forked from cwlroda/falldetection_openpifpaf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathannotation.py
150 lines (123 loc) · 4.84 KB
/
annotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
# pylint: disable=import-error
from .functional import scalar_value_clipped
NOTSET = '__notset__'
class Annotation:
def __init__(self, keypoints, skeleton, *, category_id=1, suppress_score_index=None):
self.keypoints = keypoints
self.skeleton = skeleton
self.category_id = category_id
self.suppress_score_index = suppress_score_index
self.data = np.zeros((len(keypoints), 3), dtype=np.float32)
self.joint_scales = np.zeros((len(keypoints),), dtype=np.float32)
self.fixed_score = NOTSET
self.fixed_bbox = NOTSET
self.decoding_order = []
self.frontier_order = []
self.skeleton_m1 = (np.asarray(skeleton) - 1).tolist()
self.score_weights = np.ones((len(keypoints),))
if self.suppress_score_index:
self.score_weights[-1] = 0.0
self.score_weights[:3] = 3.0
self.score_weights /= np.sum(self.score_weights)
def add(self, joint_i, xyv):
self.data[joint_i] = xyv
return self
def set(self, data, joint_scales=None, *, fixed_score=NOTSET, fixed_bbox=NOTSET):
self.data = data
if joint_scales is not None:
self.joint_scales = joint_scales
else:
self.joint_scales[:] = 0.0
self.fixed_score = fixed_score
self.fixed_bbox = fixed_bbox
return self
def rescale(self, scale_factor):
self.data[:, 0:2] *= scale_factor
if self.joint_scales is not None:
self.joint_scales *= scale_factor
for _, __, c1, c2 in self.decoding_order:
c1[:2] *= scale_factor
c2[:2] *= scale_factor
return self
def fill_joint_scales(self, scales, hr_scale=1.0):
self.joint_scales = np.zeros((self.data.shape[0],))
for xyv_i, xyv in enumerate(self.data):
if xyv[2] == 0.0:
continue
scale = scalar_value_clipped(scales[xyv_i], xyv[0] * hr_scale, xyv[1] * hr_scale)
self.joint_scales[xyv_i] = scale / hr_scale
def score(self):
if self.fixed_score != NOTSET:
return self.fixed_score
v = self.data[:, 2]
if self.suppress_score_index is not None:
v = np.copy(v)
v[self.suppress_score_index] = 0.0
# return 0.1 * np.max(v) + 0.9 * np.mean(np.square(v))
# return np.mean(np.square(v))
# return np.sum(self.score_weights * np.sort(np.square(v))[::-1])
return np.sum(self.score_weights * np.sort(v)[::-1])
def scale(self, v_th=0.5):
m = self.data[:, 2] > v_th
if not np.any(m):
return 0.0
return max(
np.max(self.data[m, 0]) - np.min(self.data[m, 0]),
np.max(self.data[m, 1]) - np.min(self.data[m, 1]),
)
def json_data(self):
"""Data ready for json dump."""
# avoid visible keypoints becoming invisible due to rounding
v_mask = self.data[:, 2] > 0.0
keypoints = np.copy(self.data)
keypoints[v_mask, 2] = np.maximum(0.01, keypoints[v_mask, 2])
keypoints = np.around(keypoints.astype(np.float64), 2)
# convert to float64 before rounding because otherwise extra digits
# will be added when converting to Python type
data = {
'keypoints': keypoints.reshape(-1).tolist(),
'bbox': [round(float(c), 2) for c in self.bbox()],
'score': max(0.001, round(self.score(), 3)),
'category_id': self.category_id,
}
id_ = getattr(self, 'id_', None)
if id_:
data['id_'] = id_
return data
def bbox(self):
if self.fixed_bbox != NOTSET:
return self.fixed_bbox
return self.bbox_from_keypoints(self.data, self.joint_scales)
@staticmethod
def bbox_from_keypoints(kps, joint_scales):
m = kps[:, 2] > 0
if not np.any(m):
return [0, 0, 0, 0]
x = np.min(kps[:, 0][m] - joint_scales[m])
y = np.min(kps[:, 1][m] - joint_scales[m])
w = np.max(kps[:, 0][m] + joint_scales[m]) - x
h = np.max(kps[:, 1][m] + joint_scales[m]) - y
return [x, y, w, h]
class AnnotationDet:
def __init__(self, categories):
self.categories = categories
self.field_i = None
self.score = None
self.bbox = None
def set(self, field_i, score, bbox):
"""Set score to None for a ground truth annotation."""
self.field_i = field_i
self.score = score
self.bbox = np.asarray(bbox)
return self
@property
def category(self):
return self.categories[self.field_i]
def json_data(self):
return {
'category_id': self.field_i + 1,
'category': self.category,
'score': max(0.001, round(float(self.score), 3)),
'bbox': [round(float(c), 2) for c in self.bbox],
}