forked from lukas-blecher/LaTeX-OCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
106 lines (95 loc) · 4.65 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
from dataset.dataset import Im2LatexDataset
import os
import sys
import argparse
import logging
import yaml
import numpy as np
import torch
from torchtext.data import metrics
from munch import Munch
from tqdm.auto import tqdm
import wandb
from models import get_model, Model
from utils import *
def detokenize(tokens, tokenizer):
toks = [tokenizer.convert_ids_to_tokens(tok) for tok in tokens]
for b in range(len(toks)):
for i in reversed(range(len(toks[b]))):
if toks[b][i] is None:
toks[b][i] = ''
toks[b][i] = toks[b][i].replace('Ġ', ' ').strip()
if toks[b][i] in (['[BOS]', '[EOS]', '[PAD]']):
del toks[b][i]
return toks
@torch.no_grad()
def evaluate(model: Model, dataset: Im2LatexDataset, args: Munch, num_batches: int = None, name: str = 'test'):
"""evaluates the model. Returns bleu score on the dataset
Args:
model (torch.nn.Module): the model
dataset (Im2LatexDataset): test dataset
args (Munch): arguments
num_batches (int): How many batches to evaluate on. Defaults to None (all batches).
name (str, optional): name of the test e.g. val or test for wandb. Defaults to 'test'.
Returns:
bleu_score: BLEU score of validation set.
"""
assert len(dataset) > 0
device = args.device
bleus = []
pbar = tqdm(enumerate(iter(dataset)), total=len(dataset))
for i, (seq, im) in pbar:
if seq is None or im is None:
continue
tgt_seq, tgt_mask = seq['input_ids'].to(device), seq['attention_mask'].bool().to(device)
encoded = model.encoder(im.to(device))
#loss = decoder(tgt_seq, mask=tgt_mask, context=encoded)
dec = model.decoder.generate(torch.LongTensor([args.bos_token]*len(encoded))[:, None].to(device), args.max_seq_len,
eos_token=args.pad_token, context=encoded, temperature=(args.temperature if 'temperature' in args else 1))
pred = detokenize(dec, dataset.tokenizer)
truth = detokenize(seq['input_ids'], dataset.tokenizer)
bleus.append(metrics.bleu_score(pred, [alternatives(x) for x in truth]))
pbar.set_description('BLEU: %.3f +/- %.3f' % (np.mean(bleus), np.std(bleus)))
if num_batches is not None and i >= num_batches:
break
if len(bleus) > 0:
bleu_score = np.mean(bleus)
# samples
pred = token2str(dec, dataset.tokenizer)
truth = token2str(seq['input_ids'], dataset.tokenizer)
if args.wandb:
table = wandb.Table(columns=["Truth", "Prediction"])
for k in range(min([len(pred), args.test_samples])):
table.add_data(post_process(truth[k]), post_process(pred[k]))
wandb.log({name+'/examples': table, name+'/bleu': bleu_score})
else:
print('\n%s\n%s' % (truth, pred))
print('BLEU: %.2f' % bleu_score)
return bleu_score
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Test model')
parser.add_argument('--config', default='settings/config.yaml', help='path to yaml config file', type=argparse.FileType('r'))
parser.add_argument('-c', '--checkpoint', default='checkpoints/weights.pth', type=str, help='path to model checkpoint')
parser.add_argument('-d', '--data', default='dataset/data/val.pkl', type=str, help='Path to Dataset pkl file')
parser.add_argument('--no-cuda', action='store_true', help='Use CPU')
parser.add_argument('-b', '--batchsize', type=int, default=10, help='Batch size')
parser.add_argument('--debug', action='store_true', help='DEBUG')
parser.add_argument('-t', '--temperature', type=float, default=.333, help='sampling emperature')
parser.add_argument('-n', '--num-batches', type=int, default=None, help='how many batches to evaluate on. Defaults to None (all)')
parsed_args = parser.parse_args()
with parsed_args.config as f:
params = yaml.load(f, Loader=yaml.FullLoader)
args = parse_args(Munch(params))
args.testbatchsize = parsed_args.batchsize
args.wandb = False
args.temperature = parsed_args.temperature
logging.getLogger().setLevel(logging.DEBUG if parsed_args.debug else logging.WARNING)
seed_everything(args.seed if 'seed' in args else 42)
model = get_model(args)
if parsed_args.checkpoint is not None:
model.load_state_dict(torch.load(parsed_args.checkpoint, args.device))
dataset = Im2LatexDataset().load(parsed_args.data)
valargs = args.copy()
valargs.update(batchsize=args.testbatchsize, keep_smaller_batches=True, test=True)
dataset.update(**valargs)
evaluate(model, dataset, args, num_batches=parsed_args.num_batches)