Whole-Brained Intelligence (WBI) integrates advanced technologies like Quantum Neural Networks, Neuromorphic Computing, Advanced NLP, and Autonomous Learning.
- Quantum Neural Networks (QNN)
- Neuromorphic Computing
- Advanced NLP
- Autonomous Learning and Adaptation
- Ethical and Secure AI
- Python 3.8+
- pip
- Clone the repository:
git clone https://github.com/QuantaScriptor/WholeBrainedIntelligence_WBI.git
cd WholeBrainedIntelligence_WBI
- Create and activate a virtual environment:
python3 -m venv venv
source venv/bin/activate # On Windows use `venv\\Scripts\\activate`
- Install dependencies:
pip install -r requirements.txt
Run the main scripts:
from opensource_scripts.neurosymbolic_ai import hybrid_model as neurosymbolic_hybrid_model
from opensource_scripts.quantum_integration import hybrid_model as quantum_hybrid_model
inputs = [0.5, 0.6]
neural_output, symbolic_output = neurosymbolic_hybrid_model(inputs)
print(f"Neural network output: {neural_output}")
print(f"Symbolic reasoning output: {symbolic_output}")
inputs = np.array([0.5, 0.6])
result = quantum_hybrid_model(inputs)
print(f"Quantum model output: {result}")
- Run tests using pytest:
pytest --cov=opensource_scripts tests/
Build the Docker image:
docker build -t wbi .
docker run -p 5000:5000 wbi