(7Dn?d^UsQcju}lGGh=gbu`C^cB?m_qpWY4jk~tB}IWVdr5hMOPuH~}+vTlyr1dlnO_V;QSkl{v3 z+S$vhe{{VRPbI2@gX8=fr};?EDTLw^%r4VXeAj2xLiKs9-_b`r2oD{5W4!89{7w&m z;^uK=GPWLZIG@^e?(QxTw=sVl&R^fw&ix2S?-C2O+j4(Mhj6TH2yPO4^2+G09@``u z>X(rdk?`cS6s0$KRx`{T`Q&~&C2Xm;c?tn@eVIB<5Sel%OQZRP=5w)$aHMN_i+!DO zJ5->rb?HMY4GW$VsU+2OvTX|qAf74n6Vbk3KkU3}^DCM=%!zExqCVT+=A5$l{2PLN zbfuDelkXZJrJ*-NIjZ4mv3!MMF-A6(Azh%KY&|6&j+l587^ynJvkz68UjIgc)GPAS zyhC*31*ei@$qcabN4{>>P6L}5skpOlMc5X4hE%*uaAqH#aF}G-NmJ%o^aQa_#RyxU ztO3&nrII!idLQPsV|J@tOTXE$vUSZ`E-#r*rby(BvWxz~JoRVanEbQ=h8gEaj(SWz zYqQugRy$ucb9b0_!R1<2_cz7k>L-$EZZzR>8K6gnBt4X>BwdbO;0vr!#HMUZ zU8ztvF`}s)0BB=-*;EcF`I1_?t#k!=*xiEf7qz~z7XWJM3RT{mhoG;+9}JCKn+=rI z8Jwo#r-E{gt zyzvB$1CQlBUslaG4J&Ax^hWjcO4g5IqUzFW71)@(kve3;8Uhe2kTwsasD<264U;lX zdo(`-7ZxPxc9l?CML}Dd{g5mB>KnU8>)o!^fD7&xH3! zq!rFiN&om>a&9|k!#Wi->*ntGEE`Xk?Uu#tHr8y3y^vJk^}$Ns%8)T4NN7r)LAb#j&^>`K>=m3KT}&b?IcmS zU%^^=P7V~+*PC@tqp@YU_Drz|WXHMVWfn2O^YMdcCkwLkDn$dyb?ywK{Bxqqyw=`4 zx=z4XXE5daM28)o6%3w#Fp*OLPddi74DMn?(!T-qT_?(Knk;@353dc%2 zH8n2m+v<8hjvTz8wG4a!!vZYQFcmD_=XLuC(5B!7vZ#bNc#XLj*vC0oAkl>WiXP;? zA=v5?NwzI^>OI?26#2N*cY(LRn#)4pCf@wSMniKr-xXV9{7I4cf}Kb<9nBM3WrHQx~>>AF#Q*r zVBi86^!x*R0%5z~AnCz^Ha3CU7yAB$itqX`?SNREviIVmrmMT_#_gG(09V~Q&uF}| z*Z5N`AI6REJ}afeXG`6f@O{d|#oDY24zrsDCWO6wl& zW23R?Wst{Gso#!AnXQRPl~(iFf$FdiT2RG))R*7pVG&jSjBA$7$gx^C3^(E&ENp^$ zUo#(sZI-bt$85cp7spGB4l3*N;7)U}SO;)GH{s__6}gLSohH~T@(A;a!OOC<4@M|P zHEFD0jW^dzOWv+~7YHGooz07m3to}qHUSTrNj&$_8FR^X$F+rombH|*&P z+>N;cdeBuXD~b$mt1Ihr*mAXIm7Wc`apby7uykBcgZY>b6{^b5fr2#qATlAdJBL{J zTjToGXuCa%&YRwad^q0o{k-$YFN=2W4e$h66H5xbcu`!iSu0ZCV$cZfbXcnoynf8W ziHx5&er(p?gOd1@2NXu_3kd_B;n)MO2|c~{LXm$V$w`{B5slHq!F7kJxaGwiXhk`k zVG5%^Wz;|PF@)C#{uE+BaSJ86TIh=tZN%x!Bs#{-lN55+n5blp*?gpSK`H zca2!^t-zPcSXC`P8s49{_Zm@5)|O0J#MTKw!6gP?ump^2Bu_A97VngS+fR_`bh2(O z@`!k~&rD=9h}l~`i+rO7L>&cE&MpxQM05#rd^)fi*DB1UlWyVlFDDxBP7#2cHEv`P zwu!zx0*!Q@#&}e8B;d1eMny>X6_Lh$@5dKpnm+9};wAv7>Qh#pg9l1{bCXpm!O|I7 ztF#?rv4MSWPu3nwY{sn(?S@<*H8*$ z?wRZl$#uRJD2}UI7u>&Jgb}3sM;P`4p9)D^*1QY$N=0MybE3kz7al~cmJh;^?7Z&f ztqW=EEjq^xP@{f-?X%pg*7tZ}^4$-F zy~Ubw#t4(u-rSbSa_jO<C^RknoHoGos|@ zJb@nmWA%!rBhXpJEF)qhV-~asU+O|JuOlT#Npptu)6#Hfh+gATk zW=>srNX2<)9vKXT75wsQ{K)oM-P985H;5*0ME`NYL5D-%yVuH0;oDD$g}umih+p;1 zlvZ^Y0je;LM!4@aI>)vE5v(?;AVLgMF^_+DhVrmrn)R+mw%xKp0ok0Fx3LWKYK6bx zpo)e0*em`T(+bOP$kR^${$0VkcKD7frGpMpQBBL;mDr$?_JkCPA%5 z%*B_?R4w5qW_!H6vA$Sr*Uct@PUteQ>5ne3O{1&Erx^@J&al5#?(uf}#F~w`sMF5p z^@(e{#C^1>xarSwy1|O7kL)C!L;Auo!7u?Yn%Z^ekR~)$H-K0HODc=3-wE>ssQ3_4 z1hrjtd-#r2MuhaJqyZt~JG0|dUF)K2X{ZnGX5~w))lXsSAQa~$l_;M-;)*>du)RC3 zUi|>iJ99mcgChqUckOG6;TKcH6dm-0^&&uQtJqqK1a-pAA}5<^L%#3N*oCuU#$H9p z^ASdc*VDxpI`)06qThUPuEE|~q%miUv}$$3|4&yN*jz{}5^+s_dgC6!#2e44NL{ci z?<-6_OX)cDB{#Fk4(R5npK)bdmk^IT1z8#&qa7|dsYoMCNVqb~Dt!IQJ27o;ay&w( zvE>Uf-+`6!)Wm#k+l#aa2YCSr1ZnpGuT9?v5!u$}%85;+G^zwM?=qr+{Fyj?_vWlC zST(;M?~a}ZG+XS?MV(`VrHNF;bD9}+m{wuC>>weIBy$B_Y-uNxep%yXn@Bg9EepPDXnNtTv3rXRhbJIzUDv+Zwua7d92 z4DR0_&0ai1S$BY;JMqm7F@SF)ZJ_jWs8)x;tGfYj4>avBz%klzxRiU_$LGSWW*$s@6Zn<(2ov8!Eb*n?pQ-kMe@C^tWyC7LZ1|u(QQ;AXf{3 zMpSGx@bS-xgj&rnLb*D357$i9gN1Ni8W$t4dKueta$mw-z&=Yydu&klTLfcvd2XKa z-ZdfV{54aR6?5_kx*yb8m+J8BFP6t!=-R*FnxXVr^n#Hs(`p-&UUf7|69yx^QR(RlV`H-SnyJ#iJ4p=2b@`~BTLDV8lV;vVL<0_F*w&)9dyuP)&I_DQFmy3l zhm-R4tR$zSSs=NUxm&UxmazSMp-MYs3jrkDp+lW`?;A|m8 zWwqG=iQ&FuGzB(@F*jpxLOQ0UrUJzcbTV;`a~iUD-)9qWdiSQ?!j&MU^#Q4d)oo&G zzft2Y2biQ`rxk{LjM(TP^cTGxtZIRv#VyfB&HTHhjIpnfYHLAHF#Al;8VBWkFsz37 zQos&_N_tQ~(Xc_RQe5M?$+$O1YT>P*!2N(A6q|qa7NH@k(W%=8o7)<(CFqM-=V){( z9~-&}hP+0;z7t3zmL?4MB(}$0G>p=d21~pP~AJk8l)Y7PLG~Vtuh`Cf$ zgSf=r8=C}*uJgd~KfwVcF+3ueH{{sXSay58ON`FpHlRK}?j4Q5YAJ4S)ljy&OXXSX zU%iB(mu|if9E3@tFaJJ>hNz*0Scp}?wVJucmM4ob73fF2vLA9Qr9kEfAFTQ;wrbO` z*=v6f|Nc){5Y4_o^v1tR(XXCpbTT~QA!txq6^h!ZVj($&$pzW6wt5nxb%$Wpi@3Hv z{_^l8Sk79#fa7GFH2Y&_Q`)xz*LQx9!%3L-J-phuPuwiv2vc8MM^!U0LN}mLL8}Fz zXflp+?cs}x20abxLpEk9ZWTx9)ql*)YW`CFRaE$bjt<9&R>Z6eF8u6$Auys)!{$$h_#gHf- z@&6!EwA&k5x^Y|Za)qgodvLMrmGJ)YEsNWqmgjCouv3s>U5~55rr$;IVEJ04g!j7( zcTgnlD8$=nMa_f51wHlEh`X}9dss#4YeXjpi<_fkSP6+T(~npl+~io!ggq`a$lxuX zE23<7OuuSru&@3YLtFi!x6|@jV9l9k9OzQE)1kqY$kDLVanX0ANB1knO&<7T#m*AL z0>Ljgw;U9YrEZU)3+9YPO6IN!g(}Dkm-B6W%N8q2LJ8*L}61uDN<}0R*dS@)5aYsT-{@{uR=D6B7Il z|LqSM>91~HB@^rotIai&Zl|zI$}x5lxc$oQR_MSEl%)<7qumeD&A3drgu2xI$EYc| z{m_haL4O#2b7cf?BK=*D$@-_|JoeTeCO zi2Fx|MXGGbGQ%epb9UF|6)Dh(8LS>{l8EqPo-`%c z=Mj<)wpMcfFJ5W$;F8k_u5(Qnn|<(1rnCc;xgU>vWP~=)?WDethv-&WjuV( z0{)ndAW7x+wlse}?ucvZh*S9T2kxtDQt!Y=w^I$#WwG!I>U(CXNRxR=5Nm(9i^8t` zfMs+-8DW=RVo*NDX19@QZWdikJrZkEJWEjX?2-i8n9x%W5346ZIZT{uJxQj_BejVq zyW`<}R!8+MD~w5`&i#qm{*4n0v98abZ8XchK1(IRBNbQI(|Xak;c(DdXEzKKZ;8E+ zwJS~~K2;f!VJG45syZrTnd;bGh4`O`=&nbdt{5Hgj9hVluwWxQshLc`N$I~cBa=&a ziO?{LO$wV$Z+38-%Ia_VIVfe$sFHU0)^RpdB1ips93e#K7)9m=x2uGTpjx&XW)wjQ z)YleHj4rXLr(y%lEps787u z``Fu1{3cZbm~z!$soQ&i?!3M_f3@;oA7+yonKd z%zF}Mfkp2=oU>-#^i~iNVI-#qf2V*}?BF*=_o(S(_|?9w^cFrNtI?UH{*A?*MNWv$ z3Em5Sr17ywV|cVZ>OD^zgQB9OF#7?GANNm-hQ0AWLmD}O%@Yo`c9mGSrBoGTmY=3d zKNEU6l=3)GJCu~c_+-Fm*oU?&&8UrHjFW$=wRUP>Ot=om!xMC?0luGw_nJ*YS_qyD zGTm*yyH0+GNI&sx#2vK1m*f4~M^ zWK=jB%&`sxEnQb-9)2*Mm`UPS;C_*-R`g4A@rEVsstVAzNU(!vLM%ONpiJWXE#v^5 zEb*vbB{fZH7Zzm4?E;|IikuMp^x(RdPw&sYEu~jB7fV5Qf0e9+)L^>I)fawz5g|ecgX6yk_YrA8N z_ngoZI*`%@o(5HEQ((kD_{>fH@V82O|H3BGgdC7 zHh_-+y8pqrxmHn*uA8 zksTPxG2;DvolYlH{CV|Z)UEtR4rIJh|KbVSNu9|^1Ept0SU zN?-C(s2EjMzu}G;yID#D+4|uqWF>`>^oAC;j>ZxOgJu$j z5+(}zu=@4}_D1gz8NV@BuNo|L<34tPt`G=_-@s7g7k?ACYqs#c8?u0-nh`>hDCeF` zFy)7WXxfFk3XAXuAyzb$p1b`>h(O*RLaLl7rLklH9&rv*AOgZW1TZ{o%@hM`XIyfF z@1);Rwnj(dHbw#~Aw$k~*@0*@3Xlbd0w|l8B#}jmW7Y6r*Y0b8YlCXLaIC?6a0Ga4 z#;YpuAQndPJ*K1pCp_A5s6x!Wy`(S3yL(L7xH#Aa=*G;Dq(#NhW~znEcLiUP3NQoi zg-Q7 zm`SnKsY$_g(!oii{I@Bwn~4EZcpyo>BJA|weE<u%4}vLj|q9I1WejoqdJ% z*jE1Biu&bX6sJ<03|8U*E#pnvfatw-8No zprtL&0!t(-63IM&0Ddvot;fSK8A}*QX?oS-7wTBs9LB$4-t`_rI10xgTF#l4th6p= z!cb7&_u3__^LhUA7B~!S8@k40F}y;2O_2C2Du}CO#7QHM&fvo zUDoS8Qg@$y0((Iql(g5bPnL%x@7m`N)lf!G6>mjJ0>Kr8hqX=MJT>XMsos=tNnHxl zNK6pYrWNm*)qG8vfIf|>{N99by)OBKS&__qOS_M;!4QJ1G2V@mp|YN;`AR%-BQnY@ z3yctzxr>aGzIm$&EL25a6s7>3@7n|82lzN}5il}JGo~2I=L>Ge!Y8L373eW$x8Fb9 zxO)k{74G-`Y_IjOD?j2c9k4;j&fc8gSvAsP8&RpH0i%p5)b9qkEfv7`%+42&*_@+5 zjVnlmUkKW&YSt8qO^T0D@2QsGr9Y)>u{eM$~ z3~>Y$Wl{dy7!B<0|DP@X$Nw^vWn-5F5!%%b{lXo?0HrM$xZjq*XWwIBT+|;Q zFr$rfqF&F>6GJ7qHnCE~W}mcq+^X|tUyhVbsF%$465Yadgi%k`C=Wz*F8dz&T<}Tf z7!KBTNBD^y34{>|gnyod!c8#eqt89=m5+#YKv|&d!?(^h=#$8kMd}rILU2wPgf-)) zc2Y)V>>-ais}l&w+asw% zo}!r(kG)2eP81F6U5;jS=($2i&&%B@gyZE7bK2nYv3T*Rq*~|dE2o+qP4QMkmS9_Q z_Ot0|y#D@E@jQ}OqS-`(ABLQKe&1*Ie zNOx;oA@6pq$`A#+=-Jq6SY}4M>w@N- zX_y$;m6AMw(aF=j$`J0IKj?kX9|Knd^ z;B|FhnpitA(7){eCLC3KKime&BF(4(0Pa5sNn!p>nEplUX6I;SXlG~j z()a5)rFya+5CFh75&(ew51e;z{^0yK!rx3>ePk67bp-%aO2Giw{~+!MWk=Ag?SFjI+6kjS0h_{i}RvW+x2Kf*j@=z*e z#UB7CXAf%=r`P(P<>cWz2NCFi$VvZ;5CEX8{(A`j@}NI<%k+njR~^W689*5B3;=xj z^0yCY*8Gk52kTV@En+`wjDh@E>whT-n;h~rJ-=!#Pc$8y(V&qjgF?Wc+5Z0-A->Qb z6k|sNw?C&(t~S=9|9a0v4|@N%ravmb>C*)HKRFoy6z%@|wIT8c$jRKm(Zu+pGw7_$ z>{UTW#u<>TgY+{;{H1Y()Rbb=;6UNh12p&hCyKGft0=GfqF$2D*IH1}bpG`>NoBkC35@GjA{YSx zn4Dj*y^Qu>( zS`?`=fR-G{c>m@Gx9N45S5s}|6Lb=Z007W%^*49RNFVy@^ z{m-?C|Ih*eU5Rjj|FtslH~Bx$9{-zM?#q9X|NC50K^h8_(g6S}&>t=+?pLOQCJBK5 E4`zQ`BLDyZ literal 0 HcmV?d00001 diff --git a/lectures/datasets/fig_3.ods b/lectures/datasets/fig_3.ods new file mode 100644 index 0000000000000000000000000000000000000000..5d6ae11cb84c83aee60c263704c5d10f85d09806 GIT binary patch literal 30366 zcmb5V1#ld}k|r!>u$aMOW@ct)v{)L!h?yBIW|qccw3u14n3)-EF5Vflinm?{_9JFtC4|pFe>Ct$`Mb-~Up+?$M>ogMiMss{_6YyYC>@<0teh=e{y!}KyZQaY*#A7ve`n9c%*?{h;`8A; z{7*CdclQ4AKm5=3NdC?Itbrz07B0+U)~-MkN0mo%_hH>Gh7Fn`6df}t2-`POSP!tPyWLG zPbv28xW?>r6T*?``m#O^4l`QHF&RM9Z+gBCrncgBzO|KRdXg-nYnzbbe7bfIdpcgD zv@k|)B)jQ`0vgY(TLI-xvc5$gCmE!n#yB{5;#e{3`vYHm-l;u!OKnxxQ&57}UsA#7 zO}=taJ%UNIT319fX=0E_EWE;4sA~veyOR7Md)lokZ{Lsey6NWW zq>{sLJ6*LG1|i$NsQ~W_GjF%~!Ru}E6yqGW3*|o@{9Yf&?@ZGlczZRC?hO1IM8bO=kVE0k0p3t$QQmjO6#6irfg_)UdE~=3255Xz}|6^?my2 zVSZ?^&1!_F;DE{K6?EW|u(BX(?v>s$^t`C}uD&0y->ySSuta3@!bGw6UHt0-c3$!@ ze9d|aLxR8#yIN@=`8Vp`uui5kzI#$$!pfcv!}!Q^EiT-|dqaQ9P;F++VA97gDZ(nv z44Ae}dSBapR^({knpuBsIbj2tXyuA)JKmf5+xb%Kx>C^0UbdMv)Tg*nym=zGTQ|q+ zU)seW+JD$PzZ@p47=Eia2#{iVENSxHXj`_TiY(*}rwcJw=z85PS@FK1A|u-_(~xfo zBQfzuXh*~$L(%6Yc!K9O#ey}gTBt~E*yaDis9jfuQ<-`*dS=wt+adNVh~R{9K3MeC z<@=OOw#m9WPk7KSVcjTnvQ&aYD3$6ft&;c*xzMnP%|Q>YpWiP7QJU}6E5`FyIrZR& zGBP+BL)INx7qZ<_@8}T*?Xs}dYY>9s^8+$5V7mQghcz^av-3eDJl(b1gvQdcQhrqS zVo@qH~% zcpN8a2frlvinEZE+@YAtTZma9aThSVtV7I$5Yv0NsAl!RCNLrg8M=|;WLpYp+$+eX zuNl7vUO?#bNxIUA8_}YHWpfqcPJ{c9TVScHJppI7k@+Y0l1;}mkTBVmZ(2z8^4@*k6;P6Pqc)rrk@#662j&{i`_EdWFctVzr z$zTo&(t(JccIxS*wUB9S=M`@gG%=*<&8a%8*zzRmFdb%(D>n}Yp7Z(qCwSKq56n=+ z)4qE1t9_LOzb31zBycHDZ0l3s*DR*Gt7Eo%fAILZ*Xm#4!BzjZ3WuXhb4E3P zf(Ih_Sw&>QT^pz{^k=EJbtj>Jr~1uqIfXb+mGTY@FKWYk2Sfi+)psg%rUNtaGBt<2 zhO{HHig7yeX)lovK2hK>v_d|JJ!wnIVrL}qmPT8ADH#WzJ${OG8JcZ%Yh3I{0ZrTR zcQx1Gjr{ZM>^14bnuZaSK-kQwGJ50*;XK@LDxEr>vAl_`%cZ(>RAA+tL-lz4WYcp%fP$f6obaiU)%;7us%vYC0F0Er zDzX0a+A20DOBcx+(*u#FpW5P&3O`|+vge7U?b9d6o&vl-D&_Z8&Gw3^v%hQ{?x?$# z2dFf)JleGJwczO@5Ort zijOvW=o1jhBHs0fJKOKUv!7npQt~fLf`u)O^+R5T#-68?qh8F8=*ReBB=3}}GS43} z`$qp*iansvk5r+-z=FvBwG{sg7(E;1ImfDif&JtB$L6U4a08m!n^@bqFuVS%$>eBn z6{Vsijf{Yg@OcZetc-*j7#MgX7#IW?+~?vBwyA6V{qtg}qM#uO4i1iph=_rKK|nx2 zPEJlwPtVTI&d<*;E-o%FFR!kyuCK3eW@ctcPe;*RL;V8~H4 z?BqWM4r&(c0X=q>2!hC0x_?DBn=S-T?c<9y%! z?SpLjB|sNExLN;U@u6ufz;jLbjdA|tCe^}JBjf!x`6FA7gz{KfGx`i?>#ohb?|K@F z!1m+XfBg8=Wte)t;eHsQ-3Ufe>aNaeTA^ul+YDRD=w0dbxJTk4JR^Noc ze|HqFz1^U(A@fheddK46R;o9GR6PIKNSR^!*f{d`d9Mmc;ZOwqHcDv>L|Z2cYDOIh z$CCKUT0Z3ecFm1J0C3lNN%ZfNd$HoKu$sBsn0#ceZ=XEUnb?Z|m0X$9oq3YoMZzJI zwYrmuwT=R`^nFIbs_MX_mUq^fyH5JG=ogOQ(bT)GQ=N6)F}T%Ep%|MxwmKgV)(CHe zWptdgJ=IP$TBXrrA6=JorqlNAdDRz~emYn?iR#UB4W2>`VIyWkQB<=~wOGL<`=S=) z{d4C`F?x>t3t>w)jF-YJ=F-yGpg&& zg`Q6bh4LixXNWeJZ4|okH(B6hBqSrs9l2{CavOYnL=kvYf*4KVMtox=x^X9KlOItQ zAY;e3>HY>*#MZ);=){Dc`WyoQjQTpvt;P;g_34NQ*m9o<@=B<}l0Z zVDL@npd|r1fFU%G8P+4sIm}aJohuBTuOXsdxsHwKscy9*WY4BWtAmPskYHU%1@SoI zW<7CuT`;oL@l|AI>acx@XOQwBbQVfrw0Mz-L#l7n)|Um%s~xE z0zL;*-EKc)jMbG3@g>;;d}s$qAcE*$1q=wW4C0n4npL~7Or0qal>tr0W#1%m$df@m zK)xmh@~>2zmCbgeAb>4YKMyQrBNT#7SZpUIV-e@~L#mbeRPN>)W3hKwi2HQoHa~eb zKOtePaOv=3fH%hH4mk465`yOt0iI{sj8vq3|Gwua!LmEqlpiE<*zge&i$`%JHs(Ta zT?NXS0Y+`Skm7%36vUMTzT_GrCen0@WP^I>J-XL_GE3NYvq08i2PJp3YM!qbqk?qqulzL zTGo~XD`!IldVXFlX)UF;@4`}){wnn^I8U8ounrmk9uahPa+)I*qbtg7A_Dq>$qb}a zno%*hE=3R5(K#vlwI)?bl|Z3g4vpMy$guGz(OvKP3&|=KvF4P<+H7XZgGfEvP>i^GFPQA zKts#5%#;oSs~k?}RrElM=2X*0;jjr};p$`)MvBh{X1>`%`$-`Gg>Fm{ra+Fs^AeL3 z%$Leadb1Ojy(i`g=&Q|d-(~IJ#EPR>zT(MwOaCh)>Kyi{VO6X&XFOKupfr0ttO3aSf_zR^lL@dlkx{Kd>Mlw)X-N8v6MMk`1r3#(= z^*!r|8=v^^u-IlZuLA8lrM2iC)G_5)&_v_xx0)Wz%poOJ+}=&JC>EmY=sX1ncgsO zLP?RY;?(JnQb}pA^lqF2ICy#C!#!FFp{-vM6HhsX35ZJ4>=GOeC?m(X$4A9Zfu*F-Gw$)>5`z3dl;m5l|YvBZ8sPS%; z&XJjzpWkdkXS?p?2G-foWchQ8o(YLJqkn^En+5Z6J-S?G*$(=t6kgnADa=7}Jh+iYt=6e>t8KN*w4n%aNl1T}VbV+Epl4lJc zY%^QK%D0G$G#uG&IJcHC=+89Nn=X0$JeXIjhrX=w6gK-EISV~8RD!HWjWJI_7Q zn{IVk_+WQRximG**w9oHP)%gx)KseRa%L0J13af6Z`pPI0#(EWJDKJtKXEtajs$7K zS3>Z9na=T@ZJ|~?QM-geG5Df7Gc@zWbHb@oXzB$Q=@%4l6)lhJ?^yp9%o361m0fAn z7U}a7TbjzshuKBq{HBfA{g*k{@-zHXiSI?ybq;ZfG@{M#_n_3^ zG=$;)Ie~F6)1*iUmDWQ@?|wuiE{^@Ty-p+Xbuk~&1}1xC48%vT{&Jip^@`ma)Zeg3H}@ zNRTi@)EGai-yWSj1q^ifpsKA(!n*IMk>Zi#cm?@?_Ik>Ss81H^A`imzPrcA`>S!#1 zH)A0w;2N5-Sl>0Q*-Bk2=h+OGeNlONEPl9f%C|x7S?K;Ket39QHcG;!$mD>`Wu!C4dnYuV7D|0%><5V{6Jfnzuc{E zkf0c&@?xGc61cHMtfAv0{a2fpZ${5+F%CSkHMT*+U_4$(SlA+1Y-i{D$N@ME{R;-g zBqjr#<7TrQTAfZ`RZ^(fg(Z%A(-J%0wa)rWl=EZ-6p8^49iteWkjYh&%C}vcJlpi2 z4_^j!ehDvZnXJH-xuw3AKZF#Lk^$HQ7N#Qd8T`qydrecYpD;rY;}bYecJ?h=jPmD_| zc<{C#^{N%mcqmjwqtF{@1RI(zEK)%F8TNavTEgUN76I)1>iCD|Lftscns+Wap<7SL z(_x%@ABko0`!KXa9CVAPpmWv|Wlm`X$^nf6_!^gqVnX=#?(#FV zR;1mI1jV>fJ`63*jNgqAWVCUxvlPVeGnceP^4VWD>Aa6y>!8kVW_ZzuMx83m(+2a_ z4GO4L2gmSvZFH9+ReF&0k_yRl7!kK80)@QYV3%_Zbhb4L>iewdT|fE{=Fz%+0pu7O zgxL)<-i%^q(-l z)Qf~pxx>1@XEKK4lwO|Lf=tK`=Bu{Rk|5Xk z>7eR&*@`plVF|7%ku?eThiy3n+)J7h;d&MB z{^U~i9>`f@OAl#IJP7)RpxRo2%GC)}vVAlI)T6Z1`zUCvSw1YC+}hjC?Y(85*w0k? zaJlXFN~(AUy0^__Z^rJx;bSFntbc&nW!VD+jG1qo<+6?#StzAQkazU$GVymYnOfR^ym76vvyiy}fWYK_rZRv#o%66kUz9X$@;p9ek z%%N+|xjS0xN9l|#Mdw6gn7`?ilgRP7s^A}!W!v38N*xr{#u)dT#Oh5QqaJ;!xN>^9 zXLp7u^62sltvZTeYh9Va^d~)8xRA1i(gGp_F#IR&`m*!xN(~aFg#8nCcWh>e+oaa^ zg#B8qm>@_<-Y*24%MQtnY5FH;8l3rtxGq!CW7WQ!1s%h0;-@4J$IvU(?v zPd>6PF8GsdtxM-LQ!|frfZCUV%{XLwiFmA84RHUN=;5`!M-1&_ogAPbSrt1gdQPG!#cp zZ3c9(+RN3ow36{El8S2$#R}je7i2YRn~!m+f|^1ijkXL`9umQ!ic6(6S_zfW7TWGABrL21u=1tx7tp`T&W2pKAIpKG}v(g8-YfDfGTTE(C;jk-s;#^A#S04a^SKnh_M;ux(nx--H@b0(Q(#WS$;Pe!97+la zmh5Z)EZXk%4W?djLmCW$E)#PI7ku0iOhwpSU4I#A4r^AkHBa<*cxFH{b&omZJA(j zZjf%F_}!_08ot7dXHm<^Cp|#QUd{5NSUNaXjt8j$!^>C}wKt5Z#Va{-)~NGGqa#;B29)Ct z7|;UDhrQKBUMbCJ z;gvvK^=7;?xIEzXq9N8f5GFa{mta^f)~20^8e`e>DW(@v`Yjt~*;dk}l?mFNRB{Jf z9tFZOlF;1ntycBnh9K6nfzWc0a`bdWO_U20X&ndlndUI|_!}>jXo2UEMVuu9!KLA& zIS|b*^aZPo*-B)wP^jeS;-W{F$sBBlb>7}*h7PG5zP7l;CVkj4qqw@EF$!{{nS^Z# zYAjpB50;v9snRxlG#=qpG0W_8??g$>iL>HNlbym}bhOx5GBEon5!nkAEc+xIOex(t^amFd5p^xjEv$i}&ITeqD=3~xL+b>YOXpRp99PirgEtY0YX@n@ zytb>eXCgl~Pi;Zv9Pm1X$UNuj5wol{rYD59IdFLrr`alqUU>Nh!H9{ot3qj0S(dH| zW%D$U5yNqVSCuGIL$wMzF2g4ogDV1pdU-9ZjWfMu6?*KATxk|VV1to|VS$1&qjPLv zKN(eHp`g)47{4w;1f-~Sb}G-i=`LypWeVpghS?`W_$cWvx#?awKqxMj-&^!nkpocF zS9dL(OUd>3u_0sSogyVHN9PG&?zM`Z7(>Xpl+{iA3s{xq%mIw(3N+^UHuW5oF5^s! zw8)bg#fJ|PP*A$4F>6wJEYUwG?@C{L%-X;?-aG=jZ_jjkt_b{u$%P$KK31HCeG4xk zC)2l8=KhN`tpQV<=h9UD+LJJ8KXupsGW4c0vjp~b>)vr;2`2Cm+*rs9fq@g?h9&b@eTygsxCU;+1-Il0SD>U>=y%o0)5T%G5mH;Ea&Hx}*@Q=A^GG*TC3wUhWd zAr~e7RM5e^U4iMS^YLRv;RyF7b?}3^{g)rnrlbXQB_k{9y=2S)5;|*Y06X-rGyrtw zoC2jI zvfR%sUn$c(iq#ZGn=eBSZ>@{j0?%*-9jQPm}F zIwp8ygD-)>0*>r>tfIVGz=$RfQSqVMz)4CJt7tSe^e>2VD%BF19w?VHl6+rOLB%Ln~+dRTS+L-pSo^!}&{;kD$T)sRfr{s_nFv{7C48GIDQfjL~-^)Q~YuJvJXgr#X zU}8wkGxQXP4GKoif-MfIS|oItnhZ@h_?Z*TT4N$`pT znQKoR4(|-Zm6<4E9p2E}41V^JbftNrsLc{IfX`T|ugedezD|}{MDGt@hRSKuMyI18 zrl(Yy>n(I=gq(3+s;{AUheBYzV?F_{17gC@eE|X<)pBT2%oX67%E-ZAnI=jS}ddBqk7NI&S=z89+jc?!EiD{srM$ zQ(_4j#+E4a9Mk4ZniH!Wb;K7|!6vdy-2n~mBQo^)4!D6I!e^flYb z1<4{p@K+zCl)x7zmk=7akMx=t5WTlMAUV$UChk&?c~5|Ea#Y|%AF$WHvD)Z}xVC!ybvl*#ARUzLIvLPXuH z1l#%@2}54vDjASX6lB4UVg#+2Ub|1r^44~mDHkpnHx4QP{QYn{W+g3MEu}3>R}UN7 zGR)``d~dk;5;oF7Ij0N-#H1(`_IVYbCJqn?^#7Rce#cevZ<~D| ztMq^VFuL@X^}$f8adkyqBjFWz{!gCZrC2d4TdN5*{G}X31P_C-L74)k>8DTO8C4q4 zwo~WP`zSLb#UzuzVzyhX%JvQR4r=mOqYMe-E4irru(ZLu5?v*HCXP=|%L|~D1U}0@ zgMbil`o+ppOj3h4+cy_|!Xs$^Ckp5X-U0 zPp3mbQh$sgs_sOgi+LAshXYSf_NvpsVIj0UK^DI`t&VXp6f-M)kXWv3_F4e>9b1*_;hpbODyr=iaPT=1cCJ0Eiw-<;nRhA&hwWlZ68Z+t$200qaC|1c6UoZmo;d4J858i0Iv}w5Q zV}R4p$s$g*hW?wjn-7OS^i?pik7Y{o1nP^RC~aCDGYL=W=kkI{$IDPck$d&p%1(D< zGZPPWKDrTzjsZnxPcvaZ43+FpdGq5R8?3m4`~-KRY{QkeerJ(iMN#g6nN$PbVDsf? zD(HF^Sx9qk1ATT#d0KVO#lh$bYsKto(k=IYIc5{kC#g8A?%h z3cBS8X30K4B-uaA5>`#-6VT9BsYlrSs}{iekBS_T`Krs%kwG<9+RXz@K7Z*yc(8vl zXXDg?CHe21LZf7q5m2hWD}wh|%Di%8QcSz!P1xpj zgJ5$PtCb}3X#lM)=4i5O|CbuY;`;=iucq)+blg~zCi{ENNg0>+xck5np9OmE>>f`X zItTZNPGT*%Ap6*(-|--w39f4&1q1jHmpZ#KOCvH{9h}gzlvCy})e^;tUHpKrYdk%R zsoFYmf=toX3>eM= z>qn-Uy_ov?EKp;>@vIAE`;-r{)%e)AXxI+;lAX@FkuwGFDsk)U5yHsO)W+3099o*? zDum)gN)L%@5r~Sgo;+25FB;MEFt%krYjc+K%Z^tB9NSA{bD*{as>@;}HpXC2p39W4N79D6c(BloB{K717-ioi==G0Z zurS%>9wtyA&UXg43RNROeR^D#TzrdtTm44CiUW= zG)e*bq1=W5gvB6A0w_kwf_qVsCQOeiV&xfcd_+nVR@@X}vmXlExGDW|_>!kd<*SJ; z6Gs%n?q)9W^SzKVY6b2Y3Q7fhzeM*eWeL8phZK?^s8ZiUuhALPh$uju+|yPa-e6L* z5{hD7wFtsF_R~7(+z3w~n`WW)Pte%%wLA>pHS;QF+xiu4dc*N*D!&n%<$}Rao?h)L z=xo)+hIwJv9cWn?kMnukgqz)lT~ ze>PcRb7v9&l<<1!O(=nv_tsoDd14_mQf=KK6Xs=F)73?qO++|DF*kxp()FuPf&>XN z6(w}^fHMAwhgl`eT1ke}&~$m&_>oM-w5??e&Fj_(ps6lwz3%Rl+r;=i1wK952`KG% z++@>*BQ`*r&FZ=Bhmo`Y#I9DSzs+cPKZT?beX=t)$giyQbLPVuVJ9jb`}eXC%@2!_#`IPRv9 zXa8EcWB~F#yvsH`QlF27E6DbTl}kw82f%(uEgc&t5n*5dMnt7R<29mxqM7~f`n)j^ zOo3`#OHcRQFni@!MWqB8Fx3#5ogk0v(vHQ%fBMQ(AO-Y&;bCpayA<;M9+-8yzhJ-} z&Zm}@AuqpxAP(-!-Hb05-r}i_k?5B$&?cK-6601K>R-2ORc%mZHD06{LddjryX&j~ z=^+8-!TIW~3b+qxr#J~77OWhmZx=lb##T=Wq2atl##PF)WgG~MMuCAsbNZ$$MSzW% zcVTH#cd(0;%Lq}B7YT(Hd)BH5Uoi`5c+G~bb!;bb-|F?}=hO<3wy9%O($QKicN2hL zft+a|K|ds|gJXFZFFztQ!?$LUK>R^xroeLz;e^j?#-V!txw$}Bnz*ksomu`D3K7-3 zUhOqm|JQw?MFkWHKNi+MeM;A%!%?N`(hdYYEZY0LAu1d@HbXfNt>tpt{z%-m$4ixplXMVC} zim8+&283!B{rQy;sHaABKcx7np`b`R0%sr1DpiOuWJWEc&kgZ5!Q%HLobZpfT!7i^ zfdc`NX5Lr*=L0w=8$3ELM*4YgR*=L1dq&a?v z5#5*Ip`a4u5&O_EgECbtjX z;EC0bY#O?FShVxnG5+QZd6bO9mD0ZgW5z!-<~jqZLS)TZ^kEb%@q*LRy@El9y{;jk zzE}f-^EDMsCyieHlcjHOtNZz$51vE0N(`So0!uzDDG$zxg|QnMzt22Ls2RU+ND$UME>gH`x8}p^O;i5yG1}U23%xT z5)n(QzdUDzNE**=8L*hG^92O*K$=SXUV|LhAitkQxpJ?hEu=?5*GUi81BIO2tub}M zEc3G6;+7oQ1?A5T^kCPN&CD z;%j&I|I9>u79}+LeAoUKKm+*RUj)=ZX_&|ASsPwGrhQeJk&4U8$Tc%5hsXO?%*C0U z^CIw*1YU0xgU?6c;cdkecG*nZ#1aPS10VXI^x(6n1UFA1Up## z`Ndq7+~b9pvHVv4*zicc1L*73m&JAG@zxFezLIUdjFy=Mo(k&yZTeXiKcLgp7_>O> zfMW?HAd3hQ6rU>uwzt{PoNTD6G9t2icB1GFLJ^xntBnN~Q(=3i>J2l%PqpT5YsZDE zQcNUCqQQ7y=;qvxtW{JAOo+R}#!C>B+d_}eMbj)$iEXuUAYwRnQF4h7^k@7SqqB(m z!cXPu`|D7cEPxmC_?>2<2jFX6 zA;V?HECiJY(0U20DLq~)sxmWqoKR~h62(qlBkb@29uKIMb-sR{gd}n*--ng^sYR1i zuk;@#A9QSffiZdZsuE?l(?SG9+3BZ&b8Q*gmYInZQlAi7 z;fMNpL**@nAPNZbxh-{)xCSChV4h?Yh)&yW1KGl64ZLtKqQ`{=B$b;PU`PK>TU#v{ z7qa8FG#D>4hV@7R&kL+h8tHBCiA!kGyI(=9w`A+OsaObjuK-64_# zqOgC~w7#yZH#)jVB66D)Xwar4dgZ2YOKAB$8W_C=?nM}%SYw~I1T`au*Db~eM$zvp z!sN66u?#ku`JL$$M_QgNV-^Zyclb&Edo7Q_v2(g4dPGScBr1r0M0~kq;Q%0s_m#Wy@6bBk2_lOX_=t;QN_gs@}(I;pVA6^Lo)hP>MoDLwl zG4#6>1ySK*#wYaj{Ky>S-l4R_i@Y>&kD){1QlI6;+YN!&+8)C>zL+vgod(sKsB(T< zJqL~nwJJN{^(1&BbwP&bW&1jx!Ty|VPBe(*)0w4Zv-2rp+XIF-VyNW|?WqfEg1DF| zv#B-$bKC_w8*i2f^?&vF-19K1wknWH^Tznj7?TOzfdLq2E!DdJXcqOZf#RUjUsLB& z$?@~k60lC=B)8DAP0R+lCT9d7Pc={*FkUIubaYP}#VyU+6cE;GO(Bu|PLZPDy}}j? zDb)n{u~(Sw8MNEM1$dDjCQsWeHG0D^TjO=w8bHbJ1L^}5B>sO-cm|qv;8sLXlhg}J zI1kVhGg#%75%Sf;cn^!t|wyYsh(vH}mM{Z*@q9`v4 z&l(AgOu1a*bXh9-WpVM9o$O8h%r<^jq>OFkCm9i-t83C!`-~80zRy45FQO6XFKuIT zeDCk9i_c!P8^EqPohLqmNe}64x`cOWlzn0pCEvVx_e#b`=xP3Ocge=h6RSQ$sWGq< zDY(xKUCnaDG6pJgFhI?p`bcw(<(JL2F*TmKBp~6 zC^nA_O8KwiCT7(uqu)=0v+%IjiLbrkGXadheCA84ex{f1hH9fay$eQ2Qx=w6lJLmf zRppV%_1tB(iJ}k5Vj_X**(vI{vb8$RSB*O0Cz;BdUnN5NkVLxryh;2@Z^8V(zbEhq z+MbENuv01?(%SqKr%~0&4BUodRiGj?X#KSCi=&ke@1wiaKRtVt!FQUVU+20bYgNZnF;k6-#`Ir)mf-A@yKYBKSjJAwef|AQ}^ztAAN*a?& zlDS_j1La<4%GyKlZD+Jj`)DbiF_}7XjiJvNgWzvX$7MxCTTtw94Y2BOP^AaVfM%&W zwJWGqgdA>lX?JmcE-ED;cZJ91O1oL2n4B-!eZ!u-U^cx$#6kxh0`mpyH3$Np84M{a z5b$kPTKp1Em4AUvF)B6@3}(r#$Ku`-?;&M+x1S%|3A;;`a`CeY+*v$HEBsM-m{c2T zZAw}(L{SGni33y?2{@JK-HOE<;#5`Lu*^v2Nmr!Z5Lo+OAzD37cEc5i$?zosFbGC2 zvcMaRUPKoES@ySC(k4W7fXpZivw9&PaS)*CimQLeMr!dRSXEA0=Z^ORg#=0U7T&C)ld9 zqxfy9RM7gTGWBhk;n%vf7QA5qy)}nnU=i(V24W)zE0iAMZ5D)VA;T9^JEKSqUzdmm zYXmmJCudPK-!owzo9q-pKHgGbnfN-lJPU64&v#wpi-sWt!=)s(c1xcc zC#1WtJ7IkY*$qX*Ahn#ngb;-&5rm-^s2=kwx^qrEr2-&ld?+z@DiYWXW`T%F{HWOD zc&wtkP4c1W5){j6U$8{bqqQ{04}z{CEQF024;`~lj_^;+H_N_paZ{@Rasbcp^lc~9 zZ+C{eJCXXaj$=517}@wsZjdczx^B`hEPVGCX!}0Tl_dc#4$SZZ`x*QW zbIEj;n3OPy`w*HvH-cXOKVL+Nx`^wfwIy{^c_#>^e~V!)xf8FCQTSz}Wzj`fP&I>U znhOPM3G@#j3MtVN3@exr(0TYZmbb$-wu3ivN=%;{I=(V9}8_Aq#YfA@eRV zx`j+q@H%nLS}obwh$o^aehDg1)TwtXp|4SlN^!lp!v`>;s=`-YzuJd;<2=^x!Rr&+ zNn`qRTV{S?5_=lE4y8+~9J4EdP_I*Mxf;W$yhmbey}et3FxRvb2_2TH)WwD2B~G*M z*2KxU!OPps#>%FKXGJ;gOw)3yu08iQo@h3)UT67!a^PCM@`IWTR}sJZ>e`|PPn`kP zB}Dy{|9X-R5OD%|_ zxJxKRS}q#Tz7fpw4OFfR3Cxm*FNOyt7%v=~BrPz7%4T&@Sb?cmb<^FZoww@A20|FT z!Lh}`uSfItKxd6*yRI=1N=K@2m^e?vWoYmr~N>$UI%cfVVi1D=_U_Ekky-DMQPD*Iz3i>Rxn*?4ONduGzIY@B@>;U&zJ+L$76qM zO^|U%XG_td2nb*?k^XR|qFJ^QXUjvY^5gl)eDV%#x`!P+@JE@=Fqs zw}VHKiW)??bvE$t%aovBbm5tu>TNeueLP1@#Cs?pHLtV?buI(P37NEFWyjmMtqi0j zQ+T;xVZY7?B;RmE*TGrIi|zg)^*Az%+xU;7i+)EWp5P86kJ^`9bo)gN{pM` zquT$ch4%G6z+CCWQT}5L(NFC92qvJp=s&U~4^9|Ku;`etnySMEygemtWmNz%C!E|Gygh3g9@B zEn9)b%*@Pai!_kPiQ*I zMpS>)JNM?O@{GYTFH&c--xPGxNqT;hQ@do3V+yY*%MUAdM~1T)h1Y=LM301VOoAZ3 z{e*WV-tmK^tvhyt@i4*=80gkL-{OwY)E1J%B}>?Oh#Y2i_r}S>*~p0+pvHsDy;HYV zDCZSy$=kw35zBJ(V+VI%D}Z;g)MB~nBiruG0vBhIPsJxdGUbzc%UY5h1)tcyfD&{! z!-Hm#k&l_h=JY5W%=lFkTS_=LfeB_HJY`?~o=toO&??|e9R%W)y@6@>JjN3H3dn*E zx;6kLh>^BQr1aXfNEJ3ZI4>Iobw|dul)m9Rv*(jkHBn*`t)(ri_Oy z%pb{-Dbl5?hk32fiK@Fr67OP_tuj4yYa5;VVmd;XAj9#smKy=6!MDeOmhHi!YF*ri zOvT*^8Y;0N#if^W*Ti(5o!pUsyc&I&HKl@wnF$_`=04@Fmk?mm8h&QAo}YER27MS! zV4sesU$Ad`?ukq%yXcF|ArbUNW>ls@4)jDPQB)u>cZQWSOy)QypFGD5wog$*~^e$RIbKN?tkF!JM7V%2f98@EAY}12!mC4 zs(6NdUg(zW_&F5D0$R3I>?$3h8_QS??-?|CLK;cj(u^nWOqj5tjE&3R1rxmk>Qaa~ zxwEgVEy-w0x5wZVH0w_pu^F~ZgbCVo7L0^u8-U6y!nQ?WKH*JKkrOXtfZ`RkPGX&j zb%+`h78slspCM&Au5Vy$XA9_Pf_~qp6(Nolra^WxUxcUZ0hMVsu+#be!*i`RcQS(4 z$9Q7wZjh^YN~0-jGukK|qyj0Gu{IlJAx?Xh()zh!%@HUpu|b2kLJwXNQ4)i>=uD>a zDibdJGBVM1Ymw687Wr4Nk*ny=sPiw--Oa|oZkK-B?mB~gxT@Xg$dr+4~m#}|mPREClKsIGY(pix~B@X5NNdPmrCR2`7yOot1)x@(H z%BPnRpydRL7b&g3_n1|*T?RN;mu3o5!!M@ozR^fF*m$quKNxkC`JCYG)^Bt z;GQI_?s}zE8~h6k>kmja>o_OS}(B{1* zcY2Cl6xaC}+!yi@Cg6xfS^`P8p0BkncIx1`;5H0o(c*R3$W5I2;3yMwSTuH~=3>b# zq44s+vjvUe1^pAT)KlmKvaCQ_>c-GVuMmhbDdwsa0j*huKWDTNWaq6uFQA;xC4747 zNNk$Tl*DwXAxQ|86Jnv9sYaj=85Qs}O3)ML!Y^ZE6XR?~2lE%f)vx-R6o3hs2LeJE z`OOO;B5-yq2nW-frgl`0-7VRBCLa7)!6K%NBJgU=?V`pULh9@6U;|jIu#+jyl@q(9 z6%@OSQo?i@;aZcdE~leKNHf0Ojd3sLpek zm=SV{r+D8Bmkk^(-X$0F$jrfqFaenixNmabW}Kff4_wDljkv9A$aQvt9D`$RG;+tR z`vlY{n_pZMVAQTMamH-epMzL@&^3J|%@sg?#I9z*PQMox?tcR~BDT-V*9Eu9g8l-V zS!+;QqfYTNr*RNJiVZH#GmF{qo7uX8z@mmmt&tfYaXdAa4Geq;$Jgdhq2&`uHWlns z;ol9>SYJ)vk&knB)o-Kj27z}Sgzy?}j8$?`7*F2i-M zES*8I#Mi_sW~kJJtOORJsq*h+3|$em*mE1QjC4s^Bmz1lw%xq?JR)K0vTlGIVWwXsO**QW|Lvf$b4_c{uS}U1|)bBH< z3_W{rVd`QIp)}eoYb$OJ>e-n!R8UUbnJZ4C8RhxmrO%YqXh_2DMw8okiC&EtM!3Z- zabIU4Z#V^SgcY1d-0(!eF2#Z;|#84q|$Fm|EnNoM(GC z(*7il{4~N^fzJ}Ek>EsViKh^`am!Em8Nb5$7;YLav98@a z(DX31yiY%<{9qGroqu?HP9Ze_)7pFSMmgzwsfdLn_x1z`^jgG-i=vu=rXjQ^cE4KB z6b{UjpM~xU1jV<7IkLSUdDS?R#vwWF9<4?@LE=BG+BPb?aqm%6$oiqt|Y2AR$lJ z-Ftz);rAWjI<5SuxEP}?FGFT=?v;*wF|`m%o-+KRAsyqN$00fJ#;Q*hWFSmMAk4Dg zZL3PyqmIQHTY`TMj2m#ELR|rVMn6Rl@km*avzAWht=3=<5L-YdheS|nx1cwp@qE-+ z0BNFDO(O|u-6frYf?+b09gHm7ogPn%F_us3C7I%@F$r)!mXbG;@t{CmBYt%SUld15 z;3pQdx8EQ*Kh4QKFtD}H(B(+B>kp<~dcvO)P1E^IuB1+eqLDUJT4_j547;z*x!^fq z0<3dRDtHPRO(3Yza)D1~ZG>SSl)iPzz6!aITA$x&Fy=7R&v?M0nK-a5@yRKJgs?sN z*5&JISgXL^j&WANVcfFl>92!q)^T+vsr>kaj^jEVbTLz{saqhFaiJi>=$l%A$Xr`~ zEgo5cMRsfVcm$zjU0l5oE3LD6xU20+Q*+ccA;PAh;Seyc^k*5S%gV;yV63dt{AJ(^eiW-Cn|S)bKL?yqpzZbn%ks5w9C6MkZ3q3!hH&c{kh*kmjtC!om>D`ZB) z_;ZcJO{`FE%8c^wL^lq|kBHoEH_AK#Nr^>F+R^8S(896WiwUB4SQ}J)qc$}*_q~&z zd(GF8W;WjZ0lyq6Ia1yrz+OYpn>4?}8Zi1Cs#1d|_}ptOy=_Mpm?!+ogXkizTWXPlN4nZ?=JtAFLw`N~?lJZKzvoT|0?&AdPOtUf-eeXC-?^sf zt=1>qeO|{xpSH{W8n6`J>kqA71#>q8Uru`N#4%my9|q_``Cj89bh)o7Bo}e!)nbA?ktCN#k_VV^9WP4Q_|Wk z-~p}pg+8I-dbY-NblDI+rP}?VDi=#^?!e4ieL4)mk-pUyn)@HE--<=Z=-{H~A-9d4gB9Djm z-Brv3?YyMfD>1wqT$=ASh?0c4EpMC2gR0{6WC-2`IS(2F@AQI&ZE4R?&O{;Al;;I`q1Q~pmR)>Cn+IAWpedYXK{?>Mwnqj%6bHwcCq_&0$c>sYhA_U zTgO5($hK&Tc&ie-wfU{U$Pslylk?-kL0IWi02=up&^L$VN zEB)*K3L;_BsirZcECZT4YZbh0ztk9U8N6_1XGTIL@({P+gOcuQw6Jqw>iv9h-SGaz zDBON)L}J@za2gpT=PAuF66ker>(sml*z5~8>{>uf= zQj%&4B+F$ptJ-P4;^jSACr}D4IuXdOVA(hz=uKX3QEAC;%Fh7!@2AbN5_luOCowm_`=a62Qxiy)~m&u+*H6@oO0YzDhmDFUt z70AaA|8xznhqyXVcTbnF>c97SLjD_Y)4gH^Hp`XGY1^H(@?cv9O?4b-+D87Kd?uOV zvmw+3hYbaQPWL->hUAXF$hLjRS4?%q5_OM(>tCxRinIn}9@01_R)T7Ew7n8Q&r@B7 ztlD8Bk+h`X*)SSNtAutbrDhTUka8A){Vu%LTSSNhDg@72`^?K)U;>)|UC zit4E<4GpX+XG~23R~i;TP#&{z(ONj8-1Y=|yx=Y+7{$|4Z zy_@{Jnf@sbd>nj}vvdpJP;bpwq2qJzG8W32`WZwAw}sZiykQf=2~2`!^QnpL$dC3a zGhPl18$%z?l~r7Vuw5Yzat30tElY*2WErUkV)OdG-OFsHoM%`$bI_bE6wmvKvvxp@ zm^oa1>#OL*aypm?3_AeFgmkYkqcotDlsG_`1?7^cGYrlgV{MwCj0ZmhjG{y^klHva z8p1L2Y`S5L*VRE-m~mB8-at_vx_1$89|t|56*wo8?)w+ARmP4p^ zuSC!YXb|qvUxYfBheTXH>C)#@5`$ET99pwEM2D3>nM{q?w2Z+q%CTn0o8~FB-fem* zQMuu0e^o|kuS+n~>5)?OEnl~IcD3nwNjGPEwc#LKc&ULd|DiWnn9Mr_LC8o{i_$ZA@+}_u`bI6^}m1{Ixl!2?n7_DJOSo z))Mc+jf642aOG0i6)(X;EUL0;PIP8-4kkg&3h-dZ49FwQg)@Heb1 znqY%$%WECgIZPW1ugP`yig$iVhMWAcm zUCKxWnr>1sO~YZebdpK%bfmCY(X8MILTIy2OEzv87gK=KM-np)=czxj+)50D*QaB7 zqlX*g`9l1}3{^w~xv#e>E@hWB8(*17z-Y^cnkXd2U!|4z^9y_Jvc5*z1@x{ft^b-t zl44C9mm_ra5+zE+vuy4-Bw~|7Ge5+jJ~xmwZXVtNvs|mo>ompxQ<$! zRJGk}rzIp;wXxKYQRVC9F>Pj7+1E{7c-B*-%PQ&}B=GG34%!{Z=GIwGbV=(}l_A7c zkr4hQ-tc>%FJE6$Ld1syfxb-y;KbgiqQQV!BS6Ig+ZpBnQ3;7Smxy{cq!_iZ%DstuROI_ zuJru250Sr&lz1F567<<2YyrZ0!fI-3Rem0 z2mUjg?0<1Pn>ZW%W|ECj8nsU9knGVek8Q@nS!*NcHk2VKV;p;GR%|==lQq6L;0i;97WZSP!8&i z;OkvDEQSY7U`?h)3xxTdkhoq@S zW!IzQP};55#A3Syogo0`(qTZWEANGgqu~%}pR*kWw_{aJ_73`+uTo$$e!uyHI@s#} zqz;DpcqEMMY@L6zbpK`!*3q-uZ9($;S%T=zujg6!!jQ7NdX~4e;}6mvmfs5YG$P(G zUPW6*YC`egOi=jh_#nYaDk9-ZYKB^kYvSZNG_V)9XV2c5PDEw4`Rd*olZCe*NOm=@ z&y5R*iwz+$v~xGUb;H2d8r2>5^Zk}yqf(te)d1O83tNg!+z{%WbBYsvG)W2gYxrEY zF}E(cFk@}>a7ttmY>I@W(W>iX%eZ2k)d=WEt&M3-0<(_ihHodqMM-aPb%);DaT%xD zjMuToZAO@Za#&8ZsFK}zh%mC-;L#h`>W(i-b0gir;^JaX6eW zojP@KWQYc9G~V@cplakFXmGzG%*yH5rJG`SKzoX~Nzve2w|GJ&t*|qi(<8WndEEVJxzU9{zEnxf!oUsRP)t2`_wJ&|gpKp># zdZF4?CouwW*0Atl1f_;j#Sf`$ia}mT58?`Syu=tJngOt5t)>#ln_V6IJQCxhywbhcHzNSzq#?MTWhG ze3+b2g9q?^!bP{GEUeqPg**rL@~#+(mwnSbFaWK|p)SxBAUHL1meZ6#0y^t0SUtk@ z*pn+Sn{g%njSQ9>TVY<(eRsRXei=9-(Ckv^vljlXeQq5olx)T1n34^22~O=VDJMwz z#`$FK*4y2L5=JzRdy4%fC-6DSvJjQWj_@^=nXZu80gjuo!&cJ$x!F*}xOV71Ulx!kP(6XWP5M3Qw&z&xG)J~{qz zP|e}^L>Nzxex^o=FQ-^GN^I|jRna@{kG%>>7?6NFclp>fGc?lO&FEZTmfc zKV4WTEi(_NfTp8_n~y^=zj+(?evn62S;AJRzmtce`e%i-alLxsY)+xhX+DMKPa6@~ zNRh$$BR(>)(s~|NaF=pAdwFJbUAUY@lI~JtZ6r_@tPrRpS`$*0ImbWa5bopvl-r+# zaZZk%W91c!NUanN$DHRLl@wjBp-J zkU~KE?C0Aqoh3y_>bZ*|_(n4YOho)hX3I>;R~86tp$-+0SexB)sBe(IQ}mO|mbsiC zY;W~U-bN=7nEHu}Klq&TQ-ngSqSHg!f`$Pkn(#Yf=lPTHW+2NNpo_Y_|=OLyCzSu4f_JoFl{?% zP)jcZ#ZExc36-0NVyrcOgJ&-TM~#ad7EAtl4jtt6ZPjm)6s`09o^N$}H`GyxbS`uY zoNOLbAbB+iL8Z2njo7amqK=r0`XG=bwg^Zi10OH1grGW16<+Keg_3J7%F@}brOh&d z-jb~2%l1vkH^76mQMIN}yUI%>D3>3TtGfblOB=&TY0FV=T=wwr_9irpWkXveGBJV= zhc(~JW2x>mxbBe#uofL{qUN2V40$gUw^5ckx=+*gJTwbdT$qu&=tm|`(p_wawz#*< zQ&f%JL(-cKWW1_6Z1JRfSgD6WWDZ@M9~&2lVIbsm*&cinwPYP+eOxoHk}1YvNBL5x z)__U7)GU@XD8#KVuDDtMz7wH=7v|COc8>U?<*MV6(lL3~qXfr*Rf!P&O zD4K`48SrB?nqN)6&nBv1$2!37-C1J^|( zZzQnSa}Ntvse*0xvIj??&rnHryeR8RQoVcOX zk5e@^bPHnlqTa4HlCfV?>l*F9;zlM$;fuPUjGP?vbqQUyOuDSf|7CJ5`JMlZP4{t0 z@B>5S^OBS3d*ESo$4<}MLGVye2lD$DN6pPMO7AtxS^14rdmhnQ^GLcy8U7oCZ?bya!ZH z3-5hWG+Q00q}sjr8?kp6r}{_J@b4KLi!!-Jkq&XNjH7Fg*c`&X+}!{eD^_W)@N`a= z3plj#wR^mVz|IuPH*FmzcLO#1T6sg1o6NUDD||JTDnpcisi;vLWMC za1d=?lx?+-M2zRXe4>&Edlz$dkAz#I`P8|NG^t^ohVu{r3y;2zghTJBbrspFU!71L zUz^wW5D&LBit`?r%EmLA{M6`_7IS@yu(uk4<}C)Y{EWHgVF&e-00({PG_xP9+Rk$z z^ksh)YvzUe*J4rzw^r7-mt;nQR;SV}uOWytw22+Z>c|IbwUc$7r?Cta#a!qgB)m%n zplj>uP(O)qY8JhsTo=8}YKayxo`yzq-}QT8YJt-Yw0RQrzem3sF?eBMd_Nm^^P=l4 zpH*RI&R$uSAO)557K5z;9gByhyjq8375hQ_*>4A~EY$$$KG4nK4UB=4X!5~L97C;# z%h2D)2iT)gzT2%2hzp3>sAB8)S0S(zav!Y|)HF}fxfPgQbsv3O$4GB~!gqS7Z#uZo zhn4_`v1|8bFp67ZZQ0*m)3{F)Q!ad_+P2&OHI>25tpD-s?;kyaf&9LlFnnyUhxV4W z_3GC^q4sJa=Ubcbbhv7Ek>tz8v#(lN8+*n=p4A`cX?JbB(9^r!a1CQ1HrG;4>DZv3 z&r>;8n{V5ZGLPM;vkU2ps9o|HgWeywIkaZ#J?Ch&H_vR04AlC0*Mx}-wO2vEDS9)4 z#Z(VZo_2C5(bZ;`8}yuf6|8)zd=293w1gQaFmL=C`;Joj@DA~N5RHd`;R*XOMi%+l z9sSQUrr(V2PR<_ICjV03z_qg5{c`>M3jMJU>>NU*&cw`!4dM3Q_9y%ic$6u|L#;lk zB)Mb+h{URd-)q90R*Jc(?}0poIPru%yB)k(q8)**A-AT`2%^MA#Z|IZjQ$P)h-^Ch z?se7ddBC&feU%PMXs=g<|3w8B#g^qQk_aba7)q-Um6-{$CBHWRV}2UCL=4Pi40FLC z4h=9oG4z@cq|1zXj`n!@sK?2n$2F^8*0%XhBS><%Y8M;4jQhjBq$}1Oaf|*e;?z@i z?~^~MSIpLd5Yw*7@a_cG?xXhwrFj5$d`sBv5)$SYZ5UwnfN}3gMO$j$P#p|zQr0io zbPlIZMqQ~q%(?;SnHOG^=+pJ`*_|x|hg;rqZIFYJkok;SG78z=c*4^f*4AgNg1C*s?8?#MG!? zTT>99x70WKfxQ&2tgIIwTnvz)JdlwTrD0gMnMvWJd|+#md(5GZy7V^?Ro=pOPNK7gN92++OaxgaoNja7BWnF`QSz*Yp|85JRYnfaj^8ZZt%9I zM7GG6j3}n|GgyL`kfS}yb~-U$O!gY4al%lt5Uxyl*ISk5IsLK3Aw=vtj`(W|J~wXp z)#iX~|B|vj#cExnQ~uNCkyl`!D6E)XPDMiaEeMz1G;IpM1?H~ECu zs^pgV2ZjeaTa*|ALX$`o)=UTk=t|?~;1PET6Y{oo$K@4|CCEq5Jt8OZtwKpbS#C>! z;?|SCG0`eFfh1rCMqpoxOzbMxyu1!u0vbiE0}E~9pv7kB?d#B(^=rj}pPe-Lujiq= zN(RqAn*?@W7O@CwNu`!%N2N}YSu*GazTK3bZ5T{FuT}((!nB4avn2Dislr$!>Ge}8 z^sAE|fKdu&L7~qJ;;~9$Yg@DGj7C?N%nJtIM#4Z0G2F~jPwM=c zjsT=br1H^FC1Olnu8|^;4I0%gv=WhY^6 zXeOqTvsUZNGeH3|gA3bO%abplG2Gug4x9GR@Hq&abYQ)17*+m+Ix~yKLYi3b;&N0)}@3t0%nuR+3MUyHNUCtPU=O4>vsp`w9 zD}Hnck@-mXE#C@Zw(ZOw><-#y>eL+gS~_Gw;RiL0Jxlo4EevCCp}ky{5D>rJ=p54$ z$~aVswQoyL6*VbjdExVTkFU9|;f1gLtz+Me;^DQw#4X|D z-Lf;wC4Y5%PRsk8X{f@+?=G@4dXFGsT^GvQcip54$r$vr!l4)naxz!12;tqSsb~ZH zZDU(Y@lb7o>E6fAw&v#pM1ogFJD6wnPm{@K_lPU2_+k}Li^vl|jf9`WZzv4uDL zeT%r9`caF*AI)6A^$*kHJYsblN|hzHg*i{&HH|O?_3X8c z=emswmz$0U*KYxUVXpHhocdR9+_$&O1T5Z7B^V()Z!bWnt#@iUyCvXhJ%@_?`AeA@ z#=MNT9K_~w`!RV=JtR)Agc) zq?8BgdB+B#@AkzSASn-M!F>?E9Xd5aFisob&_{Rqno3l&g~gXnXs~ ztgo#P^Y~Y-$$>gc4kG2HZ`d3BsC19nWZZ;DKD;~y$`I7NPUZr2;FG23kn0VjheKYa zsh7S_WRaSAo|ryi5>DSJp%NH;b3Ho9}+Tbes=w5(gSb3{wxXemWw+V)u42$ zQ=}^PN*g-xyo^o2Ygo%vw717 z8&S-{_|{})M2iXmepO;&x~!;qfbCjMev=+n_i$;%PXgS_m=u3NIDVB`Fd6Lhcqeg@ z%+;B0x{1DZ>y%vY1TV`W!L@8%w`aYa&wStH;=~WDE|K5h!AnVX{G{*l&5d28IO|yp zi!+M#eKZBpbm;*B0ijvei;+M=tJs`M`=lxzCdy1}H5QF{#5K>u-si%0N<}qmQz0C!%#M^l)$uVapmb)2-#o;#V@qnzX;DFg&q~rtG zrxKuPc(VOMwt*%>GiVZv_HtV>#svYLmEA|vF5|tH%y?se4KJbfiuTI{L-|w*T>UK^n(gK9T5<8h0)(hyXyDPwGFVmHFp&Gv-srazCP{{zmSB9Z@$^7r2K{0Ef3ibnqb;ynEaoWF`l{xi;R zS;s$(`Qumk_q+3VQOSQs`mI#;r&<38q(4O_{~6`){mK6iCp{+6Zu)8szD{wI2Th*bXZ5dY!%SAnp< zd&YjGVE(Gl_=o2|35fmKCe}xA`zJZEKT!T?|E~$3-#NTLZB65&=l`A2`**Lu&TxMx zgZ{K(t-qy){@wAfvG?}`_)mj3`|EW0-~Ij?J$^^#KdsXKAL6vU6d3sL(~v%1CLckE J#PRph{{y$t_hbM7 literal 0 HcmV?d00001 diff --git a/lectures/datasets/fig_3.xlsx b/lectures/datasets/fig_3.xlsx new file mode 100644 index 0000000000000000000000000000000000000000..7c637d4d29aaae7f0a185d28a34484c36371a525 GIT binary patch literal 9466 zcmbt)2Ut@}@NX#6q$vo}q)YETROu)kq)8D-=t&?6(tDBKq)H2dARr(}2kFwgQ~?pB zNv{F|@}k~*z1R1D-*^A_CEqzYo1Oj5?#%4YoSoIahlNcJ008jN7b8Hi%MsHX0|0n~ z2>_4)SOD%$d~PtfqZJJ1$meNw0%=0MgId5$W#!w9AL(0bdCYcmq_D zCRDhDLR`3X!x&uG0Tm*Pl|{V4NoyyHMji9~-ZRev9m_ng@@mE5Dcd;6xZWI%w;6{y z8+4k{YbMqNkkSaJk}xL<6;o`K9Oys^iQbf5()O_Up?Hecp1=;Gw5=TWyBb|t*FC8{ zs+>kzHV)U+L!J2`E&>@;Y5RWBRLJ%rjzcW(dmS?8TO-;>`!9jZ>fWV`0?9A9mv30A zW`|s_xS#=UJq~>rNMdowpFgj?8Z+VNBFZ+&;dZrl3*NqZ#7d=>v`3e4f3heH zO``33Qs?rt;F;rBsby2W_PkG+Y8_QsK*}yJY7-=?Pbja=V3eJ@U@Q7mWxsXKL*iP* z-ri1$3_$xI%8Wp$;p^Z605*&O0NGDvBJIEsFyD{6z`s@KmdOLyj41gxuD}mw^DGvD z^&w>%Gb}s~H45}p>D5!(&lpG5qMx-4%WQ#L{Gn5Q{%^J{ZyG$jVz3F8y)746a&}EJ z4-{EhC<>{!YEJ-!D`xg}A&7@0m|RcS+v9*;;w!;QJT=~hOF(hz*ZAQ!JjdI1+IF?X zlvx z%}oEXI0~-kx+OQ6uGeV>%aeLK0$Hs$qw-YUcp9}9M6a6?N7+jyJ}Ym{v13yKpT_ce zq;w7nJmaA}RG;d>lO-=zxJJ2)T23B|-5@VBDk|(w;Ama~N2H?pY{(i$B(59-KF4(ycn3VDz>e_RoKhlf zXU8=2Ye1lL3{$6Ntv(0Q-TNn8e$uW?Ze% znH|`Dz`-El{(AaqnT3?!(N>Dz`APrnX1ZL3OkYL${!A?I#aYXoj65*$3BRvavW|aP zYanJEl!%P+cibH7;;+0Bgciq?2-PWX?@=)6r<5EM4Y&kVOyyx&=MPu_WWG~!w#)X45K>z(Bo@aUF|sG4OagF|`? zo?iRY$zgfaFeegiH1QsGB;hRt$l9nbpk?+|=dXl%D~D{U2(EV}MuWg7zGS*un%JA~ zz;+3pfwacYw;4N;qqij2ao95+gg<5>KrU{a<1tZ4)TF%{-4Q|zbbC4DMeIxa#Xf95 zueh>a@EssC)gVT`iGN_udNIl6w26nm3jr!T$Ab$O2)PKtBa3MW+%|e z;5q|fwuFJ$L%%3`MaIM;d$BNim^)(TgllRO6Rvp48g6d^sBUO}ILO#F>kMTZs@!~7 zBEuh-0WQHL11S)FOG{-q$expDRwTM%ycft;|{aHBD zX#FrLJBd{`e+Z%BfQ==*_8ElC7Gs?~=V(e9BBJ%&OcPHWO307H-F3*sadfCg1~^ek zD(p9z!yKAK814oc#f{OxM0#+&%xsdQgYPg)`wVwW1l%_|!Wg?b@L-#~x@bW#L*b^& z>6g$oLQUUJCe4Hv+~?^Y{YoTz3<3?kiiKkGOwOCy*Q-tK1G#za@^m8u4NK*cPsBbs z%2%IKE@JJZf9QP2aqH^b<@>NoH~7_4)&cs7u82$8v4kX^mYw#8@I~5DC2!n2m8VA) zm5ag7;&tq7w=+q_(;gJmaFdIz8$69YvKF|Z-Xs3(0PuXdQ}qD<&E0)RsdXp>XNx!U z=xZVLZF?Gb{wiPJ4)4n7BjY0{2a$1Ap^BoFyeYp@l3{0ik%^Wh{k;;!S<`~%XebjG z!w!3&tsRN5`%@rRRxqSzP%y15bfA7;paG|Ze|C5fb1dQgu|)Y>RH<~~hPasY5- zl4Ndr0jvAAwD_p0b}Lyyn>joRwV|%5^iC1;>Uxf9Iz=sDhQT>BXKeTE zO4)i60a3FVPo+<@$@bZ@Zke73p^^%=<+N5M$w%xE-gjjLVHlM)6U z<_+(U94?e|47ML#H7{XV5PKR@Z&+CQ#b+vF^B3ekCV1>J zKnkk|SuAY!kH76m?#GBKsTtr2YanIkB9EDlc0XUdax+)DPr2-}A~@tm=hEM&;o_ZD zH~-Ci?s=)6*tE-&t-jpUI$6anUr%p$uHqC=HpNdZXI-8v+fP@JvT0+dnzR+~xwIDX z5+TNP6*%8sX0aU=UY}NegPhW;-RXLwU_fiOBRddd((Bv{xX<0yCL zX_(zg>|n=CN$z|p6N;XtK9jV?&1pGn&_02$M{7PRd8Th^`_JkowD>G z5H#L*io}i5dN^A@ML9qM-d4&{c&t$-vnWj|{lRyqzTnu^>z$E!VTU7Q?iJy}?V-0e zE8kK&?!>LC`L42UY?-BEZ!{zp%t*=(if(L$?h%pr)y0yeV^(W4ZRlG`BC<~|IKxbB z_fJr5i`nvxnD=iv3j@p5&z&>aER2~>{lr#6pIRN?U&Tqo;Xr>P1$58 zH9SrpUBYvrkfer8zTv}cyIjM5|?bhDNl&}%nHA;%jHhFyGRN)W#JQ^m$`6cQm zQ)Lt{;N_(%C2VRbGI7b}EKSq}!s%VAA7?+ka(WZrYZ*($?dMRaxg@-cS$FOn(N}?K zDR)RNvF~CQQgu#v&E*|~niye)eimCV%6={66=uoEn66I%fBt>jyu`PVaQ>`(b56rq z9WxJ?kXLbU&ABPr%GEBDd$z4{^ZLc;5)zL?slIILj-~2tny| z6Iuihck4oP1by(4pLgYEZpE=ZUb>S%H*0NTqEVHX z>v^&w2~xel;FW`?>Ik(PQ|^}R>-xj5Bv<=cF|4^B-_*s-449OI^aVtCd1bS-?9PaM zvCGDsEdV@8(kr44A4zuOaocQ~Vi+v@z!PE>}Dhk%8VNxvOQ|W`P#La zw@9nErCFkAd_8wTQ4Z%$V0f}!EO8>U%>-o5W}qk^FiE72(<@6;9D^P-)o9ntSfA+l zs;eNY8xa!2Nx4`rFVt!vmM}J2`bWZo^$V&IEN!1{a<35I>>lWyvqfRvjH%!}rd=DA z<7%O}h)p?kABz~=DA`@LUbes>e7?0$f~?|7Y--hhN(Oz2;KQe65e7`#S1`%F*f@|g zN4zFE+*WQNVKJaj#ljLM+yDc~p~0VkJPkU5M_JBdgbD%lbSAaa{+>imVyF%WImE-= z@=OKVNlC%2Y|fMpKGd}sl8*+#G;?yV7mnUfLfym1cUNd>ZbiD_RjyuVnqPZd3G23* zXw<$A&T!7B@aR z*g6~=qWt1Y?(s??1Y;#@!vp{$*x{uX1y&6~>lF4gK@PibcWTRf z-;9aRb#Kv`USk-gn*~(XfSeBT-sh?~#NLuKOdc72;ix?+*bxHM-xLzwt1D+Fhj+7$ zCU=n|ungT>r`B@Nkkh%i!%05m909}<_b#t2$ot?rhihzT%6|%VBfip^*pZX<1}D_o zgWmVRxeO2*@MRYR31+zODt++PpvsgK`tmln2y{x09Is~3eXmP$`8qQ>-_%~c@tl-j zVQ(mOeQ)p^BCRJyY}~dMxNFcR5%p9v@<

SWWqkRb(w!>$P{-4Y@Xmj}b&2~=hkbSSM4NdmLSQtI-(Jm^d*8Ompy(@U3%?E-jfBmW zi?3PMl9T0F?fflRRQ4%TGRNsY86&HZWZ*ph5Selpbmz$qFnDm9DW|yntn1+LvE*cr zk~*bJFFRF(WI{tWTdwJ*?*5^Cm@@!lpldslbR%1uFS|L8dr-DqB!~YsNGkG5<9<>~ znM63H1SYs}^7tYr1_}AkDD3SdWdFqr@=_==;{Ts1vZ@$IC z{JV{xa>vEqAM1~~$mtMtjJ38>@pa&)@6Ak_kmL9&RjE g_TL_w}$Yc#S&`DJXlj z1a^6(9`{<$if&oG5zofc{81{VF2s&c`uv%%b^U$$7X^tM^KmY1z?7< zwNTwR=_SeOoQr!Or>ew{^WsHH58m}p5jMehuarrUfp{N&;uNVjtA54A)Ez%3p6UKZ z(=9gLN%=${YQTyMCx2pl^hN1?lV>xZdtqo(5^ayb$0Ej+=$ttX1u^=1r8LHxx&2`t zy<)3JTy)x=^X8_w!zALBv)T2pNFLtv5O`m~^T=p7!xSnGHj5AyCgfEzsbNYQ964Os zT9?rC3}UV9O)3v=^#F5E4^d@?25FzwlF7G6-JCM9eK@ktfPHJy#m>WP#fdaTbEt}n z;Jxx>=jiwuab+Gs=AE^1k`c3}gKx~x_7qeA2>Ef*8zSSHor?dG3>d+H;>`=ECSy3y zQCHWR^|PBOc}k)%OyB!1yyRU&+kUw8L>rjl*z~TD2rt7^zPCyPGNgkki;Gs0)MX!9 z^tbvw*$%pu^Iw~-Q}}Z)RV73l&PU%~-Ke$^ijWjF&|uQ5bK&?xyu&c9a|Z0t1s8ny z=EYi+lg%|wLQp1>P`n~(zMZn-vTFd{l(9nKH{r8Oq(Kt&S@er(fEAFiFtD*H;ErzkNGWi8+Ok|Sl1<~p*_-!e68>-a*@EBXE!8DT09)%+k)lQ&oCR0`D z!|Y8A*-yAhj-rmLA9QR#C$O+>$#lnfhpRwy_}oz9quSjbAJ=TF))l$6b=R-kuUQv` zrjwo49Z{l1Dr*NRM*R^_1#jE=q$w%ZVlLauU-FEkMIW(PmG|^1+0glcopg9d=A9~o zy;x`%n{`GwwQFV}r%fHKSuHOQWvw+G^G6JgAW|e5LgvE+{p(HHlNU_%CIwB&UiWu%? zY%{XEV4`QHvEzyCri+=oMocF&Z&{{U^O>}c`B1x6IbKpYR*!=2S$EFeQwZ1NoFs}i zBU0t~@!UB4tK{`hl}Z_2$up8A4=b2V6!KSU8t20CVl{NyNxwxY@A){AUcp!aa3zMc z18((^<2ZFChEOn7c8BQIfAuW!T)E*oSlm>Rc~0_AN5ERtBCUqrEZ0PDmXrVC2<$B3 zV2~aXZV$En*Z#mKp;faTy<=|i7Co7WSxBiNZgPv=__tar^P>}Q8*l2*Ku9q8YS>yg zQsvS+c)q~SUi&>ah2Y>avsSknuGlp3%QfMb9GQVXm}i&K6TU*hMy_ZjO=EG3o+423^^54=qXf=#An zX_jL;nQ4ZxsyLCq6iOXc&G*HZzX!k%B(}?KoVaU1WtS;3KHAWdGa-sS0uJqrnV`!K zay8(G(BJV4jB~Pm^96}-O){Z19TtCGU5;-|{>kG_?M+n`_MopA#PdCc1ZQ)$kK>OU z%HH|+;e6K7hd_d!>5;dQ3(y5NZw$s158iIEzh7k^=FmhLy1R!E)3QB-5(B`DuEw;q z>88b(n&(OR!|qD+ zoQ4?-v17?=C2U-iT*B~duXM2;-a;k5T;*~Q(cFJ4!f}vat>F0)F=rFT(vv;AYJC4F z2RegBHI7-lfT92ctIt^CCWSsu;AivVly{0kGJ(EW~+0scu^4BF;TsP!$8vy!SRTg_5Ogz^D_|FvW2lz!92ixP)?%HK0K!d( znEW2wDuB|=RTeXq>9w^9Y-jGIyv8xZP6$pV^u~7Gti?qvGiPi!HB*@#S@5`BTb0sY zS~wT=8>nxPH?FPO!w$5!#?X>=yVU4=)@&js80f1RZyw~wcJk5(aP8ERsu}B_^9ieu zfngP$U1~(nC+eT`$pQ{`Li{5I#ryrAf0KtQNf>Zw=O+!eP}+QxoSCe9H_=p{aZ=O= zz*yoJ#)H50r3*Iy_DVr$oVj;~vG768+}1a*wQ)9^bt``D8?5YvykB{RaXx7AxoM%o zAiLGE7(`L3ujU~Z{^l^whtGXv2E< zbyl0HUiIs%z!>O#uB;2+{(K=TIpMmxOFGx(A5f-mN5PvYmreu1dU7sOEH8KG^9E_U z2xF6#j9z3nW!yBAvO@G4q_KjrtYWfq;F;eaJTs9a`MIb@e0&%vrGniFTn@fkz^!9jb! zQK!Mo(iai4VB$Qr!D(xuYaX>#Rm3gGxjRH|7Q+45bc$D{Tv8hOj9CQ(Z`4pfG&7h#|IuvXMx zA5)Be;A^GTEZ=-HkevUSZl}XXllHKUAVZ5>@Okohn@a~wt^IMg_6FU@pcUztaoi2;GMgn}%cU{J6$lLr{VBr7BJ9Rv(V+Jg}cXaFcen#m4{bO!SA zA*|7PI7#FgW=CM-SG{!0!;h82=$WYv+F>JZDR5NAw7PssaK=T7oQ* zmVDm<{|9}5tp9>^c7;3rP$|fo5A1}_yF$_XxdOZbe1GZ=WQ_#FA-}BR?+t#`{EZTV zR)aIzvi>ljzmtNje^&lQ?T)bji_p!@jn_@+M>o)>B*15+p|1DC_;~E0-!0Y}jMhBJ z8i=$5`WfMB7yk zlO+PFfu0#Q_F$0w4^#MKm_LEQAO>{zfIkQGXN{qdf}*}MlZ+t0pfC@=AdjG!zMue* zUl1rLZX(6^C)JORfI;6o^+P&9$RBL}4WhWdfGAKz5GW%0H^e^yWTd`Z2-==)VelVa zMi=4WNA};RyNrkw-`|TrO8>Mbv>9Vy@}NV&|JNxBbj9C3|KUug9qYumc$KdmKCclSBznJ(?{}{^uN5J$uuis;dU%Xn-sjB~FWbqxG z9P9fO`JY|xpWxL2Uuget2mE{M-#x{z);_oX*7{Gsp?&WP&UX?5^cRH%04OqkFa00Y CC^e-3 literal 0 HcmV?d00001 diff --git a/lectures/datasets/nom_balances.npy b/lectures/datasets/nom_balances.npy new file mode 100644 index 0000000000000000000000000000000000000000..2c90a3f786409c3b273da793504e15afa76e3dcd GIT binary patch literal 1424 zcmbW%=TB2n0LI~hiinCr+#0QhSd6HF#I5ld2SLTyC`5@1Xsf{iwiSus3IVquL(qFc z96<#)B8UVj3XTs12XT^66ETe&<3L>R;idioo^QW%pWfSZ?#WG`9}>J^iHjyy6R$HE zEs*CcE27N?qnw`|zSd&Iyk&KGj1lcS!QW3CFv3r}Mf<N)E2h#2}GiiqgBc;b~w7J774xi!6C?M8a%bweC|t0La&O9v=~glS`! zS0A89Uo@{i_-g3G2B1&FgCt6D-CPUfbLl&%ZT~NJP#!&6BS%Xf zJ^J^fIESg}80R~(o1Pt~M}It3Gq+^)NqY3_)-#{deDdi#sls0_DC9IfT0VbGTmd~A zr)$REltOwpRp4|@owM#7Jz5^0TaF9#Xu00rhD-FF+q?A=J$egXZ<%KiJ$f4s;O8Gj z^zNz{itWF@?h3uL-HPeaLz3R;OHIY}T~r}&=Lot=kCyv+%d3PQjmtsv@=NGFxc}Cm zQhN0BmaS0+Ch literal 0 HcmV?d00001 diff --git a/lectures/french_rev.md b/lectures/french_rev.md new file mode 100644 index 00000000..226f4dc5 --- /dev/null +++ b/lectures/french_rev.md @@ -0,0 +1,1031 @@ +--- +jupytext: + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.16.1 +kernelspec: + display_name: Python 3 (ipykernel) + language: python + name: python3 +--- + + +# Inflation During French Revolution + + +## Overview + +This lecture describes some monetary and fiscal features of the French Revolution +described by {cite}`sargent_velde1995`. + +We use matplotlib to replicate several of the graphs that they used to present salient patterns. + + + +## Fiscal Situation and Response of National Assembly + + +In response to a motion by Catholic Bishop Talleyrand, +the National Assembly confiscated and nationalized Church lands. + +But the National Assembly was dominated by free market advocates, not socialists. + +The National Assembly intended to use earnings from Church lands to service its national debt. + +To do this, it began to implement a ''privatization plan'' that would let it service its debt while +not raising taxes. + +Their plan involved issuing paper notes called ''assignats'' that entitled bearers to use them to purchase state lands. + +These paper notes would be ''as good as silver coins'' in the sense that both were acceptable means of payment in exchange for those (formerly) church lands. + +Finance Minister Necker and the Constituants planned +to solve the privatization problem **and** the debt problem simultaneously +by creating a new currency. + +They devised a scheme to raise revenues by auctioning +the confiscated lands, thereby withdrawing paper notes issued on the security of +the lands sold by the government. + + This ''tax-backed money'' scheme propelled the National Assembly into the domain of monetary experimentation. + +Records of their debates show +how members of the Assembly marshaled theory and evidence to assess the likely +effects of their innovation. + +They quoted David Hume and Adam Smith and cited John +Law's System of 1720 and the American experiences with paper money fifteen years +earlier as examples of how paper money schemes can go awry. + + +### Necker's plan and how it was tweaked + +Necker's original plan embodied two components: a national bank and a new +financial instrument, the ''assignat''. + + +Necker's national +bank was patterned after the Bank of England. He proposed to transform the *Caisse d'Escompte* into a national bank by granting it a monopoly on issuing +notes and marketing government debt. The *Caisse* was a +discount bank founded in 1776 whose main function was to discount commercial bills +and issue convertible notes. Although independent of the government in principle, +it had occasionally been used as a source of loans. Its notes had been declared +inconvertible in August 1788, and by the time of Necker's proposal, its reserves +were exhausted. Necker's plan placed the National Estates (as the Church lands +became known after the addition of the royal demesne) at the center of the financial +picture: a ''Bank of France'' would issue a $5\%$ security mortgaged on the prospective +receipts from the modest sale of some 400 millions' worth of National Estates in +the years 1791 to 1793. +```{note} + Only 170 million was to be used initially +to cover the deficits of 1789 and 1790. +``` + + +By mid-1790, members of the National Assembly had agreed to sell the National +Estates and to use the proceeds to service the debt in a ``tax-backed money'' scheme +```{note} +Debt service costs absorbed + over 60\% of French government expenditures. +``` + +The government would issue securities with which it would reimburse debt. + +The securities +were acceptable as payment for National Estates purchased at auctions; once received +in payment, they were to be burned. + +```{note} +The appendix to {cite}`sargent_velde1995` describes the +auction rules in detail. +``` +The Estates available for sale were thought to be worth about 2,400 +million, while the exactable debt (essentially fixed-term loans, unpaid arrears, +and liquidated offices) stood at about 2,000 million. The value of the land was +sufficient to let the Assembly retire all of the exactable debt and thereby eliminate +the interest payments on it. After lengthy debates, in August 1790, the Assembly set the denomination +and interest rate structure of the debt. + + +```{note} Two distinct +aspects of monetary theory help in thinking about the assignat plan. First, a system +beginning with a commodity standard typically has room for a once-and-for-all emission +of (an unbacked) paper currency that can replace the commodity money without generating +inflation. \citet{Sargent/Wallace:1983} describe models with this property. That +commodity money systems are wasteful underlies Milton Friedman's (1960) TOM:ADD REFERENCE preference +for a fiat money regime over a commodity money. Second, in a small country on a +commodity money system that starts with restrictions on intermediation, those restrictions +can be relaxed by letting the government issue bank notes on the security of safe +private indebtedness, while leaving bank notes convertible into gold at par. See +Adam Smith and Sargent and Wallace (1982) for expressions of this idea. TOM: ADD REFERENCES HEREAND IN BIBTEX FILE. +``` + + +```{note} +The +National Assembly debated many now classic questions in monetary economics. Under +what conditions would money creation generate inflation, with what consequences +for business conditions? Distinctions were made between issue of money to pay off +debt, on one hand, and monetization of deficits, on the other. Would *assignats* be akin +to notes emitted under a real bills regime, and cause loss of specie, or would +they circulate alongside specie, thus increasing the money stock? Would inflation +affect real wages? How would it impact foreign trade, competitiveness of French +industry and agriculture, balance of trade, foreign exchange? +``` + +## Data Sources + +This notebook uses data from three spreadsheets: + + * datasets/fig_3.ods + * datasets/dette.xlsx + * datasets/assignat.xlsx + +```{code-cell} ipython3 +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +plt.rcParams.update({'font.size': 12}) +``` + + +## Figure 1 + + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: "Ratio of debt service to taxes, Britain and France" + name: fig1 +--- + +# Read the data from the Excel file +data1 = pd.read_excel('datasets/dette.xlsx', sheet_name='Debt', usecols='R:S', skiprows=5, nrows=99, header=None) +data1a = pd.read_excel('datasets/dette.xlsx', sheet_name='Debt', usecols='P', skiprows=89, nrows=15, header=None) + +# Plot the data +plt.figure() +plt.plot(range(1690, 1789), 100 * data1.iloc[:, 1], linewidth=0.8) + +date = np.arange(1690, 1789) +index = (date < 1774) & (data1.iloc[:, 0] > 0) +plt.plot(date[index], 100 * data1[index].iloc[:, 0], '*:', color='r', linewidth=0.8) + +# Plot the additional data +plt.plot(range(1774, 1789), 100 * data1a, '*:', color='orange') + +# Note about the data +# The French data before 1720 don't match up with the published version +# Set the plot properties +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.gca().set_facecolor('white') +plt.gca().set_xlim([1688, 1788]) +plt.ylabel('% of Taxes') + +plt.tight_layout() +plt.show() + +#plt.savefig('frfinfig1.pdf', dpi=600) +#plt.savefig('frfinfig1.jpg', dpi=600) +``` + + +TO TEACH TOM: By staring at {numref}`fig1` carefully + + +## Figure 2 + + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: "Government Expenditures and Tax Revenues in Britain" + name: fig2 +--- + +# Read the data from Excel file +data2 = pd.read_excel('datasets/dette.xlsx', sheet_name='Militspe', usecols='M:X', skiprows=7, nrows=102, header=None) + +# Plot the data +plt.figure() +plt.plot(range(1689, 1791), data2.iloc[:, 5], linewidth=0.8) +plt.plot(range(1689, 1791), data2.iloc[:, 11], linewidth=0.8, color='red') +plt.plot(range(1689, 1791), data2.iloc[:, 9], linewidth=0.8, color='orange') +plt.plot(range(1689, 1791), data2.iloc[:, 8], 'o-', markerfacecolor='none', linewidth=0.8, color='purple') + +# Customize the plot +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.gca().tick_params(labelsize=12) +plt.xlim([1689, 1790]) +plt.ylabel('millions of pounds', fontsize=12) + +# Add text annotations +plt.text(1765, 1.5, 'civil', fontsize=10) +plt.text(1760, 4.2, 'civil plus debt service', fontsize=10) +plt.text(1708, 15.5, 'total govt spending', fontsize=10) +plt.text(1759, 7.3, 'revenues', fontsize=10) + + +plt.tight_layout() +plt.show() + +# Save the figure as a PDF +#plt.savefig('frfinfig2.pdf', dpi=600) +``` + + +## Figure 3 + + + + +```{code-cell} ipython3 +# Read the data from the Excel file +data1 = pd.read_excel('datasets/fig_3.xlsx', sheet_name='Sheet1', usecols='C:F', skiprows=5, nrows=30, header=None) + +data1.replace(0, np.nan, inplace=True) +``` + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: "Government Spending and Tax Revenues in France" + name: fr_fig3 +--- +# Plot the data +plt.figure() + +plt.plot(range(1759, 1789, 1), data1.iloc[:, 0], '-x', linewidth=0.8) +plt.plot(range(1759, 1789, 1), data1.iloc[:, 1], '--*', linewidth=0.8) +plt.plot(range(1759, 1789, 1), data1.iloc[:, 2], '-o', linewidth=0.8, markerfacecolor='none') +plt.plot(range(1759, 1789, 1), data1.iloc[:, 3], '-*', linewidth=0.8) + +plt.text(1775, 610, 'total spending', fontsize=10) +plt.text(1773, 325, 'military', fontsize=10) +plt.text(1773, 220, 'civil plus debt service', fontsize=10) +plt.text(1773, 80, 'debt service', fontsize=10) +plt.text(1785, 500, 'revenues', fontsize=10) + + + +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.ylim([0, 700]) +plt.ylabel('millions of livres') + +plt.tight_layout() +plt.show() + +#plt.savefig('frfinfig3.jpg', dpi=600) +``` + + +TO TEACH TOM: By staring at {numref}`fr_fig3` carefully + +```{code-cell} ipython3 +# Plot the data +plt.figure() + +plt.plot(np.arange(1759, 1789, 1)[~np.isnan(data1.iloc[:, 0])], data1.iloc[:, 0][~np.isnan(data1.iloc[:, 0])], '-x', linewidth=0.8) +plt.plot(np.arange(1759, 1789, 1)[~np.isnan(data1.iloc[:, 1])], data1.iloc[:, 1][~np.isnan(data1.iloc[:, 1])], '--*', linewidth=0.8) +plt.plot(np.arange(1759, 1789, 1)[~np.isnan(data1.iloc[:, 2])], data1.iloc[:, 2][~np.isnan(data1.iloc[:, 2])], '-o', linewidth=0.8, markerfacecolor='none') +plt.plot(np.arange(1759, 1789, 1)[~np.isnan(data1.iloc[:, 3])], data1.iloc[:, 3][~np.isnan(data1.iloc[:, 3])], '-*', linewidth=0.8) + +plt.text(1775, 610, 'total spending', fontsize=10) +plt.text(1773, 325, 'military', fontsize=10) +plt.text(1773, 220, 'civil plus debt service', fontsize=10) +plt.text(1773, 80, 'debt service', fontsize=10) +plt.text(1785, 500, 'revenues', fontsize=10) + + +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.ylim([0, 700]) +plt.ylabel('millions of livres') + +plt.tight_layout() +plt.show() + +#plt.savefig('frfinfig3_ignore_nan.jpg', dpi=600) +``` + + +## Figure 4 + + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: "Military Spending in Britain and France" + name: fig4 +--- +# French military spending, 1685-1789, in 1726 livres +data4 = pd.read_excel('datasets/dette.xlsx', sheet_name='Militspe', usecols='D', skiprows=3, nrows=105, header=None).squeeze() +years = range(1685, 1790) + +plt.figure() +plt.plot(years, data4, '*-', linewidth=0.8) + +plt.plot(range(1689, 1791), data2.iloc[:, 4], linewidth=0.8) + +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.gca().tick_params(labelsize=12) +plt.xlim([1689, 1790]) +plt.xlabel('*: France') +plt.ylabel('Millions of livres') +plt.ylim([0, 475]) + +plt.tight_layout() +plt.show() + +#plt.savefig('frfinfig4.pdf', dpi=600) +``` + +TO TEACH TOM: By staring at {numref}`fig4` carefully + +## Figure 5 + + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: "Index of real per capital revenues, France" + name: fig5 +--- +# Read data from Excel file +data5 = pd.read_excel('datasets/dette.xlsx', sheet_name='Debt', usecols='K', skiprows=41, nrows=120, header=None) + +# Plot the data +plt.figure() +plt.plot(range(1726, 1846), data5.iloc[:, 0], linewidth=0.8) + +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.gca().set_facecolor('white') +plt.gca().tick_params(labelsize=12) +plt.xlim([1726, 1845]) +plt.ylabel('1726 = 1', fontsize=12) + +plt.tight_layout() +plt.show() + +# Save the figure as a PDF +#plt.savefig('frfinfig5.pdf', dpi=600) +``` + +TO TEACH TOM: By staring at {numref}`fig5` carefully + +## Rise and Fall of the *Assignat* + + + + We have partitioned Figures~\ref{fig:fig7}, \ref{fig:fig8}, and \ref{fig:fig9} + into three periods, corresponding +to different monetary regimes or episodes. The three clouds of points in +Figure~\ref{fig:fig7} + depict different real balance-inflation relationships. Only the cloud for the +third period has the inverse relationship familiar to us now from twentieth-century +hyperinflations. The first period ends in the late summer of 1793, and is characterized +by growing real balances and moderate inflation. The second period begins and ends +with the Terror. It is marked by high real balances, around 2,500 millions, and +roughly stable prices. The fall of Robespierre in late July 1794 begins the third +of our episodes, in which real balances decline and prices rise rapidly. We interpret +these three episodes in terms of three separate theories about money: a ``backing'' +or ''real bills'' theory (the text is Adam Smith (1776)), +a legal restrictions theory (TOM: HERE PLEASE CITE +Keynes,1940, AS WELL AS Bryant/Wallace:1984 and Villamil:1988) +and a classical hyperinflation theory.% +```{note} +According to the empirical definition of hyperinflation adopted by {cite}`Cagan`, +beginning in the month that inflation exceeds 50 percent +per month and ending in the month before inflation drops below 50 percent per month +for at least a year, the *assignat* experienced a hyperinflation from May to December +1795. +``` +We view these +theories not as competitors but as alternative collections of ``if-then'' +statements about government note issues, each of which finds its conditions more +nearly met in one of these episodes than in the other two. + + + + + +## Figure 7 + + +## To Do for Zejin + +I want to tweak and consolidate the extra lines that Zejin drew on the beautiful **Figure 7**. + +I'd like to experiment in plotting the **six** extra lines all on one graph -- a pair of lines for each of our subsamples + + * one for the $y$ on $x$ regression line + * another for the $x$ on $y$ regression line + +I'd like the $y$ on $x$ and $x$ on $y$ lines to be in separate colors. + +Once we are satisfied with this new graph with its six additional lines, we can dispense with the other graphs that add one line at a time. + +Zejin, I can explain on zoom the lessons I want to convey with this. + + + +Just to recall, to compute the regression lines, Zejin wrote a function that use standard formulas +for a and b in a least squares regression y = a + b x + residual -- i.e., b is ratio of sample covariance of y,x to sample variance of x; while a is then computed from a = sample mean of y - \hat b *sample mean of x + +We could presumably tell students how to do this with a couple of numpy lines +I'd like to create three additional versions of the following figure. + +To remind you, we focused on three subperiods: + + +* subperiod 1: ("real bills period): January 1791 to July 1793 + +* subperiod 2: ("terror:): August 1793 - July 1794 + +* subperiod 3: ("classic Cagan hyperinflation): August 1794 - March 1796 + + +I can explain what this is designed to show. + + + +```{code-cell} ipython3 +def fit(x, y): + + b = np.cov(x, y)[0, 1] / np.var(x) + a = y.mean() - b * x.mean() + + return a, b +``` + +```{code-cell} ipython3 +# load data +caron = np.load('datasets/caron.npy') +nom_balances = np.load('datasets/nom_balances.npy') + +infl = np.concatenate(([np.nan], -np.log(caron[1:63, 1] / caron[0:62, 1]))) +bal = nom_balances[14:77, 1] * caron[:, 1] / 1000 +``` + +```{code-cell} ipython3 +# fit data + +# reg y on x for three periods +a1, b1 = fit(bal[1:31], infl[1:31]) +a2, b2 = fit(bal[31:44], infl[31:44]) +a3, b3 = fit(bal[44:63], infl[44:63]) + +# reg x on y for three periods +a1_rev, b1_rev = fit(infl[1:31], bal[1:31]) +a2_rev, b2_rev = fit(infl[31:44], bal[31:44]) +a3_rev, b3_rev = fit(infl[44:63], bal[44:63]) +``` + +```{code-cell} ipython3 +plt.figure() +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# first subsample +plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue', label='real bills period') + +# second subsample +plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror') + +# third subsample +plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan hyperinflation') + +plt.xlabel('real balances') +plt.ylabel('inflation') +plt.legend() + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig7.pdf', dpi=600) +``` + + + +```{code-cell} ipython3 +# fit data + +# reg y on x for three periods +a1, b1 = fit(bal[1:31], infl[1:31]) +a2, b2 = fit(bal[31:44], infl[31:44]) +a3, b3 = fit(bal[44:63], infl[44:63]) + +# reg x on y for three periods +a1_rev, b1_rev = fit(infl[1:31], bal[1:31]) +a2_rev, b2_rev = fit(infl[31:44], bal[31:44]) +a3_rev, b3_rev = fit(infl[44:63], bal[44:63]) +``` + +```{code-cell} ipython3 +plt.figure() +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# first subsample +plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue', label='real bills period') + +# second subsample +plt.plot(bal[34:44], infl[34:44], '+', color='red', label='terror') + +# third subsample # Tom tinkered with subsample period +plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan hyperinflation') + +plt.xlabel('real balances') +plt.ylabel('inflation') +plt.legend() + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig7.pdf', dpi=600) +``` + + +

The above graph is Tom's experimental lab. We'll delete it eventually.

+ +

Zejin: below is the grapth with six lines in one graph. The lines generated by regressing y on x have the same color as the corresponding data points, while the lines generated by regressing x on y are all in green.

+ +```{code-cell} ipython3 +plt.figure() +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# first subsample +plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue', label='real bills period') +plt.plot(bal[1:31], a1 + bal[1:31] * b1, color='blue', linewidth=0.8) +plt.plot(a1_rev + b1_rev * infl[1:31], infl[1:31], color='green', linewidth=0.8) + +# second subsample +plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror') +plt.plot(bal[31:44], a2 + bal[31:44] * b2, color='red', linewidth=0.8) +plt.plot(a2_rev + b2_rev * infl[31:44], infl[31:44], color='green', linewidth=0.8) + +# third subsample +plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan hyperinflation') +plt.plot(bal[44:63], a3 + bal[44:63] * b3, color='orange', linewidth=0.8) +plt.plot(a3_rev + b3_rev * infl[44:63], infl[44:63], color='green', linewidth=0.8) + +plt.xlabel('real balances') +plt.ylabel('inflation') +plt.legend() +#plt.savefig('frfinfig7.pdf', dpi=600) +``` + + + +

The graph below is Tom's version of the six lines in one graph. The lines generated by regressing y on x have the same color as the corresponding data points, while the lines generated by regressing x on y are all in green.

+ +```{code-cell} ipython3 +plt.figure() +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# first subsample +plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue', label='real bills period') +plt.plot(bal[1:31], a1 + bal[1:31] * b1, color='blue', linewidth=0.8) +plt.plot(a1_rev + b1_rev * infl[1:31], infl[1:31], color='green', linewidth=0.8) + +# second subsample +plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror') +plt.plot(bal[34:44], a2 + bal[34:44] * b2, color='red', linewidth=0.8) +plt.plot(a2_rev + b2_rev * infl[34:44], infl[34:44], color='green', linewidth=0.8) + +# third subsample +plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan hyperinflation') +plt.plot(bal[44:63], a3 + bal[44:63] * b3, color='orange', linewidth=0.8) +plt.plot(a3_rev + b3_rev * infl[44:63], infl[44:63], color='green', linewidth=0.8) + +plt.xlabel('real balances') +plt.ylabel('inflation') +plt.legend() + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig7.pdf', dpi=600) +``` + +```{code-cell} ipython3 +plt.figure() +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# first subsample +plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue', label='real bills period') +plt.plot(bal[1:31], a1 + bal[1:31] * b1, color='blue') + +# second subsample +plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror') + +# third subsample +plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan hyperinflation') + +plt.xlabel('real balances') +plt.ylabel('inflation') +plt.legend() + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig7_line1.pdf', dpi=600) +``` + +```{code-cell} ipython3 +plt.figure() +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# first subsample +plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue', label='real bills period') +plt.plot(a1_rev + b1_rev * infl[1:31], infl[1:31], color='blue') + +# second subsample +plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror') + +# third subsample +plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan hyperinflation') + +plt.xlabel('real balances') +plt.ylabel('inflation') +plt.legend() + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig7_line1_rev.pdf', dpi=600) +``` + +```{code-cell} ipython3 +plt.figure() +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# first subsample +plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue', label='real bills period') + +# second subsample +plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror') +plt.plot(bal[31:44], a2 + bal[31:44] * b2, color='red') + +# third subsample +plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan hyperinflation') + +plt.xlabel('real balances') +plt.ylabel('inflation') +plt.legend() + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig7_line2.pdf', dpi=600) +``` + +```{code-cell} ipython3 +plt.figure() +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# first subsample +plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue', label='real bills period') + +# second subsample +plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror') +plt.plot(a2_rev + b2_rev * infl[31:44], infl[31:44], color='red') + +# third subsample +plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan hyperinflation') + +plt.xlabel('real balances') +plt.ylabel('inflation') +plt.legend() + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig7_line2_rev.pdf', dpi=600) +``` + +```{code-cell} ipython3 +plt.figure() +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# first subsample +plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue', label='real bills period') + +# second subsample +plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror') + +# third subsample +plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan hyperinflation') +plt.plot(bal[44:63], a3 + bal[44:63] * b3, color='orange') + +plt.xlabel('real balances') +plt.ylabel('inflation') +plt.legend() + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig7_line3.pdf', dpi=600) +``` + +```{code-cell} ipython3 +plt.figure() +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# first subsample +plt.plot(bal[1:31], infl[1:31], 'o', markerfacecolor='none', color='blue', label='real bills period') + +# second subsample +plt.plot(bal[31:44], infl[31:44], '+', color='red', label='terror') + +# third subsample +plt.plot(bal[44:63], infl[44:63], '*', color='orange', label='classic Cagan hyperinflation') +plt.plot(a3_rev + b3_rev * infl[44:63], infl[44:63], color='orange') + +plt.xlabel('real balances') +plt.ylabel('inflation') +plt.legend() + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig7_line3_rev.pdf', dpi=600) +``` + + +## Figure 8 + + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: "Real balances of assignats (in gold and goods)" + name: fig8 +--- +# Read the data from Excel file +data7 = pd.read_excel('datasets/assignat.xlsx', sheet_name='Data', usecols='P:Q', skiprows=4, nrows=80, header=None) +data7a = pd.read_excel('datasets/assignat.xlsx', sheet_name='Data', usecols='L', skiprows=4, nrows=80, header=None) + +# Create the figure and plot +plt.figure() +h = plt.plot(pd.date_range(start='1789-11-01', periods=len(data7), freq='M'), (data7a.values * [1, 1]) * data7.values, linewidth=1.) +plt.setp(h[1], linestyle='--', color='red') + +plt.vlines([pd.Timestamp('1793-07-15'), pd.Timestamp('1793-07-15')], 0, 3000, linewidth=0.8, color='orange') +plt.vlines([pd.Timestamp('1794-07-15'), pd.Timestamp('1794-07-15')], 0, 3000, linewidth=0.8, color='purple') + +plt.ylim([0, 3000]) + +# Set properties of the plot +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.gca().set_facecolor('white') +plt.gca().tick_params(labelsize=12) +plt.xlim(pd.Timestamp('1789-11-01'), pd.Timestamp('1796-06-01')) +plt.ylabel('millions of livres', fontsize=12) + +# Add text annotations +plt.text(pd.Timestamp('1793-09-01'), 200, 'Terror', fontsize=12) +plt.text(pd.Timestamp('1791-05-01'), 750, 'gold value', fontsize=12) +plt.text(pd.Timestamp('1794-10-01'), 2500, 'real value', fontsize=12) + + +plt.tight_layout() +plt.show() + +# Save the figure as a PDF +#plt.savefig('frfinfig8.pdf', dpi=600) +``` + +TO TEACH TOM: By staring at {numref}`fig8` carefully + + +## Figure 9 + + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: "Price Level and Price of Gold (log scale)" + name: fig9 +--- +# Create the figure and plot +plt.figure() +x = np.arange(1789 + 10/12, 1796 + 5/12, 1/12) +h, = plt.plot(x, 1. / data7.iloc[:, 0], linestyle='--') +h, = plt.plot(x, 1. / data7.iloc[:, 1], color='r') + +# Set properties of the plot +plt.gca().tick_params(labelsize=12) +plt.yscale('log') +plt.xlim([1789 + 10/12, 1796 + 5/12]) +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +# Add vertical lines +plt.axvline(x=1793 + 6.5/12, linestyle='-', linewidth=0.8, color='orange') +plt.axvline(x=1794 + 6.5/12, linestyle='-', linewidth=0.8, color='purple') + +# Add text +plt.text(1793.75, 120, 'Terror', fontsize=12) +plt.text(1795, 2.8, 'price level', fontsize=12) +plt.text(1794.9, 40, 'gold', fontsize=12) + + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig9.pdf', dpi=600) +``` + +TO TEACH TOM: By staring at {numref}`fig9` carefully + + +## Figure 11 + + + + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: "Spending (blue) and Revenues (orange), (real values)" + name: fig11 +--- +# Read data from Excel file +data11 = pd.read_excel('datasets/assignat.xlsx', sheet_name='Budgets', usecols='J:K', skiprows=22, nrows=52, header=None) + +# Prepare the x-axis data +x_data = np.concatenate([ + np.arange(1791, 1794 + 8/12, 1/12), + np.arange(1794 + 9/12, 1795 + 3/12, 1/12) +]) + +# Remove NaN values from the data +data11_clean = data11.dropna() + +# Plot the data +plt.figure() +h = plt.plot(x_data, data11_clean.values[:, 0], linewidth=0.8) +h = plt.plot(x_data, data11_clean.values[:, 1], '--', linewidth=0.8) + + + +# Set plot properties +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.gca().set_facecolor('white') +plt.gca().tick_params(axis='both', which='major', labelsize=12) +plt.xlim([1791, 1795 + 3/12]) +plt.xticks(np.arange(1791, 1796)) +plt.yticks(np.arange(0, 201, 20)) + +# Set the y-axis label +plt.ylabel('millions of livres', fontsize=12) + + + +plt.tight_layout() +plt.show() + +#plt.savefig('frfinfig11.pdf', dpi=600) +``` +TO TEACH TOM: By staring at {numref}`fig11` carefully + + +## Figure 12 + + +```{code-cell} ipython3 +# Read data from Excel file +data12 = pd.read_excel('datasets/assignat.xlsx', sheet_name='seignor', usecols='F', skiprows=6, nrows=75, header=None).squeeze() + + +# Create a figure and plot the data +plt.figure() +plt.plot(pd.date_range(start='1790', periods=len(data12), freq='M'), data12, linewidth=0.8) + +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) + +plt.axhline(y=472.42/12, color='r', linestyle=':') +plt.xticks(ticks=pd.date_range(start='1790', end='1796', freq='AS'), labels=range(1790, 1797)) +plt.xlim(pd.Timestamp('1791'), pd.Timestamp('1796-02') + pd.DateOffset(months=2)) +plt.ylabel('millions of livres', fontsize=12) +plt.text(pd.Timestamp('1793-11'), 39.5, 'revenues in 1788', verticalalignment='top', fontsize=12) + + +plt.tight_layout() +plt.show() + +#plt.savefig('frfinfig12.pdf', dpi=600) +``` + + +## Figure 13 + + +```{code-cell} ipython3 +# Read data from Excel file +data13 = pd.read_excel('datasets/assignat.xlsx', sheet_name='Exchge', usecols='P:T', skiprows=3, nrows=502, header=None) + +# Plot the last column of the data +plt.figure() +plt.plot(data13.iloc[:, -1], linewidth=0.8) + +# Set properties of the plot +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.gca().set_xlim([1, len(data13)]) + +# Set x-ticks and x-tick labels +ttt = np.arange(1, len(data13) + 1) +plt.xticks(ttt[~np.isnan(data13.iloc[:, 0])], + ['Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec', 'Jan', 'Feb', + 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep']) + +# Add text to the plot +plt.text(1, 120, '1795', fontsize=12, ha='center') +plt.text(262, 120, '1796', fontsize=12, ha='center') + +# Draw a horizontal line and add text +plt.axhline(y=186.7, color='red', linestyle='-', linewidth=0.8) +plt.text(150, 190, 'silver parity', fontsize=12) + +# Add an annotation with an arrow +plt.annotate('end of the assignat', xy=(340, 172), xytext=(380, 160), + arrowprops=dict(facecolor='black', arrowstyle='->'), fontsize=12) + + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig13.pdf', dpi=600) +``` + + +## Figure 14 + + +```{code-cell} ipython3 +# figure 14 +data14 = pd.read_excel('datasets/assignat.xlsx', sheet_name='Post-95', usecols='I', skiprows=9, nrows=91, header=None).squeeze() +data14a = pd.read_excel('datasets/assignat.xlsx', sheet_name='Post-95', usecols='F', skiprows=100, nrows=151, header=None).squeeze() + +plt.figure() +h = plt.plot(data14, '*-', markersize=2, linewidth=0.8) +plt.plot(np.concatenate([np.full(data14.shape, np.nan), data14a]), linewidth=0.8) +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.gca().set_xticks(range(20, 237, 36)) +plt.gca().set_xticklabels(range(1796, 1803)) +plt.xlabel('*: Before the 2/3 bankruptcy') +plt.ylabel('Francs') + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig14.pdf', dpi=600) +``` + + +## Figure 15 + + +```{code-cell} ipython3 +# figure 15 +data15 = pd.read_excel('datasets/assignat.xlsx', sheet_name='Post-95', usecols='N', skiprows=4, nrows=88, header=None).squeeze() + +plt.figure() +h = plt.plot(range(2, 90), data15, '*-', linewidth=0.8) +plt.setp(h, markersize=2) +plt.gca().spines['top'].set_visible(False) +plt.gca().spines['right'].set_visible(False) +plt.text(47.5, 11.4, '17 brumaire', horizontalalignment='left', fontsize=12) +plt.text(49.5, 14.75, '19 brumaire', horizontalalignment='left', fontsize=12) +plt.text(15, -1, 'Vendémiaire 8', fontsize=12, horizontalalignment='center') +plt.text(45, -1, 'Brumaire', fontsize=12, horizontalalignment='center') +plt.text(75, -1, 'Frimaire', fontsize=12, horizontalalignment='center') +plt.ylim([0, 25]) +plt.xticks([], []) +plt.ylabel('Francs') + +plt.tight_layout() +plt.show() +#plt.savefig('frfinfig15.pdf', dpi=600) +``` + +```{code-cell} ipython3 + +``` diff --git a/lectures/laffer_adaptive.md b/lectures/laffer_adaptive.md new file mode 100644 index 00000000..92640fc3 --- /dev/null +++ b/lectures/laffer_adaptive.md @@ -0,0 +1,465 @@ +--- +jupytext: + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.14.5 +kernelspec: + display_name: Python 3 (ipykernel) + language: python + name: python3 +--- + ++++ {"user_expressions": []} + +# Laffer Curves with Adaptive Expectations + +## Overview + +This lecture studies stationary and dynamic **Laffer curves** in the inflation tax rate in a non-linear version of the model studied in this lecture {doc}`money_inflation`. + +As in the lecture {doc}`money_inflation`, this lecture uses the log-linear version of the demand function for money that {cite}`Cagan` used in his classic paper in place of the linear demand function used in this lecture {doc}`money_inflation`. + +But now, instead of assuming ''rational expectations'' in the form of ''perfect foresight'', +we'll adopt the ''adaptive expectations'' assumption used by {cite}`Cagan` and {cite}`Friedman1956`. + + + +This means that instead of assuming that expected inflation $\pi_t^*$ is described by the "perfect foresight" or "rational expectations" hypothesis + +$$ +\pi_t^* = p_{t+1} - p_t +$$ + +that we adopted in lectures {doc}`money_inflation` and lectures {doc}`money_inflation_nonlinear`, we'll now assume that $\pi_t^*$ is determined by the adaptive expectations hypothesis described in equation {eq}`eq:adaptex` reported below. + + + +We shall discover that changing our hypothesis about expectations formation in this way will change some our findings and leave others intact. In particular, we shall discover that + + +* replacing rational expectations with adaptive expectations leaves the two stationary inflation rates unchanged, but that $\ldots$ +* it reverse the pervese dynamics by making the **lower** stationary inflation rate the one to which the system typically converges +* a more plausible comparative dynamic outcome emerges in which now inflation can be **reduced** by running **lower** government deficits + +These more plausible comparative dynamics underly the "old time religion" that states that +"inflation is always and everwhere caused by government deficits". + + +These issues were studyied by {cite}`bruno1990seigniorage`. + +Their purpose was to reverse what they thought were counter intuitive +predictions of their model under rational expectations (i.e., perfect foresight in this context) +by dropping rational expectations and instead assuming that people form expectations about future inflation rates according to the "adaptive expectations" scheme {eq}`eq:adaptex` described below. + +```{note} +{cite}`sargent1989least` had studied another way of selecting stationary equilibrium that involved replacing rational expectations with a model of learning via least squares regression. + {cite}`marcet2003recurrent` and {cite}`sargent2009conquest` extended that work and applied it to study recurrent high-inflation episodes in Latin America. +``` + + +## The Model + +Let + + * $m_t$ be the log of the money supply at the beginning of time $t$ + * $p_t$ be the log of the price level at time $t$ + * $\pi_t^*$ be the public's expectation of the rate of inflation between $t$ and $t+1$ + + +The law of motion of the money supply is + +$$ +\exp(m_{t+1}) - \exp(m_t) = g \exp(p_t) +$$ (eq:ada_msupply) + + +where $g$ is the part of government expenditures financed by printing money. + +Notice that equation {eq}`eq:ada_msupply` implies that + +$$ +m_{t+1} = \log[ \exp(m_t) + g \exp(p_t)] +$$ (eq:ada_msupply2) + +The demand function for money is + +$$ +m_{t+1} - p_t = -\alpha \pi_t^* +$$ (eq:ada_mdemand) + +where $\alpha \geq 0$. + + + +Expectations of inflation are governed by + +$$ +\pi_{t}^* = (1-\delta) (p_t - p_{t-1}) + \delta \pi_{t-1}^* +$$ (eq:adaptex) + +where $\delta \in (0,1)$ + + +## Computing An Equilibrium Sequence + +Equation the expressions for $m_{t+1}$ promided by {eq}`eq:ada_mdemand` and {eq}`eq:ada_msupply2` and use equation {eq}`eq:adaptex` to eliminate $\pi_t^*$ to obtain +the following equation for $p_t$: + +$$ +\log[ \exp(m_t) + g \exp(p_t)] - p_t = -\alpha [(1-\delta) (p_t - p_{t-1}) + \delta \pi_{t-1}^*] +$$ (eq:pequation) + + +**Pseudo-code** + +Here is pseudo code for our algorithm. + +Starting at time $0$ with initial conditions $(m_0, \pi_{-1}^*, p_{-1})$, for each $t \geq 0$ +deploy the following steps in order: + +* solve {eq}`eq:pequation` for $p_t$ +* solve equation {eq}`eq:adaptex` for $\pi_t^*$ +* solve equation {eq}`eq:ada_msupply2` for $m_{t+1}$ + +This completes the algorithm. + + +## Claims or Conjectures + + +It will turn out that + + * if they exist, limiting values $\overline \pi$ and $\overline \mu$ will be equal + + * if limiting values exists, there are two possible limiting values, one high, one low + + * unlike the outcome in lecture {doc}`money_inflation_nonlinear`, for almost all initial log price levels and expected inflation rates $p_0, \pi_{t}^*$, the limiting $\overline \pi = \overline \mu$ is the **lower** steady state value + + * for each of the two possible limiting values $\bar \pi$ ,there is a unique initial log price level $p_0$ that implies that $\pi_t = \mu_t = \bar \mu$ for all $t \geq 0$ + + * this unique initial log price level solves $\log(\exp(m_0) + g \exp(p_0)) - p_0 = - \alpha \bar \pi $ + + * the preceding equation for $p_0$ comes from $m_1 - p_0 = - \alpha \bar \pi$ + ++++ {"user_expressions": []} + +## Limiting Values of Inflation Rate + +As in our earlier lecture {doc}`money_inflation_nonlinear`, we can compute the two prospective limiting values for $\bar \pi$ by studying the steady-state Laffer curve. + +Thus, in a **steady state** + +$$ +m_{t+1} - m_t = p_{t+1} - p_t = x \quad \forall t , +$$ + +where $x > 0 $ is a common rate of growth of logarithms of the money supply and price level. + +A few lines of algebra yields the following equation that $x$ satisfies + +$$ +\exp(-\alpha x) - \exp(-(1 + \alpha) x) = g +$$ (eq:ada_steadypi) + +where we require that + +$$ +g \leq \max_{x: x \geq 0} \exp(-\alpha x) - \exp(-(1 + \alpha) x) , +$$ (eq:ada_revmax) + +so that it is feasible to finance $g$ by printing money. + +The left side of {eq}`eq:ada_steadypi` is steady state revenue raised by printing money. + +The right side of {eq}`eq:ada_steadypi` is the quantity of time $t$ goods that the government raises by printing money. + +Soon we'll plot the left and right sides of equation {eq}`eq:ada_steadypi`. + +But first we'll write code that computes a steady-state +$\bar \pi$. + + + +Let's start by importing some libraries + +```{code-cell} ipython3 +from collections import namedtuple +import numpy as np +import matplotlib.pyplot as plt +from matplotlib.ticker import MaxNLocator +from matplotlib.cm import get_cmap +from matplotlib.colors import to_rgba +import matplotlib +from scipy.optimize import root, fsolve +``` + ++++ {"user_expressions": []} + +Let's create a `namedtuple` to store the parameters of the model + +```{code-cell} ipython3 +LafferAdaptive = namedtuple('LafferAdaptive', + ["m0", # log of the money supply at t=0 + "α", # sensitivity of money demand + "g", # government expenditure + "δ"]) + +# Create a Cagan Laffer model +def create_model(α=0.5, m0=np.log(100), g=0.35, δ=0.9): + return LafferAdaptive(α=α, m0=m0, g=g, δ=δ) + +model = create_model() +``` + ++++ {"user_expressions": []} + +Now we write code that computes steady-state $\bar \pi$s. + +```{code-cell} ipython3 +# Define formula for π_bar +def solve_π(x, α, g): + return np.exp(-α * x) - np.exp(-(1 + α) * x) - g + +def solve_π_bar(model, x0): + π_bar = fsolve(solve_π, x0=x0, xtol=1e-10, args=(model.α, model.g))[0] + return π_bar + +# Solve for the two steady state of π +π_l = solve_π_bar(model, x0=0.6) +π_u = solve_π_bar(model, x0=3.0) +print(f'The two steady state of π are: {π_l, π_u}') +``` + ++++ {"user_expressions": []} + +We find two steady state $\bar \pi$ values + ++++ {"user_expressions": []} + +## Steady State Laffer Curve + +The following figure plots the steady state Laffer curve together with the two stationary inflation rates. + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: Seigniorage as function of steady state inflation. The dashed brown lines + indicate $\pi_l$ and $\pi_u$. + name: laffer_curve_adaptive + width: 500px +--- +def compute_seign(x, α): + return np.exp(-α * x) - np.exp(-(1 + α) * x) + +def plot_laffer(model, πs): + α, g = model.α, model.g + + # Generate π values + x_values = np.linspace(0, 5, 1000) + + # Compute corresponding seigniorage values for the function + y_values = compute_seign(x_values, α) + + # Plot the function + plt.plot(x_values, y_values, + label=f'$exp((-{α})x) - exp(- (1- {α}) x)$') + for π, label in zip(πs, ['$\pi_l$', '$\pi_u$']): + plt.text(π, plt.gca().get_ylim()[0]*2, + label, horizontalalignment='center', + color='brown', size=10) + plt.axvline(π, color='brown', linestyle='--') + plt.axhline(g, color='red', linewidth=0.5, + linestyle='--', label='g') + plt.xlabel('$\pi$') + plt.ylabel('seigniorage') + plt.legend() + plt.grid(True) + plt.show() + +# Steady state Laffer curve +plot_laffer(model, (π_l, π_u)) +``` + ++++ {"user_expressions": []} + +## Associated Initial Price Levels + + + Now that we have our hands on the two possible steady states, we can compute two initial log price levels $p_{-1}$, which as initial conditions, imply that $\pi_t = \bar \pi $ for all $t \geq 0$. + +In particular, to initiate a fixed point of the dynamic Laffer curve dynamics we set + +$$ +p_{-1} = m_0 + \alpha \pi^* +$$ + +```{code-cell} ipython3 +def solve_p_init(model, π_star): + m0, α = model.m0, model.α + return m0 + α*π_star + + +# Compute two initial price levels associated with π_l and π_u +p_l, p_u = map(lambda π: solve_p_init(model, π), (π_l, π_u)) +print('Associated initial p_{-1}s', f'are: {p_l, p_u}') +``` + ++++ {"user_expressions": []} + +### Verification + + + +To start, let's write some code to verify that if we initial $\pi_{-1}^*,p_{-1}$ appropriately, the inflation rate $\pi_t$ will be constant for all $t \geq 0$ (at either $\pi_u$ or $\pi_l$ depending on the initial condition) + + + +The following code verifies this. + +```{code-cell} ipython3 +def solve_laffer_adapt(p_init, π_init, model, num_steps): + m0, α, δ, g = model.m0, model.α, model.δ, model.g + + m_seq = np.nan * np.ones(num_steps+1) + π_seq = np.nan * np.ones(num_steps) + p_seq = np.nan * np.ones(num_steps) + μ_seq = np.nan * np.ones(num_steps) + + m_seq[1] = m0 + π_seq[0] = π_init + p_seq[0] = p_init + + for t in range(1, num_steps): + # Solve p_t + def p_t(pt): + return np.log(np.exp(m_seq[t]) + g * np.exp(pt)) \ + - pt + α * ((1-δ)*(pt - p_seq[t-1]) + δ*π_seq[t-1]) + + p_seq[t] = root(fun=p_t, x0=p_seq[t-1]).x[0] + + # Solve π_t + π_seq[t] = (1-δ) * (p_seq[t]-p_seq[t-1]) + δ*π_seq[t-1] + + # Solve m_t + m_seq[t+1] = np.log(np.exp(m_seq[t]) + g*np.exp(p_seq[t])) + + # Solve μ_t + μ_seq[t] = m_seq[t+1] - m_seq[t] + + return π_seq, μ_seq, m_seq, p_seq +``` + ++++ {"user_expressions": []} + +Compute limiting values starting from $p_{-1}$ associated with $\pi_l$ + +```{code-cell} ipython3 +π_seq, μ_seq, m_seq, p_seq = solve_laffer_adapt(p_l, π_l, model, 50) + +# Check steady state m_{t+1} - m_t and p_{t+1} - p_t +print('m_{t+1} - m_t:', m_seq[-1] - m_seq[-2]) +print('p_{t+1} - p_t:', p_seq[-1] - p_seq[-2]) + +# Check if exp(-αx) - exp(-(1 + α)x) = g +eq_g = lambda x: np.exp(-model.α * x) - np.exp(-(1 + model.α) * x) + +print('eq_g == g:', np.isclose(eq_g(m_seq[-1] - m_seq[-2]), model.g)) +``` + ++++ {"user_expressions": []} + +Compute limiting values starting from $p_{-1}$ associated with $\pi_u$ + +```{code-cell} ipython3 +π_seq, μ_seq, m_seq, p_seq = solve_laffer_adapt(p_u, π_u, model, 50) + +# Check steady state m_{t+1} - m_t and p_{t+1} - p_t +print('m_{t+1} - m_t:', m_seq[-1] - m_seq[-2]) +print('p_{t+1} - p_t:', p_seq[-1] - p_seq[-2]) + +# Check if exp(-αx) - exp(-(1 + α)x) = g +eq_g = lambda x: np.exp(-model.α * x) - np.exp(-(1 + model.α) * x) + +print('eq_g == g:', np.isclose(eq_g(m_seq[-1] - m_seq[-2]), model.g)) +``` + ++++ {"user_expressions": []} + +## Slippery Side of Laffer Curve Dynamics + + + +We are now equipped to compute time series starting from different $p_{-1}, \pi_{-1}^*$ settings, analogous to those in this lecture {doc}`money_inflation` and this lecture {doc}`money_inflation_nonlinear`. + + +Now we'll study how outcomes unfold when we start $p_{-1}, \pi_{-1}^*$ away from a stationary point of the dynamic Laffer curve, i.e., away from either $\pi_u$ or $ \pi_l$. + +To construct a perturbation pair $\check p_{-1}, \check \pi_{-1}^*$we'll implement the following pseudo code: + +* set $\check \pi_{-1}^* $ not equal to one of the stationary points $\pi_u$ or $ \pi_l$. +* set $\check p_{-1} = m_0 + \alpha \check \pi_{-1}^*$ + + + +```{code-cell} ipython3 +:tags: [hide-cell] + +def draw_iterations(π0s, model, line_params, π_bars, num_steps): + fig, axes = plt.subplots(4, 1, figsize=(8, 12), sharex=True) + + for ax in axes[:2]: + ax.set_yscale('log') + + for i, π0 in enumerate(π0s): + p0 = model.m0 + model.α*π0 + π_seq, μ_seq, m_seq, p_seq = solve_laffer_adapt(p0, π0, model, num_steps) + + axes[0].plot(np.arange(num_steps), m_seq[1:], **line_params) + axes[1].plot(np.arange(-1, num_steps-1), p_seq, **line_params) + axes[2].plot(np.arange(-1, num_steps-1), π_seq, **line_params) + axes[3].plot(np.arange(num_steps), μ_seq, **line_params) + + axes[2].axhline(y=π_bars[0], color='grey', linestyle='--', lw=1.5, alpha=0.6) + axes[2].axhline(y=π_bars[1], color='grey', linestyle='--', lw=1.5, alpha=0.6) + axes[2].text(num_steps * 1.07, π_bars[0], '$\pi_l$', verticalalignment='center', + color='grey', size=10) + axes[2].text(num_steps * 1.07, π_bars[1], '$\pi_u$', verticalalignment='center', + color='grey', size=10) + + axes[0].set_ylabel('$m_t$') + axes[1].set_ylabel('$p_t$') + axes[2].set_ylabel('$\pi_t$') + axes[3].set_ylabel('$\mu_t$') + axes[3].set_xlabel('timestep') + axes[3].xaxis.set_major_locator(MaxNLocator(integer=True)) + + plt.tight_layout() + plt.show() +``` + ++++ {"user_expressions": []} + +Let's simulate the result generated by varying the initial $\pi_{-1}$ and corresponding $p_{-1}$ + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: Starting from different initial values of $\pi_0$, paths of $m_t$ (top + panel, log scale for $m$), $p_t$ (second panel, log scale for $p$), $\pi_t$ (third panel), and $\mu_t$ (bottom + panel) + name: pi0_path + width: 500px +--- +πs = np.linspace(π_l, π_u, 10) + +line_params = {'lw': 1.5, + 'marker': 'o', + 'markersize': 3} + +π_bars = (π_l, π_u) +draw_iterations(πs, model, line_params, π_bars, num_steps=80) +``` diff --git a/lectures/money_inflation.md b/lectures/money_inflation.md new file mode 100644 index 00000000..58bf93d1 --- /dev/null +++ b/lectures/money_inflation.md @@ -0,0 +1,1008 @@ +--- +jupytext: + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.16.1 +kernelspec: + display_name: Python 3 (ipykernel) + language: python + name: python3 +--- + ++++ {"user_expressions": []} + +# Money Financed Government Deficits and Price Levels + ++++ {"user_expressions": []} + +## Overview + +This lecture extends and modifies the model in this lecture {doc}`cagan_ree` by modifying the +law of motion that governed the supply of money. + +The model in this lecture consists of two components + + * a demand function for money + * a law of motion for the supply of money + +The demand function describes the public's demand for "real balances", defined as the ratio of nominal money balances to the price level + + * it assumes that the demand for real balance today varies inversely with the rate of inflation that the public forecasts to prevail between today and tomorrow + * it assumes that the public's forecast of that rate of inflation is perfect + +The law of motion for the supply of money assumes that the government prints money to finance government expenditures + +Our model equates the demand for money to the supply at each time $t \geq 0$. + +Equality between those demands and supply gives in a **dynamic** model in which money supply +and price level **sequences** are simultaneously determined by a set of simultaneous linear equations. + +These equations take the form of what are often called vector linear **difference equations**. + +In this lecture, we'll roll up our sleeves and solve those equations in two different ways. + + +(One of the methods for solving vector linear difference equations will take advantage of a decomposition of a matrix that is studied in this lecture {doc}`eigen_I`.) + +In this lecture we will encounter these concepts from macroeconomics: + +* an **inflation tax** that a government gathers by printing paper or electronic money +* a dynamic **Laffer curve** in the inflation tax rate that has two stationary equilibria +* perverse dynamics under rational expectations in which the system converges to the higher stationary inflation tax rate +* a peculiar comparative stationary-state outcome connected with that stationary inflation rate: it asserts that inflation can be **reduced** by running **higher** government deficits, i.e., by raising more resources by printing money. + +The same qualitive outcomes prevail in this lecture {doc}`money_inflation_nonlinear` that studies a nonlinear version of the model in this lecture. + +These outcomes set the stage for the analysis to be presented in this lecture {doc}`laffer_adaptive` that studies a nonlinear version of the present model; it assumes a version of "adaptive expectations" instead of rational expectations. + +That lecture will show that + +* replacing rational expectations with adaptive expectations leaves the two stationary inflation rates unchanged, but that $\ldots$ +* it reverse the pervese dynamics by making the **lower** stationary inflation rate the one to which the system typically converges +* a more plausible comparative dynamic outcome emerges in which now inflation can be **reduced** by running **lower** government deficits + +This outcome will be used to justify a selection of a stationary inflation rate that underlies the analysis of unpleasant monetarist arithmetic to be studies in this lecture {doc}`unpleasant`. + +We'll use theses tools from linear algebra: + + * matrix multiplication + * matrix inversion + * eigenvalues and eigenvectors of a matrix + + +## Demand for and Supply of Money + +We say demand**s** and supp**ies** (plurals) because there is one of each for each $t \geq 0$. + +Let + + * $m_{t+1}$ be the supply of currency at the end of time $t \geq 0$ + * $m_{t}$ be the supply of currency brought into time $t$ from time $t-1$ + * $g$ be the government deficit that is financed by printing currency at $t \geq 1$ + * $m_{t+1}^d$ be the demand at time $t$ for currency to bring into time $t+1$ + * $p_t$ be the price level at time $t$ + * $b_t = \frac{m_{t+1}}{p_t}$ is real balances at the end of time $t$ + * $R_t = \frac{p_t}{p_{t+1}} $ be the gross rate of return on currency held from time $t$ to time $t+1$ + +It is often helpful to state units in which quantities are measured: + + * $m_t$ and $m_t^d$ are measured in dollars + * $g$ is measured in time $t$ goods + * $p_t$ is measured in dollars per time $t$ goods + * $R_t$ is measured in time $t+1$ goods per unit of time $t$ goods + * $b_t$ is measured in time $t$ goods + + +Our job now is to specify demand and supply functions for money. + +We assume that the demand for currency satisfies the Cagan-like demand function + +$$ +m_{t+1}^d/p_t =\gamma_1 - \gamma_2 \frac{p_{t+1}}{p_t}, \quad t \geq 0 +$$ (eq:demandmoney) + + +Now we turn to the supply of money. + +We assume that $m_0 >0$ is an "initial condition" determined outside the model. + +We set $m_0$ at some arbitrary positive value, say \$100. + +For $ t \geq 1$, we assume that the supply of money is determined by the government's budget constraint + +$$ +m_{t+1} - m_{t} = p_t g , \quad t \geq 0 +$$ (eq:budgcontraint) + +According to this equation, each period, the government prints money to pay for quantity $g$ of goods. + +In an **equilibrium**, the demand for currency equals the supply: + +$$ +m_{t+1}^d = m_{t+1}, \quad t \geq 0 +$$ (eq:syeqdemand) + +Let's take a moment to think about what equation {eq}`eq:syeqdemand` tells us. + +The demand for money at any time $t$ depends on the price level at time $t$ and the price level at time $t+1$. + +The supply of money at time $t+1$ depends on the money supply at time $t$ and the price level at time $t$. + +So the infinite sequence of equations {eq}`eq:syeqdemand` for $ t \geq 0$ imply that the **sequences** $\{p_t\}_{t=0}^\infty$ and $\{m_t\}_{t=0}^\infty$ are tied together and ultimately simulataneously determined. + + +## Equilibrium price and money supply sequences + + +The preceding specifications imply that for $t \geq 1$, **real balances** evolve according to + + +$$ +\frac{m_{t+1}}{p_t} - \frac{m_{t}}{p_{t-1}} \frac{p_{t-1}}{p_t} = g +$$ + +or + +$$ +b_t - b_{t-1} R_{t-1} = g +$$ (eq:bmotion) + +where + + * $b_t = \frac{m_{t+1}}{p_t}$ is real balances at the end of period $t$ + * $R_{t-1} = \frac{p_{t-1}}{p_t}$ is the gross rate of return on real balances held from $t-1$ to $t$ + +The demand for real balances is + +$$ +b_t = \gamma_1 - \gamma_2 R_t^{-1} . +$$ (eq:bdemand) + +We'll restrict our attention to parameter values and associated gross real rates of return on real balances that assure that the demand for real balances is positive, which according to {eq}`eq:bdemand` means that + +$$ +b_t = \gamma_1 - \gamma_2 R_t^{-1} > 0 +$$ + +which implies that + +$$ +R_t \geq \left( \frac{\gamma_2}{\gamma_1} \right) \equiv \underline R +$$ (eq:Requation) + +Gross real rate of return $\underline R$ is the smallest rate of return on currency +that is consistent with a nonnegative demand for real balances. + + + +We shall describe two distinct but closely related ways of computing a pair $\{p_t, m_t\}_{t=0}^\infty$ of sequences for the price level and money supply. + +But first it is instructive to describe a special type of equilibrium known as a **steady state**. + +In a steady state equilibrium, a subset of key variables remain constant or **invariant** over time, while remaining variables can be expressed as functions of those constant variables. + +Finding such state variables is something of an art. + +In many models, a good source of candidates for such invariant variables is a set of **ratios**. + +This is true in the present model. + +### Steady States + +In a **steady state** equilibrium of the model we are studying, + +\begin{aligned} +R_t & = \bar R \cr +b_t & = \bar b +\end{aligned} + +for $t \geq 0$. + +Notice that both $R_t = \frac{p_t}{p_{t+1}}$ and $b_t = \frac{m_{t+1}}{p_t} $ are **ratios**. + +To compute a steady state, we seek gross rates of return on currency $\bar R, \bar b$ that satisfy steady-state versions of both the government budget constraint and the demand function for real balances: + +$$ +\begin{aligned} +g & = \bar b ( 1 - \bar R) \cr +\bar b & = \gamma_1- \gamma_2 \bar R^{-1} +\end{aligned} +$$ + +Together these equations imply + +$$ +(\gamma_1 + \gamma_2) - \frac{\gamma_2}{\bar R} - \gamma_1 \bar R = g +$$ (eq:seignsteady) + + +The left side is the steady-state amount of **seigniorage** or government revenues that the government gathers by paying a gross rate of return $\bar R < 1$ on currency. + +The right side is government expenditures. + +Define steady-state seigniorage as + +$$ +S(\bar R) = (\gamma_1 + \gamma_2) - \frac{\gamma_2}{\bar R} - \gamma_1 \bar R +$$ (eq:SSsigng) + +Notice that $S(\bar R) \geq 0$ only when $\bar R \in [\frac{\gamma2}{\gamma1}, 1] +\equiv [\underline R, \overline R]$ and that $S(\bar R) = 0$ if $\bar R = \underline R$ +or if $\bar R = \overline R$. + +We shall study equilibrium sequences that satisfy + +$$ +R_t \in \bar R = [\underline R, \overline R], \quad t \geq 0. +$$ + +Maximizing steady state seigniorage {eq}`eq:SSsigng` with respect to $\bar R$, we find that the maximizing rate of return on currency is + +$$ +\bar R_{\rm max} = \sqrt{\frac{\gamma_2}{\gamma_1}} +$$ + +and that the associated maximum seigniorage revenue that the government can gather from printing money is + +$$ +(\gamma_1 + \gamma_2) - \frac{\gamma_2}{\bar R_{\rm max}} - \gamma_1 \bar R_{\rm max} +$$ + +It is useful to rewrite equation {eq}`eq:seignsteady` as + +$$ +-\gamma_2 + (\gamma_1 + \gamma_2 - g) \bar R - \gamma_1 \bar R^2 = 0 +$$ (eq:steadyquadratic) + +A steady state gross rate of return $\bar R$ solves quadratic equation {eq}`eq:steadyquadratic`. + + +So two steady states typically exist. + + + +## Some Code + + +Let's start with some imports: + +```{code-cell} ipython3 +import numpy as np +import matplotlib.pyplot as plt +from matplotlib.ticker import MaxNLocator +plt.rcParams['figure.dpi'] = 300 +from collections import namedtuple +``` + + +Let's set some parameter values and compute possible steady state rates of return on currency $\bar R$, the seigniorage maximizing rate of return on currency, and an object that we'll discuss later, namely, an initial price level $p_0$ associated with the maximum steady state rate of return on currency. + ++++ + +First, we create a `namedtuple` to store parameters so that we can reuse this `namedtuple` in our functions throughout this lecture + +```{code-cell} ipython3 +# Create a namedtuple that contains parameters +MoneySupplyModel = namedtuple("MoneySupplyModel", + ["γ1", "γ2", "g", + "M0", "R_u", "R_l"]) + +def create_model(γ1=100, γ2=50, g=3.0, M0=100): + + # Calculate the steady states for R + R_steady = np.roots((-γ1, γ1 + γ2 - g, -γ2)) + R_u, R_l = R_steady + print("[R_u, R_l] =", R_steady) + + return MoneySupplyModel(γ1=γ1, γ2=γ2, g=g, M0=M0, R_u=R_u, R_l=R_l) +``` + +Now we compute the $\bar R_{\rm max}$ and corresponding revenue + +```{code-cell} ipython3 +def seign(R, model): + γ1, γ2, g = model.γ1, model.γ2, model.g + return -γ2/R + (γ1 + γ2) - γ1 * R + +msm = create_model() + +# Calculate initial guess for p0 +p0_guess = msm.M0 / (msm.γ1 - msm.g - msm.γ2 / msm.R_u) +print(f'p0 guess = {p0_guess:.4f}') + +# Calculate seigniorage maximizing rate of return +R_max = np.sqrt(msm.γ2/msm.γ1) +g_max = seign(R_max, msm) +print(f'R_max, g_max = {R_max:.4f}, {g_max:.4f}') +``` + +Now let's plot seigniorage as a function of alternative potential steady-state values of $R$. + +We'll see that there are two values of $R$ that attain seigniorage levels equal to $g$, +one that we'll denote $R_l$, another that we'll denote $R_u$. + +They satisfy $R_l < R_u$ and are affiliated with a higher inflation tax rate $(1-R_l)$ and a lower +inflation tax rate $1 - R_u$. + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: Steady state revenue from inflation tax as function of steady state gross return on currency (solid blue curve) and real government expenditures (dotted red line) plotted against steady-state rate of return currency + name: infl_tax + width: 500px +--- +# Generate values for R +R_values = np.linspace(msm.γ2/msm.γ1, 1, 250) + +# Calculate the function values +seign_values = seign(R_values, msm) + +# Visualize seign_values against R values +fig, ax = plt.subplots(figsize=(11, 5)) +plt.plot(R_values, seign_values, label='inflation tax revenue') +plt.axhline(y=msm.g, color='red', linestyle='--', label='government deficit') +plt.xlabel('$R$') +plt.ylabel('seigniorage') + +plt.legend() +plt.grid(True) +plt.show() +``` + +Let's print the two steady-state rates of return $\bar R$ and the associated seigniorage revenues that the government collects. + +(By construction, both steady state rates of return should raise the same amounts real revenue). + +We hope that the following code will confirm this. + +```{code-cell} ipython3 +g1 = seign(msm.R_u, msm) +print(f'R_u, g_u = {msm.R_u:.4f}, {g1:.4f}') + +g2 = seign(msm.R_l, msm) +print(f'R_l, g_l = {msm.R_l:.4f}, {g2:.4f}') +``` + +Now let's compute the maximum steady state amount of seigniorage that could be gathered by printing money and the state state rate of return on money that attains it. + ++++ + +## Two Computation Strategies + + +We now proceed to compute equilibria, not necessarily steady states. + +We shall deploy two distinct computation strategies. + +### Method 1 + + * set $R_0 \in [\frac{\gamma_2}{\gamma_1}, R_u]$ and compute $b_0 = \gamma_1 - \gamma_2/R_0$. + + * compute sequences $\{R_t, b_t\}_{t=1}^\infty$ of rates of return and real balances that are associated with an equilibrium by solving equation {eq}`eq:bmotion` and {eq}`eq:bdemand` sequentially for $t \geq 1$: + \begin{aligned} +b_t & = b_{t-1} R_{t-1} + g \cr +R_t^{-1} & = \frac{\gamma_1}{\gamma_2} - \gamma_2^{-1} b_t +\end{aligned} + + * Construct the associated equilibrium $p_0$ from + + $$ + p_0 = \frac{m_0}{\gamma_1 - g - \gamma_2/R_0} + $$ (eq:p0fromR0) + + * compute $\{p_t, m_t\}_{t=1}^\infty$ by solving the following equations sequentially + + $$ + \begin{aligned} + p_t & = R_t p_{t-1} \cr + m_t & = b_{t-1} p_t + \end{aligned} + $$ (eq:method1) + +**Remark 1:** method 1 uses an indirect approach to computing an equilibrium by first computing an equilibrium $\{R_t, b_t\}_{t=0}^\infty$ sequence and then using it to back out an equilibrium $\{p_t, m_t\}_{t=0}^\infty$ sequence. + + + **Remark 2:** notice that method 1 starts by picking an **initial condition** $R_0$ from a set $[\frac{\gamma_2}{\gamma_1}, R_u]$. An equilibrium $\{p_t, m_t\}_{t=0}^\infty$ sequences are not unique. There is actually a continuum of equilibria indexed by a choice of $R_0$ from the set $[\frac{\gamma_2}{\gamma_1}, R_u]$. + + **Remark 3:** associated with each selection of $R_0$ there is a unique $p_0$ described by + equation {eq}`eq:p0fromR0`. + +### Method 2 + + This method deploys a direct approach. + It defines a "state vector" + $y_t = \begin{bmatrix} m_t \cr p_t\end{bmatrix} $ + and formulates equilibrium conditions {eq}`eq:demandmoney`, {eq}`eq:budgcontraint`, and + {eq}`eq:syeqdemand` + in terms of a first-order vector difference equation + + $$ + y_{t+1} = M y_t, \quad t \geq 0 , + $$ + + where we temporarily take $y_0 = \begin{bmatrix} m_0 \cr p_0 \end{bmatrix}$ as an **initial condition**. + + The solution is + + $$ + y_t = M^t y_0 . + $$ + + Now let's think about the initial condition $y_0$. + + It is natural to take the initial stock of money $m_0 >0$ as an initial condition. + + But what about $p_0$? + + Isn't it something that we want to be **determined** by our model? + + Yes, but sometimes we want too much, because there is actually a continuum of initial $p_0$ levels that are compatible with the existence of an equilibrium. + + As we shall see soon, selecting an initial $p_0$ in method 2 is intimately tied to selecting an initial rate of return on currency $R_0$ in method 1. + +## Computation Method 1 + +%We start from an arbitrary $R_0$ and $b_t = \frac{m_{t+1}}{p_t}$, we have + +%$$ +%b_0 = \gamma_1 - \gamma_0 R_0^{-1} +%$$ + +Remember that there exist two steady state equilibrium values $ R_l < R_u$ of the rate of return on currency $R_t$. + +We proceed as follows. + +Start at $t=0$ + * select a $R_0 \in [\frac{\gamma_2}{\gamma_1}, R_u]$ + * compute $b_0 = \gamma_1 - \gamma_0 R_0^{-1} $ + +Then for $t \geq 1$ construct $(b_t, R_t)$ by +iterating on the system +\begin{aligned} +b_t & = b_{t-1} R_{t-1} + g \cr +R_t^{-1} & = \frac{\gamma_1}{\gamma_2} - \gamma_2^{-1} b_t +\end{aligned} + + +When we implement this part of method 1, we shall discover the following striking +outcome: + + * starting from an $R_0$ in $[\frac{\gamma_2}{\gamma_1}, R_u]$, we shall find that +$\{R_t\}$ always converges to a limiting "steady state" value $\bar R$ that depends on the initial +condition $R_0$. + + * there are only two possible limit points $\{ R_l, R_u\}$. + + * for almost every initial condition $R_0$, $\lim_{t \rightarrow +\infty} R_t = R_l$. + + * if and only if $R_0 = R_u$, $\lim_{t \rightarrow +\infty} R_t = R_u$. + +The quantity $1 - R_t$ can be interpreted as an **inflation tax rate** that the government imposes on holders of its currency. + + +We shall soon see that the existence of two steady state rates of return on currency +that serve to finance the government deficit of $g$ indicates the presence of a **Laffer curve** in the inflation tax rate. + +```{note} +Arthur Laffer's curve plots a hump shaped curve of revenue raised from a tax against the tax rate. +Its hump shape indicates that there are typically two tax rates that yield the same amount of revenue. This is due to two countervailing courses, one being that raising a tax rate typically decreases the **base** of the tax as people take decisions to reduce their exposure to the tax. +``` + +```{code-cell} ipython3 +def simulate_system(R0, model, num_steps): + γ1, γ2, g = model.γ1, model.γ2, model.g + + # Initialize arrays to store results + b_values = np.empty(num_steps) + R_values = np.empty(num_steps) + + # Initial values + b_values[0] = γ1 - γ2/R0 + R_values[0] = 1 / (γ1/γ2 - (1 / γ2) * b_values[0]) + + # Iterate over time steps + for t in range(1, num_steps): + b_t = b_values[t - 1] * R_values[t - 1] + g + R_values[t] = 1 / (γ1/γ2 - (1/γ2) * b_t) + b_values[t] = b_t + + return b_values, R_values +``` + +Let's write some code plot outcomes for several possible initial values $R_0$. + +```{code-cell} ipython3 +:tags: [hide-cell] + +line_params = {'lw': 1.5, + 'marker': 'o', + 'markersize': 3} + +def annotate_graph(ax, model, num_steps): + for y, label in [(model.R_u, '$R_u$'), (model.R_l, '$R_l$'), + (model.γ2 / model.γ1, r'$\frac{\gamma_2}{\gamma_1}$')]: + ax.axhline(y=y, color='grey', linestyle='--', lw=1.5, alpha=0.6) + ax.text(num_steps * 1.02, y, label, verticalalignment='center', + color='grey', size=12) + +def draw_paths(R0_values, model, line_params, num_steps): + + fig, axes = plt.subplots(2, 1, figsize=(8, 8), sharex=True) + + # Pre-compute time steps + time_steps = np.arange(num_steps) + + # Iterate over R_0s and simulate the system + for R0 in R0_values: + b_values, R_values = simulate_system(R0, model, num_steps) + + # Plot R_t against time + axes[0].plot(time_steps, R_values, **line_params) + + # Plot b_t against time + axes[1].plot(time_steps, b_values, **line_params) + + # Add line and text annotations to the subgraph + annotate_graph(axes[0], model, num_steps) + + # Add Labels + axes[0].set_ylabel('$R_t$') + axes[1].set_xlabel('timestep') + axes[1].set_ylabel('$b_t$') + axes[1].xaxis.set_major_locator(MaxNLocator(integer=True)) + + plt.tight_layout() + plt.show() +``` + +Let's plot distinct outcomes associated with several $R_0 \in [\frac{\gamma_2}{\gamma_1}, R_u]$. + +Each line below shows a path associated with a different $R_0$. + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: Paths of $R_t$ (top panel) and $b_t$ (bottom panel) starting from different + initial condition $R_0$ + name: R0_path + width: 500px +--- +# Create a grid of R_0s +R0s = np.linspace(msm.γ2/msm.γ1, msm.R_u, 9) +R0s = np.append(msm.R_l, R0s) +draw_paths(R0s, msm, line_params, num_steps=20) +``` + +Notice how sequences that start from $R_0$ in the half-open interval $[R_l, R_u)$ converge to the steady state associated with to $ R_l$. + ++++ {"user_expressions": []} + +## Computation method 2 + +Set $m_t = m_t^d $ for all $t \geq -1$. + +Let + +$$ + y_t = \begin{bmatrix} m_{t} \cr p_{t} \end{bmatrix} . +$$ + +Represent equilibrium conditions {eq}`eq:demandmoney`, {eq}`eq:budgcontraint`, and {eq}`eq:syeqdemand` as + +$$ +\begin{bmatrix} 1 & \gamma_2 \cr + 1 & 0 \end{bmatrix} \begin{bmatrix} m_{t+1} \cr p_{t+1} \end{bmatrix} = + \begin{bmatrix} 0 & \gamma_1 \cr + 1 & g \end{bmatrix} \begin{bmatrix} m_{t} \cr p_{t} \end{bmatrix} +$$ (eq:sytem101) + +or + +$$ +H_1 y_t = H_2 y_{t-1} +$$ + +where + +\begin{aligned} H_1 & = \begin{bmatrix} 1 & \gamma_2 \cr + 1 & 0 \end{bmatrix} \cr + H_2 & = \begin{bmatrix} 0 & \gamma_1 \cr + 1 & g \end{bmatrix} +\end{aligned} + +```{code-cell} ipython3 +H1 = np.array([[1, msm.γ2], + [1, 0]]) +H2 = np.array([[0, msm.γ1], + [1, msm.g]]) +``` + +Define + +$$ +H = H_1^{-1} H_2 +$$ + +```{code-cell} ipython3 +H = np.linalg.inv(H1) @ H2 +print('H = \n', H) +``` + +and write the system {eq}`eq:sytem101` as + +$$ +y_{t+1} = H y_t, \quad t \geq 0 +$$ (eq:Vaughn) + +so that $\{y_t\}_{t=0}$ can be computed from + +$$ +y_t = H^t y_0, t \geq 0 +$$ (eq:ytiterate) + +where + +$$ +y_0 = \begin{bmatrix} m_{0} \cr p_0 \end{bmatrix} . +$$ + +It is natural to take $m_0$ as an initial condition determined outside the model. + +The mathematics seems to tell us that $p_0$ must also be determined outside the model, even though +it is something that we actually wanted to be determined by the model. + +(As usual, we should listen when mathematics talks to us.) + +For now, let's just proceed mechanically on faith. + +Compute the eigenvector decomposition + +$$ +H = Q \Lambda Q^{-1} +$$ + +where $\Lambda$ is a diagonal matrix of eigenvalues and the columns of $Q$ are eigenvectors corresponding to those eigenvalues. + +It turns out that + + +$$ +\begin{bmatrix} {R_l}^{-1} & 0 \cr + 0 & {R_u}^{-1} \end{bmatrix} +$$ + +where $R_l$ and $R_u$ are the lower and higher steady-state rates of return on currency that we computed above. + +```{code-cell} ipython3 +Λ, Q = np.linalg.eig(H) +print('Λ = \n', Λ) +print('Q = \n', Q) +``` + +```{code-cell} ipython3 +R_l = 1 / Λ[0] +R_u = 1 / Λ[1] + +print(f'R_l = {R_l:.4f}') +print(f'R_u = {R_u:.4f}') +``` + +Partition $Q$ as + +$$ +Q =\begin{bmatrix} Q_{11} & Q_{12} \cr + Q_{21} & Q_{22} \end{bmatrix} +$$ + +Below we shall verify the following claims: + + +**Claims:** If we set + +$$ +p_0 = \overline p_0 \equiv Q_{21} Q_{11}^{-1} m_{0} , +$$ (eq:magicp0) + +it turns out that + +$$ +\frac{p_{t+1}}{p_t} = {R_u}^{-1}, \quad t \geq 0 +$$ + + +However, if we set + +$$ +p_0 > \bar p_0 +$$ + +then + +$$ +\lim_{t\rightarrow + \infty} \frac{p_{t+1}}{p_t} = {R_l}^{-1}. +$$ + +Let's verify these claims step by step. + + + +Note that + +$$ +H^t = Q \Lambda^t Q^{-1} +$$ + +so that + +$$ +y_t = Q \Lambda^t Q^{-1} y_0 +$$ + +```{code-cell} ipython3 +def iterate_H(y_0, H, num_steps): + Λ, Q = np.linalg.eig(H) + Q_inv = np.linalg.inv(Q) + y = np.stack( + [Q @ np.diag(Λ**t) @ Q_inv @ y_0 for t in range(num_steps)], 1) + + return y +``` + +For almost all initial vectors $y_0$, the gross rate of inflation $\frac{p_{t+1}}{p_t}$ eventually converges to the larger eigenvalue ${R_l}^{-1}$. + +The only way to avoid this outcome is for $p_0$ to take the specific value described by {eq}`eq:magicp0`. + +To understand this situation, we use the following +transformation + +$$ +y^*_t = Q^{-1} y_t . +$$ + +Dynamics of $y^*_t$ are evidently governed by + +$$ +y^*_{t+1} = \Lambda^t y^*_t . +$$ (eq:stardynamics) + +This equation represents the dynamics of our system in a way that lets us isolate the +force that causes gross inflation to converge to the inverse of the lower steady state rate +of inflation $R_l$ that we discovered earlier. + +Staring at equation {eq}`eq:stardynamics` indicates that unless + +```{math} +:label: equation_11 + +y^*_0 = \begin{bmatrix} y^*_{1,0} \cr 0 \end{bmatrix} +``` + +the path of $y^*_t$, and therefore the paths of both $m_t$ and $p_t$ given by +$y_t = Q y^*_t$ will eventually grow at gross rates ${R_l}^{-1}$ as +$t \rightarrow +\infty$. + +Equation {eq}`equation_11` also leads us to conclude that there is a unique setting +for the initial vector $y_0$ for which both components forever grow at the lower rate ${R_u}^{-1}$. + + +For this to occur, the required setting of $y_0$ must evidently have the property +that + +$$ +Q y_0 = y^*_0 = \begin{bmatrix} y^*_{1,0} \cr 0 \end{bmatrix} . +$$ + +But note that since +$y_0 = \begin{bmatrix} m_0 \cr p_0 \end{bmatrix}$ and $m_0$ +is given to us an initial condition, $p_0$ has to do all the adjusting to satisfy this equation. + +Sometimes this situation is described informally by saying that while $m_0$ +is truly a **state** variable, $p_0$ is a **jump** variable that +must adjust at $t=0$ in order to satisfy the equation. + +Thus, in a nutshell the unique value of the vector $y_0$ for which +the paths of $y_t$ **don't** eventually grow at rate ${R_l}^{-1}$ requires setting the second component +of $y^*_0$ equal to zero. + +The component $p_0$ of the initial vector +$y_0 = \begin{bmatrix} m_0 \cr p_0 \end{bmatrix}$ must evidently +satisfy + +$$ +Q^{\{2\}} y_0 =0 +$$ + +where $Q^{\{2\}}$ denotes the second row of $Q^{-1}$, a +restriction that is equivalent to + +```{math} +:label: equation_12 + +Q^{21} m_0 + Q^{22} p_0 = 0 +``` + +where $Q^{ij}$ denotes the $(i,j)$ component of +$Q^{-1}$. + +Solving this equation for $p_0$, we find + +```{math} +:label: equation_13 + +p_0 = - (Q^{22})^{-1} Q^{21} m_0. +``` + + +### More convenient formula + +We can get the equivalent but perhaps more convenient formula {eq}`eq:magicp0` for $p_0$ that is cast +in terms of components of $Q$ instead of components of +$Q^{-1}$. + +To get this formula, first note that because $(Q^{21}\ Q^{22})$ is +the second row of the inverse of $Q$ and because +$Q^{-1} Q = I$, it follows that + +$$ +\begin{bmatrix} Q^{21} & Q^{22} \end{bmatrix} \begin{bmatrix} Q_{11}\cr Q_{21} \end{bmatrix} = 0 +$$ + +which implies that + +$$ +Q^{21} Q_{11} + Q^{22} Q_{21} = 0. +$$ + +Therefore, + +$$ +-(Q^{22})^{-1} Q^{21} = Q_{21} Q^{-1}_{11}. +$$ + +So we can write + +```{math} + +p_0 = Q_{21} Q_{11}^{-1} m_0 . +``` + +which is our formula {eq}`eq:magicp0`. + +```{code-cell} ipython3 +p0_bar = (Q[1, 0]/Q[0, 0]) * msm.M0 + +print(f'p0_bar = {p0_bar:.4f}') +``` + +It can be verified that this formula replicates itself over time in the sense that + +```{math} +:label: equation_15 + +p_t = Q_{21} Q^{-1}_{11} m_t. +``` + +Now let's visualize the dynamics of $m_t$, $p_t$, and $R_t$ starting from different $p_0$ values to verify our claims above. + +We create a function `draw_iterations` to generate the plot + +```{code-cell} ipython3 +:tags: [hide-cell] + +def draw_iterations(p0s, model, line_params, num_steps): + + fig, axes = plt.subplots(3, 1, figsize=(8, 10), sharex=True) + + # Pre-compute time steps + time_steps = np.arange(num_steps) + + # Plot the first two y-axes in log scale + for ax in axes[:2]: + ax.set_yscale('log') + + # Iterate over p_0s and calculate a series of y_t + for p0 in p0s: + y0 = np.array([msm.M0, p0]) + y_series = iterate_H(y0, H, num_steps) + M, P = y_series[0, :], y_series[1, :] + + # Plot R_t against time + axes[0].plot(time_steps, M, **line_params) + + # Plot b_t against time + axes[1].plot(time_steps, P, **line_params) + + # Calculate R_t + R = np.insert(P[:-1] / P[1:], 0, np.NAN) + axes[2].plot(time_steps, R, **line_params) + + # Add line and text annotations to the subgraph + annotate_graph(axes[2], model, num_steps) + + # Draw labels + axes[0].set_ylabel('$m_t$') + axes[1].set_ylabel('$p_t$') + axes[2].set_ylabel('$R_t$') + axes[2].set_xlabel('timestep') + + # Enforce integar axis label + axes[2].xaxis.set_major_locator(MaxNLocator(integer=True)) + + plt.tight_layout() + plt.show() +``` + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: Starting from different initial values of $p_0$, paths of $m_t$ (top + panel, log scale for $m$), $p_t$ (middle panel, log scale for $m$), $R_t$ (bottom + panel) + name: p0_path + width: 500px +--- +p0s = [p0_bar, 2.34, 2.5, 3, 4, 7, 30, 100_000] + +draw_iterations(p0s, msm, line_params, num_steps=20) +``` + +Please notice that for $m_t$ and $p_t$, we have used log scales for the coordinate (i.e., vertical) axes. + +Using log scales allows us to spot distinct constant limiting gross rates of growth ${R_u}^{-1}$ and +${R_l}^{-1}$ by eye. + + +## Peculiar stationary outcomes + +As promised at the start of this lecture, we have encountered these concepts from macroeconomics: + +* an **inflation tax** that a government gathers by printing paper or electronic money +* a dynamic **Laffer curve** in the inflation tax rate that has two stationary equilibria + +Staring at the paths of rates of return on the price level in figure {numref}`R0_path` and price levels in {numref}`p0_path` show indicate that almost all paths converge to the **higher** inflation tax rate displayed in the stationary state Laffer curve displayed in figure {numref}`infl_tax`. + +Thus, we have indeed discovered what we earlier called "perverse" dynamics under rational expectations in which the system converges to the higher of two possible stationary inflation tax rates. + +Those dynamics are "perverse" not only in the sense that they imply that the monetary and fiscal authorities that have chosen to finance government expenditures eventually impose a higher inflation tax than required to finance government expenditures, but because of the following "counterintuitive" situation that we can deduce by staring at the stationary state Laffer curve displayed in figure {numref}`infl_tax`: + +* the figure indicates that inflation can be **reduced** by running **higher** government deficits, i.e., by raising more resources through printing money. + + +```{note} +The same qualitive outcomes prevail in this lecture {doc}`money_inflation_nonlinear` that studies a nonlinear version of the model in this lecture. +``` + + +## Equilibrium selection + +We have discovered that as a model of price level paths or model is **incomplete** because there is a continuum of "equilibrium" paths for $\{m_{t+1}, p_t\}_{t=0}^\infty$ that are consistent with the demand for real balances always equaling the supply. + + +Through application of our computational methods 1 and 2, we have learned that this continuum can be indexed by choice of one of two scalars: + +* for computational method 1, $R_0$ +* for computational method 2, $p_0$ + +To apply our model, we have somehow to **complete** it by **selecting** an equilibrium path from among the continuum of possible paths. + +We discovered that + + * all but one of the equilibrium paths converge to limits in which the higher of two possible stationary inflation tax prevails + * there is a unique equilibrium path associated with "plausible" statements about how reductions in government deficits affect a stationary inflation rate + +On grounds of plausibility, we recommend following many macroeconomists in selecting the unique equilibrium that converges to the lower stationary inflation tax rate. + +As we shall see, we shall accept this recommendation in lecture {doc}`unpleasant`. + +In lecture, {doc}`laffer_adaptive`, we shall explore how {cite}`bruno1990seigniorage` and others justified this in other ways. + + + + + + diff --git a/lectures/money_inflation_nonlinear.md b/lectures/money_inflation_nonlinear.md new file mode 100644 index 00000000..8f43e249 --- /dev/null +++ b/lectures/money_inflation_nonlinear.md @@ -0,0 +1,452 @@ +--- +jupytext: + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.14.5 +kernelspec: + display_name: Python 3 (ipykernel) + language: python + name: python3 +--- + ++++ {"user_expressions": []} + +# Inflation Rate Laffer Curves + +## Overview + +This lecture studies stationary and dynamic **Laffer curves** in the inflation tax rate in a non-linear version of the model studied in this lecture {doc}`money_inflation`. + +This lecture uses the log-linear version of the demand function for money that {cite}`Cagan` +used in his classic paper in place of the linear demand function used in this lecture {doc}`money_inflation`. + +That change requires that we modify parts of our analysis. + +In particular, our dynamic system is no longer linear in state variables. + +Nevertheless, the economic logic underlying an analysis based on what we called ''method 2'' remains unchanged. + + +in this lecture we shall discover qualitatively similar outcomnes to those that we studied in the lecture {doc}`money_inflation`. + +That lecture presented a linear version of the model in this lecture. + +As in that lecture, we discussed these topics: + +* an **inflation tax** that a government gathers by printing paper or electronic money +* a dynamic **Laffer curve** in the inflation tax rate that has two stationary equilibria +* perverse dynamics under rational expectations in which the system converges to the higher stationary inflation tax rate +* a peculiar comparative stationary-state analysis connected with that stationary inflation rate that assert that inflation can be **reduced** by running **higher** government deficits + + + +These outcomes will set the stage for the analysis of this lecture {doc}`laffer_adaptive` that studies a version of the present model that uses a version of "adaptive expectations" instead of rational expectations. + +That lecture will show that + +* replacing rational expectations with adaptive expectations leaves the two stationary inflation rates unchanged, but that $\ldots$ +* it reverse the pervese dynamics by making the **lower** stationary inflation rate the one to which the system typically converges +* a more plausible comparative dynamic outcome emerges in which now inflation can be **reduced** by running **lower** government deficits + + + + + + + +## The Model + +Let + + * $m_t$ be the log of the money supply at the beginning of time $t$ + * $p_t$ be the log of the price level at time $t$ + +The demand function for money is + +$$ +m_{t+1} - p_t = -\alpha (p_{t+1} - p_t) +$$ (eq:mdemand) + +where $\alpha \geq 0$. + +The law of motion of the money supply is + +$$ +\exp(m_{t+1}) - \exp(m_t) = g \exp(p_t) +$$ (eq:msupply) + +where $g$ is the part of government expenditures financed by printing money. + +**Remark:** Please notice that while equation {eq}`eq:mdemand` is linear in logs of the money supply and price level, equation {eq}`eq:msupply` is linear in levels. This will require adapting the equilibrium computation methods that we deployed in {doc}`money_inflation`. + +## Computing An Equilibrium Sequence + +We'll deploy a method similar to **Method 2** used in {doc}`money_inflation`. + +We'll take the time $t$ state vector to be $m_t, p_t$. + + * we'll treat $m_t$ as a ''natural state variable'' and $p_t$ as a ''jump'' variable. + +Let + +$$ +\lambda \equiv \frac{\alpha}{1+ \alpha} +$$ + +Let's rewrite equations {eq}`eq:msupply` and {eq}`eq:mdemand`, respectively, as + + +$$ +\exp(m_{t+1}) - \exp(m_t) = g \exp(p_t) +$$ (eq:msupply2) + +and + +$$ +p_t = (1-\lambda) m_{t+1} + \lambda p_{t+1} +$$ (eq:mdemand2) + +We'll summarize our algorithm with the following pseudo-code. + +**Pseudo-code** + + * start for $m_0, p_0$ at time $t =0$ + + * solve {eq}`eq:msupply2` for $m_{t+1}$ + + * solve {eq}`eq:mdemand2` for $p_{t+1} = \lambda^{-1} p_t + (1 - \lambda^{-1}) m_{t+1}$ + + * compute $\pi_t = p_{t+1} - p_t$ and $\mu_t = m_{t+1} - m_t $ + + * iterate on $t$ to convergence of $\pi_t \rightarrow \overline \pi$ and $\mu_t \rightarrow \overline \mu$ + + +It will turn out that + + * if they exist, limiting values $\overline \pi$ and $\overline \mu$ will be equal + + * if limiting values exists, there are two possible limiting values, one high, one low + + * for almost all initial log price levels $p_0$, the limiting $\overline \pi = \overline \mu$ is + the higher value + + * for each of the two possible limiting values $\bar \pi$ ,there is a unique initial log price level $p_0$ that implies that $\pi_t = \mu_t = \bar \mu$ for all $t \geq 0$ + + * this unique initial log price level solves $\log(\exp(m_0) + g \exp(p_0)) - p_0 = - \alpha \bar \pi $ + + * the preceding equation for $p_0$ comes from $m_1 - p_0 = - \alpha \bar \pi$ + ++++ {"user_expressions": []} + +## Limiting Values of Inflation Rate + +We can compute the two prospective limiting values for $\bar \pi$ by studying the steady-state Laffer curve. + +Thus, in a **steady state** + +$$ +m_{t+1} - m_t = p_{t+1} - p_t = x \quad \forall t , +$$ + +where $x > 0 $ is a common rate of growth of logarithms of the money supply and price level. + +A few lines of algebra yields the following equation that $x$ satisfies + +$$ +\exp(-\alpha x) - \exp(-(1 + \alpha) x) = g +$$ (eq:steadypi) + +where we require that + +$$ +g \leq \max_{x: x \geq 0} \exp(-\alpha x) - \exp(-(1 + \alpha) x) , +$$ (eq:revmax) + +so that it is feasible to finance $g$ by printing money. + +The left side of {eq}`eq:steadypi` is steady state revenue raised by printing money. + +The right side of {eq}`eq:steadypi` is the quantity of time $t$ goods that the government raises by printing money. + +Soon we'll plot the left and right sides of equation {eq}`eq:steadypi`. + +But first we'll write code that computes a steady-state +$\bar \pi$. + + + +Let's start by importing some libraries + +```{code-cell} ipython3 +from collections import namedtuple +import numpy as np +import matplotlib.pyplot as plt +from matplotlib.ticker import MaxNLocator +from scipy.optimize import fsolve +``` + ++++ {"user_expressions": []} + +Let's create a `namedtuple` to store the parameters of the model + +```{code-cell} ipython3 +CaganLaffer = namedtuple('CaganLaffer', + ["m0", # log of the money supply at t=0 + "α", # sensitivity of money demand + "λ", + "g" ]) + +# Create a CaganLaffer model +def create_model(α=0.5, m0=np.log(100), g=0.35): + return CaganLaffer(α=α, m0=m0, λ=α/(1+α), g=g) + +model = create_model() +``` + ++++ {"user_expressions": []} + +Now we write code that computes steady-state $\bar \pi$s. + +```{code-cell} ipython3 +# Define formula for π_bar +def solve_π(x, α, g): + return np.exp(-α * x) - np.exp(-(1 + α) * x) - g + +def solve_π_bar(model, x0): + π_bar = fsolve(solve_π, x0=x0, xtol=1e-10, args=(model.α, model.g))[0] + return π_bar + +# Solve for the two steady state of π +π_l = solve_π_bar(model, x0=0.6) +π_u = solve_π_bar(model, x0=3.0) +print(f'The two steady state of π are: {π_l, π_u}') +``` + ++++ {"user_expressions": []} + +We find two steady state $\bar \pi$ values + ++++ {"user_expressions": []} + + + +## Steady State Laffer Curve + +The following figure plots the steady state Laffer curve together with the two stationary inflation rates. + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: Seigniorage as function of steady state inflation. The dashed brown lines indicate $\pi_l$ and $\pi_u$. + name: laffer_curve_nonlinear + width: 500px +--- + +def compute_seign(x, α): + return np.exp(-α * x) - np.exp(-(1 + α) * x) + +def plot_laffer(model, πs): + α, g = model.α, model.g + + # Generate π values + x_values = np.linspace(0, 5, 1000) + + # Compute corresponding seigniorage values for the function + y_values = compute_seign(x_values, α) + + # Plot the function + plt.plot(x_values, y_values, + label=f'$exp((-{α})x) - exp(- (1- {α}) x)$') + for π, label in zip(πs, ['$\pi_l$', '$\pi_u$']): + plt.text(π, plt.gca().get_ylim()[0]*2, + label, horizontalalignment='center', + color='brown', size=10) + plt.axvline(π, color='brown', linestyle='--') + plt.axhline(g, color='red', linewidth=0.5, + linestyle='--', label='g') + plt.xlabel('$\pi$') + plt.ylabel('seigniorage') + plt.legend() + plt.grid(True) + plt.show() + +# Steady state Laffer curve +plot_laffer(model, (π_l, π_u)) +``` + +## Associated Initial Price Levels + + Now that we have our hands on the two possible steady states, we can compute two initial log price levels $p_0$, which as initial conditions, imply that $\pi_t = \bar \pi $ for all $t \geq 0$. + +```{code-cell} ipython3 +def solve_p0(p0, m0, α, g, π): + return np.log(np.exp(m0) + g * np.exp(p0)) + α * π - p0 + +def solve_p0_bar(model, x0, π_bar): + p0_bar = fsolve(solve_p0, x0=x0, xtol=1e-20, args=(model.m0, + model.α, + model.g, + π_bar))[0] + return p0_bar + +# Compute two initial price levels associated with π_l and π_u +p0_l = solve_p0_bar(model, + x0=np.log(220), + π_bar=π_l) +p0_u = solve_p0_bar(model, + x0=np.log(220), + π_bar=π_u) +print(f'Associated initial p_0s are: {p0_l, p0_u}') +``` + ++++ {"user_expressions": []} + +### Verification + +To start, let's write some code to verify that if the initial log price level $p_0$ takes one +of the two values we just calculated, the inflation rate $\pi_t$ will be constant for all $t \geq 0$. + +The following code verifies this. + +```{code-cell} ipython3 +# Implement pseudo-code above +def simulate_seq(p0, model, num_steps): + λ, g = model.λ, model.g + π_seq, μ_seq, m_seq, p_seq = [], [], [model.m0], [p0] + + for t in range(num_steps): + + m_seq.append(np.log(np.exp(m_seq[t]) + g * np.exp(p_seq[t]))) + p_seq.append(1/λ * p_seq[t] + (1 - 1/λ) * m_seq[t+1]) + + μ_seq.append(m_seq[t+1]-m_seq[t]) + π_seq.append(p_seq[t+1]-p_seq[t]) + + return π_seq, μ_seq, m_seq, p_seq +``` + +```{code-cell} ipython3 +π_seq, μ_seq, m_seq, p_seq = simulate_seq(p0_l, model, 150) + +# Check π and μ at steady state +print('π_bar == μ_bar:', π_seq[-1] == μ_seq[-1]) + +# Check steady state m_{t+1} - m_t and p_{t+1} - p_t +print('m_{t+1} - m_t:', m_seq[-1] - m_seq[-2]) +print('p_{t+1} - p_t:', p_seq[-1] - p_seq[-2]) + +# Check if exp(-αx) - exp(-(1 + α)x) = g +eq_g = lambda x: np.exp(-model.α * x) - np.exp(-(1 + model.α) * x) + +print('eq_g == g:', np.isclose(eq_g(m_seq[-1] - m_seq[-2]), model.g)) +``` + ++++ {"user_expressions": []} + +## Slippery Side of Laffer Curve Dynamics + +We are now equipped to compute time series starting from different $p_0$ settings, like those in this lecture {doc}`money_inflation`. + +```{code-cell} ipython3 +:tags: [hide-cell] + +def draw_iterations(p0s, model, line_params, p0_bars, num_steps): + + fig, axes = plt.subplots(4, 1, figsize=(8, 10), sharex=True) + + # Pre-compute time steps + time_steps = np.arange(num_steps) + + # Plot the first two y-axes in log scale + for ax in axes[:2]: + ax.set_yscale('log') + + # Iterate over p_0s and calculate a series of y_t + for p0 in p0s: + π_seq, μ_seq, m_seq, p_seq = simulate_seq(p0, model, num_steps) + + # Plot m_t + axes[0].plot(time_steps, m_seq[1:], **line_params) + + # Plot p_t + axes[1].plot(time_steps, p_seq[1:], **line_params) + + # Plot π_t + axes[2].plot(time_steps, π_seq, **line_params) + + # Plot μ_t + axes[3].plot(time_steps, μ_seq, **line_params) + + # Draw labels + axes[0].set_ylabel('$m_t$') + axes[1].set_ylabel('$p_t$') + axes[2].set_ylabel('$\pi_t$') + axes[3].set_ylabel('$\mu_t$') + axes[3].set_xlabel('timestep') + + for p_0, label in [(p0_bars[0], '$p_0=p_l$'), (p0_bars[1], '$p_0=p_u$')]: + y = simulate_seq(p_0, model, 1)[0] + for ax in axes[2:]: + ax.axhline(y=y[0], color='grey', linestyle='--', lw=1.5, alpha=0.6) + ax.text(num_steps * 1.02, y[0], label, verticalalignment='center', + color='grey', size=10) + + # Enforce integar axis label + axes[3].xaxis.set_major_locator(MaxNLocator(integer=True)) + + plt.tight_layout() + plt.show() +``` + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: Starting from different initial values of $p_0$, paths of $m_t$ (top + panel, log scale for $m$), $p_t$ (second panel, log scale for $p$), $\pi_t$ (third panel), and $\mu_t$ (bottom + panel) + name: p0_path_nonlin + width: 500px +--- + +# Generate a sequence from p0_l to p0_u +p0s = np.arange(p0_l, p0_u, 0.1) + +line_params = {'lw': 1.5, + 'marker': 'o', + 'markersize': 3} + +p0_bars = (p0_l, p0_u) + +draw_iterations(p0s, model, line_params, p0_bars, num_steps=20) +``` + + +Staring at the paths of price levels in {numref}`p0_path_nonlin` reveals that almost all paths converge to the **higher** inflation tax rate displayed in the stationary state Laffer curve. displayed in figure {numref}`laffer_curve_nonlinear`. + +Thus, we have reconfirmed what we have called the "perverse" dynamics under rational expectations in which the system converges to the higher of two possible stationary inflation tax rates. + +Those dynamics are "perverse" not only in the sense that they imply that the monetary and fiscal authorities that have chosen to finance government expenditures eventually impose a higher inflation tax than required to finance government expenditures, but because of the following "counterintuitive" situation that we can deduce by staring at the stationary state Laffer curve displayed in figure {numref}`laffer_curve_nonlinear`: + +* the figure indicates that inflation can be **reduced** by running **higher** government deficits, i.e., by raising more resources through printing money. + + +```{note} +The same qualitive outcomes prevail in this lecture {doc}`money_inflation` that studies a linear version of the model in this lecture`. +``` + +We discovered that + + * all but one of the equilibrium paths converge to limits in which the higher of two possible stationary inflation tax prevails + * there is a unique equilibrium path associated with "plausible" statements about how reductions in government deficits affect a stationary inflation rate + +As in this lecture {doc}`money_inflation`, +on grounds of plausibility, we again recommend selecting the unique equilibrium that converges to the lower stationary inflation tax rate. + +As we shall see, we accepting this recommendation is a key ingredient of outcomes of the "unpleasant arithmetic" that we describe in lecture {doc}`unpleasant`. + +In lecture, {doc}`laffer_adaptive`, we shall explore how {cite}`bruno1990seigniorage` and others justified our equilibrium selection in other ways. + diff --git a/lectures/unpleasant.md b/lectures/unpleasant.md new file mode 100644 index 00000000..0d744bf1 --- /dev/null +++ b/lectures/unpleasant.md @@ -0,0 +1,524 @@ +--- +jupytext: + text_representation: + extension: .md + format_name: myst + format_version: 0.13 + jupytext_version: 1.14.1 +kernelspec: + display_name: Python 3 (ipykernel) + language: python + name: python3 +--- + + +# Unpleasant Monetarist Arithmetic + +## Overview + + +This lecture builds on concepts and issues introduced in our lecture on **Money Supplies and Price Levels**. + +That lecture describes stationary equilibria that reveal a **Laffer curve** in the inflation tax rate and the associated stationary rate of return +on currency. + +In this lecture we study a situation in which a stationary equilibrium prevails after date $T > 0$, but not before then. + +For $t=0, \ldots, T-1$, the money supply, price level, and interest-bearing government debt vary along a transition path that ends at $t=T$. + +During this transition, the ratio of the real balances $\frac{m_{t+1}}{{p_t}}$ to indexed one-period government bonds $\tilde R B_{t-1}$ maturing at time $t$ decreases each period. + +This has consequences for the **gross-of-interest** government deficit that must be financed by printing money for times $t \geq T$. + +The critical **money-to-bonds** ratio stabilizes only at time $T$ and afterwards. + +And the larger is $T$, the higher is the gross-of-interest government deficit that must be financed +by printing money at times $t \geq T$. + +These outcomes are the essential finding of Sargent and Wallace's **unpleasant monetarist arithmetic** {cite}`sargent1981`. + +**Reader's Guide:** Please read our lecture on Money Supplies and Price levels before diving into this lecture. + +That lecture described supplies and demands for money that appear in lecture. + +It also characterized the steady state equilibrium from which we work backwards in this lecture. + +In addition to learning about ''unpleasant monetarist arithmetic", in this lecture we'll learn how to implement a **fixed point** algorithm for computing an initial price level. + + + + + + + +## Setup + +Let's start with quick reminders of the model's components set out in our lecture on **Money Supplies and Price Levels**. + +Please consult that lecture for more details and Python code that we'll also use in this lecture. + +For $t \geq 1$, **real balances** evolve according to + + +$$ +\frac{m_{t+1}}{p_t} - \frac{m_{t}}{p_{t-1}} \frac{p_{t-1}}{p_t} = g +$$ + +or + +$$ +b_t - b_{t-1} R_{t-1} = g +$$ (eq:up_bmotion) + +where + + * $b_t = \frac{m_{t+1}}{p_t}$ is real balances at the end of period $t$ + * $R_{t-1} = \frac{p_{t-1}}{p_t}$ is the gross rate of return on real balances held from $t-1$ to $t$ + +The demand for real balances is + +$$ +b_t = \gamma_1 - \gamma_2 R_t^{-1} . +$$ (eq:up_bdemand) + + + +## Monetary-Fiscal Policy + +To the basic model of our lecture on **Money Supplies and Price Levels**, we add inflation-indexed one-period government bonds as an additional way for the government to finance government expenditures. + +Let $\widetilde R > 1$ be a time-invariant gross real rate of return on government one-period inflation-indexed bonds. + + +With this additional source of funds, the government's budget constraint at time $t \geq 0$ is now + +$$ +B_t + \frac{m_{t+1}}{p_t} = \widetilde R B_{t-1} + \frac{m_t}{p_t} + g +$$ + + +Just before the beginning of time $0$, the public owns $\check m_0$ units of currency (measured in dollars) +and $\widetilde R \check B_{-1}$ units of one-period indexed bonds (measured in time $0$ goods); these two quantities are initial conditions set outside the model. + +Notice that $\check m_0$ is a **nominal** quantity, being measured in dollar, while +$\widetilde R \check B_{-1}$ is a **real** quantity, being measured in time $0$ goods. + + +### Open market operations + +At time $0$, government can rearrange its portolio of debts with subject to the following constraint (on open-market operations): + +$$ +\widetilde R B_{-1} + \frac{m_0}{p_0} = \widetilde R \check B_{-1} + \frac{\check m_0}{p_0} +$$ + +or + +$$ +B_{-1} - \check B_{-1} = \frac{1}{p_0 \widetilde R} \left( \check m_0 - m_0 \right) +$$ (eq:openmarketconstraint) + +This equation says that the government (e.g., the central bank) can **decrease** $m_0$ relative to +$\check m_0$ by **increasing** $B_{-1}$ relative to $\check B_{-1}$. + +This is a version of a standard constraint on a central bank's **open market operations** in which it expands the stock of money by buying government bonds from the public. + +## An open market operation at $t=0$ + +Following Sargent and Wallace (1981), we analyze consequences of a central bank policy that +uses an open market operation to lower the price level in the face of a peristent fiscal +deficit that takes the form of a positive $g$. + +Just before time $0$, the government chooses $(m_0, B_{-1})$ subject to constraint +{eq}`eq:openmarketconstraint`. + +For $t =0, 1, \ldots, T-1$, + +$$ +\begin{aligned} +B_t & = \widetilde R B_{t-1} + g \cr +m_{t+1} & = m_0 +\end{aligned} +$$ + +while for $t \geq T$, + +$$ +\begin{aligned} +B_t & = B_{T-1} \cr +m_{t+1} & = m_t + p_t \overline g +\end{aligned} +$$ + +where + +$$ +\overline g = \left[(\tilde R -1) B_{T-1} + g \right] +$$ (eq:overlineg) + +We want to compute an equilibrium $\{p_t,m_t,b_t, R_t\}_{t=0}$ sequence under this scheme for +running monetary-fiscal policy. + +**TOM: add definitions of monetary and fiscal policy and coordination here.** + +## Algorithm (basic idea) + + +We work backwards from $t=T$ and first compute $p_T, R_u$ associated with the low-inflation, low-inflation-tax-rate stationary equilibrium of our lecture on the dynamic Laffer curve for the inflation tax. + +To start our description of our algorithm, it is useful to recall that a stationary rate of return +on currency $\bar R$ solves the quadratic equation + +$$ +-\gamma_2 + (\gamma_1 + \gamma_2 - \overline g) \bar R - \gamma_1 \bar R^2 = 0 +$$ (eq:up_steadyquadratic) + +Quadratic equation {eq}`eq:up_steadyquadratic` has two roots, $R_l < R_u < 1$. + +For reasons described at the end of **this lecture**, we select the larger root $R_u$. + + +Next, we compute + +$$ +\begin{aligned} +R_T & = R_u \cr +b_T & = \gamma_1 - \gamma_2 R_u^{-1} \cr +p_T & = \frac{m_0}{\gamma_1 - \overline g - \gamma_2 R_u^{-1}} +\end{aligned} +$$ (eq:LafferTstationary) + + +We can compute continuation sequences $\{R_t, b_t\}_{t=T+1}^\infty$ of rates of return and real balances that are associated with an equilibrium by solving equation {eq}`eq:up_bmotion` and {eq}`eq:up_bdemand` sequentially for $t \geq 1$: + \begin{aligned} +b_t & = b_{t-1} R_{t-1} + \overline g \cr +R_t^{-1} & = \frac{\gamma_1}{\gamma_2} - \gamma_2^{-1} b_t \cr +p_t & = R_t p_{t-1} \cr + m_t & = b_{t-1} p_t +\end{aligned} + + + +## Before time $T$ + +Define + +$$ +\lambda \equiv \frac{\gamma_2}{\gamma_1}. +$$ + +Our restrictions that $\gamma_1 > \gamma_2 > 0$ imply that $\lambda \in [0,1)$. + +We want to compute + +$$ +\begin{aligned} +p_0 & = \gamma_1^{-1} \left[ \sum_{j=0}^\infty \lambda^j m_{1+j} \right] \cr +& = \gamma_1^{-1} \left[ \sum_{j=0}^{T-1} \lambda^j m_{0} + \sum_{j=T}^\infty \lambda^j m_{1+j} \right] +\end{aligned} +$$ + +Thus, + +$$ +\begin{aligned} +p_0 & = \gamma_1^{-1} m_0 \left\{ \frac{1 - \lambda^T}{1-\lambda} + \frac{\lambda^T}{R_u-\lambda} \right\} \cr +p_1 & = \gamma_1^{-1} m_0 \left\{ \frac{1 - \lambda^{T-1}}{1-\lambda} + \frac{\lambda^{T-1}}{R_u-\lambda} \right\} \cr +\quad \vdots & \quad \quad \vdots \cr +p_{T-1} & = \gamma_1^{-1} m_0 \left\{ \frac{1 - \lambda}{1-\lambda} + \frac{\lambda}{R_u-\lambda} \right\} \cr +p_T & = \gamma_1^{-1} m_0 \left\{\frac{1}{R_u-\lambda} \right\} +\end{aligned} +$$ (eq:allts) + +We can implement the preceding formulas by iterating on + +$$ +p_t = \gamma_1^{-1} m_0 + \lambda p_{t+1}, \quad t = T-1, T-2, \ldots, 0 +$$ + +starting from + +$$ +p_T = \frac{m_0}{\gamma_1 - \overline g - \gamma_2 R_u^{-1}} = \gamma_1^{-1} m_0 \left\{\frac{1}{R_u-\lambda} \right\} +$$ (eq:pTformula) + +**Remark:** +We can verify the equivalence of the two formulas on the right sides of {eq}`eq:pTformula` by recalling that +$R_u$ is a root of the quadratic equation {eq}`eq:up_steadyquadratic` that determines steady state rates of return on currency. + +## Algorithm (pseudo code) + +Now let's describe a computational algorithm in more detail in the form of a description +that constitutes ''pseudo code'' because it approaches a set of instructions we could provide to a +Python coder. + +To compute an equilibrium, we deploy the following algorithm. + +Given **parameters** include $g, \check m_0, \check B_{-1}, \widetilde R >1, T $ + +We define a mappying from $p_0$ to $p_0$ as follows. + +* Set $m_0$ and then compute $B_{-1}$ to satisfy the constraint on time $0$ **open market operations** + +$$ +B_{-1}- \check B_{-1} = \frac{\widetilde R}{p_0} \left( \check m_0 - m_0 \right) +$$ + +* Compute $B_{T-1}$ from + +$$ +B_{T-1} = \widetilde R^T B_{-1} + \left( \frac{1 - \widetilde R^T}{1-\widetilde R} \right) g +$$ + +* Compute + +$$ +\overline g = g + \left[ \tilde R - 1\right] B_{T-1} +$$ + + + +* Compute $R_u, p_T$ from formulas {eq}`eq:up_steadyquadratic` and {eq}`eq:LafferTstationary` above + +* Compute a new estimate of $p_0$, call it $\widehat p_0$, from equation {eq}`eq:allts` above + + +* Note that the preceding steps define a mapping + +$$ +\widehat p_0 = {\mathcal S}(p_0) +$$ + +* We seek a fixed point of ${\mathcal S}$, i.e., a solution of $p_0 = {\mathcal S}(p_0)$. + +* Compute a fixed point by iterating to convergence on the relaxation algorithm + +$$ +p_{0,j+1} = (1-\theta) {\mathcal S}(p_{0,j}) + \theta p_{0,j}, +$$ + +where $\theta \in [0,1)$ is a relaxation parameter. + + +## Example Calculations + +We'll set parameters of the model so that the steady state after time $T$ is initially the same +as in our lecture on "Money and Inflation". + +In particular, we set $\gamma_1=100, \gamma_2 =50, g=3.0$. We set $m_0 = 100$ in that lecture, +but now the counterpart will be $M_T$, which is endogenous. + +As for new parameters, we'll set $\tilde R = 1.01, \check B_{-1} = 0, \check m_0 = 105, T = 5$. + +We'll study a "small" open market operation by setting $m_0 = 100$. + +These parameter settings mean that just before time $0$, the "central bank" sells the public bonds in exchange for $\check m_0 - m_0 = 5$ units of currency. + +That leaves the public with less currency but more government interest-bearing bonds. + +Since the public has less currency (it's supply has diminished) it is plausible to anticipate that the price level at time $0$ will be driven downward. + +But that is not the end of the story, because this ''open market operation'' at time $0$ has consequences for future settings of $m_{t+1}$ and the gross-of-interest government deficit $\bar g_t$. + + +Let's start with some imports: + +```{code-cell} ipython3 +import numpy as np +import matplotlib.pyplot as plt +from collections import namedtuple +``` + +Now let's dive in and implement our ''pseudo code'' in Python. + +```{code-cell} ipython3 +# Create a namedtuple that contains parameters +MoneySupplyModel = namedtuple("MoneySupplyModel", + ["γ1", "γ2", "g", + "R_tilde", "m0_check", "Bm1_check", + "T"]) + +def create_model(γ1=100, γ2=50, g=3.0, + R_tilde=1.01, + Bm1_check=0, m0_check=105, + T=5): + + return MoneySupplyModel(γ1=γ1, γ2=γ2, g=g, + R_tilde=R_tilde, + m0_check=m0_check, Bm1_check=Bm1_check, + T=T) +``` + +```{code-cell} ipython3 +msm = create_model() +``` + +```{code-cell} ipython3 +def S(p0, m0, model): + + # unpack parameters + γ1, γ2, g = model.γ1, model.γ2, model.g + R_tilde = model.R_tilde + m0_check, Bm1_check = model.m0_check, model.Bm1_check + T = model.T + + # open market operation + Bm1 = 1 / (p0 * R_tilde) * (m0_check - m0) + Bm1_check + + # compute B_{T-1} + BTm1 = R_tilde ** T * Bm1 + ((1 - R_tilde ** T) / (1 - R_tilde)) * g + + # compute g bar + g_bar = g + (R_tilde - 1) * BTm1 + + # solve the quadratic equation + Ru = np.roots((-γ1, γ1 + γ2 - g_bar, -γ2)).max() + + # compute p0 + λ = γ2 / γ1 + p0_new = (1 / γ1) * m0 * ((1 - λ ** T) / (1 - λ) + λ ** T / (Ru - λ)) + + return p0_new +``` + +```{code-cell} ipython3 +def compute_fixed_point(m0, p0_guess, model, θ=0.5, tol=1e-6): + + p0 = p0_guess + error = tol + 1 + + while error > tol: + p0_next = (1 - θ) * S(p0, m0, model) + θ * p0 + + error = np.abs(p0_next - p0) + p0 = p0_next + + return p0 +``` +Let's look at how price level $p_0$ in the stationary $R_u$ equilibrium depends on the initial +money supply $m_0$. + +Notice that the slope of $p_0$ as a function of $m_0$ is constant. + +This outcome indicates that our model verifies a ''quantity theory of money'' outcome, +something that Sargent and Wallace {cite}`sargent1981` purposefully built into their model to justify +the adjective **monetarist** in their title. + + +```{code-cell} ipython3 +m0_arr = np.arange(10, 110, 10) +``` + +```{code-cell} ipython3 +plt.plot(m0_arr, [compute_fixed_point(m0, 1, msm) for m0 in m0_arr]) + +plt.ylabel('$p_0$') +plt.xlabel('$m_0$') + +plt.show() +``` + +Now let's write and implement code that let's us experiment with the time $0$ open market operation described earlier. + +```{code-cell} ipython3 +def simulate(m0, model, length=15, p0_guess=1): + + # unpack parameters + γ1, γ2, g = model.γ1, model.γ2, model.g + R_tilde = model.R_tilde + m0_check, Bm1_check = model.m0_check, model.Bm1_check + T = model.T + + # (pt, mt, bt, Rt) + paths = np.empty((4, length)) + + # open market operation + p0 = compute_fixed_point(m0, 1, model) + Bm1 = 1 / (p0 * R_tilde) * (m0_check - m0) + Bm1_check + BTm1 = R_tilde ** T * Bm1 + ((1 - R_tilde ** T) / (1 - R_tilde)) * g + g_bar = g + (R_tilde - 1) * BTm1 + Ru = np.roots((-γ1, γ1 + γ2 - g_bar, -γ2)).max() + + λ = γ2 / γ1 + + # t = 0 + paths[0, 0] = p0 + paths[1, 0] = m0 + + # 1 <= t <= T + for t in range(1, T+1, 1): + paths[0, t] = (1 / γ1) * m0 * \ + ((1 - λ ** (T - t)) / (1 - λ) + + (λ ** (T - t) / (Ru - λ))) + paths[1, t] = m0 + + # t > T + for t in range(T+1, length): + paths[0, t] = paths[0, t-1] / Ru + paths[1, t] = paths[1, t-1] + paths[0, t] * g_bar + + # Rt = pt / pt+1 + paths[3, :T] = paths[0, :T] / paths[0, 1:T+1] + paths[3, T:] = Ru + + # bt = γ1 - γ2 / Rt + paths[2, :] = γ1 - γ2 / paths[3, :] + + return paths +``` + +```{code-cell} ipython3 +def plot_path(m0_arr, model, length=15): + + fig, axs = plt.subplots(2, 2, figsize=(8, 5)) + + for m0 in m0_arr: + paths = simulate(m0, msm, length=length) + + axs[0, 0].plot(paths[0]) + axs[0, 0].set_title('$p_t$') + + axs[0, 1].plot(paths[1]) + axs[0, 1].set_title('$m_t$') + + axs[1, 0].plot(paths[2]) + axs[1, 0].set_title('$b_t$') + + axs[1, 1].plot(paths[3]) + axs[1, 1].set_title('$R_t$') + + axs[0, 1].hlines(model.m0_check, 0, length, + color='r', linestyle='--') + axs[0, 1].text(length*0.8, model.m0_check*0.9, '$\check{m}_0$') + plt.show() +``` + +```{code-cell} ipython3 +--- +mystnb: + figure: + caption: "Unpleasant Arithmetic" + name: fig:unpl1 +--- +plot_path([80, 100], msm) +``` + +Figure {numref}`fig:unpl1` summarizes outcomes of two experiments that convey messages of +Sargent and Wallace's **unpleasant monetarist arithmetic** {cite}`sargent1981`. + + * An open market operation that reduces the supply of money at time $t=0$ reduces the price level at time $t=0$ + +* The lower is the post-open-market-operation money supply at time $0$, lower is the price level at time $0$. + +* An open market operation that reduces the post-open-market-operation money supply at time $0$ also **lowers** the rate of return on money $R_u$ at times $t \geq T$ because it brings a higher gross-of-interest government deficit that must be financed by printing money (i.e., levying an inflation tax) at time $t \geq T$. + + + + + + + + + + + From a1ed6bc89bd89aefe6dd71d48288802592b6aa3f Mon Sep 17 00:00:00 2001 From: Matt McKay Date: Sat, 23 Mar 2024 21:31:05 +1100 Subject: [PATCH 9/9] FIX: aligned and general tidy up for new Monetary Lectures (#409) * FIX: aligned issues * fix aligned * fixes for spelling, generaly tidy up --- lectures/laffer_adaptive.md | 83 +++-------- lectures/money_inflation.md | 198 ++++++++++++-------------- lectures/money_inflation_nonlinear.md | 79 ++++------ lectures/unpleasant.md | 38 ++--- 4 files changed, 143 insertions(+), 255 deletions(-) diff --git a/lectures/laffer_adaptive.md b/lectures/laffer_adaptive.md index 92640fc3..fd7b7f37 100644 --- a/lectures/laffer_adaptive.md +++ b/lectures/laffer_adaptive.md @@ -11,8 +11,6 @@ kernelspec: name: python3 --- -+++ {"user_expressions": []} - # Laffer Curves with Adaptive Expectations ## Overview @@ -24,8 +22,6 @@ As in the lecture {doc}`money_inflation`, this lecture uses the log-linear versi But now, instead of assuming ''rational expectations'' in the form of ''perfect foresight'', we'll adopt the ''adaptive expectations'' assumption used by {cite}`Cagan` and {cite}`Friedman1956`. - - This means that instead of assuming that expected inflation $\pi_t^*$ is described by the "perfect foresight" or "rational expectations" hypothesis $$ @@ -34,20 +30,16 @@ $$ that we adopted in lectures {doc}`money_inflation` and lectures {doc}`money_inflation_nonlinear`, we'll now assume that $\pi_t^*$ is determined by the adaptive expectations hypothesis described in equation {eq}`eq:adaptex` reported below. - - We shall discover that changing our hypothesis about expectations formation in this way will change some our findings and leave others intact. In particular, we shall discover that - * replacing rational expectations with adaptive expectations leaves the two stationary inflation rates unchanged, but that $\ldots$ -* it reverse the pervese dynamics by making the **lower** stationary inflation rate the one to which the system typically converges +* it reverse the perverse dynamics by making the **lower** stationary inflation rate the one to which the system typically converges * a more plausible comparative dynamic outcome emerges in which now inflation can be **reduced** by running **lower** government deficits -These more plausible comparative dynamics underly the "old time religion" that states that -"inflation is always and everwhere caused by government deficits". +These more plausible comparative dynamics underlie the "old time religion" that states that +"inflation is always and everywhere caused by government deficits". - -These issues were studyied by {cite}`bruno1990seigniorage`. +These issues were studied by {cite}`bruno1990seigniorage`. Their purpose was to reverse what they thought were counter intuitive predictions of their model under rational expectations (i.e., perfect foresight in this context) @@ -58,23 +50,20 @@ by dropping rational expectations and instead assuming that people form expecta {cite}`marcet2003recurrent` and {cite}`sargent2009conquest` extended that work and applied it to study recurrent high-inflation episodes in Latin America. ``` - ## The Model Let - * $m_t$ be the log of the money supply at the beginning of time $t$ - * $p_t$ be the log of the price level at time $t$ - * $\pi_t^*$ be the public's expectation of the rate of inflation between $t$ and $t+1$ +* $m_t$ be the log of the money supply at the beginning of time $t$ +* $p_t$ be the log of the price level at time $t$ +* $\pi_t^*$ be the public's expectation of the rate of inflation between $t$ and $t+1$ - The law of motion of the money supply is $$ \exp(m_{t+1}) - \exp(m_t) = g \exp(p_t) $$ (eq:ada_msupply) - where $g$ is the part of government expenditures financed by printing money. Notice that equation {eq}`eq:ada_msupply` implies that @@ -91,8 +80,6 @@ $$ (eq:ada_mdemand) where $\alpha \geq 0$. - - Expectations of inflation are governed by $$ @@ -101,7 +88,6 @@ $$ (eq:adaptex) where $\delta \in (0,1)$ - ## Computing An Equilibrium Sequence Equation the expressions for $m_{t+1}$ promided by {eq}`eq:ada_mdemand` and {eq}`eq:ada_msupply2` and use equation {eq}`eq:adaptex` to eliminate $\pi_t^*$ to obtain @@ -111,7 +97,6 @@ $$ \log[ \exp(m_t) + g \exp(p_t)] - p_t = -\alpha [(1-\delta) (p_t - p_{t-1}) + \delta \pi_{t-1}^*] $$ (eq:pequation) - **Pseudo-code** Here is pseudo code for our algorithm. @@ -131,19 +116,17 @@ This completes the algorithm. It will turn out that - * if they exist, limiting values $\overline \pi$ and $\overline \mu$ will be equal - - * if limiting values exists, there are two possible limiting values, one high, one low - - * unlike the outcome in lecture {doc}`money_inflation_nonlinear`, for almost all initial log price levels and expected inflation rates $p_0, \pi_{t}^*$, the limiting $\overline \pi = \overline \mu$ is the **lower** steady state value - - * for each of the two possible limiting values $\bar \pi$ ,there is a unique initial log price level $p_0$ that implies that $\pi_t = \mu_t = \bar \mu$ for all $t \geq 0$ - - * this unique initial log price level solves $\log(\exp(m_0) + g \exp(p_0)) - p_0 = - \alpha \bar \pi $ - - * the preceding equation for $p_0$ comes from $m_1 - p_0 = - \alpha \bar \pi$ +* if they exist, limiting values $\overline \pi$ and $\overline \mu$ will be equal -+++ {"user_expressions": []} +* if limiting values exists, there are two possible limiting values, one high, one low + +* unlike the outcome in lecture {doc}`money_inflation_nonlinear`, for almost all initial log price levels and expected inflation rates $p_0, \pi_{t}^*$, the limiting $\overline \pi = \overline \mu$ is the **lower** steady state value + +* for each of the two possible limiting values $\bar \pi$ ,there is a unique initial log price level $p_0$ that implies that $\pi_t = \mu_t = \bar \mu$ for all $t \geq 0$ + + * this unique initial log price level solves $\log(\exp(m_0) + g \exp(p_0)) - p_0 = - \alpha \bar \pi $ + + * the preceding equation for $p_0$ comes from $m_1 - p_0 = - \alpha \bar \pi$ ## Limiting Values of Inflation Rate @@ -180,8 +163,6 @@ Soon we'll plot the left and right sides of equation {eq}`eq:ada_steadypi`. But first we'll write code that computes a steady-state $\bar \pi$. - - Let's start by importing some libraries ```{code-cell} ipython3 @@ -213,8 +194,6 @@ def create_model(α=0.5, m0=np.log(100), g=0.35, δ=0.9): model = create_model() ``` -+++ {"user_expressions": []} - Now we write code that computes steady-state $\bar \pi$s. ```{code-cell} ipython3 @@ -232,12 +211,8 @@ def solve_π_bar(model, x0): print(f'The two steady state of π are: {π_l, π_u}') ``` -+++ {"user_expressions": []} - We find two steady state $\bar \pi$ values -+++ {"user_expressions": []} - ## Steady State Laffer Curve The following figure plots the steady state Laffer curve together with the two stationary inflation rates. @@ -283,12 +258,9 @@ def plot_laffer(model, πs): plot_laffer(model, (π_l, π_u)) ``` -+++ {"user_expressions": []} - ## Associated Initial Price Levels - - Now that we have our hands on the two possible steady states, we can compute two initial log price levels $p_{-1}$, which as initial conditions, imply that $\pi_t = \bar \pi $ for all $t \geq 0$. +Now that we have our hands on the two possible steady states, we can compute two initial log price levels $p_{-1}$, which as initial conditions, imply that $\pi_t = \bar \pi $ for all $t \geq 0$. In particular, to initiate a fixed point of the dynamic Laffer curve dynamics we set @@ -307,16 +279,10 @@ p_l, p_u = map(lambda π: solve_p_init(model, π), (π_l, π_u)) print('Associated initial p_{-1}s', f'are: {p_l, p_u}') ``` -+++ {"user_expressions": []} - ### Verification - - To start, let's write some code to verify that if we initial $\pi_{-1}^*,p_{-1}$ appropriately, the inflation rate $\pi_t$ will be constant for all $t \geq 0$ (at either $\pi_u$ or $\pi_l$ depending on the initial condition) - - The following code verifies this. ```{code-cell} ipython3 @@ -352,8 +318,6 @@ def solve_laffer_adapt(p_init, π_init, model, num_steps): return π_seq, μ_seq, m_seq, p_seq ``` -+++ {"user_expressions": []} - Compute limiting values starting from $p_{-1}$ associated with $\pi_l$ ```{code-cell} ipython3 @@ -369,8 +333,6 @@ eq_g = lambda x: np.exp(-model.α * x) - np.exp(-(1 + model.α) * x) print('eq_g == g:', np.isclose(eq_g(m_seq[-1] - m_seq[-2]), model.g)) ``` -+++ {"user_expressions": []} - Compute limiting values starting from $p_{-1}$ associated with $\pi_u$ ```{code-cell} ipython3 @@ -386,15 +348,10 @@ eq_g = lambda x: np.exp(-model.α * x) - np.exp(-(1 + model.α) * x) print('eq_g == g:', np.isclose(eq_g(m_seq[-1] - m_seq[-2]), model.g)) ``` -+++ {"user_expressions": []} - ## Slippery Side of Laffer Curve Dynamics - - We are now equipped to compute time series starting from different $p_{-1}, \pi_{-1}^*$ settings, analogous to those in this lecture {doc}`money_inflation` and this lecture {doc}`money_inflation_nonlinear`. - Now we'll study how outcomes unfold when we start $p_{-1}, \pi_{-1}^*$ away from a stationary point of the dynamic Laffer curve, i.e., away from either $\pi_u$ or $ \pi_l$. To construct a perturbation pair $\check p_{-1}, \check \pi_{-1}^*$we'll implement the following pseudo code: @@ -402,8 +359,6 @@ To construct a perturbation pair $\check p_{-1}, \check \pi_{-1}^*$we'll impleme * set $\check \pi_{-1}^* $ not equal to one of the stationary points $\pi_u$ or $ \pi_l$. * set $\check p_{-1} = m_0 + \alpha \check \pi_{-1}^*$ - - ```{code-cell} ipython3 :tags: [hide-cell] @@ -440,8 +395,6 @@ def draw_iterations(π0s, model, line_params, π_bars, num_steps): plt.show() ``` -+++ {"user_expressions": []} - Let's simulate the result generated by varying the initial $\pi_{-1}$ and corresponding $p_{-1}$ ```{code-cell} ipython3 diff --git a/lectures/money_inflation.md b/lectures/money_inflation.md index 58bf93d1..6fcf9ef7 100644 --- a/lectures/money_inflation.md +++ b/lectures/money_inflation.md @@ -11,12 +11,8 @@ kernelspec: name: python3 --- -+++ {"user_expressions": []} - # Money Financed Government Deficits and Price Levels -+++ {"user_expressions": []} - ## Overview This lecture extends and modifies the model in this lecture {doc}`cagan_ree` by modifying the @@ -24,13 +20,13 @@ law of motion that governed the supply of money. The model in this lecture consists of two components - * a demand function for money - * a law of motion for the supply of money +* a demand function for money +* a law of motion for the supply of money The demand function describes the public's demand for "real balances", defined as the ratio of nominal money balances to the price level - * it assumes that the demand for real balance today varies inversely with the rate of inflation that the public forecasts to prevail between today and tomorrow - * it assumes that the public's forecast of that rate of inflation is perfect +* it assumes that the demand for real balance today varies inversely with the rate of inflation that the public forecasts to prevail between today and tomorrow +* it assumes that the public's forecast of that rate of inflation is perfect The law of motion for the supply of money assumes that the government prints money to finance government expenditures @@ -67,32 +63,32 @@ This outcome will be used to justify a selection of a stationary inflation rate We'll use theses tools from linear algebra: - * matrix multiplication - * matrix inversion - * eigenvalues and eigenvectors of a matrix +* matrix multiplication +* matrix inversion +* eigenvalues and eigenvectors of a matrix -## Demand for and Supply of Money +## Demand for and Supply of Money -We say demand**s** and supp**ies** (plurals) because there is one of each for each $t \geq 0$. +We say demand**s** and suppl**ies** (plurals) because there is one of each for each $t \geq 0$. Let - * $m_{t+1}$ be the supply of currency at the end of time $t \geq 0$ - * $m_{t}$ be the supply of currency brought into time $t$ from time $t-1$ - * $g$ be the government deficit that is financed by printing currency at $t \geq 1$ - * $m_{t+1}^d$ be the demand at time $t$ for currency to bring into time $t+1$ - * $p_t$ be the price level at time $t$ - * $b_t = \frac{m_{t+1}}{p_t}$ is real balances at the end of time $t$ - * $R_t = \frac{p_t}{p_{t+1}} $ be the gross rate of return on currency held from time $t$ to time $t+1$ +* $m_{t+1}$ be the supply of currency at the end of time $t \geq 0$ +* $m_{t}$ be the supply of currency brought into time $t$ from time $t-1$ +* $g$ be the government deficit that is financed by printing currency at $t \geq 1$ +* $m_{t+1}^d$ be the demand at time $t$ for currency to bring into time $t+1$ +* $p_t$ be the price level at time $t$ +* $b_t = \frac{m_{t+1}}{p_t}$ is real balances at the end of time $t$ +* $R_t = \frac{p_t}{p_{t+1}} $ be the gross rate of return on currency held from time $t$ to time $t+1$ It is often helpful to state units in which quantities are measured: - * $m_t$ and $m_t^d$ are measured in dollars - * $g$ is measured in time $t$ goods - * $p_t$ is measured in dollars per time $t$ goods - * $R_t$ is measured in time $t+1$ goods per unit of time $t$ goods - * $b_t$ is measured in time $t$ goods +* $m_t$ and $m_t^d$ are measured in dollars +* $g$ is measured in time $t$ goods +* $p_t$ is measured in dollars per time $t$ goods +* $R_t$ is measured in time $t+1$ goods per unit of time $t$ goods +* $b_t$ is measured in time $t$ goods Our job now is to specify demand and supply functions for money. @@ -103,7 +99,6 @@ $$ m_{t+1}^d/p_t =\gamma_1 - \gamma_2 \frac{p_{t+1}}{p_t}, \quad t \geq 0 $$ (eq:demandmoney) - Now we turn to the supply of money. We assume that $m_0 >0$ is an "initial condition" determined outside the model. @@ -151,8 +146,8 @@ $$ (eq:bmotion) where - * $b_t = \frac{m_{t+1}}{p_t}$ is real balances at the end of period $t$ - * $R_{t-1} = \frac{p_{t-1}}{p_t}$ is the gross rate of return on real balances held from $t-1$ to $t$ +* $b_t = \frac{m_{t+1}}{p_t}$ is real balances at the end of period $t$ +* $R_{t-1} = \frac{p_{t-1}}{p_t}$ is the gross rate of return on real balances held from $t-1$ to $t$ The demand for real balances is @@ -175,8 +170,6 @@ $$ (eq:Requation) Gross real rate of return $\underline R$ is the smallest rate of return on currency that is consistent with a nonnegative demand for real balances. - - We shall describe two distinct but closely related ways of computing a pair $\{p_t, m_t\}_{t=0}^\infty$ of sequences for the price level and money supply. But first it is instructive to describe a special type of equilibrium known as a **steady state**. @@ -193,10 +186,12 @@ This is true in the present model. In a **steady state** equilibrium of the model we are studying, +$$ \begin{aligned} R_t & = \bar R \cr b_t & = \bar b \end{aligned} +$$ for $t \geq 0$. @@ -211,7 +206,7 @@ g & = \bar b ( 1 - \bar R) \cr \end{aligned} $$ -Together these equations imply +Together these equations imply $$ (\gamma_1 + \gamma_2) - \frac{\gamma_2}{\bar R} - \gamma_1 \bar R = g @@ -258,14 +253,10 @@ $$ (eq:steadyquadratic) A steady state gross rate of return $\bar R$ solves quadratic equation {eq}`eq:steadyquadratic`. - So two steady states typically exist. - - ## Some Code - Let's start with some imports: ```{code-cell} ipython3 @@ -276,11 +267,8 @@ plt.rcParams['figure.dpi'] = 300 from collections import namedtuple ``` - Let's set some parameter values and compute possible steady state rates of return on currency $\bar R$, the seigniorage maximizing rate of return on currency, and an object that we'll discuss later, namely, an initial price level $p_0$ associated with the maximum steady state rate of return on currency. -+++ - First, we create a `namedtuple` to store parameters so that we can reuse this `namedtuple` in our functions throughout this lecture ```{code-cell} ipython3 @@ -368,80 +356,80 @@ print(f'R_l, g_l = {msm.R_l:.4f}, {g2:.4f}') Now let's compute the maximum steady state amount of seigniorage that could be gathered by printing money and the state state rate of return on money that attains it. -+++ - ## Two Computation Strategies - We now proceed to compute equilibria, not necessarily steady states. We shall deploy two distinct computation strategies. ### Method 1 - * set $R_0 \in [\frac{\gamma_2}{\gamma_1}, R_u]$ and compute $b_0 = \gamma_1 - \gamma_2/R_0$. +* set $R_0 \in [\frac{\gamma_2}{\gamma_1}, R_u]$ and compute $b_0 = \gamma_1 - \gamma_2/R_0$. - * compute sequences $\{R_t, b_t\}_{t=1}^\infty$ of rates of return and real balances that are associated with an equilibrium by solving equation {eq}`eq:bmotion` and {eq}`eq:bdemand` sequentially for $t \geq 1$: - \begin{aligned} +* compute sequences $\{R_t, b_t\}_{t=1}^\infty$ of rates of return and real balances that are associated with an equilibrium by solving equation {eq}`eq:bmotion` and {eq}`eq:bdemand` sequentially for $t \geq 1$: + +$$ +\begin{aligned} b_t & = b_{t-1} R_{t-1} + g \cr R_t^{-1} & = \frac{\gamma_1}{\gamma_2} - \gamma_2^{-1} b_t \end{aligned} +$$ - * Construct the associated equilibrium $p_0$ from - - $$ - p_0 = \frac{m_0}{\gamma_1 - g - \gamma_2/R_0} - $$ (eq:p0fromR0) - - * compute $\{p_t, m_t\}_{t=1}^\infty$ by solving the following equations sequentially - - $$ - \begin{aligned} - p_t & = R_t p_{t-1} \cr - m_t & = b_{t-1} p_t - \end{aligned} - $$ (eq:method1) +* Construct the associated equilibrium $p_0$ from + +$$ +p_0 = \frac{m_0}{\gamma_1 - g - \gamma_2/R_0} +$$ (eq:p0fromR0) + +* compute $\{p_t, m_t\}_{t=1}^\infty$ by solving the following equations sequentially + +$$ +\begin{aligned} +p_t & = R_t p_{t-1} \cr +m_t & = b_{t-1} p_t +\end{aligned} +$$ (eq:method1) **Remark 1:** method 1 uses an indirect approach to computing an equilibrium by first computing an equilibrium $\{R_t, b_t\}_{t=0}^\infty$ sequence and then using it to back out an equilibrium $\{p_t, m_t\}_{t=0}^\infty$ sequence. - **Remark 2:** notice that method 1 starts by picking an **initial condition** $R_0$ from a set $[\frac{\gamma_2}{\gamma_1}, R_u]$. An equilibrium $\{p_t, m_t\}_{t=0}^\infty$ sequences are not unique. There is actually a continuum of equilibria indexed by a choice of $R_0$ from the set $[\frac{\gamma_2}{\gamma_1}, R_u]$. +**Remark 2:** notice that method 1 starts by picking an **initial condition** $R_0$ from a set $[\frac{\gamma_2}{\gamma_1}, R_u]$. An equilibrium $\{p_t, m_t\}_{t=0}^\infty$ sequences are not unique. There is actually a continuum of equilibria indexed by a choice of $R_0$ from the set $[\frac{\gamma_2}{\gamma_1}, R_u]$. - **Remark 3:** associated with each selection of $R_0$ there is a unique $p_0$ described by - equation {eq}`eq:p0fromR0`. +**Remark 3:** associated with each selection of $R_0$ there is a unique $p_0$ described by +equation {eq}`eq:p0fromR0`. ### Method 2 - This method deploys a direct approach. - It defines a "state vector" - $y_t = \begin{bmatrix} m_t \cr p_t\end{bmatrix} $ - and formulates equilibrium conditions {eq}`eq:demandmoney`, {eq}`eq:budgcontraint`, and - {eq}`eq:syeqdemand` - in terms of a first-order vector difference equation +This method deploys a direct approach. +It defines a "state vector" +$y_t = \begin{bmatrix} m_t \cr p_t\end{bmatrix} $ +and formulates equilibrium conditions {eq}`eq:demandmoney`, {eq}`eq:budgcontraint`, and +{eq}`eq:syeqdemand` +in terms of a first-order vector difference equation - $$ - y_{t+1} = M y_t, \quad t \geq 0 , - $$ +$$ +y_{t+1} = M y_t, \quad t \geq 0 , +$$ - where we temporarily take $y_0 = \begin{bmatrix} m_0 \cr p_0 \end{bmatrix}$ as an **initial condition**. - - The solution is - - $$ - y_t = M^t y_0 . - $$ +where we temporarily take $y_0 = \begin{bmatrix} m_0 \cr p_0 \end{bmatrix}$ as an **initial condition**. - Now let's think about the initial condition $y_0$. - - It is natural to take the initial stock of money $m_0 >0$ as an initial condition. - - But what about $p_0$? - - Isn't it something that we want to be **determined** by our model? +The solution is - Yes, but sometimes we want too much, because there is actually a continuum of initial $p_0$ levels that are compatible with the existence of an equilibrium. - - As we shall see soon, selecting an initial $p_0$ in method 2 is intimately tied to selecting an initial rate of return on currency $R_0$ in method 1. +$$ +y_t = M^t y_0 . +$$ + +Now let's think about the initial condition $y_0$. + +It is natural to take the initial stock of money $m_0 >0$ as an initial condition. + +But what about $p_0$? + +Isn't it something that we want to be **determined** by our model? + +Yes, but sometimes we want too much, because there is actually a continuum of initial $p_0$ levels that are compatible with the existence of an equilibrium. + +As we shall see soon, selecting an initial $p_0$ in method 2 is intimately tied to selecting an initial rate of return on currency $R_0$ in method 1. ## Computation Method 1 @@ -456,32 +444,33 @@ Remember that there exist two steady state equilibrium values $ R_l < R_u$ o We proceed as follows. Start at $t=0$ - * select a $R_0 \in [\frac{\gamma_2}{\gamma_1}, R_u]$ - * compute $b_0 = \gamma_1 - \gamma_0 R_0^{-1} $ +* select a $R_0 \in [\frac{\gamma_2}{\gamma_1}, R_u]$ +* compute $b_0 = \gamma_1 - \gamma_0 R_0^{-1} $ Then for $t \geq 1$ construct $(b_t, R_t)$ by iterating on the system + +$$ \begin{aligned} b_t & = b_{t-1} R_{t-1} + g \cr R_t^{-1} & = \frac{\gamma_1}{\gamma_2} - \gamma_2^{-1} b_t \end{aligned} - +$$ When we implement this part of method 1, we shall discover the following striking outcome: - * starting from an $R_0$ in $[\frac{\gamma_2}{\gamma_1}, R_u]$, we shall find that +* starting from an $R_0$ in $[\frac{\gamma_2}{\gamma_1}, R_u]$, we shall find that $\{R_t\}$ always converges to a limiting "steady state" value $\bar R$ that depends on the initial condition $R_0$. - * there are only two possible limit points $\{ R_l, R_u\}$. - - * for almost every initial condition $R_0$, $\lim_{t \rightarrow +\infty} R_t = R_l$. - - * if and only if $R_0 = R_u$, $\lim_{t \rightarrow +\infty} R_t = R_u$. - -The quantity $1 - R_t$ can be interpreted as an **inflation tax rate** that the government imposes on holders of its currency. +* there are only two possible limit points $\{ R_l, R_u\}$. +* for almost every initial condition $R_0$, $\lim_{t \rightarrow +\infty} R_t = R_l$. + +* if and only if $R_0 = R_u$, $\lim_{t \rightarrow +\infty} R_t = R_u$. + +The quantity $1 - R_t$ can be interpreted as an **inflation tax rate** that the government imposes on holders of its currency. We shall soon see that the existence of two steady state rates of return on currency that serve to finance the government deficit of $g$ indicates the presence of a **Laffer curve** in the inflation tax rate. @@ -579,8 +568,6 @@ draw_paths(R0s, msm, line_params, num_steps=20) Notice how sequences that start from $R_0$ in the half-open interval $[R_l, R_u)$ converge to the steady state associated with to $ R_l$. -+++ {"user_expressions": []} - ## Computation method 2 Set $m_t = m_t^d $ for all $t \geq -1$. @@ -588,7 +575,7 @@ Set $m_t = m_t^d $ for all $t \geq -1$. Let $$ - y_t = \begin{bmatrix} m_{t} \cr p_{t} \end{bmatrix} . +y_t = \begin{bmatrix} m_{t} \cr p_{t} \end{bmatrix} . $$ Represent equilibrium conditions {eq}`eq:demandmoney`, {eq}`eq:budgcontraint`, and {eq}`eq:syeqdemand` as @@ -608,11 +595,13 @@ $$ where +$$ \begin{aligned} H_1 & = \begin{bmatrix} 1 & \gamma_2 \cr 1 & 0 \end{bmatrix} \cr H_2 & = \begin{bmatrix} 0 & \gamma_1 \cr 1 & g \end{bmatrix} \end{aligned} +$$ ```{code-cell} ipython3 H1 = np.array([[1, msm.γ2], @@ -669,7 +658,6 @@ where $\Lambda$ is a diagonal matrix of eigenvalues and the columns of $Q$ are e It turns out that - $$ \begin{bmatrix} {R_l}^{-1} & 0 \cr 0 & {R_u}^{-1} \end{bmatrix} @@ -1000,9 +988,3 @@ On grounds of plausibility, we recommend following many macroeconomists in selec As we shall see, we shall accept this recommendation in lecture {doc}`unpleasant`. In lecture, {doc}`laffer_adaptive`, we shall explore how {cite}`bruno1990seigniorage` and others justified this in other ways. - - - - - - diff --git a/lectures/money_inflation_nonlinear.md b/lectures/money_inflation_nonlinear.md index 8f43e249..c533d1c6 100644 --- a/lectures/money_inflation_nonlinear.md +++ b/lectures/money_inflation_nonlinear.md @@ -11,8 +11,6 @@ kernelspec: name: python3 --- -+++ {"user_expressions": []} - # Inflation Rate Laffer Curves ## Overview @@ -28,8 +26,7 @@ In particular, our dynamic system is no longer linear in state variables. Nevertheless, the economic logic underlying an analysis based on what we called ''method 2'' remains unchanged. - -in this lecture we shall discover qualitatively similar outcomnes to those that we studied in the lecture {doc}`money_inflation`. +in this lecture we shall discover qualitatively similar outcomes to those that we studied in the lecture {doc}`money_inflation`. That lecture presented a linear version of the model in this lecture. @@ -40,8 +37,6 @@ As in that lecture, we discussed these topics: * perverse dynamics under rational expectations in which the system converges to the higher stationary inflation tax rate * a peculiar comparative stationary-state analysis connected with that stationary inflation rate that assert that inflation can be **reduced** by running **higher** government deficits - - These outcomes will set the stage for the analysis of this lecture {doc}`laffer_adaptive` that studies a version of the present model that uses a version of "adaptive expectations" instead of rational expectations. That lecture will show that @@ -50,18 +45,12 @@ That lecture will show that * it reverse the pervese dynamics by making the **lower** stationary inflation rate the one to which the system typically converges * a more plausible comparative dynamic outcome emerges in which now inflation can be **reduced** by running **lower** government deficits - - - - - - ## The Model Let - * $m_t$ be the log of the money supply at the beginning of time $t$ - * $p_t$ be the log of the price level at time $t$ +* $m_t$ be the log of the money supply at the beginning of time $t$ +* $p_t$ be the log of the price level at time $t$ The demand function for money is @@ -87,7 +76,7 @@ We'll deploy a method similar to **Method 2** used in {doc}`money_inflation`. We'll take the time $t$ state vector to be $m_t, p_t$. - * we'll treat $m_t$ as a ''natural state variable'' and $p_t$ as a ''jump'' variable. +* we'll treat $m_t$ as a ''natural state variable'' and $p_t$ as a ''jump'' variable. Let @@ -112,33 +101,30 @@ We'll summarize our algorithm with the following pseudo-code. **Pseudo-code** - * start for $m_0, p_0$ at time $t =0$ +* start for $m_0, p_0$ at time $t =0$ - * solve {eq}`eq:msupply2` for $m_{t+1}$ - - * solve {eq}`eq:mdemand2` for $p_{t+1} = \lambda^{-1} p_t + (1 - \lambda^{-1}) m_{t+1}$ +* solve {eq}`eq:msupply2` for $m_{t+1}$ - * compute $\pi_t = p_{t+1} - p_t$ and $\mu_t = m_{t+1} - m_t $ - - * iterate on $t$ to convergence of $\pi_t \rightarrow \overline \pi$ and $\mu_t \rightarrow \overline \mu$ - +* solve {eq}`eq:mdemand2` for $p_{t+1} = \lambda^{-1} p_t + (1 - \lambda^{-1}) m_{t+1}$ + +* compute $\pi_t = p_{t+1} - p_t$ and $\mu_t = m_{t+1} - m_t $ + +* iterate on $t$ to convergence of $\pi_t \rightarrow \overline \pi$ and $\mu_t \rightarrow \overline \mu$ It will turn out that - * if they exist, limiting values $\overline \pi$ and $\overline \mu$ will be equal - - * if limiting values exists, there are two possible limiting values, one high, one low - - * for almost all initial log price levels $p_0$, the limiting $\overline \pi = \overline \mu$ is - the higher value - - * for each of the two possible limiting values $\bar \pi$ ,there is a unique initial log price level $p_0$ that implies that $\pi_t = \mu_t = \bar \mu$ for all $t \geq 0$ - - * this unique initial log price level solves $\log(\exp(m_0) + g \exp(p_0)) - p_0 = - \alpha \bar \pi $ - - * the preceding equation for $p_0$ comes from $m_1 - p_0 = - \alpha \bar \pi$ +* if they exist, limiting values $\overline \pi$ and $\overline \mu$ will be equal -+++ {"user_expressions": []} +* if limiting values exists, there are two possible limiting values, one high, one low + +* for almost all initial log price levels $p_0$, the limiting $\overline \pi = \overline \mu$ is +the higher value + +* for each of the two possible limiting values $\bar \pi$ ,there is a unique initial log price level $p_0$ that implies that $\pi_t = \mu_t = \bar \mu$ for all $t \geq 0$ + + * this unique initial log price level solves $\log(\exp(m_0) + g \exp(p_0)) - p_0 = - \alpha \bar \pi $ + + * the preceding equation for $p_0$ comes from $m_1 - p_0 = - \alpha \bar \pi$ ## Limiting Values of Inflation Rate @@ -175,8 +161,6 @@ Soon we'll plot the left and right sides of equation {eq}`eq:steadypi`. But first we'll write code that computes a steady-state $\bar \pi$. - - Let's start by importing some libraries ```{code-cell} ipython3 @@ -224,14 +208,8 @@ def solve_π_bar(model, x0): print(f'The two steady state of π are: {π_l, π_u}') ``` -+++ {"user_expressions": []} - We find two steady state $\bar \pi$ values -+++ {"user_expressions": []} - - - ## Steady State Laffer Curve The following figure plots the steady state Laffer curve together with the two stationary inflation rates. @@ -279,7 +257,7 @@ plot_laffer(model, (π_l, π_u)) ## Associated Initial Price Levels - Now that we have our hands on the two possible steady states, we can compute two initial log price levels $p_0$, which as initial conditions, imply that $\pi_t = \bar \pi $ for all $t \geq 0$. +Now that we have our hands on the two possible steady states, we can compute two initial log price levels $p_0$, which as initial conditions, imply that $\pi_t = \bar \pi $ for all $t \geq 0$. ```{code-cell} ipython3 def solve_p0(p0, m0, α, g, π): @@ -302,8 +280,6 @@ p0_u = solve_p0_bar(model, print(f'Associated initial p_0s are: {p0_l, p0_u}') ``` -+++ {"user_expressions": []} - ### Verification To start, let's write some code to verify that if the initial log price level $p_0$ takes one @@ -344,8 +320,6 @@ eq_g = lambda x: np.exp(-model.α * x) - np.exp(-(1 + model.α) * x) print('eq_g == g:', np.isclose(eq_g(m_seq[-1] - m_seq[-2]), model.g)) ``` -+++ {"user_expressions": []} - ## Slippery Side of Laffer Curve Dynamics We are now equipped to compute time series starting from different $p_0$ settings, like those in this lecture {doc}`money_inflation`. @@ -424,7 +398,6 @@ p0_bars = (p0_l, p0_u) draw_iterations(p0s, model, line_params, p0_bars, num_steps=20) ``` - Staring at the paths of price levels in {numref}`p0_path_nonlin` reveals that almost all paths converge to the **higher** inflation tax rate displayed in the stationary state Laffer curve. displayed in figure {numref}`laffer_curve_nonlinear`. Thus, we have reconfirmed what we have called the "perverse" dynamics under rational expectations in which the system converges to the higher of two possible stationary inflation tax rates. @@ -433,15 +406,14 @@ Those dynamics are "perverse" not only in the sense that they imply that the mon * the figure indicates that inflation can be **reduced** by running **higher** government deficits, i.e., by raising more resources through printing money. - ```{note} The same qualitive outcomes prevail in this lecture {doc}`money_inflation` that studies a linear version of the model in this lecture`. ``` We discovered that - * all but one of the equilibrium paths converge to limits in which the higher of two possible stationary inflation tax prevails - * there is a unique equilibrium path associated with "plausible" statements about how reductions in government deficits affect a stationary inflation rate +* all but one of the equilibrium paths converge to limits in which the higher of two possible stationary inflation tax prevails +* there is a unique equilibrium path associated with "plausible" statements about how reductions in government deficits affect a stationary inflation rate As in this lecture {doc}`money_inflation`, on grounds of plausibility, we again recommend selecting the unique equilibrium that converges to the lower stationary inflation tax rate. @@ -449,4 +421,3 @@ on grounds of plausibility, we again recommend selecting the unique equilibriu As we shall see, we accepting this recommendation is a key ingredient of outcomes of the "unpleasant arithmetic" that we describe in lecture {doc}`unpleasant`. In lecture, {doc}`laffer_adaptive`, we shall explore how {cite}`bruno1990seigniorage` and others justified our equilibrium selection in other ways. - diff --git a/lectures/unpleasant.md b/lectures/unpleasant.md index 0d744bf1..d78b48ff 100644 --- a/lectures/unpleasant.md +++ b/lectures/unpleasant.md @@ -11,7 +11,6 @@ kernelspec: name: python3 --- - # Unpleasant Monetarist Arithmetic ## Overview @@ -46,11 +45,6 @@ It also characterized the steady state equilibrium from which we work backward In addition to learning about ''unpleasant monetarist arithmetic", in this lecture we'll learn how to implement a **fixed point** algorithm for computing an initial price level. - - - - - ## Setup Let's start with quick reminders of the model's components set out in our lecture on **Money Supplies and Price Levels**. @@ -72,8 +66,8 @@ $$ (eq:up_bmotion) where - * $b_t = \frac{m_{t+1}}{p_t}$ is real balances at the end of period $t$ - * $R_{t-1} = \frac{p_{t-1}}{p_t}$ is the gross rate of return on real balances held from $t-1$ to $t$ +* $b_t = \frac{m_{t+1}}{p_t}$ is real balances at the end of period $t$ +* $R_{t-1} = \frac{p_{t-1}}{p_t}$ is the gross rate of return on real balances held from $t-1$ to $t$ The demand for real balances is @@ -81,15 +75,12 @@ $$ b_t = \gamma_1 - \gamma_2 R_t^{-1} . $$ (eq:up_bdemand) - - ## Monetary-Fiscal Policy To the basic model of our lecture on **Money Supplies and Price Levels**, we add inflation-indexed one-period government bonds as an additional way for the government to finance government expenditures. Let $\widetilde R > 1$ be a time-invariant gross real rate of return on government one-period inflation-indexed bonds. - With this additional source of funds, the government's budget constraint at time $t \geq 0$ is now $$ @@ -126,7 +117,7 @@ This is a version of a standard constraint on a central bank's **open market ope ## An open market operation at $t=0$ Following Sargent and Wallace (1981), we analyze consequences of a central bank policy that -uses an open market operation to lower the price level in the face of a peristent fiscal +uses an open market operation to lower the price level in the face of a persistent fiscal deficit that takes the form of a positive $g$. Just before time $0$, the government chooses $(m_0, B_{-1})$ subject to constraint @@ -189,14 +180,16 @@ p_T & = \frac{m_0}{\gamma_1 - \overline g - \gamma_2 R_u^{-1}} $$ (eq:LafferTstationary) -We can compute continuation sequences $\{R_t, b_t\}_{t=T+1}^\infty$ of rates of return and real balances that are associated with an equilibrium by solving equation {eq}`eq:up_bmotion` and {eq}`eq:up_bdemand` sequentially for $t \geq 1$: - \begin{aligned} +We can compute continuation sequences $\{R_t, b_t\}_{t=T+1}^\infty$ of rates of return and real balances that are associated with an equilibrium by solving equation {eq}`eq:up_bmotion` and {eq}`eq:up_bdemand` sequentially for $t \geq 1$: + +$$ +\begin{aligned} b_t & = b_{t-1} R_{t-1} + \overline g \cr R_t^{-1} & = \frac{\gamma_1}{\gamma_2} - \gamma_2^{-1} b_t \cr p_t & = R_t p_{t-1} \cr m_t & = b_{t-1} p_t \end{aligned} - +$$ ## Before time $T$ @@ -256,7 +249,7 @@ To compute an equilibrium, we deploy the following algorithm. Given **parameters** include $g, \check m_0, \check B_{-1}, \widetilde R >1, T $ -We define a mappying from $p_0$ to $p_0$ as follows. +We define a mapping from $p_0$ to $p_0$ as follows. * Set $m_0$ and then compute $B_{-1}$ to satisfy the constraint on time $0$ **open market operations** @@ -506,19 +499,8 @@ plot_path([80, 100], msm) Figure {numref}`fig:unpl1` summarizes outcomes of two experiments that convey messages of Sargent and Wallace's **unpleasant monetarist arithmetic** {cite}`sargent1981`. - * An open market operation that reduces the supply of money at time $t=0$ reduces the price level at time $t=0$ +* An open market operation that reduces the supply of money at time $t=0$ reduces the price level at time $t=0$ * The lower is the post-open-market-operation money supply at time $0$, lower is the price level at time $0$. * An open market operation that reduces the post-open-market-operation money supply at time $0$ also **lowers** the rate of return on money $R_u$ at times $t \geq T$ because it brings a higher gross-of-interest government deficit that must be financed by printing money (i.e., levying an inflation tax) at time $t \geq T$. - - - - - - - - - - -

PHV89x!Ihz^JQdwuT|U$hPQY~PgfI}+cw~nUJp3qY#K7}1Tj)oO z6ZQ;eh@T#1j^ke%44xI)poJ?tQyBaKA=M!B>;>zc(mkRGd}Pz))_&2L2rWE5-D0UE zp=S$&fYdJPBUNfyivJNy_egmTx*gWpgnVp%db@ufi4iP==gNJDDu5sMsL+q^py~(I zN2z>t`y`HXdhQ*zc#H) zS-W|zOAD-VQntzQMiyO6ei1@@+YsaYk#vj~;>T{;BD0hF3+DykCp{rDyb1Y2=3kFs zu+rK8Roi7_?lVcD8+^gn94JcCA`FZJ#(BBwPeIHVXZ&tzw+hk-p*xQZv?Je{Sf?`B zPvcJcX>Fhk+!20!W6M$?|7h+Dj6Mv-)1-zOd2n8`WB(nmMY9)LDb+%j=Pe`-OOlA! z$(ZBqF8VjY0>aV`ZLHATR_(e%Bp^3gxB36MIOvtc7y9wdZAUN6ja3S?IoOHp3tmyTS9p8aNrQ}<_D5dvQQn+D?>r__a zcGU1cUhHlC`Ix+ob`3$K&nTc^g^-e!<02JeZc0atn9H@Ca(+7k_Tp!k_5y2a9+N4? zo-JFsy}LyFOqiWuDsMa~|8c@UNj$awkS03Fs8uj~OB2${@9Q%|UuV3RwU~?1%Aqki zzW<+17N_{6O|Q8ZWhG#rA+wEzLoG&aZJ`E88Zh}%EgDYpDYs9;FXq-(Os}u1 z*Jm|B*nY6Gz+~m#T-!*?*EgZF`pdM4%-=QCP(L|N&o(mrZ`eKGllr}NL2jQM2EhG- z8$6~PeZpC13B9pGU@+gtaK`3tDeC3tGC0(g(lnKB${Q@h}RJ{u!_*G{XZhz|L+FwKR4PQt!B$LI`9_*t#IMpzE6cPm9(b z!eGyKTsdoA?jVK)VXZBupu3{n@MLb-{$m=XDhe;|_NSlUS>?V4`~@(CC*qnzabveO zAdm)FQlzJBm8tMR*fXAVJv2|9^KF8t5kjp75>t+motWT&5j*@8PP2A(%+0)~^X7zT z$QfNo1~1pWOogeTFK~=-0J~49u^%d3*0H_LLFN`0Qj9$4?P5jxdB&W-Co96)F(&`r zpEMY_jbEr zK~gb@wQQ}hBdaI&Ocd2O3QB2hIg40DCfXxa#q=We+J+Tz%PvXWgcw@0*2jeuDCbt} z#j}69b~1cB&}RDkb(RC-tG4QiZ==4*Ta^XaYo!Ai&^wuoh$(3e;>P|l%xQ&+MoG-H zxG_e-wf@`qI*D6RVuHFeY06f_MvsK=g?M{^D}X{ce)|N@=?q_#>>2_UY`mqmR9xma z?DFZ=;fNc)crk>r;LEwNH!{BdG0TOa9aO$}!P#BK$N%8vN+M4FdhvEanJ_N{GtQ%a}L5^U6Kg1jbexYUq#{l1p(eNLaK9GKM_4)FimoP-FaJo-A zg>lg#-laia6V_S<@h|fWIO7{Yw_^yI(CZWff)x%bIeL%(ouJ>!(9qI_fCFoS.j z;zCNt{PRfj+&KcS>1v+V5Ed2SNl&(UO{Z-#b;ZjQMid0#wbFO=Yg_t54DU8KWy6Dg zcnX$W?iUL;5|iy~+O`_6QK-r<=RCBI86{b zU3N&w$#$&LF4ZU`wyZ9*JD?> zyZ`v=!NvcD4|>C|MV5@d-x)M(;0QjjOfI`b6Z&JCVP}j2VV};IUC)pJ(i9HFeqDhL zSHR!(;k*-bqLG1z;+Eh^bBMb#BdSme{qyv6`p-bkl)n!grF8@g`K%6sJ?PP#33Pw@ zC!AR(+>OSn(p%#$-SnSerp-`r;*o&uU!xMHqXhX>ej#LSeZTD79|g=4Co!E0g8yk& z=J=b0e5>WOE z$QWdo%bu|g<&&Gv6G(Bzv<|53U#8EO}n+;p9aj0s)vOmm0#`yQv2Po_72GIQD<8|_G<9YDw;dq6}p#flSM zZ8e${k1B&O4QV_4#L9ypQhZXhdRTze8n-d1ah9fJp!7ut9l{Z#Z3(ng1mxZ|(+>%d zuWm&^RNZwH@iz{Sdm;XZoP3Yb*N#C=rAc-nL`|etk$Qwq2#JcFG(6=j8|`~rTQbED*~@Pm4G2mDdjkkhr@Hje=;DP z>TtD;n$Rk*U4dYAFuWKe1t&EN*W!&8tAu$*_ZdTXBVE}jm~M-rlI_&Gf=UCP;^FE0 z<4O24;Oz&(n@q$_-jDWSRMQMB%PI+%)3{114U!n$^5ax_!7~N_F=r{cge^3u=ZGry zmz3vtbN|aDU=I3_`if2Z=lkpFR^c^X%2MwR*S`2~I{`PsQre}Gt}7gx7ws6%+- z9`x}`o@P0H%E6u;{_#1E$oGQvNS~cMNC;EWJAUn_T@d1zxxRs#KT=Uyka+B)iF^dk z7+eTpCSBtf-^om10bt!M5y;`e4`cSZUlKmV10gWudywaxC3cdp=O$&NBOveGVIVNZ z+Ovg!I*gWd3g}Y%L}AWpe_l?QL=n0ipfUQI+Syg_-4rY5+J}Y_Sq<#`V#DFwqz zxmZj0G?0Clb%@0P>$07a_&_v;`RBLkquqHHAr@r_afWceHUXIazPDT0T}i=qd~c5@ zlYjqMFzX}v3+UUVstcU(gKjFok`S%-H~X3O|$#g8-magK?Nk|2}EQ^aM; zdxyfjQGNhfw%UR2MD2zSvHL7PXo~l76Ox_lJFwAxCZAyi0wZe&moy%IC8zG}#tciq z42=`wkS>_Ssp-!`s6agTG*U~RB4Ef{c{|Y`!rO9%ZE0Z3aF>#t!;%7a1@{`h>4}&} zq~&aBGc3_yV$Xnh60M}^+R2rs632$QX)LAiHG_|XbAEdfT>&7i zA})08XK0`C#TJOe+lqH&hOOnua@n zWR42g4h)V8BoTznSvXNR$VV?^3RE%>m7^WY76(z5vsOVgD^v)XYUPMusa4c$Yc1C2 zpyd3!KhsE`rO4OmgQ+z(;7MT0b=GK{#)p8n4`SvUKSyf^C^!yY{BdU>#WNNt%2 zx@o-tTOu+-VBiQArRq;0vB8~FIbm|2ttv3SMVjF-?4YeMPWw3PXY|#*Gq9TJcwR~y z%^41hQ=?~Tuy|S3+716l7=WGX>NZX0#8UN>1$Y}V$<_*7!v^crEm8Q`XK8~*_F2p2 z2e}{rjOjopt$@f?`OZ4#>Wa^VWe2Tap=ez@meqvvtv!aMBSsbdw-w~czMUH?EcW@p zlb^6yINWuzg~(hxhlGoqX>WP*!5=(DF7%29@Bye_5~fUQtqdASv-AU5G#Gi+v= zomGkkJP$+V@pb5k5>A-N)ABKjMc>FWC(ULSA@T}^z|Eh@Z8QKV`{AQlZS?nnulmep zk{&0YKB78B#~-slT#_c;A}HLeAB9!`k(y4Zrd^Xg93y4okyGE)q3QbL*81Fv&{4jW!nJcbkJJN!R|?KbnWOO2_3KC#^Thx&KuQEQp?QTD9zNJ?5GeF*9vtFP z*bX>*-c_v&K2%9t!Gv|}%ci#I(=iB$oVha}M2-7#!!m<~xAW-)7>|mVa|`GMaqMl?;fzlFB1U7S|0``P)X@jxWsNK&*^N88n<&GtyHkScoYxc z9JP|eQ&%+)8*#$EXjt>M8JTc}VgwvJ1M7g|agSNRw)|QhRAP%!do&}%(rq&TGR|%(NZJCW zm^HR+;Wn)I(XNVAo%-R=({&uty0=LpBHVN@QSk?o#zH)P!leDDbiB;UA z1&8Pblr~?c6U>6X0D(o+F+DVX=*HV;r$DC|RZx$ufISElMD7<|Wt|Dh+~knNLg35+ zLLaJ;71&{WI_@h?9ZQYCs$bqBJH4LQfRZi9ihPxV$|K@FYm3GHjn%OSb*J|fItWt$s0_#NTTwkR8kEv zS;)PnSu3LgS*VHpouaAA-<+70-{jeZ4YAdH)-zVHAlX4Tki3u0R9=jM&;uG)5woYH z19_N4vq&7kMmB2+(Vo9WNG$`b;J*~rquTG+KjH4tl}_$n}J>8P$Nw^tCg{@=j z3qQ+Ak>C@p0b7Ep$uvG(Q5@y&!K$L(e0Q~HuLHaP_H$30{>^(l%L;^+t>-Q^#R=!X zDkXg;-uhfmtep!{S$^h9fd*Q5zMi!c$O63trU5vTKw*kz8N2&4c))SQT-GC1sZ!f~ z%7a8@+f@j&d*Gv^k|;K*x_oY(0G4E^pwt}w8V+n2yM5(U7$k=pHz2HzLAkz9$;EpP zZoa^?FM*(|u^i!&{tvJOUB8E>qsQtYshs{J*;)=n;(4vdcG}aVDTF-G-Mk6?je-zw z;cMWw%^;#TRlNgEJSv%>4rj1r9M|49+#r-kzc>SB`CBptLyUs#f>T9Y!IL6ZIg#2} z0}XUJi#A>xm7fl;Lg2lUtQ}qNcIZKylVn^!1XhD%$o@eKG3)Mh7gb1qaO;)urUFr8 zBGUW>3}EP{HI?c>vxZ-!flna}`gq=_^d$7tw`mP$M?Dc(b+pr9#_DQ;2B?%JEP zT{#c%XRa)WK4pJ1&|eY;h=rkZ=6--(Av<`4^I@-Wdl27c&NOR9clq2+zEW3Yb0{u^ zCdHNUaDmum4Idx|JWP<{6}%3e^fGJI3w2amwQXHN*Yk80sRvI$<%g+F8AtESOcXdT z*TT28Yh|1nr68`zXJj|LuwHM1LoMe^(1q)ORG$%M(N3B?eRk5N;7&uNHbN@0N?7FC z=XJ{O7qDQ{b*3<_P(DtgUGk9}_(Ij`+)#0De8Qd!#{u+F%r{*5TZqLaUI;N$L*y2s zEILWy;`WC&I^gdg;k!n%C_eCUKy4FM@!S+g40#U`ptp{7j_y~Dgm7zJ(0v#@%$`it z5~^r|J1f-Opgf4p3BRK|TV;$^7*~rhA0fix5C{D%^?Ef=4MP?EY^aCi1RV6y75Ljg z8D9WU<0T@<;W#$LHt($;?q0xztv#5{yG|!4khRFFraT2f&)HOB_}lcoc8#r}PlOoP zxMMit$XbX^M>wN%VU9u)7t8!~@62uj!y1d>pSPQ{xO{~Hm+;ltrC%Iy z_%^D(3L#Rsq`1%(_@%UhLpXP1-sC(|;=E*rWB|#5HLoXC_7)=b1gp{^N*Hq=0ak4Y z`gUhw1lTKrm7dR8d?Ad{@g6IfvSCc!9^fz1BzyyPnidexm4$;);;Z5u4GUoCZdk>X zOgHb-A4n%~kui4u;te(vF|U5Aw~ZV?i6sR=%buo2Pyxuj%20?@!HFA?0@NO=Bp0rp zy_2TSVadT$yfm0eFC@A!I4)@R8WUTdTBf^N#v}NlD+~+I+Gxa%{H#yXbb__ER ziq2~iwbSZ8Z?1c>OQ1-7b7jKkiQf?)vY0FoD}&a7AA*dit3A)Mq>9nvD>^-Y@wiEn zTu|Ej$#z08KN@%1K&--_?xw-odlNIgFF_@7{>!jjgL&zJq$mag?^GIGFmc9x5$wk} zC(vDDkY3}2MF%jM@nga^>*>mnL_@c5_@TH`!l&5IZ)W*#iFK#2zVUIwrZas-!T^UT zN^`S!)4;E!l>;`D2nr4cvh?O;v3ou9d)+I~1b$-6xY>D+1Tk0ipAOb56{YRwzh(tQ#$%mg`|ugT~(~aSUzP)$h%z z1u$e4#Gu5$^(=#V)CH*q#rVF=@1mBvP0Q?v;ie^HD2|;hf0o88?XqU=HRx`Ybdw8c zps_0L{GS4MWH&-eZd1dqKM)f;BEY2V1Wi!4>;4Eu>%t;7WKChLV{bS^4*Q_P7-5>4{N3J)sNjxO#(}uMan3&;;WqG#g^}iFBseomZqgG z<8BhO$?A0e(kqj6`u6|a zGx^jk#UqFX1%)U6|GQ_B_dmV1j0~Mg+S7te&ECU*t9Bw9F`9g%Ss-mYZ-o=L@!D^f zb<&TMv;RJq&iQ!zI7<6%r{de6J_4_~O$y(KTtNqs_s9GxRo?Tc>*dRvD{F9!n}@qk zyJ(AMSoKK(P@1qtE-$t%CcipVrM1)S+^xl`ZFK@qay}g_Qy}cxP_Xh_vrggnqQ*IBu zUKW*K-$w?gT6fNQ-vx5>g4@?cNrM`e7f;{$Ufc92ftDVYt&h)#HyF=muczbX%>hn^ zv3O3|!Gh}nfCDV;H7)e?!)QT zgS8gEQhF8>)0Jo*`IobiM=VOz>4DKV^@*BGfn38w$Kb^T(R@`=XL8Gl=ev$py5Tc+ zULC9apq7Nw2wuI$k6X{6!>8+0K`;M=clNeTs6upfoM(_5`zlF&5-X%^+O8Tm$%=rj zF_%D@eybg0W{TqywNh1%&9b!Q!%4?ysX;oN?6Z{{-Di-afWog+UsAc13a*LOPUR<+ z%MN-6ZJyq|G_6&phJ;gv6)x>xSDCbj4kj+V}WOhvHndxHGswie0^x!Z0 zqEOw&(1tb9XVgxXG`<8(1TxLTi{_M_ zKFZ4X`a3{B8uSHqVjC>?SBtUFIDO(g9C6@9nUkg5>2UGB?~3Y8rDddUz;G7^uH{n&F>iq?+Ob$YtGBvTv-1{y)0DDLm6A*fzFp+qP}n zwr$(CZBIC{ZBCMjZ6_0)@8A1&pR0UVdHSthwN`aica=G?lZ*u)4|G}wb#sP$v2C?> zSVAjI53Mq6x+c*OW^bZ5v5cy4N(eQec)+t-HRH6p1JsrX4K&F@5j>(mrEcu5$9_gU zvMiMcOaf}8En7Y<)7qW(GLNU)I&t7{2V-hur8OWOo%*snGigN-t^3H`4~wlHt|pUf zPzT?HvBq#{H%Rvr-5u+l@ zV52A()X{^2Xe@)?lJ<*5W@v_rTz)l{Izp&*x~A(COkFIK0zMwSDVP^&Nvu)QI9;h@ zZWFh?rAmF4wqE-!Sv7}TuBiVv6)kWv#E-BMmtvK!s*lwq$_oT6WvxCO{BsftIBN$sP12TX=S{MhtI#t-!JHi+L`Fl=Y5Ue6lz@T;@_i6iHx zu2we)MB=0o&P1>y>qU;Ps0s@~TZ&j9uOdI#N_Ul3eHcS|vIuf==60^ z_SyLeygdj_1FRN3{e(*;v^p#ua$)*@-l~>;J+@jJQ#QF=U0`tSx*Pd>j7cHO0i^<{ zmYw>yih2;~;-bC8tc*U0e2iw8-RWe6lNLtYVHq9*FhaRpSU|$iP2Od#JV7)n1thz* z)b^Tsd@r#g(TAXXl}=I=6X~eF3=~k@<`oE!TOTRRPj33z)soXjGL; zCm`}{E9Q|>;KJ%6S{^Ow8kT8df9SUPYROsHllZKfoq;|}|qrYAD z?Okmu%$3h|(uQtXDtEmv5Rs_V;a!1cqkd#GB*|xytw47Y*us9X?oAAW>!e1E5I1Q= zIsQT>mM3Q^pje^z6C=xrO5G0*Hr*5SOy2uG@CP$(GEjZ&O<%s`m8J1t26TUC&-8cKQa{j;EG+?z>M z!bmz?U_-5(F`xTSFY-? zEV`74*ttBM_RXAXAkbvZNtH9PU$e9ebxEF!)Ru{Trgq!Bt5gbVVUy4SQMH+|jhOD> zX|lK?>IH@XjucK6LWYhj*RG6>co~mu*6&1dXgZ-=kUSfZJ#UenoF!3|7&V;m7@ej% zG6(~>`@5tgad@$uyi*jv|CCzD&*qQmyhff zDAM6AuxdWKO0M}fA*t%nX&k6biMDF8>qsJ8&|X$Dw5t#()xZ3(0Xtf};FNZ~5CV0I zed_9)3)oXBHYzcqSSFDs86vGZ?-jgp(~LVHsOxiB0vI%-&JbJLarV07(T9yHiT zaYt91FzE#^axJA_c|NDrf+A)0)tjWMdP8`UsHvn&8NEGMCR7cQVkuExLm<)OWHD)0 zF~rwaGirTj)*?GYl44|{8H{53)(JR>H2mDD+CyNfQy}N@RTI{8s3mK1z|m1CT@lyM z9O)E-|Dg_LdWi{NYejvUK;pe^4LM0FZq~-iAW>|Ea-zze1;zx~j5zm-9Tg`ZCE_lO z$R{`T91tYCR3Z6bA4@hrt_%}}rHXwfhDb$&wT@+T$hjbGv3OxZiNf=TBqc8wGzlFl zK^bbxrX6cLWz2@{GDuvkWdn@Jy;U_8C9`saXkudVo<>zoO=WA?Z&9GsQ32;9HUM>r zlZw$YIf|4Bkswu~Tx=Bp2L7MF@}qLL;NYO{MFprc903;RB-g!s1IMvxyTKJ61XJ?T z5JzX6tExHCqpX2iY=!}R>~+ic3|S>659Tm|MZG6>Ig)-{)fWE5pf+anIs9h(Oj$RG zt~r=S7cfLZO;*enVw&{~q~J2O9M&D429d`eas_jaX=fJiH{UjpEg!vw@SwFh5JKl9 zz-A6aS(An*pI4-8HZ+O^n<%e=1vp36Kr!?Gw@$T`^8dWo4h3I}($tBd&9x8UAl1R_ z>ZDXN_r0@|dyPspqLsOJHm8#ULnJa;Lmq#W*xEORST!TWcb6la=O3TK*PsE4(V8^z z^Q#^eX`M&DDq=u$5Wfi1+7(l+8#=@i8a2&RJ2-+8CJC6^*-=6Je+i`zrVoa_SmG}< z42CEl&h&)wl>7322HAo>!adX(sjVS=JoK3@CBq~YEg?yt{0ojao!(>0f_tG{YQ3ZD z1?HApD=8{DH*Moy|m`pW6TnAvg7!uu0vqo%&fjtX6nE-mAh{JZtXtqBF zQAX(x7Jc9Yw9k-0M_Xet5cfbs#B8{^%QL_m%NG0B9I(Cn%+^+TK;_hSXJa9bF{nIm zasWzUApuH`S$A@VnCqgcCe0$}BeMSkDalSEmnBBHOB2EGMplX(Yehdy=R>r(;-5UT zq2nGZKBk_1^myb35L*xoX_-y{>Y6r;(GL@d32U@+!>FgYar8lQ&4(hp2(@20N+UGu zVRZMD0!oj(JPSTRl}hvsSVm%zFh#eqDrbZ@m%aC|=U|mPr9}^ztkW(h?tzlI3dhZi zHiDDDQkf#F)NFvUsno7;D1|ZAMO#-pcFBV+G1wlG%RvRJd zVdc{86H^?Li~P!OsFbz6l>ri;U@A0m3T`rA9A-W@?UGW8w=6a?jFdaSs+%HO6dxS0 zf&aW95lT921qxTWRa999*F~WU2|y4oIwFgq!a!QIbMr(3~2grXVDfe3xc$WvOZ^c_wx(>oW!lZ3utX%61qvzwIUB z8FC{oN~p1Hw7H)FunUs zZNJ5J+L?^~qGYr5u-y`&@PCMR)Xs~$QWfzKY*1)^Lbvekm+~70)SzU}&k4j@@Z8Au zGJ1}^FLzdap3yvfh&52!r@Dp|AvVTFyklqJLyHW($ zs4x4FU9R%sH%pBO6%gbXYEu5w`0pGUJAcFHbFPYq7({go1GMo z5C+*!Oftxy1ZIP!Hntvxlfhm<8N(yB*8(Ek83A$m)5Xh<)uxlUjpC#FKfp-KnqFF0 znG&Uph1YrMb(Q(%z~9{XH+)7tKA0=wkW_w8saGyKJ$htky;zHUF^z5LZr|AVnFz%M z!@l4&03ZKD`8xEg(PqIK7-N@!gL;-eg5iGVD-OW=K|J{YQ+@95a55@pf*MxdR|%%S z-y(E|jLieK_+cZ3gNYwtZO4&<>6F9fYWle4Zou5#`Lb9G*%$I08cxzkS)1ewDn_^R zQT9#kmEZ`=AYR*M({{N4>>36-Lw70LmZ<+1-?0AQ`ToCB4pW)nQ)ze5RaB)!j`vu{ zX~RuDJ55KRv%y8PBOrAE12ebda!gV|sf@Kwu5aoG89ZnmT({n`y%_*_>5{BdkJ7YB z2EC)8Ugar`V#l>)#Vo>HblDiTcVseYbs?z<*{?D!)IL9MNF(Kp`mcYoIdjqD~xHiIZJgX_aU4XK5cf8YVyNL0x zOinzxt~I5p^dik^lEgf8BvQqg6!{IUWzrZAbSP4)7=*vCl)l#xkyq*jQN-;#jLKmy z6I44VOVoHat5m(o5E0hs1X1^MT(BIxhS?qgs+fCWsobpC5Rq1NX9&SCgX)(YRv3?# zSyCI+1HYSXc$_(G8wL2~jr>Vow=gxY&?YGKCcMmR)<|$-e8X}`@bp>$i1^nLqePf7t zYMAgdlzFufA9?tG{lNMA^D^=DFa56(OR%UTC+)?)-=97o*B{uwOGgEVF`wRE&;3SD zzi()N7)#fe-(7YI8B25j4KFW0J=y(e0(IJT1?J-aH7I-u+;B{|RcsswCFrJEbgzc( zn9BWHzW+DvI6hs98CBW!h5elfaTo~uenw{hpV&?8^zgsass9;kHED5vHJ;d5s}^W*cc?@f9L0yKEG(S9YwBR zHe-phM22DmPv2U>{@riycq7c!C|9k+k~N6QqjkKlc`oE}izCLUHP{JQnr+c@AMp9*c${THGO2Ha5Rm9|{R9L+nc3a8$Y~f9M#H5z*pJ)6H z{*iTc7X}0hMlIZ$b4x+!%yRQ%BYPK+1-;`ls#~~4;Mw(W&=%t~x zmzX|hK}S1Ztz(*|w~aLtpZrYirTT_^-pExg)LxGA30UE{AM)SIhly*LfEgau(?AvM z-Xej|B837<$ljWJ?M)qAN}aka^w}GsjmbMK-wR1MXcNg@RnI9L0hE?yt9Bq|(4D?pwHL&d_Q0BzdpyO<;eACGZz1^ zP0V`0nB*Tv(w;BCQfV4u&&-F|LsU?T>IC}1(}`ago7eh@>w_!CHe{yK~028@2+P1oKQ?)Lwij-3CO7}y)|ajz)ocT#!z zs4WpB}Bj;O9NkaSr2Doi}^!bF^|k@MmCbmF25h zoE2Wa#+uc!&{18wc71sMxzwQd-{;N2Yro&;C2f1`-!H&W(w6tt^-qqk>Awb3hSP|B zCKD}${RVQF{efS#ZfIH!e6Yi-e6=9+ZA*NYAc~x;e7Tr++h|@}IM3r6AJwf34t1N?yJJHQL7H=lnFy)hz=>n*E!NR6hC zWwT-qSl9pb(M`?IFzIIoFi4NvqFJoqpp_P}Yd);&*w!>G3$`-cx8+!>9$2#h3SQ$+ zu7(H9UwE>76@}v{iRY((P!g5}$rVwrZi^seEEF2sQnGDxZ`|NI3fmc%7*JaCbx(Qz7|+*zAvK(8}LNH0@6 za@RNhk8t7ik(Q8V9aEb$B5d-c1)!O)O|=+>NSwS>peEmfPnaIVK&Rem<1 zF|t8-?7GLG!?4kGeRXrR#$TTEwAJPwon_I}uyCGowWNTKBGrPW`p>4_SNePSY_;J= zo1x&tu0zMOo`SO?~Oxsz2Bj%@iq?;o_JTkF>T0lig}65Q=EHf4tt zlp3?!b)WSl^D`?R(I4Lj75@ITwt@_Pt_Gevzilw|m*-C9Q7R3nZX(*hh77Mhr#MdW zRV~IZq?grK%XB-_dpq~5nFplvejiA=tm8;+{#9y_xj9&kEkI=LUYPN4^Apoj?8* zd|n2AUJpk;?(_@dA^tS)-UdE0B5un3ymS~heo*+RB>ouvb%s@V?!|lNuCGZxGhdhn zR>XL8t&`&)Fkh$*E)AlY=G_3BjG+1TPZK>>p-8j2%k!SjNe=&N;8U ztk4L`6uz8V0DitacE2Jd2)JW!mGR-{cf4q?$%Xb9Ez4E2zYKH5R`XO!IX?91_iHuy zwm9=8@I(x(5$VNPuDPIyjVW*mQre(jer|tK`Q|a{K)#vI8>8v4z-@5h5ps7ps}<9H z<0)eI2n@2SSWws+HETDje+J~>8Mb+3F?%n8PV(n1cIxc6#D8UR#%donnYfmu?%KXT zgOu6-dAEZxqSJXXU#t$lQoiJoj||pr+m^6NxvXJ18J0gfuiRZ5bLyO(M40mA{*^N~ zN4eu?z^UJBRcm8`>|vDQZt9Zi%G74C@|a+LVbR*nBIV_{nVVpcyIBT`jtl8yLpHlD zcUUx$@ljN5K_tnZ1e2WGQv3LB*OFws?%+tM9{Q3eYP!2RoAxtv`c~O6=#n&yu*4RvL?vyx5-;rHA}asFIIs~)RAHXM$$fPuNFyw5CdSJ)+bOnSSASNmu&dL z^rpuSt~I|}Ty$1-wgILIt7~hzcA>b->5}y^9X_zZ!dTXEt#u0eQd{|%4s=drG1oSZ@bCk&sRrf4ruP~X?GR% zRfA6&h%hb7b*Fpq14-zCm{!MAT=FM%ohEVXSVu* zp! znt#x*X3M%aOOf|>v{!oh{dovaYn>aOXzikBwt5anN$g5)=S3s=8sf^uMt^qBHiP7= zwx=663o>m0YoI{f3qweMb(Kpi=ijc=`mD$rWbkNWMf}O`DJb!n4bWB5#M-Ej(u%hK z?%okYQ~!q`{2KnFvvJe@dhGHVeNzZVRq&rL$yK4aqIbK+71bB-EqAVPABt&ZJ5-*m zO}bDm2)8UBw+TwMgeod=6$D`sog+m8j#f1q(Yn{$T5*wDx}OS!}~<1+GdTsSg6D;|plxz=mEdwwTLXxT}G2 zrqVf~iY2dhgx*tg^Td?Ar>De~0h90C2s6WG{a2rSIxnen^DbzA?Hb1L^dR2hm=?Q= zPFSK0nn->_(Elxi<|U8jT0{;4OUmuG?yfk2T7m6@OVM6Q2|`_V#jEw$lIIq+g-gj< zX3Tejp(LBt8i0PkM5bgae#T;Obpb|fMDt%l;aI`1LkZQ5M5g2Vs({~@xatE}sqxi9 zQO2;c>(ghjxMsX-w)z)$ zs-sIu-rw%)dJ^4RGs~(|`~0uecHgL3gqhF>Iqi*i6P7|ZDM-nR&Mb(%8`priC7-!| z_gKR%_M(PEL5TomLTJ5jpZodO@t(jXR3AU&b(Yiwfe_maH|&@1_d}nz?4pR>8T~$K zIEBv=oPhhz1XpS3&snfv2z%C6()GmoK2J zLy^bd{0P*vZC=aDvrYMwSEEjXocZgU<2eXR`rpjaKK5KL+@xWk7U?0u15HX{8SSFu z4a`}mR6}-sv30U+_b5uO7rZ4TK=4Y_rh+6 z_63NafH~HTv5XO>s1np}Y|y^8gZBl|X~gG;mv4CeST;(II2VsQDY;<|7tx64Bjf3I ze<>$I`M|ogq4W)(1LfdH@m*lVK2FwUw@C$rj)WfU0%lfEPS4r1CYz(R-tV=;DF+=4 z)>F3lrOK~HzeZtJEV^@GuTuemQRptqJF9I{!kL(;z4zJt%J8$=FKRFW4;E@jj+PZ4 zDe3U>Eyt#Sy?n1@f#8f*ZeFa%sdW8JG>CRTJ4{Pa5@{nNp{I_sqc ziasI-jpGJ35{<)+-7{wq_Q!E{^IA&bK`qzx-Qwun-k@c{XQ(6QrUa5#yaB4v{q4#X zqln_ckuI!f057QMFsV^FpW0eYsi;WwwHw%)V zofb9ECh$jpSakA?h;? zXN> zT_g25VVBB;y`#8QSDZ4TH1`%Q8}&yo&aGuK?+E=IZPp*N6O=EB4IGQ-fjo@Qwgm!w z*q|e;gVBtif(SXq-&%h^_1Phb_{7Il^5Y0B?wO@n}-OA|3K#SV1_!~QA%}A zv>r`K;aPfxq8XP@y#{uqZgkb}$I&jb($tp=fwkhq1Ch9?KPjX(i$-f9WqT{rnUY)=KWn00u-n4F$mjUU@4B**z{cORHm+uR4=EQDj}wg-fxT9;&%a-N*cd{+mE0;{ z5M%Tvj0v8-43b9tR_G0qM#1PyJj|?&r^$n3C!XQ-j?5ax@t&dwsVArRP0q@y$bW$J zq^Q--ixkOK^7MSB8Ef;biuYtxDIwhc+eQ(w7;%3G+R^o5edk?Z{ErW*Iv(ox!SB;I z7mW+RXCdQL!Iej1i;L!6X%)K4ftBvBZ?XmS?scxnwyB$8ZfdS{J5Tb9Q^wcw{-t(d zCxs8D&HG;6_6+6)0@^=$4{LG?{hI!%qS*cHTBpA&guYf!wTQ@u^N{)q5mT5< zG>tUm`UBZ@Ft55O*v39(xTN7qP+Xf_xvn1QAt~&&rm1+HpCzHs?lY(?z(zB5W);@I zt(hrPoZ?UcLn5Yl`(mDs+Uszlh9GFWRM&FiuvO||B8LO473ndW4S8KBt%o9Nqa-^O zSnjekx%l5s@ivnvWy8!Tp`E35OWa=TTP_<#+fnamB-c0kl~&uICY<^q>z4&o=D5-o zT1sC=(~bf*h?l!S8&4#*6^6EwT*W%*c=uubV5W_%(Run0w?t<~WG{9+{SgmU_k0~S zOL$lctaN#}1WbaD6AE*otoJXm@{5Lo_oBg42jLyueq!AiW0J85NT)VIhQOr&&?KwC zBj~MLB8)=;%jTFN?feM^uK|Xpsv4?R9sJF^ zpePX*SBH`$WY@2XU2%V3KIh3rwlV@$)fIoa|L_x*4e(N+gl@<*spL7G3ZeLGu6iZw zoa-Pl<}nlxW+RxL)m(6cFUU>{fA2>#7WHl1eD?kNaSHuz`ysq&YirF%#j>g;bc=_U z7yO_sfD4nTgA4sZ596x}Q;tZ8$BBINS?AoF zwoo;NSa~2~t3NH8f^I5m!GQyEnN!6mXh-Pc7PkQ8YNgh*=LD2v+iBRRC-3mY2`vDD z&Bu=LJSpo%EZR`|Nz76j@bet4y|&jdN!VwWa@+<#u)s`8we$t_LfEFV)sI&fus>>?`}2S%P{aF2cOS{YHv5CQ>3EGa6s(n~98qdM7;JS0(Ubk2(O$-`^s z78OQQ?jG3>qo>IaE*vWvc0Vhlq7Xi(0#vOx6v%R=^+Kh{Ev#AypMdGiImqi}k2%pW zu%vqHTxeY7^It{0%Fj_tf7QlaVVJD&Jmy|5RB_!GS)fz$izkysbB)w=BQ@;iU6AK@ zw0>7W8Plqz>tdE~YxRK~#k8^6wPJT~48@axKv`4-D!H|`1>!|ZYjky01qKMRL^qX~ zNN6F(+<;sn#?S%NIv~rCbQkkv$>n@Eo9-dtOjQrk3r+SvozrlX78MU4gkx;;)f|5h z)hT`@oxk$L$BaGCRn(6M$4C?ii^Fp}_}@k3FO(Ek_o7Z$6{fnPIGqz-YV8wNc6BL~ z1gN~vHkeLM7H&(Y;5lqr))%VqsxHl|Wey|YrgZ{7^~3t*M`rn}IxDA#JMP0;ECBz5 zue`8~tXu?6jD!&u2UDdEAS7bo`6_8LahSO|pPsCv8E&V0xa{Jnqn#RJ4?;R>?J;(k zuM*1SRQ0-lX?Q9VC;*+ATQpXtrIQ({5wC=Y0a_ATgTyK(-MJ>8B20H6541Z zmhL4W%#U(%1TO`7RxhL-sSv}0o2JfyA%%c`McUIv^y{&%VQqdT^*N9*bxdQE0X;n% zN560BNoJ0VKVE%oKf^>#lK_K=cgrOobFi86fyYf*FUqM?C5LBR=8%Tuc5~()1h%;z zAfCsg+qsNY^EQ?(IVm)*-LmY2MVt&+*!ukY^%c0seadPs>lM%S6@Q366_TY(R5b)v zERpJnnJXh*Fgqc?j&SgS6SWE5#vrIy^QZzC7*$>PO4aK3-$W(3Y2h)hpPejjfN{jf zOVEtj7M&f95av*}OVEJHofhr^H^3Q%`cm?a^T_vx;4Y7K=u+D# zysF~9hCoTWz&5V-TuLVlEHeNyTZw{~%e?rw*4pHHh_8KTC_3vNo@qr=M_?-_VHgvCGCU$L_{?>GoW{!g^3jp~V z=3p>+kkq^*G}=)q6_ZaDU;jCKS`ZqUEm!V85IlnZJr#|8g^Owj2}jK#0Tfxte%!93 z(=q_9C1(leV_$15)<5i0(FpUD@&TeS8(ohWz1h=KvC2F4XfKmZxoc^HPRO!>vWyP? ziD^{Sv)X~YlfShPX|Bq6!W=?215Ig^;SV3Z1WCT^2SsPkBS5F2B(NHL|5P0$N8**Y zPOB1Zyuzruv?M^_n+iO<9{M(}l-Z30Q06not;VJC^>i_?K^+Kd|g)zC6G z>i|sRbpj`k?Vg*hX%HnG6~~89!;VbjGZ7xkgxx8h+5iA-qk2Md(iR7B7$Mx>ek}3J zpM~0RMsBGu>2c~Q@#wpfUp&okhVqD+QO7b_5Q0)>4heZ5R_{gI0lxwEIAXvecUgHI z=F^uVn++Q1J*+%R%M}MhzB|{24Dsd1Nx{?cLdbD|4I*TFhs}ITuyJDS9DS|A@q5Q1 zj6xOXZdI5`6Uv!DGYLkp4$jFFFB{w{r!M1`-MGSinRGeCJVb-qk!=)Kf5NsbACN90pJ0m#6~|&W9qz&WgOhCgwnljI(SA_V|C<%|G@0jw; z63tpY%It8Wzn9tR>PZwvEo8(TfwSwU86A;O5AD zG(>KI$z1)^cyn15AyE?iigjP2!+dks!0!P#n{ZL1fyy#B{~i%4>H<6yrVzzbfYI8UTY7icybX7K*-6XXA zB>TmZ|3V^6k`1`D5M(S8uNiYd`(%w(aUzb&Zs@%MT>UF(iIU&rlO{2N7A=&HEzn&d z^l>?@g-BOT0X=M>^m9nH)vfAPMkpSevs8(&4@m`;3rXdL?j%!E31gB zofdnq8Tg)IG=9OHF}PY({7bz!Fparb{{=|6H{MESB=dUJvhD#K41sE zP4O{;)tMZ=Z&kWM&3r|Z!@?{0Ks;n0dazBTHPR9IYu(^{B$|i>7HdS33JtwH!FbWb z)v{s;B-v0_<1NWZ64%%BV$^gra$*R6EzkrJdgT=2L3O3flj-Yy5o(C(Nu=o%T`TYA z`KY$29DPe_M#CjnG>1;G%m)zK?W)fLfHMsb*xnw)xt`s1A4n-^=zbKcNZgbQ&ZJfbr`7 z!SjtMgbiN6Z6r-7kdtsYm735+k)bd%i$th1yQ!>12f>3idCv!BdN5T&3I6&B)`o{y zp;8ZtP!l>vn4IRJT#F4+F2<@`?3vo?agRcPJVC!TO_4_o%$e1S6o{EdDiU_6c7b^8 z291U%YGK$!8Tiu>^F zhKb}+!~KHj8U6UP%;b*QX+E_PYeq0~aRiO|AaLN@S^8+eJ`jCMEj~o{a7XFB6h3lj zkO2_91t%)-L2{iwu$flLbajTSy#z=vP2$mh0#ZE`f@deL0j>oC}6F@kSP_vM+Zn7^y~w7$CEx9P-Myum{mr7 zkTTsB%xWy?8`yfCZ;Js*pAHmmDJi&w0hB)wT4%y_0M!haA{xvlIX7J?A9Q>)2GoTd zSd#Wma*p1~siR&`=5sFXWVBEe=-Wy8QCUiRIY|?tuu(mgk{f$qac|UItEWYxY}mqu zG)Ln_dILOzeS=^aoRH3s2r|rQIz2VLRQ3(nkr0!T+I~Y2UCIE5@ix8s@M!`2fI*6T zwy%ehXu2i{ka@>l;W~5GEFx!=r6gVe=ZWrGCX3isz9x2qZ@SN*#c`RSsQt*pl5-P@ zZwIwSTc{9;ADt%;^``)<9N`)G1I3K&t&oC%Ka<5_6c;FglBL7@I0MHNrhC1=lf0ie^Hh!+}DCs}3^@IUv=tJdxn*p^IO&I{SAH5*MJK)5G(bG!3hy5n3ti;dG~o=ADk~iq@;FMiFMiDSe~G?b!rt+WbW><{v#l|D0at;H>vhB*LB zL}ikwyK$)q)!H`6f#ebm0Vb(U>=%UlM_6|$r_xx#6H>^G7Anw^2>C7koj5t+fd(R0 z$KF6hgEuC01(%wEd>OnCrm@bVHb^T z7Y5Ml#rxE9M!?*TQa5xoeMk{hzV91=L$(PB=2}&uIsW}RG6B$7^lYvj!5npuhM3qq zoZ#w#KE#(r)8;*#254b#bgDVA~02Vt}OUqlmvnm6|N!G^BPkCoer7o%LyT)fM-& zh8I5`YD@0W6|aO7i5*o)E=S7AaY!){JDB*^*1QIQp^9is$*bw$*$Xjd&RtzTK*L+ISQJ8vPX*!#+GwUNq%m=Y?=&&S|MiddVazo7N?kU=x*(8SC z5m=lY_pYUtsdWW2I0tnSy*oP;LNwAQjDF2>aT`E(ltCs4_FaI`fTn;^{N~{!dO2*i z+5kjLiW+7WRizO8PO5v?-8El6Y8yD9l;BEZQ9nmi89D&#xLe)LbJ@3YVl_`2wgxz9 zq-p}~ym%Y@CJJ3|EcL;r<@f0?VuLX#z zh@t2ICK-d+;4y`^UOM(mvZBBdy-;^3^@e2I!@^xO)pV&;zSV~c)pR9Nv}CW%Q&Dvj z+caZ>C*mFY0dc!B>4DP3c&~6v_R5A*?s~SU-G51CYau)aqx&lE^mIPe1*5~WC*>wZ zg|vS0e_>idYBQ>R!XL^om9W*Tb}}K{Yi0n|p3b4NnY5k6#AB6iJXK(aG{mscQD6Krv~`UVX&iBop_G&bGf-k08Y} zD2+R3!N?AjTTox7y(D>mV`H8IPG2PDC&`KW+)&;t^jr_pk(1z(?;cE}{=45`ZU-1< z7%|!CTBzA0V9l8B137tm3%Gj}&RnxlPRs0Yn1*R*eBMTI%&6uABG^3CH4;I%?y>oI z{J8~j2JlEKG#VgLY9bMf#jm$5KP!(`^*wPD=_RQxOS6DfZN11yB=sVnK(K5{$d(BM zA2zZMAgqZ+!pDM%VrnDr(E~+9X<(vi$q0Gx^onl`9eR1}h;CK`Vm2QBV_;troAAQAuiA`;=9rzW9(i$^qhDYwNwVpexZFWNs;}l(T$&qXR0Arkg5fX zk+Kid8E)nfjq09U_3rbPgup!%(~l7ZEm|j4eoG3J3MJbIjd=(x=ICgR8j~mmEAN90 zDH(}!?e~?Eyq|6(9uW&bx(l(Oi9@6vbo$t(VdM=sN3j%J7nw-Fjmfd3S1rDGrAng& z;Qh<7I{E7PjUOpFlZ;>cNg%KQ-(cBu1Tu6f6MrX;>ph?kyb+ zK`_*HE0A+2Xi*svkqH>L>epFo^uwecXR+i?2uLZlqNWPa5G|$4c#oB(SoS>9&;%J2 za<)$x6A6$Az&4lgNXcAj7M~AK-?^;BfwPvmHg? z5jrB7YSj_^6_Nm|A6W~`xt3v0;$Obj#MZ7auG@@a@MF{!pctc`_SdaJa3j22h}0!J zCoO^nnt!eLLRHR76j;q+6ukqqzDDbb-V=cbeW7pWeSkCL=nUFFdIr=#G$CEPsFGB8qR>{HG#YSJbU~8vs@{O7sf@g_UpMZG|W~bhvo!4%hQJ zwwK=~{v_cO>~Z$x$FoepN5g+!_%BTbJ@^2|(2VH~o%zF}TvAGaOROb?RvC}WS%N(( z=YRrrA+JqGuuk+jBrVz2my|Nh61|nQp8&5}T##G~NuW6ZBy|J_UM@0=8mXFlQ}=`C zH-4QX{{P5ioxk;HoXJs+*(~P%D^!M^`95XfS6`y+%d2cgjk8zlOY*J73&5YG&PPdL*qCng(mP2HS~wO^aeof zz}*EC3NxV%JpzrQr6pOA#|kYa`Eb-AwCBz>OpmW(IeAuH*6!Aq{NwEK$PqYR`z7Ya9PDi!-&AUl(=$LX8%k1|5!Th|&3D`Y1{kC9u=x3! zKnQ;lkLQi3+EBLj@Z3uPACZ1@TXY7VNSulBfP<%o7G+(fXOU0>>~TwX(M< zfs6LI+CWCrjdHsDB0Rz$63rlpX~M&+Ai*k#k7C4LD@2wd19W%fm#mj*AeGIS(%XI$ zvCOAX`xMOXh#?hU);-@YTzt%w7mnkW<&@aJ{=|C$)8BeDCb2n}zxq_%?AYZE%#SRQ zBZV+Ai3bq#D7=+a{-;PoiFXYp$4gU41x6Z9)&ULkH*^PpoFT-Hg63W(tz!&GanSIs z1bYs0?@^`17YXHKd2IQ9b+<0m+H+p{Tc^+}8?<4F$E0yMwpaZy9ssJny5acPbUs%cX+s35cr;a?RRATc0G7<^nPk_ML*jX20w`lh z9@8gqvA`Ajk&c|n+!O!bNjOZtxKGzyQH;S-+nLLL(oLyISj%uo(f-c`@siP0$)Isw z#~>0ahzkA^wxP5r+ouNxb9Zu42L4KBXQfpF$l_A1cLTM0O=pTGM1q*U$H2c-@-#$} z)!rk7aGm?Fbj9QDF*h2}@?(K~PypwPHDVrNSm-bm+5&bk4+_4@>VN-bFfNhoP!0_0 zh`TDj0fS)MGZ}}Gp!iqig^;^sVPTy4RC|S z5>E)eW6eWk!qW*0S4tm(h6D#{28DvMnw6vcmp9;E<}HB_)1UgP$sNS^>tB|a&nKk# z=^=H_XVC;!PL5w&D6#uMy~tQRi4@fzsDaYMaZgZcDL~;3NqGG$ur`2TW%Z~dMlZQ; zZ<=1K6)4$ncHW3;EqV!&AZEWvIuSU#nlW|6@}U?KsP9OBZsv_i#ieDPdx4ypt3Kvz zD7rCiijL+EAo*&wP>g!M$+*K07ToHyXd6I`*1y<)O9AUZ8>pn~?QhBEs%F=qm(z|a z&Bvv;0yLjo!mn5=7WM$}j4Vi{zP!Wqzernb0MmOiX6!dmV$@Q$pZG}C2B7G>C{rw^ z4pZjL@}`7O=t1XK=b9@&DW2iTmOOs;tmlBP@1d~lnKL)ZzMGqtqut5^kfq|dw1oZM z)ENow&Yeo%e$P)o_pr{m4f7PUCgvmn5B=`$4=uqoqQE4$k#LP>{kNOId<7_ZvbeI4 ztB6fpdxwk*zs15)6-y$4DERI}Iz+F+&WKKfg_zA4v!v}FW;T)7VZ^DV}1Pb~dn_!IZ%7J5aylpzX8lY3J9I|?!7JgxU>Lppx)cJ)MJdH|+21t4x)s4v}+k1Yn z+4Ymbh!Z>vtaeIt0qp*4%$L=A$ zU#1hl3PH@jX{0nFYgz?Hq+dpaXE<_^kW3?dN~?^bv=ab1aWsyn{0h&`o-F*CxJo6m zj~dKZ1}926Vk9==771}!b+2$Jdm1ym5=Jd{p~SR(l!+oTvDY6+cAVCGK)p3vVRKSRU>9uI0cNEk_$x<3Cm^$Z}3*x2;kB?_Cbh!?c8ROMMKf137rA$L6IH0A^K_1?#vwED=)r2FD78E}z{i?I4&)yRGtvymEQ zq5XWCvyBOLawQy3SHFjL@LspL@t@W1g!=&LmKy1Z=OXg#kJS6h&*0WQcX{K!|8z?l z`$XL-ez2P#;EdXMX#duz8E#O@q?8$rb)v=(6$J6R0YOqW9HdfYMV8hC-3yRdK=Mlw2@1Yfh?J3uKkb3)VrdS#|Jdp&9F2+_)Gu>XpKz{&P4 z1B#5p(Uk~91uXN)oxaP{!G#E1*-8-e$_QCi>a=F`{Ya}g!IYOt2(B=PH!aWPa&!kp z&x1pD`S?KiaOiJpw)^D3@nzQ@4rAsHuY;DljsoPl7bm_4tI`$7k?K?bFTA51{9)qm zD~Eo-Z&TJD>uJC7>w=d(%Cteex?5U8-~fl4su8T9OFBr=2p6RTgYR^;-h{T8Y2lRM{7Xjs;(W? z-Zt^hdfI730B<$zCP11;4Y!b!P#cpQJrEIR^FQB7(gAHajOD7}hOcs8U5ei=_;ebC zl!t#IiGvLmmlu-?^=oW&MT2rHs-sK?R#df?r7C&cHnwV3;}_ASSD3n&HHzkc7br8R z@(MK$nKIGi21@g~dcqKMwQ+{k3YCd7C#Y!O?d0tpe^KCL_L9@*f1Gc$8xV@1XQvyWSi5?z#iN zKAYmMM9!hiZ8ms#Fkc+yBej@xz|@2VxPRKloyC`5u3vGPfrc<0%Sv{E?ek36>+ zx(1Ce9=_EOet8D7q3A^rJUsXk!Hr1pPMfO)Z-F z!TP@O5;$&F&gONPalwd7ay(oUW8#hOt*ZAc3b}tpWZ`Wnp~SG@OZANe?w>+_$#^Rv zu>1)=KQH*&MZaO%{Z=#la>0``-&^lZrl0TzU@?PBQK}IQ;VVB!#g0b*9#_5j%}L8S z18XO^A@cpJ%0b%s;V)FjioNQekl%G`Ye$9D*_fAD=SiPe6rE`U*UA`^07Gsn}6mw(>4)yKv<{(UCWR$v|>zufn2r>*rv?gaTy` zqeQXR2yl&|sww%|1I+0PG1~rFdJj<9q>)quac&%-VIyU4mhN}N))}^AgcGagR6)oo zhlse@wTmSAS+vp=({S*0qBsbw0ZKFc&q2N<#!_CbkBtoL?}c;+_=imEiu zfAkd{y`|;Kf#t3H>a20%oQePF{$vg7{#Z_HlLWdCP8ZZuu)V8pQ}$t%a55^nopM@`iqkD)`qSOyY@ z&Ueup7&3gE-|HY4*>F50HaBfO|3f0?4wy0X-VBRdrJJN|2!1Vt-JU8viZ3;|=T?BM z;qs5hSCQJ6#IS5|1NpuDM3vXOt+LnSBDU%xmGbjRfnN@*+!1`H#-`fh&2O%S- zbe(F5gFzE7AVzI>^T&&2+u1cDTs!y!swgaVr%EhTcl0+pcKG#DQRnq9;4b36+gqs! zt&Qs3gv+FMSad8o9hB{W%hakK$N5Pr(j|1!8$Ce{Bxbv5AlGM}ZF}3K5 zsH~3QLw|W#e#y&LOrSvZHxOK?#@xzNgQl3R@P^8IXjd{}us&9`{K%5Oq0+Fuhy3H7 zvw?6V5thTrmz=Wbf-dUt70qCgt?HJXM6c!}J@Yemx519nG8wJ$LQ1Z*U7*%Zg1C<+ zoIEqPO${-~Yclp6GrLfX*gCa<1jxtg^5A|2;pD1Q--MZP_a5oZH}lgBsXH9UpypJV%*zSc35gUT!`i7;fnvb0| zV#q#!PsJC`&1k{l;XJ>+)N0AkuU7G&Qm==iYZ(8mNAFNQUkPZd;kO#l);CLKfh?S% z>SJAxfd`dr*>AW=A@*hUnL#V{i@CmHAPNgA_B(m3_CT*G_Ji&XCes^QzUDr$2zszY z^_8DwD51YF0lB1tnk2jZ+_8dl2K1O~_;+ELPVn`3>eJ+Nbmx^S%vWx+lWxquM8kcf z^>pn8XL3X<+5cek5SN zp@v$<>q+d#?V#yPdwA6Q{ddbKCqSN`<`1Z+^4Wgfz+lVwt` zxo1JK|7>gyLr;7gZw@=YRihD9Mi)n`{gYkF+8J&+?Rv7Q+_Nn)jT2puph=T=W!I(i zHEXK%v`2oUH+)+z*XUShlA-&sTZ;L{YE$E7r*O0!*o;n;QX4@cp{W1QtLf30Go%IK zq2WQkjP-tB;J>dmJN`v?+eY9&oXps(?sU(OJPg;|2Of*3W;~)zHMg@+l9IQ{~N`w8?W(`_TM=xbQpW=jmUs>-pcL9KX@S zk*TybE0Md87<^5ZJSWW}Bla=%psEr=J|ylOEmz9_?eFbrVtbN^OMZi~8q$vgWlj1( zy@X`G$1VxBBYQ!Rt6^k$b|^AG54x0*x@AB7WE!mLGhH@z#~y*^hLi41`!%LOg|qg1 zXZ4VM&DNnys`}xwb}4(so!GA<1qe;x;KX+`)g9t4E;7~DS=Inb4+FJc(zwt3Qn66# z658sc;!xSkBwj-0N;@6zN;z}y&eQv&;$7P9SWQX`2^x*xUHh5KyeCXv9Ev^&?_%0k z%O8dZg>f5%zjHqAkqS@4LJOIOK9W6NC?Z8oBhT}VvjKrEMPy!6frM-MS;Pc{y6%5e z!%kDYCpEDh!j)t925BEEt*~smUbd=5DjmIG6HJsHM-t{u0^7f<8s7zqH)Ox$XL}wcey33nA7>_1 z35q~_Ev`y%#_aJxIsI!qJ0c^84=}Y;OdE%&8(E8Tkz{hy=bK&m8T|`gK+;X0aunB4 z|KYIf4gLyVE5p+&@)sgE>Ex7u%ycYkE*D$x`;W>@|{VT`sJcIQ0`GmzA4F-Llkwq;~0S^$v#rj#;tKkL15p zk68r`_WJLlSpxumK`rK)lfT$kj?Bz=DqUzuq6Vj(2t6lZ4ieX2_F?NO_aTB~_&gRc zs2S^o-X^^iS0O2|EEuzr*=&(>P4!DLxkN*!y_tS%g*V{=gLX8mYETW??@j4=Y;%~J z)OQXFzdmd;G8GYuXNvq?Q z_Is|a?}Rgenb$*WG6o}+oM)?q0T=e?^mZNU{Tna)?i^uZ{JxIeA+-1^h8F_3Ibsx5 z%u*ER77#yyu^n4WbS_+nngt!q470dPOZ)*Yr0zdJPwGB@_jwW$JNAUv%Y#L~?^C&2OEc{$pDBh#P*0+#|-rSZAZY2%0Jtsf~Dys`>+f zz2#-UST!pg)slRRY^G@Ox~t?wm>kuWQn|2pJk3^!$uh&b+Wsn9{9FuEZ{z-Qq;gkmwLg6H6_fSa_Kz3TqyG$nYr7`*AloI*z#sT;pwK>yExax#LN z{FQ%{j1eQ^uQ_^flutrrxUzJVRjA5#k;DrKJTfHCy9`7J(!2|gFSpJX}eGiP8{iO=vMW(eu(^yzBZvugr7q2 z^Xkk5f@KPQ_72FgQ$VSAxkR!^>cwEuoh<>anVH%>O{e=?sCiaa1;_|iQO}E@B-G4( z6>Ld-_cnKe%Hc&Kncta-75tQW$wvf8(PHqe^M?Omfp~$q_#|5_$(cci;qkR(VSL6|Zk^r92;z~sM()-#l zcg{P#hH6QiW!~k%EESV$e&GZSrJectpfSbXek>t%`q?9l|4iMoOE6j5i$YO$H6{47 zgN=+A*ye~E@w|E7w#Kx8kU%RbBh9z^ey@oY3#MAVH|90U83HWKOmCEDx}dZ@SAPv8 z_4po*$k_aFq6s`c=(XU$NJ)SUf~4Vc+BbOiOEbt zbbEMJJS&eFNXZpx#%LbbDKU*uEaz`x}td`B~eZb**a>!I~3iD$~idc687N?3ilpRe|*n{ z?@IA^r;pkoe4#~?|FUlEQ<A9329+t@qKQN*|CK)1I{9lo>C%C z!`kDY-QkR0(G77yQ4E8gO_86=4Gz=Q6VW5=m$USr496Bt?P4>h8?hsQndgQ@jWVBg zX9C~)$SrN-MfPfjN57`HA5~sHnNPE82T;m2gpc5idO%s1JZqd&sIXSb{JPd8UC3s5 zYb^G`#HTm{sb;v9ZCL9>q^18XEXC03y4#sM4C|vSKAxiW*>ZkbvsK+n7&T)Fp2Ojg z8QZG&uuy#~0cPq5EjKs6ghyp&nj~87|NZT-jXQ)!*)Kv}XmDuyPG{HD&|_5M(zwwHd21UeTXf4b zP!obh1JFy5(Fu9ZB^&g(Po^E9JB`0%wJOGutCw)(nrFsBNMsdvxIjw^t@u8Y;*p-8 z(U`w4x|^I9WrnEXoYq{2fX5WR7EYEK(x`*?D-GH>7Q z`x%}w+PV#rTLp|CKRXIc!*EICLp;IKmKyBLKuCsG0te6y|1hE{y?M7yRYh|}W{2>H zb4MzO*ICAWr*>#wcI<0SnYeHQT9 zJ3?f#42swZq%@u{B(PnW?**nhBxHZ^{=GTwA4i6sNfa&$*;KT}03PU$BngCAg!WAd zoStbfS!@a~M7nl=4kfu?XH?5j`J@r_IP^WdzsaE3PpSbI=n7_`#7!jXVld2}o6z*F z``;ZyT+V%62k!bc_a10bPKtGY$amdc^=&ImWksZ@xI!kG%hU9BG_OVKKtMEu^5Y)*v{(yvYj&DM^F z|FW*v7F@B-&q)mmvya-+Ouz5M`+3qU`))?WlF7iOg%`n7;t_Cb=3c<<8d^Iw1=qV( zcE4(|)9Y*ftpRW4>f)^~R!khK;(Ab@4~A#!DQJ|KBS5{(2Yu$kwSPORt%*}ouLdTt%7X1*m;C{|7A*470hEaemIafi0tJ4 z_rLTHym+$KgT4#R7x|kPrn{QnsQNTN7TiG2Z2l$@V)cAg_8)Cu78XOd#kEYw7&d2g z5*x2z6ES)6LY%-`UdpJA`rkgqi|8S2Q8DY3k4Nh+8l@2KuD%IK^@(IYoE83j=87`f3`c5`~n^o(_pv8pze- z2cx(cRUUd95y(M1B%d!5HYrR;OOIyDN{{y&75}m%U0r_?MVAiKU{JCT`#VIC%_N1& zhvJBuFBXc?5tJL*D@<8;hM-L;S>}yL5hU>g$f-8C^eVLU(06z-*SQ^?r`S)+x(%!- zUJ1~lvd|awK&ePB2hxk|B}D}6blkhQ(5Y&VN4A>73|DgQok-jy-6MKmdmkOFtlqcP zg^3+za~O%R{?%VwQy{pUJmxh)BZ*0TD?&Q-(*}{1xOAs1RTGl?bygUbi zc>eR=?9#3tZ86o5_QckkOkH2_JV)TE#5Dfw^8N@Ngt_%yol!9Ryg|dC-;o7)c_e16x|6Q+=_D?8{>&bWhGXAo2@u;el{lH zw(G~uctjH^{rFg#5`-S%D`5R0r3)Ptsf1iO3+nJA;WdNo`(E?z<_SmbD`?^jtH|j)YXb zj71abuq!TeL0PUx>#i16$okE{(W#q(W1_r(GKT!S@ia#LwVo_NvyIpPQ-(Oc+$Xg z3~qp4(4ac*=RQ#xW@OrMvvdPqdnrZV9`Y{$%YEqns`=Z_u|abWfq) zayKr4#hLomi2Zc}zR0xa%@R{{`gVt) z-4`rRRX%YvD*dNRD*M+#*g+csfN<1wqq8fEd9cVxd%jMXSLcD(6RZrF#Ew-r{3t#uOW-op5MX42nvr3TrF)|h zJyT`5xtx4vR3a?z2ao1h>Cdh5G7T@RcyHVR%Wcq|F1c{sPyrwA2Zwu~BB#P0eY%=+ z1wG7#guIGs2#8JOmEh_e6D|$N8ZUSf_7|U_!aN^x)@sO19Y#dIyRTvst#J~dS~MtG z6EbTZ@%iE?32`c6?nO==O7F0eJKo*(_H9CHha++p1YGO{zze0q{cw0#3$DM$;Ii4x60k3|&(g2w%dPFX%?m_#;h>{V@ z-0eF3 zndXt%^9;oFp14uqgW}Pq5U89dW4V9;TZKagbF3&3{x!vWC|e+K+teLeOIygXliYv` zAZWBGIXXA}`7c(g9ZVwZ{4==Xb!$+9XV2T?f8@ojND~-_3#L+(_TJw2x+Pv<6JpcA z1igalyC*~5Lv)#X#?-ft81()xM!--g{G*VCX(?%7z1&Su;GZ=hciU0vfb4Z&v87dn zc`Vw?K7y4(f-E`~b*8(71O*CLU%fy}PatNQtL!-4>?is48XWxGEBN>U5r3K*W*Q7y z<6lywnky6_kWl_gbvip>_1%R{~aU(``M?Z3*0#awn9r*mB4a z1uE$U!4JP>Uh3ky?{{%_XcD7v+oc{t*-2RjtyLUunJX)f>f=3s?}8cn+NT?M7D3X3 zuU6CUYn=2OOlf*#UXm}<4axNR_{N86zvry-Vp1UuY5{8&N*A-jHB^UsBUaa2Eq#ly zakz5?)oUmOTPqlBsWzTnV`z|-VO+yCFdg5EN2fV(|4*m^1Jl|?s^Xf5 zRgp(fjf(*RZfn3ZNf=)!+_w0LFN!V$S@8u{0_=h~EWUw6TiSVYb894%0unE~h{)aTR@DL+UcEjc5#yU}mg@HCY5#Srs0n%#I7!_D|^YaCo zp6L9pTmm`@iF0|@PL6!D2jk};6Jo@uOymi!ADI2yqz$atrW?GN_Z>css{*Rz;9UYa znsU(=QU1HI|4PLC&r-7!>XH;&1h)DFr3aeN6NHoAq(Vc$#HAnZ$xeMTs=4{e-sFF< z=3PU6%A>b<k5e$lBb-V5XnZcP?Fker zNuYbgzcnu}gv35M2<*XY*P|poN1m7qeT9e2f?VfXzaE2J;i|xEiTaz_vlFWTi75F> z-yOIkuh_f7N~r6)Z(Gy>bKpySfLi2WgQ{Ao32P~bRvaM8eCaCsaIvD{^5etprQ#J| zmoodrqc~krsptmBipG6Z<9soLM)kU?X`yh;B7LP(yUg4`p-kwD+zgihpZ9$%@zrdh zLL$GD&RP(VrN|m9?E%>RGT4}ph{o=jg*1Nu`Mi=>vz zALPNlNZlj%idf@J%_{NqHOl2jz=9-~uMF~dF=Ki<-;4vVcdLJ=IZ|QHa*mIwCzdNVAPlhtO8aNM zTYP5}@L%a!Z{nf{pwo7a_&8N1J|0_z3rz1^C!&EOg1`8JMa)8A#D7|;>xZ=xPxbrxT>DkAT~6!Rpt(U z0AnH5gAH`S3pkmA%a!alty98T|MUl5IM~z$KXuf-}ApvT=3B zjKWyc>V%9X6v5rlsOGvkzGT<>?^An|2^2rCXdJFtggDD?^mpyxU}oeWayt-+(Kg7n zfrd2;KVsg@VG!y0$<7HK-{OvoDlFRWHn!Q>IMxRnMVp3UpN1AJL6qVQ-)ZW&3n3LY zlq9)A+FXdi>mFgHdt*`^XmEP9^K=fDJ{?)kf}MzrQxPaxG7F#cwr=ZA^vu=Oyv9-G z1ahjnzQ*%sklLgaX^7w*;M;l;gp9mq8}vRP?c(!p^U=-4CJ7l;SC(mYVx{~awN-n# z-+o0+hP9v**Krkw>t%>r@+E&=)7ekHAb#Gv>N4Td+pA7~$&+?>I60Dsh6R&1MW%@o zex-}+gxdJLx}>Fm?Q`MlhG4ZX{Y+qvYkEb$gk*A*xu3q1SJ2UfWOE&7O*jgnzC1!) zg0VBR!r?wvim)lvRN%)d*@*1Ky(k*YwgsR%A!j z(^XfqQ&kq%bT-f!RXbU+*$Mzl2xIpbCrfM z%wRcWj^9DQnmo~840>?rd1Z*4c8DNlRI!@gza`vuHL2(Eu0q@>Jpq^QVN$1# z{Q~Qr6KSH$((WD(5Jo&c_4-}9ra3d`;WYZ6`pajfoRGecN=bpj_N7(SeW5^XqNFbm z8C|9%un0Tx+P^A}Xpu7fY$f{ONzv?*!XEf!dDcM?rrmq~Cf40$;?sTmvShZG-;qlB zr(Jw7U`^wRH}+_O2(WMUak`6H{?Ss6FcBUq0>s5&F?YBOgza!xN+tNFj?6er_JE%# zarv|kt1(g}{UnO9LNT>GO6b@0gcRU4S1#?;Q;;JoOguUI_Lq+4yFk%cXUFYdD*FjT z8RKIyyum?eQ;!)esecSGOY%A)W zt>g1)`qgSS=pj(OoD%`1M_Ai1vpYa;ISjBa+-^g&?Xiv;(fcK9p3D^D(MypTXZiDH zS}+#zis5oS@n4WW)@8eP2iJI{oAuC2M^hu((W5B^dXjTfn!>3gkTZA5bl4i{$F5P> zJY$QKtC98cUj|L5fTp7fGnzFGG@xuT8Jl$yOc>;QLC&oX;t~`UtRFg=eP3dYn6>fl z{gwevGaXSEwmgN2zKO`Xz+b&|=ccdci_eRr>94<~&M?F4u>Cx@_T<}^;Q&k)Ie?!h zH4lVk&|=+dP<{1YQKUpkndhu`rj066%Rk~Zll)^}+DGUs#F9I=08fHEWxuy{qagug zJP4dJd{TzTBVjNE?l>1EB~W29L%Vu*t?YW5;C{P{MH|V6kV8SQweE;3rzNObULaIyc7WJ@o?cgkuy5vq(tfT4>@E9_zN9aK z@aXg_W804f#M7fg(Xy*5Y1CATe35tJj~xIeQiP(47&n20ixTG;&FI` z_yPK7B9o|dh^T*H>Bz7H*tuF0-4rK^F6fo0Z)X+{Prr$ktuwZO1-=0ow?Z*MLLt z^v!z9#0KSZC$uS`Rb)V`XeQhlh7}(s&m?_anZ!=SAfYaXm8`Rc_V||tUXWVa>Z6JG z5682$m;a@6anw!~&k>bz8}uvVk=sS?BoZ5PT}+50a`VZhiw`UVT?P!Tsb6~Jj44!q zv^>pOKu%=_E-veXAd71x{_L2~uSEKXa`0@l?NrLKmaoJs?kU#75y(P&opPV~+#=~Q zgPCK3vMmH*Ubqm{sLNpbh#~a}{wa<+w>qNp$qR%>`Erq*KUtvi-F6qPIt>-EEQ26{ zuPE&RpYT56e)945<5mM^-^F`BFo&i&K~+RYZ`NVreW|#B0NWxVBXR-B;tFB)OqIR& z&B_}Nk-8+ft#GOdWn)G;BsrJr@p5hr79!g%a*^u}C#hN0q!V}Pw}k^rmQ_ZH5+w@K ziS?&JtG7wKX!--OEb`vose<37-&(Bp@3422&>5ArM?sxH+8(uF*80vWH%q@DIf7MWa?ECpne+q|j zJ9;PHHuJzCHZ+;(W`I}5A>Bl>WZ#t*MpTz~7rSJ-L%`bF{p0fh@GB-9tPcN(RSEr) z>i6YCx-4*PF*xSrzRfS3cHvGF7}3kH(=(lofBY2ih)9;aRS*LOk2n<6Z*drLm@fMd zs|Sn&f3dQ_Vlt@jnUSQ+%K|3v-ypIO9eNOE;fMe&qPQs$7C;W+LG{nImWle__MVBd zVQ&A#(UPgzVO~Wx25P`gZl58phA3|MP7&jol z9tJiT(E>EBwhS{Q`;Rx~v!xTC_b_zQbD?g)8oQY2X&@yT$&PBSlhBZ& z7@{l%ldy*YU>WFOhN78sN?chIumo&7UaO>qrltc|`*Aa*(Lj|PBr!^u*PjDb63wYv z@uW*JdfpaXU@4gJp?Y_=2vl6t)7#l!#2Xo*ne9V1{#E4=yj6m49;gKntwt!sDykkB zidCO)Lf;M2TCwx%TPUm{R^h)o zS%b@ba?InHq?H|UXiaYShLhMwf=Hx-EJF~;i6q~AKLPNEO*swhB*|C}l9@+3hv?=? zp08GTp|lJ2q~;?Iz=ZtxFxR!=Pwg{l8Y&4fiyN{{oVvx4o%Vm>mp+~dXsypyJylpP zlV52+>PaAlurt3+SD`e&b}ehchQ{pl)`R=C#$va*M{_GGRbWtgw@sD|v0@)sXq!D> zFW^ePQ)`3Xm{dH`(#6PI)t&nnk!4@B5k*!~7j8EYCEgEqu0M2z$pYV-%!O_)m4NbJ z{?u$@8#`zef37KMJnOGExE#cYCd@}sFQmvdz1*?zTxMREH5--VtXy&`2$a5Ur z)?XNl8BsxwMNeiDa`0FY9KpfIld6FYF&mbyhe>TRd1Ml^+lQ*Xwt{!ct?*>xRhz-k zl|UiX5OrWS0I{l>RwNuL%Y}=I@_Q~oG9Ar8o=PxY|LE6F)HrkIF)h0%2ZNfJkd}tO z-Z`}(|KUP%cl}eBPNMwx{hunX=E7t$MdvwEen|bLqjXE_Umt(jzqWE0kFGp_yNuK3 zY_4x>>36jN<0$BK1tFrcB-8N1b;GhO<{sKHS#p&z4F*S7AXU&^2-OBZAUJW8%@qY< zC7LZ-f;VUevZY|HZo{rjqwhD!tTG_@>r0+Tv<{_MjO46G9Hk$43dX_^HIm;E<)2v+ zr@gm{XeS2RM(t>OYPaKLg4&#E90oK~PdwxospmVAR>on>gm7o6U6RmB(fY$=pY}?T2_nPZ-z?2OQXPaRi^_L&3=7;w=vGPk%+B?MWB4jI%Pch@^;U* ziS8!b>GDoQ=HJ&=jiHlE??&wwhfp^4j=28TlDP31jx$aNCjLMRMM>$%H6tr{cL6Vo z_|Q{kDRGaG!`79Wu@v=z;f4CgFIxjEw=RleJ7!ZXh`~nQX7Q2O1az2C&|w6n%B#Jf zX&}&%!GPJe(qrq(#jtx)Tu?C^$hx|~*()wz9ZHuFDT@P(I9-a|7wUXu z$t1#gdY$j1m+p7SiL#}sN;j@(;bNXMzuu};Y%5!?X!+yg_Iq1kZ3dri^9hjHNDAhD zjH`8r0roL@Fn2_)Q(G!}0qAjb9}-#xMH~I0>75rOo8pumA>)0XiCMIX4R{7(=l)t= z5ewTpc2$mmXkdwq_A3ZR5+O5M`Z z#Kc}Way~gRUBWT#XrwG}gge@V1`TYC9{4IP60^2Ax5L~GzgGdCokELKA(yac{>k85 zC@`2@MGz?lArxC-T@^ z_#cul)Xkm~t!4HoPui4V``rK#ubpiSj0=e?!k6p{cYS+W6xo~-VB(^B?BfFs!XXgd z<#@CC^lyiOA=xp_^5*9g&R5(|v}_9g2I92UM`G{)iOpu90`MjcO-^^S!=D_SUcpez zIu$JR1YjezI0q|O2D2sG%?5!4tRO(~%ai`M@DGf_2nE37j3dAq1C^*rW7&qa*%tx)22%QCJ|AqygHpU?(4u?+;GSIVW+%$@Ha=6B^0R=2j6s}p+xh_ zREu(3nT|2?!U(U#QXZAKc>fXZ0hY##(``{!urVq!lu-GS)+mrxp_o6#`Kq^m1^nRz zpPIr_X_h1qzt%05XQ{+F$ryBudf8uu+RyB=xvr7}!3#UABpC(#clmsGB{gzwqJ?zc zVUV)kq!n7hzgejF8-nT#OKh!$OcIIIZ@F0YfJU|6VFE?NB2psE!gQ(6EA#|y9@Y{= z;e%6b0htQ?EB(e97bIUoaEKByb})aFa~3kcC=E_`E$)$^uS_$Xk67n3)CE{=^6K=& zAo`)-Guzya-Y}&lJj{!||GLF3(zkIXGB3j(P=Zr49(rdH?@=vvHBA0NxBYrkZr2lk(HUn^58v$^1)Y4=X`w}=9hVek%QIg|+`6B^ZfqaWYZ4zHf!_rE` z>^0>x7<o-i8}^Y#30qYL!SX(y{Wf zxaPXFVt!jEDOKQ%azXw`5p%sfnV1{b7QH+a1_P|I1cU~IDhB7k)_Pp?dv8j?-!T>y zcy*K>?yNPlzmpu4lSiVgfcFz^mX{r2fTWcNDuaDKLevWHmow!ey)Y!tx`w%p_2-ZXvE>W5l+v_lc5k&9JjrY-Rl2`p2N22LCd+u6@!3Gc-&6`u_9dVWod*%vmX>&X22 z(+gfa*@M>oBAK8p--Zam;<&J#KBfQtMRJwesn@yOF7i)e~0|KT*7igo>q?I}>x@jbl3# z?YIl2Ny3B@>Ohw5>FfPA_s7>$f-Y${UY8!+zK4gZM_hZK!^wb?V$D5?X_oUD>t4o^ z07;TsPG=NA%<+ZLP{&$>7dXg2bi@28M-%G6{?f36isHg=6rHVi*MIrlD9fcUE-#Ie z-fpi$Y#Mi8qA!)Jyv6n{X%_=-M~wI;TV%I5=?t94cf_=dP$$Fb&Zo%hq+Lbsoj(4V zSzbu9l^x8tId>MULPv~~9ti0)k+-BSc`eedXU#tz?WKrYdM>DKGg$kAlfo3#R+jJs z+i{i3AwZQzkYJKpZP(SH42@PT8m9SRhbAo=qUAGw?UzKYDkp!Oszq*Hx&Xr3FOZHu z>^e^#7c^jwvKoIMY!kk0LbH!}=I(3b0b{L8O5bV8N5vDSP_?ml45T{wCu1YTpuLFN%10 zZ1eXjz0ZqegkAJ|p?BhL_qC0&V9no>xkx)wb|OFPHYvZZsUz4eqwg-lTIz)AQgcOh zTZdSFcI+?x++F;UF7XKP74p0T7hLtk};H`UE$i(?XzwCc}^(T#x4E zsLyXvgbyCW37TssU`4Ey_f%fC#QZ0a9wZ=vd;kd~@X3_2S5OZZXFVQftZGMD^eg>S z9)=+*a|~yACnrfpG4_xQ1ND;)ld3wBI7tzBLX|9l)*G%%z&b^(20spx#5QU!ObXnA zDgUSw)!7hsPxuvbT8!?|7x^-UC6=Z=kQuEJ8H6 zTg!MU8^3#U0by$@u1g6#tiTk?{mcecXjs@nS2YnUKC!gY-XERNo_#-anvMkHdJ=Y< zARl63VxHYNtXvuldn<~#+c0w=azRA-onfdIq-?sS-AL}LEgt5PxM8FJL;<8A1SRFi zS89+X_P8QdTB^dhbJ*MId8s)pK z_7V1YMh(({;!e|rqrNrhTiU1O#{B$&cKlF6evckqho8T6vF~6E$pxc-u!B3?1OB3I zhW!+Q789X~YE&cjf+WY%+?JD2rf6giZ?r4^qTMU%MseFvQ#}ujiUi;?c*7a!Scf`n zB9|UMCacV)vhtn?gJxNT80EX|v`a?C*Qv3Q*;Q`F*wW<=3H`B$Xu)mK>2i%MPL0kq z`zF6?UOxnzB!ZS194R~&m;70nmGDRKP*r8Ww9x@o+6N1+?gv##C#Gu$~{|*!~u@BIF=a=5dm^twOm?1jAvtd$s)A zo8N}CaHQUEHR{aW&i4ekWq++#BVA2we~}BonQw^j7Tf{hci$eZXpF6#?~Bf!$WgJ6 z6t{n#uXskMBIOTiNGLuf+b+m5VxLDy;dr~ zZH~|(d62+u3oME7uUzEbhwpaHQXpYir04F=r>~9*jyqcHL#7PWlvG}sYEY7Lk@gY0 z;(^Di9sh%4Jlv2rp}|>S6zQ(&^3Dj`(uo?hDo8={o~^U`44z_=Jxkj|lW~w}uuj%> z0G@wvn73F``sw0k5B#v0GD@9oRP(SOV30luYa$z^Xbq>DkwFLFqynF0vf zsU4~f*awlhjh1A)FTb5TZ>T;WhWk*Gy0o=cMFN0ot8>ZjA=l$Or)R^P5h@~wl@k#F z7MbR^>tUO;5a|1xLB>Lw9raa+mF)QFq`8#i9qqy|+O49-*q5cImvpQ4o$inmNz~uC4%Y%0J0k^&z z1xq5OViqe7u>#$*%>)jC3DYl{x&pQyr3cM^4q>%(;7nxI!TE~PVAHrP#@5_)hDxCF zI*7vvv(p`9BQ4}D2dI-1HZzIZOC;B9f@S^dezqDG2HZtM#={*+R4cqV)E(qTWWX&9 z>ra&HqPOQdLfeWG@}}TN3Ar&NB)2Dyy*RvYK*o@pvofO*#1P!Tz5p4j?jCFIX{>cI z88EM&+i&Pu4jeC(JDF(KC2l9p5S@SX&7HEmmq*{A9`H=V+-ZRj+uD6CS45kZFih;{ zq5IeDc+Nx4WgoMA6Ry={%htp6wsWo-xT(~nHF#YSnb*2$iz&ao`_EfI3PUIHRq*hq z%DIcwu4t`JB*4B}$Clv#G4)jeakMeCP>L0I7I!J`F2yM<6f5p7i!8-j+}&MUw79#w zyTjsM+#T-z*B|F$GN0v3a!w|p-UL$<0FqT|KAvBB2!7dwT44iw{;)W)is^hT8O%+D zqI|dMy@6_R1j-2~yLh;Q?!rEj8QIrmx@tn^Wza_rldqz^uOrPF&~-e)S++Ba%PwV& z;vP~&UnF{zZKhlE8mljySJtC;=qnln0FZ}1DA*ZQ0=k2r)7ASKe+CdUL~J{P=+1wk z?SCG1_^HGj;eS%6$okG(PlU_zHBqi%t!j4r2d?)S`Nu&j*aK>}T_TE!Dy51ni<>3d zg5;4_u~)!F8PqkkRJ|G$w*B`m$^phfj@_G;?dGCx>e(zE!rYc$M#wblK)A4@I~P_H z$KyYU?y-{I59m`IBvKjHYE#v+aX@X_)rusN7V;?#;502EscVysJ;KW>F-rjZo4ps=!gjbK|R2}x}lY&m1oL6fNNHI<1)iGjjAI_Wdmr>Y(JHTZC(`KGt78IY=219 ztjOd=KCULdrFA}TZoNf(#76WI*s8=bGsX*^IL-Q_r~3ew6E{wT zU`*N^_e+>O^)x58@63;e9vbSVkF#ce;9p}tMI!K%7FS7@TCOS{VR6*%ArWj$;TOzq zU2q|v2Jyc=F$e}$atcS_5RqlY`2yvnEFKcLHJru|@&0t}Pn8S3%6GC=@I1wUfi^Fx zw!rS3=43YnT_)_`=js)JZd&=dl7}zi96^gsiJrhMs49S?dL`v|0|nzq#k;=zgIQEX zd~`(e+llTI4(1y3fhp{NL`}m-HXft(tWRg-o|ke)z6$}pK_V*=tJYv=C<+_(6Q*itpAgK*dEanWYgV9X_1XLYnA zrnOCkUi$U?&Ef-d8hO3XySNTRlM?m28M72Vy-W`gym}fr87xX0j$xG$#Snh|cB}q} zCd|fh;Yj{lqECtytv^+DHyuq4sU~!?-(CH-T-&1Y;nqcgib0lfMs=iFFxke5{c;iw zsSV~5_Z3l#+TwqwEM`^{%L9Nj9I%u7$T#TWqJu>Pz~(K(<{?472rjZmO? zY&Oclp{|nc8!e64RHs8mhLpcO+{RAjz)k2KlP$KdQwwt5N&L#$SW z`9pZL|1{!pbWu=#eNEXCQ-mR)VkV*R0qSzWL)Y1d+a_k=MR!;ys)kqK^;$C{T_2 zu;7^+T%S7=GE>qMGzSX-a~lr^;cp!JqJbo!$al>ax5Uza;3`7#wka<+t(OVh-ye2P zfzlt^BCXSm0PdxO)2tNg0?C*YL8(cp0R$B#ym|9olnZ*|qf@y7|g zCWWeqR|2E|pTr}mL@Aam=E}N}DoX6g6J@0?dy0tUe=~tqYNYfiqgBRa4(0(;#_Kk_ zb&_n`B+9L5yu0Y3r|#Ebjs@#@Z?QiNdxLp*^6dT>cz$2=W#q~iE!0LO%0R0AI&cVD z&Gj@5t9FH*O1u-85iVl-QSUiy7_fdf@sGbm4n2bn&oAfbc!7>FQ^@VbL-Fa>`YB!7j37MN|8Wqx^^;D0X*sh>IXPcIVc+!YoGdCR4#Z{LsM z9(hy^(m)b)??$GAMLlHuw;{ z>~!l}*!){Wv+B=P0hSH*vj_LZynJ#ca>v*j0&v^N)=uFf!~)2!a|nU;{s+kYD9(3B zLt}RCWzetH;2V03uUzEzrY8<+X;=6*5|2*4wSr&MzW(h`r@2+yvwQDDG)c8kLL1 zj*`|eI+Q!#wd7oK&hH~|be)%t!;~?;4i&_0?^Q+jIMu@%mv7En5A%#jP`koCz@bIg z!M;n+hywk>O2`{GBF&;R)yqH+BlcbQFlHY#x*8GOi(X&|`Um*A1Tq-#-n_c#XP7ON z(vU26^DV?EuXoT}MkW{d#&a=TQUT6&&ky(r<+ zV2q;sXi49bDeqp7Gykk34<1x>jXc*) zLVPh9msijx`KlzMQWgwt4QTuPT#48q5suy^WGwTOd==8S0-^ZWi2tq)>yY^v>$;<{ z!dz5?#>G|MraU&qcUm$+sOs||*?1ta^6&=Txk~8HT@<;^oRzK=0jf9wOuv=!oNax& zX@0CqbG#1^aTH{i2N%3`S$_RCvePh6W8P^^!#obutKo*Lk^;~)Dsh#~M5rC_1zFX& zSn7@~WI_b(=8f^v2cCVB3f<>z(}O$P0pyJ$&d#<7%+{ZM&t(2szrRW+JjzQ5SRa_B zt}hzo6^mUc%?X**%VxcXHcb4sw(lO1Vus<)TG&bsUb1kun0=A>{H?36i^yk{9T^Ds zUdr8nY%q1h2Eg-nu22B#zIeY1q7fSCsht|K&Pi5`YBF0T5&f)#S!cYlrH>0AZMF#c z!$fi`^pd+?S5;fq5-b@gfT&L{?&V`7wBOCCxKLpu0xJ9MZ9iqhRRCjR6>bLfv4xX( zed#Il&P`$zuYI?cWShfysZ=Fb_W2^RAcJaT3No)9gPG7FCe>o{?O6B?os)cm`P<|8 z-dk5h#%KY2=~(6m@dTh>`A=t)*Tx7UNwuT+8IEe^4S9}b6l`vtY3_^8uWEV^Jiy-O z4XYMu0)`ntRemvy9oyiE>QFD4qv!4leHm0gd5}4ZHBMzrAcVHydVe2yTj;u!^@kW%$%MALIbe%5#)!LC_HeBJtlLx(e@POjZtT3I z50J^(#;P>0dLCgL-PGXcJnXoa1hk>cA&@@Qa)t&p$HLMI=}m^zx*>$hG#<$fI|N4IjTXlVXm%6Beq; z`)Y{TCxQ4zgOWquaEL%M#zY}FM?|;&S&r(lP&R2w z~~&uUpQ9D7U(GF!o0R2)w47 zr-08r%dba_m+Dr<68pj5E5CdPuLiRJHuJ*%hKm9snz8pdi<#=GGB#>xNwT_MIl6= z2+3pw^Nf1zh@zS8Q=``(Q|26&pVk5HmOQ%(^NSWUsF2Nf%jIy>Mhn{}Ph#E1Bm!M7 z@$dG>LJglbL3cu#?wAKv8^$OFcgVUzFJ_~z_@E~9PlAxQH{dTA-B(!JTxUxQ;Tm;H z&}S?_-WN$L4Eph7U#r8eoC3=1mGt1P-k@MTS@r(lV1T&x{~URiJeTVdAMN*zkYG~p z=}p4InN?wX6?$WT-KnEHU+m2**^`)|uaQjpoxZ`-zX`0}Nior&r<}V_TW?Byq&Er` z4OfmhvabP7ar8iBYjF$7+Vf)h-aN^RG&WZ7!ZHZg0Zf_Crik4MctceFjV7&{2|EKi zmr;Q=%d?JH+a+<75OATvdP46UC`tGDWFO}Gs~PQV06S@#{5M-!ts<2%r+hM~j5B;6 zVGq*-^dZ{<<~`t+_Z38nst;d@pRJ&{2TSgwgOPWL=p7l*v%+6={g~h^XhHILkU6oM zIs5oxEmX84_P8-|)OY0FFOW6qF`B-y)otGr8d%DHAp~ca$pfWBVSZpqd%da|hOCo% zO}8dZ)Q$);4srg2kDOX1kHrsAf36SjyRutB$NG72R~4ljFf9Z(#pE}B2_B>eQFEf$ zL`XVxx8irBqrtuYwP^kAwwZE6X4a9(YwO`HzVepgthx?Yir3|2$N8`TA zQgO>2dJgAZom`e`=2|Q#>-q{gig|`}Ma_gbt+UkIwG3VicAaM@pv5h0iZQ`hLyC_a zxKQ3MV}es=1C4H0bRlot@$Vj6K1p?qbl-&WFO%gHh>{(2#gAYXa1`&P5z8X-Mgl}0Xf2vQw^uQ%QG$Ux z2b|j!l=?JZ$O9enZuGq!QuDip`VfonJ>w=5eK0J=?4If5p~M-w*f3roEq#GVl9|R` zdycuJy$?m$6|__t1H5|RsZBtv5TD%NKQ2cbc(Hkrw`fZ_8{&(FQrLWZ56d)|cPOGq zDlg%7)(+Cz&;H@BD2B{A9@dG-xkg!#xa))E5wJ2fmxIX1SfQ7rC_#TKQfd1yQwj%s z4WG+~SYTANMzgZIX$ETuKNB?yJ#8K=NPw8@2)q2gO_wNlJ zGI2W0TnX$tMSW<}k+l@J;2ozr?TW46T4wSHUiIgz)nF-1*ejhH;S;uJdvS)epa~3g zeYf*e8U#TG@C+3lAn5d7JKsa=` z0jUvwQicrS%IsIRW-wOESWT>9ZH(0uJ)Xhz#&x$_8klnQ{#O|pvhY=M7 zJZt_&4>s$0vSB}7#PuxX3xIYHpDv+5o_uei2WFTj3nuAn6o$OV-B)X@^AN>IxxRtG zw1r?2I*X5p&0+XBT)v3EOTuRI=FotHA4>X+O+v^O^NB(gH*m(eNC3_ zTU8U&xQhXj7nGbSe=Bg#*mY?%*s?)LmD`rO(NGHg%i<&yV@HM8b|S08*dH5|^06*M zkuwg#J2EK8ob^wjDSA?!m#&gGmjsN(kc9jMk_JrrLN5fhD)=?2))Kj^y8W(D6{|51 zV;lUZTI6dHESOH9AV^c~udoSU;cdG~W$>Hj)q=f9M|qO7 zA42jv1h2)nZ{bVUoT}u>ytvFM@vDVu-}Rw8fCm{R%|F)_+svL1_|_!0Y4YhnC^Akt zI^4LG7YX{Op`=X=ezoR@%c+eA$1CB^P)7Co-7Q1Zba}ixqrvmV%Gm-eWUHOy(V&&@ zJ!X8G(-h8csGJ#(W<(P(bN>}VnB}mss1L}!^%{a~5v279_wYb|$&)t!%MB^zy!t%Y%Z!v-6-Fv`vBeMvELqhWn0T>x7I~fyv zjbT4BuOJ(EhZS=lnvYWD&d0nmu4+^dc}Aq$@B2vONxxx8+USiR&Y7wE!_DeVA6EXr zI;&^zCH&#ECDF)6BB1dn^7s1iNuEJy?jAo15J@Fv@tGW)p4Y9mO#A*!;smN!z%&A$ zh&bUq)7AiY`0Ealn*rO#2T9vJ3X8Jaz~ADwuur&@d2YCazP9aHZ}+Bm(i^y=b1 z#vnvMRaX(woTQ0s6ZKtd{?cRxF?K_saVVp#5~9w|ggQZO0HBu~;Xin<-m}O_E0~w@ zZ0g0;s660&;2O$%>e^g;{x5J`YOd0q|3oyeD-MEI?Jszwp0geXFD~kb9pKYa7Ho!T z$_rvNZ0$`$mrAbCixFQ4p+-RX6|Qd*b~XFgW1I}bLEkCs7?oKsA3(cvgcR@D?l??x zWbL(y^>$!-*NjL(6WUO$=7s9pWA29&*%h^b9s8~je4n9B6cnq>XC6?>D*1{QQa#o} z2jCA?x0mV!4DoGoV>XFV>&xy+A?k|j!m$@#QAfQppQu+E zn^r8^#(`g(TRyQLS#%Yu3W!U1eB%FUE*;YFp-4sTlbpVt`HZOO?Pw0y0n`q8DBv26 zuZCjuS$NC@FG#nIBh8k>DmDUQ>%ripOx99~u2pm~_fZYen;`cNhP>L)90CG{I@t@l zp^~|o*@i8d$uo&NfIFsbGU3Jb67zdD?Sk^ zmw53qP}nt|2Ef!`1mRwrh3GwvM;HC&ch*l`BC4Hn*o$MB!oB|16t_&t>@s>vwy`8~ zGUrx&+GlNjK$TEWS*9nUvtJYY*GO-2_fyec)b|QVc(zumt>qJf0z>;|4CA=BpX#So zBIZQiNBN|gq7baaQ$G5FeV2s3#Ug*B)w=2X@(+Z>@{il>OC+}&#quFQkGAvQe1cJU zXSfY>CepkP_wcWT=bdD~BQydvg?c#bLv%j7_@KUEi8LF2)q>4H-}U1+a!8O|(48$# zWx^i1Je^C`MDBiz>~XujP8Hgcd>7t5_sG~`oOlP5K`%J@R&q6&6(kb7ukpv)y3nF; zm_9;-ol{k7C3DUS9T*S&ejlZ{P+;TnowXV|$gTfF2DA`*gflp7(2fOBp;(UUSboRl z#ak^`zc$n+!(#+V&`#qs18|TE`f%DWq%-e?PcvCj;%YGKl-UY*^mh z;2At-u-vl@u@q+LD{*Y^>#Mg}Z0Znwj`^z>>eLE%Zr?(1rt?KdIZn(0N;c_KQAM2= z_u;Tr^wwE)pHA=tgN|MXs(JCd$bS7Xmg!A5=sA1q2w3YgP@SB1BD<_{$Bb~P5yf5` zovw+KP19lR=eJ3?5NZ^FS7(ChvC|->qDD?2Nc{>ELBdXWz}001DPlF+1Mh zC_L>w5AqqSELlXyHh32WPv&eNS3b7q!dw!3uXU4QAXy5uzMJq}5~X4k*tNK(kftuB zxoGXh@HWR5Fl3Oq6ew`Fli6_d9ox8)JNZ4=A}8aoHFc^-WiJyEJo5{;+M5=W7;2UU zJd7_Rb~@-xnr=dN7SQByKr(VnR)Qa~xG1C;Dic94Ix3hu1HI9r9!BaT4szb1iAZ0n z=7pJJ0uck&MT?~noe#g;tO{r7(hS~+Mp(eGASax!ew&5cGZELVKzl$Ii%iK$xTM+ z&1qOpEh%kDvOUBFHeOg!xs~?w-Iu(4M;&iz##|Joy4a!pdf@mtJl$22^-tLcmYM?1 z+rMr+s#~B)95z9x7Z7rB=(cUoA>20}`b&m++rsy0mqcYfW~Kz6wDqF~Qt0Xyy_4=w zKiFRDeKVGd+QNqsYD!k@33%mC220vj{xT3q{z>nm423;{Sx*5{@lZ%R=1OjEudZK) zL-VoB-K_4kJiPLmW4cx6s;Y$Uq@7AN5&U865<5Ne?VRp^lyn zYHlrrY#}=32sBZJi52 zsGl!(*|MQb?kOaNcNuvArR0NyEa;^vy}d3PTJXa9IeeyR@3Ciz*#YhbYVe`W&L0mw zl`(JRc8+zu;44?YY$smV$?<2bi9UG!#&A_Je{^Dy76jS9Zgyy@yf%r&O5QV;D8hfO zJ5MrxC&Y*hRk(-!&pIQtRU1ABHm6#zRq$#TtL`1mGc{%Ug8+0;??PTz?cydN=e~NIx(a@T>I_0xOmAxnq+bw1J zZORYo?b=ooGAA7KWiD;zoojf1%Znn~F$y8y>DmLzpVWL%b07P=@%_!ji)Pg3ECTDL z(TFas#A|2rGRo_duyf3StzRf{7L=^tXx}D7`*}l&qv=b5ve(nKoK33NoOL|W_Y!`n zJGy(TyoZJ*^rYUHOj2yhyGv6p!_I@hEQv; z=-HHSR;&YbZ_Nibc&RbANuZF=hzT3iK%HaeuyhIfD;Vo5x@7 zD+tD_{Rrc|cI!H^LrdQVa;X{9Jnu59hIfmmwXOZtO2kQOZ+BU-W*D1LD0qMmy@%LKO}w&dFTg6C(-w0gce#Uu|89ruQJ}RP*tB6 zP6B&ocKMZ)K95a=(vWhbNDu9i?H{a(F}wf!{)wp3o3Iqx|8n{G6+?hW+*Q}@rOjZr zEcPSv!cFu=w~WJQ|HbGU35&k?b%6NQ3`CSu0&H%4cm3~qY?Rb{>Um-LG4Vk)PMl15 z!vSx;EQX)z2xUJgRLACzPYWV=Y^+)3Ufum=9L8UL&a*^Poj5B@do$gr9betc&K~`x zQfVv@d0{LHre}aex5FB7Y#eDpCvTxI6PBvKAwR~nNFJ*RVYb@oSC{gB;)Tz9;wFL` z=9_nNAbqvZmU_>`kv(kUZt%YF7!cXi-X1p~AC1D<89~lpZ*1Iuh-Ub9J@Q#9rllAc zjIv%xq{e(daZ<#*s>RO3_OMfIZD`}x5F}0*sYa0p91p}<_!uMJ%fZu{EO8NunbLwI z3>SYY(5k*x%*o^S(EUAfjNj7%6lFgzb#8g!fN_CI8$$P*{je@vUjWnW93Tq8t+W<^ zYoO>-DR(b*pN%Z|rg;GoFOD9@5y)z`v1;pPRteM!GhvjL~b zTE(RH^2)|f4glK@Vzzzk6aW4su71dYeIRg_OONb93q5U+cwlq)!!-UB5_=lc4+MQ? z9{tz#PW66H_R+5+^%&bDmAlZ zyb4~N{uvILVUtCR%c}o4B2ZZTOeu@sC)(ixHfOY0a%lPP!0){cj{M)u0pF($T2aTb zKIM1WA9v^PZn~B198`#_G~2X|)4^c?$_ZCX6NJ7>zLrGlSjE%Md;Wiy9g<~tsG%E{ zIUn)*6h+HOo}c7?RQzL&XCe6=t2ukV`I5)GtgD*?z4L|}t&pHN@OGlrhBnk+?Z^9S z*``R;JN51$?3`nY^F~=zsU+i>Qq`NjEa4KwkpG z)?4-))hu6u7LnIO78c|95APi$04_{|R3=1qm`b6?S^1{-9P0TP{;E_209IVZJ=X!r z8TC(jBK{kF)ZkQk;cU}cI>es`bo9^dyvw_putN%2sFqaGIY73MHo#;IR)WP*wAY&w z?-hdg;Xw#)$8T3053Orn6KrA!*GrweOI~Ukr*)4ESoy#j!|cPqd&Aj}Jc;OoyY3sq z89XU`X_AcSrmK#ImkmB!?lf)YgO>p*84MOKw%7(T3BeFD_%#FMJ}IA_NzORA?({IG zU?T)t<@{(~#WAEK{qj}rUDQzLoID_^Cwly>2FN|_i_i<^v2L^HgEA%gmq`*F9S#+; zVM>9Y9GU@wW^{d?e8RxoW|j4g7HQcD7voY`@l+#Y_)Vu9dH<$kwnBE=1tb~%E zK1_5Z7Avb%MDhY%tVjpD5Z5P`GQb4RRNB#lMh&=0$0#%%)A)3-l%?C3=pcTUzDgNMPJ5m*6(D)K+=X3K{_ zeq(5aYgN@9#}c*zzL`KOl}|`|6oSLvKDxwBJc|vOar3!NCUiq?{B+-;55N15Iy|a6 z1b)}fqgs1Ic+IpHk*%s~(BmeY5 z>CDFL8AefdL{uF#zVU5ks{@)t`b!*$beImyA*XHBe5NAGEn9s`@Y_Cwd``YxL$%*i zQIz`;Vr^8JNN*DJNlS>Vt23GJWYe_(-oZISo!7br-+`+OQhjAp!IeM8jNE$bwN<`( z^eauZ*gDhBJBWj5UGM+;V^}y#?l{Y!x>O4;32%A0O%Q_C4at&@Vjby^D!k=Vt=NDc zoCzl=x1&{Y^W>pE_JD#h)!j~LRqgbQFTcyPhSFh&a#3lA0bKF)Pf221C0%<%D08i4 zl$v?8xK0N)n?7-+_i8`P?~XdR5hAEt?#}Q@-$Y^TN)JBZi5Y}FJ8w40O}59BO(ct8 zyd01|B!nM&L9Y6J>GGG28>Lr*VJT02Q-W?jlTb!sh;Fz^{QN)o{)Q_Q-^ZpejN82d zx?)M7jomnUs0^+;c#6^{fJ*e0F??6Tcg4Nv4KrHA0T@!{R8jl zoqZ*tzS|S1Xu*+dcZJIrQ{+%Qd{N#*@;%Ge!;Y1aOeVl!cgsaw_{Zkt6=tLJc(0=z zAKCXu?sLn&c5V_f3z*4OUWp3Lnx^KSCLwb7r7Z%C4~sS?mxtgqCdB-!$dET*Gg{e$ za@k9JhXV9VcA^_9j7qreKX5+DAx)vSWUL2qt8d-@D*Z;HW1;E2(J$qidACFz=&ZmogYIfil9oA^MX=Bs${N-fY!bz>_9EMI-pwJIu zY5N=_bmyyw#)J5FRF^qd;>G{B{P7_e3CaRYDQvEv(D!OC9mV?Y>#3SLKwsXz!>T^h z*oXfS7_ED?J0jgceA(QRhYW-fFXY36Q0|#?|H@Lw$gY>J?$<>S#%L)h9c=K7=j<@G z&UmsCyyJFV=L?W=(D3+*jY_w*?qx2a8=<~u<1OVeG!bTR73%E%n!80K;1U<9*eys! zYwn-%C~UCWGzl?u{s1^%N6z6eZJJo?e{%8>_h&y|2ntR9p_>I-*fQp}k~^JVm}c@D zrpqAC=!4 z^Q12Y3_BtepLQh&f_<7Q>F)e&-#K`xQ|W;orgjK@wwoboC{m2V5ESZk0Vpb`=;yf{ z)G%iLd0DFdxN*j04-1)-JgchVOzs=zi#`O;w|@FBf%Y#_Oj}YdEg}A&{dlJ2+sGA` zlNVTgtY_MSO{rMJx#ebCCI~c$s2JNgm|w( z<`%}B5Fj3@F6D^mbozx&=M$tsDMcJ8rKs44p~nRcfTP0pRz#`oWY_ilF}Nsdb0PRY zEurgNYf{Q;*St?0aaA547|li!Blpv+rJ%;I3!(q%uA?|S0y@TKs3-!cD7`*_p5rCk z*ac~sngMPQ)phn^QXnd^f9&`#%4oF-18aZ|7|Ug010 zGB{!LI^zSn>u-=S@4jN`bS^;{bof}%;Y;;-YT&wjIjaja!A8te=(VIXj+M`jX{myLLx1g!qhg-nt zJ_rL=XlG(hD2TlPlg36KBfrP02~d$B^O&KEbUPYsJ*KC}USAsL8$FL}b?>JCQ1MKX zszvl-+PfNk1I zrM0uGO7rA9epze3IOjW=#D5gKJxzwYe@$jt`=^nZ^E3T4Vu^*5ooJV|P z>+>_Kt24*%Dwh#34RYzS=+Y@heqS6>>Ick*@l))|HP`Vtu@JaY$~mZl^$eP!KxETlBekpve^%JR~(gj&Ix>W ze8>89I&2Yv4X<8B6Fk_eh~i#+B)x14olkO!XR-n#9~67MBZto-GLoG$&im4mxhTGW zBQ7sA|I+qYiYnn$e%XkY^i61oQNNqbb>2fjid5&%U5^;eye)}Y+M8ZWD{z#553%$1 z-$6{TzR%csBs;|_m9>t6@B7;`!TZ6+*k0qi5Ik8!ssiU}UwTalV;12tDDbzZPw$uJ zQ>E(Y%ne?BlOc#cw{yL4O*2{~>EiyLo)xrzwz!IS{guy~y%L{FHa79oYejt+L!yd(3gqIB|Q59xd*6E`^X(s$vHZrspL05 z;6Q~04HN8)4>Sv9_Im9yu^vE@c%58ErEip047+d3+j+#dUJq+qMd7a5x)Q@hkofL* z-Q=a>m_S1>AWfRLQhV9xZ^GnRNWLDkKC#~hplZL7f<`3bMb5nXaOhrp4w2EpY$_Zb zfIfU{&UdrBcJZtIUBG+C;BV>SPzn($d1dqb15nX;{5+J`?qxkn?qve0V<2k-(4~q8 z^k$=VY0U&Vr3^p`(+!M?rZ~L{YhCXLqlEcvisLNB zdW?t1?XL1FYh{rj<*8~D1!}1O^hFU#0D=OyKyhlPeukD z{qbyrWeH6!mqs*o{kH&HG;#@n08iKk=?7E%t(aM=m*L=EPw55o&vrNy`Rf~w>_ZM! z4|L}d%Ccw>Q>2B>t3IJ8E)oHJ3wS5F7lWD)2bx^vJ$y3b{{U6IZ5AIV2)_UL!mr$? z+33vqroJ2uC2W~T6aMTyTs)=^fO{xxlVyF)Ow;gNYK5tB``c@U;r=S!@~OFnz5U?c zEk62|cy_<&JzMM`6?!*y_;xjJx54%rV z50ULXIC};>-|JoBGiGP~`e+AMEHe_Y7mH%(sYu1&X`omFfj-9WyoBe69t;t^GvM!n zB0@>r9%vIYLnrYWF~V%;Ku6^Fh?qAVcZ`Dy&QHz1R7uc&(q#ToF!;#JIKX14a0y#tTnKIIatTFa;%)Y;G~AlZ+}E5@$i9{_#CHt-QgtNuu?F}vhCX8TKVdxp%x zL7!^h|62$>V}&-Wz^_IoPU=&Cx7=Z!aa`Rqy1QoS zdl-b`Nna8IT1`nQT93hO{H?I?NdfE?MRka=5B155C(cjLjQT0I%8)6|f;!Q0q-Y=F zus~6`TtSaD8Rpht)3s72XnvKL2E7Oab)OhMMbYhdq1D^Cze>_as(glj{^~B|{t@M~ zV!Q@mrXBpm5!$WU(V_sUo97dFx@OjRBxEck7Cm?ZU+Hchh@rcfJw*Ly5(z7@byyJ2 zgeKJ)Hwj)Y__`H=9=dzQDN@^NZWG&uN@kW}KaVhwmg1YkqUc;SR`jTDn!n%<>bH;i zf_@)N&=5s1r}Z2Ri2!T-`KCx8%?_L{FSw;$(x-ORNhDJI-!4CE+*!NwnW?yP1uNxX zovcPIl>=p-Q02-8drhkSQAp~cCkVYW(7x;QE41w2)&A+#X9;NBz;iLR0d`R-z1NTn z6y-bQs%-sWl>!hylsMm(@qCQD?Qd}ECq6nizh*DH@6^O7of1=?(8hbZ%W$UDFHZ4i zA7I6EMQVqsiRe>M7YYJziQLX&Z8XCobV0Kz)!M%m)R}S`HvZ&eDli}q`#Bu`{w1>) zDe2hL<(KUY`3`aGmrMx*zUD=lRT@kI(LlLGH#D`&D^DD8H&OO;e19Qp5IE*nEy+nv z$WE<*GbDJSr_ysCsPv1xtN`tz{6j+zsHP((Ld?EjV#v#9gVxPhGFjnk#y(x&ufu!U zUuFrdATnYjf2^C~R$kmU5{wJ7Y%XTTlUnB(Utsj5>;gDbB&h&+hZ1?4IT{HN|}jWh?NYRAWmk97!#F?Iy!9X-%jdctM? zJl)-WUwY&BBqu{{sWcMea1rGov|iT*p<#323jJ*fvsY?X*`H8wIAf3|k(4sjx|vk* zHLYT9b7H)C(PS>4EXR`a)~7kvHhpUmx{RHMo#PCI9R|le&{QwPpzmYjhQ`I*D1^>j z6#IYBe)^eB_=}WuNIJZnUnB_VR{h2Kh~I8m&V1|UK{FQS>6jL%Xa?sfTawSg$2V*o z&g;p}2WL{sFep#E_XEwe0RCgIUU#j=9IGTz0E9g&dWrAfwm8dQ>bvE79lCBjDb}+J zFPghYJjN8$5OM3TmKA!<^K0@Z&@gpHUcM2+W3H^>TOJm>aO8fM4>I9nya-VLQ#ww0 zHA8}@d(O#*WFS?cU2pp@yS>YUF&R2&Zz*+rUJaAn1eUP}biQTk?0ko%}EnvN@fTT8E^_fx>`LFB!Q? zI}wUIK$XC6;hY}WzZe{6T=9W!AwNOHz+#5Pk% zNQb=+2&-UavPYT7|50axeg;S$L)^*o5trn4p7VsZFUgadnFXcYHA9Oe3 z_m*JMXntA73`hBTAH!4}ISq<8c~?!O7L<8aS1t zl0fya`ikYx7G;9b;Em<^g?;$}UI(Nas_SA)9na=YM+`UlhpUyN*wBk(gN8iCs(_#W zMEa`jE@Rg+5L96y6aRubx!pFhviyHmAJof`9%XK z+C0cndist$z=IP6QAhxf+n?e!6ZAD$EkzUrH{^_?M?z56*K=T^v_hu7y*0Om(A_u5 z*fvip;mj}UTJ=pLmDG=GgL7aR<$7IXr_-GUo8`*xQXy^+l=pLR%St9lJ_qDOS1Yf&WOSaxe&q)9hbnZge2CPt}UJD&8tvT16-2XZy$MA_8VJwhh4b; z^>e&nSIKjd4e7+!I$SC7YT@AOvs0@^w1o%LSi&H#zY%>G(_saF+0-XExsZ(Kv|)rv z*Y)I%3z^5?e&`VhhCf=rrV9-5pfoAqyER5lk=gUq0`Y1SNL6&;%mAZcS)+zEw*bBH zIjE>#yu+D?QLeFy=pNmfY=<$#EJl&###+4Npa=UH1|@)XMzv6fqMiFL1m!#P2?Ia;QjKiKdCul#_awgT9lGlK>Y z3j9VRKrPiw)Jh`&7x_^(s@6m5mX`YOkyt!rD})9xfuIO}&~~Vk{Ws3H^==iz;5DS< z@?8d%s<ZeLP)I*}#sV<`x@Jt(w&&2w^MMo5$39I^>h5tL9rq%`SN9SWg z`eD)z1=X97sXWz!fZoaqx)SA=J^B4a@tOjfJw{a)J02R@3Ee1l|;&Y zy~UWQ4%AoAFj@pTt0|9{Um@ghZcW;poGS$Hc1W5vjzau8ygLF+A_%~ZB-SQ8e;1qE z?E_GOS|v|M7>#I;iQTIb2Pu_&Ow6GNA6|#v-w^5xD4TzUoE~>m-eGb*V8>CNc%t&J z%bb;5wEMC{jY$xpuc!vIy-{X$xGjo4|3qJa><=F3T0p4r(Qzzf6(>;4?JX_Wk_|4S zX@`ip4;WiJ+a=w`)bHW!jI)8t+p0lo>*B2iKv{FVi_kXPbM(^fZZ)E0B?@900{o%qV?$FUXW?cqA$(M`>Tm=!-O zB`Fl|^tp`g!JXK)8$*m{CjsUs3S$Vs$%r{9lTkk{OHUKWwr~~yi{e-5Wv$-sZf+Wd z`Ev?Yw8d-MnrV9#$J)xtw|1VQ7u%eSk7h&KnAij{2Hto=rgyUeVX5g2DMSjFLJQ2} zWMQcj{sn+7b#Y=Vt#nv)iRRSf62>(I)}YQjx3HqRm@$s*GOY-tm6Bv9uWh!40d-S) zf%Qnzz$dw5*R}wc#*mGw;>G79 zAVt|bR8+K-S8}*6dXZXOENF^Y>vJ?&O8v81N4Q5t8Xi*-EkotzJ;D7;nC=!rPU;rR z77|KBDPLDb4j4G2Ns(O_)MX%~a!;fj%wVpuA&qfrIeTE&ZH#7Hd;)B3cNDfkqvKfd z#LeKQ3hw>L^Urhvzhuc@dGWxZ%te$na1&yBSO#Rq-XmDUQdMu$Sv(>2ch5(DNv~|$ zZL?FL__x=mQ#;3o3eVp~{91TCbYABhOfK~+CP)0e=84z1H)$1{G*@1H&8Q?=^4P|%#6{C`m04&4IP0^Aj2r#D|F>HNu3<_zBk3sC zb_2DWcu?qNm*3TkvzU34Cqn?-h0$zLxgm&?!E}We zX^jP!0P=ai6`#1^Hyx33v-c|$8Me=g#;QH!CbGz2G)}%o3)ypoK}|o{5o6odi7?S; z)(H$=uF;-lr#|DEm}ZCLq%Lzj2k*sxCg+rL(1&atL=G*BlQs4GkwTcWdOr(yI8KC) zp8|hp;aMbk4t($q_ozO5uv@0FZFTZ1131wu3|fi{W*4N>b}=Ukf`fVx8iigC`+s45 zWvy3J_+&ezsDEV47JEU#q()CmaoD%;W>M3K1D$@?F4 zy>oabP4p<3Y2Ac( z#3Cb*pmH7QGP8NGO7m71`T2gRjlY{@QzCRE`Ezn3!t448vAZps^<#-&8`Ms>+;{!N z)q|{kUCoUG)JwxN0QrSGL#x>slP>Iaebr1_=VIz9+Ck%E>IojX&N%PiU4s+n(v|Pf z`TP2Qlw>o3H*=r!qIvA{sF?1860k2*@2&ioZcCF%BKA1JR(2F!Yk=#S!_1+LrBm^zx4?{vcyC z)52xAL}Q*`oAP{=pY&=tJo*l&28Zh+`Fxri45`w!C(f=sBC%Z4)@{)LA5!Y(RyR;L zdS;bUpn|(D>ed*&La(48r?AdUNRr5#u#Z_u%X+~m-YN+Cs9 zeFCl#6DK4X*5$c;Oo-MtPbn3S0%0^kRmE#c(milkKXo}9u)*47HFGh7RO)P2xabxn z`@*GV>T>K&}D6$o+TUL&5Xa`@@;;O0( zQ3cE(C*Iy@(PVr@BODcac&8kt*SCn-`Nt+%Gf_VT22t9M zg{4D*f#a@A6=YGz@7w1C7@;c1FPNla?qP@S^vTc?Z1epX%`>|k7Dw*=`^Df~^_xWY zNx9Dl+O*yTEKFH~pqFYpo#T1b3_E>S7#ljOF!hsFsExydJM9B|Q$zEY+l) zcF;lKLD+}v)1f3%b85(N%InTX{9ID4{t+ZyUHLg=`<)rUF@Cm{P^VT`)N~R6_*pvK z3=i8ytH@N8=rJ0uc-Iu1!}6f5SjSiC#ljdPD`6(&>C_H4K0{NUI|2HSrrtt}!}gHw zY1pqpvdI&=i4;er)QILU2h#9Tnq{v|fwdk|J&M;IkIOi`l>Sv=19=iX-B&+_9PpH^ z0q6Rm6Ph@#w&8?)9SaD^DxH+qgr%g4U)E|z;*O(Z@a{}qV>B;ix2icWaYM^NDfjvx zFh2N*ru9m`-M+ll<&&F#*^k`PaozOHg$jk+)vsb^37k)2@CD@vWXWF;xF~v+zf&Y_ z#@3_Ke5lZLixeCg8+^c88S%-7VrMQ{UJs%9t24Ga&@i*md;Ss*Un>ge&Bncr_$|bR$-a8@zAwdT zOUK$TjaY)1S08iKAr7o2Z9BCk$&=KSdcV){12ff-iKHmF$0?xPq`7u(N7kx@^;uc| zfILNL@jjYBR$x;@_LWO4-HsKUf1{8l#pJ2&9x!KNMcYS1OD<$o5H3nsbbkx@`rX}T zCNy^6nZG5lzwQ(~8gqc|L2SJ-16b<7L1-oP#}cc%YEGij+_*o?6!$*I)=J~BwR3H` z5A{oJTc=JkYS}emDjDlhYVfsL4ftgCU>h4#yo#BtrH&VRbgsUh1x;V9QpRks6^yT?H}04|3dEn}YF zTZvRx3WnUrwAF?lbd_7Um3T%ZMj}sFbfTUQa)Nc~RqxEzTWc+ts{h4hq4VV1T@5rH~V>N zhrBw1O{kjurLdY~acwjFkXR3*`J13*=&8Z5@iR>7pZnk7E$-q0`a( zIo3|p%8u-|`Y8Sjwf$(nW(Z$D7&z|jh)efr^R;_aYX+L;$Ym|aiKu=!!=+Z~qZp_q zPCJIMf3uYHYeFNmmg{~}16(_ngUoNCDfkh^uHm<_j?+(yep8|xbTLp-Xj{-$ZfQhet&E}_ z_cH2?6peJQZRx3`i@Y^;Ln{2iQ7@Z7GpQnD&Nrfv@`^l4PaR#Q9E=+9R7DJqIz4#l^ZktT=29v$I2A6M0Oe(leZQAvawuhM*}}W zN0t2hski+3hz~^=S-Uzj_PcFtdi4egfn=R1ZUP7WJRdJl2QyRxlL8xWF= z+K|6VX&jA&bJgBHMMZs@G``c6hFno)z_8ZP~pLCS-R6FaKq{KlO>gvkj^_@qxQ~ArIZU zzFK*Ra2`GP zkcA?L5uz4~840!nes!P7dM0_(rNWvZ0ldtT+oo}19oL>2bPMr!&6GYOT7r)GIA?Xc zVCM#%K^_D$2}xp?>Q(!=)LH{&sae`0St(QHDo%FQisDR-{=LvZsmY99B`8La!x+*Y_-4|s&}Rk>>m{ooEmjUK?U+3ML50^ueSi#k}odEXuK@Wu#i*wKhAhtt;R zpy#ID(x4m~2}{txn;P8UB5e{9Ks7%)me?!9$BkgVHzZq{xR1BOkDw< zrdXhEm!zT!AiHU)gFY{8p}A{NO4Mr|BAGPPM*PdGoy zHo)7=Dx#?G$ZSY8BOS+o(YHiBN3=Wtv$1419nd9L34*JgccOp&b*Jbv@S{GlmS}L| zkOiCYXw!+?s8EVY_T(q+{7=#j5UB9P9q3x2-xRd->cakZ;R~b!rw8wQGu}EA&s~%w z&NFL-HUX+aFqHk8C}h#|^0DPgQv@u7OL5q>2QLl95<0Re!PNtq8c!dPgH=v!dwwY4 z^p(aaFV}8wo&B;CKXa%=`dT!SkBMUn1bA@pdt0t zh#`{?v*|m#kIUlWL$2%#D}PiKjtsUdg``A2Votj`8R^_@dhZQ1y6Z;hQhM9e8U5jcL0#38C`=&vQ+ z=M7-G3TYaS`0qjAU|-B1!?{lqz~;bhz!;{JhaZ&i$D z@e$RA5C{dY9MKNno`54uMjV4Usvd#N>SaNZHPryZXZG=tC5O?3@N07b1F9JSF)zm- z@hg3ZL?Ri^LUb9aGjyfbFv-_LgW@v5xXV?2H@?Kb)j`)?{ zw7#?DtrY=A?KcXI!tDF$r0u8CEuK^~<|)V?1*vqfRG~PBRi7KYMF*TJbQKwM5Yfz@ z^>DzH`wfi$SeSSlDAUt^C!=GMa0gp01T)HS2jqd}zhCp?+`dE z0zz~Rb(Pw1w|F`UFMp94SyfCfFYi>Bl%rC)!FM!ePS@g8e#t&)CcZRy8R_vZl}$vn z639+ON5nJcHk%1$Z63mO1aBT<*OO`yCE#deQj5f{6W;Q<+bFOJD|i)F z9E2ByQ8jysP!s0TqDoN>SDSJi!gQU8Mc%?k{?}*izi=J)e+tI`dVwcffyv!4ppz0o z9tt}bn>7p+nxF`WEqpZ7e!TPrk}xKqG%?NopD!?ydYWg+9=)J~=UEk~JY04DLU-Y> zQknFt?jnFl=Cxd)1RiUX*cO>gx`MIeb7D!&DjTVe>Uh7Wm~1DpF{8rf#HZ@fM-ppi zmU_0_5Utud{Ai2jUt!)I;&va)T<$5~MhZAClM68CO<1e>*MsTW&S7JD!+BSbJ*<&r=M8mq%s-OdT-1oc|))v*$OWN<2c%E;Hti5uFzWQNLEGJVV z#|ojXcS{%2!ItWORLb_GbS#e>W(r=ElHexCy?M|Tk*4~>b`xj9i(7Vc1m&h?$1##d z2U?y~^8Kv!@49p7(59^oVtvbrV{(G=7}b>zYGzhv?{X*>U_kE#Eu?M=CR8ZH>$D~S zPj9mxhWf@kJix5Z1S1O~Wfg%K@$%&ON|o^KF_?m%8j8!ePTIjSOUkt`OHdN;g-M~S9mlM+G;S?<`Q#)qyzrPPI}Zfm19g8N*A2!jPBl>?18b!59FQq zA#PlZ#$KNKcK?!&9-G&W#*qp$l8^3XhZVW`i7GqPr_88?yEP119ML$%8F+nD{Z&A? z>s|*k(6R+frCY~_Ijyntojo%MvAVa=yt@+#Hla~pvXD24S*R$sd>>&61&Jn zJnpV9fRJzDc5R_=5tX0?2JYBOPJ;`x;8H^6i0S7$cagtvBYkc&=2=yhe&*`@qjm4D z{cfmSIPnvy=}o{&i23DDNPS~irR5lv_6$_ShO_TMuA6Tf6p?}NDAqUfM%eAF@8ujY zwr(~>6no_U>L7Y}%oC!N)Fo0X)?b$h0j~r2Jj*k|= z%LH;rfcK1kDXm-`EjNA?<#ID)6JP5PW)qfI#8i&)-z?1-kw9r6htbqc5z#J3+Q2sY z|3^KT*74B}I|z~t(=LsBM9mx>j%QsXJg2uM)?Q=VH|o0ZqKzhRhe`bs2GUcHAA&44 zty7vv@pIcqq-E9BO~U~{TrtH$4BUE6@daD~n(ULwAw%V49l8+$y}E2j`<@=%#SFJQ z&fr*x^tALf#;F;kZ&*4Nw{0=y=tidTzo(DGsH`DhbTF#w!`UW(tUJWseM;PUbmf^R-9zt7wZVgx?Dg#AU85!6|=>Mw? z$yTMo=Ykrj-9INYBm05wI;xAj{fAEH1+ZfgA;AicHy(y{iul*mMlcDs&F57bQp3t)@T zo3=)%M4I6>Hy&G=u|PwvOE4J@BsC?)8VbRzBXb1(g#n2R`>k}+?(=XKN=8r@Vv$)w{psTPC(op7 z44fPQR45NQAfMBr%O{zCcC`om-VqG0@FQ#%(K$XB)!9rP`6mH$W zom@y#Hil5~7)~EgcXKQ<{0eY1Pp;IBklMC~|GB{6HX1IM=hyYr>qMK~43{_{?WFs24ycp^nn0U!8xDiqU|D1r0@AJvO%a@Wt~NYso_!OSLtTcZ39i77h&Klix#$e*g9vfK*DBzv;}2Msj; z78+-N3r1xa%UD(QYKID%*}H+-vo&rt-A*n1@+DVR{(!`<5k#}l4lnrwR%~5oX@Nd9 zX~&=#G%>KX+lv5~{$O5W31JG!Dp=_m=sAfSWTzUml_;qC41Do3{OXtU3f0?kYw}t7Mg*o{i0-AB@qi$s^pO?9I`bef*HsE zWW$K0gF{p6MD5?|TFOd1O?;`-3%UfPkGDl_$O>t9E~9i@V*X|wKcn+1qFhy&^-sua zD)y#yF6e=Z?mZ9!H@MMzZW?9vkd6F9<-u0^GlS=B6!Db}hpE#>R${QvSrXE9v|q^K-oBgo4K zoNw;KkQcAzqfpi38ySmUz;cDN=vyQSLa0=F>*JyD-NAPnoJYlwM1qqo7+tu^>*}mD z|I-ENURe;2ptQf5>b;V{)VKfaaHl_r^?Xx8fL1pl7`sXas46fvSy<`gC?Q{00Xw7b zvV&BqIBRjd$tWw5OR8ou&GZyh5M^no0gTchJZaWRe5>S=TaRVTsb@G9T>#}ee9ptx z5DGazqcxfew35wTPA8^aKjCka4FmLO!#USUxtzynYlA+gFu;38;RDdt{@p`nR8F=+ z`6MGYGP}x+;-pF;cEZm~U*A-3Akyg{`&{EhsI`*7oFCU3OA z%U<-OrG?M@6oB>12!q~Ye(M}#UM^q$*YvZDL@i`)r;b<*t%vQ6c-@Y3Lco>p2#mhz z_a!Nu60f6P7LXo$Wau2j#>CA|2iWdC1gGsCeVOjYJLPh8LjP~<7C#M+45?#DU0#8* zzM`~lKbc}|k#JPS5X!E{)qw1E@T^Vlp~=E#q7P%1@;N|0O)2n)=lwyIVoD%D>^&cu zFzmkwFe1JOAN60@q!H3tp6~UOr^JVD3is{u|B4S0q@;^d!S-02V-%nS5Z06D1FBgZ zd+&1&D8$bf2wtTO-j3(p5$G>=Ou1^BDFsAz-f-(MPM_TO*bA#!9`CB%fL_3`g@g2W z>Uex{?=I?XEZ5LhkwahIvGaAg+{jGlS7grFz~>s2wt*_Bu+r0puh#M!HKsE=MsPh@ z>G*8D37g~l?dj!_T3*2b+6idv(_RM`&`C{AH|%hY=p;Y1_yswK!CwPyFKwTuET1&| zDsf@OtDB~H(FwF7omfW2ohiQY)WlnqA`(TeTCxQEoRt*ae|ecCGx%I?gg ze770htp|mX9mnID_Xj;kFZEPGxh!Lm+YXUOzpmx8{|?f$LkZ-WdohQiv*#}7Ck11! z6N}5ULbSKW|0Rde?=ng8t};B9dcb$hA7gMGNqO4)NQ|Mspj*X2jbWlbt@NjxThYN< zf9^szr}Mvavb-CIAqZt!)iaTHw~3JVSevLZ)~4QLOOb^VtY=p~bH+df-Lam`@$seU zv9hiM6~Itzcm^U)V0=n`YuMG5ys73m23$zFG{Eo^%{R7dY@iaVW5JaSZgd$g3rgNk zM0-Uqh~xFI`U%4;3FS+H@IwYhvE4F|BJ1o|YboRB{%Y!LYmn|1hES-YOP`N*inHk= z%G?fE1rczPxrL5kiO*?Ogq+44|NixOOvEOofuI-k~wYd7H zUk<*!6!;0mrG5DWdvaqDJLit%Ck}>qx^}I-_~=#|G?t;ddEXQNSjKkX$N-s$wX+mv zAFX+GMsbv)KKJ42Ub&om+lG2GAp&BG33EM!+V0x4k=dWpU;~OM98Ftw(1r>w^~1&i z;tVI%Cetx{lBy7jBi2fAC*2q82vLIHs))ZAkQee6>DbW|4hWcA10LhHZ8vKRj0UnD zch3WguQ|oAju$}~A;~^Xxw!nW%7}6nb}v^KA33>bcBKt;p}{&rvDfsvTiHtSzu({E z5f6ZdN3G*3sUNO+{hvzq-=Deab4wH!3c2kx>u-GUsv`;v(lS9>oM_iAsbRH`E(+!g z!0_8Pd)G?~6|IQ>ks6M57$n!;ag4b~ebp5nnn2f7kY7AcglEEsc6KM@yo6LPjE4r3 zQ&PpY)|Cy$X&n{0sVedN@R4(wvw9@jM;sp1DVvOTPQAA^2gvjQyg-@ziLW(}Pzbp} z)FWM0Jk55VtjvKdVB(}??byuxF^b^);;AOb07(awJ^LGx%;-~cjeUc4t@_ULm4>vJ9n`>}!Wl8-wUe@1+x+sy za2q#v?97a+Hkw2g_qOsOj*u#e^<@7u_?SZV)P+ME{U3BTu%gQpGSmVCPPpxh`#C`@$C4fXaiyrr_gL*u7f%}F&G0{7kXT5FJsUUs2y`plSECv`HsG*4=C} zeCzx^>O#OPlUrwcI4JXf(KT6UX)KByjvjhs@8ZjItk#Rnmnj4=6~N%R1Yw@ecU9ww zq~L7cJQ8;E@$r4X?%xkze;>{d=MsM1-QG{fb${OuRwD`4@)}h7_