-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder_test.py
169 lines (129 loc) ยท 5.9 KB
/
encoder_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import time
import math
import argparse
import datetime
import collections
import os
import torch
import torch.optim as optim
import numpy as np
import bottleneck as bn
import wandb
from parse_config import ConfigParser
from utils import prepare_device
from utils.ae_util import make_prediction_file, make_inference_data_and_mark, write_submission_file, get_loaders
from trainer import Trainer
from trainer.ae_trainer import AETrainer
import model.loss as module_loss
from model.loss import loss_function_dae, loss_function_vae
import model.metric as module_metric
import model.model as module_arch
from model.metric import recall_at_k_batch
from model.model import MultiDAE, MultiVAE, RecVAE, EASE
from data_loader.ae_dataloader import AETrainDataSet, AETestDataSet, ae_data_load, get_labels
import data_loader.data_loaders as module_data
from data_loader.data_loaders import AEDataLoader
# fix random seeds for reproducibility
SEED = 123
torch.manual_seed(SEED)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
np.random.seed(SEED)
def ae_train(config):
# wandb.login()
start_time = time.time()
n_kfold = config['n_kfold']
n_epochs = config['n_epochs']
dropout_rate = config['dropout_rate']
lr = config['lr']
batch_size = config['batch_size']
root_data = config['root_data']
data_dir = config['data_dir']
weight_decay = config['weight_decay']
num_workers = config['num_workers']
model_name = config['model_name']
output_path = config['output_path']
model_saved_path = os.path.join(config['model_saved_path'], model_name)
n_users = config['n_users']
n_items = config['n_items']
p_dims = [200, 600, n_items]
n_gpu_use = torch.cuda.device_count()
device = torch.device('cuda:0' if n_gpu_use > 0 else 'cpu')
# ํ์ผ์ ์ ์ฅํ ๋๋ ํ ๋ฆฌ ์ค์
if not os.path.exists(output_path):
os.mkdir(output_path)
if not os.path.exists(model_saved_path):
os.mkdir(model_saved_path)
all_recalls = []
inference_results = []
user_label, item_label = get_labels(data_dir)
raw_data, train_mark = make_inference_data_and_mark(config, root_data, user_label, item_label)
for fold in range(1, n_kfold+1): # k_fold๋ฅผ ์ผ๋จ 5ํ๋ก ์ ์ด๋๊ธฐ
# wandb.init(project=f"Movie_Rec_{model_name}", config=config)
# wandb.run.name = f'{model_name}_n_epoch{n_epochs}_lr{lr}_dropout{dropout_rate}_batch{batch_size}_fold{fold}'
# print(f'====================Start: {fold}-fold for 5 fold====================')
# if model_name == "MultiVAE":
# model = MultiVAE(config, p_dims, dropout=dropout_rate).to(device)
# elif model_name == "MultiDAE":
# model = MultiDAE(config, p_dims, dropout=dropout_rate).to(device)
# else:
model = RecVAE(*p_dims, config).to(device)
model.load_state_dict(torch.load(f'/opt/ml/movie_template/lr0.0005_dropout0.6_epoch250_fold{fold}.pth'))
# # optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=0.00)
# if model_name == "MultiDAE":
# criterion = loss_function_dae
# elif model_name == "MultiVAE":
# criterion = loss_function_vae
# else:
# criterion=None
# optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay = weight_decay)
tr_data, te_data = ae_data_load(data_dir, fold)
# train_loader, valid_loader = get_loaders(tr_data, te_data, config)
# trainer = AETrainer(fold=fold, model=model, optimizer=optimizer, config=config, device=device, train_loader=train_loader, valid_loader=valid_loader, criterion=criterion)
print(f'Training Start')
# recall_epoch, X_preds, heldouts = trainer.train()
# ๋ง์ง๋ง ํ๋ จ ์๋ฃ๋ recall ์ฌ์ฉ
model.eval()
X_preds = model(torch.Tensor(tr_data.toarray()).to(device), calculate_loss=False)
heldouts = te_data.toarray()
X_preds[tr_data.nonzero()] = -np.inf
recall_epoch = recall_at_k_batch(X_preds.cpu().detach().numpy(), heldouts, 10)
all_recalls.append(recall_epoch)
# ์ด ๋ชจ๋ธ์ ์ฌ์ฉํด์ ์ธํผ๋ฐ์ค ์งํ ๋ฐ ๋ฆฌ์คํธ์ ์ ์ฅ
inference_result = model(torch.Tensor(raw_data).to(device), calculate_loss=False).cpu().detach().numpy()
inference_results.append(inference_result)
# wandb save for each fold
# wandb.join()
total_recall_at_k = round(sum(all_recalls)/len(all_recalls),4)
print(f'==============์ต์ข
recall_at_k๋ {total_recall_at_k}์
๋๋ค===============')
print(f'=======================Starting Inference=======================')
print("==========์ด๋ฏธ ๋ณธ ์ํ๋ฅผ ํํฐ๋งํด์ค๋๋ค.==========")
# ์๋ ๋ณธ ์ํ๋ฅผ ๋นผ์ฃผ๋ ํํฐ๋ง ์์
inference_results = np.array(inference_results)
inference_results = np.mean(inference_results, axis=0)
inference_results[train_mark] = -np.inf
final_10 = bn.argpartition(-inference_results, 10, axis=1)[:, :10] # 10๊ฐ๋ง ๋จ๊ฒจ๋
# ์์ธก ํ์ผ์ ์ ์ฅํจ
make_prediction_file(output_path, inference_results, config, total_recall_at_k, user_label, item_label)
#์ ์ถ ํ์ผ์ ์ ์ฅํจ
write_submission_file(output_path, final_10, config, total_recall_at_k, user_label, item_label)
if __name__ == "__main__":
config = {
"n_kfold": 5,
"n_epochs": 50,
"dropout_rate": 0.6,
"lr": 0.001,
"batch_size": 64,
"root_data": './data/train/' ,
"data_dir": './data/train/ae_data',
"weight_decay": 0.00,
"num_workers": 4,
"model_name": 'RecVAE', # [MultiDAE, MultiVAE, RecVAE]
"output_path": './output/auto_encoder',
"model_saved_path": './saved_model',
"n_users": 31360,
"n_items": 6807,
'total_anneal_steps': 200000,
'anneal_cap': 0.2
}
ae_train(config)