Skip to content

M.Sc. thesis on Continual Learning for Non-Autoregressive Neural Machine Translation

License

Notifications You must be signed in to change notification settings

RistoAle97/ContinualNAT

Repository files navigation

ContinualNAT

Unipi Logo

M.Sc. thesis on Continual Learning for Non-Autoregressive Neural Machine Translation.


Python Jupyter

Pytorch Lightning HuggingFace


📌 Abstract

The Transformer architecture changed the world of Natural Language Processing and Deep Learning in general by setting new state-of-the-art scores for many fields and, nowadays, it is the go-to solution when approaching a new problem, but it comes with a limitation: its inference speed. The Transformer uses the parallelizable mechanism of self-attention during training in order to avoid the typical recurrence of RNN, but the use of an autoregressive (AR) decoder limits its full potential at inference time: at each time-step, only one token is generated.

In order to reach the full potential of the Transformer architecture a new kind of non-autoregressive (NAR) models were introduced, but it turned out that their performances were (and still are) way behind their AR counterparts.

Our purpose is to investigate the goodness of two of the most famous NAR models in multilingual Neural Machine Translation (NMT) setting, while also testing their behaviour under a simple Continual Learning approach.


🔰 How to start

First, clone this repository

git clone https://github.com/RistoAle97/ContinualNAT
cd ContinualNAT

It is highly advised to create a new python virtual environment

pip install venv
python -m venv ContinualNAT
source ContinualNAT/bin/activate

or a conda environment before proceeding

conda create --name ContinualNAT
conda activate ContinualNAT

Then, install the requirements

pip install -r requirements.txt

You can take a look at train.py to get an understanding of how to work with this repository, modify what you need and use

python train.py

to train one of the available models. Or you can start the gradio app to use the models trained for the thesis work.

python gradio_app.py

🗃️ Setting and datasets

  • Translation directions: $en \Leftrightarrow \lbrace de, fr, es \rbrace$.
  • Tokenizer training set: CC100.
  • Training set: a distilled version of CCMatrix, where only the first 30m of sentence pairs are considered.
  • Validation set:
    • newstest2012 for $en \Leftrightarrow es$.
    • newstest2013 for $en \Leftrightarrow de$ and $en \Leftrightarrow fr$.
  • Test set:
    • newstest2013 for $en \Leftrightarrow es$.
    • newstest2014 for $en \Leftrightarrow de$ and $en \Leftrightarrow fr$.

The validation and test sets are in a personal public repository on the Huggingface hub.


🛠️ Distillation

We employed the so-called Sequence-Level Knowledge Distillation to translate the first 30m of sentences in the target language from CCMatrix using an autoregressive teacher model. Such translations are then used as the references when training the models.

First, we converted the teacher models into CTranslate2 format with

ct2-transformers-converter --model Helsinki-NLP/opus-mt-en-de --output_dir ct2-opus-mt-en-de

then, we used the following command to distill the datasets and upload them on the Huggingface hub

python distill_ccmatrix.py --src en --tgt de

Hereafter are all the teacher models and distilled datasets used for our experiments.

Translation Direction Teacher Model Distilled Dataset
$en \Rightarrow de $ opus-mt-en-de distilled-ccmatrix-en-de
$de \Rightarrow en $ opus-mt-de-en distilled-ccmatrix-de-en
$en \Rightarrow fr $ opus-mt-en-fr distilled-ccmatrix-en-fr
$fr \Rightarrow en $ opus-mt-fr-en distilled-ccmatrix-fr-en
$en \Rightarrow es $ opus-mt-en-es distilled-ccmatrix-en-es
$es \Rightarrow en $ opus-mt-es-en distilled-ccmatrix-es-en

🏷️ Continual setting

The models were trained on three subsequent experiences each made up of two translation directions involving a language pair. At the end of each experience, a fixed-size buffer is filled with random samples following a simple reservoir sampling approach.

Continual setting

🤖 Models

The NAT models' names are taken from the following survey.

AR (autoregressive) models

NAR (non-autoregressive) models

Iterative NAT models
Fully NAT models
  • GLAT
  • CMLM with glancing

Some small useful tutorials using trained models

Evaluation
import torch
from datasets import load_dataset
from transformers import MBartTokenizerFast

from continualnat.data import TranslationDataset
from continualnat.metrics import compute_sacrebleu
from continualnat.models.cmlm import CMLMConfig, CMLM

# Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Tokenizer and some useful tokens
tokenizer = MBartTokenizerFast(tokenizer_file="tokenizers/sp_32k.json", model_max_length=1024,
                               cls_token="<length>")
bos_token_id = tokenizer.bos_token_id
eos_token_id = tokenizer.eos_token_id
pad_token_id = tokenizer.pad_token_id
mask_token_id = tokenizer.mask_token_id

# Load the dataset
wmt_en_de = load_dataset("thesistranslation/wmt14", "de-en",
                         cache_dir="/disk1/a.ristori/datasets/wmt14",
                         verification_mode="no_checks")
wmt_en_de_test = TranslationDataset("en", "de", wmt_en_de["test"], tokenizer, max_length=128)

# Load the model
model_state_dict = torch.load("path/to/your/saved/model")
model_config = CMLMConfig(len(tokenizer), bos_token_id=bos_token_id, eos_token_id=eos_token_id,
                          pad_token_id=pad_token_id, mask_token_id=mask_token_id, length_token_id=None,
                          pooler_size=256, glat_training=True)
model = CMLM(model_config)
model.load_state_dict(model_state_dict)
model.to(device)

# Compute BLEU score
bleu_scores = compute_sacrebleu(model, wmt_en_de_test, tokenizer, metric_tokenize={"13a", "intl"})
print(bleu_scores)
{'intl': 22.757592245926443, '13a': 22.19058951758056}
Visualization of mask-predict steps
import torch
from transformers import MBartTokenizerFast
from continualnat.models.cmlm import CMLMConfig, CMLM, tabulate_mask_predict_steps

# Tokenizer and some useful tokens
tokenizer = MBartTokenizerFast(tokenizer_file="tokenizers/sp_32k.json", model_max_length=1024,
                               cls_token="<length>")
bos_token_id = tokenizer.bos_token_id
eos_token_id = tokenizer.eos_token_id
pad_token_id = tokenizer.pad_token_id
mask_token_id = tokenizer.mask_token_id

# Load the model
model_state_dict = torch.load("path/to/your/saved/model")
model_config = CMLMConfig(len(tokenizer), bos_token_id=bos_token_id, eos_token_id=eos_token_id,
                          pad_token_id=pad_token_id, mask_token_id=mask_token_id, length_token_id=None,
                          pooler_size=256, glat_training=True)
model = CMLM(model_config)
model.load_state_dict(model_state_dict)

# Translate the sentences
src_sentences = ["What are you doing for the session?", "That was amazing, how did you do it?"]
tokenized_sentences = tokenizer(src_sentences, truncation=True, padding="longest", return_tensors="pt")
output = model.generate(tokenized_sentences.input_ids, tokenizer.lang_code_to_id["de_DE"])
translations_tokens, tokens_ids_at_each_step = output

# Tabulate the tokens generated at each step by mask-predict
tabulated_tokens_at_each_step, _ = tabulate_mask_predict_steps(tokens_ids_at_each_step, tokenizer)

# Let's show the mask-predict steps for the first sentence
print(tabulated_tokens_at_each_step[0])
-  ------  --------  ------  ------  ------  ----------  ------  ----  -----
0  <mask>  <mask>    <mask>  <mask>  <mask>  <mask>      <mask>  </s>  de_DE
1  ▁Was    ▁machen   ▁Sie    ▁für    ▁die    ▁Sitzung   ?       </s>  de_DE
-  ------  --------  ------  ------  ------  ----------  ------  ----  -----

📝 License

This project is MIT licensed.