forked from openxla/xla
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathconfigure.py
executable file
·546 lines (458 loc) · 18.1 KB
/
configure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#!/usr/bin/env python3
# Copyright 2024 The OpenXLA Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Configure script to get build parameters from user.
This script populates a bazelrc file that tells Bazel where to look for
cuda versions and compilers. Note: that a configuration is possible to request,
does not mean that it is supported (e.g. building with gcc). That being said,
if this stops working for you on an unsupported build and you have a fix, please
send a PR!
Example usage:
`./configure.py --backend=cpu --host_compiler=clang`
Will write a bazelrc to the root of the repo with the lines required to find
the clang in your path. If that isn't the correct clang, you can override like
`./configure.py --backend=cpu --clang_path=<PATH_TO_YOUR_CLANG>`.
NOTE(ddunleavy): Lots of these things should probably be outside of configure.py
but are here because of complexity in `cuda_configure.bzl` and the TF bazelrc.
Once XLA has it's own bazelrc, and cuda_configure.bzl is replaced or refactored,
we can probably make this file smaller.
TODO(ddunleavy): add more thorough validation.
"""
import argparse
import dataclasses
import enum
import logging
import os
import pathlib
import shutil
import subprocess
import sys
from typing import Optional
_REQUIRED_CUDA_LIBRARIES = ["cublas", "cuda", "cudnn"]
_DEFAULT_BUILD_AND_TEST_TAG_FILTERS = ("-no_oss",)
# Assume we are being invoked from the symlink at the root of the repo
_XLA_SRC_ROOT = pathlib.Path(__file__).absolute().parent
_FIND_CUDA_CONFIG = str(
_XLA_SRC_ROOT
/ "third_party"
/ "tsl"
/ "third_party"
/ "gpus"
/ "find_cuda_config.py"
)
_XLA_BAZELRC_NAME = "xla_configure.bazelrc"
_KW_ONLY_IF_PYTHON310 = {"kw_only": True} if sys.version_info >= (3, 10) else {}
def _find_executable(executable: str) -> Optional[str]:
logging.info("Trying to find path to %s...", executable)
# Resolving the symlink is necessary for finding system headers.
if unresolved_path := shutil.which(executable):
return str(pathlib.Path(unresolved_path).resolve())
return None
def _find_executable_or_die(
executable_name: str, executable_path: Optional[str] = None
) -> str:
"""Finds executable and resolves symlinks or raises RuntimeError.
Resolving symlinks is sometimes necessary for finding system headers.
Args:
executable_name: The name of the executable that we want to find.
executable_path: If not None, the path to the executable.
Returns:
The path to the executable we are looking for, after symlinks are resolved.
Raises:
RuntimeError: if path to the executable cannot be found.
"""
if executable_path:
return str(pathlib.Path(executable_path).resolve(strict=True))
resolved_path_to_exe = _find_executable(executable_name)
if resolved_path_to_exe is None:
raise RuntimeError(
f"Could not find executable `{executable_name}`! "
"Please change your $PATH or pass the path directly like"
f"`--{executable_name}_path=path/to/executable."
)
logging.info("Found path to %s at %s", executable_name, resolved_path_to_exe)
return resolved_path_to_exe
def _get_cuda_compute_capabilities_or_die() -> list[str]:
"""Finds compute capabilities via nvidia-smi or rasies exception.
Returns:
list of unique, sorted strings representing compute capabilities:
Raises:
RuntimeError: if path to nvidia-smi couldn't be found.
subprocess.CalledProcessError: if nvidia-smi process failed.
"""
try:
nvidia_smi = _find_executable_or_die("nvidia-smi")
nvidia_smi_proc = subprocess.run(
[nvidia_smi, "--query-gpu=compute_cap", "--format=csv,noheader"],
capture_output=True,
check=True,
text=True,
)
# Command above returns a newline separated list of compute capabilities
# with possible repeats. So we should unique them and sort the final result.
capabilities = sorted(set(nvidia_smi_proc.stdout.strip().split("\n")))
logging.info("Found CUDA compute capabilities: %s", capabilities)
return capabilities
except (RuntimeError, subprocess.CalledProcessError) as e:
logging.info(
"Could not find nvidia-smi, or nvidia-smi command failed. Please pass"
" capabilities directly using --cuda_compute_capabilities."
)
raise e
def _get_clang_major_version(path_to_clang: str) -> int:
"""Gets the major version of the clang at `path_to_clang`.
Args:
path_to_clang: Path to a clang executable
Returns:
The major version.
"""
logging.info("Running echo __clang_major__ | %s -E -P -", path_to_clang)
clang_version_proc = subprocess.run(
[path_to_clang, "-E", "-P", "-"],
input="__clang_major__",
check=True,
capture_output=True,
text=True,
)
major_version = int(clang_version_proc.stdout)
logging.info("%s reports major version %s.", path_to_clang, major_version)
return major_version
class ArgparseableEnum(enum.Enum):
"""Enum base class with helper methods for working with argparse.
Example usage:
```
class Fruit(ArgparseableEnum):
APPLE = enum.auto()
# argparse setup
parser.add_argument("--fruit", type=Fruit.from_str, choices=list(Fruit))
```
Users can pass strings like `--fruit=apple` with nice error messages and the
parser will get the corresponding enum value.
NOTE: PyType gets confused when this class is used to create Enums in the
functional style like `ArgparseableEnum("Fruit", ["APPLE", "BANANA"])`.
"""
def __str__(self):
return self.name
@classmethod
def from_str(cls, s):
s = s.upper()
try:
return cls[s]
except KeyError:
# Sloppy looking exception handling, but argparse will catch ValueError
# and give a pleasant error message. KeyError would not work here.
raise ValueError # pylint: disable=raise-missing-from
class Backend(ArgparseableEnum):
CPU = enum.auto()
CUDA = enum.auto()
ROCM = enum.auto()
SYCL = enum.auto()
class HostCompiler(ArgparseableEnum):
CLANG = enum.auto()
GCC = enum.auto()
class CudaCompiler(ArgparseableEnum):
CLANG = enum.auto()
NVCC = enum.auto()
class OS(ArgparseableEnum):
LINUX = enum.auto()
MACOS = enum.auto()
WINDOWS = enum.auto()
@dataclasses.dataclass(**_KW_ONLY_IF_PYTHON310)
class DiscoverablePathsAndVersions:
"""Paths to various tools and libraries needed to build XLA.
This class is where all 'stateful' activity should happen, like trying to read
environment variables or looking for things in the $PATH. An instance that has
all fields set should not try to do any of these things though, so that this
file can remain unit testable.
"""
clang_path: Optional[str] = None
clang_major_version: Optional[int] = None
gcc_path: Optional[str] = None
lld_path: Optional[str] = None
ld_library_path: Optional[str] = None
# CUDA specific
cublas_version: Optional[str] = None
cuda_toolkit_path: Optional[str] = None
cuda_compute_capabilities: Optional[list[str]] = None
cudnn_version: Optional[str] = None
nccl_version: Optional[str] = None
def get_relevant_paths_and_versions(self, config: "XLAConfigOptions"):
"""Gets paths and versions as needed by the config.
Args:
config: XLAConfigOptions instance that determines what paths and versions
to try to autoconfigure.
"""
if self.ld_library_path is None:
self.ld_library_path = os.environ.get("LD_LIBRARY_PATH", None)
if config.host_compiler == HostCompiler.CLANG:
self.clang_path = _find_executable_or_die("clang", self.clang_path)
self.clang_major_version = (
self.clang_major_version or _get_clang_major_version(self.clang_path)
)
# Notably, we don't use `_find_executable_or_die` for lld, as it changes
# which commands it accepts based on it's name! ld.lld is symlinked to a
# different executable just called lld, which should not be invoked
# directly.
self.lld_path = self.lld_path or shutil.which("ld.lld")
elif config.host_compiler == HostCompiler.GCC:
self.gcc_path = _find_executable_or_die("gcc", self.gcc_path)
if config.backend == Backend.CUDA:
if config.cuda_compiler == CudaCompiler.CLANG:
self.clang_path = _find_executable_or_die("clang", self.clang_path)
if not self.cuda_compute_capabilities:
self.cuda_compute_capabilities = _get_cuda_compute_capabilities_or_die()
self._get_cuda_libraries_paths_and_versions_if_needed(config)
def _get_cuda_libraries_paths_and_versions_if_needed(
self, config: "XLAConfigOptions"
):
"""Gets cuda paths and versions if user left any unspecified.
This uses `find_cuda_config.py` to find versions for all libraries in
`_REQUIRED_CUDA_LIBRARIES`.
Args:
config: config that determines which libraries should be found.
"""
should_find_nccl = config.using_nccl and self.nccl_version is None
any_cuda_config_unset = any([
self.cublas_version is None,
self.cuda_toolkit_path is None,
self.cudnn_version is None,
should_find_nccl,
])
maybe_nccl = ["nccl"] if should_find_nccl else []
if any_cuda_config_unset:
logging.info(
"Some CUDA config versions and paths were not provided, "
"so trying to find them using find_cuda_config.py"
)
try:
find_cuda_config_proc = subprocess.run(
[
sys.executable,
_FIND_CUDA_CONFIG,
*_REQUIRED_CUDA_LIBRARIES,
*maybe_nccl,
],
capture_output=True,
check=True,
text=True,
)
except subprocess.CalledProcessError as e:
logging.info("Command %s failed. Is CUDA installed?", e.cmd)
logging.info("Dumping %s ouptut:\n %s", e.cmd, e.output)
raise e
cuda_config = dict(
tuple(line.split(": "))
for line in find_cuda_config_proc.stdout.strip().split("\n")
)
self.cublas_version = self.cublas_version or cuda_config["cublas_version"]
self.cuda_toolkit_path = (
self.cuda_toolkit_path or cuda_config["cuda_toolkit_path"]
)
self.cudnn_version = self.cudnn_version or cuda_config["cudnn_version"]
if should_find_nccl:
self.nccl_version = self.nccl_version or cuda_config["nccl_version"]
@dataclasses.dataclass(frozen=True, **_KW_ONLY_IF_PYTHON310)
class XLAConfigOptions:
"""Represents XLA configuration options."""
backend: Backend
os: OS
python_bin_path: str
host_compiler: HostCompiler
compiler_options: list[str]
# CUDA specific
cuda_compiler: CudaCompiler
using_nccl: bool
using_tensorrt: bool
def to_bazelrc_lines(
self,
dpav: DiscoverablePathsAndVersions,
) -> list[str]:
"""Creates a bazelrc given an XLAConfigOptions.
Necessary paths are provided by the user, or retrieved via
`self._get_relevant_paths`.
Args:
dpav: DiscoverablePathsAndVersions that may hold user-specified paths and
versions. The dpav will then read from `self` to determine what to try
to auto-configure.
Returns:
The lines of a bazelrc.
"""
dpav.get_relevant_paths_and_versions(self)
rc = []
build_and_test_tag_filters = list(_DEFAULT_BUILD_AND_TEST_TAG_FILTERS)
# Platform independent options based on host compiler
if self.host_compiler == HostCompiler.GCC:
rc.append(f"build --action_env GCC_HOST_COMPILER_PATH={dpav.gcc_path}")
elif self.host_compiler == HostCompiler.CLANG:
rc.append(f"build --action_env CLANG_COMPILER_PATH={dpav.clang_path}")
rc.append(f"build --repo_env CC={dpav.clang_path}")
rc.append(f"build --repo_env BAZEL_COMPILER={dpav.clang_path}")
self.compiler_options.append("-Wno-error=unused-command-line-argument")
if dpav.lld_path:
rc.append(f"build --linkopt --ld-path={dpav.lld_path}")
if self.backend == Backend.CPU:
build_and_test_tag_filters.append("-gpu")
elif self.backend == Backend.CUDA:
compiler_pair = self.cuda_compiler, self.host_compiler
if compiler_pair == (CudaCompiler.CLANG, HostCompiler.CLANG):
rc.append("build --config cuda_clang")
rc.append(
f"build --action_env CLANG_CUDA_COMPILER_PATH={dpav.clang_path}"
)
elif compiler_pair == (CudaCompiler.NVCC, HostCompiler.CLANG):
rc.append("build --config nvcc_clang")
# This is demanded by cuda_configure.bzl
rc.append(
f"build --action_env CLANG_CUDA_COMPILER_PATH={dpav.clang_path}"
)
elif compiler_pair == (CudaCompiler.NVCC, HostCompiler.GCC):
rc.append("build --config cuda")
else:
raise NotImplementedError(
"CUDA clang with host compiler gcc not supported"
)
# Lines needed for CUDA backend regardless of CUDA/host compiler
rc.append(
f"build --action_env CUDA_TOOLKIT_PATH={dpav.cuda_toolkit_path}"
)
rc.append(f"build --action_env TF_CUBLAS_VERSION={dpav.cublas_version}")
rc.append(
"build --action_env"
f" TF_CUDA_COMPUTE_CAPABILITIES={','.join(dpav.cuda_compute_capabilities)}"
)
rc.append(f"build --action_env TF_CUDNN_VERSION={dpav.cudnn_version}")
rc.append(f"build --repo_env TF_NEED_TENSORRT={int(self.using_tensorrt)}")
if self.using_nccl:
rc.append(f"build --action_env TF_NCCL_VERSION={dpav.nccl_version}")
else:
rc.append("build --config nonccl")
elif self.backend == Backend.ROCM:
pass
elif self.backend == Backend.SYCL:
rc.append("build --config sycl")
# Lines that are added for every backend
if dpav.ld_library_path:
rc.append(f"build --action_env LD_LIBRARY_PATH={dpav.ld_library_path}")
if dpav.clang_major_version in (16, 17, 18):
self.compiler_options.append("-Wno-gnu-offsetof-extensions")
rc.append(f"build --action_env PYTHON_BIN_PATH={self.python_bin_path}")
rc.append(f"build --python_path {self.python_bin_path}")
rc.append("test --test_env LD_LIBRARY_PATH")
rc.append("test --test_size_filters small,medium")
rc.extend([
f"build --copt {compiler_option}"
for compiler_option in self.compiler_options
])
# Add build and test tag filters
build_and_test_tag_filters = ",".join(build_and_test_tag_filters)
rc.append(f"build --build_tag_filters {build_and_test_tag_filters}")
rc.append(f"build --test_tag_filters {build_and_test_tag_filters}")
rc.append(f"test --build_tag_filters {build_and_test_tag_filters}")
rc.append(f"test --test_tag_filters {build_and_test_tag_filters}")
return rc
def _parse_args():
"""Creates an argparse.ArgumentParser and parses arguments."""
comma_separated_list = lambda l: [s.strip() for s in l.split(",")]
parser = argparse.ArgumentParser(allow_abbrev=False)
parser.add_argument(
"--backend",
type=Backend.from_str,
choices=list(Backend),
required=True,
)
parser.add_argument(
"--os", type=OS.from_str, choices=list(OS), default="linux"
)
parser.add_argument(
"--host_compiler",
type=HostCompiler.from_str,
choices=list(HostCompiler),
default="clang",
)
parser.add_argument(
"--cuda_compiler",
type=CudaCompiler.from_str,
choices=list(CudaCompiler),
default="nvcc",
)
parser.add_argument(
"--cuda_compute_capabilities",
type=comma_separated_list,
default=None,
)
parser.add_argument("--python_bin_path", default=sys.executable)
parser.add_argument(
"--compiler_options",
type=comma_separated_list,
default="-Wno-sign-compare",
)
parser.add_argument("--nccl", action="store_true")
parser.add_argument("--tensorrt", action="store_true")
# Path and version overrides
path_help = "Optional: will be found on PATH if possible."
parser.add_argument("--clang_path", help=path_help)
parser.add_argument("--gcc_path", help=path_help)
parser.add_argument(
"--ld_library_path",
help=(
"Optional: will be automatically taken from the current environment"
" if flag is not set"
),
)
parser.add_argument("--lld_path", help=path_help)
# CUDA specific
find_cuda_config_help = (
"Optional: will be found using `find_cuda_config.py` if flag is not set."
)
parser.add_argument("--cublas_version", help=find_cuda_config_help)
parser.add_argument("--cuda_toolkit_path", help=find_cuda_config_help)
parser.add_argument("--cudnn_version", help=find_cuda_config_help)
parser.add_argument("--nccl_version", help=find_cuda_config_help)
return parser.parse_args()
def main():
# Setup logging
logging.basicConfig()
logging.getLogger().setLevel(logging.INFO)
args = _parse_args()
config = XLAConfigOptions(
backend=args.backend,
os=args.os,
host_compiler=args.host_compiler,
cuda_compiler=args.cuda_compiler,
python_bin_path=args.python_bin_path,
compiler_options=args.compiler_options,
using_nccl=args.nccl,
using_tensorrt=args.tensorrt,
)
bazelrc_lines = config.to_bazelrc_lines(
DiscoverablePathsAndVersions(
clang_path=args.clang_path,
gcc_path=args.gcc_path,
lld_path=args.lld_path,
ld_library_path=args.ld_library_path,
cublas_version=args.cublas_version,
cuda_compute_capabilities=args.cuda_compute_capabilities,
cuda_toolkit_path=args.cuda_toolkit_path,
cudnn_version=args.cudnn_version,
nccl_version=args.nccl_version,
)
)
bazelrc_path = _XLA_SRC_ROOT / _XLA_BAZELRC_NAME
bazelrc_contents = "\n".join(bazelrc_lines) + "\n"
with (bazelrc_path).open("w") as f:
logging.info("Writing bazelrc to %s...", bazelrc_path)
f.write(bazelrc_contents)
if __name__ == "__main__":
raise SystemExit(main())