forked from PaddlePaddle/PARL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
137 lines (119 loc) · 4.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import gym
import d4rl
from parl.utils import logger, tensorboard, ReplayMemory
from mujoco_model import MujocoModel
from mujoco_agent import MujocoAgent
from parl.algorithms import CQL
from tqdm import trange
EVAL_EPISODES = 5
MEMORY_SIZE = int(2e6)
BATCH_SIZE = 256
GAMMA = 0.99
TAU = 0.005
ACTOR_LR = 1e-4
CRITIC_LR = 3e-4
# Runs policy for 5 episodes by default and returns average reward
# A fixed seed is used for the eval environment
def run_evaluate_episodes(agent, env, eval_episodes):
avg_reward = 0.
for _ in range(eval_episodes):
obs = env.reset()
done = False
while not done:
action = agent.predict(obs)
obs, reward, done, _ = env.step(action)
avg_reward += reward
avg_reward /= eval_episodes
return avg_reward
def main():
logger.info("------------------- CQL ---------------------")
logger.info('Env: {}, Seed: {}'.format(args.env, args.seed))
logger.info("---------------------------------------------")
env = gym.make(args.env)
env.seed(args.seed)
obs_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
# Initialize model, algorithm, agent
model = MujocoModel(obs_dim, action_dim)
algorithm = CQL(
model,
gamma=GAMMA,
tau=TAU,
actor_lr=ACTOR_LR,
critic_lr=CRITIC_LR,
with_automatic_entropy_tuning=args.with_automatic_entropy_tuning,
with_lagrange=args.with_lagrange)
agent = MujocoAgent(algorithm)
# Initialize offline data
rpm = ReplayMemory(
max_size=MEMORY_SIZE, obs_dim=obs_dim, act_dim=action_dim)
rpm.load_from_d4rl(d4rl.qlearning_dataset(env))
for total_steps in trange(int(args.train_total_steps)):
# Train steps
batch_obs, batch_action, batch_reward, batch_next_obs, batch_terminal = rpm.sample_batch(
BATCH_SIZE)
critic_loss, mse_loss, actor_loss, min_q = agent.learn(batch_obs, batch_action, batch_reward, batch_next_obs,\
batch_terminal)
tensorboard.add_scalar('train/critic_loss',
critic_loss.cpu().numpy(), total_steps)
tensorboard.add_scalar('train/mse_loss',
mse_loss.cpu().numpy(), total_steps)
tensorboard.add_scalar('train/actor_loss',
actor_loss.cpu().numpy(), total_steps)
tensorboard.add_scalar('train/min_qi',
min_q.cpu().numpy(), total_steps)
# Evaluate episode
if total_steps % args.test_every_steps == 0:
avg_reward = run_evaluate_episodes(agent, env, EVAL_EPISODES)
tensorboard.add_scalar('eval/episode_reward', avg_reward,
total_steps)
logger.info('Evaluation: total_steps {}, Reward: {}'.format(
total_steps, avg_reward))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--env",
default="halfcheetah-medium-expert-v0",
help='Mujoco gym environment name in d4rl')
parser.add_argument(
"--seed",
default=10,
type=int,
help='Sets Gym, PyTorch and Numpy seeds')
parser.add_argument(
"--train_total_steps",
default=1e6,
type=int,
help='Max time steps to run environment')
parser.add_argument(
'--test_every_steps',
type=int,
default=int(1e4),
help='The step interval between two consecutive evaluations')
parser.add_argument(
'--with_automatic_entropy_tuning',
dest='with_automatic_entropy_tuning',
action='store_true',
default=False)
parser.add_argument(
'--with_lagrange',
dest='with_lagrange',
action='store_true',
default=False)
args = parser.parse_args()
logger.info(args)
main()