Skip to content

Renderflux/disco-diffusion

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Disco Diffusion

Code style: black Open in Colab

A frankensteinian amalgamation of notebooks, models and techniques for the generation of AI Art and Animations.

Changes in this Fork

  • Focus on running from Windows, Linux, Google Colab, and Docker via either CLI or Notebook.
  • Move all functions possible out of the main disco.py module into dd.py so that disco.py can become readable.
  • Instead changing parameters directly in disco.py, parameters can be controlled by environment variables, command-line arguments, or config (YAML) files.
  • Allows YAML parameter files to be used as inputs. (See examples/configs for more)
  • SQLite support to store parameters and images for querying against later.
  • Iterate over parameters via modifiers and multipliers. (See examples/configs for more)

Windows First-time Setup (Anaconda)

Follow these steps for the first time that you are running Disco Diffusion from Windows.

Pre-requisites

  • Anaconda installed
  • Nvidia CUDA Toolkit Installed
  • MS VS Community Installed with C++ checkmarked
  1. From Anaconda Powershell Prompt:

    This command will allow you to use conda from a "regular" powershell session.

    conda init powershell
    exit
    
  2. From your VS Code Powershell prompt:

    Note: These commands should be run from the working directory of this cloned repository.

    This command will pull all dependencies needed by Disco Diffusion into a conda environment called discodiffusion

    conda env create -f environment.yml
    conda activate discodiffusion
    
    • Note: If you have already activated a discodiffusion conda environment, you can refresh it if this repo has changed by typing:

      conda env update --prefix discodiffusion --file environment.yml --prune

  3. Compile pytorch3d

    Note: These commands should be run from the working directory of this cloned repository.

    For reason I'm not 100% clear on, pytorch3d must be compiled in Windows. (Hence the requirement for C++ tool mentioned in Pre-requisties...)

    git clone https://github.com/facebookresearch/pytorch3d.git
    cd pytorch3d
    python setup.py install
    cd ..
    
  4. Execute a test run:

    The following test run will run with all defaults (so "the lighthouse run" as it is coined.) Image output and current image progress (progress.png) will be stored in images_out.

    conda activate discodiffusion
    python disco.py
    

First-time Setup (pip)

  • Windows PowerShell:

    python3 -m pip install --user virtualenv
    python -m venv .\.venv\discodiffusion
    .venv\discodiffusion\Scripts\Activate.ps1
    pip install -r requirements.txt
  • Windows Command Prompt:

    python3 -m pip install --user virtualenv
    python -m venv .\.venv\discodiffusion
    .venv\discodiffusion\Scripts\Activate.cmd
    pip install -r requirements.txt
  • Linux

    python3 -m pip install --user virtualenv
    python -m venv .venv/discodiffusion
    source .venv/discodiffusion/bin/activate
    pip install -r requirements.txt
    pip install git+https://github.com/facebookresearch/pytorch3d.git@stable
  • Test Run

    python disco.py

    A batch run should begin. Kill with Control+C Example:

    Using device: cuda:0
    💻 Starting Run: TimeToDisco(0) at frame 0
    🌱 Randomly using seed: 1825817222
    Prepping models...
    🤖 Loading model 'ViT-B/32'...
    🤖 Loading model 'ViT-B/16'...
    🤖 Loading model 'RN50'...
    🤖 Loading secondary model...
    🤖 Loading LPIPS...
    🌱 Seed used: 1825817222
    Frame 0 📝 Prompt: ['A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.', 'yellow color scheme']
    Batches:   0%|          | 0/50 [00:00<?, ?it/s]
    
    4%|████▌                                                                                                         | 10/240 [00:14<05:05,  1.33s/it]
    

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 95.8%
  • Python 4.1%
  • Other 0.1%