-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathcreate_db.py
executable file
·182 lines (167 loc) · 5.93 KB
/
create_db.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python3
import math
import warnings
from enum import Enum
from pathlib import Path
import chromadb
import chromadb.config
import typer
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import (
BSHTMLLoader,
DirectoryLoader,
Docx2txtLoader,
PyPDFLoader,
UnstructuredMarkdownLoader,
)
from tqdm import trange
from typing_extensions import Annotated
from assistant import get_chromadb, get_embeddings_model, parse_model_name, stable_hash
from assistant.const import EMBEDDINGS_MODEL_NAME_HELP
from assistant.settings import settings
app = typer.Typer()
class OnMatchAction(str, Enum):
IGNORE = "ignore"
REPLACE = "replace"
FAIL = "fail"
@app.command()
def create_db(
docs_directory: Annotated[
Path,
typer.Argument(
exists=True, file_okay=False, help="Directory with documents to index."
),
] = Path("./data/docs"),
embeddings_model_name: Annotated[
str, typer.Option("--embeddings", help=EMBEDDINGS_MODEL_NAME_HELP)
] = settings.full_embeddings_model_name,
exist_ok: Annotated[
bool,
typer.Option(
help="Do not fail if collection already exists in the vectorstore."
),
] = False,
on_match: Annotated[
OnMatchAction,
typer.Option(
case_sensitive=False,
help="Action to perform if given documents are indexed already.",
),
] = OnMatchAction.FAIL,
batch_size: Annotated[
int, typer.Option(help="Batch size for indexing document chunks.")
] = 50,
) -> None:
"""
Index documents into database.
"""
if not exist_ok and settings.docs_db_directory.exists():
client_settings = chromadb.config.Settings(
is_persistent=True, persist_directory=str(settings.docs_db_directory)
)
client = chromadb.Client(client_settings)
collection_names = [collection.name for collection in client.list_collections()]
if settings.docs_db_collection in collection_names:
raise RuntimeError(
f"Collection '{settings.docs_db_collection}' already exists in "
f"the vectorstore at '{settings.docs_db_directory}'. Set "
f"'--exist-ok' for appending to existing collections."
)
embeddings_model = get_embeddings_model(
*parse_model_name(embeddings_model_name),
device=settings.device,
trust_remote_code=settings.trust_remote_code,
)
assert batch_size > 0
docs_vectorstore = get_chromadb(
embeddings_model, settings.docs_db_directory, settings.docs_db_collection
)
indexed_doc_filepaths = sorted(
set(
metadata["source"]
for metadata in docs_vectorstore.get(include=["metadatas"])["metadatas"]
)
)
docs = []
loader = DirectoryLoader(
str(docs_directory),
glob="*.html",
loader_cls=BSHTMLLoader,
loader_kwargs={"open_encoding": "utf-8"},
recursive=True,
show_progress=True,
)
docs.extend(loader.load())
loader = DirectoryLoader(
str(docs_directory),
glob="*.md",
loader_cls=UnstructuredMarkdownLoader,
recursive=True,
show_progress=True,
)
docs.extend(loader.load())
loader = DirectoryLoader(
str(docs_directory),
glob="*.pdf",
loader_cls=PyPDFLoader, # type: ignore
recursive=True,
show_progress=True,
)
docs.extend(loader.load())
loader = DirectoryLoader(
str(docs_directory),
glob="*.docx",
loader_cls=Docx2txtLoader, # type: ignore
recursive=True,
show_progress=True,
)
docs.extend(loader.load())
if on_match == OnMatchAction.IGNORE:
docs = [
doc for doc in docs if doc.metadata["source"] not in indexed_doc_filepaths
]
elif on_match == OnMatchAction.REPLACE:
response = docs_vectorstore.get(include=["metadatas"])
ids = [
id_
for id_, metadata in zip(response["ids"], response["metadatas"])
if metadata["source"] in {doc.metadata["source"] for doc in docs}
]
docs_vectorstore.delete(ids)
else:
if doc_filepaths_match := {doc.metadata["source"] for doc in docs}.intersection(
set(indexed_doc_filepaths)
):
raise RuntimeError(
"Some of the given documents are indexed already. Set "
"'--on-match ignore' to ignore the already indexed documents or "
"'--on-match replace' to index them again. List of the already "
"indexed documents: '" + "', '".join(sorted(doc_filepaths_match)) + "'."
)
if docs:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=200, add_start_index=True
)
splits = text_splitter.split_documents(docs)
split_ids = list(map(stable_hash, splits))
# Remove duplicates if exist.
indices_to_remove = set()
for i, split_id in enumerate(split_ids):
for j in range(i + 1, len(split_ids)):
if split_ids[j] == split_id:
if len(splits[j].page_content) > len(splits[i].page_content):
indices_to_remove.add(i)
else:
indices_to_remove.add(j)
if indices_to_remove:
warnings.warn("Duplicated splits found, remove duplicates.")
for index in sorted(indices_to_remove, reverse=True):
del splits[index]
del split_ids[index]
for batch_index in trange(math.ceil(len(splits) / batch_size)):
start = batch_size * batch_index
end = start + batch_size
docs_vectorstore.add_documents(splits[start:end], ids=split_ids[start:end])
docs_vectorstore.persist()
if __name__ == "__main__":
app()