forked from AnyLoc/Revisit-Anything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgt.py
79 lines (65 loc) · 3.28 KB
/
gt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import pickle
from sklearn.neighbors import NearestNeighbors
from dataloaders.baidu_dataloader import Baidu_Dataset
from dataloaders.vpair_dataloader import VPAir
from dataloaders.MapillaryDatasetVal import MSLS
def get_gt(dataset, cfg, workdir_data, ims1_r=None, ims2_q=None, func_vpr_module=None):
"""
Retrieves the ground truth (gt) based on the specified dataset.
Parameters:
dataset (str): The name of the dataset.
cfg (dict): Configuration settings.
workdir_data (str): Path to the working directory data.
ims1_r (list, optional): List of reference image paths (required for some datasets).
ims2_q (list, optional): List of query image paths (required for some datasets).
func_vpr_module (module, optional): Module containing VPR-related functions.
Returns:
gt: Ground truth data structure appropriate for the dataset.
"""
if dataset == "baidu":
vpr_dl = Baidu_Dataset(cfg, workdir_data, 'baidu')
gt = vpr_dl.soft_positives_per_query
elif dataset in ["mslsSF", "mslsCPH"]:
GT_ROOT = './dataloaders/msls_npy_files/'
city_name = "sf" if dataset == "mslsSF" else "cph"
vpr_dl = MSLS(city_name=city_name, GT_ROOT=GT_ROOT)
gt = vpr_dl.soft_positives_per_query
elif dataset == "pitts":
npy_pitts_path = f"{workdir_data}/{dataset}/pitts30k/images/test/"
db = np.load(f"{npy_pitts_path}database.npy")
q = np.load(f"{npy_pitts_path}queries.npy")
utmDb = func_vpr_module.get_utm(db)
utmQ = func_vpr_module.get_utm(q)
gt = func_vpr_module.get_positives(utmDb, utmQ, 25)
elif dataset == "SFXL":
if ims1_r is None or ims2_q is None:
raise ValueError("ims1_r and ims2_q must be provided for the SFXL dataset.")
database_utms = np.array([(path.split("@")[1], path.split("@")[2]) for path in ims1_r]).astype(float)
queries_utms = np.array([(path.split("@")[1], path.split("@")[2]) for path in ims2_q]).astype(float)
positive_dist_threshold = 25
knn = NearestNeighbors(n_jobs=-1)
knn.fit(database_utms)
gt = knn.radius_neighbors(queries_utms, radius=positive_dist_threshold, return_distance=False)
elif dataset == "InsideOut":
utmDb_path = f"{workdir_data}/{dataset}/gps_db_correct.pkl"
utmQ_path = f"{workdir_data}/{dataset}/gps_q_new.pkl"
utmDb = pickle.load(open(utmDb_path, "rb"))
utmQ = pickle.load(open(utmQ_path, "rb"))
gt = func_vpr_module.get_positives(utmDb, utmQ, 50)
elif dataset == "17places":
if ims2_q is None:
raise ValueError("ims2_q must be provided for the 17places dataset.")
loc_rad = 15
gt = [list(np.arange(i - loc_rad, i + loc_rad + 1)) for i in range(len(ims2_q))]
elif dataset == "AmsterTime":
if ims1_r is None:
raise ValueError("ims1_r must be provided for the AmsterTime dataset.")
gt = [[i] for i in range(len(ims1_r))]
elif dataset == "VPAir":
vpr_dl = VPAir(cfg, workdir_data, 'VPAir')
gt = vpr_dl.soft_positives_per_query
else:
print("Dataset not found but saving descriptors, calculate recall later")
gt = None # Ensures descriptors are saved; recall can be calculated later.
return gt