-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
228 lines (194 loc) · 8.36 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
"""Run this script with 'torchrun'."""
import gzip
import logging
import os
import sys
from functools import partial
from pathlib import Path
from typing import Optional, TextIO
import torch
import torch.distributed as dist
import wandb
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision
from torchmetrics import MeanMetric
from olmo.config import CheckpointType, TrainConfig
from olmo.data import build_train_dataloader
from olmo.eval import build_evaluators
from olmo.exceptions import OlmoCliError, OlmoConfigurationError
from olmo.model import Olmo
from olmo.optim import build_optimizer, build_scheduler
from olmo.train import Trainer
from olmo.util import (
barrier,
clean_opt,
get_global_rank,
get_local_rank,
get_world_size,
log_extra_field,
prepare_cli_environment,
seed_all,
)
log = logging.getLogger("train")
def main(cfg: TrainConfig) -> None:
# Ensure run name set.
if cfg.run_name is None:
cfg.run_name = os.environ.get("COMPOSER_RUN_NAME", "train-llm")
log_extra_field("run_name", cfg.run_name)
# Initialize process group and set device.
dist.init_process_group(backend="nccl")
barrier()
torch.cuda.set_device(f"cuda:{get_local_rank()}")
device = torch.device("cuda")
# Fill some configuration options.
cfg.model.precision = cfg.precision
cfg.device_train_batch_size = cfg.global_train_batch_size // get_world_size()
assert cfg.device_train_batch_size is not None # for mypy
cfg.device_train_grad_accum = cfg.device_train_batch_size // cfg.device_train_microbatch_size
# Display and save configuration.
if get_global_rank() == 0:
log.info("Configuration:")
log.info(cfg)
if not cfg.dry_run and (cfg.load_path is None or Path(cfg.load_path).parent != Path(cfg.save_folder)):
# Save config.
save_path = Path(cfg.save_folder) / "config.yaml"
if save_path.is_file() and not cfg.save_overwrite:
raise OlmoConfigurationError(f"{save_path} already exists, use --save_overwrite to overwrite")
else:
log.info(f"Saving config to {save_path}")
save_path.parent.mkdir(exist_ok=True, parents=True)
cfg.save(save_path)
del save_path
barrier()
# Set seed.
seed_all(cfg.seed)
# Construct data loader.
train_loader = build_train_dataloader(cfg)
# Construct evaluators.
evaluators = build_evaluators(cfg, device)
barrier()
# Maybe start W&B run.
if cfg.wandb is not None and (get_global_rank() == 0 or not cfg.wandb.rank_zero_only):
wandb_dir = Path(cfg.save_folder) / "wandb"
wandb_dir.mkdir(parents=True, exist_ok=True)
wandb.init(
dir=wandb_dir,
project=cfg.wandb.project,
entity=cfg.wandb.entity,
group=cfg.wandb.group,
name=cfg.wandb.name,
tags=cfg.wandb.tags,
config=cfg.asdict(exclude=["wandb"]),
)
barrier()
# Initialize the model.
log.info("Initializing model...")
olmo_model = Olmo(cfg.model)
log.info(f"Total number of parameters: {olmo_model.num_params():,d}")
log.info(f"Number of non-embedding parameters: {olmo_model.num_params(include_embedding=False):,d}")
# Wrap the model in FSDP.
fsdp_model = FSDP(
olmo_model,
sharding_strategy=cfg.fsdp.sharding_strategy,
mixed_precision=MixedPrecision( # equivalent to MosaicML's "PURE"
param_dtype=cfg.autocast_precision,
reduce_dtype=cfg.autocast_precision,
buffer_dtype=cfg.autocast_precision,
),
auto_wrap_policy=olmo_model.fsdp_wrap_fn,
use_orig_params=cfg.fsdp.use_orig_params, # needed for compile
limit_all_gathers=True,
device_id=get_local_rank(),
)
if cfg.activation_checkpointing:
# verify we have FSDP activation support ready by importing:
from torch.distributed.algorithms._checkpoint.checkpoint_wrapper import (
CheckpointImpl,
apply_activation_checkpointing,
checkpoint_wrapper,
)
non_reentrant_wrapper = partial(
checkpoint_wrapper,
offload_to_cpu=False,
checkpoint_impl=CheckpointImpl.NO_REENTRANT,
)
apply_activation_checkpointing(
fsdp_model,
checkpoint_wrapper_fn=non_reentrant_wrapper, # type: ignore
check_fn=olmo_model.activation_checkpointing_fn, # type: ignore
)
log.info("Model:")
log.info(fsdp_model)
# Construct optimizer and learning rate scheduler.
optim = build_optimizer(cfg, fsdp_model)
scheduler = build_scheduler(cfg, optim)
# Data indices file.
indices_file: Optional[TextIO] = None
if cfg.save_data_indices:
indices_file_path = Path(cfg.save_folder) / f"data-indices/rank{get_global_rank()}.tsv.gz"
if indices_file_path.exists() and not cfg.save_overwrite:
raise OlmoConfigurationError(f"{indices_file_path} already exists, use --save_overwrite to overwrite")
indices_file_path.parent.mkdir(exist_ok=True, parents=True)
indices_file = gzip.open(indices_file_path, "wt")
# Consolidate components into `Trainer` object.
with Trainer(
cfg=cfg,
model=olmo_model,
fsdp_model=fsdp_model,
optim=optim,
scheduler=scheduler,
train_loader=train_loader,
device=device,
ce_train_loss_metric=MeanMetric(nan_strategy="error").to(device),
z_train_loss_metric=None
if not cfg.softmax_auxiliary_loss
else MeanMetric(nan_strategy="error").to(device),
evaluators=evaluators,
indices_file=indices_file,
) as trainer:
if not cfg.dry_run and cfg.load_path is None:
checkpoint_type = (
CheckpointType.sharded if cfg.save_num_checkpoints_to_keep != 0 else CheckpointType.unsharded
)
# We save a checkpoint up-front to make sure this won't fail (due to disk space or whatever).
log.info("Saving pre-train checkpoint...")
checkpoint_path = trainer.save_checkpoint(checkpoint_type=checkpoint_type)
log.info(f"Checkpoint saved to {checkpoint_path}")
# And they we verify that we can load it.
log.info("Attempting to load pre-train checkpoint...")
trainer.restore_checkpoint(checkpoint_path, checkpoint_type=checkpoint_type)
log.info("Checkpoint successfully loaded")
# NOTE: https://github.com/allenai/LLM/issues/233
# log.info("Removing pre-train checkpoint...")
# trainer.remove_checkpoint(checkpoint_type=checkpoint_type)
# log.info("Successfully removed checkpoint")
if cfg.load_path is not None:
log.info(f"Loading checkpoint from {cfg.load_path}...")
trainer.restore_checkpoint(cfg.load_path)
log.info("Checkpoint successfully loaded")
if cfg.force_save_unsharded:
log.info("Saving unsharded checkpoint...")
checkpoint_path = trainer.save_unsharded_checkpoint()
log.info(f"Unsharded checkpoint saved to {checkpoint_path}")
if cfg.compile is not None:
# NOTE: trying to compile the whole train step results in a compile-time error from within
# the optimizer. We should investigate this further at some point.
# trainer.train_step = torch.compile(trainer.train_step, **cfg.compile.asdict())
trainer.train_batch = torch.compile(trainer.train_batch, **cfg.compile.asdict()) # type: ignore
trainer.eval_batch = torch.compile(trainer.eval_batch, **cfg.compile.asdict()) # type: ignore
# Alternatively, could just do this:
# trainer.fsdp_model = torch.compile(trainer.fsdp_model, **cfg.compile.asdict())
if not cfg.dry_run:
log.info("Starting training...")
trainer.fit()
log.info("Training complete")
else:
log.info("Dry run complete")
if __name__ == "__main__":
prepare_cli_environment()
try:
yaml_path, args_list = sys.argv[1], sys.argv[2:]
except IndexError:
raise OlmoCliError(f"Usage: {sys.argv[0]} [CONFIG_PATH] [OPTIONS]")
cfg = TrainConfig.load(yaml_path, [clean_opt(s) for s in args_list])
main(cfg)