-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
197 lines (152 loc) · 5.85 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from helpers import *
import matplotlib as plt
def preprocess_train_data(input_data):
"""
Does 3 things:
i) Finds and removes unwanted features (if they have too many missing points or std = 0)
ii) Replaces -999 with the mean of non -999 values
ii) Standardizes the data
Returns the standardized data, the removed features, the means and stds
"""
processed_data = []
removed_features = {}
means = []
stds = []
num_samples = input_data.shape[0]
for i in range(input_data.shape[1]):
cur_feature = input_data[:, i]
# Remove features with a lot of missing entries
unavailable_cnt = np.sum(cur_feature == -999)
if unavailable_cnt * 1.5 > num_samples or np.std(cur_feature) == 0:
removed_features[i] = 1
continue
# Replace missing entries with the mean of available entries then standardize
cur_feature[cur_feature == -999] = np.mean(cur_feature[cur_feature != -999])
means.append(np.mean(cur_feature))
stds.append(np.std(cur_feature))
standardize(cur_feature)
processed_data.append(cur_feature)
return np.array(processed_data).T, removed_features, means, stds
def preprocess_test_data(input_data, removed_features, means, stds):
"""
Does 3 things:
i) Removes unwanted features
ii) Replaces -999 with the mean found in the training phase
ii) Standardizes the data
Returns:
Processed data
"""
processed_data = []
realI = 0
for i in range(input_data.shape[1]):
if i in removed_features:
continue
cur_feature = input_data[:, i]
# Replace missing entries with the mean of available entries then standardize
cur_feature[cur_feature == -999] = means[realI]
cur_feature -= means[realI]
cur_feature /= stds[realI]
realI += 1
processed_data.append(cur_feature)
return np.array(processed_data).T
def add_features(input_data):
D = len(input_data[0])
N = len(input_data)
for feature_col in range(1, D):
input_data = np.append(input_data, (input_data[:, feature_col].reshape((N, 1))) ** 2, axis=1)
return input_data
def load_training_data(using_logistic_regression=False):
"""
Args:
using_logistic_regression: if true, sets the outputs to be in {0,1}; otherwise, keep them as {-1,1}
Loads the training data and separates it into 3 subsets
One for PRI_jet_num=0, one for PRI_jet_num=1, one for PRI_jet_num=2 or 3
Then, preprocess each subset independently
Returns:
outputs, processed_data, a set of removed features and an array of means for each subset
"""
yb, input_data, ids = load_csv_data("Data/train.csv")
if using_logistic_regression:
yb[yb == -1] = 0
# Divide dataset into 3 groups according to PRI_jet_num
yb0, yb1, yb23 = [], [], []
input_data0, input_data1, input_data23 = [], [], []
num_samples = input_data.shape[0]
for i in range(num_samples):
if input_data[i][22] == 0:
yb0.append(yb[i])
input_data0.append(input_data[i])
elif input_data[i][22] == 1:
yb1.append(yb[i])
input_data1.append(input_data[i])
else:
yb23.append(yb[i])
input_data23.append(input_data[i])
yb0 = np.array(yb0)
yb1 = np.array(yb1)
yb23 = np.array(yb23)
input_data0 = np.array(input_data0)
input_data1 = np.array(input_data1)
input_data23 = np.array(input_data23)
processed_data0, removed_features0, means0, stds0 = preprocess_train_data(
input_data0
)
processed_data1, removed_features1, means1, stds1 = preprocess_train_data(
input_data1
)
processed_data23, removed_features23, means23, stds23 = preprocess_train_data(
input_data23
)
return (
(yb0, processed_data0, removed_features0, means0, stds0),
(yb1, processed_data1, removed_features1, means1, stds1),
(yb23, processed_data23, removed_features23, means23, stds23),
)
def load_test_data(all_removed_features, all_means, all_stds):
"""
Args:
all_removed_features: 3 sets of removed features, one for each data subset
all_means: 3 vectors of means, one for each data subset
all_stds: 3 vectors of stds, one for each data subset
Separates the test data into 3 subsets according to PRI_jet_num as for the training
Process each subset separately
Returns:
Processed data and ids for each subset
"""
_, input_data, ids = load_csv_data("Data/test.csv")
input_data0, input_data1, input_data23 = [], [], []
ids0, ids1, ids23 = [], [], []
num_samples = input_data.shape[0]
for i in range(num_samples):
if input_data[i][22] == 0:
input_data0.append(input_data[i])
ids0.append(ids[i])
elif input_data[i][22] == 1:
input_data1.append(input_data[i])
ids1.append(ids[i])
else:
input_data23.append(input_data[i])
ids23.append(ids[i])
input_data0 = np.array(input_data0)
input_data1 = np.array(input_data1)
input_data23 = np.array(input_data23)
all_processed_data = []
idx = 0
for cur_input_data in [input_data0, input_data1, input_data23]:
all_processed_data.append(
preprocess_test_data(
cur_input_data, all_removed_features[idx], all_means[idx], all_stds[idx]
)
)
idx += 1
return all_processed_data, [ids0, ids1, ids23]
def check_missing_values():
"""
Shows that number of missing values is related to PRI_jet_num
"""
yb, input_data, ids = load_csv_data("Data/train.csv")
for i in range(input_data.shape[0]):
numMissing = np.sum(input_data[i] == -999)
if numMissing > 0:
print(numMissing, end=": ")
print(input_data[i][22])