-
Notifications
You must be signed in to change notification settings - Fork 0
/
1.5090992.nb
1475 lines (1439 loc) · 61.1 KB
/
1.5090992.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 12.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 62373, 1467]
NotebookOptionsPosition[ 60224, 1421]
NotebookOutlinePosition[ 60614, 1437]
CellTagsIndexPosition[ 60571, 1434]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[TextData[StyleBox["Are we ready to transfer optical light to \
gamma-rays?", "Title",
FontWeight->"Regular",
FontColor->RGBColor[
0.2964217593652247, 0.6292210269321736, 0.2727702754253452]]], "Text",
CellChangeTimes->{{3.822636147120782*^9, 3.822636149053595*^9}, {
3.822636240732341*^9, 3.82263625191656*^9}, {3.822637212068983*^9,
3.822637212721833*^9}, 3.8237615278152447`*^9, {3.832146512264089*^9,
3.832146513507378*^9}, {3.875659101251471*^9, 3.875659120180471*^9},
3.876052035694503*^9, 3.876274642441495*^9, 3.8762749018843718`*^9,
3.876967208917557*^9,
3.877319556188575*^9},ExpressionUUID->"4d6625c8-997f-4ba3-9e4b-\
01c996d7f3ed"],
Cell[TextData[{
StyleBox["M. Vranic, T. Grismayer, S. Meuren, R. A. Fonseca, and L. O. \
Silva, Phys. Plasmas ", "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox["26", "Section",
FontSize->24,
FontWeight->"Bold",
FontColor->GrayLevel[0]],
StyleBox[", 053103 (2019)\nNotebook: \[CapitalOAcute]scar Amaro, November \
2022 @", "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox[" ",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontColor->GrayLevel[0]],
StyleBox[ButtonBox["GoLP-EPP",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://epp.ist.utl.pt/"], None},
ButtonNote->"http://epp.ist.utl.pt/"], "Section",
FontSize->24,
FontVariations->{"Underline"->True},
FontColor->GrayLevel[0]],
StyleBox["\nContact: oscar.amaro@tecnico.ulisboa.pt", "Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9},
3.822636391632341*^9, {3.8226372468331547`*^9, 3.822637246833611*^9}, {
3.823761573155903*^9, 3.8237615739111023`*^9}, {3.832146444679867*^9,
3.8321464496507*^9}, {3.832146486894559*^9, 3.832146520629979*^9}, {
3.875659094738799*^9, 3.875659161456963*^9}, {3.8760520462986927`*^9,
3.876052057524274*^9}, {3.876274607315637*^9, 3.876274607668984*^9}, {
3.876274657642433*^9, 3.8762746757468977`*^9}, 3.8762749170393753`*^9,
3.8762749528760138`*^9, 3.876967215750044*^9, 3.8773195638120728`*^9},
FontSize->14,ExpressionUUID->"5fe1c83a-bd89-493f-bedf-ac559323700f"],
Cell[TextData[{
StyleBox["Introduction", "Section",
FontSize->24,
FontWeight->"Bold",
FontColor->GrayLevel[0]],
StyleBox["\nIn this notebook we reproduce some results from the paper.",
"Section",
FontSize->24,
FontColor->GrayLevel[0]]
}], "Text",
CellChangeTimes->{{3.8226362283387003`*^9, 3.822636334723393*^9}, {
3.822636391632341*^9, 3.8226364148286*^9}, {3.822636632459257*^9,
3.82263666754714*^9}, {3.8226367225529222`*^9, 3.822636739164402*^9}, {
3.8237615773382463`*^9, 3.823761602335499*^9}, {3.832146518032268*^9,
3.832146518523243*^9}, {3.875593945207685*^9, 3.8755939532588367`*^9}, {
3.876052126008453*^9, 3.876052198061596*^9}, {3.876274611319037*^9,
3.876274623593196*^9}, 3.8762749596849947`*^9},
FontSize->14,ExpressionUUID->"8ac7b8cc-fe7d-445d-996e-80669655c602"],
Cell[CellGroupData[{
Cell["Figure 2", "Chapter",
CellChangeTimes->{{3.877317322619692*^9,
3.8773173237137203`*^9}},ExpressionUUID->"27514688-3f3f-49a2-9c54-\
706e699895aa"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"\[Gamma]F", ",", "\[Sigma]F", ",", "a0", ",", "\[Theta]F", ",", "I22",
",", "\[CapitalIota]", ",", "\[Gamma]0", ",", "k", ",", "\[Theta]"}],
"]"}], ";"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"eq", " ", "2"}], ":", " ",
RowBox[{
"CRR", " ", "final", " ", "\"\<average\>\"", " ", "electron", " ",
"energy"}]}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Gamma]F", "=",
FractionBox["\[Gamma]0",
RowBox[{"1", "+",
RowBox[{"k", " ", "\[Gamma]0"}]}]]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"eq", " ", "3"}], ":", " ",
RowBox[{"CRR", " ", "factor"}]}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"k", "=",
RowBox[{"3.2", " ",
SuperscriptBox["10",
RowBox[{"-", "5"}]], "I22", " ", "\[Tau]0",
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "-",
RowBox[{"Cos", "[", "\[Theta]", "]"}]}], ")"}], "2"]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"eq", " ", "6"}], ":", " ",
RowBox[{
"estimated", " ", "final", " ", "electron", " ", "energy", " ",
"spread"}]}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Sigma]F", "=",
SuperscriptBox[
RowBox[{"(",
FractionBox[
RowBox[{"1.5", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]],
SuperscriptBox["I22",
RowBox[{"1", "/", "2"}]],
SuperscriptBox["\[Gamma]0", "3"]}],
SuperscriptBox[
RowBox[{"(",
RowBox[{"1", "+",
RowBox[{"6.1", " ",
SuperscriptBox["10",
RowBox[{"-", "5"}]], "\[Gamma]0", " ", "I22", " ", "\[Tau]0"}]}],
")"}], "3"]], ")"}],
RowBox[{"1", "/", "2"}]]}], ";"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
RowBox[{"eq7", ":", " ",
RowBox[{
"estimated", " ", "final", " ", "electron", " ", "angular", " ",
"spread"}]}], ",", " ",
RowBox[{"see", " ", "[", "Vranic2016NJP", "]"}]}],
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Theta]F", "=",
RowBox[{
RowBox[{"Sqrt", "[",
FractionBox["2", "\[Pi]"], "]"}],
FractionBox["a0",
SuperscriptBox["\[Gamma]F", "2"]], "\[Sigma]F"}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{
"conversion", " ", "between", " ", "intensity", " ", "and", " ", "a0"}],
" ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"I22", " ", "=", " ",
RowBox[{"\[CapitalIota]", " ",
SuperscriptBox["10",
RowBox[{"-", "22"}]]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalIota]", "=",
RowBox[{
SuperscriptBox["10",
RowBox[{"+", "18"}]],
SuperscriptBox[
RowBox[{"(",
FractionBox["a0",
RowBox[{"0.855", "/",
RowBox[{"\[Sqrt]", "2"}]}]], ")"}], "2"]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ", "parameters", " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Theta]", "=", "\[Pi]"}], ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{
RowBox[{"[", "]"}], " ", "collision", " ", "angle"}], ",", " ",
RowBox[{"counter", "-", "propagating"}]}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[Gamma]0", "=",
RowBox[{"0.85", "/",
RowBox[{"(",
RowBox[{"0.511", " ",
SuperscriptBox["10",
RowBox[{"-", "3"}]]}], ")"}]}]}], ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"[", "]"}], " ", "initial", " ", "electron", " ", "energy"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"a0", "=", "27"}], ";"}],
RowBox[{"(*",
RowBox[{
RowBox[{"[", "]"}], " ", "laser", " ", "a0"}], " ", "*)"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{
SuperscriptBox["10", "3"], "\[Theta]F"}], ",",
RowBox[{"{",
RowBox[{"\[Tau]0", ",", "0", ",", "200"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<Pulse duration [fs]\>\"", ",", "\"\<Angle [mrad]\>\""}],
"}"}]}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "30"}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"{",
RowBox[{"Blue", ",", "Dashed"}], "}"}], "}"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.877317182240087*^9, 3.877317314240061*^9}, {
3.8773189922376633`*^9, 3.877319178153449*^9}, {3.8773192088072853`*^9,
3.8773193154387703`*^9}, {3.877319364045121*^9, 3.877319473045336*^9}},
CellLabel->
"In[403]:=",ExpressionUUID->"b3382c00-8971-459b-a072-1e6205aa2d19"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.],
Dashing[{Small, Small}], LineBox[CompressedData["
1:eJwBAQP+/CFib1JlAgAAAC8AAAACAAAAIo/9o54e0T6UMo/y+EoRQLcIKR9t
aK8/QRYgu8pZEUDBeK6kKGi/P3d6dnGcaBFAxjBxZwZozz9qp1SbP4YRQMiM
0kj1Z98/KzlgkITBEUDJOoO57GfvP6lhTXgGOBJAypHbcehn/z/L1Fo51yQT
QEq9B07mZw9A1MS+1SX9FEDNDTYJBF0gQH1jJv478xhAQo9FwKdPKEBKmaSp
FpUcQGUv+g0xDTBAAAeZ3s8IIEBNKWXxFkc0QJSXUGZg4SFAstR9dck4OEBc
Cz13So8jQDsSKq8EfzxAlC7KTRxVJUBn+5KdpVhAQDFxnoSrBidAb8bnM69N
QkA8J7OfuJAoQIpaBiX9bERAhskg1yIxKkBjx3tmMWhGQJwmQnEYrCtAwQcZ
UWtZSEDv6Wci1hYtQDERgJbpdEpAL13Ehg2XLkBg8z0sTmxMQD6uQkcw9S9A
oZ7FHPeNTkC0xKS1BbQwQLOOOtvSUlBAJjukYOJlMUB0uj1QnUxRQBRdl9Q2
CDJAv8ql8olbUkAbn522mLQyQGlHOb1pWFNAVfKcMDNSM0CcqDG1a2pUQH25
nFyO+TNAkfO9gXB3VUCpwgeBkZo0QOaqdXZoclZAIH3l3PctNUDERpKYgoJX
QIZinu/ayjVAAU/a4o+AWED2fYEwtVo2QABBtgGgeVlAtCjLxGDlNkCIF/dN
0odaQOSAGSdJeTdAcFpjwveDW0BdhjU/CQE4QOGBNGQ/lVxA9fFnEcmROEAU
k5naiaFdQBdFJC+VHTlAphAqecebXkDHckeO/p05QMFyH0Unq19A0Ve3oiwn
OkCeIKAcPVRgQGnD3HdapTpAvXz6AGjQYEBiShFsWh87QCFLB/wjV2FArfMg
6uehO0C0zymL2dRhQAAomZ0OGjxAjMb+MCBdYkCHTWPYkJo8QJNz6Wpg3GJA
Hu+e2vsQPUB8FR4PIlljQHk2Liemgz1AqSkFynTgY0DjLRoLev49QJV6GsIn
4mNAAAAAAAAAPkCm0T02
"]]},
Annotation[#, "Charting`Private`Tag$47079#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"Angle [mrad]\"", TraditionalForm], None}, {
FormBox["\"Pulse duration [fs]\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 199.99999591836735`}, {0, 30}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.877319065377178*^9, 3.877319113662281*^9}, {
3.877319146615117*^9, 3.877319178570263*^9}, {3.8773192858964787`*^9,
3.8773193158487253`*^9}, {3.877319364384528*^9, 3.8773194263946047`*^9},
3.877319476838727*^9, 3.877319603490418*^9},
CellLabel->
"Out[413]=",ExpressionUUID->"ee3ec461-2d21-4557-941b-d62c06497c8e"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Figure 3", "Chapter",
CellChangeTimes->{{3.877317322619692*^9,
3.877317340450927*^9}},ExpressionUUID->"8f9eb6de-4225-4bee-9515-\
e05793b4cd24"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{"Clear", "[",
RowBox[{"a0", ",", "\[CapitalDelta]\[Gamma]"}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[CapitalDelta]\[Gamma]", "=",
RowBox[{
RowBox[{"9", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]],
SuperscriptBox["a0", "2"]}], "+",
RowBox[{"0.2", " ", "a0"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{"\[CapitalDelta]\[Gamma]", ",",
RowBox[{"{",
RowBox[{"a0", ",", "0", ",", "2000"}], "}"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<a0\>\"", ",",
"\"\<\[CapitalDelta]\[Epsilon] per particle \
[\!\(\*SuperscriptBox[\(mc\), \(2\)]\)]\>\""}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{", "Red", "}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{", "\"\<Eq. (9)\>\"", "}"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.877317346478504*^9, 3.87731741567509*^9}},
CellLabel->
"In[414]:=",ExpressionUUID->"0d5776ab-e922-4a13-8dcc-82626e2da5b9"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{{{{}, {},
TagBox[{
Directive[
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0, 0]],
LineBox[CompressedData["
1:eJwV0v8/0wkAx/GFihSGhJVi17Wib0SRbe8xRIsroi+oTL6UfCdflsv3JJrv
LPbZZCqxub5KRUWJepzS+VKUR3V1fdulIUK67ofX4/kPvIz9wrbtVyKRSL4/
+9+PiimOY8BMpsH1pj6h0UtGpCTegi1+zRRv9VtEJDUz49TlAQbiYWYVgz+Y
XdjJTGyqJqmIlfHLSgnl4a1B5veS1C3fRDpY29E91jx3iNmkohgeFlHx3f1J
5dH9JBhtXO70RWSB/nFnf9UFZNQwpq6P09dBdazw29rzZFjZda4h9a/DFeZd
/XnQhqtzjKHmfCvk1XeP9B7UQZLXbblZ1gY4al2h3nowH8+jdhYGRdAha4v2
flZrCNee1qHPInvYqo8upCSY4PdBn50aX+1x97dN12J7TFD/7utts81sNKh5
1dhYUEGepBUEj7LxtLv6+KScir8W51i+dnbEvF5N9r6gpdgVvD2hR7EJ1kdm
C26E0xA49Ub5JtsVp3fkdF3oXAXkpao7RHtgQPKt0ZVrhbYXegylcg/w/WcP
lAqs4GpWE97c4oEj/b/GaXVZwaftUbe1znbMUgiMj7HWI+H7ItGqC9vRdtvL
usxkAy4FN6zTH/LE3E9Unp3cGjQ7uc/Hgztx6uAstz+q6CAPe9bncX0Rqj6h
S/rTDozrcVuPaPnD/24A31OyGaKoprqBHcH4O+OczTjXHS+cn3dNOoaix8Z7
S6vbTuzfnCD364yAiqD6UqDdXrAax1Q6Q6PRq/x+JN7cH+oNL0mUl7EoppRs
3WgTBNMvTqG2x+LRt5Fs2jIVAptrhrfoSjxMfJ6xbfpNOGTOe5beC0tCgUbd
B+6hKNycozVNzjqK6Ivdiya8Y2HYUN1f35IM4eOLvOBN8TBJnYxo1E/FiYv1
kR+qePA1V8vPDEyD3exUW472UZCXb6lqJdKxRFaVJutIRhjdLSxEkQGlzLlh
xrdTwS7LNEtbdQwP81da+tWlo1U7qXJWeha4lVTGsoFMHA5fWcnpPo6ukreC
Q4bHIZ6vU6ikeQJXv132Weh8Aof7rjCo3BxEslSy+5tz0fqK339RlAvtH+Fs
43w+2I+pSqp9J9G3o73Xoz0PDaGN4a8L+fDYZWXmsKwAWfpJTxPM8yBxz3IP
ii/EmsciodPzPGje049NHinC0CRB+5qWj5yOCYPomBKEuDSe9zYugFP30MZ3
/5Ti5hmL7PGOAoTpusbrZQjQQbvP5QQXwnAv6U2Abjm+UKxnpKgUIcAl07xL
UgH5IrXJT7VFYASJLGr2E5DYj8g1XYqhKu4rS8kSwTyOQQ8aKcZyttQhJU6M
xEen0+MKSrCCpzWd71OJ54I3+QdWl4Kr4TRea38a86MzpvL6SuFNqZiOsq+C
WoTdnojYMpx5IhyaWC9BF8/HKMNYAG69uxrHqRqXJzwqee0CRNFYLjo7zsC9
PHCxacAp3HNhWbG8z6KN83RcQ6scu8sihk/xzuHrkoAHNdJyGM5xCKg7WQNm
YKcfzaUCIzMj9borz8P3Rolnv6ICrV6cpNQntdhgmWjvyBfClvLxUOloHXoS
7VbMLBBCmaD5XpqoQ8wdNXJrkRAlpfybj37U4YJb6QvWKSEM5IPtc+ZIYXbg
cjy9WohCCk8/zUiKJcRn2bobQhzIrcnJdpJCTc1/IfWdENkPBnvlZVKcdTNV
fvVBiHzVkLoFhBSOxYr3IrkQ+66bKFhVUqRRk68aDQvhl6LZXiKVYpou3GY4
LURv0dvaTS1SKCL7jpF1CRBdxznNn6TgXyPCHukRsA9p0h36IsVqUqDnSQMC
lxIXcozHpAjJGaXOW0z8/MJLNX2GDG/PaDerriDwKvnhla16MqT9+1TSZkag
p919PJ0iA9VSfCJjNYHizJnnGpfIsPfO6l0qlgQi/d95LTWVYVp1DC3rCeSm
GnjuXiNDhVvTshQbAjH6MS15ljLYFqdrsOgEaNRJ4r6NDM8GOKM/mATEp89/
/MGU4T9K/Lge
"]]},
Annotation[#, "Charting`Private`Tag$47128#1"]& ]}}, {}}, {
DisplayFunction -> Identity, Ticks -> {Automatic, Automatic},
AxesOrigin -> {0, 0},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, DisplayFunction -> Identity,
PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}}, PlotRangeClipping -> True, ImagePadding -> All,
DisplayFunction -> Identity, AspectRatio ->
NCache[GoldenRatio^(-1), 0.6180339887498948], Axes -> {True, True},
AxesLabel -> {None, None}, AxesOrigin -> {0, 0}, DisplayFunction :>
Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{
FormBox[
"\"\[CapitalDelta]\[Epsilon] per particle \
[\\!\\(\\*SuperscriptBox[\\(mc\\), \\(2\\)]\\)]\"", TraditionalForm], None}, {
FormBox["\"a0\"", TraditionalForm], None}},
FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}},
GridLines -> {None, None}, GridLinesStyle -> Directive[
GrayLevel[0.5, 0.4]],
Method -> {
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}},
"DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange -> {{0, 2000}, {0., 3999.999844897961}}, PlotRangeClipping ->
True, PlotRangePadding -> {{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.02],
Scaled[0.02]}}, Ticks -> {Automatic, Automatic}}],
FormBox[
FormBox[
TemplateBox[{"\"Eq. (9)\""}, "LineLegend", DisplayFunction -> (FormBox[
StyleBox[
StyleBox[
PaneBox[
TagBox[
GridBox[{{
TagBox[
GridBox[{{
GraphicsBox[{{
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0, 0]], {
LineBox[{{0, 10}, {20, 10}}]}}, {
Directive[
EdgeForm[
Directive[
Opacity[0.3],
GrayLevel[0]]],
PointSize[0.5],
Opacity[1.],
AbsoluteThickness[1.6],
RGBColor[1, 0, 0]], {}}}, AspectRatio -> Full,
ImageSize -> {20, 10}, PlotRangePadding -> None,
ImagePadding -> Automatic,
BaselinePosition -> (Scaled[0.1] -> Baseline)], #}},
GridBoxAlignment -> {
"Columns" -> {Center, Left}, "Rows" -> {{Baseline}}},
AutoDelete -> False,
GridBoxDividers -> {
"Columns" -> {{False}}, "Rows" -> {{False}}},
GridBoxItemSize -> {"Columns" -> {{All}}, "Rows" -> {{All}}},
GridBoxSpacings -> {
"Columns" -> {{0.5}}, "Rows" -> {{0.8}}}], "Grid"]}},
GridBoxAlignment -> {"Columns" -> {{Left}}, "Rows" -> {{Top}}},
AutoDelete -> False,
GridBoxItemSize -> {
"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}},
GridBoxSpacings -> {"Columns" -> {{1}}, "Rows" -> {{0}}}],
"Grid"], Alignment -> Left, AppearanceElements -> None,
ImageMargins -> {{5, 5}, {5, 5}}, ImageSizeAction ->
"ResizeToFit"], LineIndent -> 0, StripOnInput -> False], {
FontFamily -> "Arial"}, Background -> Automatic, StripOnInput ->
False], TraditionalForm]& ),
InterpretationFunction :> (RowBox[{"LineLegend", "[",
RowBox[{
RowBox[{"{",
RowBox[{"Directive", "[",
RowBox[{
RowBox[{"Opacity", "[", "1.`", "]"}], ",",
RowBox[{"AbsoluteThickness", "[", "1.6`", "]"}], ",",
InterpretationBox[
ButtonBox[
TooltipBox[
GraphicsBox[{{
GrayLevel[0],
RectangleBox[{0, 0}]}, {
GrayLevel[0],
RectangleBox[{1, -1}]}, {
RGBColor[1, 0, 0],
RectangleBox[{0, -1}, {2, 1}]}}, DefaultBaseStyle ->
"ColorSwatchGraphics", AspectRatio -> 1, Frame -> True,
FrameStyle -> RGBColor[0.6666666666666666, 0., 0.],
FrameTicks -> None, PlotRangePadding -> None, ImageSize ->
Dynamic[{
Automatic,
1.35 (CurrentValue["FontCapHeight"]/AbsoluteCurrentValue[
Magnification])}]],
StyleBox[
RowBox[{"RGBColor", "[",
RowBox[{"1", ",", "0", ",", "0"}], "]"}], NumberMarks ->
False]], Appearance -> None, BaseStyle -> {},
BaselinePosition -> Baseline, DefaultBaseStyle -> {},
ButtonFunction :> With[{Typeset`box$ = EvaluationBox[]},
If[
Not[
AbsoluteCurrentValue["Deployed"]],
SelectionMove[Typeset`box$, All, Expression];
FrontEnd`Private`$ColorSelectorInitialAlpha = 1;
FrontEnd`Private`$ColorSelectorInitialColor =
RGBColor[1, 0, 0];
FrontEnd`Private`$ColorSelectorUseMakeBoxes = True;
MathLink`CallFrontEnd[
FrontEnd`AttachCell[Typeset`box$,
FrontEndResource["RGBColorValueSelector"], {
0, {Left, Bottom}}, {Left, Top},
"ClosingActions" -> {
"SelectionDeparture", "ParentChanged",
"EvaluatorQuit"}]]]], BaseStyle -> Inherited, Evaluator ->
Automatic, Method -> "Preemptive"],
RGBColor[1, 0, 0], Editable -> False, Selectable ->
False]}], "]"}], "}"}], ",",
RowBox[{"{", #, "}"}], ",",
RowBox[{"LegendMarkers", "\[Rule]", "None"}], ",",
RowBox[{"LabelStyle", "\[Rule]",
RowBox[{"{", "}"}]}], ",",
RowBox[{"LegendLayout", "\[Rule]", "\"Column\""}]}], "]"}]& ),
Editable -> True], TraditionalForm], TraditionalForm]},
"Legended",
DisplayFunction->(GridBox[{{
TagBox[
ItemBox[
PaneBox[
TagBox[#, "SkipImageSizeLevel"], Alignment -> {Center, Baseline},
BaselinePosition -> Baseline], DefaultBaseStyle -> "Labeled"],
"SkipImageSizeLevel"],
ItemBox[#2, DefaultBaseStyle -> "LabeledLabel"]}},
GridBoxAlignment -> {"Columns" -> {{Center}}, "Rows" -> {{Center}}},
AutoDelete -> False, GridBoxItemSize -> Automatic,
BaselinePosition -> {1, 1}]& ),
Editable->True,
InterpretationFunction->(RowBox[{"Legended", "[",
RowBox[{#, ",",
RowBox[{"Placed", "[",
RowBox[{#2, ",", "After"}], "]"}]}], "]"}]& )]], "Output",
CellChangeTimes->{{3.877317385351417*^9, 3.877317416103529*^9},
3.877319603648408*^9},
CellLabel->
"Out[416]=",ExpressionUUID->"03dee65d-26b5-43d8-8d49-76fb681b8ede"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Figure 5", "Chapter",
CellChangeTimes->{{3.877317322619692*^9, 3.877317340450927*^9}, {
3.877317524936009*^9,
3.87731752516917*^9}},ExpressionUUID->"b11120ee-8c4e-4186-becc-\
045337b92022"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"\[CapitalDelta]\[Epsilon]\[Epsilon]", ",", "a0", ",", "n", ",", "nc"}],
"]"}], "\[IndentingNewLine]",
RowBox[{"(*",
RowBox[{
RowBox[{"n", "=",
RowBox[{"160", "nc"}]}], ";"}], "*)"}], "\[IndentingNewLine]",
"\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"eq", " ", "11"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalDelta]\[Epsilon]\[Epsilon]", "=",
RowBox[{
FractionBox[
RowBox[{"3",
RowBox[{"(",
RowBox[{
RowBox[{"9", " ",
SuperscriptBox["10",
RowBox[{"-", "4"}]], "a0"}], "+", "0.2"}], ")"}]}], "a0"],
RowBox[{"(",
FractionBox["n", "nc"], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"10", "%", " ", "absorption"}], " ",
"*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"sol", "=",
RowBox[{
RowBox[{"Solve", "[",
RowBox[{
RowBox[{"\[CapitalDelta]\[Epsilon]\[Epsilon]", "==", "0.1"}], ",",
"n"}], "]"}], "[",
RowBox[{"[",
RowBox[{"1", ",", "1", ",", "2"}], "]"}], "]"}]}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
FractionBox["sol", "a0"], "/.",
RowBox[{"{",
RowBox[{
RowBox[{"nc", "->", "1"}], ",",
RowBox[{"n", "->", "160"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"a0", ",", "0", ",", "1000"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<a0\>\"", ",", "\"\<n/a0 nc\>\""}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Medium"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "0.16"}], "}"}]}]}], "]"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{"Plot", "[",
RowBox[{
RowBox[{"{",
RowBox[{"sol", "/.",
RowBox[{"{",
RowBox[{
RowBox[{"nc", "->", "1"}], ",",
RowBox[{"n", "->", "160"}]}], "}"}]}], "}"}], ",",
RowBox[{"{",
RowBox[{"a0", ",", "0", ",", "1000"}], "}"}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<a0\>\"", ",", "\"\<n/nc\>\""}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Blue"}], ",",
RowBox[{"ImageSize", "\[Rule]", "Medium"}], ",",
RowBox[{"PlotLegends", "\[Rule]", "Automatic"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{"0", ",", "32"}], "}"}]}]}], "]"}]}], "Input",
CellChangeTimes->{{3.8773183000075893`*^9, 3.877318645745728*^9}},
CellLabel->
"In[417]:=",ExpressionUUID->"2b0a2a93-8f84-44eb-bdf9-89d5123eff10"],
Cell[BoxData[
FractionBox[
RowBox[{"0.03333333333333333`", " ", "a0", " ", "nc"}],
RowBox[{"0.2`", "\[VeryThinSpace]", "+",
RowBox[{"0.0009`", " ", "a0"}]}]]], "Output",
CellChangeTimes->{{3.877318405979327*^9, 3.877318646112815*^9},
3.877319603706476*^9},
CellLabel->
"Out[419]=",ExpressionUUID->"9edb451d-ca02-4f19-a5c3-9aa935390eac"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[1, 0, 0], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwVkms01HkcxjVpma1cciuJGE6JUqyzU4zvVy7TRRSiLcs2MmqO41JyGWVd
xp35G0YuxW8wrpEp0RjpNrMqdrc4Z4uoja3dTdlKoU1p7YvnPC8+L57Pi8ec
E+UbRlNTU9uxkP+7IGUg1SDXApP0L7DH+CowdbJmv5UwcHxGlBIQqQLvB6o3
ryUOuKgycaNRhRJQlL7UI9YdbVNz4zzUb4HuuwCZKNQbBxU9TjE3boBLd8K+
0zr+aNXYqpt94DpITlxrHT3wHYY4WzYVePXAk52PB+c8g9GtqueoorIbwnbz
Jzn3DmOvKFwa/aULXBWz6vcij+DoYebekBI5LJWPqa0e42LtNQd+VNgVsHnL
jnTOPoZ760yDOE6dsK3L+AaLFoE8W3mL3KUD2naGWPVGRaLWI2nW80OXoedr
nXndnGgcuGnW7sZvB2N5/YhMGYMigZ9fs/wSWKTPxShWnsArKeIx49mLEGxP
L8oKj8XP+s85neyLoGu9R6oiJ5GrXKR9p00GUSyfqIipONTcYTgSbCgD9/Is
W8GmBCwpXt5Qbt4GqhXJNV9lJOIQt/8XDb0LEB+9scbrNz4mJBYvaTNuhWoD
PTFN+xTOF6Z+WuLaAvFDnS6M0NP4jJqFGc55UI0XjrRLknHSBmVlpBncBxg0
zaEf0c9QqXdoognkkYroP8QpOC1WjvhvboKclcnDfPtU9HPYnPFXXiNsHpBU
sR+n4qZynt6L8QZ4M0fWzwjSkNm8rq/SowEidinOB5mno5Pjr0YainroaXDI
+9CXjjRZsuuodT30rb8T6nVMgI8UarklTXXwdvXWRWnqGchxai0K3FIHk2vo
c69aMvDVFhav+rIU6tzeT2rvykReu3f5fg8p2Ce4sI6+z0Tm6v2+QwO1kHS/
NiOhOAsF7f0f83m18LjieRHPLht/ruj/aQe9FgxiMz+JhrKxLGkqfr62Bugx
20Ni4nKQ+3Bpit3OGhg89b1ppnku2nZMe1RMVEPHR/+aU3dz0T74bnuoqBr8
zoWb2XDzcM1hs9ss12q47TX8QUsnH4/Scp+mTEpgZi23v/lCPorZVj6WNRKA
8Huc9bsKMIcXd0J5UALBV0sDRqYKcNjI7veP2hJgOia5eRYKcXDEP8+inMCD
pO0blhQLMXArrXDwDIGTt+i6qhIhLovwfpkmJnDJp+yJ61khGu6Nr3tGEbDl
dSSy6oUo3v7BqiWTwFryuu2bq0IsO27P3h1LgE4/YsL4W4jcUkHWXR8CjT42
i8cnhNhIlzoJ9hDwPDP1QjIpRMvuZe6wm4CAkXrF9J0Qi4qi93V6EphnVfka
zwuR6ZwW1MgiMHV8KFtXn1r461PGORsChV0k6r4hhW7DGvpB1gTs1MIDqFUU
apoEBJqsIxBRMM1YbkbhVkvTh5UWBP5sWHFdc8MCLw7rkq5a2PtnuO62LYUv
+X0YbkSA4Vidn2lHoX5cr/EGAwI/3LI7qO5IYZWvc69MZ8FHcxaV31JIKy0q
jdUiUOlzbV3aNgo7LjO7mcsIOJ/J0HJlUbh4wmTLZzqBR6Ne01+AwkD+xn9v
ahD4D053D3w=
"]]},
Annotation[#, "Charting`Private`Tag$47206#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"n/a0 nc\"", TraditionalForm], None}, {
FormBox["\"a0\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->Medium,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 999.9999795918368}, {0, 0.16}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.877318405979327*^9, 3.877318646112815*^9},
3.877319603745079*^9},
CellLabel->
"Out[420]=",ExpressionUUID->"315dac2f-dcc3-4d21-95ac-4aa6c0e64cf9"],
Cell[BoxData[
GraphicsBox[{{{}, {},
TagBox[
{RGBColor[0, 0, 1], AbsoluteThickness[1.6], Opacity[1.],
LineBox[CompressedData["
1:eJwVzns0lAkYBnChGuniUonKpTnlMnamRmjGfN/3iMgtR1ntdpZqMMpiiGRy
KWGM2wwpKcUMSaWkbEtidDLLqjapsx2WbmztpqZcIq3Ynf3jPc/5neeP57Xi
C7eHa2tpaflp7v98N/bV10MwQWZVzC0MljwgD1SLHNwVTyinisgGc/plKklf
LTBVDFHkn1s49abNVLLygpauYpz6zXzlVt78e9TMqQy/L3IdxFLxqx4M9lFK
3bHxcbkxxMVzdFhlbylzF1vPUTkdaZSEnWvwhdr2VDXyUe6AuiERf91CGlCU
ob8lwR3mDow8N5oJDMeD6otCt2FZkudJ4x4LkLeTAlINAtGNRoOUGjrk8cqr
A999j3dlJhTD0RrPvZ49nvYIwXJTi9VWVnYI9zms5nfvRe6eaObeEXu4Nn/W
7Y4JQ6vxdeupMBb0m15prXwlQOdrwzMBzevBGPWM4Un2I29mwlG/dQO4t8zu
ENpROLOoIz2klI1rXrvXdghjUG3TouMe7IDWBQazhjmxsByeSbW02gizpgv9
9e1xmMz5KZPZtRFrMqbjmlfEI+t+x3uHOEeEsPWOZ0ckgM8UL0zQc4Khrd95
VcVBsMMTUoIKnCAk/IVRY4mwF/U/TDdyhvvpbPtMZhKiXZdbJoidoTJKq5yX
JYJAkhY9NO2MQ7HfVPr+fhhR88Mzr0ZsgmKZ8QntJSnorC+YXduxCYd6fybp
oakQdTemZq/jQDVY2N8gT8MdnxWq7ckcuPfQtWm9R/DmIa/8axcHTTHNsUMn
jsJ23cvpW2Zc5KxI6zvMTofZlfhLJnwu1vfIyz2fpSMwv6k9tpaLkekKm8nM
Yyi1Vgze/MhFlHdz7Q9WGUjNSW7xsXdBa41D3tS9DLxIswt8HumCeza/hvru
zwTDTkTmVbpgdCVnzjHdLLj5fEi6/dQF6tV60++vZEF945H/wEIeqt0+qZd4
ixE+Y1tgR/DATiKJfZ/E4JhONXgLeUh+VJWVVJyNN71GfRZneXh25vXxSJYE
A3FK7s4OHpYliL8W9UpwtO58g98YD3pxm3fHJeZgR5elpNGUwOOUYHOxVS7a
GFeUqs0Ebv4TWJnSlQvrgdqA1P0EdpyNsGAI8vBt9uJaj3wCnb59U4sN8nFx
3vDL8noCk5aC+5fr8rFhaXFoYA8BKqKbb+NdgF3stQH+IwRCWk4F9Y8VoH7B
uVKVAYlNjsluHoVScAT1L+YxSTxN3mw3t1gK61WFO7M1PnhXz1B1Ugr18aqW
+SwSN/xLn7uWSSF0TdxGW0/CPvKmiLggxfsnRBGNTcKy4uO1jS1SMKLelcx1
IqGnF7aK/rcUE2pm2yhB4qI/Q2dwWAqP2OjXQpKER8nYW7laihr+3i9qjTPp
6Y3m41JoHxENv6VIzBLl281mpVBe6ht96Upi7ECvxHCpDLsVD0vvbyFReKtC
+Gi5DLVD5NmtHiRYWhFBMlMZxuuqCn7ROKpggr7IQoZPabu4bZ4k3tQYtdHs
ZPjLbPj2dS/N3oe+6k57GVzbf2QxvUnQHRX5YpYMfkvnFF3WeM9d1i5dRxlW
MxLNq3w0/9A+o91Zhj21wd4WviTO+Sutj3E19toXVqYxryRrsSshQ8mL01Em
fiT+GPCd+JfS9J6T/GKN/wMJQhwy
"]]},
Annotation[#, "Charting`Private`Tag$47260#1"]& ]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0, 0},
DisplayFunction->Identity,
Frame->{{True, True}, {True, True}},
FrameLabel->{{
FormBox["\"n/nc\"", TraditionalForm], None}, {
FormBox["\"a0\"", TraditionalForm], None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
ImagePadding->All,
ImageSize->Medium,
Method->{
"DefaultBoundaryStyle" -> Automatic,
"DefaultGraphicsInteraction" -> {
"Version" -> 1.2, "TrackMousePosition" -> {True, False},
"Effects" -> {
"Highlight" -> {"ratio" -> 2}, "HighlightPoint" -> {"ratio" -> 2},
"Droplines" -> {
"freeformCursorMode" -> True,
"placement" -> {"x" -> "All", "y" -> "None"}}}}, "DefaultMeshStyle" ->
AbsolutePointSize[6], "ScalingFunctions" -> None,
"CoordinatesToolOptions" -> {"DisplayFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& ), "CopiedValueFunction" -> ({
(Identity[#]& )[
Part[#, 1]],
(Identity[#]& )[
Part[#, 2]]}& )}},
PlotRange->{{0., 999.9999795918368}, {0, 32}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {0, 0}},
Ticks->{Automatic, Automatic}]], "Output",
CellChangeTimes->{{3.877318405979327*^9, 3.877318646112815*^9},
3.8773196037838383`*^9},
CellLabel->
"Out[421]=",ExpressionUUID->"160b45bd-ca97-48b3-b5f1-efbb739b36dd"]
}, Open ]]
}, Open ]],
Cell[CellGroupData[{
Cell["Figure 6", "Chapter",
CellChangeTimes->{{3.877317322619692*^9, 3.877317340450927*^9}, {
3.877317528715775*^9,
3.877317528890881*^9}},ExpressionUUID->"72e242c4-a832-47dd-a1e2-\
6334b339d92e"],
Cell[CellGroupData[{
Cell[BoxData[{
RowBox[{
RowBox[{"Clear", "[",
RowBox[{
"a0", ",", "\[CapitalGamma]CP", ",", "\[CapitalGamma]LPp", ",",
"\[CapitalGamma]Lpm", ",", "\[Omega]0", ",", "aS", ",", "\[Lambda]"}],
"]"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"eq", " ", "12"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalGamma]CP", " ", "=", " ",
RowBox[{"\[Omega]0", " ", "2.6", " ",
SuperscriptBox["10",
RowBox[{"-", "3"}]], "a0", " ",
RowBox[{"Exp", "[",
RowBox[{"-",
FractionBox[
RowBox[{"2", "aS"}],
RowBox[{"3",
SuperscriptBox["a0", "2"]}]]}], "]"}]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"eq", " ", "13"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalGamma]LPp", " ", "=", " ",
RowBox[{"\[Omega]0", " ", "1.8", " ",
SuperscriptBox["10",
RowBox[{"-", "3"}]], "a0", " ",
RowBox[{"Exp", "[",
RowBox[{"-",
FractionBox[
RowBox[{"4", "aS"}],
RowBox[{"3",
SuperscriptBox["a0", "2"]}]]}], "]"}]}]}], ";"}],
"\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"(*", " ",
RowBox[{"eq", " ", "14"}], " ", "*)"}]}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"\[CapitalGamma]LPm", " ", "=", " ",
RowBox[{"\[Omega]0", " ", "1.3", " ",
SuperscriptBox["10",
RowBox[{"-", "3"}]], "a0", " ",
RowBox[{"Exp", "[",
RowBox[{"-",
FractionBox[
RowBox[{"8", "aS"}],
RowBox[{"3",
SuperscriptBox["a0", "2"]}]]}], "]"}]}]}], ";"}],
"\[IndentingNewLine]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"\[Omega]0", "=", "1"}], ";",
RowBox[{"(*",
RowBox[{
RowBox[{"[", "\[Omega]0", "]"}], " ", "for", " ", "plotting", " ",
"purposes"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"\[Lambda]", "=", "1"}], ";",
RowBox[{"(*",
RowBox[{"[", "\[Mu]m", "]"}], "*)"}], "\[IndentingNewLine]",
RowBox[{"aS", "=",
RowBox[{"4.12", " ",
SuperscriptBox["10", "5"], "\[Lambda]"}]}], ";",
RowBox[{"(*",
RowBox[{"[", "]"}], "*)"}], "\[IndentingNewLine]", "\[IndentingNewLine]",
RowBox[{"LogPlot", "[",
RowBox[{
RowBox[{"{",
RowBox[{
"\[CapitalGamma]CP", ",", "\[CapitalGamma]LPp", ",",
"\[CapitalGamma]LPm"}], "}"}], ",",
RowBox[{"{",
RowBox[{"a0", ",", "100", ",", "500"}], "}"}], ",",
RowBox[{"PlotRange", "\[Rule]",
RowBox[{"{",
RowBox[{
SuperscriptBox["10",
RowBox[{"-", "6"}]], ",",
SuperscriptBox["10", "0"]}], "}"}]}], ",",
RowBox[{"Frame", "\[Rule]", "True"}], ",",
RowBox[{"FrameLabel", "\[Rule]",
RowBox[{"{",
RowBox[{"\"\<a0\>\"", ",", "\"\<\[CapitalGamma]/\[Omega]0\>\""}],
"}"}]}], ",",
RowBox[{"PlotLegends", "\[Rule]",
RowBox[{"{",
RowBox[{
"\"\<\[CapitalGamma]CP\>\"", ",", "\"\<\[CapitalGamma]LP+\>\"", ",",
"\"\<\[CapitalGamma]LP-\>\""}], "}"}]}], ",",
RowBox[{"PlotStyle", "\[Rule]",
RowBox[{"{",
RowBox[{"Red", ",",
RowBox[{"{", "Blue", "}"}], ",",
RowBox[{"{",
RowBox[{"Blue", ",", "Dashed"}], "}"}]}], "}"}]}], ",",
RowBox[{"Filling", "->",
RowBox[{"{",
RowBox[{"2", "\[Rule]",
RowBox[{"{", "3", "}"}]}], "}"}]}]}], "]"}]}]}], "Input",
CellChangeTimes->{{3.877318674559186*^9, 3.877318915305212*^9}, {
3.877318946187152*^9, 3.877318977265349*^9}, {3.877319621259014*^9,
3.877319623680122*^9}},ExpressionUUID->"cc2a3abe-d40a-4dab-a744-\
71b424342ce4"],
Cell[BoxData[
TemplateBox[{
GraphicsBox[{
GraphicsComplexBox[CompressedData["
1:eJxd1Gs81NkfwPEx4xqW8Ru3MZs7IysUrdSsk5RqVfKv5C8SJeOWccutGcVO
7pT+riEpi6zEqpT8DrnUoKQLUaG2rWYmlWvu2//B7zzYB+d1Xt9H57zO6/M+
ut7HXY6SSSTSte/r//s2FkuPRHIDF5cz81NKTaFZxCGPNRne4ES3t6r3s1Uw
M1Fg2lLiA4a/LL0qpDHhnycfPHSpPgKqR+OoSe2G0ObtRH5/+VEgMRLnWPBe
H24xSzjHveEL1sd92eWprwevv2XVa/x5DDCo3BhxrQ4cTkiraKj2A6vEmw4Z
v1oJc2VBV/htNpjLNDO2Ps6ANbMr1Yxv+APnnKoIKpsOdz3yzpjvCAAFzv3F
HI4GrM2wHerrCwTSooiEvAY1GHqb5VzUHQTOPElrvPeLKrwruDKePBQMDo20
+/j0YPCY4/q77IHjoPSSpNcv2Spw59O8QeuIENAWXFFieJAK78++BrfmQ0Dp
2JLOawdlGPbMdoNVNAeE5o/Lraj6AXrrb3faJBEK1oZc2qQhUICnjIO+OsaH
gi3LEvdumMrDUzpDpN6FUJCnrX574Loc7EidN/qYEAZ+OqVllWQlC23/sByd
lwgHQYvPs6Y+SMMJQK8rSQkH+9OqM07mS8H0B06f2pQjQLvntfMKvpLQVfZ/
TW/TIwDNSw1TcqPAo42Zl7JVI4GNlnGghCMZlulcZLDOR4IXKn3bXPdLwNa4
OZKf8gmw5U6vIOQECRr9KrOgn3sCDGZVqU0YLuONj0xSX9CigH9JU7Pg3CJ+
tmPJQqcoCpSxZ5cXJ+fxvLCP/l6MaPA0QPywhT+Hn1JdqaSXHw2WV1RkmlvO
4jUmUoJwnRgQ9nqf15PeGVx+UkKzpTgGsMqZ7Z2503i1xXVusXEsuPVbhWrK
3il8tXfVrsU/YsHfA4OSG40m8ZHtjXX7TOOAmqZPY7PGBN5fFmNmVx8Hct47
HNksMY4v1u/ZqLfmJFBVbn2ZIPMVl2wMbeDXnASJd4UgjvEFd7bYuiXOmgvY
86uHzu8ew7s9zNkB9VyQy/+7CMsX4zW1ITPLdjwwOezrsdgqxFkyzrUNs1zQ
OrWLlX5VhCfW4WlZz7nAkTo0U6MrxqfdR54MMnjg4curWpXrRDgzaWZusY0L
Pldq59p4iPECSw37bfI88GDySM9EiAh34VccDVrNA506bqerF4T4XChWZ9XE
BcC35o1WrBgPZFjNcsk8QHc1LFuXIcINOG2My4Y8cK0QqJVqivD4wrSadT/z
QOyD0792DQtxH79Sxd6bXOBDm7FQTRHjT6mte+lLXLDqgkfk8AURnu7rEmWn
+/38+JOVekwR/jGLvqJvDQ8ovj0bt35MiKuXL7kUbuABr5el4sOPhbiGj9+d