forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex15p.cpp
513 lines (452 loc) · 17.9 KB
/
ex15p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
// MFEM Example 15 - Parallel Version
//
// Compile with: make ex15p
//
// Sample runs: mpirun -np 4 ex15p
// mpirun -np 4 ex15p -o 1 -y 0.2
// mpirun -np 4 ex15p -o 4 -y 0.1
// mpirun -np 4 ex15p -n 5
// mpirun -np 4 ex15p -p 1 -n 3
//
// Other meshes:
//
// mpirun -np 4 ex15p -m ../data/square-disc-nurbs.mesh
// mpirun -np 4 ex15p -m ../data/disc-nurbs.mesh
// mpirun -np 4 ex15p -m ../data/fichera.mesh -tf 0.5
// mpirun -np 4 ex15p -m ../data/ball-nurbs.mesh -tf 0.5
// mpirun -np 4 ex15p -m ../data/mobius-strip.mesh
// mpirun -np 4 ex15p -m ../data/amr-quad.mesh
// mpirun -np 4 ex15p -m ../data/square-disc.mesh
// mpirun -np 4 ex15p -m ../data/escher.mesh -r 2 -tf 0.3
//
// Different estimators:
//
// mpirun -np 4 ex15p -est 0 -e 1e-4
// mpirun -np 4 ex15p -est 1 -e 1e-6
// mpirun -np 4 ex15p -est 1 -o 3 -tf 0.3
// mpirun -np 4 ex15p -est 2 -o 2
//
// Description: Building on Example 6, this example demonstrates dynamic AMR.
// The mesh is adapted to a time-dependent solution by refinement
// as well as by derefinement. For simplicity, the solution is
// prescribed and no time integration is done. However, the error
// estimation and refinement/derefinement decisions are realistic.
//
// At each outer iteration the right hand side function is changed
// to mimic a time dependent problem. Within each inner iteration
// the problem is solved on a sequence of meshes which are locally
// refined according to a chosen error estimator. Currently there
// are three error estimators supported: A L2 formulation of the
// Zienkiewicz-Zhu error estimator (0), a Kelly error indicator (1)
// and a traditional Zienkiewicz-Zhu error estimator (2). At the
// end of the inner iteration the error estimates are also used to
// identify any elements which may be over-refined and a single
// derefinement step is performed. After each refinement or
// derefinement step a rebalance operation is performed to keep
// the mesh evenly distributed among the available processors.
//
// The example demonstrates MFEM's capability to refine, derefine
// and load balance nonconforming meshes, in 2D and 3D, and on
// linear, curved and surface meshes. Interpolation of functions
// between coarse and fine meshes, persistent GLVis visualization,
// and saving of time-dependent fields for external visualization
// with VisIt (visit.llnl.gov) are also illustrated.
//
// We recommend viewing Examples 1, 6 and 9 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
// Choices for the problem setup. Affect bdr_func and rhs_func.
int problem;
int nfeatures;
// Prescribed time-dependent boundary and right-hand side functions.
double bdr_func(const Vector &pt, double t);
double rhs_func(const Vector &pt, double t);
// Update the finite element space, interpolate the solution and perform
// parallel load balancing.
void UpdateAndRebalance(ParMesh &pmesh, ParFiniteElementSpace &fespace,
ParGridFunction &x, ParBilinearForm &a,
ParLinearForm &b);
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
problem = 0;
nfeatures = 1;
const char *mesh_file = "../data/star-hilbert.mesh";
int order = 2;
double t_final = 1.0;
double max_elem_error = 1.0e-4;
double hysteresis = 0.25; // derefinement safety coefficient
int ref_levels = 0;
int nc_limit = 3; // maximum level of hanging nodes
bool visualization = true;
bool visit = false;
int which_estimator = 0;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&problem, "-p", "--problem",
"Problem setup to use: 0 = spherical front, 1 = ball.");
args.AddOption(&nfeatures, "-n", "--nfeatures",
"Number of solution features (fronts/balls).");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&max_elem_error, "-e", "--max-err",
"Maximum element error");
args.AddOption(&hysteresis, "-y", "--hysteresis",
"Derefinement safety coefficient.");
args.AddOption(&ref_levels, "-r", "--ref-levels",
"Number of initial uniform refinement levels.");
args.AddOption(&nc_limit, "-l", "--nc-limit",
"Maximum level of hanging nodes.");
args.AddOption(&t_final, "-tf", "--t-final",
"Final time; start time is 0.");
args.AddOption(&which_estimator, "-est", "--estimator",
"Which estimator to use: "
"0 = L2ZZ, 1 = Kelly, 2 = ZZ. Defaults to L2ZZ.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&visit, "-visit", "--visit-datafiles", "-no-visit",
"--no-visit-datafiles",
"Save data files for VisIt (visit.llnl.gov) visualization.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 3. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
int sdim = mesh->SpaceDimension();
// 4. Project a NURBS mesh to a piecewise-quadratic curved mesh. Make sure
// that the mesh is non-conforming if it has quads or hexes and refine it.
if (mesh->NURBSext)
{
mesh->UniformRefinement();
if (ref_levels > 0) { ref_levels--; }
mesh->SetCurvature(2);
}
mesh->EnsureNCMesh(true);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
// Make sure tet-only meshes are marked for local refinement.
mesh->Finalize(true);
// 5. Define a parallel mesh by partitioning the serial mesh. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, *mesh);
delete mesh;
MFEM_VERIFY(pmesh.bdr_attributes.Size() > 0,
"Boundary attributes required in the mesh.");
Array<int> ess_bdr(pmesh.bdr_attributes.Max());
ess_bdr = 1;
// 6. Define a finite element space on the mesh. The polynomial order is one
// (linear) by default, but this can be changed on the command line.
H1_FECollection fec(order, dim);
ParFiniteElementSpace fespace(&pmesh, &fec);
// 7. As in Example 1p, we set up bilinear and linear forms corresponding to
// the Laplace problem -\Delta u = 1. We don't assemble the discrete
// problem yet, this will be done in the inner loop.
ParBilinearForm a(&fespace);
ParLinearForm b(&fespace);
ConstantCoefficient one(1.0);
FunctionCoefficient bdr(bdr_func);
FunctionCoefficient rhs(rhs_func);
BilinearFormIntegrator *integ = new DiffusionIntegrator(one);
a.AddDomainIntegrator(integ);
b.AddDomainIntegrator(new DomainLFIntegrator(rhs));
// 8. The solution vector x and the associated finite element grid function
// will be maintained over the AMR iterations.
ParGridFunction x(&fespace);
// 9. Connect to GLVis. Prepare for VisIt output.
char vishost[] = "localhost";
int visport = 19916;
socketstream sout;
if (visualization)
{
sout.open(vishost, visport);
if (!sout)
{
if (myid == 0)
{
cout << "Unable to connect to GLVis server at "
<< vishost << ':' << visport << endl;
cout << "GLVis visualization disabled.\n";
}
visualization = false;
}
sout.precision(8);
}
VisItDataCollection visit_dc("Example15-Parallel", &pmesh);
visit_dc.RegisterField("solution", &x);
int vis_cycle = 0;
// 10. As in Example 6p, we set up an estimator that will be used to obtain
// element error indicators. The integrator needs to provide the method
// ComputeElementFlux. We supply an L2 space for the discontinuous flux
// and an H(div) space for the smoothed flux.
L2_FECollection flux_fec(order, dim);
RT_FECollection smooth_flux_fec(order-1, dim);
ErrorEstimator* estimator{nullptr};
switch (which_estimator)
{
case 1:
{
auto flux_fes = new ParFiniteElementSpace(&pmesh, &flux_fec, sdim);
estimator = new KellyErrorEstimator(*integ, x, flux_fes);
break;
}
case 2:
{
auto flux_fes = new ParFiniteElementSpace(&pmesh, &fec, sdim);
estimator = new ZienkiewiczZhuEstimator(*integ, x, flux_fes);
break;
}
default:
if (myid == 0)
{
std::cout << "Unknown estimator. Falling back to L2ZZ." << std::endl;
}
case 0:
{
auto flux_fes = new ParFiniteElementSpace(&pmesh, &flux_fec, sdim);
auto smooth_flux_fes = new ParFiniteElementSpace(&pmesh, &smooth_flux_fec);
estimator = new L2ZienkiewiczZhuEstimator(*integ, x, flux_fes, smooth_flux_fes);
break;
}
}
// 11. As in Example 6p, we also need a refiner. This time the refinement
// strategy is based on a fixed threshold that is applied locally to each
// element. The global threshold is turned off by setting the total error
// fraction to zero. We also enforce a maximum refinement ratio between
// adjacent elements.
ThresholdRefiner refiner(*estimator);
refiner.SetTotalErrorFraction(0.0); // use purely local threshold
refiner.SetLocalErrorGoal(max_elem_error);
refiner.PreferConformingRefinement();
refiner.SetNCLimit(nc_limit);
// 12. A derefiner selects groups of elements that can be coarsened to form
// a larger element. A conservative enough threshold needs to be set to
// prevent derefining elements that would immediately be refined again.
ThresholdDerefiner derefiner(*estimator);
derefiner.SetThreshold(hysteresis * max_elem_error);
derefiner.SetNCLimit(nc_limit);
// 13. The outer time loop. In each iteration we update the right hand side,
// solve the problem on the current mesh, visualize the solution and
// refine the mesh as many times as necessary. Then we derefine any
// elements which have very small errors.
for (double time = 0.0; time < t_final + 1e-10; time += 0.01)
{
if (myid == 0)
{
cout << "\nTime " << time << "\n\nRefinement:" << endl;
}
// Set the current time in the coefficients
bdr.SetTime(time);
rhs.SetTime(time);
// Make sure errors will be recomputed in the following.
refiner.Reset();
derefiner.Reset();
// 14. The inner refinement loop. At the end we want to have the current
// time step resolved to the prescribed tolerance in each element.
for (int ref_it = 1; ; ref_it++)
{
HYPRE_BigInt global_dofs = fespace.GlobalTrueVSize();
if (myid == 0)
{
cout << "Iteration: " << ref_it << ", number of unknowns: "
<< global_dofs << flush;
}
// 15. Recompute the field on the current mesh: assemble the stiffness
// matrix and the right-hand side.
a.Assemble();
b.Assemble();
// 16. Project the exact solution to the essential DOFs.
x.ProjectBdrCoefficient(bdr, ess_bdr);
// 17. Create and solve the parallel linear system.
Array<int> ess_tdof_list;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
HypreParMatrix A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
HypreBoomerAMG amg(A);
amg.SetPrintLevel(0);
HyprePCG pcg(A);
pcg.SetTol(1e-12);
pcg.SetMaxIter(200);
pcg.SetPrintLevel(0);
pcg.SetPreconditioner(amg);
pcg.Mult(B, X);
// 18. Extract the local solution on each processor.
a.RecoverFEMSolution(X, b, x);
// 19. Send the solution by socket to a GLVis server and optionally
// save it in VisIt format.
if (visualization)
{
sout << "parallel " << num_procs << " " << myid << "\n";
sout << "solution\n" << pmesh << x << flush;
}
if (visit)
{
visit_dc.SetCycle(vis_cycle++);
visit_dc.SetTime(time);
visit_dc.Save();
}
// 20. Apply the refiner on the mesh. The refiner calls the error
// estimator to obtain element errors, then it selects elements to
// be refined and finally it modifies the mesh. The Stop() method
// determines if all elements satisfy the local threshold.
refiner.Apply(pmesh);
if (myid == 0)
{
cout << ", total error: " << estimator->GetTotalError() << endl;
}
// 21. Quit the AMR loop if the termination criterion has been met
if (refiner.Stop())
{
a.Update(); // Free the assembled data
break;
}
// 22. Update the space, interpolate the solution, rebalance the mesh.
UpdateAndRebalance(pmesh, fespace, x, a, b);
}
// 23. Use error estimates from the last inner iteration to check for
// possible derefinements. The derefiner works similarly as the
// refiner. The errors are not recomputed because the mesh did not
// change (and also the estimator was not Reset() at this time).
if (derefiner.Apply(pmesh))
{
if (myid == 0)
{
cout << "\nDerefined elements." << endl;
}
// 24. Update the space and the solution, rebalance the mesh.
UpdateAndRebalance(pmesh, fespace, x, a, b);
}
}
delete estimator;
// 25. Exit
return 0;
}
void UpdateAndRebalance(ParMesh &pmesh, ParFiniteElementSpace &fespace,
ParGridFunction &x, ParBilinearForm &a,
ParLinearForm &b)
{
// Update the space: recalculate the number of DOFs and construct a matrix
// that will adjust any GridFunctions to the new mesh state.
fespace.Update();
// Interpolate the solution on the new mesh by applying the transformation
// matrix computed in the finite element space. Multiple GridFunctions could
// be updated here.
x.Update();
if (pmesh.Nonconforming())
{
// Load balance the mesh.
pmesh.Rebalance();
// Update the space again, this time a GridFunction redistribution matrix
// is created. Apply it to the solution.
fespace.Update();
x.Update();
}
// Inform the linear and bilinear forms that the space has changed.
a.Update();
b.Update();
// Free any transformation matrices to save memory.
fespace.UpdatesFinished();
}
const double alpha = 0.02;
// Spherical front with a Gaussian cross section and radius t
double front(double x, double y, double z, double t, int)
{
double r = sqrt(x*x + y*y + z*z);
return exp(-0.5*pow((r - t)/alpha, 2));
}
double front_laplace(double x, double y, double z, double t, int dim)
{
double x2 = x*x, y2 = y*y, z2 = z*z, t2 = t*t;
double r = sqrt(x2 + y2 + z2);
double a2 = alpha*alpha, a4 = a2*a2;
return -exp(-0.5*pow((r - t)/alpha, 2)) / a4 *
(-2*t*(x2 + y2 + z2 - (dim-1)*a2/2)/r + x2 + y2 + z2 + t2 - dim*a2);
}
// Smooth spherical step function with radius t
double ball(double x, double y, double z, double t, int)
{
double r = sqrt(x*x + y*y + z*z);
return -atan(2*(r - t)/alpha);
}
double ball_laplace(double x, double y, double z, double t, int dim)
{
double x2 = x*x, y2 = y*y, z2 = z*z, t2 = 4*t*t;
double r = sqrt(x2 + y2 + z2);
double a2 = alpha*alpha;
double den = pow(-a2 - 4*(x2 + y2 + z2 - 2*r*t) - t2, 2.0);
return (dim == 2) ? 2*alpha*(a2 + t2 - 4*x2 - 4*y2)/r/den
/* */ : 4*alpha*(a2 + t2 - 4*r*t)/r/den;
}
// Composes several features into one function
template<typename F0, typename F1>
double composite_func(const Vector &pt, double t, F0 f0, F1 f1)
{
int dim = pt.Size();
double x = pt(0), y = pt(1), z = 0.0;
if (dim == 3) { z = pt(2); }
if (problem == 0)
{
if (nfeatures <= 1)
{
return f0(x, y, z, t, dim);
}
else
{
double sum = 0.0;
for (int i = 0; i < nfeatures; i++)
{
double x0 = 0.5*cos(2*M_PI * i / nfeatures);
double y0 = 0.5*sin(2*M_PI * i / nfeatures);
sum += f0(x - x0, y - y0, z, t, dim);
}
return sum;
}
}
else
{
double sum = 0.0;
for (int i = 0; i < nfeatures; i++)
{
double x0 = 0.5*cos(2*M_PI * i / nfeatures + M_PI*t);
double y0 = 0.5*sin(2*M_PI * i / nfeatures + M_PI*t);
sum += f1(x - x0, y - y0, z, 0.25, dim);
}
return sum;
}
}
// Exact solution, used for the Dirichlet BC.
double bdr_func(const Vector &pt, double t)
{
return composite_func(pt, t, front, ball);
}
// Laplace of the exact solution, used for the right hand side.
double rhs_func(const Vector &pt, double t)
{
return composite_func(pt, t, front_laplace, ball_laplace);
}