-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwordcnn.sh
75 lines (75 loc) · 2.67 KB
/
wordcnn.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
python3 attack_classification.py \
--dataset_path data/imdb \
--word_embeddings_path glove.6B.200d.txt \
--target_model wordCNN \
--counter_fitting_cos_sim_path mat.txt \
--target_dataset imdb \
--target_model_path cnn/imdb \
--counter_fitting_embeddings_path counter-fitted-vectors.txt \
--USE_cache_path " " \
--max_seq_length 256 \
--sim_score_window 40 \
--sim_score_threshold 0.8 \
--top_k_words 60 \
--fuzz 70 \
--nclasses 2 &&
python3 attack_classification.py \
--dataset_path data/yelp \
--word_embeddings_path glove.6B.200d.txt \
--target_model wordCNN \
--counter_fitting_cos_sim_path mat.txt \
--target_dataset yelp \
--target_model_path cnn/yelp \
--counter_fitting_embeddings_path counter-fitted-vectors.txt \
--USE_cache_path " " \
--max_seq_length 256 \
--sim_score_window 40 \
--sim_score_threshold 0.8 \
--top_k_words 60 \
--fuzz 70 \
--nclasses 2 &&
python3 attack_classification_yahoo.py \
--dataset_path data/yahoo.csv \
--word_embeddings_path glove.6B.200d.txt \
--target_model wordCNN \
--counter_fitting_cos_sim_path mat.txt \
--target_dataset yahoo \
--target_model_path cnn/yahoo \
--counter_fitting_embeddings_path counter-fitted-vectors.txt \
--USE_cache_path " " \
--max_seq_length 256 \
--sim_score_window 40 \
--sim_score_threshold 0.8 \
--top_k_words 60 \
--fuzz 70 \
--nclasses 10 &&
python3 attack_classification.py \
--dataset_path data/ag \
--word_embeddings_path glove.6B.200d.txt \
--target_model wordCNN \
--counter_fitting_cos_sim_path mat.txt \
--target_dataset ag \
--target_model_path cnn/ag \
--counter_fitting_embeddings_path counter-fitted-vectors.txt \
--USE_cache_path " " \
--max_seq_length 256 \
--sim_score_window 40 \
--sim_score_threshold 0.8 \
--top_k_words 60 \
--fuzz 70 \
--nclasses 4 &&
python3 attack_classification.py \
--dataset_path data/mr \
--word_embeddings_path glove.6B.200d.txt \
--target_model wordCNN \
--counter_fitting_cos_sim_path mat.txt \
--target_dataset mr \
--target_model_path cnn/mr \
--counter_fitting_embeddings_path counter-fitted-vectors.txt \
--USE_cache_path " " \
--max_seq_length 256 \
--sim_score_window 40 \
--sim_score_threshold 0.8 \
--top_k_words 60 \
--fuzz 70 \
--nclasses 2