-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_data.py
249 lines (211 loc) · 9.95 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
"""
Processes keystrokes and images and then finally save them in an organised folder.
TODO:
- concatenate data from multiple files from a folder
- Convert None to either \0 null byte ot just "null"
Processing rules:
- remove all data between `del` and `space` keys ✔
- remove all data between `del` and the previous `space` key ✔
- remove contiguous (1,2,3) recurring space or delete keys ✔
- remove 1-1.5s prior data (or when a previous "space" is encountered, whichever comes first) when encounter `space`
What we doing now:
- removing contigous spaces
- use np.where,
- convert it to 1d array
- use diff and prepend with n[0] - 2
- np.where(difference != 1)[0]
- np.delete(keys, indexes[np.where(difference == 1)[0]])
- finding pairs of del and spaces
- custom for loop through del arrays
- find index of spaces b/w current delete index and next delete index
- if more than one spaces are found, exit the program
- other wise we have pairs
"""
import os
from glob import glob
from typing import Tuple, List, Union
import numpy as np
from cv2.cv2 import imwrite
def remove_contiguous_stuff(arr: np.ndarray, to_delete: str) -> np.ndarray:
"""Accepts an array and then removes repeating contiguous spaces
# Pseudocode:
- removing contigous spaces
- use np.where,
- convert it to 1d array
- use diff and prepend with n[0] - 2
- np.where(difference != 1)[0]
- np.delete(keys, indexes[np.where(difference == 1)[0]])
"""
# get indexes of spaces
index_of_spaces = np.where(arr == to_delete)[0]
# get differences for detecting repeating
differences = np.diff(index_of_spaces, prepend=index_of_spaces[0] - 2)
# now get the indexes to freakin delete
indexes_of_spaces_to_delete = np.where(differences == 1)[0]
# now return
return index_of_spaces[indexes_of_spaces_to_delete]
def find_del_space_pairs(keystrokes: np.ndarray) -> Tuple[Tuple[int, int], ...]:
"""Find del-space-del pairs or something like that. im not quite sure how."""
spaces: np.ndarray = np.where(keystrokes == " ")[0]
delete: np.ndarray = np.where(keystrokes == "del")[0]
pairs: List[Tuple[int, int]] = []
# iterate and get intersection and pairs
print(delete, spaces)
if len(delete) == 1:
# use the property that the difference b/w numbers is the distance b/w numbers. so finding the index of the
# number having minimum distance, and then the index of number w/ 2nd big distance will give us the pair
first: Tuple[int, int]
second: Tuple[int, int]
min_index = np.abs(spaces - delete).argmin()
if spaces[min_index] < delete[0]:
first = spaces[min_index], delete[0]
second = delete[0], spaces[min_index + 1]
elif spaces[min_index] > delete[0]:
first = spaces[min_index - 1], delete[0]
second = spaces[min_index], delete[0]
else:
print("uh oh. something's going on here, you might wanna take a look....")
print("spaces:", spaces)
print("delete:", delete)
exit(1)
return first, second
for i in range(1, len(spaces) - 1):
intersection = np.intersect1d(delete[spaces[i] < delete], delete[delete < spaces[i + 1]])
if intersection.size > 0:
intersection = intersection[0]
if not isinstance(intersection, np.int64):
print("ERROR! WARNING! ERROR! there are more than 2 delete in between space. ABORT!")
print(intersection)
exit(1)
# pairs.append((spaces[i], intersection)) --- commented out because we're already deleting space-del
# #Repetition #NoFilters #SaveEarth #Windy4Cybersec #WINDYAPPROVES!!!!
pairs.append((intersection, spaces[i + 1]))
return tuple(pairs)
def remove_1s_data(time: np.ndarray, index_of_space: np.int64) -> Tuple[int, int]:
"""
Returns the index of data to be removed
PSEUDOCODE:
- store the difference from time - space
- filter by indexes whose difference is greater than -1.5s
- get the min value. that'll be the range to delete
"""
time = time.astype(np.float64)
from_time = time[index_of_space]
difference = time - from_time
to_index = np.where(difference > -1.5)[0][0]
return to_index, int(index_of_space)
def remove(keystroke: np.ndarray, time: np.ndarray, image: np.ndarray, indexes: Union[np.ndarray, range, List]) -> \
Tuple[
np.ndarray, np.ndarray, np.ndarray]:
return np.delete(keystroke, indexes), \
np.delete(time, indexes), \
np.delete(image, indexes, axis=0)
def process_data(keys: np.ndarray, time: np.ndarray, images: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
"""The main function to process data and call every function known to mankind"""
# first filter the data to remove continuous spaces and del keys
duplicated_space_indexes = remove_contiguous_stuff(keys, " ")
keys, time, images = remove(keys, time, images, duplicated_space_indexes)
if keys[keys == "del"].size > 0:
duplicated_space_indexes = remove_contiguous_stuff(keys, "del")
keys, time, images = remove(keys, time, images, duplicated_space_indexes)
assert len(keys) == len(time) == len(images), f"Length is not same for key, time, img: {len(keys)}, {len(time)}, " \
f"{len(images)} "
# delete space-del-space pairs
if keys[keys == "del"].size > 0:
pairs = find_del_space_pairs(keys)
print("pairs of del:", pairs)
to_delete = [np.array(range(i, j)) for i, j in pairs]
keys, time, images = remove(keys, time, images, np.concatenate(to_delete).astype(np.int64))
assert len(keys) == len(time) == len(images), f"Length is not same for key, time, img: {len(keys)}, " \
f"{len(time)}, {len(images)} "
# remove 1.5s prior data
game_over_indexes: List[Tuple[int, int], ...] = []
for space_index in np.where(keys == " ")[0][1:]: # don't consider first space
pair = remove_1s_data(time, space_index)
game_over_indexes.append(pair)
to_delete = [np.array(range(x, y)) for x, y in game_over_indexes]
keys, time, images = remove(keys, time, images, np.concatenate(to_delete).astype(np.int64))
assert len(keys) == len(time) == len(images), f"Length is not same for key, time, img: {len(keys)}, {len(time)}, " \
f"{len(images)} "
return keys, time, images
def generate_images(keys: np.ndarray, images: np.ndarray, game_number=0):
"""Generates images from the processed npy data"""
for folder in ["left", "right", "nothing"]:
if not os.path.isdir("images/" + folder):
os.mkdir("images/" + folder)
left_count = 0
right_count = 0
nothing_count = 0
success = False
path = ""
for index, key in enumerate(keys):
if key == "A":
left_count += 1
path = f"images/left/data_{game_number}_left_{left_count}_{index}.png"
elif key == "D":
right_count += 1
path = f"images/right/data_{game_number}_right_{right_count}_{index}.png"
elif key == None:
nothing_count += 1
path = f"images/nothing/data_{game_number}_nothing_{nothing_count}_{index}.png"
else:
continue
success = imwrite(path, images[index])
assert success, "Failed to write: " + path
print("total images:", len(images))
print("no of images output:", left_count + right_count + nothing_count)
if __name__ == '__main__':
TEST = False
if TEST:
# first thing to do
x = np.load("data/sample_data_2_keys.npz.npy", allow_pickle=True)
img = np.load("data/sample_data_2_img-bin.npz.npy", allow_pickle=True)
# replace None with null byte
# keystokes = x[:, 0]
# time = x[:, 1]
# x[:, 0][x[:, 0] == None] = "\0"
# TEST
keys = x[:, 0]
time = x[:, 1]
print("Len of key, time, img", len(keys), len(time), len(img))
indexes = remove_contiguous_stuff(keys, " ")
print(indexes)
keys, time, img = remove(keys, time, img, indexes)
print("Len of key, time, img", len(keys), len(time), len(img))
print("for del:", np.where(keys == "del"))
# Test 2
print("-------------------------------")
indexes = remove_contiguous_stuff(keys, "del")
keys, time, img = remove(keys, time, img, indexes)
pairs = find_del_space_pairs(keys)
print("pairs: ", pairs)
for i, j in pairs:
keys, time, img = remove(keys, time, img, range(i, j))
print("Len of key, time, img", len(keys), len(time), len(img))
# Test 3
print("------------------------------")
time = time.astype(np.float64)
spaces = np.where(keys == " ")[0][1:]
print("spaces: ", spaces)
for spaces in spaces:
index = remove_1s_data(time, spaces)
print(index)
print("time difference of returned:", time[index[0]] - time[index[1]])
print("time difference of returned - 1:", time[index[0] - 1] - time[index[1]])
print("eee")
if not TEST:
keys = glob("data/*keys.npz.npy")
images = glob("data/*bin.npz.npy")
keys.sort()
images.sort()
print(keys, "\n", images)
for index, file in enumerate(zip(keys, images)):
print("Processing: ", file[0][5:-8])
x = np.load(file[0], allow_pickle=True)
img = np.load(file[1], allow_pickle=True)
keys = x[:, 0]
time = x[:, 1]
print("original length:", len(img), len(keys), len(time))
print("------------------------------")
keys, time, img = process_data(keys, time, img)
generate_images(keys, img)