-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPinningFunc.m
92 lines (83 loc) · 2.37 KB
/
PinningFunc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
function Pin = PinningFunc(x,y,type,a1x,a2x,a2y,Lx,Ly,R,w)
%This function returns the pinning function of a net of N vortecies in each
% direction given configuration (defined under 'type')with given base
%vectors a1, a2 on a 2D supoerconductor sample Lx x Ly in a given geometry.
%(only square-has to be updated).
%The vortecies have the radius defined in the vector R and anullus in w.
%(Actually the radius and annulus are kept constant now - gonna be updated)
%Remember, having more than 20 vortecies insists to have geometry at least
%20x20 in COMSOL.
%The base vector a1 is parallel to the side of the geometry
%---Error estimation-------------------------------------------------------
if(2*R+2*w<a1x)
Pin=0; %overlapping of vortecies
end
%... and more others - in progres til 31.08.2025
%---Defining lattice of pins-----------------------------------------------
N1=0; N2=0;
temp = -Lx/2 +2*R;
while(temp>-Lx)
temp = temp + a1x + a2x;
if(temp<Lx/2-2*R)
break;
end
N1 = N1 + 1;
end
delx = (Lx-4*R - temp - a1x-a2x)/2; %last temp a;ready exceeds
temp = 0;
while(temp>-Ly)
temp = temp + a2y;
if(temp<Ly/2-2*R)
break;
end
N2 = N2 + 1;
end
dely = (Ly-4*R - temp - a2y)/2;
x0 = zeros(N1,N2);
y0 = zeros(N1,N2);
if(type==1)
for i=1:N1
for j=1:N2
x0(i,j) = -Lx+delx+2*R + i*a1x + j*a2x;
y0(i,j) = -Ly+dely+2*R + j*a2y;
x0(i+1,j) = -Lx+delx+2*R + (i+0.5)*a1x + (j+0.5)*a2x;
y0(i+1,j) = -Ly+dely+2*R + j*a2y;
x0(i+2,j) = -Lx+delx+2*R + i*a1x + j*a2x;
y0(i+2,j) = -Ly+dely+2*R + (i+0.5)*a1y + (j+0.5)*a2y;
end
end
else
for i=1:N1
for j=1:N2
x0(i) = -Lx+delx+2*R + j*a2x;
y0(i) = -Ly+dely+2*R + i*a1y + j*a2y;
end
end
end
%---Calculating output function--------------------------------------------
dummy = 1;
for i=1:N1
for j=1:N2
dummy = dummy*tanh(( sqrt((x-x0(i,j))^2 + (y-y0(i,j))^2) - R)/w);
end
end
Pin = dummy;
end
%-------------------------------------------------
% switch(type)
% case 'square':
% for i=1:N
% for j=1:N
% x0(i) = i*a1(1) + j*a2(1);
% y0(i) = i*a1(2) + j*a2(2);
% end
% end
% case 'triangle':
%
% case 'hexagonal':
%
% case 'kagome':
%
% otherwise
% Pin = 0;
% end