-
Notifications
You must be signed in to change notification settings - Fork 0
/
math-ex-glauber.nb
14210 lines (14123 loc) · 815 KB
/
math-ex-glauber.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 13.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 820335, 14202]
NotebookOptionsPosition[ 814228, 14092]
NotebookOutlinePosition[ 814639, 14108]
CellTagsIndexPosition[ 814596, 14105]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["Glauber Model", "Title",
CellChangeTimes->{{3.871025540100805*^9,
3.8710255429406366`*^9}},ExpressionUUID->"38191b02-400e-4897-8c54-\
95d215d588fc"],
Cell["\<\
parameter set to Gold(Au)[197]
the impact parameter is set parallel to the x-axis on the reaction plane
The density \[Rho], thickness Ta and overlap Taa function is defined in two \
ways
Some optical and Monte-Carlo examples are shown\
\>", "Text",
CellChangeTimes->{{3.871025553047228*^9, 3.8710255650107393`*^9}, {
3.871025840897482*^9, 3.87102587497974*^9}, {3.871093703613576*^9,
3.87109373004638*^9}},ExpressionUUID->"2c85eb6f-aa56-4027-ae49-\
5bd977aa1fe6"],
Cell[CellGroupData[{
Cell["Define basic parameters and functions", "Subsubsection",
CellChangeTimes->{{3.8710291483061047`*^9,
3.871029159460338*^9}},ExpressionUUID->"1a01a2b8-a028-4339-9453-\
cf602d2c0f1d"],
Cell[BoxData[{
RowBox[{
RowBox[{"A", "=", "197"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Rho]0", "=", "0.169346"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"R", "=", "6.38"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"d", "=", "0.535"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Rmax", "=", "12"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"pre", "=", "2"}], ";",
RowBox[{"(*",
RowBox[{"overall", " ", "integration", " ", "precision"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"Off", "[",
RowBox[{"NIntegrate", "::", "inumr"}], "]"}]}],
RowBox[{"(*",
RowBox[{"turn", " ", "off", " ", "some", " ", "warnings"}], "*)"}],
"\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"density", " ", "function"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Rho]", "[", "r_", "]"}], ":=",
FractionBox["\[Rho]0",
RowBox[{"1", "+",
RowBox[{"Exp", "[",
FractionBox[
RowBox[{"r", "-", "R"}], "d"], "]"}]}]]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"\[Rho]", "[",
RowBox[{"x_", ",", "y_", ",", "z_"}], "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"Module", "[",
RowBox[{
RowBox[{"{",
RowBox[{"r", "=",
SqrtBox[
RowBox[{
SuperscriptBox["x", "2"], "+",
SuperscriptBox["y", "2"], "+",
SuperscriptBox["z", "2"]}]]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"\[Rho]", "[", "r", "]"}]}], "\[IndentingNewLine]", "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"thickness", " ", "function"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ta", "[", "s_", "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"\[Rho]", "[",
SqrtBox[
RowBox[{
SuperscriptBox["s", "2"], "+",
SuperscriptBox["z", "2"]}]], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "Rmax"}], ",",
RowBox[{"+", "Rmax"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"Method", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"\"\<SymbolicProcessing\>\"", "->", "0"}]}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"PrecisionGoal", "\[Rule]", "pre"}]}], "\[IndentingNewLine]",
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{
RowBox[{"Ta", "[",
RowBox[{"x_", ",", "y_"}], "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"NIntegrate", "[",
RowBox[{
RowBox[{"\[Rho]", "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"z", ",",
RowBox[{"-", "Rmax"}], ",",
RowBox[{"+", "Rmax"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"Method", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"\"\<SymbolicProcessing\>\"", "->", "0"}]}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"PrecisionGoal", "\[Rule]", "pre"}]}], "\[IndentingNewLine]",
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{"overlap", " ", "function"}], "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Taa", "[", "b_", "]"}], ":=", "\[IndentingNewLine]",
RowBox[{"NIntegrate", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Ta", "[",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-",
RowBox[{"b", "/", "2"}]}], ")"}], "2"], "+",
SuperscriptBox["y", "2"]}]], "]"}],
RowBox[{"Ta", "[",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "+",
RowBox[{"b", "/", "2"}]}], ")"}], "2"], "+",
SuperscriptBox["y", "2"]}]], "]"}]}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{
RowBox[{"-", "2"}], "Rmax"}], ",",
RowBox[{
RowBox[{"+", "2"}], "Rmax"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{
RowBox[{"-", "2"}], "Rmax"}], ",",
RowBox[{
RowBox[{"+", "2"}], "Rmax"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"Method", "\[Rule]",
RowBox[{"{",
RowBox[{"Automatic", ",",
RowBox[{"\"\<SymbolicProcessing\>\"", "->", "0"}]}], "}"}]}], ",",
"\[IndentingNewLine]",
RowBox[{"PrecisionGoal", "\[Rule]", "pre"}]}], "\[IndentingNewLine]",
"]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"Taa", "[",
RowBox[{"x_", ",", "y_", ",", "b_"}], "]"}], ":=",
RowBox[{
RowBox[{"Ta", "[",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "-",
RowBox[{"b", "/", "2"}]}], ")"}], "2"], "+",
SuperscriptBox["y", "2"]}]], "]"}],
RowBox[{"Ta", "[",
SqrtBox[
RowBox[{
SuperscriptBox[
RowBox[{"(",
RowBox[{"x", "+",
RowBox[{"b", "/", "2"}]}], ")"}], "2"], "+",
SuperscriptBox["y", "2"]}]], "]"}]}]}], ";"}]}], "Input",
CellChangeTimes->{{3.871020211523821*^9, 3.8710204219504814`*^9}, {
3.871020467044982*^9, 3.8710207056316423`*^9}, {3.8710207812532616`*^9,
3.871020802549697*^9}, {3.871021374752338*^9, 3.8710214126240935`*^9}, {
3.871021481495679*^9, 3.8710214875220375`*^9}, {3.8710215201595445`*^9,
3.8710216218961997`*^9}, {3.8710216571368504`*^9,
3.8710217783708744`*^9}, {3.871021880666136*^9, 3.871021892923216*^9}, {
3.8710219499172516`*^9, 3.8710219745278964`*^9}, {3.8710220176187267`*^9,
3.871022046627042*^9}, {3.8710220990819683`*^9, 3.8710221935423875`*^9}, {
3.871022259568833*^9, 3.871022318058746*^9}, {3.871022365921469*^9,
3.871022441223875*^9}, {3.871022682628438*^9, 3.8710226920012193`*^9}, {
3.8710227537160177`*^9, 3.871022769568904*^9}, {3.871022875529302*^9,
3.8710229065369525`*^9}, {3.8710229527901335`*^9,
3.8710229781464515`*^9}, {3.8710230349323254`*^9,
3.8710232495482187`*^9}, {3.871023313298765*^9, 3.8710234619590473`*^9}, {
3.871023739807917*^9, 3.871023918389968*^9}, {3.871023968558877*^9,
3.8710239717299995`*^9}, {3.871024005532482*^9, 3.87102439553052*^9}, {
3.871024432871441*^9, 3.8710244913793535`*^9}, {3.8710245340643926`*^9,
3.8710245523903227`*^9}, {3.871024802137748*^9, 3.87102480675827*^9}, {
3.8710248529159546`*^9, 3.8710249592767076`*^9}, {3.8710250226688895`*^9,
3.871025289873073*^9}, {3.8710253775168314`*^9, 3.87102543054318*^9}, {
3.871025493164669*^9, 3.8710255248977113`*^9}, 3.8710255698658123`*^9, {
3.8710259899506364`*^9, 3.871026001981417*^9}, {3.871026066312387*^9,
3.8710260859324684`*^9}, {3.8710262436791663`*^9,
3.8710263153197966`*^9}, {3.8710263626594987`*^9, 3.87102639446037*^9}, {
3.8710265757069674`*^9, 3.871026693992092*^9}, 3.87102675539037*^9, {
3.8710267878550305`*^9, 3.871026788855308*^9}, {3.8710268328589725`*^9,
3.871026836003481*^9}, {3.8710268683672976`*^9, 3.871026881521077*^9},
3.871026955267621*^9, {3.8710270599177213`*^9, 3.8710271843234158`*^9}, {
3.8710272220562706`*^9, 3.871027245426156*^9}, {3.871027294183951*^9,
3.8710272971239896`*^9}, 3.871027347511825*^9, {3.8710274140230412`*^9,
3.871027422777334*^9}, 3.8710275387804728`*^9, {3.8710276231848955`*^9,
3.871027626255864*^9}, {3.871027746126076*^9, 3.871027783705028*^9}, {
3.871027882354567*^9, 3.8710279075702496`*^9}, {3.871027954178298*^9,
3.8710279921971903`*^9}, {3.871028036158925*^9, 3.8710280435828247`*^9}, {
3.8710281367074842`*^9, 3.87102820297348*^9}, {3.8710282472865596`*^9,
3.87102831663862*^9}, {3.8710283697013197`*^9, 3.8710283915727763`*^9}, {
3.8710284654767733`*^9, 3.8710285080246515`*^9}, {3.871028916059543*^9,
3.871028962249217*^9}, 3.8710290198222904`*^9, {3.871029342264099*^9,
3.87102934725358*^9}, 3.8710293845930557`*^9, {3.8710295280387597`*^9,
3.8710295854913125`*^9}, {3.871029621233009*^9, 3.8710296511593027`*^9}, {
3.8710885345335436`*^9, 3.8710885427550073`*^9}, {3.871088634068447*^9,
3.8710886756830597`*^9}, {3.871101303129671*^9,
3.871101303707857*^9}},ExpressionUUID->"e7887634-f43e-4318-93d6-\
46091056ae26"]
}, Open ]],
Cell[CellGroupData[{
Cell["Optical Glauber methods", "Subsection",
CellChangeTimes->{{3.871101670510399*^9,
3.8711016786053715`*^9}},ExpressionUUID->"78edca09-32dc-4897-9fcd-\
77334175febc"],
Cell[CellGroupData[{
Cell["density profile plots", "Subsubsection",
CellChangeTimes->{{3.8710292073126593`*^9, 3.871029212183523*^9}, {
3.871029437846351*^9,
3.8710294379102664`*^9}},ExpressionUUID->"a88a3a28-f990-4882-ada9-\
5eaef20ee807"],
Cell["Plots the density function profile", "Text",
CellChangeTimes->{{3.871029426476584*^9,
3.871029435637334*^9}},ExpressionUUID->"4c20a9e5-6d71-4801-9287-\
b38e2838ac1a"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"\[Rho]", "[", "r", "]"}], ",",
RowBox[{"{",
RowBox[{"r", ",", "0", ",", "Rmax"}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"DensityPlot", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Rho]", "[",
RowBox[{"x", ",", "y", ",", "0"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"x", ",",
RowBox[{"-", "Rmax"}], ",",
RowBox[{"+", "Rmax"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",",
RowBox[{"-", "Rmax"}], ",",
RowBox[{"+", "Rmax"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotPoints", "\[Rule]", "50"}]}], "\[IndentingNewLine]",
"]"}], "\[IndentingNewLine]",
RowBox[{"DensityPlot3D", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Rho]", "[",
RowBox[{"x", ",", "y", ",", "z"}], "]"}], ",", "\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"x", ",", "0", ",",
RowBox[{"+", "Rmax"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"y", ",", "0", ",",
RowBox[{"+", "Rmax"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"z", ",", "0", ",",
RowBox[{"+", "Rmax"}]}], "}"}], ",", "\[IndentingNewLine]",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
"\[IndentingNewLine]",
RowBox[{"PlotTheme", "\[Rule]", "\"\<Scientific\>\""}], ",",
"\[IndentingNewLine]",
RowBox[{"Axes", "\[Rule]", "False"}], ",", "\[IndentingNewLine]",
RowBox[{"ViewPoint", "\[Rule]",
RowBox[{"{",
RowBox[{
RowBox[{"-", "5"}], ",",
RowBox[{"-", " ", "5"}], ",", " ",
RowBox[{"-", "5"}]}], "}"}]}]}], "\[IndentingNewLine]", "]"}]}], "Input",
CellChangeTimes->{{3.8710292149136086`*^9, 3.871029222135929*^9}, {
3.8710299552348537`*^9, 3.871029956099921*^9}, {3.871030234020951*^9,
3.8710304150925465`*^9}},
CellLabel->
"In[438]:=",ExpressionUUID->"ba735fb0-31ee-4ec5-8d06-f16bd74916c1"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[
1.], LineBox[CompressedData["
1:eJwV13k81E0YAHA3OXKTa7HWrtBFKZV9HlJJCUVU7kpIrqKSREW575LcFFKS
ojdEbumQUDocFUJyliPkHf/s7vezs7Mzz8zveWYUHdz3HWNjYWE5RF6W3md2
u6WYuEczu0InX0ver4PgowyVZrobPDxt9mzJr0d6XSLo/qC7eOPekscebQt3
pUdCNr0+dMmXJCZlreip4Pn3v+1Lftlg2LefXgC77V4USxC7p/u8MKZXwHvg
uiBOvOnxd/olyUroO2LstGSWoyp6hziew+pfp/Yv+cWZhLTwP89hu/relUs+
lOZ+aPxDNYiuwlYxYr8RpbelyfWQsqVbfslV4eFlRvQ3YOS+IkmEuGLo4yu+
vDfQ2SHlv+RyA0bXC7VmEEnps1/yYTZ7lqwVb+HUzU8qSzavmKPKU1qgY2L1
Y2FiQ611TpIrW+GxqNJzIWKDvg8ePi6twMFMTF/yznj/c+35rRAy9TZgyfoT
L0PjVrcBh14YLplZ4HhfcH07ZNhJPBMk1qQnT3DDB2gok727nFijXW/OMeAD
ZIbHBi957ZVB9vqqD1CsV+uw5NXftMSv6HdAwP6D0ktWSW3ZyGL4EW5e3hIs
QCwrwX1hxuwzHCtwMuEn5uTy4h506QY+PHV3GfHArouCkzndkPHHLGDJTRHh
kgu93WCx/6f5khtCW+OurekBiZ+aLEsOExnJSs7rgchYZVMeYjGqUm1tyleg
NAr2chHTdSM4xIO/Q/P7iRfsxJLf43iSsr+DyFbThCXzBCXxy9d8B5PzpnZL
HmrMEVvJ0gu9vev/sBE/MKmm6fj2gmvBaeklb7Kb1j/m1gfvPZj7WIh3XbQP
Kj7wA56NDXnO3yPxiarakXH6B+gVeq5bsmyaIk9E7A8Qt7s6Nkc8VvE19Oib
H7DTx+rkkq//s48W3TEA+Wdu2P8l7r3gcMtzwyBICCZrzhAH+B15uErsJ/zg
+HVmktglvMZLSuMn5HOWMJZslqy0ntPkJ6RYTbyfIGaUfy/5EvYTXq6t0lzy
m7kj5WHsw8AlkNw/tjSe80cbBieGoank2NoR4ifnjnXebhmBotRvewaI7zBP
fJCeGIF92Yk9P5bGx+7ZEiUyCp6pAaeW7BPhV3du/yisMeq53k+slRF336h9
FE7NFbX2Eh/u7anwdR0DxT9M2lfid/XftxT7jcHuWfO7PcSGef3/jYaPwX/c
QWuWvNltuOjo/TFoPkTb2E0sPTN9Z+/IGOjWaW3pJP7EJxhF9RiH0p8S4h+J
940I81sHjIOAdUdYB3HTW7GQG9HjoHIvnnXJpQnSl/kfjsNb2anB98RJ8vQz
U+PjoMOtXNBGfEhTx7bp1ASc8nNle0v88dCJNV5nJkHBNvllHXHot52uN4In
YcHadOWSN7vQ8soTJsFPtz+oljj5XCeV+/Ek7C3O2VJDbJdoLJE8NglpASY3
nxP/aNdcqHP+DV/WHJcpI/5jMt8kZfUH8jWM1B4sxbejgxtO/IEHhR/sCogP
2BXrH/X9A1cb/8bfJ/7P3a2iIPEPFL1gmc0n9ovsebit/Q80ra97kEvM/qo2
8eTeKfIcDrZnEAvvjHCswmnwnjk3Hkusn1cOaqbTIL+msDuG+Czf8IoE+2kQ
jfzwMpq4p9nwpdOlaRjsH0yJJC605FkrVDsNlO33VEKJTVwuz9rsnIG8ce72
AOIrr4reNVrMgPuFo+kXl8a3+lu+htMMPFV2d/YnVphEG66QGVgz6Pf7/NL+
Pv+v+n7TDKgqz/3yIY6OOBc+bzQLTvddXVyJa0dzjznazMKiVsDyE8Qzph3M
t26zoGo49cB5KZ4SG8ezomZhT++fIUfitWm/zXe3zIJBziO0J35b6C6fZPYX
fmRFOpoTC7UdK9p4eA4kNzSc3kKMv3SHzE7MQWhwRbU2sQcXhep1fg7GeS4J
bCJu2fQ+5t6tObA7Zn5zPXFsyg5PxS9z4HsoMGQVsfhxxlo+63nYGOxYTyHe
EcDupHJyHraVreuSXdr/N7vTtl+Yh+wOhwlp4vcvbwgGpMxDQ9hnQUnixLU8
o7875yFhyzGK4NJ+/jtwv8tmAc4kZFz+l0/2v2hd35zbArz397eZJ/ZVz5CT
urgA93fu3fCX+LPNwYj9aQtwtSXn/R/i5JoXro3dC+DF7/xjmJgScVetyO4f
GAcob/5ErKTgmhfksAgvbto6PyQO71LMiPBchKtmvl8LiKeSPyQmBCzCekEF
83vEjVLbrt1OXQQ18V+rc4hdRaWP131ahCfGBfnJxIfZj8ZeWsmCjYZ3qoOJ
b08Jm1RnsODhThVVC+JP7cO7d+Sx4ISVBbsZ8fLihp1NhSxYrjr73oT47KkL
8K6SBR9GuZ80XJrv2MDqb50saNwsfECHeGSwUoBNmhXrH+oLUIk3dZ58qRvL
iloldo39d+ugYKWXuFMSK3ImpQR/I6b5+NhGZrIi/8mnW7uIhQQvTn4qYsWa
J8bR7cSDGC1zupUVFZk6rTXESdlFJ+6IseHU36GnqUvtx0uKX8myYZ9e1MhN
4mCdssUJGhuO/OaTTiD2el8TBxvY8G6SgXkY8W6e9rIOczY8WNh56Azx/Ilp
Pr4bbFgT5RdrtNT+vznzdWlsuFJnlboB8QAHS7pFDhsa1ESW6RG3pfCsz37C
hmsjxcs2Et9vlrLS6WDDpr1sWxSJbTS33nOXYscYk8PqE3mk/v8N2NN2ix07
0j5sDSNuk/Kacs9ix7Hw0x1XiPs3HUnny2fH6wcLnPyJ+c9s/61Xyo5+R3Mc
PYkPTC5LftjBjgrS7u8PEA/9jP0ZKc6BPI6fvOSJxTqzQ3dFcWDsPVv2nFxS
D+cT1vdd50Chs+d50oi1Za52BaRyoJyK/eJ1YpuDzhr/3efAgWladTBxXvuq
T/RXHFjbUJl4jJj5pmQlxzJOrPLTOqVA7FTZ2FhxiRM9Y35Jh+bUway2EHV9
KCcebZG0CCAOfWxxPi+GE9M+bbzkQ5yf178qPp0T6498y3YgHonjiHOu4MQX
TxJWbCY+7YTWYn858d2IS2rfHVL/hP8bd/bkQqFdqriaWDh80bD7LBe+1Dwr
RyXO5NqZbRbAhT9Tb/WJE9fMtR+AKC4ccG3esHC7Drj6J8vE7nMhn1xbSxNx
eOma4MoBLmQ9XvvenvjmkRxpcTtuLGa8m72QTZ6H3Suq1Z248XXRsuSTxEzN
EGd9D250lN8tb038je3Ef6cCuFHxNmvjFmL1zNUH3qVzY3JA5a3pLHJ+6ymO
ifrKjced5SSdiaMb6do5g9zI+ibt/gFih8IbPRXj3KjbZaKoT8wdcG7NCCsP
BshsSqMQm8jrvN5D5cG3j5p/tWTWwXfrWh7eIzw4mL8yaR1xyfYNhYoneLDT
uua7LPG1VXcstE/xoHOEFhcPsfrC1TtOl3mQwX+prTOD5Kvk3foNWTz4vv58
5FVins/vLl7p5UGZ10nrW9PrYJXl16l/x5Zh5wJVaFcayTci8C/s5DIc4ExL
WUvM+zqZU8p7Gaqa87GsIB7QtRTTvLIMGe7Bev2pdZCt1rzueOYyZN91uziA
WHqx3LW5axnWvqsSvJ9C4n8n8VuaBS8+kL9h8vVWHXjbTQ2q2/IiiF7qribu
lTYbf+rIiw1u3ZuyiauiBFnavHnRb4/vLkdiv3PBcjzxvGiW9PLDj6Q6mNhz
2tLjLS+mhMft77lZB12Txm9wFx/+ZJ+fzbpRB5EyH5Q8TPmwS+z0d19i5jab
c2kH+VCyMt/flDgt1pX2z5kPV3oua1y4TurNuhDfslA+fFu9/Po+4u9u1XSt
V3wo6kxLHI6vg/jru/yOtZH+3b6ZVxDrV7xtif/Ch8khKWVRxNkC3X6Tw3yY
yOXlt47Y8d7cu0IBfix8qljlEUfiNbj+opoxP/K5zFV0xpD6IFzedsiCHxMz
Re7lERtob1MNteXHSFVNLW/ivGum7QPu/Phw5R0KH7ELw03tTjQ/XnbMVNOI
roNfR3M+KLzjR7XRr2GukSQe3VJrJcwFcEOe04vwUFKPj0yvl7cWwEzr2GV7
iI3727RVjglg38C2Fl7ie8NR2zZ7C+A9tsbJ4BAy3llOC5sEAczNq3Q9d43k
d5GJC3faBRD1Y4/uCCbrsb3ppdaB5cjFVKg/F0jqe2POW7BZjnblG9VUiCl7
gtoNHJfjlTfzM+0BpJ7tw+5DPssx8rVO0xri9bYlE/7Xl6OQ4CTti38d5J7N
lGp4vxy/GVyulPAjz0e+73ELC0G8MxWsy+dD6g/r9lftNoJIudvime9N8pWF
4DozR0H8nKCyYEhczpb918RbEEe5MhSunSbxPfg6wjBOEMX2fj//16sOgEfh
sU6zIKYksF+tcK+DM0UOLLFKQkiVnsgtc6oDq84GDVOGEKq9vT2vT6zHs+qY
kJoQbrXgD3p9nORXm+kXkRpCuPNH5uovjiS/LAuPC9MVwr8jFpWjR8l52q6Y
HmQrhKnHRjNH7Mj4BHmMzt4Swvq/3ra6liS+Y4F3rqUJoeCqQYlMC3IfeDe3
mJglhGv2KueyEkPCaNHTfCE0UawwfmZeB5YyH1bMlQnhxavS5+j7Sb5k3Om9
8EUIb5bvO1BhRPIj6PtdlhNG+zin8N+6JD8qVrTHKQqjbcUrHXXiv2yb1mQr
C+M2faMAByT5pF7tW+0qYXSJiSpoYpL9sEfUgIspjCZw3ylkCzk/W34TDbER
Ruumq7wV60k+8QjIj0wTxsVY2rcxZfL/ZWOPD2YJY+oyVzMuYlsu+wpajjD+
vsi/WZpG8keybktpgTCu2uRsrkMl5+kGtun+Z8LIXrIt2INSB//kgvTgizB6
HzoVe02iDra/DPk4ukIEnS8K5rhykvwg8fdbqawIRqgreu7mIPOzcxkOUhBB
zhFNSxV2ct+YMlyUURFBbYNEzy8sZH0V+ZUNNorgSXG6/6r5Wgg/G+mRbi6C
PSd+WnhM1EKbchy3aawIXnodz3+ksxZ2MVZsOnldBDtmFHK/fq6FCpUUp5Ak
EXSRGom3/lQLeWo5L6oyRfBLXJOJ0Yda8F9XFqbxSAS5z7xp52upBRWd74Ji
bSLYm32XxlpbC35mmis+iItiRTO3+r2cWhg3/89gUkoUL9gd43t1uxYcLXTO
CVJEMe2A0e2BrFowPbTz0066KPq4u/+WTK8Fut3h5P+0RPGp9X2PvYm18PbE
ZYUkC1EUkX1sJnGtFmiXW1Wsb4pi7+Vk4+GjtWBZxL7OMUUU068WKWU7kPl+
1dR2zyDesEfV0q4W/kD8rsA8Ufwubvv08eFaqJ83c7n9VBRHttvsgH214Ozz
Pv/XR1HU//7IIIFZCwXOH1f7S4shX3hHkJxYLXxLXLbxKkUMKQpcXSbCtSDZ
qA3RVDEsuf360cXltRBATzLOVBXDX065z5t5yHy+H/Ko3yyGnQZOpZsWauC3
1ZeHyw+LoV3Sr3mVvhrQNulen3ZLDFUddjdbPqyB8gHOXw5pYhhl4M+uVlAD
zED12/QsMTyoeD575m4N6BedEy+4K4a7XFWkgrNrYK+Y2FT5UzGcOVi8zflG
DTh0GDz59IG0jzPYt8evBsLsirQlxMQxfznLuiN6NbB8tmP8o6Q4hl+4EXyT
WQPRMYt5KTLiyPoi+X7T5hq4Xr1HWllJHPubBa3lNGsgnfbjr6aGOJY8Uau4
rFQDjwdkyk1NxPHHOoqvCXsNdHoEMSPCxXHZvn17miqqgeX5c7nMaHGssrI/
OP60GmiC8/Ml8eI45qKSI1xcDS73vcp6ksXRrY4xppNfDTODtpvW3xdHRU3t
PP0b1SByZLPG59fiaGg37cjlVg0G5qPKKwUlMNGtirZFohpOZKtyMkUlkLP2
BzVQqBoiJ4/17pOUQEY2o62StxraY75k+slLYA/XZj3GYhU4vHkh/3aNBLKU
R46l/KiCCzuzpc6YSCD7p5BJxpMqKNI+KFAXI4H+r8SepphUAW0iNDk+QQI3
WexjOhpWQcLdcrWjNyWwW6lDRUW/Cs7KKBiyZ0iglP4ZtcSNVcBc6A/WLZTA
rZN+n1UoVfDy+WmWijcS6L296jX/0HPo3Rk9WcIniWsDddK++T0HiQMNH3OD
JNFyoGfIllIJO7Zm47EQSYTDHGc5BSvhDDUwRzFCEod86hzTFiugY2Szd1K8
JP7Tr4st7KmAW1cLhMKzJPFXn+P+XZkVoPA0Yad7lSTOpeTF2yhVgKrs0eIN
C5L4Oyom9JTcM4BvLDHVp1eg1UZW6ovfpXBTwkmAflYKKzd6yb8bKYZLqc5X
N7hIY5W2kNLlDQ9B77Dj8F43aczbryF1R/EhsK84YurkJY31owvcLQIP4UqM
lcwtX2nclG9tBP2FEHzF+AFLmDSuXIj+HHCjEEJcNnx4mS+NqyJm3h2dfgDR
WqwMh1+kPye6l9qN+5DyJrE+0kMGv84KPTomlweyT5E94bQM9lbZOvfP5UJy
1gDcOiuDHBUVdYGfcsnnTU9zAmTwV/7GLzyJuXCT2pH/PFoGh4Vb9x0Wy4UE
H8mYiUIZNJ5I3koXyYEIyvXDB8ZlUPO9BLWbehv4lzETrf7IoKuRb3EXx20I
n+xrc5iVwd9THrvn+rMhrHHDXndWWSwzeZcblp8NIV7teE1YFgvsGjR4tbIh
qF6MXrpOFi+HuG4PMsmCC25xY3JesqiyUag75lYGGFav6+zylsWI/oY+1ssZ
sELi7Yu0c7L4abdGRJhLBjx+xp+lGCiLv1XNHv3UzoAh/mBz5WhZbAs5wdr9
MR0s88+WqhfI4u4it+8RlHRYP2B9ZcuQLApU/t5V7Z0CbFvnPeZ/ke9zKtmn
DFPgbVSS9bNxWWzd88T8sEIKnNj4QQtmZTHXU9qt9GUyZAabDOrxyKHquyGB
RloyCClv22tIl8NNT0484u9Jgp/2KisOOsjh5Nec0GDfRDjk+lnthKMc6j7l
DcrelwiNPpFwwUUOizVlRmdUE+F22G/HDC85DN+wwkv/yw2wLX5ePHhJDv+L
bKq0170BrTwH9/tmyeFDM8mP0eLXoexBSOStXjl8veteX0RvHKiWbs28PyCH
ojrvmunkqphYO1pcOSyH5kpq2WMZceD90bzz+285NK3kMZKwi4M17FR1dU4K
HjnZ6ZDdFQtZB0pflCtTcHol64GM3hgIWxji6HKkIO1Q3pEGkWgw8IxvvOtC
IeuXOTI4HgUcfTrhZ9woaCLxqCCqIgr8X0WLCvtQ0NHVv/ipZRR43NKi6gdR
8M7PXxwXoyPhgPYluJtFwWu32GauCkQA1VvK16eH/D7olqHdllDoHqjW2dZL
war71QFeQqGQbOXKKjRAwaGIOcO6vhAQ16+8ljdKQUN+S3u1mBDgET1248s/
CtYan+IcH7oGI4WFj/Xk5JFtl5My5e5VKB3eObr8kDyGxaZsHzALAq3I5NBG
a3nU4K/9slIjCIrWjCtfspfH9CId+3TBIMjzSrL64ySPsv0+8movr0DizPCL
z2fkMeHE2tkH+lfAhyM2OzdBHh9oRQhs1b0MmrJfDuq1yGNZLYMebRMIBc/W
/plrk0ejmx0wohsIqrZB0cUd8jjPd0PynHIgUDNXN6j0yKOVKYVX7FcAiKgE
rhcclUchr2M7LP0DYEYqjtuNSwEZXUJuTaYX4b3ypm+baQooxntx8/AmP+ht
cd2GdAW09mSa/OH0g4kLGdnbVRQw+5xqwoHW8yD4nve4iboCcv3cdUne/TwY
BHf+PLZeAe+EPekvu+sLpf2X/kTrK2By3ZkfuevOQVrOa54fRxVwy+kvZ+p9
faBgP5vLsKMCXuN7vr/d1AfKF7Vejjsp4PaQBEP1lT7QYZEeMe+qgBsGgx8W
dniDCM8pERFvBYzKzc/k2uINV5xWyOoEKaDh/k0Cl/lPg9PKI2vibivgsadJ
Y8+6PYHCGzfgnaOAF7k4bjCqPKF1qDrDMk8B6SxJG2szPYF5jypGuU/mez+E
nuDoCaJrvs3kPibxaNddHjHmARXr7asrahRwcH8fS4yAB4ihrfnQVwU8P+Bk
VtHqCk0KUctff1dAxYcOZiszXeEia2XDgz4F3LVl9t0PD1cYqqZs9h5UQGZL
u4a1oCtUbu+isIwrYMzgh2lpkxPgstt6QJxFETU3F3316HGGqgOHz+tSFNGd
LeEbRfs41MeKN+5RUMQN0kMxOQLH4dWbZjFLqiJ6uAQxA745QscO/QI3uiJG
hnFbykc4wpjWqq+3Viui7F3zzZz9x4Aiubhjikl+L2ssPXP7KPh+yBTJt1VE
DTX/a0OHHCBA1Nq2xF4RuSM3hntscoBgY8l7VUcUUUu5wUdLwgFiGsK2dxxX
RH9D7fUB7+wh98nps5weivh5rqjvn5E9vL+xo8s2QBEnSk6hgYkdaFoO5Yll
KOLeunMK+/9ZQU9j2t6FTEU8WJR+xvSlFYRrm0/2ZSvi+3+St3ITraBf+vnW
J7mKeJWzYMhmvRUkdSY0HyxUxC97eaw+ux8GtiO6f1IrFbHiJ59U/NRBeHsy
EVd2KeJhM255bbCAC11GfcI9ZD4un//TkbAAVWP20L9fSfyy3k2H/DoAV9a6
tb7sU8TVza7nppMPwMbJbY5uvxTx7+vg7VKL5pB6djTs0bwiDmUftRN6awau
l3d80JGhopLb+vGSjH0wE9ryQ1aOij+OZk+dDtwHQbFWM3MUKtLOCfq42O+D
1AwvqVIqFUtY/7j8VdwHbytTD2upUvH54Rju7NumoDk/1b1am4qHYw1a3pSY
wN/TOQPyFlTcIWHgbDRvBMF+GrP/LKn4s5r3qWmjEYheebas6xAVz8udyn8Q
bwTqca2qyTZU5JTJFvdZbQQ2DxddVzhS0ciSLUjWcQ9U/bIYF/KmYmHgM1Xj
PkO45sjzlzWOiuvsBj3OyBvAsRdyqcsSqMj14OSQ8MRO0FPX1BO+QcU0ZJ5m
rdsJc+PWoQq3qFiu+EG388ROcLvwSBqyqJjxUbjG59kOMI+32eL3iIo3G7X7
77lvB2r1Y7+pViqqS0mya/Nvg0Vak8K/dir22HHQLQfI1eZqdy1nBxUDN3/O
LK3Vg+tGvALiX6jIe/T7453+erDso22KZi8Vs663l5z+rQtjo7wVHr+p+Gq6
5E/hMMIzOfvFITElVHF7smylKBOw2HOuWUIJpX5LsOp06UDtnkvTj1coYbNu
Wcf9PB14dT5r1F9WCb1bPDKydHXgy8e+bhGaEn5WKlV8470V5hNcnm/WVMJE
kTPZ10c2w5blpwNDTZWwcE3hpUG5TVBx+8oF9/1KOO//IfnU5EbQ00k4Z2au
hCvpacYGLzaCoWuJJ+WgEu7fPO/d7L0RDjXN2BfZKWF1RuyTHe+0wDf4gt4n
dyV8auRw8kTiBnj6L5hdNVIJj5iyDO8+oAmR44pxG6OVMPQUpfXYOk1w6C2n
bo9VwrXB6hz1/JrA2zSha3ddCTWMLddY1GqAVYJNwPVUJfTatde4QEsD/qlp
LbA9UMLvbSaszxnr4B2lJVzooRK6x42KsXGvgxxhV1nKIyXcwBMbcal/LZhM
Z2zRfqKE+bSbbVvvrIWMagFf90olFGM1mg1RWQv6B/umPjcrYboxa90Oj9Ww
Yk9A8GALiU9AMkNdazUMM2UkpluVMFXtg1HA/CpIoJluEOlQwqMKx5M9Q1dB
/2j5KYMeJWyxXH7LPl8dQoLjxx6PKaFDkfOnehY1ePNo21CEMA1Pnl0+6f6b
AZd0HvfFiNJwyn2R82oDA7QaaF8TxGn4109u/UQSA1I/cXakSNFQ8puxW7Ue
A06yNtbdV6Qhy2lZT+3rdOA33pPxeh0NxQK+cv/brQyGQ2aWAvto+KswpXtu
hAr/TtXtFzaj4cBtj/e+L6lQtLDBWPwADffOZezbmksFaWHJHXKHaOjIZjZ0
xYEKgxs/aq5yoKF8W7Wm/CdFuBZkLWjkRcNU/pBpwXYFqFNwrA+PpSEcGtp/
85ccKHS3SLnF05DTcEO69lM58E3ROWl8nYZnH2hc2RAkB2ulxcVEkmhY2nEh
XociB8mitfY3Mmi4gu5+64KZLJzmoi5kFNIwPGV9r1aLNNCGOzWfvKFhgUfT
w2juFXDx7q6riW9pyBt9QvZSpyR8cir+dO4dDd84f17x7JEkRPeFB259T0Nt
fF0nYC8J811bmqs6abj/3EZJ/koJaGu56fJqmIavJGaTha6Jw5Un5hlfeZXx
uPm4JsduUVjbsvvaT35lfOv6o9WJLgqfh3Td/yxXRubh3K8ibKKgQVmts0xU
GYWOg/aGUhHovsL1ca2MMi5erXiYvUoENu97IhSgpozp8kU5zxWEof/E/emQ
Vcq4p3MuDFmEISYoqytujTKq8T4X/9ctBAP/Rd3L0VRGmZUbd65NF4IEeSeD
5i3KyBtpF31USQjGhlcEUPYoYyS/Upe583JI5hI8rrJXGcUfFvmlr1kOOxU4
92qYKKPfzvQ4yykBSN0/LrPDTBkjZpaNCAQJwO7SF09OWiljfO11tjM5/HDn
qu9ouasyrg0yn4lf5AUr6hebwxGk/wg6o3OaGwo8XqfoRSnjgNIm/yOvuYG1
suLLyhhlDIzsFd+QxQ13Dmccmokn47s8PfHEmBvG4h0PJCQr4wuRVN7V97jg
Cve4UXO+MvLd42g74cUJ94Y5dbY1KaPVwJmxz2vZ4d/m6fOqr5Qx+81XlY/L
2cE0ZKBU+A1p//hatsgvNphSfrmpp0UZgwasyjbdZQO0jV5/4aMyDsu2Dmxn
sJH1k1Z/MkDG9zrzLq86K8yVrJFR46Zjwt/L6qpl/5irk6fqeJbRcUf3iHZt
0D+mXeAzj35eOkpsV+QvM/nHrN29uz5jOR33BQaeL/+xwAzvcfRcIUHHVXNe
agtSC0xZ3tQGTmU6Cu2Y9R6JnGNuteY/3aNHR431i5ZhJTNMN71WSoU+HdUl
1FmTwmaY6YykF7d20LGa9eD2SbsZJscEQ97CkI5KVRuSL/PPMF8Fb2t6bUrH
tc/cIwWOTzOtCn0Vyuzo6PKK587BlVNMP/bBVwn+dKx/mXfvevck89+2zXzJ
AXRU9rhZqVg6yQy8ErYr8xIdfWy8nCfjJ5nBnKvrC4LpiGkf3Zx2TzKjuE9V
NkTSsfPx4/HQsglmJt/Cw9lUOvqirr9e7jjzhajwDetKOgZ/uctmbzfK3GPm
0H6kio6Bbf7ndZRHmW/iH4m61NBxeS6bc8jQCPOd+IFonwY6vvGNPezqM8L8
InkrJKqZjiNJXNwGcb+YYzLKflXdpL/EC1l3en4yJWja9sosDKzpcwt8XTvA
xJtB0zxsDNwzG3xt880BpvPydxHD7Az0qAzU+n1ygFk+41L6iJuBJkU1rrtX
DDAdXieL6gkysMrq7DNfjx/MAh+WehsKA38WHys7sbqfueNFg2riVgYW/tJ7
s7nzO9ODKVZ1nslAyarIKIPS78ybj+wsbJGBecY1TXE3vjOHU2Yv0/UZuLlU
erFn33dmrJda5+PdDNzeDaWGr74xu2SioloOMVC4PLSApekr84zbgd+85xio
p/GMPeRLN1NW62gj/TwDc7uOj86ndDOfL3gm611gIHvDdOZP224mb0SEvm8g
A28bZqRt6OtipubXxg+GMHB1ejmXw59OZv2AxobGJAaqnP/O2K/2hXmiEJf1
JjNwZodRGNfvz0yhs3s7F1MZ+NH3hh/92WfmIW6XoI1ZDOzKopTkmnxm/lLO
aL+Tz8Ddq/8mp/l9YoodEfQJKmcg40aB6u0fHcynqnKGGRUMbMsX4a4q6WDa
TKhSnj1nYEn6ts6twR3M3MAd9b9rGcivOxxsSu9gbkm/IHH0NQPrH5dHfnL5
wHTo/Fmi18XAggQjtjcc75nct2dDbXoYuMB2Vjf+Yzvzniu3re83BlIU3A4/
KGhnTs1RuYv6GXjhdlXw14PtzFDpQxaKowwsVpZpVXrcxlzz7biazjgD4+1u
T/uHtTHb8rwXLScZ+CTnXt/KI21MinZMTvQ0A+VFh++5irYxa1jSzt+bZeBJ
7Ysm7MOtTKfGe8aNcwzUrMB9P2pbmfzRpUq9CwxUfW4qvSK1lfnQonF6cZGB
F08tCCecaWX+D2ysNvQ=
"]]},
Annotation[#, "Charting`Private`Tag$6728434#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0, 12}, {0., 0.1693448787328497}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{
3.871029679309491*^9, 3.8710299464671893`*^9, {3.8710302391277647`*^9,
3.871030389141665*^9}, 3.8710304245299883`*^9, 3.871088564635251*^9,
3.8710886886181107`*^9, 3.871101135632044*^9},
CellLabel->
"Out[438]=",ExpressionUUID->"1dc1b0b5-c358-4cfa-9af5-147483132093"],
Cell[BoxData[
GraphicsBox[{GraphicsComplexBox[CompressedData["
1:eJx13THoJ1cVR/FVDBpFFAlBYjAmrm4sJI2NjS4ISixSKIJYJKARtIiCVRqb
BU0sbGIRBVEEJSA2NqkEN6AiiCgWNqYQQS1sImqjjfvbuZ8LOcPaDGfd5D+z
2cPMe+/e733ws1/+xOdfe+XKlZfvvnLlcj3+9/BN15d+876nP3jXteUbz3/y
la+88b3LH/ncV7/wk7e8Z/l1j7zw57/ec3X5l//9/acfuO/dy1//1eUXHlr+
2HNXH33u6oPLb3j8sVs/8l3L37r8uMffuXzvPy4/8f7l79y+ofuW77/v8hve
vvz9n37oA3985t7lhx69/MB7ln90625/9t23LT9862kfeeGty5964PIvfPPy
Zy639/Tdy09cHv+bdy0/eYv+84PXLP/hxaf+9OJT//s5fvnWT7vx/L+Wf3v5
8Tf+vvzsM5c/oN8tX332Nn8Y//v4/cuvHP++5b8dP2/5S8f9XMdfPO53+cnj
eZafOJ53+f3Hn8fyj48/r+Vrx5/n8g+PP+/lB4//HsvfO/57Lb/j+O+5/O3j
v/fym46/D8sfP/6+LH/j+Pu0/Ovj79vy64+/j8sfPf6+Ln/t+Pu8/Ivj7/vy
XMvrRa/8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA
/MD8wPzA/MD8wPzA/MD8wPzY+x0/9nnGD8wPzA/MD8wPzA/MD8wPzA/MD8wP
zA/MD8wPzA/MD8yPvBfKJw9wr/zA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA
/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzY+x0/9nnGD8wPzA/MD8wP
zA/MD8wPzA/MD8wPzA/MD8wPzA/MD8yPfCeVT++FeoB75QfmB+YH5gfmB+YH
5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+bH3u/4
sc8zfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+ZN1QPn0n9b1Q
D3Cv/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA
/MD8wPzA/MD82PsdP/Z5xg/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wP
zA/Mj6yjy6d1Q7+T+l6oB7hXfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+
YH5gfmB+YH5gfmB+YH5gfmB+YH5gfuz9jh/7POMH5gfmB+YH5gfmB+YH5gfm
B+YH5gfmB+YH5gfmB+YH5kf2lcqndXTXDf1O6nuhHuBe+YH5gfmB+YH5gfmB
+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmx9zt+7POMH5gf
mB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gf2Wctn/aVuo7uuqHfSX0v
1APcKz8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/
MD8wP/Z+x499nvED8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8yPn
DuXTPmv3lbqO7rqh30l9L9QD3Cs/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/
MD8wPzA/MD8wPzA/MD8wPzA/9n7Hj32e8QPzA/MD8wPzA/MD8wPzA/MD8wPz
A/MD8wPzA/MD8wPzI+dw5dO5Q/dZu6/UdXTXDf1O6nuhHuBe+YH5gfmB+YH5
gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmx9zt+7POMH5gfmB+Y
H5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfOZcun87heu7QfdbuK3Ud3XVD
v5P6XqgHuFd+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+
YH7s/Y4f+zzjB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+ZH6jTK
p3PpnsP13KH7rN1X6jq664Z+J/W9UA9wr/zA/MD8wPzA/MD8wPzA/MD8wPzA
/MD8wPzA/MD8wPzA/MD8wPzY+x0/9nnGD8wPzA/MD8wPzA/MD8wPzA/MD8wP
zA/MD8wPzA/MD8yP1C2VT3UaPZfuOVzPHbrP2n2lrqO7buh3Ut8L9QD3yg/M
D8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8yPvd/xY59n/MD8wPzA
/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8SB1f+VS31DqNnkv3HK7nDt1n
7b5S19FdN/Q7qe+FeoB75QfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH
5gfmx97v+LHPM35gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfqSu
tXyq42vdUus0ei7dc7ieO3SftftKXUd33dDvpL4X6gHulR+YH5gfmB+YH5gf
mB+YH5gfmB+YH5gfmB+YH5gfmB97v+PHPs/4gfmB+YH5gfmB+YH5gfmB+YH5
gfmB+YH5gfmB+YH5gfmROu/yqa61dXytW2qdRs+lew7Xc4fus3Zfqevorhv6
ndT3Qj3AvfID8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzY+93/NjnGT8w
PzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wP9L3UD7VebeutXV8rVtq
nUbPpXsO13OH7rN2X6nr6K4b+p3U90I9wL3yA/MD8wPzA/MD8wPzA/MD8wPz
A/MD8wPzA/Nj73f82OcZPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8w
PzA/0gdUPvU9tM67da2t42vdUus0ei7dc7ieO3SftftKXUd33dDvpL4X6gHu
lR+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB97v+PHPs/4gfmB+YH5gfmB+YH5
gfmB+YH5gfmB+YH5gfmB+YH5gfmRvrjyqQ+ofQ+t825da+v4WrfUOo2eS/cc
rucO3WftvlLX0V039Dup74V6gHvlB+YH5gfmB+YH5gfmB+YH5gfmB+YH5sfe
7/ixzzN+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH6kT7R86otr
H1D7Hlrn3brW1vG1bql1Gj2X7jlczx26z9p9pa6ju27od1LfC/UA98oPzA/M
D8wPzA/MD8wPzA/MD8wPzI+93/Fjn2P8wPzA/MD8wPzA/MD8wPzA/MD8wPzA
/MD8wPzA/MD8wPxI33T51Cfavrj2AbXvoXXerWttHV/rllqn0XPpnsP13KH7
rN1X6jq664Z+J/W9UA9wr/zA/MD8wPzA/MD8wPzA/MD8wPzY+xw/9nnGD8wP
zA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8yP5AiUT33T7RNtX1z7gNr3
0Drv1rW2jq91S63T6Ll0z+F67tB91u4rdR3ddUO/k/peqAe4V35gfmB+YH5g
fmB+YH5gfmB+7P2OH/s84wfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH
5gfmR3I1yqccgfZNt0+0fXHtA2rfQ+u8W9faOr7WLbVOo+fSPYfruUP3Wbuv
1HV01w39Tup7oR7gXvmB+YH5gfmB+YH5gfmB+bH3O37s84wfmB+YH5gfmB+Y
H5gfmB+YH5gfmB+YH5gfmB+YH5gfmB/JmSmfcjWaI9C+6faJti+ufUDte2id
d+taW8fXuqXWafRcuudwPXfoPmv3lbqO7rqh30l9L9QD3Cs/MD8wPzA/MD8w
PzA/9n7Hj32e8QPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzI7lL
5VPOTHM1miPQvun2ibYvrn1A7XtonXfrWlvH17ql1mn0XLrncD136D5r95W6
ju66od9JfS/UA9wrPzA/MD8wPzA/MD/2fsePfZ7xA/MD8wPzA/MD8wPzA/MD
8wPzA/MD8wPzA/MD8wPzA/MjOWTlU+5Sc2aaq9EcgfZNt0+0fXHtA2rfQ+u8
W9faOr7WLbVOo+fSPYfruUP3Wbuv1HV01w39Tup7oR7gXvmB+YH5gfmB+bH3
O37s84wfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB/J5Sufcsia
u9ScmeZqNEegfdPtE21fXPuA2vfQOu/WtbaOr3VLrdPouXTP4Xru0H3W7it1
Hd11Q7+T+l6oB7hXfmB+YH5gfuz9jh/7POMH5gfmB+YH5gfmB+YH5gfmB+YH
5gfmB+YH5gfmB+YH5kdyKsunXL7mkDV3qTkzzdVojkD7ptsn2r649gG176F1
3q1rbR1f65Zap9Fz6Z7D9dyh+6zdV+o6uuuGfif1vVAPcK/8wPzA/Nj7HT/2
ecYPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzI/ktpZPOZXN5WsO
WXOXmjPTXI3mCLRvun2i7YtrH1D7Hlrn3brW1vG1bql1Gj2X7jlczx26z9p9
pa6ju27od1LfC/UA98oPzI+93/Fjn2f8wPzA/MD8wPzA/MD8wPzA/MD8wPzA
/MD8wPzA/MD8wPxIjnH5lNvanMrm8jWHrLlLzZlprkZzBNo33T7R9sW1D6h9
D63zbl1r6/hat9Q6jZ5L9xyu5w7dZ+2+UtfRXTf0O6nvhXqAe+XH3u/4sc8z
fmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfmB+JNe7fMoxbm5rcyqb
y9ccsuYuNWemuRrNEWjfdPtE2xfXPqD2PbTOu3WtreNr3VLrNHou3XO4njt0
n7X7Sl1Hd93Q76S+F+oB7pUf+zzjB+YH5gfmB+YH5gfmB+YH5gfmB+YH5gfm
B+YH5gfmB+ZHcu7Lp1zv5hg3t7U5lc3law5Zc5eaM9NcjeYItG+6faLti2sf
UPseWufdutbW8bVuqXUaPZfuOVzPHbrP2n2lrqO7buh3Ut8L9WDvN9etLxne
+pLhrS8Z3vqS4a0vGd76kuGtLxne+pLhrS8Z3vqS4a0vGd76kuGtLxne+pLh
rS8Z3vqS4a0vGd76klfzKee+ud7NMW5ua3Mqm8vXHLLmLjVnprkazRFo33T7
RNsX1z6g9j20zrt1ra3ja91S6zR6Lt1zuJ47dJ+1+0pdR3fd0O+kvhfqwT5P
rlufOLz1icNbnzi89YnDW584vPWJw1ufOLz1icNbnzi89YnDW584vPWJw1uf
OLz1icNbnzi89YnDW5/4aj7NfWjOfXO9m2Pc3NbmVDaXrzlkzV1qzkxzNZoj
0L7p9om2L659QO17aJ1361pbx9e6pdZp9Fy653A9d+g+a/eVuo7uuqHfSX0v
1APcKz8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8wPzA/MheofJqD0rkPzblv
rndzjJvb2pzK5vI1h6y5S82Zaa5GcwTaN90+0fbFtQ+ofQ+t825da+v4WrfU
Oo2eS/ccrucO3WftvlLX0V039Dup74V6gHvlB+YH5gfmB+YH5gfmB+YH5gfm
B+YH5gfmB+ZH5mSVT3OBOgelcx+ac99c7+YYN7e1OZXN5WsOWXOXmjPTXI3m
CLRvun2i7YtrH1D7Hlrn3brW1vG1bql1Gj2X7jlczx26z9p9pa6ju27od1Lf
C/UA98oPzA/MD8wPzA/MD8wPzA/MD8wPzA/MD8yPzI0rn+ZkdS5Q56B07kNz
7pvr3Rzj5rY2p7K5fM0ha+5Sc2aaq9EcgfZNt0+0fXHtA2rfQ+u8W9faOr7W
LbVOo+fSPYfruUP3Wbuv1HV01w39Tup7oR7gXvmB+YH5gfmB+YH5gfmB+YH5
gfmB+YH5kTmK5dPcuM7J6lygzkHp3Ifm3DfXuznGzW1tTmVz+ZpD1tyl5sw0
V6M5Au2bbp9o++LaB9S+h9Z5t661dXytW2qdRs+lew7Xc4fus3Zfqevorhv6
ndT3Qj3AvfID8wPzA/MD8wPzA/MD8wPzA/MD8yNzRcunOYqdG9c5WZ0L1Dko
nfvQnPvmejfHuLmtzalsLl9zyJq71JyZ5mo0R6B90+0TbV9c+4Da99A679a1
to6vdUut0+i5dM/heu7QfdbuK3Ud3XVDv5P6XqgHuFd+YH5gfmB+YH5gfmB+
YH5gfmB+ZM5u+TRXtHMUOzeuc7I6F6hzUDr3oTn3zfVujnFzW5tT2Vy+5pA1
d6k5M83VaI5A+6bbJ9q+uPYBte+hdd6ta20dX+uWWqfRc+mew/Xcofus3Vfq
Orrrhn4n9b1QD3Cv/MD8wPzA/MD8wPzA/MD8wPzI3Onyac5u54p2jmLnxnVO
VucCdQ5K5z4057653s0xbm5rcyqby9ccsuYuNWemuRrNEWjfdPtE2xfXPqD2
PbTOu3WtreNr3VLrNHou3XO4njt0n7X7Sl1Hd93Q76S+F+oB7pUfmB+YH5gf
mB+YH5gfmB+Zw14+zZ3unN3OFe0cxc6N65yszgXqHJTOfWjOfXO9m2Pc3Nbm
VDaXrzlkzV1qzkxzNZoj0L7p9om2L659QO17aJ1361pbx9e6pdZp9Fy653A9
d+g+a/eVuo7uuqHfSX0v1APcKz8wPzA/MD8wPzA/MD8wP8KnOeydO905u50r
2jmKnRvXOVmdC9Q5KJ370Jz75no3x7i5rc2pbC5fc8iau9ScmeZqNEegfdPt
E21fXPuA2vfQOu/WtbaOr3VLrdPouXTP4Xru0H3W7it1Hd11Q7+T+l6oB7hX
fmB+YH5gfmB+YH5gfoQ3N4UfncPeudOds9u5op2j2LlxnZPVuUCdg9K5D825
b653c4yb29qcyubyNYesuUvNmWmuRnME2jfdPtH2xbUPqH0PrfNuXWvr+Fq3
1DqNnkv3HK7nDt1n7b5S19FdN/Q7qe+FeoB75QfmB+YH5gfmB+ZHeHOE+IH5
0TnsnTvdObudK9o5ip0b1zlZnQvUOSid+9Cc++Z6N8e4ua3NqWwuX3PImrvU
nJnmajRHoH3T7RNtX1z7gNr30Drv1rW2jq91S63T6Ll0z+F67tB91u4rdR3d
dUO/k/peqAe4V35gfmB+YH5gfoQ3V4sfmB+YH53D3rnTnbPbuaKdo9i5cZ2T
1blAnYPSuQ/NuW+ud3OMm9vanMrm8jWHrLlLzZlprkZzBNo33T7R9sW1D6h9
D63zbl1r6/hat9Q6jZ5L9xyu5w7dZ+2+UtfRXTf0O6nvhXqAe+UH5gfmB+ZH
eHPm+IH5gfmB+dE57J073Tm7nSvaOYqdG9c5WZ0L1DkonfvQnPvmejfHuLmt
zalsLl9zyJq71JyZ5mo0R6B90+0TbV9c+4Da99A679a1to6vdUut0+i5dM/h
eu7QfdbuK3Ud3XVDv5P6XqgHuFd+YH5gfoQ3d5EfmB+YH5gfmB+dw965052z
27minaPYuXGdk9W5QJ2D0rkPzblvrndzjJvb2pzK5vI1h6y5S82Zaa5GcwTa
N90+0fbFtQ+ofQ+t825da+v4WrfUOo2eS/ccrucO3WftvlLX0V039Dup74V6
gHvlB+ZHeHNI+YH5gfmB+YH5gfnROeydO905u50r2jmKnRvXOVmdC9Q5KJ37
0Jz75no3x7i5rc2pbC5fc8iau9ScmeZqNEegfdPtE21fXPuA2vfQOu/WtbaO
r3VLrdPouXTP4Xru0H3W7it1Hd11Q7+T+l6oB7hXfoRv+nV+YH5gfmB+YH5g
fmB+4M5l7xzqzt3tnNHOVewcuc7N6pygzkXpHIjm3jfnu7nGzXFtbmVz+ppL
1hym5s40Z6O5Au2jbt9o++TaF9Q+iNZ9t861dX2tY2rdRs+pey7Xc4juu3af
qevqriP63dT3RL3o9fbj37h203V+ffkvx/V6/v/TP+f3+efxna799/Sf6330
vv2+y5/uYy9du+n6z+N6x1/v1c/p7+uv9+f35/j9/v/++h1+7vX/A+osdM8=
"], {
{GrayLevel[0.8], EdgeForm[None],
GraphicsGroupBox[PolygonBox[CompressedData["
1:eJxVnXXYldXzd0+H3S12t4JISAlIiKiIghgoNiIiWJggiKAYKCgiiIWCiAEq
ioLYit3d3d3x3us7a1/n9/5xX8Ps2TM7Zt3nPBjPZ4PDBu9zfCGXy324Ui5X
zOyj9VwOv2n2dMyeFbMnC+WaZ08pe8rZ0yJ7KtlTzZ6W2lr27GKc2M65qEfO
mdnTLXu6Z0+zXNQn1jp7suVyS2VP++xZLnuWz54O2hWyZzct+2iTPUtnzzLZ
s6t5+K1cn1qd3O/K2bN79qySPatmzz7Zs172rJ89nY2v4r5Wz541smeP7Fkz
e9bKnh7atd33Gsa6Zs9q5nSxNv6ezl0ne3pq182eXq65Qfbsq90we9plz7Ke
ubdjG2XP3tnTxL3uZQ38/YxvnD1tvQPy93dsk+zpo900ew7Kni2zZ6vsOVi7
dfYcot0mew7Nnm2zZ7vsGWj/6O2B2bOF+f2yZ3P9/uaRc5h522fPkdmzUy6Y
OUpLn4+zHowc7RhcDDBvh+w5NhdssfYxxvHP8t7pySBr0OfT7B+9PSEXHMDF
id4L9zpUC1NDjBPr691slj0HaDnb4FywSK3jXQd/mDXgcbhr0vPTtbBwai6Y
Y09nOAZTJ+eCXd6hk6yBf4pj5Jzt+WDtHC0c3WmMsUvsJT08NxdMwMjoXDAN
X+dp4WuUcWIjc8EiOSOsjT/GuXB3vha+LvSOuJvxWvp/o/fLvV7kGIyMywV/
cDfWGvgXG2ffFxin7qWeAwavyQUf9HaCY/2zZ1Iu+Dg8eybngi2YukoLR1dm
zxHGJuaCRXIuzwXT+FOcC1NXa2FtumvS52u19P8y1yf/Osfga1ou3g32OtUa
+Ncbh68Xsw+eJ7Ln8ey5wTHu62nPwN7vsTf0bVYuOICd2blgGr5u1cLXLcaJ
zcwFT+TcnAue8Oc4F+5u0/JZOzcX7NDzeVpYuCkXTJN/l2MwdUcu3jeYu90a
+HcbZ98zctF/8ud7Drh71P5xf/c6Bl8P5IIP+r8oF2zB1INaOFponNj9uWCI
nAW54BJ/sXNh6iEt78RjrknPH9fCwn2uT/4TjsHUI7ngj70+bA38p7Lnilww
dWQ++xzLnqbZs8Qx+ndE5u9o7F17Q99eyAUfsPxSLtiCqZe1cPSicWLP54Ih
clbPan2c2U+y57lcMErs1VywBUdv2W/6/7YWdt7Rso/Xc/F+0p/XzMN/xfWp
9Z77ha8PcsENvHxtz7iz940TY18wwefQp7ngCY4+097lvu809lEuuCHnQ2vj
f+5cOPpCy3vwjWvS52+19P/NXDDKmb9zDI6+ygVz7PVLa+B/bxyO3vAOyP/B
Mbj7Uftg9vwmBzD7uxaO/tDC0d/Z82QuuCjno3/09tdccEP+L7lgEf9P82Dt
H/NgJ5flPpOZZ/ljPix9ruSjHowU8jEGF/+ax2dGKR9ssXYxH3H8NfJx7/Sk
mo8a9HnlfPSP3i6VDw7gYpl83Av3umw+LEwtnY84sZ+8G96zn7WcrZ4PFqlV
y8c6+MvlowY8rpKPNen5qvmwsLBSPphjT6vlYwymVsgHu7xDy+ejBv6Kvlfk
rJmP88HaWvmwcLRHPmKMbZmPXtLDdfPBBIyslw+m4Wv9fFj4apKPOLF18sEi
OWvnozb+BvmYC3cb5sPC16b5uCPuZrN8WPrfNh/3y71uno8xGNk4H/zB3Ub5
qIG/RT7i7HuTfMSpu1U+zgGDLfLBB73dOh9j8LVDPvj4LxefQbCV93MKW/Dz
6T+52z4fLJKzXT6Yxm/mXJjaWQtrLV2TPrfS0v9ts+cv34nWjsHXLvl4N9hr
c2vg72p8adnne4/v4TaOLeN7wBifd3vnozf0rWM+OICdzvlgGr5218JXJ+PE
dssHT+R0yAdP+F2cC3ddtXzW9pAder6nFhba54Np8ns6BlPd8/G+wVw3a+Dv
ZZx9t7P/5O/jOeCuf/Zs4/31cgy+9s8HH/S/bz7YgqkDtHDUxzix/fLBEDm9
88Elfj/nwtSBWt6JQ12Tnh+mhYV9XZ/8AY7B1MH54A/WDrIG/uHGE1N8JtHP
o/LBHBw1zf4Sl8+eQvYcKwdwcap9oocDHYPrQfngDL6O18LUMflgkfzjnMu8
wcZhakg+GOKdG2bP6PlJWlg4WQtHp2jZx4nm0asTrEetC+0Bd3+a+4W10/PB
EOycae9hYbhxYmc5xmfSOflgC6ZGaOHoDGuQP9Ix2DlXC/ujtLBzXj5YoVdj
tPR8qHvnzOc7Bhfj8sETvIy2BvljjRO7wDjnHO9ZYefO7DnbvV/jvdOfCdlz
SD74vTwfPMHRRC3sXGac2CX54AaOLs4Hi/iTnAtHV2j5GWpK9hxtz6/Wws5F
7ov8qY7BzuR8/EwGd1daA3+a8eM8xx72YLrngK9b7Rn9vNYxmLoxH0xwrzfl
gyc4ulkLRzOME7shH/yRc30+GMKf6VxYm6WF/TmuSf9v08LRda5P/u2OwdHs
fPDHXm+xBv4dxjlfoZz9nFDKfg7Inrn2DdbuygdbMHVPPniChcfsEz2c7xh8
3ZcPtuBogRZe7rYG+fc7Bl8PaOFooZb35sF88ETfFmvp/72uwxoPOQYjj+aD
Lfa0yBrkP5I9lxp7w3unJ29q6cmT+eAJjpbIAVw8kQ8uiT3t2FXZ82w+OIOv
57Qw9ZQ1yH/eMTh6Qct78KIWjl7OBzf07RUt/X/ce2XtVx2DkdfzwRZneMka
5L9m/Eb3B8u8A295Pjj6yTvlLt+VA7j42julb+85Btcf5IMz+PpQC1Pv5INF
8j9yDI4+1vLef6KFo8+yZ14+OPpcCwvvuw5rfOEYfH2VD57Y06fWIP9L4/P1
YRMu3/Z87Om7fLAFUz/kgydY+DYfLBL70THu4mfvA45+zZ6H88HL99Yg/zfH
4Ot3Lez/oaVXf+WDFTj6WwsL33ivrP2PY/D1Xz54eiZ7/rQG+f8af9r+8R3I
9xb/MJO5cMd3IczB18qFuEd6VSkEEzBVKwRPsFMvhIWRaiHixMqFYJGcPbI/
r5k9a2VPqRC8Elu6EMzx3qxQiN7DzoqFsPCyUiEs+1i2EO8V3C1TiDz8pQqx
PrVWKcR+YWq1QjAEOxsUok/0cNVCxImxr0/laO1CMAQv6xTCwgX7/ky+1igE
f+SsXoja+OsWYi58NSmEhf0NC7EmPd+oEBZ2li8EW5x540KMwc76hegre12v
EDXwNylEnPdsuULcAfmbFmIM1jbP/vyLrG1TiN7DzraFsLCzXSEsvOxQCCbg
pWUh+kdvty4Ef+RvVQgu8bcvRB45OxYiD3aa+TNUMXt21tLnVtaDkeaOwcVO
hcjjZ68WhWCLtXcxjt9DXuhJa2vQ5y6F6B+9bVsIDuCifSHuhXvtoIWpdsaJ
bVGIu+Gd27IQlrO1KQSL1NrVdfB3swY8dnVNet5NCwu7F4I59tTdMZjqVAh2
eYc6WgO/s2Pk7On5YK2nFo5GGGOsfyF6SQ/3KQQTMLJvIZiGr95a+OplnNje
hWCRnL2sjb+fc+Fufy18HegdcTcHaen/MO+Xez3YMRg5IHs2KwR3fawBj4cY
Z9/9jFP3UM8Bg/wLm1b29jDH4OvIQvDBz+ZHF4ItmDpGC0dHGSd2RCFYJOfw
QjCNf6xzYWqgFtYGuyZ9PkFL/we4PvlDHIOvQYV4N9jrcdbAP9E4fMExn518
bg51jPviPeBzlM+78+wNfTtNDmDn9EIwDV9naOFruHFipxaCJ3JOKQRP+Gc6
F+7O0vJZO7IQ7NDzc7WwcHIhmCZ/lGMwdU4h3jeYO9sa+KONs++T7D/5YzwH
3E20f9zf+Y7B1/hC8EH/Ly4EWzB1iRaOLjJO7MLs6WvOuEJwCVOXOhemJmh5
Jya5Jj2/QgsLY12f/Csdg6nLC8Efe73MGviTjcMU34H8fMPPXlc5BoNXF4I/
mLrV3tC36YXgA5avKwRbMHW9Fo6uNU7smkIwRM6n2TM3e+Zlz7RCMErsxkKw
BUez7Df9v0ULO7O17OOmQryf9GeGefg3uD615rhf+Lq9ENzAywJ7xp3dZvxM
9wUTfA7dVQie4Ohu7Sj3PcLYnYXghpw7rI1/j3PhaL6W9+B+16TPC7PnAvs/
sxCMcuZFjsHRfYVgjr3eaw38B43D0c3eAfmLHYO7h7Rw97gcwOwTWjh6UgtH
SwrBDVy8bP/o7WOF4Ib8RwvBIv5T5pHztHmw81whuJmaPc9r6fMr1oORFxyD
i2fMm5I9LxWCLdZ+0Tj+Z947PXnVGvT5Q/tHb98oBAdw8Zb3wr2+rYWpN40T
e9i74T17RMvZXi8Ei9R6zXXw37EGPH7kmvT8Yy0sfFAI5tjTJ47B1HuFYJd3
6F1r4L/vGDmfez5Y+0ILR2sXI8bYn/aSHn5dCCZg5NtCMA1f32fPA4Xg6xvj
xL4qBIvkfGlt/B+cC3c/auHrV++Iu/lNS/+XK8b9cq+/OwYjPxeCP7j7yRr4
fxhn378Yp+5fngMGa8Xgg97+7Rh88R8awMez2VMoBlswVSyGhaN8MeLE/isE
i+T8Wwim8UvFmAtT5WJYWKsXY036vFQxLP3/x/XJX7oYY/BVLca7wV4rxaiB
v0wx4m+6V1jmHVi2GGPcV7NinIG9r1+M3tC3lYvBAeysWgym4Wu1Ylj4WqUY
cWIrFYMnclYsBk/4qxdjLtytUQzLZ+06xWCHnq9bDAsLKxSDafKbFGMMptYq
xvsGc2sWowb+esWIs+/li9F/8jfM/vyd3G1XjP5xfxsVYwy+NisGH/R/i2Kw
BVNbFsPC0ebFiBPbtBgMkbNJMbjE36oYc2Fq62JY3onti7EmPd+hGBYWNi7G
+uTvWIwxmNq2GPyx122KUQN/p2LEYYrPLb73+H5q6hj9ezZ7pmTP1dmzezF6
Q99aFoMPWG5dDLZgalctHLUyTqxFMRgi55zs6ZE9e2bPLsVglFjbYrAFRx2L
0W/630kLO5217KN9Md5P+tPOPPw2rk+tLu4XvroVgxt42a8YPePOuhpf3X3B
BJ9DPYvBExztpW3ivtc2tkcxuCGnu7Xx93YuHO2j5T3Y3zXpcx8t/d+tGIxy
5r6OwVHvYjDHXvfNng30DzAORx28A/L7OQZ3B2rh7lA5gNnDtHA0QAtHRxSD
G7g43v7R2/7F4Ib8Q4rBIv7h5pFzpHmwc0z27Jw9zbPnWC19Hmw9GBnoGFwc
ZR6fGYOKwRZrH2ccf4T3Tk9OsAZ9PsP+0duhxeAALk7yXrjXk7UwNcw4sYO8
G96zg7Wc7cRisEitIa6Df4o14PFM16TnZ2lh4fRiMMeeznYMpk4rBru8Q6da
A3+4Y+SM9Hywdq4Wju4yxtjl9pIejikGEzAythhMw9c4LXydb5zYednTy5xR
1obNC5wLdxdq4esS74i7uVRL/2/2frnXCY7ByEXF4A/uxlsD/zLj7Pti49Sd
6Dlg8Lpi8EFvJzkGX1cVg4+ji/EZBFswNVULR1OME5tcDBbJubIYTONPcy5M
XaOFtetdkz7foKX/V7g++Tc6Bl/XFuPdYK/TrYE/wzh8wT7fe3wP3+QY99Xc
MT7vFtgb+nZrMTiAnduKwTR83a6FrznGic0uBk/k3FIMnvDvcC7c3anls/bu
YrBDz+dnz+hisDCrGEyTf69jMDWvGO8bzM21Bv59xtn3TPtP/v2eA+6etH/c
3wOOwdfiYvBB/x8uBlsw9YgWjh4yTuzBYjBEzqJicIn/qHNh6jEt78RTrknP
l2hhYaHrk/+0YzD1RDH4Y6+PWwP/GeMwxc81/L2QvxM+Vwz+4O7qUjaWPcdm
zwf2hr69XAw+YPnVYrAFU69p4egV48ReKgZD5KyV1foss59nz4vFYJTYG8Vg
C47etd/0/z0t7LyvZR9vFeP9pD9vmof/uutT60P3C18fF4MbePnennFnHxkn
9plM8Dn0ZfbcUwyOvtLe676Jw9qnxeCGnE+sjf+1c+HoGy3vwQ+uSZ9/1NL/
d4rBKGf+yTE4+q4YzLHXb62B/7NxOHrbOyD/F8fg7lct3P0lBzD7txaO/tHC
0X/F4AYuaqXoH739sxjckP9HMVjE/9c8cvgPisnjZ6gi/04ssy9kT6kUlj7X
S1EPRsqlGIOLfCny4K5aCrZYu1KKOP462Z+/sCdLlaIGfV6tFP2jt8uWggO4
WL4U98K9rlAKC1PLlSJO7Dfvhvfsdy1nW6YULFJr6VKsg79iKWrA4+qlWJOe
r1EKCwurloI59rRmKcZgauVSsMs7tFIpauCv4ntFzrqlOB+sNSmFhaO9ShFj
bNtS9JIeblAKJmBko1IwDV8bl8LC14aliBNbvxQskrNeKWrjb1KKuXC3aSks
fG1ZijvibrYqhaX/HUpxv9zr1qUYg5HNS8Ef3G1Wihr425Qizr63KEWcutuV
4hww2LoUfNDb7UsxBl9NS8FHIXt2LgVbMNVcC0fNjBPbqRQskrNjKZjG38W5
MNVCC2u7uiZ9bqOl/zuUYn3y2zoGX61K8W6w15bWwG9nfDn3Asu8A+0dW97P
0Z3de+9S9Ia+7V4KDmCnaymYhq9uWvjqYpxY51LwRE6nUvCE3925cLeHls/a
vWWHnu+jhYWOpWCa/F6OwVTPUrxvMLdn9qytv69x9r2b/Sd/P88BdwPsH/e3
v2Pw1a8UfND/g0rBFkwdrIWjA40TO6AUDJHTtxRc4h/iXJjqr+WdONw16fkR
Wljo4/rkH+kYTB1WCv7Y66HWwD/KOEzxucXPUnw/He0Y/aOvU42dbm/o2/Hy
AcsnlIItmBqihaPBxokNKgVD5NyVPSOz59zsOa4UjBIbWgq24OhU+03/T9PC
znAt+zipFO8n/RlmHv6Jrk+tM9wvfJ1VCm7gZZw9487ONN7dfcEEn0OjSsET
HI3W9nLfexkbUQpuyDkne3ron+dcOBqj5T24wDXp84Va+n9KKRjlzOMdg6Ox
pWCOvZ5vDfyLjMPRyd4B+Rc7BneXaOFuohzA7CQtHF2hhaPJpeAGLq6zf/T2
8lJwQ/5lpWAR/0rzyLnKPNiZWoqfoQZmzzQtfb7eejByjWNwMcU8PjOuLQVb
rD3dOP7d3js9ucEa9Pl2+0dvbyoFB3Ax03vhXmdpYepm48Qu9W54zyZoOduM
UrBIrRtdB/8Wa8Djndlztj2fq4WF20rBHHua5xhM3VoKdnmHZlsDf45j5Nzj
+WBtvhaOvjTG2BP2kh4uKAUTMPJAKZiGr4Va+LrfOLH7SsEiOfdaG3+Rc+Hu
QS18PeIdcTePaun/294v9/qYYzDyUCn4g7vF1sB/3Dj7ftg4dZ/0HDD4ain4
oLdPOQZfz5aCD3425789gi2YekELR88ZJ/ZMKVgk5+lSMI3/onNh6iUtrL3m
mvT5dS39X+L65L/hGHy9Uop3g72+bA38N43DF+zzvcf38FuOcV8DHePz7jt7
Q98+KAUHsPNx9txRCr4+0cLXh8bh/f1S8ETOe6XgCf9T58LdZ1o+a78qBTv0
/GstLLxbCqbJ/8YxmPqiFO8bzH1uDfxvjbPvd+w/+d97Drj7x/5xfz84Bl+/
lIIP+v9bKdiCqd+1cPSrcWI/l4Ihcn4qBZf4fzgXpv7U8k7865r0/D8tLPzo
+uTzPwYyBlN/l4I/9vqXNfDz5YjD1Ev1rH/Z81T2FMvBH9yVy8ETHK2W/fkj
+1YrBx+wvFQ52IKppcth4ahejjixajkYIqdn9ud1smfd7KmUozaxZcvBFhyt
VI5+0/+Vy2FhZ5VyWBhZvhzvJ/1Zrhx5+MuUY31qrV6O/cLXmuXgBl42LkfP
uLM1yhEnxr5ggs+hJuXgCY7WK4eFHfb9paytXQ5uyFmrHLXx1y/HXDjaoByW
92CTcqxJnzcth6X/K5aDUc68WTnG4GijcjDHXjcsRw38zcsRh6MVynEH5G9R
jjG427IcFu62KwcHMLt9OSwc7VAOC0c7lYMbuGhdjv7R223LwQ3525SDRfwd
y5FHTlPz+G8nm2dPqRzs7KKlz7taD0ZaOAYXzcyDu1blYIu1WxrH30te6Ekb
a9Dn7uXoH71tXw4O4GK3ctwL99pRC1MdjBPbqhx3w3u2dTksZ2tXDhap1dZ1
8DtZAx73cE163kMLC93KwRx72tMxmOqSPauW4x3qbA1Y7uoYOXt7PljbRwtH
o4wxdlg5ekkPe5eDCRjZvxxMw1cfLXztZ5zYvuVgkZxe1sbv61y4O0ALXwd7
R9zNIVr6f7L3y732dwxGDiwHf3DXzxr4hxpn3wcZp+4AzwGDJ5SDD3p7uGPw
dXQ5+Ng5e44tB1swNVALR8cYJ3ZUOVgk58hyMI1/nHNhapAW1oa4Jn0+UUv/
j3B98oc6Bl+Dy/FusNfjrYE/zHgH9wLLvAMnOcZ9TfUM7H2svaFvZ5SDA9g5
qxxMw9fZWvg60zix08vBEznDs2d3/XOcC3cjtHzWji4HO/T8PC0snFoOpuFx
jGMwdW453jeYG2kN/PONs+9T7D/54zwH3F1h/7i/CxyDr4vLwQf9v7QcbMHU
BC0cXWKc2EXlYIic8eXgEv8y58LU5VreiStdk55P1sLCha5P/lWOwdSkcvDH
XidaA3+KcZhqXsl6mD3l7LnaMfq3c+YXjd1ub+jbdeXgA5ZvKAdbMHWjFo6u
N07s2nIwRM4X2XN39tyTPdPLwSixm8rBFhzdar/p/xwt7NymZR8zy/F+0p+b
zcOf4frUusP9wtfccnADLwvtGXd2p/Fz3BdM8Dk0vxw8wdG92jHue5Sxu8rB
DTnzrI1/n3PhaIGW92CRa9LnB7X0f3b2nOaZFzsGRw+Ugzn2er818B8yDkez
vAMYf9gxuHtEC3dPygHMPqWFoyVaOHqmHNzAxav2j94+UQ5uyH+8HCziP20e
Oc+aBzsvZM+07Lkme17U0ufXrAcjLzkGF8+Zx2fGK+Vgi7VfNo7/pfdOT163
Bn3+xP7R27fKwQFcvJs9t3iv72lh6m3j3Nmj3g3v2WNazvZmOVik1huug/++
NeDxU9ek559pYeHjcjDHnj53DKY+LAe7vEMfWAP/I8fI+crzwdrXWjhqUokY
Y3/bS3r4XTmYgJEfysE0fP2oha/vjRP7thwskvONtfF/ci7c/ayFr9+9I+7m
Dy39X7ES98u9/ukYjPxaDv7g7hdr4P9lnH3/Zpy6/3gOGFyqEnzQ238dg69C
Jfh4vhyfQbAFU3xOYeGIzyfixPKVYJEcflkITONXKjEXpqqVsLC2dCXWpM/L
VMLS//9cn/xlKzEGX/VKvBvstVaJGvjLVSIOX7DP9x7fwytk4++U476ucYzP
u40q0Rv6tlolOICdNSrBNHytWQkLX6tXIk5s1UrwRM4qleAJf61KzIW7tSth
+axdrxLs0PP1K2FhYeVKME3+BpUYg6l1K/G+wdw6laiBv2El4ux7pUr0n/yN
K3EOuNuhEv3j/japxBh8bVEJPuj/VpVgC6a2roSFoy0rESe2eSUYImezSnCJ
v00l5sLUtpWwvBM7VmJNer5TJSwsbFqJ9clv6hhMbV8J/tjrdpWogd/MeGJq
qv3cxe9GOCpXM/bgKXtaVYIDuOhWiT7Rw9aOwXWbSnAGX221MNWyEiySv6tz
mdfOOEztVgmGeOc6V6Jn9Hx3LSx00cJRVy376GgeveqQPctb6+BK9IC77+5+
Ya1HJRiCnZ6V6D0s7GGc2F6O8Zm0TyXYgqleWjja0xrk7+sY7PTWwv5+Wtjp
UwlW6FVfLT3v5N458wGOwcWBleAJXva3Bvn9jBM7yDjnPMSzws6o7NnbvZ/g
vdOfATIBv0dUgic4OlILO4cbJ3ZYJbgh59BKsIh/lHPh6GgtP0Mdlz0t7Pkg
Lez0d1/kH+8Y7BxbiZ/J4O4Ya+APNr6r52hiD4Z4Dvg6257RzxMdg6lTKsEE
93paJXiCo+FaODrVOLGTK8EfOSdVgiH8050La2doYf8c16T/I7RwNCx72ps/
0jE4OqsS/LHXM62Bf65xzsffK/hnM/xzmdH2DdbGVIItmBpbCZ5g4Qr7RA/H
OQZfF1aCLTgar4WX861B/kWOwdfFWji6RMt7M6ESPNG3y7T0/wLXYY3LHYOR
SZVgiz1dag3yJxondov3Tk9ma+nJVZXgCY6ulgO4mFwJLolNdWxg9lxTCc7g
a7oWpqZYg/xrHYOj67S8B9dr4WhG9gy1bzdp6f+V3itr3+wYjMyqBFuc4QZr
wN1M46e4P1jmHbjV88HRo94pd3m7HMDFQu+Uvt3hGFzPrQRn8DVPC1O3VYJF
8u9yDI7u1vLe36OFo3uz57xKcHSfFhbudB3WWOAYfD1QCZ7Y03xrkH+/8XH6
sAmXczwfe1pcCbZg6uFK8AQLD1aCRWKPOMZdPOZ9wNHjWnh5yBrkP+EYfD2p
hf2ntPTq6UqwAkfPaGFhkffK2s86Bl/PV4KnadmzxBrkP2d8qv3jO5DvrRec
C3d8F8IcfH3iPdKr17Pnxkow9WYleIKdt7Qw8oZxYq9WgkU4apJ9z36V2a+z
55VK8ErsnUowx3vzob2HnY+08PKxln28V4n3Cu7eNQ//bden1qfuF6Y+rwRD
sPOTfaKHnxknxr7gAI6+qQRD8PKt9n73fa+xLyvBHzlfWBv/O+fC1/da2P/Z
Nen5L1rY+aASbHHmXx2DnR/tK3v9wRr4vxnnPXvfOyD/d8dg7Q8trP1r72Hn
Py3s8Iv4sPBSqAYT8LJMNfpHb/+pBH/k/10JLvHz1cgjp1iNPNipVIObl7On
Wg1Ln5etRj0YqVVjDC5K1cjjZ6+lq8EWay+V/fm1SvjrVePe6cly1ahBn9eq
Rv/o7YrV4AAuVq7GvXCvq1TDwtRK1YgT+9O74Z37S8vZVqgGi9Ravhrr4K9a
jRrwuHY11qTn61TDwsKa1WCOPa1bjTGYWr0a7PIOrVaNGvhrVGOMnPWrcT5Y
26AaFo56VSPG2A7V6CU93LgaTMDIptVgGr42q4aFr02qESe2UTVYJGfDatTG
37wac+Fui2pY+NqmGnfE3WxbDUv/O1fjfrnX7aoxBiNbVYM/uNuyGjXwt69G
nH1vXY04dXesxjlgsF01+KC3O1VjDL6aV4MPfjZvUQ22YKqlFo52MU5s52qw
SE6zajCN3zp76tVgalctrLV3TfrcQUv/m7o++bs5Bl9tq/FusNc21sDvaHwl
/w7BZyefm50cW9n3gM9RPu/6VKM39K17NTiAnR7VYBq+9tTC1x7GiXWrBk/k
dK0GT/g9nQt3e2n5rN1Xduh5by0sdKkG0+Tv5xhM7VON9w3m9rYG/v7G2ffu
9p/8vp4D7o60f9zfAY7B18HV4IP+968GWzB1qBaODjFO7KBqMETOgdXgEv8w
58LUAC3vxFGuSc+P1sJCP9cn/xjHYOqIavDHXg+3Bv6xxmFqoBbujtPC3fHZ
06oaTA2RA7g42z7RwxMdg+th1eAMvk7SwtQJ1WCR/KHOZd7JxmHq1GowxDt3
uj2j52doYeFMLRydpWUfp5lHr06xHrXmZ8/o7Dkve85xv7A2shoMwc4oew8L
I4z3NI8xPpPGVIMtmDpfC0fnWoP8sY7Bzjgt7F+ghZ3x1WCFXl2kpefD3Ttn
vtgxuLi0GjzBy4XWIP8S48QmGIe1y7SwdrkWjq6w97BwpRZ+J2th6iotTF1d
DYZgZFI1+CN/inFiU43Dzo3V4IDeTs+eQdVg51rt4OyZYRxGrnMMLm6oBlvk
T7MeDF5vfIj962UPbrIGfM21r/Rtomdlr7dUgye4uNX7hak5WpiabZzYrGpw
Q87ManCJf5tz4e52LdzNc004uksLCze7L/Lvdgy+7qzGO8Ne77AG/j3GYe1e
zwlr92lhbYEWvh6oBlswtcRe0sOFjsHIg9XgDL4Wa2HqfmuQ/5BjcPSwFtYe
0cLUY9XgCY4e13LHi1yHNZ5wDEaeqgZn7OlRa5D/pHFi73nv9OR9LT15thps
wd3z1WALFp6pBpfEXsyea6rB18vVYAuOXtHCy3PWIP9Vx+DrNS2cvq6Fxzer
wRN9e0tL/5/2Xln7bcdg5N1qsMUZ3rAG+e8YJ1apZT8TuscPPB8c/eGdcpcf
V4MDuPjRO6VvnzgG159VgzP4+lwLUx9Vg0Xyv3AMjr7U8pn3lRamvqkGT3D0
rRYWPnUd1vjOMfj6oRo8saevrUH+98aJVWtxPu7+Q8/Hnn6pBlsw9Vs1eIKF
n6vBIrHfHeMu/vQ+4OgvLbz8ag3y/3YMvv7Rwv6/WnrFL7iGFTjK18LCwk/e
K2sXajEGX+Va8ESf/rMG+aVs/IVqIwZrcFarxVlhalD255bZ0yp7lq4FT7Cw
Zi3ulL4tU4sx+FquFmzB0fK1sPCyVC24JH/ZWsxl3gq1iMPaSrV4Z3hXVq3F
XdP/1Wph4Wj1WljYWaMWln2sXIs8GFyxFvWotU/25/WyZ/3sWasW+4WvdWrB
Exw1qQVD9H/tWsSJkfe1TG1QC55gZ8NaWBhZtxY1yN+oFmMwtXEtLLxvUgtL
fzarBR+ws3ktLP1fpRZ758xb1GIMpraqBUO8T5vWogb5W9YiTmzrWsTha5ta
WPjathYWpnaoBUP0f8daWDjaqRYWjppqYad5LfiAne1rwSL5O2d/LhrbxTif
AW1rwcGy8sI7U5MbbD172hmHkdaOwUUb2SK/hfXI39X40vaPPtCD9taArx72
lb5tV4uzstdOteAJLnavxf3CVBctTHU2TqxjLbghZ7dacInf1blw100Ld3u6
Jhz11MJCB/dF/l6OwdcetXhn2Gt3a+DvbRzWenlOWNtXC2u9tfC1fy3Ygqkj
atFLetjHMRg5oBacwVc/LUztZw3yD3QMjg7SwtrBWpjqXwue4OhQLXfc13VY
4zDHYOTwWnDGng6xBvkDjBM7zXunJ8O19OSYWrAFdwNrwRYsHJ09zYwd5xh8
HV8LtuBosBZejrUG+Sc4Bl9DtHB6ohYeh9WCJ/p2kpb+H+m98k6c7BiMnFoL
tjjDUGuQf4pxYtNr8bnJHk/3fHB0mXfKXZ5VCw7g4kLvlL6d7Rhcj6gFZ/A1
UgtTZ9aCRfLPdQyORmn5zButhakxteAJjs7XwsI5rsMaYx2DrwtqwRN7Os8a
5I8zTox3l+8HPtPP8Hzs6eJasAVTl9aCJ1i4qBYsEpvgGHdxufcBRxO18HKJ
Ncif5Bh8XaGF/Su19GpKLViBo6u1sDDee2XtqY7B1zW14Ik+XZU9R5k/zTgx
fmbn74L8Xe5a+wlr19eCLZia6z3SqxkyAVM314In2JmphZGbjBO7sRYskvN1
9tybPfdlzw3WJnZLLZjjvbnd3sPOHVp4uVPLPm6txXsFd7PNw5/l+tSa535h
6u5aMAQ7i+0TPbzL+LnuCw7gaEEtGIKX+7Xj3PcYY/NrwR8591gb/wHnwtdC
Lew/5Jr0/GEt7NxWC7Y48yOOwc6D9pW9LrIG/qPGec/meAfkP+YYrD2uhbVn
7D3sPKuFnee08PJCLZiAlzftH719Onsmm/9ULbiEx+fNI+dF8/g8eCV7rqsF
O69q6fNb1oOR1xyDi5fMg7s3asEWa79uHP8b752evG0N+vy5/aO379WCA7j4
wHvhXj/UwtT7xok94d3wzj2p5Wzv1oJFar3jOvgfWQMev3BNev6lFhY+qwVz
7Okrx2Dqk1qwyzv0sTXwP3WMnG89H6x9p4WjDeoRYwyxl2fs4Y+1YAJGfq4F
0/D1ixa+fjJO7IdasEjO99bG/9W5cPebFr7+8o64m7+19H+Vetwv9/pv9iyp
BSN/1II/uPvdGvj/GWfffxqnbr4e54DB5erBB70t1GMMvir14OPl7KnVgy2Y
qtfDwlG1HnFi5XqwSE6pHkzjL1WPuTC1dD0srC1fjzXp8wr1sPS/WI/1yV+x
HmPwtWw93g32ukw9auCvVI/4++4VlnkHVq7HGPfVqh5nYO+b1qM39G3NenAA
O2vXg2n4WqceFr7Wqkec2Br14Imc1evBE/669ZgLd03qYfms3bAe7NDzjeph
YWG1ejBN/sb1GIOp9evxvsHcevWogb9JPeLse9V69J/8zepxDrhrVo/+cX+b
12MMvrauBx/0f9t6sAVT22d//keOtqlHnNhW9WCInC3rwSX+DvWYC1M71sPy
TuzsmvS8uRYWtqjH+uTv4hhMNa0Hf+x1p3rUwG9hHKZaaulZa/sGR/SV70a+
F3vUozf0rV09+IDlDvVgC6Z208JRe+PE2taDIXLa1INL/I7OhalOWjjqWo+e
0fNuWlg4L3t6Zc++2dPdMZjavR7vKr3qbA38PYyz7y7Gqbun54C7fvaP++vp
2LquAx98JvWuB1swtZ92Y/exgbF96sEQOXvXg0v8/Z0LU320vBMHuiY9P0gL
C3u5PvkHOwZTB9SDP/ba1xr4hxiHqTHuif32dwwGB9SDP5g6Ug7g4igtLB+t
ha9jtPA1sB48wcsR9WCR/GONEzvOOBwNrQcf9P/4enwWwNRg7a7ZM8w47Jzg
GFycWA9WyB9kPfKHGCd2WPZs53lOsgbcjbCv9PBwz8peT6sHEzByej04gK8z
tPA13DixU+vBIjmn1INR/DOdC3dnaeFrpGvSt3O19P9k90X+KMdg5Jx6vEvs
9Wxr4I82Dnf8XhZ+rw+/E+V8+wl3C+rhj82eq+wffbuwHkzAyEX1YBq+LtbC
13jjxC6oB4vkjKsHo/iXOBfuLtXC16R6MMS9XqGFhTneKXd5pWPw9aR9ujx7
JlgDHicbZ98TnUPdKZ4D7m62r9zf1Y7B2vR6MAFT19WDJ9i5Xgsj1xondk09
uCRnWj04xr/BubB2oxZmZ7omPZ+lhYWprk/+LY7B1E314Ji9zrAG/mzjw+3T
ft7vrY5xX/DO5yufgw/aG/o2tx58wPJd9WALpu7WwtE848TurAdD5NxRDy7x
73EuTM3X8tl5v3ui5w9oYeH2evBN/kLHYOq+enymwNy91sBfZJx932b/yV/s
OeAO7T701tBZe8gx+OLXq6ET1zR+ncL/tOB2jv+l638acc3j16v9b4x5j9VD
sxD9ueczu6QeTPGvoluYwz/2aqmPXmAb10ZDr63+w64P1+jqtTNWd49JY7CV
tdDta++8pFmInzQL8dEs7Ki/YS501tBdQzOwSy705NARRC+uay40Brvrr+YY
81ZxbudcaK+hh4WG1sqOdco1NAvRk0M7EP03dODWz4U2HP4Gro+fdAqTbuGe
5q9pDfaxUS403dj3JrnQcUPfDe2+AbnQWdvYMeZt7v7QjUM7EP03dOCSBiH+
Fo4xbzPnJl2+vq6RdArJQW+wvz76aqyLbiD9PjIXOnBNPCs6d0mDkNh27vHQ
XGgWHmotuDnaeeuax13A1DHG4OxYffqPHhxacXBzgj7cDNFvlwt9tBPtG1ps
aLO1Mi9pGGLRkmvrXPLhZpj58ILO28n29VR9mDjTuvT8NGNwdpL5XVwzaRUO
dx73jW7aRfb1LGvRN/TWxuai/yNyoRvHfZybC3047nWUfk/HmMd7NdA7auGZ
8JOWYdI2PNv14G+0tejxBa5Nzy/U38+9nJ9raBASg9kxuYbO4XnWSvqFxGDr
Es8JN5fq8zycC00renZdLrTZYAHNODTkYAqNOLTi4AndNzThDnOMef2dm7QK
J7gGnE02B56u0ucu0Hmb6t1co889ooOGLhosTDcGZ2giJd3CKdZKOoXTveup
zoO56z0PvURvDd01eLrBGFzcnAtNNBhCM25mLri5Rf9kx5g3zLkzcsEi9sZc
MDTbnKRTONu+3uHa9PlO/RPNYx/n5EIjjljSKUy6hXOsBU/znLebe2LvI72n
ebmG7t3b9uSJXOiu0X/049CTgyf04NCNg6eF+mMdY94Y5yatQixacnC2yJyk
U7jIHj+SC4bo+aP6o81Diw4uHjOWdAoX5+J9W2ytpFPIvFHmwQGcoRn3pPeF
3ho6a/C0xBj9RicO7SwYQgsOTTi4eVF/qmPMm+LcpMGFRcNpei6058iBqZf1
6dXrrk3P39CfbB77gIs3jV3vHpPG4CvWgqG3nJd+7za/73imfSOWtJrQ2qEn
6KyhuwYXH+ZCTw6GPs6FbhzcfKJ/u2PMm+Pc93OhvYYeFhpatzqGllzSLPzU
PqP/9pX9/0Y/aRB+k2voFH6eC+4+N3+uNdgHPH3vvpO+4A/eEXpr6KwtdOx7
WWB/6MbBDfpv6MDByu/6DzvGvMXOTbp8P7kG3PxhDhz9qU9//nNt+oz+G/58
z/plrqFBSOwp95h0DrFovMEN2nDMu8c87gKm0IkjBmdoveHTf/Tg0IqDG3Tf
8OEGrTf8pDuI7ht9Q4sNbTZ4IS9pGGLRkoMt5pIPK+iqkY82IDpv6LvRVzTg
8GECXTbq0nN04YjBGnpu5MMKayatQizzuG900+CGvqLtRi36ht4aOmv0H504
dOO4D3Tf0IfjXtF/w+eOGGMe7xU6eNwR7xVnwochaiRtQyzrwR+acdSix+i+
sTY9R/8NH4bYC9ptSYOQGMyi6ZZ0DrHUSvqFxGALTTfOCTdou23pg07XgfYM
nTX02GABzTg05OAJDbjt5QktOHzYYYx5cMNctO5gER25reQMncId8w2dwp28
C/TgmtvvFvrcI5poPWWipbGkU5h0C5tZK+kUtvSumzsP5nb1PPQS7bWu8tTG
GFygGddehtCJ201uOumv4FgHGWJu0vrDtpWhzuYkncLO9rW7a9PnPfSXMa+N
PPUwlnQKk25hF2slnULm8b3LO/COrPU0xnfwe8boCZprh8kKOnH7yhNacGjC
wVMf/Y0c6y0rzE1ahVj05OCsrzlJp7CvPUbz7SB7jx4cunHrmYemHVwcaizp
FCbdwn7WSjqFzGtiHhzA2eGeh/tCbw3dNHg6whj9Rj8OLSYYQg8O3Ti4OU6/
uWPMa+bcpGGIRUsOhgaZk7QJB9mrE12bng/V38m8I+RimLFd3WPSLRxsraRT
yDz6B1swmHQK+S5E3wZdEfRB6An6a+fLBfpx6MnBEHpw6MbBzdn63RxjXhfn
oiWH9hraWWho7e4YunJJp/Ac+4xe2+h8Q3cQv7frj8k3NAuThuFI83tYg33A
0zj3DR/ou13gHaG3hu5aH8fGyQL7QzcObtB/QwcOVi7Th61LnNfPuUnDcLxr
wM3l5iSdwsvtz2TXps9X6e/jWUfJwhRjSacw6RZOslbSKWRe0mvkLmBqqjE4
m6ZP/9GDQysObm7Qh5sb9eEAbbsZ9g2NNvTbBpuXtAqxaMgNdS75SaeQfHQC
0XmbZV9n68PEHdal57cag7OZ5idtwqRVOMd59AA9tYft653WSvp/D9h/dOLm