forked from cwlroda/falldetection_openpifpaf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
154 lines (128 loc) · 5.51 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
"""Train a pifpaf network."""
import argparse
import datetime
import logging
import socket
import torch
from . import datasets, encoder, logs, network, optimize, show, visualizer
from . import __version__
LOG = logging.getLogger(__name__)
def default_output_file(args, net_cpu):
base_name = net_cpu.base_net.shortname
head_names = [hn.meta.name for hn in net_cpu.head_nets]
now = datetime.datetime.now().strftime('%y%m%d-%H%M%S')
out = 'outputs/{}-{}-{}'.format(base_name, now, '-'.join(head_names))
if args.square_edge != 385:
out += '-edge{}'.format(args.square_edge)
if args.regression_loss != 'laplace':
out += '-{}'.format(args.regression_loss)
if args.r_smooth != 0.0:
out += '-rsmooth{}'.format(args.r_smooth)
if args.orientation_invariant or args.extended_scale:
out += '-'
if args.orientation_invariant:
out += 'o{:02.0f}'.format(args.orientation_invariant * 100.0)
if args.extended_scale:
out += 's'
return out + '.pkl'
def cli():
parser = argparse.ArgumentParser(
prog='python3 -m openpifpaf.train',
description=__doc__,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument('--version', action='version',
version='OpenPifPaf {version}'.format(version=__version__))
logs.cli(parser)
network.cli(parser)
network.losses.cli(parser)
encoder.cli(parser)
optimize.cli(parser)
datasets.train_cli(parser)
show.cli(parser)
visualizer.cli(parser)
parser.add_argument('-o', '--output', default=None,
help='output file')
parser.add_argument('--stride-apply', default=1, type=int,
help='apply and reset gradients every n batches')
parser.add_argument('--epochs', default=75, type=int,
help='number of epochs to train')
parser.add_argument('--val-interval', default=1, type=int,
help='validation run every n epochs')
parser.add_argument('--rescale-images', type=float, default=1.0,
help='overall image rescale factor')
parser.add_argument('--update-batchnorm-runningstatistics',
default=False, action='store_true',
help='update batch norm running statistics')
parser.add_argument('--ema', default=1e-2, type=float,
help='ema decay constant')
parser.add_argument('--clip-grad-norm', default=0.0, type=float,
help='clip grad norm: specify largest change for single param')
parser.add_argument('--log-interval', default=10, type=int,
help='log loss every n steps')
parser.add_argument('--disable-cuda', action='store_true',
help='disable CUDA')
group = parser.add_argument_group('debug')
group.add_argument('--profile', default=None,
help='enables profiling. specify path for chrome tracing file')
group.add_argument('--log-stats', default=False, action='store_true',
help='enable stats logging')
group.add_argument('--debug-images', default=False, action='store_true',
help='print debug messages and enable all debug images')
args = parser.parse_args()
if args.debug_images:
args.debug = True
network.configure(args)
network.losses.configure(args)
encoder.configure(args)
datasets.train_configure(args)
show.configure(args)
visualizer.configure(args)
# add args.device
args.device = torch.device('cpu')
args.pin_memory = False
if not args.disable_cuda and torch.cuda.is_available():
args.device = torch.device('cuda')
args.pin_memory = True
LOG.debug('neural network device: %s', args.device)
return args
def main():
args = cli()
net_cpu, start_epoch = network.factory_from_args(args)
net_cpu.process_heads = None
if args.output is None:
args.output = default_output_file(args, net_cpu)
log_level = logs.configure(args)
LOG.setLevel(log_level)
if args.log_stats:
logging.getLogger('openpifpaf.stats').setLevel(logging.DEBUG)
net = net_cpu.to(device=args.device)
if not args.disable_cuda and torch.cuda.device_count() > 1:
print('Using multiple GPUs: {}'.format(torch.cuda.device_count()))
net = torch.nn.DataParallel(net)
loss = network.losses.factory_from_args(args, net_cpu.head_nets)
target_transforms = encoder.factory(net_cpu.head_nets, net_cpu.base_net.stride)
train_loader, val_loader = datasets.train_factory(args, target_transforms)
optimizer = optimize.factory_optimizer(
args, list(net.parameters()) + list(loss.parameters()))
lr_scheduler = optimize.factory_lrscheduler(args, optimizer, len(train_loader))
trainer = network.Trainer(
net, loss, optimizer, args.output,
lr_scheduler=lr_scheduler,
device=args.device,
fix_batch_norm=not args.update_batchnorm_runningstatistics,
stride_apply=args.stride_apply,
ema_decay=args.ema,
log_interval=args.log_interval,
train_profile=args.profile,
model_meta_data={
'args': vars(args),
'version': __version__,
'hostname': socket.gethostname(),
},
clip_grad_norm=args.clip_grad_norm,
val_interval=args.val_interval,
)
trainer.loop(train_loader, val_loader, args.epochs, start_epoch=start_epoch)
if __name__ == '__main__':
main()