-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy patheval.py
151 lines (144 loc) · 6.26 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from typing import Any, List
import torch
from tqdm import tqdm
def prepare_encodings(batch, tokenizer, length):
"""
Return tokenized version of `batch`.
Args:
batch (List[str]): Batch of text to encode
tokenizer: Llama tokenizer
length (int): Prompt length
Returns:
Tokenized strings
"""
tokens = tokenizer.encode(batch, True, False)
new_encodings = []
for i, encoded_text in enumerate(tokens):
new_encodings.append(encoded_text[:length])
return new_encodings
def evaluate_mixed_losses(data: List[List[str]],
model: Any,
tokenizer: Any,
smoothing: str,
prompt_len: int,
max_gen_len: int,
alpha: float,
temp: float,
n_drafts: int,
n_token_sample: int,
bsz=16,
i_weights = None,
i_length = None,
ngrams = None,
get_time = False,
penalty = 200,
marker = True):
"""
Generate `n_drafts` from `data` using the first `prompt_len` tokens as the
prefix, generating until `max_gen_len` is reached. Returns the drafts
with the highest probability.
Args:
data (List[List[String]]): Input data
model: Llama model
tokenizer: Llama tokenizer
prompt_len (int): Number of tokens in prefix
max_gen_len (int): Maximum numbers of tokens to generate
alpha (float): Alpha value
temp (float): Temperature
n_drafts (int): Number of drafts
bsz (int): Batch size (default = 16)
i_weights (List[float]): Ngram interpolation weights
i_length (List[int]): Ngram models to interpolate (1 for bigram, 2 for trigram, etc.)
ngrams (Tuple): Ngram models
get_time (bool): Return information on time spent doing Ngram lookup
penalty (float): Penalty on uninterpolated drafts
marker (bool): Progress bar toggle
Return:
sequences (torch.Tensor): Generated sequences (n_prompts, n_drafts, prompt_len+max_gen_len)
ppl (torch.Tensor): Generation perplexity (n_prompts, n_drafts)
time (datetime object, only if `get_time` is True): Total time spent doing ngram lookup
"""
it = range(0, len(data), bsz)
if marker:
it = tqdm(it)
sequences = torch.zeros(len(data), n_drafts, prompt_len+max_gen_len, dtype=torch.long)
ppl = torch.zeros(len(data), n_drafts)
ovr_time = None
for b_start in it:
b_end = b_start + bsz
# Preprocessing
batch = data[b_start : b_end]
truncated_tokens = prepare_encodings(batch, tokenizer, prompt_len)
# Inference
k = model.sup_generate(prompt_tokens=truncated_tokens,
smoothing=smoothing,
max_gen_len=max_gen_len,
n_token_sample=n_token_sample,
alpha=alpha,
temp=temp,
n_drafts=n_drafts,
i_weights=i_weights,
i_length=i_length,
ngrams=ngrams,
get_time=get_time,
penalty=penalty)
# Update returns
if not get_time:
(alive_seq, alive_ppl), (fin_seq, fin_ppl) = k
else:
(alive_seq, alive_ppl), (fin_seq, fin_ppl), ngram_time = k
ovr_time = ngram_time if ovr_time is None else ovr_time + ngram_time
# seq: n_prompts, n_drafts, prompt_len+max_gen_len
# ppl: n_prompts, n_drafts
combined_ppl = torch.cat([alive_ppl, fin_ppl], dim=1) # n_prompts, 2*n_drafts
combined_seq = torch.cat([alive_seq, fin_seq], dim=1) # n_prompts, 2*n_drafts, prompt_len+max_gen_len
top_ppl, top_idx = torch.topk(combined_ppl, n_drafts, dim=-1, largest=False)
top_seq = torch.take_along_dim(combined_seq, top_idx.unsqueeze(dim=2), dim=1) # n_prompts, n_drafts, prompt_len+max_gen_len
ppl[b_start : b_end, :] = top_ppl
sequences[b_start : b_end, :, :] = top_seq
if not get_time:
return sequences, ppl
else:
return sequences, ppl, ovr_time
def evaluate_nucleus_losses(data,
model,
tokenizer,
prompt_len,
max_gen_len,
temp,
bsz=16,
marker=True):
"""
Generate using nucleus sampling and return results.
Args:
data (List[List[String]]): Input data
model: Model
tokenizer: Llama tokenizer
prompt_len (int): Number of tokens to use as prefix
max_gen_len (int): Maximum number of tokens to generate
temp (float): Temperature
bsz (int): Batch size (default = 16)
marker (bool): Progress bar toggle
Return:
sequences (torch.Tensor): Generated sequences (n_prompts, prompt_len+max_gen_len)
ppl (torch.Tensor): Generation perplexity (n_prompts)
"""
it = range(0, len(data), bsz)
if marker:
it = tqdm(it)
sequences = torch.zeros(len(data), prompt_len+max_gen_len, dtype=torch.long)
ppl = torch.zeros(len(data), dtype=torch.float32)
for b_start in it:
b_end = b_start + bsz
# Preprocess
batch = data[b_start : b_end]
truncated_tokens = prepare_encodings(batch, tokenizer, prompt_len)
# Inference
curr_seq, curr_ppl = model.generate(prompt_tokens=truncated_tokens,
max_gen_len=max_gen_len,
temperature=temp,
top_p=0.9,
logprobs=True)
sequences[b_start : b_end, :] = curr_seq
ppl[b_start : b_end] = curr_ppl
return sequences, ppl