diff --git a/docs/about_model/convert_model/index.html b/docs/about_model/convert_model/index.html index 946a9e56..065c49e6 100644 --- a/docs/about_model/convert_model/index.html +++ b/docs/about_model/convert_model/index.html @@ -1542,8 +1542,8 @@

id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/about_model/index.xml b/docs/about_model/index.xml index 5e7a7e8e..950b1e8d 100644 --- a/docs/about_model/index.xml +++ b/docs/about_model/index.xml @@ -13,9 +13,9 @@ Thu, 29 Sep 2022 00:00:00 +0000 https://rapidai.github.io/RapidOCRDocs/docs/about_model/model_summary/ - 各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。 -指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。 -pre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: "fast" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer. + 各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。 +指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。 +模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer. diff --git a/docs/about_model/model_summary/index.html b/docs/about_model/model_summary/index.html index 72d8eabb..e2f6333a 100644 --- a/docs/about_model/model_summary/index.html +++ b/docs/about_model/model_summary/index.html @@ -33,18 +33,18 @@ - + - + - + @@ -743,59 +743,10 @@

文本检测模型 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 +
以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。
-
+

评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。

+

指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link

@@ -811,34 +762,26 @@

文本检测模型 ch_PP-OCRv4_det_infer.onnx

- - - - - - - - - - - - - - - - - - - - + + + + - - - - + + + + + + + + + + + + @@ -849,20 +792,20 @@

文本检测模型 ch_PP-OCRv2_det_infer.onnx -

- - - - + + + + + + - - - - + + + +
4.5M0.69580.86080.76960.6176
ch_PP-OCRv4_det_server_infer.onnx108M0.70700.93300.804413.9348
0.83000.86590.84760.2256
ch_PP-OCRv3_det_infer.onnx 2.3M0.70560.84020.76710.40470.80210.84570.82340.1660
ch_PP-OCRv2_det_infer.onnx2.2M0.75790.80100.77880.1570
2.2M0.78500.80930.79700.3441ch_PP-OCRv4_det_server_infer.onnx108M0.79220.85330.82163.9093
ch_ppocr_server_v2.0_det_infer.onnx 47M0.67360.84020.74772.65600.72980.81280.76910.7419
@@ -965,20 +908,20 @@

指标说明 Exact Match (精确匹配准确率) + id="dcefabTab" data-bs-toggle="tab" data-bs-target="#dcefab" + type="button" role="tab" aria-controls="dcefab" aria-selected="true">Exact Match (精确匹配准确率) Char Match (字符级准确率) + id="bcaefdTab" data-bs-toggle="tab" data-bs-target="#bcaefd" + type="button" role="tab" aria-controls="bcaefd" aria-selected="true">Char Match (字符级准确率) Score(两者综合) + id="dbecafTab" data-bs-toggle="tab" data-bs-target="#dbecaf" + type="button" role="tab" aria-controls="dbecaf" aria-selected="true">Score(两者综合) @@ -994,7 +937,7 @@

指标说明 +

$$ Exact\ Match = \frac{1}{N}\sum_{i=0}^{N} s(p_{i}, g_{i}) @@ -1019,7 +962,7 @@

指标说明 +

$$ Char\ Match = 1 - \frac{1}{N} \sum_{i=0}^{N} s(p_{i}, g_{i}) @@ -1047,7 +990,7 @@

指标说明 + @@ -1885,8 +1828,8 @@

指标说明 情 id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/blog/02_config_parameter/index.html b/docs/blog/02_config_parameter/index.html index d9b57a47..cb0e29c6 100644 --- a/docs/blog/02_config_parameter/index.html +++ b/docs/blog/02_config_parameter/index.html @@ -1823,8 +1823,8 @@

Rec部分 id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/blog/04_inference_summary/index.html b/docs/blog/04_inference_summary/index.html index a823f95b..8b987c96 100644 --- a/docs/blog/04_inference_summary/index.html +++ b/docs/blog/04_inference_summary/index.html @@ -1593,8 +1593,8 @@

获取字典内容 3. 使用该模型 id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/business_support/index.html b/docs/business_support/index.html index 2fe0cd23..2b689447 100644 --- a/docs/business_support/index.html +++ b/docs/business_support/index.html @@ -1532,8 +1532,8 @@

服务三:国产操作系 id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/changelog/index.html b/docs/changelog/index.html index 0545c001..57344a5e 100644 --- a/docs/changelog/index.html +++ b/docs/changelog/index.html @@ -1477,8 +1477,8 @@

id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/changelog/rapidocr/index.html b/docs/changelog/rapidocr/index.html index 1d5a89cd..93194929 100644 --- a/docs/changelog/rapidocr/index.html +++ b/docs/changelog/rapidocr/index.html @@ -1836,8 +1836,8 @@

2021-03-24 udpate: 🍜2023-05-22 api update: 2023-10-23 v1.3.9 update: 🏸2023-04-16 ocrweb v0.1.1 update: (推荐) 加入QQ频道 Q: 边缘总有一行 id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/index.html b/docs/index.html index 8bd16c66..52218b30 100644 --- a/docs/index.html +++ b/docs/index.html @@ -1639,8 +1639,8 @@

id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/inference_engine/index.html b/docs/inference_engine/index.html index 99e7f4cd..d30358ac 100644 --- a/docs/inference_engine/index.html +++ b/docs/inference_engine/index.html @@ -1443,8 +1443,8 @@

id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/inference_engine/onnxruntime/index.html b/docs/inference_engine/onnxruntime/index.html index 444a8ec5..8bd1b3c6 100644 --- a/docs/inference_engine/onnxruntime/index.html +++ b/docs/inference_engine/onnxruntime/index.html @@ -1451,8 +1451,8 @@

id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/inference_engine/onnxruntime/infer_optim/index.html b/docs/inference_engine/onnxruntime/infer_optim/index.html index 81227439..303e0ce4 100644 --- a/docs/inference_engine/onnxruntime/infer_optim/index.html +++ b/docs/inference_engine/onnxruntime/infer_optim/index.html @@ -1868,8 +1868,8 @@

参考资料 相关对比表格 id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/inference_engine/openvino/infer-gpu/index.html b/docs/inference_engine/openvino/infer-gpu/index.html index 302b93e2..83f63542 100644 --- a/docs/inference_engine/openvino/infer-gpu/index.html +++ b/docs/inference_engine/openvino/infer-gpu/index.html @@ -1503,8 +1503,8 @@

id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/inference_engine/openvino/infer/index.html b/docs/inference_engine/openvino/infer/index.html index 53d0f652..7d183630 100644 --- a/docs/inference_engine/openvino/infer/index.html +++ b/docs/inference_engine/openvino/infer/index.html @@ -1755,8 +1755,8 @@

OpenVINO与ONNXRuntime id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/install_usage/index.html b/docs/install_usage/index.html index 9df95c55..e90c4510 100644 --- a/docs/install_usage/index.html +++ b/docs/install_usage/index.html @@ -1477,8 +1477,8 @@

id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/install_usage/rapidocr/cli/index.html b/docs/install_usage/rapidocr/cli/index.html index 07425220..1ca21cfe 100644 --- a/docs/install_usage/rapidocr/cli/index.html +++ b/docs/install_usage/rapidocr/cli/index.html @@ -813,26 +813,26 @@

使用示例 图像预测 + id="baecfdTab" data-bs-toggle="tab" data-bs-target="#baecfd" + type="button" role="tab" aria-controls="baecfd" aria-selected="true">图像预测 只使用检测 + id="aecbdfTab" data-bs-toggle="tab" data-bs-target="#aecbdf" + type="button" role="tab" aria-controls="aecbdf" aria-selected="true">只使用检测 只使用识别 + id="fbcaedTab" data-bs-toggle="tab" data-bs-target="#fbcaed" + type="button" role="tab" aria-controls="fbcaed" aria-selected="true">只使用识别 可视化查看 + id="bedacfTab" data-bs-toggle="tab" data-bs-target="#bedacf" + type="button" role="tab" aria-controls="bedacf" aria-selected="true">可视化查看 @@ -848,7 +848,7 @@

使用示例 +
@@ -881,7 +881,7 @@

使用示例 +
@@ -914,7 +914,7 @@

使用示例 +
@@ -947,7 +947,7 @@

使用示例 +
@@ -1804,8 +1804,8 @@

使用示例 id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/install_usage/rapidocr/install/index.html b/docs/install_usage/rapidocr/install/index.html index 8e5b5952..340bfd3b 100644 --- a/docs/install_usage/rapidocr/install/index.html +++ b/docs/install_usage/rapidocr/install/index.html @@ -1704,8 +1704,8 @@

安装 输入 str + id="cdefbaTab" data-bs-toggle="tab" data-bs-target="#cdefba" + type="button" role="tab" aria-controls="cdefba" aria-selected="true">str np.ndarray + id="acbfedTab" data-bs-toggle="tab" data-bs-target="#acbfed" + type="button" role="tab" aria-controls="acbfed" aria-selected="true">np.ndarray PIL.Image.Image + id="ebadcfTab" data-bs-toggle="tab" data-bs-target="#ebadcf" + type="button" role="tab" aria-controls="ebadcf" aria-selected="true">PIL.Image.Image Bytes + id="abdecfTab" data-bs-toggle="tab" data-bs-target="#abdecf" + type="button" role="tab" aria-controls="abdecf" aria-selected="true">Bytes Path + id="ecdabfTab" data-bs-toggle="tab" data-bs-target="#ecdabf" + type="button" role="tab" aria-controls="ecdabf" aria-selected="true">Path @@ -901,7 +901,7 @@

输入 +
@@ -941,7 +941,7 @@

输入 +
@@ -981,7 +981,7 @@

输入 +
@@ -1021,7 +1021,7 @@

输入 +
@@ -1063,7 +1063,7 @@

输入 +
@@ -1115,38 +1115,38 @@

输出 只有检测 + id="cabedfTab" data-bs-toggle="tab" data-bs-target="#cabedf" + type="button" role="tab" aria-controls="cabedf" aria-selected="true">只有检测 只有分类 + id="cdbfeaTab" data-bs-toggle="tab" data-bs-target="#cdbfea" + type="button" role="tab" aria-controls="cdbfea" aria-selected="true">只有分类 只有识别 + id="edbfcaTab" data-bs-toggle="tab" data-bs-target="#edbfca" + type="button" role="tab" aria-controls="edbfca" aria-selected="true">只有识别 检测 + 识别 + id="fcdeabTab" data-bs-toggle="tab" data-bs-target="#fcdeab" + type="button" role="tab" aria-controls="fcdeab" aria-selected="true">检测 + 识别 分类 + 识别 + id="dbacefTab" data-bs-toggle="tab" data-bs-target="#dbacef" + type="button" role="tab" aria-controls="dbacef" aria-selected="true">分类 + 识别 检测 + 分类 + 识别 + id="edfcbaTab" data-bs-toggle="tab" data-bs-target="#edfcba" + type="button" role="tab" aria-controls="edfcba" aria-selected="true">检测 + 分类 + 识别 @@ -1162,7 +1162,7 @@

输出 +
@@ -1226,7 +1226,7 @@

输出 +
@@ -1289,7 +1289,7 @@

输出 +
@@ -1355,7 +1355,7 @@

输出 +
@@ -1422,7 +1422,7 @@

输出 +
@@ -1488,7 +1488,7 @@

输出 +
@@ -1578,14 +1578,14 @@

可视化查看结果 只可视化检测 + id="bfceadTab" data-bs-toggle="tab" data-bs-target="#bfcead" + type="button" role="tab" aria-controls="bfcead" aria-selected="true">只可视化检测 可视化检测和识别 + id="facebdTab" data-bs-toggle="tab" data-bs-target="#facebd" + type="button" role="tab" aria-controls="facebd" aria-selected="true">可视化检测和识别 @@ -1601,7 +1601,7 @@

可视化查看结果 +
@@ -1647,7 +1647,7 @@

可视化查看结果 +
@@ -2519,8 +2519,8 @@

可视化查看结果 Python调用 以文件方式发送POST请求 + id="cbadefTab" data-bs-toggle="tab" data-bs-target="#cbadef" + type="button" role="tab" aria-controls="cbadef" aria-selected="true">以文件方式发送POST请求 以base64方式发送POST请求 + id="fedcbaTab" data-bs-toggle="tab" data-bs-target="#fedcba" + type="button" role="tab" aria-controls="fedcba" aria-selected="true">以base64方式发送POST请求 @@ -861,7 +861,7 @@

Python调用 +
@@ -903,7 +903,7 @@

Python调用 +
@@ -1889,8 +1889,8 @@

API输出 使用 CPU端推理 + id="bfedacTab" data-bs-toggle="tab" data-bs-target="#bfedac" + type="button" role="tab" aria-controls="bfedac" aria-selected="true">CPU端推理 GPU端推理 + id="debacfTab" data-bs-toggle="tab" data-bs-target="#debacf" + type="button" role="tab" aria-controls="debacf" aria-selected="true">GPU端推理 @@ -811,7 +811,7 @@

使用 +

前提是安装了CPU版的PaddlePaddle

@@ -854,7 +854,7 @@

使用 +

前提是安装了GPU版的PaddlePaddle,注意在实例化RapidOCR类时,需要通过参数显式指定使用GPU。

@@ -1754,8 +1754,8 @@

推理速度比较 使用步骤 id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/install_usage/rapidocr_web/nuitka_package/index.html b/docs/install_usage/rapidocr_web/nuitka_package/index.html index e4369cd0..532cc642 100644 --- a/docs/install_usage/rapidocr_web/nuitka_package/index.html +++ b/docs/install_usage/rapidocr_web/nuitka_package/index.html @@ -1742,8 +1742,8 @@

补充 运行步骤 id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/install_usage/rapidocr_web/rapidocr_web/index.html b/docs/install_usage/rapidocr_web/rapidocr_web/index.html index beaf33f7..351acb02 100644 --- a/docs/install_usage/rapidocr_web/rapidocr_web/index.html +++ b/docs/install_usage/rapidocr_web/rapidocr_web/index.html @@ -1642,8 +1642,8 @@

使用 在线Demo 相关产品概览图 2. 使用 终端使用 + id="dbfecaTab" data-bs-toggle="tab" data-bs-target="#dbfeca" + type="button" role="tab" aria-controls="dbfeca" aria-selected="true">终端使用 Python使用 + id="defcabTab" data-bs-toggle="tab" data-bs-target="#defcab" + type="button" role="tab" aria-controls="defcab" aria-selected="true">Python使用 @@ -742,7 +742,7 @@

2. 使用 +
@@ -775,7 +775,7 @@

2. 使用 +
@@ -1678,8 +1678,8 @@

3. 查看效果 id: 27 , href: "\/RapidOCRDocs\/docs\/about_model\/model_summary\/", title: "不同版本模型之间比较", - description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.", - content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。\n指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。\npre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: \"fast\" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer.onnx 2.3M 0.7056 0.8402 0.7671 0.4047 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7850 0.8093 0.7970 0.3441 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.6736 0.8402 0.7477 2.6560 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" + description: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.", + content: "各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。\n指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。\n模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer.onnx release/v2.7 10M 0.5655 0.9261 0.7458 0.0218 ch_PP-OCRv4_rec_server_infer.onnx release/v2.7 86M 0.6310 0.9382 0.7846 0.1622 ch_PP-OCRv3_rec_infer.onnx release/v2.6 10M 0.5893 0.9209 0.7551 0.0183 ch_PP-OCRv2_rec_infer.onnx release/v2.3 8.0M 0.4881 0.9029 0.6955 0.0193 ch_ppocr_mobile_v2.0_rec_infer.onnx release/v2.0 4.3M 0.5595 0.8979 0.7287 0.0045 指标说明 link Exact Match (精确匹配准确率) Char Match (字符级准确率) Score(两者综合) $$ Exact\\ Match = \\frac{1}{N}\\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = \\begin{cases} 1 \u0026 \\text{if } p_{i} = g_{i} \\ 0 \u0026 \\text{otherwise } \\end{cases} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $$ Char\\ Match = 1 - \\frac{1}{N} \\sum_{i=0}^{N} s(p_{i}, g_{i}) $$\n$$ s(p_{i}, g_{i}) = 1 - NL(p_{i}, g_{i}) $$\n$$ NL(p_{i}, g_{i}) = \\frac{Levenshtein(p_{i}, g_{i})}{\\max \\big(len(p_{i}), len(g_{i}) \\big)} $$\n$N$: 总的文本行个数 $p_{i}$: 第 $i$ 条文本行识别结果 $g_{i}$: 第 $i$ 条文本行对应的真实标签 $Levenshtein(x, y)$: 求字符串 $x$ 和字符串 $y$ 的编辑距离 $max(x, y)$: 求 $x$ 和 $y$ 的最大值 $len(x)$: 求所给字符串 $x$ 的长度 $$ Score = \\frac{1}{2}(Exact\\ Match + Char\\ Match) $$\n" } ); index.add( diff --git a/docs/related_projects/related_projects/index.html b/docs/related_projects/related_projects/index.html index a859793a..2f98de3a 100644 --- a/docs/related_projects/related_projects/index.html +++ b/docs/related_projects/related_projects/index.html @@ -1690,8 +1690,8 @@

印章OCR Buy me a Coffee Thu, 29 Sep 2022 00:00:00 +0000 https://rapidai.github.io/RapidOCRDocs/docs/about_model/model_summary/ - 各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M1运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + 文本检测测试集,详情可以移步AI Studio运行查看。 -指标计算都是在以下参数下计算得来,差别仅在于模型文件不同。 -pre_process: DetResizeForTest: limit_side_len: 736 limit_type: min NormalizeImage: std: [0.229, 0.224, 0.225] mean: [0.485, 0.456, 0.406] scale: 1./255. order: hwc ToCHWImage: KeepKeys: keep_keys: ['image', 'shape'] post_process: thresh: 0.3 box_thresh: 0.5 max_candidates: 1000 unclip_ratio: 1.6 use_dilation: true score_mode: "fast" 模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.6958 0.8608 0.7696 0.6176 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7070 0.9330 0.8044 13.9348 ch_PP-OCRv3_det_infer. + 各个版本ONNX模型效果对比(仅供参考) link notifications 以下测试结果均在自己构建测试集上评测所得,不代表在其他测试集上结果也是如此。 文本检测模型 link notifications 以下表格中推理时间是基于MacBook Pro M2运行所得,不同机器会有差别,请侧重查看彼此之间的比较。 评测采用的是TextDetMetric库 + text_det_test_dataset,详情可以移步AI Studio运行查看。 +指标计算都是在相同参数下计算得来,差别仅在于模型文件不同。对应模型下载地址:link。 +模型 模型大小 Precision Recall H-mean Speed(s/img) ch_PP-OCRv4_det_infer.onnx 4.5M 0.8300 0.8659 0.8476 0.2256 ch_PP-OCRv3_det_infer.onnx 2.3M 0.8021 0.8457 0.8234 0.1660 ch_PP-OCRv2_det_infer.onnx 2.2M 0.7579 0.8010 0.7788 0.1570 ch_PP-OCRv4_det_server_infer.onnx 108M 0.7922 0.8533 0.8216 3.9093 ch_ppocr_server_v2.0_det_infer.onnx 47M 0.7298 0.8128 0.7691 0.7419 文本识别模型 link 测试集: 自己构建中英文(168个) 输入Shape: v2: [3, 32, 320] v3~v4: [3, 48, 320] 模型 对应PaddleOCR分支 模型大小 Exact Match Char Match Score Speed(s/img) ch_PP-OCRv4_rec_infer. diff --git a/sitemap.xml b/sitemap.xml index 4bca0217..6e5cabe8 100644 --- a/sitemap.xml +++ b/sitemap.xml @@ -84,7 +84,7 @@ 2023-09-28T08:38:57+08:00 https://rapidai.github.io/RapidOCRDocs/docs/about_model/model_summary/ - 2024-04-07T09:59:26+08:00 + 2024-04-09T14:38:10+08:00 https://rapidai.github.io/RapidOCRDocs/docs/about_model/support_language/ 2023-09-28T08:38:57+08:00 @@ -147,7 +147,7 @@ 2024-03-04T15:21:12+08:00 https://rapidai.github.io/RapidOCRDocs/ - 2024-04-07T09:59:26+08:00 + 2024-04-09T14:38:10+08:00 https://rapidai.github.io/RapidOCRDocs/categories/