This repository provides a Python package for generating, filtering, fitting, and analyzing signals. The package includes functionalities for creating noisy signals, applying filters, fitting damped sine waves, and performing statistical analysis.
- Generate noisy sine wave signals (or import custom signals)
- Apply Butterworth low-pass filters
- Fit damped sine waves to filtered signals
- Perform t-tests between filtered signals and fitted models
- Compute and visualize Fourier Transforms
- Create and source virtual environment:
python -m venv env
source env/bin/activate # On Windows use `env\Scripts\activate`
- Install the dependencies:
pip install -r requirements.txt
Using unittest
python -m unittest discover -s tests
An example demonstrating generating a signal, applying filters, fitting models, and performing analysis, exists in the main.py
.
Note
An example plot has been uploaded to the plots
directory.
Generate a Noisy Signal
import numpy as np
from src.signal_processor import SignalProcessor
timeVector = np.linspace(0, 1, 1000, endpoint = False) # Or consider importing or modifying your time vector
generator = SignalGenerator(timeVector)
generator.generateNoisySignal(frequency = 20, noiseStdDev = 0.6)
# or with defaults:
processor.generateNoisySignal() # frequency = 10, noiseStdDev = 0.5
Apply a Filter (butter
, bessel
, highpass
). Default is butter
.
from src.signal_filter import SignalFilter
filteredInstance = generator.generateNoisySignal() \
.applyFilter(filterType = 'butter',
filterOrder = 4,
cutOffFrequency = 0.2,
bType = 'lowpass')
# Or with different filter parameters:
filteredInstance.setFilterParameters('bessel', 5, 0.5, 'highpass').applyFilter()
Fit a damped sine wave to the filtered signal
from src.signal_fitter import SignalFitter
# default sine wave parameters: amplitudeParam = 1.0, frequencyParam = 10.0, phaseParam = 0.0, decayRateParam = 0.1
fittedInstance = filteredInstance.fitDampedSineWave()
# Or with custom parameters:
fittedInstance.setDampedSineWaveParameters(3.0, 12.0, np.pi / 6, 0.3)
fittedInstance.setDampedSineWaveBounds([0, 0, -np.pi/2, 0], [10, 20, np.pi/2, 1])
fittedInstance.fitDampedSineWave()
Perform a t-test between the filtered signal and the fitted damped sine wave
from src.statistical_analyzer import StatisticalAnalyzer
analyzedInstance = fittedInstance.analyzeFit()
tTestResults = analyzedInstance.getTTestResults()
print(f"T-test result: statistic={tTestResults[0]}, p-value={tTestResults[1]}")
Plot and save the results (will be saved under plots
directory)
from src.signal_visualizer import SignalVisualizer
visualizer = SignalVisualizer(timeVector, generator.getNoisySignal(),
filteredInstance.getFilteredSignal(),
fittedInstance.getFittedSignal()
)
visualizer.plotResults()
visualizer.plotInteractiveResults()