-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgenerate_prediction_tf.py
337 lines (249 loc) · 9.6 KB
/
generate_prediction_tf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
#%%
import argparse
import json
import os
import pathlib
import zipfile
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
import requests
import tensorflow as tf
import tensorflow_hub as hub
from tqdm import tqdm, trange
imagenet_path = '/home/vista/Datasets/ILSVRC/Data/CLS-LOC'
imagenet_path = '/home/chaimb/ILSVRC/Data/CLS-LOC'
objectnet_path = '/home/chaimb/objectnet-1.0'
#%%
def download_file(url, filename=False, verbose=False):
"""
Download file with progressbar
Usage:
download_file('http://web4host.net/5MB.zip')
"""
if not filename:
local_filename = os.path.join(".", url.split('/')[-1])
else:
local_filename = filename
response = requests.get(url, stream=True)
with open(filename, "wb") as handle:
for data in tqdm(response.iter_content()):
handle.write(data)
return
#%%
# test
IMAGE_SHAPE = (224, 224)
train_dir = pathlib.Path(os.path.join(imagenet_path, 'train'))
val_dir = pathlib.Path(os.path.join(imagenet_path, 'val'))
object_dir = pathlib.Path(os.path.join(objectnet_path, 'images'))
#%%
assert val_dir.exists()
assert train_dir.exists()
assert object_dir.exists()
#%%
CLASS_NAMES = np.array([item.name for item in train_dir.glob('*') if item.name != "LICENSE.txt"])
CLASS_NAMES_OBJ = np.array([item.name for item in object_dir.glob('*') if item.name != "LICENSE.txt"])
#%%
map_url = 'https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json'
response = json.loads(requests.get(map_url).text)
name_map = {}
name_to_num = {}
for r in response:
name_map[response[r][0]] = response[r][1]
name_to_num[response[r][1]] = response[r][0]
#%%
def show_batch(image_batch, label_batch):
plt.figure(figsize=(10, 10))
for n in range(25):
ax = plt.subplot(5, 5, n + 1)
plt.imshow(image_batch[n])
plt.title(name_map[CLASS_NAMES[label_batch[n] == 1][0].title().lower()])
plt.axis('off')
#%%
def get_label(file_path):
# convert the path to a list of path components
parts = tf.strings.split(file_path, os.path.sep)
# The second to last is the class-directory
return parts[-2] == CLASS_NAMES
def get_label_objectnet(file_path):
# convert the path to a list of path components
parts = tf.strings.split(file_path, os.path.sep)
# The second to last is the class-directory
return parts[-2] == CLASS_NAMES_OBJ
def crop_center_and_resize(img, size, scale=0.875):
s = tf.shape(img)
w, h = s[0], s[1]
c = tf.maximum(w, h)
wn, hn = h / c * scale, w / c * scale
result = tf.image.crop_and_resize(tf.expand_dims(img, 0),
[[(1 - wn) / 2, (1 - hn) / 2, wn, hn]],
[0], [size, size])
return tf.squeeze(result, 0)
def decode_img(img, IMG_HEIGHT=224, IMG_WIDTH=224, pm1=False, crop=True):
# convert the compressed string to a 3D uint8 tensor
img = tf.image.decode_jpeg(img, channels=3)
# Use `convert_image_dtype` to convert to floats in the [0,1] range.
if pm1:
img = tf.cast(img, tf.float32) / (255. / 2.) - 1
else:
img = tf.image.convert_image_dtype(img, tf.float32)
if IMG_HEIGHT == 256:
SIZE = 292
else:
SIZE = 256
# resize the image to the desired size.
if crop:
return crop_center_and_resize(img, IMG_HEIGHT)
else:
return tf.image.resize_with_pad(img, IMG_HEIGHT, IMG_HEIGHT)
def process_path(file_path, bbg=False, label_function=get_label):
label = label_function(file_path)
# load the raw data from the file as a string
img = tf.io.read_file(file_path)
if bbg:
img = decode_img(img, 256, 256, True)
else:
img = decode_img(img)
return img, label
def prepare_for_eval(ds, batch_size):
ds = ds.batch(batch_size)
# `prefetch` lets the dataset fetch batches in the background while the model
# is training.
ds = ds.prefetch(buffer_size=640)
return ds
#%%
def get_datasets(bbg=False):
BATCH_SIZE = 32
process = partial(process_path, bbg=bbg, label_function=get_label)
process_obj = partial(process_path, bbg=bbg, label_function=get_label_objectnet)
list_ds = tf.data.Dataset.list_files(str(train_dir / '*/*'), shuffle=False)
# Set `num_parallel_calls` so multiple images are loaded/processed in parallel.
labeled_ds = list_ds.map(process, num_parallel_calls=8)
train_ds = prepare_for_eval(labeled_ds, BATCH_SIZE)
list_val_ds = tf.data.Dataset.list_files(str(val_dir / '*/*'), shuffle=False)
# Set `num_parallel_calls` so multiple images are loaded/processed in parallel.
labeled_val_ds = list_val_ds.map(process, num_parallel_calls=8)
val_ds = prepare_for_eval(labeled_val_ds, BATCH_SIZE)
list_obj_ds = tf.data.Dataset.list_files(str(object_dir / '*/*'), shuffle=False)
# Set `num_parallel_calls` so multiple images are loaded/processed in parallel.
labeled_obj_ds = list_obj_ds.map(process_obj, num_parallel_calls=8)
obj_ds = prepare_for_eval(labeled_obj_ds, BATCH_SIZE)
return train_ds, val_ds, obj_ds
#%%
def get_resnet50x4_simclr():
resnet50x4_url = "https://storage.cloud.google.com/simclr-gcs/checkpoints/ResNet50_1x.zip"
os.makedirs('./checkpoints', exist_ok=True)
resnet50x4_path = './checkpoints/checkpoints_ResNet50_4x'
# download_file(resnet50_url,resnet50_path+'.zip')
with zipfile.ZipFile(resnet50x4_path + '.zip', "r") as zip_ref:
zip_ref.extractall('./checkpoints')
resnet50x4_path = './checkpoints/ResNet50_4x'
resnet50x4 = tf.keras.Sequential([
hub.KerasLayer(os.path.join(resnet50x4_path, 'hub'))
])
return resnet50x4
#%%
def get_resnet50_simclr():
resnet50_url = "https://storage.cloud.google.com/simclr-gcs/checkpoints/ResNet50_1x.zip"
os.makedirs('./checkpoints', exist_ok=True)
resnet50_path = './checkpoints/ResNet50_1x'
# download_file(resnet50_url,resnet50_path+'.zip')
with zipfile.ZipFile(resnet50_path + '.zip', "r") as zip_ref:
zip_ref.extractall('./checkpoints')
resnet50 = tf.keras.Sequential([
hub.KerasLayer(os.path.join(resnet50_path, 'hub'))
])
return resnet50
#%%
def get_resnet152x3_simclrv2():
module_path = 'gs://simclr-checkpoints/simclrv2/pretrained/r152_3x_sk1/hub/' # r152_3x_sk1
resnet152x3 = tf.keras.Sequential([
hub.KerasLayer(module_path)
])
return resnet152x3
def get_resnet50_simclrv2():
module_path = 'gs://simclr-checkpoints/simclrv2/pretrained/r50_1x_sk0/hub/' # r152_3x_sk1
resnet152x3 = tf.keras.Sequential([
hub.KerasLayer(module_path)
])
return resnet152x3
def get_resnet152_simclrv2():
module_path = 'gs://simclr-checkpoints/simclrv2/pretrained/r152_1x_sk1/hub/' # r152_3x_sk1
resnet152x3 = tf.keras.Sequential([
hub.KerasLayer(module_path)
])
return resnet152x3
#%%
def get_revnet50x4_bigbigan():
module_path = 'https://tfhub.dev/deepmind/bigbigan-revnet50x4/1' # RevNet-50 x4
revnet50x4 = tf.keras.Sequential([
hub.KerasLayer(module_path, signature='encode')
])
return revnet50x4
def get_resnet50_bigbigan():
module_path = 'https://tfhub.dev/deepmind/bigbigan-resnet50/1' # ResNet-50
resnet50 = tf.keras.Sequential([
hub.KerasLayer(module_path, signature='encode')
])
return resnet50
#%%
models = ['resnet50_simclr', 'resnet50x4_simclr', 'revnet50x4_bigbigan', 'resnet50_simclr2', 'resnet152_simclr2',
'resnet152x3_simclr2']
def get_model(model='resnet50_simclr'):
if model == 'resnet50_simclr':
return get_resnet50_simclr()
elif model == 'resnet50x4_simclr':
return get_resnet50x4_simclr()
elif model == 'revnet50x4_bigbigan':
return get_revnet50x4_bigbigan()
elif model == 'resnet50_bigbigan':
return get_resnet50_bigbigan()
elif model == 'resnet50_simclr2':
return get_resnet50_simclrv2()
elif model == 'resnet152_simclr2':
return get_resnet152_simclrv2()
elif model == 'resnet152x3_simclr2':
return get_resnet152x3_simclrv2()
else:
raise ValueError('Wrong model')
#%%
def eval(model, ds):
dit = iter(ds)
reses = []
labs = []
num_elements = tf.data.experimental.cardinality(ds).numpy()
for ind in trange(num_elements):
x, y = next(dit)
result = model.predict_on_batch(x) # , training=False
reses.append(result)
labs.append(y)
rss = np.concatenate(reses, axis=0)
lbs = np.concatenate(labs, axis=0)
return rss, lbs
#%%
parser = argparse.ArgumentParser(description='IM')
parser.add_argument('--model', dest='model', type=str, default='resnet50_simclr2',
help='Model: one of ' + ', '.join(models))
args = parser.parse_args()
model = args.model
#%%
train_ds, val_ds, obj_ds = get_datasets(bbg=model in ['revnet50x4_bigbigan'])
image_batch, label_batch = next(iter(train_ds))
show_batch(image_batch.numpy(), label_batch.numpy())
#%%
num_elements = tf.data.experimental.cardinality(train_ds).numpy()
print(num_elements)
num_elements = tf.data.experimental.cardinality(val_ds).numpy()
print(num_elements)
num_elements = tf.data.experimental.cardinality(obj_ds).numpy()
print(num_elements)
#%%
def eval_and_save(model='resnet50_simclr'):
mdl = get_model(model)
train_embs, train_labs = eval(mdl, train_ds)
val_embs, val_labs = eval(mdl, val_ds)
obj_embs, obj_labs = eval(mdl, obj_ds)
os.makedirs('./results', exist_ok=True)
np.savez(os.path.join('./results', model + '.npz'), train_embs=train_embs, train_labs=train_labs, val_embs=val_embs,
val_labs=val_labs, obj_embs=obj_embs, obj_labs=obj_labs)
eval_and_save(model)