-
Notifications
You must be signed in to change notification settings - Fork 0
/
MazeSolver.py
515 lines (419 loc) · 14.3 KB
/
MazeSolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
__author__='Rokibul Uddin'
import copy
import re, os
import pygame
from queue import PriorityQueue
from PIL import Image, ImageDraw
import sys
import random
WIDTH = 800
WIN = pygame.display.set_mode((WIDTH, WIDTH))
pygame.display.set_caption("A* Path Finding Algorithm")
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 255, 0)
YELLOW = (255, 255, 0)
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
PURPLE = (128, 0, 128)
ORANGE = (255, 165 ,0)
GREY = (128, 128, 128)
TURQUOISE = (64, 224, 208)
DRAW_GRID = True
QUICK = False
class Cell:
wall_pairs = {'N': 'S', 'S': 'N', 'E': 'W', 'W': 'E'}
def __init__(self, x, y):
self.x, self.y = x, y
self.walls = {'N': True, 'S': True, 'E': True, 'W': True}
def has_all_walls(self):
return all(self.walls.values())
def knock_down_wall(self, other, wall):
self.walls[wall] = False
other.walls[Cell.wall_pairs[wall]] = False
class Maze:
def __init__(self, nx, ny, ix=0, iy=0):
self.nx, self.ny = nx, ny
self.ix, self.iy = ix, iy
self.maze_map = [[Cell(x, y) for y in range(ny)] for x in range(nx)]
def cell_at(self, x, y):
return self.maze_map[x][y]
def __str__(self):
maze_rows = ['-' * self.nx*2]
for y in range(self.ny):
maze_row = ['|']
for x in range(self.nx):
if self.maze_map[x][y].walls['E']:
maze_row.append(' |')
else:
maze_row.append(' ')
maze_rows.append(''.join(maze_row))
maze_row = ['|']
for x in range(self.nx):
if self.maze_map[x][y].walls['S']:
maze_row.append('-+')
else:
maze_row.append(' +')
maze_rows.append(''.join(maze_row))
return '\n'.join(maze_rows)
def write_img(self, rows):
aspect_ratio = self.nx / self.ny
height = rows * 2
width = int(height * aspect_ratio)
# Scaling factors mapping maze coordinates to image coordinates
scy, scx = height / self.ny, width / self.nx
img = Image.new('L', (width, width), color='white')
draw = ImageDraw.Draw(img)
for x in range(self.nx):
for y in range(self.ny):
if self.cell_at(x,y).walls['S']:
x1, y1, x2, y2 = x*scx, (y+1)*scy, (x+1)*scx, (y+1)*scy
draw.line([x1,y1,x2,y2], fill='black')
if self.cell_at(x,y).walls['E']:
x1, y1, x2, y2 = (x+1)*scx, y*scy, (x+1)*scx, (y+1)*scy
draw.line([x1, y1, x2, y2], fill='black')
return img
def find_valid_neighbours(self, cell):
"""Return a list of unvisited neighbours to cell."""
delta = [('W', (-1,0)),
('E', (1,0)),
('S', (0,1)),
('N', (0,-1))]
neighbours = []
for direction, (dx,dy) in delta:
x2, y2 = cell.x + dx, cell.y + dy
if (0 <= x2 < self.nx) and (0 <= y2 < self.ny):
neighbour = self.cell_at(x2, y2)
if neighbour.has_all_walls():
neighbours.append((direction, neighbour))
return neighbours
def make_maze(self):
# Total number of cells.
n = self.nx * self.ny
cell_stack = []
current_cell = self.cell_at(self.ix, self.iy)
# Total number of visited cells during maze construction.
nv = 1
while nv < n:
neighbours = self.find_valid_neighbours(current_cell)
if not neighbours:
# We've reached a dead end: backtrack.
current_cell = cell_stack.pop()
continue
# Choose a random neighbouring cell and move to it.
direction, next_cell = random.choice(neighbours)
current_cell.knock_down_wall(next_cell, direction)
cell_stack.append(current_cell)
current_cell = next_cell
nv += 1
class FandH:
def __init__(self, f, h):
self.f = f
self.h = h
def __lt__(self, obj):
if self.f == obj.f :
return self.h < obj.h
return self.f < obj.f
def __le__(self, obj):
if self.f == obj.f :
return self.h <= obj.h
return self.f <= obj.f
def __eq__(self, obj):
return (self.f == obj.f) and (self.h == obj.h)
def __ne__(self, obj):
return not self.__eq__(obj)
def __gt__(self, obj):
if self.f == obj.f :
return self.h > obj.h
return self.f > obj.f
def __ge__(self, obj):
if self.f == obj.f :
return self.h >= obj.h
return self.f >= obj.f
class Spot:
def __init__(self, row, col, width, total_rows, barrier=False):
self.row = row
self.col = col
self.x = row * width
self.y = col * width
self.color = WHITE if not barrier else BLACK
self.neighbors = []
self.width = width
self.total_rows = total_rows
def get_pos(self):
return self.row, self.col
def is_closed(self):
return self.color == RED
def is_open(self):
return self.color == GREEN
def is_barrier(self):
return self.color == BLACK
def is_start(self):
return self.color == ORANGE
def is_end(self):
return self.color == TURQUOISE
def is_path(self):
return self.color == PURPLE
def reset(self):
self.color = WHITE
def make_start(self):
self.color = ORANGE
def make_closed(self):
self.color = RED
def make_open(self):
self.color = GREEN
def make_barrier(self):
self.color = BLACK
def make_end(self):
self.color = TURQUOISE
def make_path(self):
self.color = PURPLE
def draw(self, win):
pygame.draw.rect(win, self.color, (self.x, self.y, self.width, self.width))
def update_neighbors(self, grid):
self.neighbors = []
if self.row < self.total_rows - 1 and not grid[self.row + 1][self.col].is_barrier(): # DOWN
self.neighbors.append(grid[self.row + 1][self.col])
if self.row > 0 and not grid[self.row - 1][self.col].is_barrier(): # UP
self.neighbors.append(grid[self.row - 1][self.col])
if self.col < self.total_rows - 1 and not grid[self.row][self.col + 1].is_barrier(): # RIGHT
self.neighbors.append(grid[self.row][self.col + 1])
if self.col > 0 and not grid[self.row][self.col - 1].is_barrier(): # LEFT
self.neighbors.append(grid[self.row][self.col - 1])
def __lt__(self, other):
return False
def h(p1, p2):
x1, y1 = p1
x2, y2 = p2
return abs(x1 - x2) + abs(y1 - y2)
def reconstruct_path(came_from, current, draw):
last = None
while current in came_from:
current = came_from[current]
current.make_path()
last = current
if not QUICK:
draw()
last.make_start()
if not QUICK:
draw()
def reset_grid(grid, draw):
for x in range(len(grid)):
for y in range(len(grid[0])):
item = grid[x][y]
if item.is_closed() or item.is_open():
item.reset()
draw()
def algorithm(draw, grid, start, end):
global QUICK
count = 0
open_set = PriorityQueue()
open_set.put((FandH(0, 0), count, start))
came_from = {}
g_score = {spot: float("inf") for row in grid for spot in row}
g_score[start] = 0
f_score = {spot: float("inf") for row in grid for spot in row}
f_score[start] = h(start.get_pos(), end.get_pos())
open_set_hash = {start}
while not open_set.empty():
for event in pygame.event.get():
if event.type == pygame.QUIT:
pygame.quit()
current = open_set.get()[2]
open_set_hash.remove(current)
if current == end:
#global DRAW_GRID
#DRAW_GRID = False
#reset_grid(grid, draw)
reconstruct_path(came_from, end, draw)
draw()
end.make_end()
return True
for neighbor in current.neighbors:
temp_g_score = g_score[current] + 1
if temp_g_score < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = temp_g_score
h_score = h(neighbor.get_pos(), end.get_pos())
f_score[neighbor] = temp_g_score + h_score
if neighbor not in open_set_hash:
count += 1
open_set.put((FandH(f_score[neighbor], h_score), count, neighbor))
open_set_hash.add(neighbor)
neighbor.make_open()
if not QUICK:
draw()
if current != start:
current.make_closed()
return False
def grid_cursor(grid):
x = len(grid)
y = len(grid[0])
for i in range(x):
for j in range(y):
yield grid[i][j]
def make_grid(rows, width):
grid = []
gap = width // rows
for i in range(rows):
grid.append([])
for j in range(rows):
spot = Spot(i, j, gap, rows)
grid[i].append(spot)
return grid
def draw_grid(win, rows, width):
global DRAW_GRID
if DRAW_GRID:
gap = width // rows
for i in range(rows):
pygame.draw.line(win, GREY, (0, i * gap), (width, i * gap))
for j in range(rows):
pygame.draw.line(win, GREY, (j * gap, 0), (j * gap, width))
def copy_grid(grid):
x = len(grid)
y = len(grid[0])
backup = []
for i in range(x):
backup.append([])
for j in range(y):
s = grid[i][j]
backup[i].append(Spot(i, j, s.width, s.total_rows))
backup[i][j].color = copy.copy(s.color)
return backup
def draw(win, grid, rows, width):
win.fill(WHITE)
for row in grid:
for spot in row:
spot.draw(win)
draw_grid(win, rows, width)
pygame.display.update()
def save(win, grid, rows, width, im):
cur_num = 0
regex = re.compile(r'maze_(\d+).png')
for file in os.listdir("."):
m = regex.search(file)
if m:
num = int(m.group(1))
if num > cur_num:
cur_num = num
cur_num += 1
im.save("maze_input_" + str(cur_num) + ".png")
backup = copy_grid(grid)
for x in range(len(backup)):
for y in range(len(backup[0])):
g = backup[x][y]
if g.is_closed() or g.is_open():
g.reset()
global DRAW_GRID
DRAW_GRID = False
draw(win, backup, rows, width)
pygame.image.save(win, "maze_sol_" + str(cur_num) + ".png")
for x in range(len(backup)):
for y in range(len(backup[0])):
g = backup[x][y]
if g.is_path():
g.reset()
draw(win, backup, rows, width)
pygame.image.save(win, "maze_" + str(cur_num) + ".png")
DRAW_GRID = True
draw(win, grid, rows, width)
return grid
def get_clicked_pos(pos, rows, width):
gap = width // rows
y, x = pos
row = y // gap
col = x // gap
return row, col
def fill_grid_from_img(img, grid, rows):
for x in range(rows):
for y in range(rows):
try:
if img.getpixel((x, y)) <= 200:
(grid[x][y]).make_barrier()
except:
pass
def fill_full_image(img):
grid = make_grid(img.size[0], WIDTH)
for x in range(img.size[0]):
for y in range(img.size[1]):
try:
if img.getpixel((x, y)) <= 200:
(grid[x][y]).make_barrier()
except:
pass
return (grid, img.size[0])
def main(win, width):
ROWS = 50
grid = None
argc = len(sys.argv) - 1
im = None
if argc >= 1:
# load from image
im = Image.open(sys.argv[1]).convert("L")
if im.size[0] == 100 and im.size[1] == 100:
ROWS = im.size[0]
grid = make_grid(ROWS, width)
else:
im.thumbnail((ROWS,ROWS))
grid = make_grid(ROWS, width)
fill_grid_from_img(im, grid, ROWS)
else:
# generate maze
maze = Maze(ROWS, ROWS, 0, 0)
maze.make_maze()
im = maze.write_img(ROWS)
(grid, ROWS) = fill_full_image(im)
start = None
end = None
run = True
while run:
draw(win, grid, ROWS, width)
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
if pygame.mouse.get_pressed()[0]: # LEFT
pos = pygame.mouse.get_pos()
row, col = get_clicked_pos(pos, ROWS, width)
spot = grid[row][col]
if not start and spot != end:
start = spot
start.make_start()
elif not end and spot != start:
end = spot
end.make_end()
elif spot != end and spot != start:
spot.make_barrier()
elif pygame.mouse.get_pressed()[2]: # RIGHT
pos = pygame.mouse.get_pos()
row, col = get_clicked_pos(pos, ROWS, width)
spot = grid[row][col]
spot.reset()
if spot == start:
start = None
elif spot == end:
end = None
if event.type == pygame.KEYDOWN:
if event.key == pygame.K_SPACE and start and end:
for row in grid:
for spot in row:
spot.update_neighbors(grid)
algorithm(lambda: draw(win, grid, ROWS, width), grid, start, end)
if event.key == pygame.K_c:
start = None
end = None
grid = make_grid(ROWS, width)
if event.key == pygame.K_f:
global QUICK
QUICK = not QUICK
if event.key == pygame.K_g:
start = None
end = None
grid = make_grid(ROWS, width)
maze = Maze(ROWS, ROWS, 0, 0)
maze.make_maze()
im = maze.write_img(ROWS)
fill_grid_from_img(im, grid, ROWS)
if event.key == pygame.K_s:
grid = save(win, grid, ROWS, width, im)
pygame.quit()
main(WIN, WIDTH)