-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdata_augment.py
140 lines (118 loc) · 5.63 KB
/
data_augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 12 17:05:17 2019
@author: aayush
"""
import cv2
import copy
import numpy as np
def augment(base, mask, pupil_c, elParam, choice=None):
aug_base = np.zeros_like(base)
aug_mask = np.zeros_like(mask)
aug_pupil_c = copy.deepcopy(pupil_c)
aug_pupilParam = copy.deepcopy(elParam[0])
aug_irisParam = copy.deepcopy(elParam[1])
badPup_c = True if np.all(pupil_c == -1) else False
badPup = True if np.all(aug_pupilParam == -1) else False
badIri = True if np.all(aug_irisParam == -1) else False
index_value = np.random.randint(0, 8) if choice is None else choice
if index_value == 0:
# Flip left right
aug_base = np.fliplr(base)
aug_mask = np.fliplr(mask)
aug_pupil_c[0] = base.shape[1] - aug_pupil_c[0] if not badPup_c else aug_pupil_c[0]
aug_pupilParam[0] = base.shape[1] - elParam[0][0] if not badPup else aug_pupilParam[0]
#aug_pupilParam[-1] = 0.5*np.pi + elParam[0][-1] if not badPup else aug_pupilParam[-1]
aug_pupilParam[-1] = -elParam[0][-1] if not badPup else aug_pupilParam[-1]
aug_irisParam[0] = base.shape[1] - elParam[1][0] if not badIri else aug_irisParam[0]
#aug_irisParam[-1] = 0.5*np.pi + elParam[1][-1] if not badIri else aug_irisParam[-1]
aug_irisParam[-1] = -elParam[1][-1] if not badIri else aug_irisParam[-1]
elif index_value == 1:
# Gaussian blur
sigma_value=np.random.randint(2, 7)
aug_base = cv2.GaussianBlur(base,(7,7),sigma_value)
aug_mask = copy.deepcopy(mask)
elif index_value == 2:
# Gamma modification
gamma = [0.6, 0.8, 1.2, 1.4][np.random.randint(0, 4)]
table = 255.0*(np.linspace(0, 1, 256)**gamma)
aug_base = cv2.LUT(base, table)
aug_mask = copy.deepcopy(mask)
elif index_value == 3:
# Exposure +/- 25 pixel intensity
aug_base = base.astype(np.float64) + (50*np.random.rand(1)-25)
aug_base = np.clip(aug_base, 0, 255)
aug_base = aug_base.astype(base.dtype)
aug_mask = copy.deepcopy(mask)
elif index_value == 4:
# Gaussian noise
#https://stackoverflow.com/questions/43699326/how-to-add-gaussian-noise-in-an-image-in-python-using-pymorph?rq=1
mean = 0.0 # some constant
std = 14*np.random.rand() + 2 # some constant (standard deviation)
aug_base = base + np.random.normal(mean, std, base.shape)
aug_base = np.clip(aug_base, 0, 255) # we might get out of bounds due to noise
aug_mask = copy.deepcopy(mask)
elif index_value == 5:
# Circular lines from pupil center
yc, xc = (0.3 + 0.4*np.random.rand(1))*base.shape
aug_base = copy.deepcopy(base)
aug_mask = copy.deepcopy(mask)
num_lines = np.random.randint(1, 10)
for i in np.arange(0, num_lines):
theta = np.pi*np.random.rand(1)
x1, y1, x2, y2 = getRandomLine(xc, yc, theta)
aug_base = cv2.line(aug_base, (x1, y1), (x2, y2), (255, 255, 255), 4)
aug_base = aug_base.astype(np.uint8)
'''
elif index_value == 6:
# Starburst pattern
x=np.random.randint(1, 40)
y=np.random.randint(1, 40)
mode = np.random.randint(0, 2)
starburst = cv2.imread('starburst_black.png', 0)
aug_base = copy.deepcopy(base)
if mode == 0:
starburst = np.pad(starburst, pad_width=((0, 0), (x, 0)), mode='constant')
starburst = starburst[:, :-x]
if mode == 1:
starburst = np.pad(starburst, pad_width=((0, 0), (0, x)), mode='constant')
starburst = starburst[:, x:]
aug_base[92+y:549+y, 0:400] = aug_base[92+y:549+y, 0:400]*(255 - starburst.astype(np.float))/255 + starburst
aug_base = aug_base.astype(np.uint8)
aug_mask = copy.deepcopy(mask)
'''
elif index_value == 6:
# Rotate image
ang = 30*2*(np.random.rand(1) - 0.5)
center = (int(0.5*base.shape[1]), int(0.5*base.shape[0]))
M = cv2.getRotationMatrix2D(center,
ang,
1.0)
aug_base = cv2.warpAffine(base, M, (base.shape[1], base.shape[0]), flags=cv2.INTER_LANCZOS4)
aug_mask = cv2.warpAffine(mask, M, (base.shape[1], base.shape[0]), flags=cv2.INTER_NEAREST)
ang_rad = np.deg2rad(ang)
R = np.array([[np.cos(ang_rad), -np.sin(ang_rad)],
[np.sin(ang_rad), np.cos(ang_rad)]]).squeeze()
R = R.T
aug_pupil_c = np.matmul(R, aug_pupil_c - np.array(center)) + np.array(center) # Center does rotate
aug_pupilParam[:2] = np.matmul(R, aug_pupilParam[:2] - np.array(center)) + np.array(center)
aug_pupilParam[-1] = aug_pupilParam[-1] - ang_rad if not badPup else aug_pupilParam[-1]
aug_irisParam[:2] = np.matmul(R, aug_irisParam[:2] - np.array(center)) + np.array(center)
aug_irisParam[-1] = aug_irisParam[-1] - ang_rad if not badIri else aug_irisParam[-1]
elif index_value >=7:
# Absolute no change
aug_base = copy.deepcopy(base)
aug_mask = copy.deepcopy(mask)
return (aug_base.astype(np.uint8),
aug_mask.astype(np.int),
aug_pupil_c,
(aug_pupilParam, aug_irisParam))
def getRandomLine(xc, yc, theta):
x1 = xc - 50*np.random.rand(1)*(1 if np.random.rand(1) < 0.5 else -1)
y1 = (x1 - xc)*np.tan(theta) + yc
x2 = xc - (150*np.random.rand(1) + 50)*(1 if np.random.rand(1) < 0.5 else -1)
y2 = (x2 - xc)*np.tan(theta) + yc
return x1, y1, x2, y2
def normalizer(image):
return np.uint8((image-image.min())*255/(image.max()-image.min()))