forked from geekyutao/Inpaint-Anything
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathremove_anything_video.py
410 lines (369 loc) · 14 KB
/
remove_anything_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import torch
import numpy as np
import cv2
import glob
import torch.nn as nn
from typing import Any, Dict, List
from pathlib import Path
from PIL import Image
import os
import sys
import argparse
import tempfile
import imageio
import imageio.v2 as iio
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from sam_segment import build_sam_model
from lama_inpaint import build_lama_model, inpaint_img_with_builded_lama
from ostrack import build_ostrack_model, get_box_using_ostrack
from sttn_video_inpaint import build_sttn_model, \
inpaint_video_with_builded_sttn
from pytracking.lib.test.evaluation.data import Sequence
from utils import dilate_mask, show_mask, show_points, get_clicked_point
def setup_args(parser):
parser.add_argument(
"--input_video", type=str, required=True,
help="Path to a single input video",
)
parser.add_argument(
"--coords_type", type=str, required=True,
default="key_in", choices=["click", "key_in"],
help="The way to select coords",
)
parser.add_argument(
"--point_coords", type=float, nargs='+', required=True,
help="The coordinate of the point prompt, [coord_W coord_H].",
)
parser.add_argument(
"--point_labels", type=int, nargs='+', required=True,
help="The labels of the point prompt, 1 or 0.",
)
parser.add_argument(
"--dilate_kernel_size", type=int, default=None,
help="Dilate kernel size. Default: None",
)
parser.add_argument(
"--output_dir", type=str, required=True,
help="Output path to the directory with results.",
)
parser.add_argument(
"--sam_model_type", type=str,
default="vit_h", choices=['vit_h', 'vit_l', 'vit_b', 'vit_t'],
help="The type of sam model to load. Default: 'vit_h"
)
parser.add_argument(
"--sam_ckpt", type=str, required=True,
help="The path to the SAM checkpoint to use for mask generation.",
)
parser.add_argument(
"--lama_config", type=str,
default="./lama/configs/prediction/default.yaml",
help="The path to the config file of lama model. "
"Default: the config of big-lama",
)
parser.add_argument(
"--lama_ckpt", type=str, required=True,
help="The path to the lama checkpoint.",
)
parser.add_argument(
"--tracker_ckpt", type=str, required=True,
help="The path to tracker checkpoint.",
)
parser.add_argument(
"--vi_ckpt", type=str, required=True,
help="The path to video inpainter checkpoint.",
)
parser.add_argument(
"--mask_idx", type=int, default=2, required=True,
help="Which mask in the first frame to determine the inpaint region.",
)
parser.add_argument(
"--fps", type=int, default=25, required=True,
help="FPS of the input and output videos.",
)
class RemoveAnythingVideo(nn.Module):
def __init__(
self,
args,
tracker_target="ostrack",
segmentor_target="sam",
inpainter_target="sttn",
):
super().__init__()
tracker_build_args = {
"tracker_param": args.tracker_ckpt
}
segmentor_build_args = {
"model_type": args.sam_model_type,
"ckpt_p": args.sam_ckpt
}
inpainter_build_args = {
"lama": {
"lama_config": args.lama_config,
"lama_ckpt": args.lama_ckpt
},
"sttn": {
"model_type": "sttn",
"ckpt_p": args.vi_ckpt
}
}
self.tracker = self.build_tracker(
tracker_target, **tracker_build_args)
self.segmentor = self.build_segmentor(
segmentor_target, **segmentor_build_args)
self.inpainter = self.build_inpainter(
inpainter_target, **inpainter_build_args[inpainter_target])
self.tracker_target = tracker_target
self.segmentor_target = segmentor_target
self.inpainter_target = inpainter_target
def build_tracker(self, target, **kwargs):
assert target == "ostrack", "Only support sam now."
return build_ostrack_model(**kwargs)
def build_segmentor(self, target="sam", **kwargs):
assert target == "sam", "Only support sam now."
return build_sam_model(**kwargs)
def build_inpainter(self, target="sttn", **kwargs):
if target == "lama":
return build_lama_model(**kwargs)
elif target == "sttn":
return build_sttn_model(**kwargs)
else:
raise NotImplementedError("Only support lama and sttn")
def forward_tracker(self, frames_ps, init_box):
init_box = np.array(init_box).astype(np.float32).reshape(-1, 4)
seq = Sequence("tmp", frames_ps, 'inpaint-anything', init_box)
all_box_xywh = get_box_using_ostrack(self.tracker, seq)
return all_box_xywh
def forward_segmentor(self, img, point_coords=None, point_labels=None,
box=None, mask_input=None, multimask_output=True,
return_logits=False):
self.segmentor.set_image(img)
masks, scores, logits = self.segmentor.predict(
point_coords=point_coords,
point_labels=point_labels,
box=box,
mask_input=mask_input,
multimask_output=multimask_output,
return_logits=return_logits
)
self.segmentor.reset_image()
return masks, scores
def forward_inpainter(self, frames, masks):
if self.inpainter_target == "lama":
for idx in range(len(frames)):
frames[idx] = inpaint_img_with_builded_lama(
self.inpainter, frames[idx], masks[idx], device=self.device)
elif self.inpainter_target == "sttn":
frames = [Image.fromarray(frame) for frame in frames]
masks = [Image.fromarray(np.uint8(mask * 255)) for mask in masks]
frames = inpaint_video_with_builded_sttn(
self.inpainter, frames, masks, device=self.device)
else:
raise NotImplementedError
return frames
@property
def device(self):
return "cuda" if torch.cuda.is_available() else "cpu"
def mask_selection(self, masks, scores, ref_mask=None, interactive=False):
if interactive:
raise NotImplementedError
else:
if ref_mask is not None:
mse = np.mean(
(masks.astype(np.int32) - ref_mask.astype(np.int32))**2,
axis=(-2, -1)
)
idx = mse.argmin()
else:
idx = scores.argmax()
return masks[idx]
@staticmethod
def get_box_from_mask(mask):
x, y, w, h = cv2.boundingRect(mask)
return np.array([x, y, w, h])
def forward(
self,
frame_ps: List[str],
key_frame_idx: int,
key_frame_point_coords: np.ndarray,
key_frame_point_labels: np.ndarray,
key_frame_mask_idx: int = None,
dilate_kernel_size: int = 15,
):
"""
Mask is 0-1 ndarray in default
Frame is 0-255 ndarray in default
"""
assert key_frame_idx == 0, "Only support key frame at the beginning."
# get key-frame mask
key_frame_p = frame_ps[key_frame_idx]
key_frame = iio.imread(key_frame_p)
key_masks, key_scores = self.forward_segmentor(
key_frame, key_frame_point_coords, key_frame_point_labels)
# key-frame mask selection
if key_frame_mask_idx is not None:
key_mask = key_masks[key_frame_mask_idx]
else:
key_mask = self.mask_selection(key_masks, key_scores)
if dilate_kernel_size is not None:
key_mask = dilate_mask(key_mask, dilate_kernel_size)
# get key-frame box
key_box = self.get_box_from_mask(key_mask)
# get all-frame boxes using video tracker
print("Tracking ...")
all_box = self.forward_tracker(frame_ps, key_box)
# get all-frame masks using sam
print("Segmenting ...")
all_mask = [key_mask]
all_frame = [key_frame]
ref_mask = key_mask
for frame_p, box in zip(frame_ps[1:], all_box[1:]):
frame = iio.imread(frame_p)
# XYWH -> XYXY
x, y, w, h = box
sam_box = np.array([x, y, x + w, y + h])
masks, scores = self.forward_segmentor(frame, box=sam_box)
mask = self.mask_selection(masks, scores, ref_mask)
if dilate_kernel_size is not None:
mask = dilate_mask(mask, dilate_kernel_size)
ref_mask = mask
all_mask.append(mask)
all_frame.append(frame)
# get all-frame inpainted results
print("Inpainting ...")
all_frame = self.forward_inpainter(all_frame, all_mask)
return all_frame, all_mask, all_box
def mkstemp(suffix, dir=None):
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
os.close(fd)
return Path(path)
def show_img_with_mask(img, mask):
if np.max(mask) == 1:
mask = np.uint8(mask * 255)
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
plt.figure(figsize=(width / dpi / 0.77, height / dpi / 0.77))
plt.imshow(img)
plt.axis('off')
show_mask(plt.gca(), mask, random_color=False)
tmp_p = mkstemp(".png")
plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0)
plt.close()
return iio.imread(tmp_p)
def show_img_with_point(img, point_coords, point_labels):
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
plt.figure(figsize=(width / dpi / 0.77, height / dpi / 0.77))
plt.imshow(img)
plt.axis('off')
show_points(plt.gca(), point_coords, point_labels,
size=(width * 0.04) ** 2)
tmp_p = mkstemp(".png")
plt.savefig(tmp_p, bbox_inches='tight', pad_inches=0)
plt.close()
return iio.imread(tmp_p)
def show_img_with_box(img, box):
dpi = plt.rcParams['figure.dpi']
height, width = img.shape[:2]
fig, ax = plt.subplots(1, figsize=(width / dpi / 0.77, height / dpi / 0.77))
ax.imshow(img)
ax.axis('off')
x1, y1, w, h = box
rect = patches.Rectangle((x1, y1), w, h, linewidth=2,
edgecolor='r', facecolor='none')
ax.add_patch(rect)
tmp_p = mkstemp(".png")
fig.savefig(tmp_p, bbox_inches='tight', pad_inches=0)
plt.close()
return iio.imread(tmp_p)
if __name__ == "__main__":
"""Example usage:
python remove_anything_video.py \
--input_video ./example/video/paragliding/original_video.mp4 \
--coords_type key_in \
--point_coords 652 162 \
--point_labels 1 \
--dilate_kernel_size 15 \
--output_dir ./results \
--sam_model_type "vit_h" \
--sam_ckpt ./pretrained_models/sam_vit_h_4b8939.pth \
--lama_config lama/configs/prediction/default.yaml \
--lama_ckpt ./pretrained_models/big-lama \
--tracker_ckpt vitb_384_mae_ce_32x4_ep300 \
--vi_ckpt ./pretrained_models/sttn.pth \
--mask_idx 2 \
--fps 25
"""
parser = argparse.ArgumentParser()
setup_args(parser)
args = parser.parse_args(sys.argv[1:])
device = "cuda" if torch.cuda.is_available() else "cpu"
import logging
logger = logging.getLogger('imageio')
logger.setLevel(logging.ERROR)
dilate_kernel_size = args.dilate_kernel_size
key_frame_mask_idx = args.mask_idx
video_raw_p = args.input_video
frame_raw_glob = None
fps = args.fps
num_frames = 10000
output_dir = args.output_dir
output_dir = Path(f"{output_dir}")
frame_mask_dir = output_dir / f"mask_{dilate_kernel_size}"
video_mask_p = output_dir / f"mask_{dilate_kernel_size}.mp4"
video_rm_w_mask_p = output_dir / f"removed_w_mask_{dilate_kernel_size}.mp4"
video_w_mask_p = output_dir / f"w_mask_{dilate_kernel_size}.mp4"
video_w_box_p = output_dir / f"w_box_{dilate_kernel_size}.mp4"
frame_mask_dir.mkdir(exist_ok=True, parents=True)
# load raw video or raw frames
if Path(video_raw_p).exists():
all_frame = iio.mimread(video_raw_p)
fps = imageio.v3.immeta(video_raw_p, exclude_applied=False)["fps"]
# tmp frames
frame_ps = []
for i in range(len(all_frame)):
frame_p = str(mkstemp(suffix=f"{i:0>6}.png"))
frame_ps.append(frame_p)
iio.imwrite(frame_ps[i], all_frame[i])
else:
assert frame_raw_glob is not None
frame_ps = sorted(glob.glob(frame_raw_glob))
all_frame = [iio.imread(frame_p) for frame_p in frame_ps]
fps = 25
# save tmp video
iio.mimwrite(video_raw_p, all_frame, fps=fps)
frame_ps = frame_ps[:num_frames]
point_labels = np.array(args.point_labels)
if args.coords_type == "click":
point_coords = get_clicked_point(frame_ps[0])
elif args.coords_type == "key_in":
point_coords = args.point_coords
point_coords = np.array([point_coords])
# inference
device = "cuda" if torch.cuda.is_available() else "cpu"
model = RemoveAnythingVideo(args)
model.to(device)
with torch.no_grad():
all_frame_rm_w_mask, all_mask, all_box = model(
frame_ps, 0, point_coords, point_labels, key_frame_mask_idx,
dilate_kernel_size
)
# visual removed results
iio.mimwrite(video_rm_w_mask_p, all_frame_rm_w_mask, fps=fps)
# visual mask
all_mask = [np.uint8(mask * 255) for mask in all_mask]
for i in range(len(all_mask)):
mask_p = frame_mask_dir / f"{i:0>6}.jpg"
iio.imwrite(mask_p, all_mask[i])
iio.mimwrite(video_mask_p, all_mask, fps=fps)
# visual video with mask
tmp = []
for i in range(len(all_mask)):
tmp.append(show_img_with_mask(all_frame[i], all_mask[i]))
iio.mimwrite(video_w_mask_p, tmp, fps=fps)
tmp = []
# visual video with box
for i in range(len(all_box)):
tmp.append(show_img_with_box(all_frame[i], all_box[i]))
iio.mimwrite(video_w_box_p, tmp, fps=fps)