-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
319 lines (287 loc) · 14.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
import tensorflow as tf
tf.version.VERSION
from tensorflow.keras.layers import Input
from tensorflow import keras
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from sklearn.metrics import mean_squared_error
from code.config import *
from code.utils import load_data
from code.DG import Cust_DatasetGenerator
from code.model import *
#Resnet50_UNet, Combined_HE_model,sar_encoder1, opt_encoder1, decoder1
from code.utils import GRD_toRGB_S1, GRD_toRGB_S2
import rasterio
import cv2 as cv
import numpy as np
# import segmentation_models as sm
# sm.set_framework('tf.keras')
# sm.framework()
import tensorflow as tf
tf.version.VERSION
import os
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0, 1, 2"
# SAR encoder
sar_input = Input(shape=(model_patch, model_patch, s1_ch))
bn_axis = -1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(sar_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING,
strides=(2, 2), name='conv21')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv21')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=22, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=22, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=22, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=23, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=23, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=23, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=23, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=24, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=24, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=24, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=24, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=24, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=24, block='f')
f4 = x
sar_encoder1 = keras.Model(sar_input, [f1, f2, f3, f4], name="sar_encoder1")
weights_path = keras.utils.get_file(pretrained_url.split("/")[-1], pretrained_url)
sar_encoder1.load_weights(weights_path, by_name=True, skip_mismatch=True)
print(f1.shape, f2.shape, f3.shape, f4.shape)
# optical encoder
opt_input = Input(shape=(model_patch, model_patch, s2_ch))
bn_axis = -1
x = ZeroPadding2D((3, 3), data_format=IMAGE_ORDERING)(opt_input)
x = Conv2D(64, (7, 7), data_format=IMAGE_ORDERING,
strides=(2, 2), name='conv21')(x)
f1 = x
x = BatchNormalization(axis=bn_axis, name='bn_conv21')(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), data_format=IMAGE_ORDERING, strides=(2, 2))(x)
x = conv_block(x, 3, [64, 64, 256], stage=22, block='a', strides=(1, 1))
x = identity_block(x, 3, [64, 64, 256], stage=22, block='b')
x = identity_block(x, 3, [64, 64, 256], stage=22, block='c')
f2 = one_side_pad(x)
x = conv_block(x, 3, [128, 128, 512], stage=23, block='a')
x = identity_block(x, 3, [128, 128, 512], stage=23, block='b')
x = identity_block(x, 3, [128, 128, 512], stage=23, block='c')
x = identity_block(x, 3, [128, 128, 512], stage=23, block='d')
f3 = x
x = conv_block(x, 3, [256, 256, 1024], stage=24, block='a')
x = identity_block(x, 3, [256, 256, 1024], stage=24, block='b')
x = identity_block(x, 3, [256, 256, 1024], stage=24, block='c')
x = identity_block(x, 3, [256, 256, 1024], stage=24, block='d')
x = identity_block(x, 3, [256, 256, 1024], stage=24, block='e')
x = identity_block(x, 3, [256, 256, 1024], stage=24, block='f')
f4 = x
opt_encoder1 = keras.Model(opt_input, [f1, f2, f3, f4], name="opt_encoder1")
weights_path = keras.utils.get_file(pretrained_url.split("/")[-1], pretrained_url)
opt_encoder1.load_weights(weights_path, by_name=True, skip_mismatch=True)
print(f1.shape, f2.shape, f3.shape, f4.shape)
"""
## Fuse E1 and E2 outputs and decode to height map
"""
ch = [64, 256, 512, 1024]
f1 = keras.Input(shape=(int(model_patch/2), int(model_patch/2), ch[0]))
f2 = keras.Input(shape=(int(model_patch/4), int(model_patch/4), ch[1]))
f3 = keras.Input(shape=(int(model_patch/8), int(model_patch/8), ch[2]))
f4 = keras.Input(shape=(int(model_patch/16), int(model_patch/16), ch[3]))
o = f4
o = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(o)
o = Conv2D(512, (3, 3), padding='valid' , activation='relu' , name='DEC_conv1', data_format=IMAGE_ORDERING)(o)
o = BatchNormalization( name='DEC_bn1')(o)
o = UpSampling2D((2, 2), name='DEC_up1', data_format=IMAGE_ORDERING)(o)
o = concatenate([o, f3], axis=MERGE_AXIS)
o = channel_spatial_squeeze_excite(o, o.shape)
o = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(o)
o = Conv2D(256, (3, 3), padding='valid', activation='relu' , name='DEC_conv2', data_format=IMAGE_ORDERING)(o)
o = BatchNormalization( name='DEC_bn2')(o)
o = UpSampling2D((2, 2), name='DEC_up2', data_format=IMAGE_ORDERING)(o)
o = concatenate([o, f2], axis=MERGE_AXIS)
o = channel_spatial_squeeze_excite(o, o.shape)
o = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(o)
o = Conv2D(128, (3, 3), padding='valid' , activation='relu' , name='DEC_conv3', data_format=IMAGE_ORDERING)(o)
o = BatchNormalization( name='DEC_bn3')(o)
o = UpSampling2D((2, 2), name='DEC_up3', data_format=IMAGE_ORDERING)(o)
o = concatenate([o, f1], axis=MERGE_AXIS)
o = channel_spatial_squeeze_excite(o, o.shape)
o = ZeroPadding2D((1, 1), data_format=IMAGE_ORDERING)(o)
o = Conv2D(64, (3, 3), padding='valid', activation='relu', data_format=IMAGE_ORDERING, name="DEC_seg_feats")(o)
o = BatchNormalization( name='DEC_bn4')(o)
o = UpSampling2D((2, 2), name='DEC_up4', data_format=IMAGE_ORDERING)(o)
outputs = Conv2D(1, (1, 1), activation='relu', name='HE_DEC_conv5') (o)
print("Decoder output shape", outputs.shape)
decoder1 = keras.Model([f1, f2, f3, f4], outputs, name="decoder1")
class Combined_HE_model(keras.Model):
def __init__(self, sar_encoder1, opt_encoder1, decoder1, **kwargs):
super(Combined_HE_model, self).__init__(**kwargs)
self.sar_encoder1 = sar_encoder1
self.opt_encoder1 = opt_encoder1
self.decoder1 = decoder1
self.alpha = 0.4
self.beta = 0.6
self.maxDepthVal = 176.0/1.0
self.mse_loss_tracker = keras.metrics.Mean(name="mse_loss")
self.val_mse_loss_tracker = keras.metrics.Mean(name="val_mse_loss")
self.ss_loss_tracker = keras.metrics.Mean(name="ss_loss")
self.val_ss_loss_tracker = keras.metrics.Mean(name="val_ss_loss")
self.total_loss_tracker = keras.metrics.Mean(name="total_loss")
self.val_total_loss_tracker = keras.metrics.Mean(name="val_total_loss")
self.mse = tf.keras.losses.MeanSquaredError()
self.huber = tf.keras.losses.Huber()
self.perc = tf.keras.losses.MeanAbsolutePercentageError()
self.cosine_loss = tf.keras.losses.CosineSimilarity(axis=1)
def struct_loss(self, target, pred):
# Structural similarity (SSIM) index
ssim_loss = tf.reduce_mean( 1 - tf.image.ssim(
target, pred, max_val=self.maxDepthVal, filter_size=5, k1=0.01 ** 2, k2=0.03 ** 2 )
)
return ssim_loss
@property
def metrics(self):
trackers = [
self.mse_loss_tracker,
self.ss_loss_tracker,
self.total_loss_tracker,
]
return trackers
def train_step(self, data):
[s1_img, s2_img], label = data
with tf.GradientTape() as tape:
[o11, o12, o13, o14] = self.sar_encoder1(s1_img, training=True)
[o21, o22, o23, o24] = self.opt_encoder1(s2_img, training=True)
o1 = Add()([o11, o21])
o2 = Add()([o12, o22])
o3 = Add()([o13, o23])
o4 = Add()([o14, o24])
he_out = self.decoder1([o1, o2, o3, o4], training = True)
#losses
mse_loss = self.mse(label, he_out)
ss_loss = self.cosine_loss(label, he_out)
total_loss = (self.alpha * mse_loss) + (self.beta * ss_loss)
grads = tape.gradient(total_loss, self.trainable_weights)
self.optimizer.apply_gradients(zip(grads, self.trainable_weights))
self.mse_loss_tracker.update_state(mse_loss)
self.ss_loss_tracker.update_state(ss_loss)
self.total_loss_tracker.update_state(total_loss)
tracker_results = {
"mse_loss": self.mse_loss_tracker.result(),
"ss_loss": self.ss_loss_tracker.result(),
"total_loss": self.total_loss_tracker.result(),
}
return tracker_results
def test_step(self, data):
[s1_img, s2_img], label = data
[o11, o12, o13, o14] = self.sar_encoder1(s1_img, training=False)
[o21, o22, o23, o24] = self.opt_encoder1(s2_img, training=False)
o1 = Add()([o11, o21])
o2 = Add()([o12, o22])
o3 = Add()([o13, o23])
o4 = Add()([o14, o24])
he_out = self.decoder1([o1, o2, o3, o4], training = False)
#losses
mse_loss_val = self.mse(label, he_out)
ss_loss_val = self.cosine_loss(label, he_out)
total_loss_val = (self.alpha * mse_loss_val) + (self.beta * ss_loss_val)
self.val_mse_loss_tracker.update_state(mse_loss_val)
self.val_ss_loss_tracker.update_state(ss_loss_val)
self.val_total_loss_tracker.update_state(total_loss_val)
return {
"mse_loss": self.val_mse_loss_tracker.result(),
"ss_loss": self.val_ss_loss_tracker.result(),
"loss": self.val_total_loss_tracker.result(),
}
def call(self, data):
return Combined_HE_model(self.sar_encoder1, self.opt_encoder1, self.decoder1)
def train_fusion(n_classes, S1, S2, train_y, val_y, WEIGHT_FNAME, subclass = False):
lr = 0.0001
optimizer = keras.optimizers.Adam(learning_rate=lr)
earlystopper = EarlyStopping(patience=20, verbose=1)
scheduler = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, min_lr=0.00001)
if subclass:
print('in subclass model')
model = Combined_HE_model(sar_encoder1, opt_encoder1, decoder1)
model.compile(optimizer)
model.fit(my_training_batch_generator, validation_data=my_validation_batch_generator, epochs=50, steps_per_epoch=int(len(train_y)/train_batchSize), validation_steps=int(len(val_y)/val_batchSize) ,callbacks=[scheduler, earlystopper])
model.save_weights(WEIGHT_PATH/WEIGHT_FNAME)
else:
model = Resnet50_UNet(n_classes, S1, S2)
model.compile(optimizer, loss = mse)
checkpointer = ModelCheckpoint(WEIGHT_PATH/WEIGHT_FNAME, verbose=1, save_best_only=True)
model.fit(my_training_batch_generator, validation_data=my_validation_batch_generator, epochs=50, steps_per_epoch=int(len(train_y)/train_batchSize), validation_steps=int(len(val_y)/val_batchSize) ,callbacks=[scheduler, earlystopper, checkpointer])
def evaluate_fusion(weight_file, S1, S2, val_y):
model = Combined_HE_model(sar_encoder1, opt_encoder1, decoder1)
model.built = True
# model = Resnet50_UNet(n_classes, S1, S2)
model.load_weights(WEIGHT_PATH/weight_file)
MSE = []
OUT_FOLDER = WEIGHT_PATH / 'Pred_Mask'
if not os.path.exists(OUT_FOLDER): os.mkdir(OUT_FOLDER)
for fname in val_y[1:]:
name_Split = str.split(fname, '_')
print(len(name_Split), name_Split)
tmp = 6
S1_name = name_Split[0] + '_' + name_Split[1] + '_S1_' + name_Split[3] + '_' + str(tmp)
S2_name = name_Split[0] + '_' + name_Split[1] + '_S2_' + name_Split[3] + '_' + str(tmp)
print('S1_name', S1_name)
s1img = GRD_toRGB_S1(S1_PATH, S1_name)
s2img = GRD_toRGB_S2(S2_PATH, S2_name, S2_MAX)
with rasterio.open(LABEL10_PATH/ fname) as lbl:
labelimg = lbl.read(1)
crs = lbl.crs
transform = lbl.transform
labelimg = cv.resize(labelimg, (IMG_HEIGHT, IMG_WIDTH), interpolation = cv.INTER_AREA)
labelimg = np.nan_to_num(labelimg)
in_s1img = tf.expand_dims(s1img, axis=0)
in_s2img = tf.expand_dims(s2img, axis=0)
[o11, o12, o13, o14] = model.sar_encoder1(in_s1img)
[o21, o22, o23, o24] = model.opt_encoder1(in_s2img)
o1 = Add()([o11, o21])
o2 = Add()([o12, o22])
o3 = Add()([o13, o23])
o4 = Add()([o14, o24])
pred_mask = model.decoder1([o1, o2, o3, o4])
# pred_mask = model.predict([in_s1img, in_s2img])
pred_mask = np.squeeze(pred_mask[0])
MSE.append(np.nan_to_num(mean_squared_error(labelimg, pred_mask)))
# filename = fname + '_predMask.tif'
# profile = {'driver': 'GTiff', 'crs': crs, 'transform': transform, 'height': 1280, 'width': 1280, 'count': 1, 'dtype': labelimg.dtype, }
# with rasterio.open(OUT_PATH/filename, 'w', **profile) as dst:
# dst.write(pred_mask, indexes=1)
AVG_MSE = sum(MSE)/len(MSE)
print('Average MSE :', AVG_MSE)
if __name__ == '__main__':
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(
description='Train the network.')
parser.add_argument("mode",
metavar="<command>",
help="'train' or 'evaluate'")
parser.add_argument('--weight', required=True,
default='test.h5',
metavar="/path/to/weightfile/",
help='weight directory (default=logs/)')
args = parser.parse_args()
# load data
train_y, val_y = load_data(DATA_PATH, LABEL_fname, splits)
my_training_batch_generator = Cust_DatasetGenerator(train_y, batch_size=train_batchSize)
my_validation_batch_generator = Cust_DatasetGenerator(val_y, batch_size=val_batchSize)
# define network parameters
n_classes = 1
S1 = Input(shape=(IMG_HEIGHT, IMG_WIDTH, s1_ch))
S2 = Input(shape=(IMG_HEIGHT, IMG_WIDTH, s2_ch))
# define loss, optimizer, lr etc.
mse = tf.keras.losses.MeanSquaredError()
optimizer = keras.optimizers.Adam(learning_rate=lr)
scheduler = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=20, min_lr=0.00001)
if args.mode == "train":
print('In training Fusion Network')
train_fusion(n_classes, S1, S2, train_y, val_y, args.weight, subclass = True)
if args.mode == "evaluate":
print('Evaluating Fusion Network')
WEIGHT_FNAME = args.weight
evaluate_fusion(WEIGHT_FNAME, S1, S2, val_y)